--- a/src/HOL/Algebra/Coset.thy Sun Jul 01 17:38:08 2018 +0200
+++ b/src/HOL/Algebra/Coset.thy Sun Jul 01 16:46:28 2018 +0100
@@ -37,13 +37,12 @@
normal_rel :: "['a set, ('a, 'b) monoid_scheme] \<Rightarrow> bool" (infixl "\<lhd>" 60) where
"H \<lhd> G \<equiv> normal H G"
-(* ************************************************************************** *)
-(* Next two lemmas contributed by Martin Baillon. *)
+(*Next two lemmas contributed by Martin Baillon.*)
lemma l_coset_eq_set_mult:
fixes G (structure)
shows "x <# H = {x} <#> H"
- unfolding l_coset_def set_mult_def by simp
+ unfolding l_coset_def set_mult_def by simp
lemma r_coset_eq_set_mult:
fixes G (structure)
@@ -74,7 +73,7 @@
and h2: "h2 \<in> H" "r2 = h2 \<otimes> g"
using r1 r2 unfolding r_coset_def by blast
hence "r1 \<otimes> (inv r2) = (h1 \<otimes> g) \<otimes> ((inv g) \<otimes> (inv h2))"
- using inv_mult_group is_group assms(1) g(1) subgroup.mem_carrier by fastforce
+ using inv_mult_group is_group assms(1) g(1) subgroup.mem_carrier by fastforce
also have " ... = (h1 \<otimes> (g \<otimes> inv g) \<otimes> inv h2)"
using h1 h2 assms(1) g(1) inv_closed m_closed monoid.m_assoc
monoid_axioms subgroup.mem_carrier by smt
@@ -89,21 +88,6 @@
subsection \<open>Stable Operations for Subgroups\<close>
-lemma (in group) subgroup_set_mult_equality[simp]:
- assumes "subgroup H G" "I \<subseteq> H" "J \<subseteq> H"
- shows "I <#>\<^bsub>G \<lparr> carrier := H \<rparr>\<^esub> J = I <#> J"
- unfolding set_mult_def subgroup_mult_equality[OF assms(1)] by auto
-
-lemma (in group) subgroup_rcos_equality[simp]:
- assumes "subgroup H G" "I \<subseteq> H" "h \<in> H"
- shows "I #>\<^bsub>G \<lparr> carrier := H \<rparr>\<^esub> h = I #> h"
- using subgroup_set_mult_equality by (simp add: r_coset_eq_set_mult assms)
-
-lemma (in group) subgroup_lcos_equality[simp]:
- assumes "subgroup H G" "I \<subseteq> H" "h \<in> H"
- shows "h <#\<^bsub>G \<lparr> carrier := H \<rparr>\<^esub> I = h <# I"
- using subgroup_set_mult_equality by (simp add: l_coset_eq_set_mult assms)
-
lemma set_mult_consistent [simp]:
"N <#>\<^bsub>(G \<lparr> carrier := H \<rparr>)\<^esub> K = N <#>\<^bsub>G\<^esub> K"
unfolding set_mult_def by simp
@@ -184,7 +168,7 @@
assumes "M #> x = M #> y"
and "x \<in> carrier G" "y \<in> carrier G" "M \<subseteq> carrier G"
shows "M #> (x \<otimes> (inv y)) = M " using assms
- by (metis group.coset_mult_assoc group.coset_mult_one inv_closed is_group r_inv)
+ by (metis group.coset_mult_assoc group.coset_mult_one inv_closed is_group r_inv)
lemma (in group) coset_join1:
assumes "H #> x = H"
@@ -297,12 +281,12 @@
shows "(x' \<in> H #> x) = (x' \<otimes> inv x \<in> H)"
using rcos_module_rev rcos_module_imp assms by blast
-text \<open>Right cosets are subsets of the carrier.\<close>
+text \<open>Right cosets are subsets of the carrier.\<close>
lemma (in subgroup) rcosets_carrier:
assumes "group G" "X \<in> rcosets H"
shows "X \<subseteq> carrier G"
using assms elemrcos_carrier singletonD
- subset_eq unfolding RCOSETS_def by force
+ subset_eq unfolding RCOSETS_def by force
text \<open>Multiplication of general subsets\<close>
@@ -369,7 +353,7 @@
lemma normal_imp_subgroup: "H \<lhd> G \<Longrightarrow> subgroup H G"
