| author | huffman | 
| Wed, 18 Apr 2012 10:52:49 +0200 | |
| changeset 47534 | 06cc372a80ed | 
| parent 47432 | e1576d13e933 | 
| child 48891 | c0eafbd55de3 | 
| permissions | -rw-r--r-- | 
| 28685 | 1 | (* Title: HOL/Orderings.thy | 
| 15524 | 2 | Author: Tobias Nipkow, Markus Wenzel, and Larry Paulson | 
| 3 | *) | |
| 4 | ||
| 25614 | 5 | header {* Abstract orderings *}
 | 
| 15524 | 6 | |
| 7 | theory Orderings | |
| 35301 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35115diff
changeset | 8 | imports HOL | 
| 46950 
d0181abdbdac
declare command keywords via theory header, including strict checking outside Pure;
 wenzelm parents: 
46884diff
changeset | 9 | keywords "print_orders" :: diag | 
| 32215 | 10 | uses | 
| 11 | "~~/src/Provers/order.ML" | |
| 12 | "~~/src/Provers/quasi.ML" (* FIXME unused? *) | |
| 15524 | 13 | begin | 
| 14 | ||
| 35092 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 15 | subsection {* Syntactic orders *}
 | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 16 | |
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 17 | class ord = | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 18 | fixes less_eq :: "'a \<Rightarrow> 'a \<Rightarrow> bool" | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 19 | and less :: "'a \<Rightarrow> 'a \<Rightarrow> bool" | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 20 | begin | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 21 | |
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 22 | notation | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 23 |   less_eq  ("op <=") and
 | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 24 |   less_eq  ("(_/ <= _)" [51, 51] 50) and
 | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 25 |   less  ("op <") and
 | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 26 |   less  ("(_/ < _)"  [51, 51] 50)
 | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 27 | |
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 28 | notation (xsymbols) | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 29 |   less_eq  ("op \<le>") and
 | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 30 |   less_eq  ("(_/ \<le> _)"  [51, 51] 50)
 | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 31 | |
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 32 | notation (HTML output) | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 33 |   less_eq  ("op \<le>") and
 | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 34 |   less_eq  ("(_/ \<le> _)"  [51, 51] 50)
 | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 35 | |
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 36 | abbreviation (input) | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 37 | greater_eq (infix ">=" 50) where | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 38 | "x >= y \<equiv> y <= x" | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 39 | |
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 40 | notation (input) | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 41 | greater_eq (infix "\<ge>" 50) | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 42 | |
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 43 | abbreviation (input) | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 44 | greater (infix ">" 50) where | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 45 | "x > y \<equiv> y < x" | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 46 | |
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 47 | end | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 48 | |
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 49 | |
| 27682 | 50 | subsection {* Quasi orders *}
 | 
| 15524 | 51 | |
| 27682 | 52 | class preorder = ord + | 
| 53 | assumes less_le_not_le: "x < y \<longleftrightarrow> x \<le> y \<and> \<not> (y \<le> x)" | |
| 25062 | 54 | and order_refl [iff]: "x \<le> x" | 
| 55 | and order_trans: "x \<le> y \<Longrightarrow> y \<le> z \<Longrightarrow> x \<le> z" | |
| 21248 | 56 | begin | 
| 57 | ||
| 15524 | 58 | text {* Reflexivity. *}
 | 
| 59 | ||
| 25062 | 60 | lemma eq_refl: "x = y \<Longrightarrow> x \<le> y" | 
| 15524 | 61 |     -- {* This form is useful with the classical reasoner. *}
 | 
| 23212 | 62 | by (erule ssubst) (rule order_refl) | 
| 15524 | 63 | |
| 25062 | 64 | lemma less_irrefl [iff]: "\<not> x < x" | 
| 27682 | 65 | by (simp add: less_le_not_le) | 
| 66 | ||
| 67 | lemma less_imp_le: "x < y \<Longrightarrow> x \<le> y" | |
| 68 | unfolding less_le_not_le by blast | |
| 69 | ||
