repaired definition (cf. d8d7d1b785af)
--- a/doc-src/TutorialI/Overview/LNCS/Ordinal.thy Mon Mar 01 17:45:19 2010 +0100
+++ b/doc-src/TutorialI/Overview/LNCS/Ordinal.thy Tue Mar 02 08:28:06 2010 +0100
@@ -11,7 +11,8 @@
definition OpLim :: "(nat \<Rightarrow> (ordinal \<Rightarrow> ordinal)) \<Rightarrow> (ordinal \<Rightarrow> ordinal)" where
"OpLim F a \<equiv> Limit (\<lambda>n. F n a)"
- OpItw :: "(ordinal \<Rightarrow> ordinal) \<Rightarrow> (ordinal \<Rightarrow> ordinal)" ("\<Squnion>")
+
+definition OpItw :: "(ordinal \<Rightarrow> ordinal) \<Rightarrow> (ordinal \<Rightarrow> ordinal)" ("\<Squnion>") where
"\<Squnion>f \<equiv> OpLim (power f)"
consts
@@ -40,9 +41,11 @@
definition veb :: "ordinal \<Rightarrow> ordinal" where
"veb a \<equiv> veblen a Zero"
- epsilon0 :: ordinal ("\<epsilon>\<^sub>0")
+
+definition epsilon0 :: ordinal ("\<epsilon>\<^sub>0") where
"\<epsilon>\<^sub>0 \<equiv> veb Zero"
- Gamma0 :: ordinal ("\<Gamma>\<^sub>0")
+
+definition Gamma0 :: ordinal ("\<Gamma>\<^sub>0") where
"\<Gamma>\<^sub>0 \<equiv> Limit (\<lambda>n. (veb^n) Zero)"
thm Gamma0_def