by (simp add: normal_def subgroup_def)
-lemma (in group) normalI:
+lemma (in group) normalI:
"subgroup H G \<Longrightarrow> (\<forall>x \<in> carrier G. H #> x = x <# H) \<Longrightarrow> H \<lhd> G"
by (simp add: normal_def normal_axioms_def is_group)
@@ -378,32 +362,32 @@
shows "(inv x) \<otimes> h \<otimes> x \<in> H"
proof -
have "h \<otimes> x \<in> x <# H"
- using assms coset_eq assms(1) unfolding r_coset_def by blast
+ using assms coset_eq assms(1) unfolding r_coset_def by blast
then obtain h' where "h' \<in> H" "h \<otimes> x = x \<otimes> h'"
unfolding l_coset_def by blast
- thus ?thesis by (metis assms inv_closed l_inv l_one m_assoc mem_carrier)
+ thus ?thesis by (metis assms inv_closed l_inv l_one m_assoc mem_carrier)
qed
lemma (in normal) inv_op_closed2:
assumes "x \<in> carrier G" and "h \<in> H"
shows "x \<otimes> h \<otimes> (inv x) \<in> H"
- using assms inv_op_closed1 by (metis inv_closed inv_inv)
+ using assms inv_op_closed1 by (metis inv_closed inv_inv)
text\<open>Alternative characterization of normal subgroups\<close>
lemma (in group) normal_inv_iff:
- "(N \<lhd> G) =
+ "(N \<lhd> G) =
(subgroup N G \<and> (\<forall>x \<in> carrier G. \<forall>h \<in> N. x \<otimes> h \<otimes> (inv x) \<in> N))"
(is "_ = ?rhs")
proof
assume N: "N \<lhd> G"
show ?rhs
- by (blast intro: N normal.inv_op_closed2 normal_imp_subgroup)
+ by (blast intro: N normal.inv_op_closed2 normal_imp_subgroup)
next
assume ?rhs
- hence sg: "subgroup N G"
+ hence sg: "subgroup N G"
and closed: "\<And>x. x\<in>carrier G \<Longrightarrow> \<forall>h\<in>N. x \<otimes> h \<otimes> inv x \<in> N" by auto
- hence sb: "N \<subseteq> carrier G" by (simp add: subgroup.subset)
+ hence sb: "N \<subseteq> carrier G" by (simp add: subgroup.subset)
show "N \<lhd> G"
proof (intro normalI [OF sg], simp add: l_coset_def r_coset_def, clarify)
fix x
@@ -413,9 +397,9 @@
show "(\<Union>h\<in>N. {h \<otimes> x}) \<subseteq> (\<Union>h\<in>N. {x \<otimes> h})"
proof clarify
fix n
- assume n: "n \<in> N"
+ assume n: "n \<in> N"
show "n \<otimes> x \<in> (\<Union>h\<in>N. {x \<otimes> h})"
- proof
+ proof
from closed [of "inv x"]
show "inv x \<otimes> n \<otimes> x \<in> N" by (simp add: x n)
show "n \<otimes> x \<in> {x \<otimes> (inv x \<otimes> n \<otimes> x)}"
@@ -426,9 +410,9 @@
show "(\<Union>h\<in>N. {x \<otimes> h}) \<subseteq> (\<Union>h\<in>N. {h \<otimes> x})"
proof clarify
fix n
- assume n: "n \<in> N"
+ assume n: "n \<in> N"
show "x \<otimes> n \<in> (\<Union>h\<in>N. {h \<otimes> x})"
- proof
+ proof
show "x \<otimes> n \<otimes> inv x \<in> N" by (simp add: x n closed)
show "x \<otimes> n \<in> {x \<otimes> n \<otimes> inv x \<otimes> x}"
by (simp add: x n m_assoc sb [THEN subsetD])
@@ -444,14 +428,14 @@
using assms normal_inv_iff by blast
corollary (in group) normal_invE:
- assumes "N \<lhd> G"
+ assumes "N \<lhd> G"
shows "subgroup N G" and "\<And>x h. \<lbrakk> x \<in> carrier G; h \<in> N \<rbrakk> \<Longrightarrow> x \<otimes> h \<otimes> inv x \<in> N"
using assms normal_inv_iff apply blast
- by (simp add: assms normal.inv_op_closed2)
+ by (simp add: assms normal.inv_op_closed2)
lemma (in group) one_is_normal :
- "{\<one>} \<lhd> G"