| 70 | ||
| 71 | text {* Asymmetry. *}
 | |
| 72 | ||
| 73 | lemma less_not_sym: "x < y \<Longrightarrow> \<not> (y < x)" | |
| 74 | by (simp add: less_le_not_le) | |
| 75 | ||
| 76 | lemma less_asym: "x < y \<Longrightarrow> (\<not> P \<Longrightarrow> y < x) \<Longrightarrow> P" | |
| 77 | by (drule less_not_sym, erule contrapos_np) simp | |
| 78 | ||
| 79 | ||
| 80 | text {* Transitivity. *}
 | |
| 81 | ||
| 82 | lemma less_trans: "x < y \<Longrightarrow> y < z \<Longrightarrow> x < z" | |
| 83 | by (auto simp add: less_le_not_le intro: order_trans) | |
| 84 | ||
| 85 | lemma le_less_trans: "x \<le> y \<Longrightarrow> y < z \<Longrightarrow> x < z" | |
| 86 | by (auto simp add: less_le_not_le intro: order_trans) | |
| 87 | ||
| 88 | lemma less_le_trans: "x < y \<Longrightarrow> y \<le> z \<Longrightarrow> x < z" | |
| 89 | by (auto simp add: less_le_not_le intro: order_trans) | |
| 90 | ||
| 91 | ||
| 92 | text {* Useful for simplification, but too risky to include by default. *}
 | |
| 93 | ||
| 94 | lemma less_imp_not_less: "x < y \<Longrightarrow> (\<not> y < x) \<longleftrightarrow> True" | |
| 95 | by (blast elim: less_asym) | |
| 96 | ||
| 97 | lemma less_imp_triv: "x < y \<Longrightarrow> (y < x \<longrightarrow> P) \<longleftrightarrow> True" | |
| 98 | by (blast elim: less_asym) | |
| 99 | ||
| 100 | ||
| 101 | text {* Transitivity rules for calculational reasoning *}
 | |
| 102 | ||
| 103 | lemma less_asym': "a < b \<Longrightarrow> b < a \<Longrightarrow> P" | |
| 104 | by (rule less_asym) | |
| 105 | ||
| 106 | ||
| 107 | text {* Dual order *}
 | |
| 108 | ||
| 109 | lemma dual_preorder: | |
| 36635 
080b755377c0
locale predicates of classes carry a mandatory "class" prefix
 haftmann parents: 
35828diff
changeset | 110 | "class.preorder (op \<ge>) (op >)" | 
| 28823 | 111 | proof qed (auto simp add: less_le_not_le intro: order_trans) | 
| 27682 | 112 | |
| 113 | end | |
| 114 | ||
| 115 | ||
| 116 | subsection {* Partial orders *}
 | |
| 117 | ||
| 118 | class order = preorder + | |
| 119 | assumes antisym: "x \<le> y \<Longrightarrow> y \<le> x \<Longrightarrow> x = y" | |
| 120 | begin | |
| 121 | ||
| 122 | text {* Reflexivity. *}
 | |
| 123 | ||
| 124 | lemma less_le: "x < y \<longleftrightarrow> x \<le> y \<and> x \<noteq> y" | |
| 125 | by (auto simp add: less_le_not_le intro: antisym) | |
| 15524 | 126 | |
| 25062 | 127 | lemma le_less: "x \<le> y \<longleftrightarrow> x < y \<or> x = y" | 
| 15524 | 128 |     -- {* NOT suitable for iff, since it can cause PROOF FAILED. *}
 | 
| 23212 | 129 | by (simp add: less_le) blast | 
| 15524 | 130 | |
| 25062 | 131 | lemma le_imp_less_or_eq: "x \<le> y \<Longrightarrow> x < y \<or> x = y" | 
| 23212 | 132 | unfolding less_le by blast | 
| 15524 | 133 | |
| 21329 | 134 | |
| 135 | text {* Useful for simplification, but too risky to include by default. *}
 | |
| 136 | ||
| 25062 | 137 | lemma less_imp_not_eq: "x < y \<Longrightarrow> (x = y) \<longleftrightarrow> False" | 
| 23212 | 138 | by auto | 
| 21329 | 139 | |
| 25062 | 140 | lemma less_imp_not_eq2: "x < y \<Longrightarrow> (y = x) \<longleftrightarrow> False" | 
| 23212 | 141 | by auto | 
| 21329 | 142 | |
| 143 | ||
| 144 | text {* Transitivity rules for calculational reasoning *}
 | |
| 145 | ||
| 25062 | 146 | lemma neq_le_trans: "a \<noteq> b \<Longrightarrow> a \<le> b \<Longrightarrow> a < b" | 
| 23212 | 147 | by (simp add: less_le) | 
| 21329 | 148 | |
| 25062 | 149 | lemma le_neq_trans: "a \<le> b \<Longrightarrow> a \<noteq> b \<Longrightarrow> a < b" | 
| 23212 | 150 | by (simp add: less_le) | 
| 21329 | 151 | |
| 15524 | 152 | |
| 153 | text {* Asymmetry. *}
 | |
| 154 | ||
| 25062 | 155 | lemma eq_iff: "x = y \<longleftrightarrow> x \<le> y \<and> y \<le> x" | 
| 23212 | 156 | by (blast intro: antisym) | 
| 15524 | 157 | |
| 25062 | 158 | lemma antisym_conv: "y \<le> x \<Longrightarrow> x \<le> y \<longleftrightarrow> x = y" | 
| 23212 | 159 | by (blast intro: antisym) | 
| 15524 | 160 | |
| 25062 | 161 | lemma less_imp_neq: "x < y \<Longrightarrow> x \<noteq> y" | 
| 23212 | 162 | by (erule contrapos_pn, erule subst, rule less_irrefl) | 
| 21248 | 163 | |
| 21083 | 164 | |
| 27107 | 165 | text {* Least value operator *}
 | 
| 166 | ||
| 27299 | 167 | definition (in ord) | 
| 27107 | 168 |   Least :: "('a \<Rightarrow> bool) \<Rightarrow> 'a" (binder "LEAST " 10) where
 | 
| 169 | "Least P = (THE x. P x \<and> (\<forall>y. P y \<longrightarrow> x \<le> y))" | |
| 170 | ||
| 171 | lemma Least_equality: | |
| 172 | assumes "P x" | |
