--- a/src/HOL/Metis_Examples/BigO.thy Fri May 14 22:29:50 2010 +0200
+++ b/src/HOL/Metis_Examples/BigO.thy Fri May 14 22:30:24 2010 +0200
@@ -28,7 +28,7 @@
(*** Now various verions with an increasing shrink factor ***)
-sledgehammer_params [shrink_factor = 1]
+sledgehammer_params [isar_proof, isar_shrink_factor = 1]
lemma (*bigo_pos_const:*) "(EX (c::'a::linordered_idom).
ALL x. (abs (h x)) <= (c * (abs (f x))))
@@ -58,7 +58,7 @@
thus "\<bar>h x\<bar> \<le> \<bar>c\<bar> * \<bar>f x\<bar>" by (metis F4)
qed
-sledgehammer_params [shrink_factor = 2]
+sledgehammer_params [isar_proof, isar_shrink_factor = 2]
lemma (*bigo_pos_const:*) "(EX (c::'a::linordered_idom).
ALL x. (abs (h x)) <= (c * (abs (f x))))
@@ -80,7 +80,7 @@
thus "\<bar>h x\<bar> \<le> \<bar>c\<bar> * \<bar>f x\<bar>" by (metis F2)
qed
-sledgehammer_params [shrink_factor = 3]
+sledgehammer_params [isar_proof, isar_shrink_factor = 3]
lemma (*bigo_pos_const:*) "(EX (c::'a::linordered_idom).
ALL x. (abs (h x)) <= (c * (abs (f x))))
@@ -99,7 +99,7 @@
thus "\<bar>h x\<bar> \<le> \<bar>c\<bar> * \<bar>f x\<bar>" by (metis A1 abs_mult abs_ge_zero)
qed
-sledgehammer_params [shrink_factor = 4]
+sledgehammer_params [isar_proof, isar_shrink_factor = 4]
lemma (*bigo_pos_const:*) "(EX (c::'a::linordered_idom).
ALL x. (abs (h x)) <= (c * (abs (f x))))
@@ -118,7 +118,7 @@
thus "\<bar>h x\<bar> \<le> \<bar>c\<bar> * \<bar>f x\<bar>" by (metis abs_mult)
qed
-sledgehammer_params [shrink_factor = 1]
+sledgehammer_params [isar_proof, isar_shrink_factor = 1]
lemma bigo_alt_def: "O(f) =
{h. EX c. (0 < c & (ALL x. abs (h x) <= c * abs (f x)))}"
--- a/src/HOL/Metis_Examples/TransClosure.thy Fri May 14 22:29:50 2010 +0200
+++ b/src/HOL/Metis_Examples/TransClosure.thy Fri May 14 22:30:24 2010 +0200
@@ -39,7 +39,7 @@
lemma "\<lbrakk>f c = Intg x; \<forall>y. f b = Intg y \<longrightarrow> y \<noteq> x; (a, b) \<in> R\<^sup>*; (b,c) \<in> R\<^sup>*\<rbrakk>
\<Longrightarrow> \<exists>c. (b, c) \<in> R \<and> (a, c) \<in> R\<^sup>*"
-(* sledgehammer [isar_proof, shrink_factor = 2] *)
+(* sledgehammer [isar_proof, isar_shrink_factor = 2] *)
proof -
assume A1: "f c = Intg x"
assume A2: "\<forall>y. f b = Intg y \<longrightarrow> y \<noteq> x"
--- a/src/HOL/Metis_Examples/set.thy Fri May 14 22:29:50 2010 +0200
+++ b/src/HOL/Metis_Examples/set.thy Fri May 14 22:30:24 2010 +0200
@@ -16,7 +16,7 @@
lemma "P(n::nat) ==> ~P(0) ==> n ~= 0"
by metis
-sledgehammer_params [shrink_factor = 1]
+sledgehammer_params [isar_proof, isar_shrink_factor = 1]
(*multiple versions of this example*)
lemma (*equal_union: *)
@@ -85,7 +85,7 @@
by (metis 31 29)
qed
-sledgehammer_params [shrink_factor = 2]
+sledgehammer_params [isar_proof, isar_shrink_factor = 2]
lemma (*equal_union: *)
"(X = Y \<union> Z) =
@@ -128,7 +128,7 @@
by (metis 18 17)
qed
-sledgehammer_params [shrink_factor = 3]
+sledgehammer_params [isar_proof, isar_shrink_factor = 3]
lemma (*equal_union: *)
"(X = Y \<union> Z) =
@@ -163,7 +163,7 @@
(*Example included in TPHOLs paper*)
-sledgehammer_params [shrink_factor = 4]
+sledgehammer_params [isar_proof, isar_shrink_factor = 4]
lemma (*equal_union: *)
"(X = Y \<union> Z) =