+ "{\<one>} \<lhd> G"
proof(intro normal_invI )
show "subgroup {\<one>} G"
by (simp add: subgroup_def)
@@ -470,7 +454,7 @@
hence "\<And> h. h \<in> H \<Longrightarrow> x \<otimes> h = y \<otimes> ((inv h') \<otimes> h)"
by (smt assms(2-3) inv_closed inv_solve_right m_assoc m_closed subgroup.mem_carrier)
hence "\<And> xh. xh \<in> x <# H \<Longrightarrow> xh \<in> y <# H"
- unfolding l_coset_def by (metis (no_types, lifting) UN_iff assms(3) h'(1) subgroup_def)
+ unfolding l_coset_def by (metis (no_types, lifting) UN_iff assms(3) h'(1) subgroup_def)
moreover have "\<And> h. h \<in> H \<Longrightarrow> y \<otimes> h = x \<otimes> (h' \<otimes> h)"
using h' by (meson assms(2) assms(3) m_assoc subgroup.mem_carrier)
hence "\<And> yh. yh \<in> y <# H \<Longrightarrow> yh \<in> x <# H"
@@ -494,7 +478,7 @@
by (auto simp add: l_coset_def m_assoc subgroup.subset [THEN subsetD] subgroup.m_closed)
lemma (in group) l_coset_swap:
- assumes "y \<in> x <# H" "x \<in> carrier G" "subgroup H G"
+ assumes "y \<in> x <# H" "x \<in> carrier G" "subgroup H G"
shows "x \<in> y <# H"
using assms(2) l_repr_independence[OF assms] subgroup.one_closed[OF assms(3)]
unfolding l_coset_def by fastforce
@@ -518,7 +502,7 @@
lemma (in normal) rcos_inv:
assumes x: "x \<in> carrier G"
- shows "set_inv (H #> x) = H #> (inv x)"
+ shows "set_inv (H #> x) = H #> (inv x)"
proof (simp add: r_coset_def SET_INV_def x inv_mult_group, safe)
fix h
assume h: "h \<in> H"
@@ -595,12 +579,12 @@
show ?thesis
proof (intro equivI)
show "refl_on (carrier G) (rcong H)"
- by (auto simp add: r_congruent_def refl_on_def)
+ by (auto simp add: r_congruent_def refl_on_def)
next
show "sym (rcong H)"
proof (simp add: r_congruent_def sym_def, clarify)
fix x y
- assume [simp]: "x \<in> carrier G" "y \<in> carrier G"
+ assume [simp]: "x \<in> carrier G" "y \<in> carrier G"
and "inv x \<otimes> y \<in> H"
hence "inv (inv x \<otimes> y) \<in> H" by simp
thus "inv y \<otimes> x \<in> H" by (simp add: inv_mult_group)
@@ -613,7 +597,7 @@
and "inv x \<otimes> y \<in> H" and "inv y \<otimes> z \<in> H"
hence "(inv x \<otimes> y) \<otimes> (inv y \<otimes> z) \<in> H" by simp
hence "inv x \<otimes> (y \<otimes> inv y) \<otimes> z \<in> H"
- by (simp add: m_assoc del: r_inv Units_r_inv)
+ by (simp add: m_assoc del: r_inv Units_r_inv)
thus "inv x \<otimes> z \<in> H" by simp
qed
qed
@@ -639,7 +623,7 @@
shows "a <# H = (rcong H) `` {a}"
proof -
interpret group G by fact
- show ?thesis by (force simp add: r_congruent_def l_coset_def m_assoc [symmetric] a )
+ show ?thesis by (force simp add: r_congruent_def l_coset_def m_assoc [symmetric] a )
qed
@@ -692,9 +676,9 @@
have "inv c \<otimes> (inv a \<otimes> b) \<otimes> c \<in> H" by (rule inv_op_closed1)
moreover
from carr and inv_closed
- have "inv c \<otimes> (inv a \<otimes> b) \<otimes> c = (inv c \<otimes> inv a) \<otimes> (b \<otimes> c)"
+ have "inv c \<otimes> (inv a \<otimes> b) \<otimes> c = (inv c \<otimes> inv a) \<otimes> (b \<otimes> c)"
by (force cong: m_assoc)
- moreover
+ moreover
from carr and inv_closed
have "\<dots> = (inv (a \<otimes> c)) \<otimes> (b \<otimes> c)"
by (simp add: inv_mult_group)
@@ -803,7 +787,7 @@
moreover have "?f ` H \<subseteq> R"