| 173 | and "\<And>y. P y \<Longrightarrow> x \<le> y" | |
| 174 | shows "Least P = x" | |
| 175 | unfolding Least_def by (rule the_equality) | |
| 176 | (blast intro: assms antisym)+ | |
| 177 | ||
| 178 | lemma LeastI2_order: | |
| 179 | assumes "P x" | |
| 180 | and "\<And>y. P y \<Longrightarrow> x \<le> y" | |
| 181 | and "\<And>x. P x \<Longrightarrow> \<forall>y. P y \<longrightarrow> x \<le> y \<Longrightarrow> Q x" | |
| 182 | shows "Q (Least P)" | |
| 183 | unfolding Least_def by (rule theI2) | |
| 184 | (blast intro: assms antisym)+ | |
| 185 | ||
| 186 | ||
| 26014 | 187 | text {* Dual order *}
 | 
| 22916 | 188 | |
| 26014 | 189 | lemma dual_order: | 
| 36635 
080b755377c0
locale predicates of classes carry a mandatory "class" prefix
 haftmann parents: 
35828diff
changeset | 190 | "class.order (op \<ge>) (op >)" | 
| 27682 | 191 | by (intro_locales, rule dual_preorder) (unfold_locales, rule antisym) | 
| 22916 | 192 | |
| 21248 | 193 | end | 
| 15524 | 194 | |
| 21329 | 195 | |
| 196 | subsection {* Linear (total) orders *}
 | |
| 197 | ||
| 22316 | 198 | class linorder = order + | 
| 25207 | 199 | assumes linear: "x \<le> y \<or> y \<le> x" | 
| 21248 | 200 | begin | 
| 201 | ||
| 25062 | 202 | lemma less_linear: "x < y \<or> x = y \<or> y < x" | 
| 23212 | 203 | unfolding less_le using less_le linear by blast | 
| 21248 | 204 | |
| 25062 | 205 | lemma le_less_linear: "x \<le> y \<or> y < x" | 
| 23212 | 206 | by (simp add: le_less less_linear) | 
| 21248 | 207 | |
| 208 | lemma le_cases [case_names le ge]: | |
| 25062 | 209 | "(x \<le> y \<Longrightarrow> P) \<Longrightarrow> (y \<le> x \<Longrightarrow> P) \<Longrightarrow> P" | 
| 23212 | 210 | using linear by blast | 
| 21248 | 211 | |
| 22384 
33a46e6c7f04
prefix of class interpretation not mandatory any longer
 haftmann parents: 
22377diff
changeset | 212 | lemma linorder_cases [case_names less equal greater]: | 
| 25062 | 213 | "(x < y \<Longrightarrow> P) \<Longrightarrow> (x = y \<Longrightarrow> P) \<Longrightarrow> (y < x \<Longrightarrow> P) \<Longrightarrow> P" | 
| 23212 | 214 | using less_linear by blast | 
| 21248 | 215 | |
| 25062 | 216 | lemma not_less: "\<not> x < y \<longleftrightarrow> y \<le> x" | 
| 23212 | 217 | apply (simp add: less_le) | 
| 218 | using linear apply (blast intro: antisym) | |
| 219 | done | |
| 220 | ||
| 221 | lemma not_less_iff_gr_or_eq: | |
| 25062 | 222 | "\<not>(x < y) \<longleftrightarrow> (x > y | x = y)" | 
| 23212 | 223 | apply(simp add:not_less le_less) | 
| 224 | apply blast | |
| 225 | done | |
| 15524 | 226 | |
| 25062 | 227 | lemma not_le: "\<not> x \<le> y \<longleftrightarrow> y < x" | 
| 23212 | 228 | apply (simp add: less_le) | 
| 229 | using linear apply (blast intro: antisym) | |
| 230 | done | |
| 15524 | 231 | |
| 25062 | 232 | lemma neq_iff: "x \<noteq> y \<longleftrightarrow> x < y \<or> y < x" | 
| 23212 | 233 | by (cut_tac x = x and y = y in less_linear, auto) | 
| 15524 | 234 | |
| 25062 | 235 | lemma neqE: "x \<noteq> y \<Longrightarrow> (x < y \<Longrightarrow> R) \<Longrightarrow> (y < x \<Longrightarrow> R) \<Longrightarrow> R" | 
| 23212 | 236 | by (simp add: neq_iff) blast | 
| 15524 | 237 | |
| 25062 | 238 | lemma antisym_conv1: "\<not> x < y \<Longrightarrow> x \<le> y \<longleftrightarrow> x = y" | 
| 23212 | 239 | by (blast intro: antisym dest: not_less [THEN iffD1]) | 
| 15524 | 240 | |
| 25062 | 241 | lemma antisym_conv2: "x \<le> y \<Longrightarrow> \<not> x < y \<longleftrightarrow> x = y" | 
| 23212 | 242 | by (blast intro: antisym dest: not_less [THEN iffD1]) | 
| 15524 | 243 | |
| 25062 | 244 | lemma antisym_conv3: "\<not> y < x \<Longrightarrow> \<not> x < y \<longleftrightarrow> x = y" | 
| 23212 | 245 | by (blast intro: antisym dest: not_less [THEN iffD1]) | 
| 15524 | 246 | |
| 25062 | 247 | lemma leI: "\<not> x < y \<Longrightarrow> y \<le> x" | 
| 23212 | 248 | unfolding not_less . | 
| 16796 | 249 | |
| 25062 | 250 | lemma leD: "y \<le> x \<Longrightarrow> \<not> x < y" | 
| 23212 | 251 | unfolding not_less . | 
| 16796 | 252 | |
| 253 | (*FIXME inappropriate name (or delete altogether)*) | |
| 25062 | 254 | lemma not_leE: "\<not> y \<le> x \<Longrightarrow> x < y" | 
| 23212 | 255 | unfolding not_le . | 
| 21248 | 256 | |
| 22916 | 257 | |
| 26014 | 258 | text {* Dual order *}
 | 
| 22916 | 259 | |
| 26014 | 260 | lemma dual_linorder: | 
| 36635 
080b755377c0
locale predicates of classes carry a mandatory "class" prefix
 haftmann parents: 
35828diff
changeset | 261 | "class.linorder (op \<ge>) (op >)" | 
| 
080b755377c0