using g unfolding r_coset_def by blast
ultimately show ?thesis using inj_on_g unfolding bij_betw_def
- using assms(2) g(1) by auto
+ using assms(2) g(1) by auto
qed
corollary (in group) card_rcosets_equal:
@@ -843,7 +827,7 @@
case False note inf_G = this
thus ?thesis
proof (cases "finite H")
- case False thus ?thesis using inf_G by (simp add: order_def)
+ case False thus ?thesis using inf_G by (simp add: order_def)
next
case True note finite_H = this
have "infinite (rcosets H)"
@@ -860,7 +844,7 @@
hence "order G = (card H) * (card (rcosets H))" by simp
hence "order G \<noteq> 0" using finite_rcos finite_H assms ex_in_conv
rcosets_part_G subgroup.one_closed by fastforce
- thus False using inf_G order_gt_0_iff_finite by blast
+ thus False using inf_G order_gt_0_iff_finite by blast
qed
thus ?thesis using inf_G by (simp add: order_def)
qed
@@ -915,11 +899,11 @@
done
lemma mult_FactGroup [simp]: "X \<otimes>\<^bsub>(G Mod H)\<^esub> X' = X <#>\<^bsub>G\<^esub> X'"
- by (simp add: FactGroup_def)
+ by (simp add: FactGroup_def)
lemma (in normal) inv_FactGroup:
"X \<in> carrier (G Mod H) \<Longrightarrow> inv\<^bsub>G Mod H\<^esub> X = set_inv X"
-apply (rule group.inv_equality [OF factorgroup_is_group])
+apply (rule group.inv_equality [OF factorgroup_is_group])
apply (simp_all add: FactGroup_def setinv_closed rcosets_inv_mult_group_eq)
done
@@ -929,10 +913,10 @@
"(\<lambda>a. H #> a) \<in> hom G (G Mod H)"
by (auto simp add: FactGroup_def RCOSETS_def Pi_def hom_def rcos_sum)
-
+
subsection\<open>The First Isomorphism Theorem\<close>
-text\<open>The quotient by the kernel of a homomorphism is isomorphic to the
+text\<open>The quotient by the kernel of a homomorphism is isomorphic to the
range of that homomorphism.\<close>
definition
@@ -941,8 +925,8 @@
where "kernel G H h = {x. x \<in> carrier G \<and> h x = \<one>\<^bsub>H\<^esub>}"
lemma (in group_hom) subgroup_kernel: "subgroup (kernel G H h) G"
-apply (rule subgroup.intro)
-apply (auto simp add: kernel_def group.intro is_group)
+apply (rule subgroup.intro)
+apply (auto simp add: kernel_def group.intro is_group)
done
text\<open>The kernel of a homomorphism is a normal subgroup\<close>
@@ -956,10 +940,10 @@
shows "X \<noteq> {}"
proof -
from X
- obtain g where "g \<in> carrier G"
+ obtain g where "g \<in> carrier G"
and "X = kernel G H h #> g"
by (auto simp add: FactGroup_def RCOSETS_def)
- thus ?thesis
+ thus ?thesis
by (auto simp add: kernel_def r_coset_def image_def intro: hom_one)
qed
@@ -969,7 +953,7 @@
shows "the_elem (h`X) \<in> carrier H"
proof -
from X
- obtain g where g: "g \<in> carrier G"
+ obtain g where g: "g \<in> carrier G"
and "X = kernel G H h #> g"
by (auto simp add: FactGroup_def RCOSETS_def)
hence "h ` X = {h g}" by (auto simp add: kernel_def r_coset_def g intro!: imageI)
@@ -985,16 +969,16 @@
and X': "X' \<in> carrier (G Mod kernel G H h)"
then
obtain g and g'
- where "g \<in> carrier G" and "g' \<in> carrier G"
+ where "g \<in> carrier G" and "g' \<in> carrier G"
and "X = kernel G H h #> g" and "X' = kernel G H h #> g'"
by (auto simp add: FactGroup_def RCOSETS_def)
- hence all: "\<forall>x\<in>X. h x = h g" "\<forall>x\<in>X'. h x = h g'"