locale predicates of classes carry a mandatory "class" prefix
 haftmann parents: 
35828diff
changeset | 262 | by (rule class.linorder.intro, rule dual_order) (unfold_locales, rule linear) | 
| 22916 | 263 | |
| 264 | ||
| 23881 | 265 | text {* min/max *}
 | 
| 266 | ||
| 27299 | 267 | definition (in ord) min :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" where | 
| 37767 | 268 | "min a b = (if a \<le> b then a else b)" | 
| 23881 | 269 | |
| 27299 | 270 | definition (in ord) max :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" where | 
| 37767 | 271 | "max a b = (if a \<le> b then b else a)" | 
| 22384 
33a46e6c7f04
prefix of class interpretation not mandatory any longer
 haftmann parents: 
22377diff
changeset | 272 | |
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 273 | lemma min_le_iff_disj: | 
| 25062 | 274 | "min x y \<le> z \<longleftrightarrow> x \<le> z \<or> y \<le> z" | 
| 23212 | 275 | unfolding min_def using linear by (auto intro: order_trans) | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 276 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 277 | lemma le_max_iff_disj: | 
| 25062 | 278 | "z \<le> max x y \<longleftrightarrow> z \<le> x \<or> z \<le> y" | 
| 23212 | 279 | unfolding max_def using linear by (auto intro: order_trans) | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 280 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 281 | lemma min_less_iff_disj: | 
| 25062 | 282 | "min x y < z \<longleftrightarrow> x < z \<or> y < z" | 
| 23212 | 283 | unfolding min_def le_less using less_linear by (auto intro: less_trans) | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 284 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 285 | lemma less_max_iff_disj: | 
| 25062 | 286 | "z < max x y \<longleftrightarrow> z < x \<or> z < y" | 
| 23212 | 287 | unfolding max_def le_less using less_linear by (auto intro: less_trans) | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 288 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 289 | lemma min_less_iff_conj [simp]: | 
| 25062 | 290 | "z < min x y \<longleftrightarrow> z < x \<and> z < y" | 
| 23212 | 291 | unfolding min_def le_less using less_linear by (auto intro: less_trans) | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 292 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 293 | lemma max_less_iff_conj [simp]: | 
| 25062 | 294 | "max x y < z \<longleftrightarrow> x < z \<and> y < z" | 
| 23212 | 295 | unfolding max_def le_less using less_linear by (auto intro: less_trans) | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 296 | |
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35579diff
changeset | 297 | lemma split_min [no_atp]: | 
| 25062 | 298 | "P (min i j) \<longleftrightarrow> (i \<le> j \<longrightarrow> P i) \<and> (\<not> i \<le> j \<longrightarrow> P j)" | 
| 23212 | 299 | by (simp add: min_def) | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 300 | |
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35579diff
changeset | 301 | lemma split_max [no_atp]: | 
| 25062 | 302 | "P (max i j) \<longleftrightarrow> (i \<le> j \<longrightarrow> P j) \<and> (\<not> i \<le> j \<longrightarrow> P i)" | 
| 23212 | 303 | by (simp add: max_def) | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 304 | |
| 21248 | 305 | end | 
| 306 | ||
| 23948 | 307 | |
| 21083 | 308 | subsection {* Reasoning tools setup *}
 | 
| 309 | ||
| 21091 | 310 | ML {*
 | 
| 311 | ||
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 312 | signature ORDERS = | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 313 | sig | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 314 | val print_structures: Proof.context -> unit | 
| 47432 | 315 | val attrib_setup: theory -> theory | 
| 32215 | 316 | val order_tac: Proof.context -> thm list -> int -> tactic | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 317 | end; | 
| 21091 | 318 | |
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 319 | structure Orders: ORDERS = | 
| 21248 | 320 | struct | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 321 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 322 | (** Theory and context data **) | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 323 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 324 | fun struct_eq ((s1: string, ts1), (s2, ts2)) = | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 325 | (s1 = s2) andalso eq_list (op aconv) (ts1, ts2); | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 326 | |
| 33519 | 327 | structure Data = Generic_Data | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 328 | ( | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 329 | type T = ((string * term list) * Order_Tac.less_arith) list; | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 330 | (* Order structures: | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 331 | identifier of the structure, list of operations and record of theorems | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 332 | needed to set up the transitivity reasoner, | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 333 | identifier and operations identify the structure uniquely. *) | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 334 | val empty = []; | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 335 | val extend = I; | 
| 33519 | 336 | fun merge data = AList.join struct_eq (K fst) data; | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 337 | ); | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 338 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 339 | fun print_structures ctxt = | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 340 | let | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 341 | val structs = Data.get (Context.Proof ctxt); | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 342 | fun pretty_term t = Pretty.block | 
| 24920 | 343 | [Pretty.quote (Syntax.pretty_term ctxt t), Pretty.brk 1, | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 344 | Pretty.str "::", Pretty.brk 1, | 
| 24920 | 345 | Pretty.quote (Syntax.pretty_typ ctxt (type_of t))]; | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 346 | fun pretty_struct ((s, ts), _) = Pretty.block | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 347 | [Pretty.str s, Pretty.str ":", Pretty.brk 1, | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 348 |        Pretty.enclose "(" ")" (Pretty.breaks (map pretty_term ts))];
 | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 349 | in | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 350 | Pretty.writeln (Pretty.big_list "Order structures:" (map pretty_struct structs)) | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 351 | end; | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 352 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 353 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 354 | (** Method **) | 
| 21091 | 355 | |
| 32215 | 356 | fun struct_tac ((s, [eq, le, less]), thms) ctxt prems = | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 357 | let | 
| 30107 
f3b3b0e3d184
Fixed nonexhaustive match problem in decomp, to make it fail more gracefully
 berghofe parents: 
29823diff
changeset | 358 |     fun decomp thy (@{const Trueprop} $ t) =
 | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 359 | let | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 360 | fun excluded t = | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 361 | (* exclude numeric types: linear arithmetic subsumes transitivity *) | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 362 | let val T = type_of t | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 363 | in | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32899diff
changeset | 364 | T = HOLogic.natT orelse T = HOLogic.intT orelse T = HOLogic.realT | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 365 | end; | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32899diff
changeset | 366 | fun rel (bin_op $ t1 $ t2) = | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 367 | if excluded t1 then NONE | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 368 | else if Pattern.matches thy (eq, bin_op) then SOME (t1, "=", t2) | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 369 | else if Pattern.matches thy (le, bin_op) then SOME (t1, "<=", t2) | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 370 | else if Pattern.matches thy (less, bin_op) then SOME (t1, "<", t2) | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 371 | else NONE | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32899diff
changeset | 372 | | rel _ = NONE; | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32899diff
changeset | 373 |         fun dec (Const (@{const_name Not}, _) $ t) = (case rel t
 | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32899diff
changeset | 374 | of NONE => NONE | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32899diff
changeset | 375 | | SOME (t1, rel, t2) => SOME (t1, "~" ^ rel, t2)) | 
| 24741 
a53f5db5acbb
Fixed setup of transitivity reasoner (function decomp).