+ hence all: "\<forall>x\<in>X. h x = h g" "\<forall>x\<in>X'. h x = h g'"
and Xsub: "X \<subseteq> carrier G" and X'sub: "X' \<subseteq> carrier G"
by (force simp add: kernel_def r_coset_def image_def)+
hence "h ` (X <#> X') = {h g \<otimes>\<^bsub>H\<^esub> h g'}" using X X'
by (auto dest!: FactGroup_nonempty intro!: image_eqI
- simp add: set_mult_def
- subsetD [OF Xsub] subsetD [OF X'sub])
+ simp add: set_mult_def
+ subsetD [OF Xsub] subsetD [OF X'sub])
then show "the_elem (h ` (X <#> X')) = the_elem (h ` X) \<otimes>\<^bsub>H\<^esub> the_elem (h ` X')"
by (auto simp add: all FactGroup_nonempty X X' the_elem_image_unique)
qed
@@ -1005,28 +989,28 @@
"\<lbrakk>g \<in> carrier G; g' \<in> carrier G; h g = h g'\<rbrakk>
\<Longrightarrow> kernel G H h #> g \<subseteq> kernel G H h #> g'"
apply (clarsimp simp add: kernel_def r_coset_def)
-apply (rename_tac y)
-apply (rule_tac x="y \<otimes> g \<otimes> inv g'" in exI)
-apply (simp add: G.m_assoc)
+apply (rename_tac y)
+apply (rule_tac x="y \<otimes> g \<otimes> inv g'" in exI)
+apply (simp add: G.m_assoc)
done
lemma (in group_hom) FactGroup_inj_on:
"inj_on (\<lambda>X. the_elem (h ` X)) (carrier (G Mod kernel G H h))"
-proof (simp add: inj_on_def, clarify)
+proof (simp add: inj_on_def, clarify)
fix X and X'
assume X: "X \<in> carrier (G Mod kernel G H h)"
and X': "X' \<in> carrier (G Mod kernel G H h)"
then
obtain g and g'
- where gX: "g \<in> carrier G" "g' \<in> carrier G"
+ where gX: "g \<in> carrier G" "g' \<in> carrier G"
"X = kernel G H h #> g" "X' = kernel G H h #> g'"
by (auto simp add: FactGroup_def RCOSETS_def)
- hence all: "\<forall>x\<in>X. h x = h g" "\<forall>x\<in>X'. h x = h g'"
+ hence all: "\<forall>x\<in>X. h x = h g" "\<forall>x\<in>X'. h x = h g'"
by (force simp add: kernel_def r_coset_def image_def)+
assume "the_elem (h ` X) = the_elem (h ` X')"
hence h: "h g = h g'"
- by (simp add: all FactGroup_nonempty X X' the_elem_image_unique)
- show "X=X'" by (rule equalityI) (simp_all add: FactGroup_subset h gX)
+ by (simp add: all FactGroup_nonempty X X' the_elem_image_unique)
+ show "X=X'" by (rule equalityI) (simp_all add: FactGroup_subset h gX)
qed
text\<open>If the homomorphism @{term h} is onto @{term H}, then so is the
@@ -1042,10 +1026,10 @@
fix y
assume y: "y \<in> carrier H"
with h obtain g where g: "g \<in> carrier G" "h g = y"
- by (blast elim: equalityE)
- hence "(\<Union>x\<in>kernel G H h #> g. {h x}) = {y}"
- by (auto simp add: y kernel_def r_coset_def)
- with g show "y \<in> (\<lambda>X. the_elem (h ` X)) ` carrier (G Mod kernel G H h)"
+ by (blast elim: equalityE)
+ hence "(\<Union>x\<in>kernel G H h #> g. {h x}) = {y}"
+ by (auto simp add: y kernel_def r_coset_def)
+ with g show "y \<in> (\<lambda>X. the_elem (h ` X)) ` carrier (G Mod kernel G H h)"
apply (auto intro!: bexI image_eqI simp add: FactGroup_def RCOSETS_def)
apply (subst the_elem_image_unique)
apply auto
@@ -1059,8 +1043,8 @@
theorem (in group_hom) FactGroup_iso_set:
"h ` carrier G = carrier H
\<Longrightarrow> (\<lambda>X. the_elem (h`X)) \<in> iso (G Mod (kernel G H h)) H"
-by (simp add: iso_def FactGroup_hom FactGroup_inj_on bij_betw_def
- FactGroup_onto)
+by (simp add: iso_def FactGroup_hom FactGroup_inj_on bij_betw_def