 ballarin parents: 
24704diff
changeset | 376 | | dec x = rel x; | 
| 30107 
f3b3b0e3d184
Fixed nonexhaustive match problem in decomp, to make it fail more gracefully
 berghofe parents: 
29823diff
changeset | 377 | in dec t end | 
| 
f3b3b0e3d184
Fixed nonexhaustive match problem in decomp, to make it fail more gracefully
 berghofe parents: 
29823diff
changeset | 378 | | decomp thy _ = NONE; | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 379 | in | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 380 | case s of | 
| 32215 | 381 | "order" => Order_Tac.partial_tac decomp thms ctxt prems | 
| 382 | | "linorder" => Order_Tac.linear_tac decomp thms ctxt prems | |
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 383 |     | _ => error ("Unknown kind of order `" ^ s ^ "' encountered in transitivity reasoner.")
 | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 384 | end | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 385 | |
| 32215 | 386 | fun order_tac ctxt prems = | 
| 387 | FIRST' (map (fn s => CHANGED o struct_tac s ctxt prems) (Data.get (Context.Proof ctxt))); | |
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 388 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 389 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 390 | (** Attribute **) | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 391 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 392 | fun add_struct_thm s tag = | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 393 | Thm.declaration_attribute | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 394 | (fn thm => Data.map (AList.map_default struct_eq (s, Order_Tac.empty TrueI) (Order_Tac.update tag thm))); | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 395 | fun del_struct s = | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 396 | Thm.declaration_attribute | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 397 | (fn _ => Data.map (AList.delete struct_eq s)); | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 398 | |
| 30722 
623d4831c8cf
simplified attribute and method setup: eliminating bottom-up styles makes it easier to keep things in one place, and also SML/NJ happy;
 wenzelm parents: 
30528diff
changeset | 399 | val attrib_setup = | 
| 
623d4831c8cf
simplified attribute and method setup: eliminating bottom-up styles makes it easier to keep things in one place, and also SML/NJ happy;
 wenzelm parents: 
30528diff
changeset | 400 |   Attrib.setup @{binding order}
 | 
| 
623d4831c8cf
simplified attribute and method setup: eliminating bottom-up styles makes it easier to keep things in one place, and also SML/NJ happy;
 wenzelm parents: 
30528diff
changeset | 401 | (Scan.lift ((Args.add -- Args.name >> (fn (_, s) => SOME s) || Args.del >> K NONE) --| | 
| 
623d4831c8cf
simplified attribute and method setup: eliminating bottom-up styles makes it easier to keep things in one place, and also SML/NJ happy;
 wenzelm parents: 
30528diff
changeset | 402 | Args.colon (* FIXME || Scan.succeed true *) ) -- Scan.lift Args.name -- | 
| 
623d4831c8cf
simplified attribute and method setup: eliminating bottom-up styles makes it easier to keep things in one place, and also SML/NJ happy;
 wenzelm parents: 
30528diff
changeset | 403 | Scan.repeat Args.term | 
| 
623d4831c8cf
simplified attribute and method setup: eliminating bottom-up styles makes it easier to keep things in one place, and also SML/NJ happy;
 wenzelm parents: 
30528diff
changeset | 404 | >> (fn ((SOME tag, n), ts) => add_struct_thm (n, ts) tag | 
| 
623d4831c8cf
simplified attribute and method setup: eliminating bottom-up styles makes it easier to keep things in one place, and also SML/NJ happy;
 wenzelm parents: 
30528diff
changeset | 405 | | ((NONE, n), ts) => del_struct (n, ts))) | 
| 
623d4831c8cf
simplified attribute and method setup: eliminating bottom-up styles makes it easier to keep things in one place, and also SML/NJ happy;
 wenzelm parents: 
30528diff
changeset | 406 | "theorems controlling transitivity reasoner"; | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 407 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 408 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 409 | (** Diagnostic command **) | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 410 | |