+ FactGroup_onto)
corollary (in group_hom) FactGroup_iso :
"h ` carrier G = carrier H
@@ -1137,7 +1121,7 @@
\<forall>ya\<in>carrier (K Mod N). x \<times> y = xa \<times> ya \<longrightarrow> x = xa \<and> y = ya)"
unfolding FactGroup_def using times_eq_iff subgroup.rcosets_non_empty
by (metis assms(2) assms(3) normal_def partial_object.select_convs(1))
- moreover have "(\<lambda>(X, Y). X \<times> Y) ` (carrier (G Mod H) \<times> carrier (K Mod N)) =
+ moreover have "(\<lambda>(X, Y). X \<times> Y) ` (carrier (G Mod H) \<times> carrier (K Mod N)) =
carrier (G \<times>\<times> K Mod H \<times> N)"
unfolding image_def apply auto using R apply force
unfolding DirProd_def FactGroup_def RCOSETS_def r_coset_def by force
@@ -1168,7 +1152,7 @@
assumes "subgroup H G"
shows "(carrier G) <#> H = carrier G"
proof
- show "(carrier G)<#>H \<subseteq> carrier G"
+ show "(carrier G)<#>H \<subseteq> carrier G"
unfolding set_mult_def using subgroup.subset assms by blast
next
have " (carrier G) #> \<one> = carrier G" unfolding set_mult_def r_coset_def group_axioms by simp
@@ -1179,18 +1163,14 @@
(*Same lemma as above, but everything is included in a subgroup*)
lemma (in group) set_mult_subgroup_idem:
- assumes "subgroup H G"
- and "subgroup N (G\<lparr>carrier:=H\<rparr>)"
- shows "H<#>N = H"
- using group.set_mult_carrier_idem[OF subgroup_imp_group] subgroup.subset assms
- by (metis monoid.cases_scheme order_refl partial_object.simps(1)
- partial_object.update_convs(1) subgroup_set_mult_equality)
+ assumes HG: "subgroup H G" and NG: "subgroup N (G \<lparr> carrier := H \<rparr>)"
+ shows "H <#> N = H"
+ using group.set_mult_carrier_idem[OF subgroup.subgroup_is_group[OF HG group_axioms] NG] by simp
(*A normal subgroup is commutative with set_mult*)
lemma (in group) commut_normal:
- assumes "subgroup H G"
- and "N\<lhd>G"
- shows "H<#>N = N<#>H"
+ assumes "subgroup H G" and "N\<lhd>G"
+ shows "H<#>N = N<#>H"
proof-
have aux1: "{H <#> N} = {\<Union>h\<in>H. h <# N }" unfolding set_mult_def l_coset_def by auto
also have "... = {\<Union>h\<in>H. N #> h }" using assms normal.coset_eq subgroup.mem_carrier by fastforce
@@ -1200,23 +1180,10 @@
(*Same lemma as above, but everything is included in a subgroup*)
lemma (in group) commut_normal_subgroup:
- assumes "subgroup H G"
- and "N\<lhd>(G\<lparr>carrier:=H\<rparr>)"
- and "subgroup K (G\<lparr>carrier:=H\<rparr>)"
- shows "K<#>N = N<#>K"
-proof-
- have "N \<subseteq> carrier (G\<lparr>carrier := H\<rparr>)" using assms normal_imp_subgroup subgroup.subset by blast
- hence NH : "N \<subseteq> H" by simp
- have "K \<subseteq> carrier(G\<lparr>carrier := H\<rparr>)" using subgroup.subset assms by blast
- hence KH : "K \<subseteq> H" by simp
- have Egal : "K <#>\<^bsub>G\<lparr>carrier := H\<rparr>\<^esub> N = N <#>\<^bsub>G\<lparr>carrier := H\<rparr>\<^esub> K"
- using group.commut_normal[where ?G = "G\<lparr>carrier :=H\<rparr>", of K N,OF subgroup_imp_group[OF assms(1)]
- assms(3) assms(2)] by auto
- also have "... = N <#> K" using subgroup_set_mult_equality[of H N K, OF assms(1) NH KH] by auto
- moreover have "K <#>\<^bsub>G\<lparr>carrier := H\<rparr>\<^esub> N = K <#> N"