| 24867 | 411 | val _ = | 
| 46961 
5c6955f487e5
outer syntax command definitions based on formal command_spec derived from theory header declarations;
 wenzelm parents: 
46950diff
changeset | 412 |   Outer_Syntax.improper_command @{command_spec "print_orders"}
 | 
| 
5c6955f487e5
outer syntax command definitions based on formal command_spec derived from theory header declarations;
 wenzelm parents: 
46950diff
changeset | 413 | "print order structures available to transitivity reasoner" | 
| 30806 | 414 | (Scan.succeed (Toplevel.no_timing o Toplevel.unknown_context o | 
| 415 | Toplevel.keep (print_structures o Toplevel.context_of))); | |
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 416 | |
| 21091 | 417 | end; | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 418 | |
| 21091 | 419 | *} | 
| 420 | ||
| 47432 | 421 | setup Orders.attrib_setup | 
| 422 | ||
| 423 | method_setup order = {*
 | |
| 424 | Scan.succeed (fn ctxt => SIMPLE_METHOD' (Orders.order_tac ctxt [])) | |
| 425 | *} "transitivity reasoner" | |
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 426 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 427 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 428 | text {* Declarations to set up transitivity reasoner of partial and linear orders. *}
 | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 429 | |
| 25076 | 430 | context order | 
| 431 | begin | |
| 432 | ||
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 433 | (* The type constraint on @{term op =} below is necessary since the operation
 | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 434 | is not a parameter of the locale. *) | 
| 25076 | 435 | |
| 27689 | 436 | declare less_irrefl [THEN notE, order add less_reflE: order "op = :: 'a \<Rightarrow> 'a \<Rightarrow> bool" "op <=" "op <"] | 
| 437 | ||
| 438 | declare order_refl [order add le_refl: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 439 | ||
| 440 | declare less_imp_le [order add less_imp_le: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 441 | ||
| 442 | declare antisym [order add eqI: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 443 | ||
| 444 | declare eq_refl [order add eqD1: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 445 | ||
| 446 | declare sym [THEN eq_refl, order add eqD2: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 447 | ||
| 448 | declare less_trans [order add less_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 449 | ||
| 450 | declare less_le_trans [order add less_le_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 451 | ||
| 452 | declare le_less_trans [order add le_less_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 453 | ||
| 454 | declare order_trans [order add le_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 455 | ||
| 456 | declare le_neq_trans [order add le_neq_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 457 | ||
| 458 | declare neq_le_trans [order add neq_le_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 459 | ||
| 460 | declare less_imp_neq [order add less_imp_neq: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 461 | ||
| 462 | declare eq_neq_eq_imp_neq [order add eq_neq_eq_imp_neq: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 463 | ||
| 464 | declare not_sym [order add not_sym: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 465 | |
| 25076 | 466 | end | 
| 467 | ||
| 468 | context linorder | |
| 469 | begin | |
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 470 | |
| 27689 | 471 | declare [[order del: order "op = :: 'a => 'a => bool" "op <=" "op <"]] | 
| 472 | ||
| 473 | declare less_irrefl [THEN notE, order add less_reflE: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 474 | ||
| 475 | declare order_refl [order add le_refl: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 476 | ||
| 477 | declare less_imp_le [order add less_imp_le: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 478 | ||
| 479 | declare not_less [THEN iffD2, order add not_lessI: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 480 | ||
| 481 | declare not_le [THEN iffD2, order add not_leI: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 482 | ||
| 483 | declare not_less [THEN iffD1, order add not_lessD: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 484 | ||