- using subgroup_set_mult_equality[of H K N, OF assms(1) KH NH] by auto
- ultimately show "K<#>N = N<#>K" by auto
-qed
+ assumes "subgroup H G" and "N \<lhd> (G\<lparr> carrier := H \<rparr>)"
+ and "subgroup K (G \<lparr> carrier := H \<rparr>)"
+ shows "K <#> N = N <#> K"
+ using group.commut_normal[OF subgroup.subgroup_is_group[OF assms(1) group_axioms] assms(3,2)] by simp
@@ -1226,7 +1193,7 @@
assumes "subgroup H G"
and "subgroup K G"
and "H1\<lhd>G\<lparr>carrier := H\<rparr>"
- shows " (H1\<inter>K)\<lhd>(G\<lparr>carrier:= (H\<inter>K)\<rparr>)"
+ shows " (H1\<inter>K)\<lhd>(G\<lparr>carrier:= (H\<inter>K)\<rparr>)"
proof-
define HK and H1K and GH and GHK
where "HK = H\<inter>K" and "H1K=H1\<inter>K" and "GH =G\<lparr>carrier := H\<rparr>" and "GHK = (G\<lparr>carrier:= (H\<inter>K)\<rparr>)"
@@ -1243,10 +1210,10 @@
next
show "subgroup (H\<inter>K) G" using HK_def subgroups_Inter_pair assms by auto
next
- have "H1 \<subseteq> (carrier (G\<lparr>carrier:=H\<rparr>))"
+ have "H1 \<subseteq> (carrier (G\<lparr>carrier:=H\<rparr>))"
using assms(3) normal_imp_subgroup subgroup.subset by blast
also have "... \<subseteq> H" by simp
- thus "H1K \<subseteq>H\<inter>K"
+ thus "H1K \<subseteq>H\<inter>K"
using H1K_def calculation by auto
qed
thus "subgroup H1K GHK" using GHK_def by simp
@@ -1254,7 +1221,7 @@
show "\<And> x h. x\<in>carrier GHK \<Longrightarrow> h\<in>H1K \<Longrightarrow> x \<otimes>\<^bsub>GHK\<^esub> h \<otimes>\<^bsub>GHK\<^esub> inv\<^bsub>GHK\<^esub> x\<in> H1K"
proof-
have invHK: "\<lbrakk>y\<in>HK\<rbrakk> \<Longrightarrow> inv\<^bsub>GHK\<^esub> y = inv\<^bsub>GH\<^esub> y"
- using subgroup_inv_equality assms HK_def GH_def GHK_def subgroups_Inter_pair by simp
+ using m_inv_consistent assms HK_def GH_def GHK_def subgroups_Inter_pair by simp
have multHK : "\<lbrakk>x\<in>HK;y\<in>HK\<rbrakk> \<Longrightarrow> x \<otimes>\<^bsub>(G\<lparr>carrier:=HK\<rparr>)\<^esub> y = x \<otimes> y"
using HK_def by simp
fix x assume p: "x\<in>carrier GHK"
@@ -1263,17 +1230,17 @@
using GHK_def HK_def by simp
hence xHK:"x\<in>HK" using p by auto
hence invx:"inv\<^bsub>GHK\<^esub> x = inv\<^bsub>GH\<^esub> x"
- using invHK assms GHK_def HK_def GH_def subgroup_inv_equality subgroups_Inter_pair by simp
+ using invHK assms GHK_def HK_def GH_def m_inv_consistent subgroups_Inter_pair by simp
have "H1\<subseteq>carrier(GH)"
using assms GH_def normal_imp_subgroup subgroup.subset by blast
- hence hHK:"h\<in>HK"
+ hence hHK:"h\<in>HK"
using p2 H1K_def HK_def GH_def by auto
hence xhx_egal : "x \<otimes>\<^bsub>GHK\<^esub> h \<otimes>\<^bsub>GHK\<^esub> inv\<^bsub>GHK\<^esub>x = x \<otimes>\<^bsub>GH\<^esub> h \<otimes>\<^bsub>GH\<^esub> inv\<^bsub>GH\<^esub> x"
using invx invHK multHK GHK_def GH_def by auto
- have xH:"x\<in>carrier(GH)"
- using xHK HK_def GH_def by auto
+ have xH:"x\<in>carrier(GH)"
+ using xHK HK_def GH_def by auto
have hH:"h\<in>carrier(GH)"
- using hHK HK_def GH_def by auto
+ using hHK HK_def GH_def by auto
have "(\<forall>x\<in>carrier (GH). \<forall>h\<in>H1. x \<otimes>\<^bsub>GH\<^esub> h \<otimes>\<^bsub>GH\<^esub> inv\<^bsub>GH\<^esub> x \<in> H1)"
using assms normal_invE GH_def normal.inv_op_closed2 by fastforce
hence INCL_1 : "x \<otimes>\<^bsub>GH\<^esub> h \<otimes>\<^bsub>GH\<^esub> inv\<^bsub>GH\<^esub> x \<in> H1"
--- a/src/HOL/Algebra/Zassenhaus.thy Sun Jul 01 17:38:08 2018 +0200
+++ b/src/HOL/Algebra/Zassenhaus.thy Sun Jul 01 16:46:28 2018 +0100
@@ -43,7 +43,7 @@
ultimately have "x \<otimes>\<^bsub>G\<lparr>carrier := normalizer G H\<rparr>\<^esub> h = x \<otimes> h" by simp
moreover have " inv\<^bsub>G\<lparr>carrier := normalizer G H\<rparr>\<^esub> x = inv x"
using xnormalizer
- by (simp add: assms normalizer_imp_subgroup subgroup.subset subgroup_inv_equality)
+ by (simp add: assms normalizer_imp_subgroup subgroup.subset m_inv_consistent)
ultimately have xhxegal: "x \<otimes>\<^bsub>G\<lparr>carrier := normalizer G H\<rparr>\<^esub> h
\<otimes>\<^bsub>G\<lparr>carrier := normalizer G H\<rparr>\<^esub> inv\<^bsub>G\<lparr>carrier := normalizer G H\<rparr>\<^esub> x
= x \<otimes>h \<otimes> inv x"
@@ -172,7 +172,7 @@
also have "... \<subseteq> K" by simp
finally have Incl2:"N \<subseteq> K" by simp
have "(N <#>\<^bsub>G\<lparr>carrier := K\<rparr>\<^esub> H) = (N <#> H)"
- using subgroup_set_mult_equality[of K] assms Incl1 Incl2 by simp
+ using set_mult_consistent by simp
thus "subgroup (N<#>H) (G\<lparr>carrier:=K\<rparr>)" using Hyp by auto
qed
@@ -332,8 +332,7 @@
G\<lparr>carrier := normalizer G N, carrier := H\<rparr> Mod N \<inter> H =
(G\<lparr>carrier:= N<#>H\<rparr> Mod N) \<cong>
G\<lparr>carrier := normalizer G N, carrier := H\<rparr> Mod N \<inter> H"
- using subgroup_set_mult_equality[OF normalizer_imp_subgroup[OF subgroup.subset[OF assms(2)]], of N H]
- subgroup.subset[OF assms(3)]
+ using subgroup.subset[OF assms(3)]
subgroup.subset[OF normal_imp_subgroup[OF subgroup_in_normalizer[OF assms(2)]]]
by simp
ultimately have "G\<lparr>carrier := normalizer G N,
@@ -493,7 +492,7 @@
hence allG : "h1 \<in> carrier G" "hk \<in> carrier G" "x \<in> carrier G"
using assms subgroup.subset h1hk_def normal_imp_subgroup incl_subgroup apply blast+.
hence "x <#\<^bsub>G\<lparr>carrier := H1 <#> H\<inter>K\<rparr>\<^esub> (H1 <#> H\<inter>K1) =h1 \<otimes> hk <# (H1 <#> H\<inter>K1)"
- using subgroup_set_mult_equality subgroup.subset xH h1hk_def by (simp add: l_coset_def)
+ using subgroup.subset xH h1hk_def by (simp add: l_coset_def)
also have "... = h1 <# (hk <# (H1 <#> H\<inter>K1))"
using lcos_m_assoc[OF subgroup.subset[OF incl_subgroup[OF assms(1) subH1]]allG(1)allG(2)]
by (metis allG(1) allG(2) assms(1) incl_subgroup lcos_m_assoc subH2 subgroup.subset)
@@ -535,7 +534,7 @@
finally have eq1 : "x <#\<^bsub>G\<lparr>carrier := H1 <#> H \<inter> K\<rparr>\<^esub> (H1 <#> H \<inter> K1) = H1 <#> (H \<inter> K1) #> hk"
by (simp add: allG(2) all_inclG inf.coboundedI2 setmult_rcos_assoc)
have "H1 <#> H \<inter> K1 #>\<^bsub>G\<lparr>carrier := H1 <#> H \<inter> K\<rparr>\<^esub> x = H1 <#> H \<inter> K1 #> (h1 \<otimes> hk)"
- using subgroup_set_mult_equality subgroup.subset xH h1hk_def by (simp add: r_coset_def)
+ using subgroup.subset xH h1hk_def by (simp add: r_coset_def)
also have "... = H1 <#> H \<inter> K1 #> h1 #> hk"
using coset_mult_assoc by (simp add: allG all_inclG inf.coboundedI2 setmult_subset_G)
also have"... = H \<inter> K1 <#> H1 #> h1 #> hk"