| 485 | declare not_le [THEN iffD1, order add not_leD: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 486 | ||
| 487 | declare antisym [order add eqI: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 488 | ||
| 489 | declare eq_refl [order add eqD1: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 25076 | 490 | |
| 27689 | 491 | declare sym [THEN eq_refl, order add eqD2: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | 
| 492 | ||
| 493 | declare less_trans [order add less_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 494 | ||
| 495 | declare less_le_trans [order add less_le_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 496 | ||
| 497 | declare le_less_trans [order add le_less_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 498 | ||
| 499 | declare order_trans [order add le_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 500 | ||
| 501 | declare le_neq_trans [order add le_neq_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 502 | ||
| 503 | declare neq_le_trans [order add neq_le_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 504 | ||
| 505 | declare less_imp_neq [order add less_imp_neq: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 506 | ||
| 507 | declare eq_neq_eq_imp_neq [order add eq_neq_eq_imp_neq: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 508 | ||
| 509 | declare not_sym [order add not_sym: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 510 | |
| 25076 | 511 | end | 
| 512 | ||
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 513 | |
| 21083 | 514 | setup {*
 | 
| 515 | let | |
| 516 | ||
| 44058 | 517 | fun prp t thm = Thm.prop_of thm = t; (* FIXME aconv!? *) | 
| 15524 | 518 | |
| 21083 | 519 | fun prove_antisym_le sg ss ((le as Const(_,T)) $ r $ s) = | 
| 43597 | 520 | let val prems = Simplifier.prems_of ss; | 
| 22916 | 521 |       val less = Const (@{const_name less}, T);
 | 
| 21083 | 522 | val t = HOLogic.mk_Trueprop(le $ s $ r); | 
| 523 | in case find_first (prp t) prems of | |
| 524 | NONE => | |
| 525 | let val t = HOLogic.mk_Trueprop(HOLogic.Not $ (less $ r $ s)) | |
| 526 | in case find_first (prp t) prems of | |
| 527 | NONE => NONE | |
| 24422 | 528 |             | SOME thm => SOME(mk_meta_eq(thm RS @{thm linorder_class.antisym_conv1}))
 | 
| 21083 | 529 | end | 
| 24422 | 530 |      | SOME thm => SOME(mk_meta_eq(thm RS @{thm order_class.antisym_conv}))
 | 
| 21083 | 531 | end | 
| 532 | handle THM _ => NONE; | |
| 15524 | 533 | |
| 21083 | 534 | fun prove_antisym_less sg ss (NotC $ ((less as Const(_,T)) $ r $ s)) = | 
| 43597 | 535 | let val prems = Simplifier.prems_of ss; | 
| 22916 | 536 |       val le = Const (@{const_name less_eq}, T);
 | 
| 21083 | 537 | val t = HOLogic.mk_Trueprop(le $ r $ s); | 
| 538 | in case find_first (prp t) prems of | |
| 539 | NONE => | |
| 540 | let val t = HOLogic.mk_Trueprop(NotC $ (less $ s $ r)) | |
| 541 | in case find_first (prp t) prems of | |
| 542 | NONE => NONE | |
| 24422 | 543 |             | SOME thm => SOME(mk_meta_eq(thm RS @{thm linorder_class.antisym_conv3}))
 | 
| 21083 | 544 | end | 
| 24422 | 545 |      | SOME thm => SOME(mk_meta_eq(thm RS @{thm linorder_class.antisym_conv2}))
 | 
| 21083 | 546 | end | 
| 547 | handle THM _ => NONE; | |
| 15524 | 548 | |
| 21248 | 549 | fun add_simprocs procs thy = | 
| 42795 
66fcc9882784
clarified map_simpset versus Simplifier.map_simpset_global;
 wenzelm parents: 
42287diff
changeset | 550 | Simplifier.map_simpset_global (fn ss => ss | 
| 21248 | 551 | addsimprocs (map (fn (name, raw_ts, proc) => | 
| 38715 
6513ea67d95d
renamed Simplifier.simproc(_i) to Simplifier.simproc_global(_i) to emphasize that this is not the real thing;
 wenzelm parents: 
38705diff
changeset | 552 | Simplifier.simproc_global thy name raw_ts proc) procs)) thy; | 
| 42795 
66fcc9882784
clarified map_simpset versus Simplifier.map_simpset_global;
 wenzelm parents: 
42287diff
changeset | 553 | |
| 26496 
49ae9456eba9
purely functional setup of claset/simpset/clasimpset;
 wenzelm parents: 
26324diff
changeset | 554 | fun add_solver name tac = | 
| 42795 
66fcc9882784
clarified map_simpset versus Simplifier.map_simpset_global;
 wenzelm parents: 
42287diff
changeset | 555 | Simplifier.map_simpset_global (fn ss => ss addSolver | 
| 43597 | 556 | mk_solver name (fn ss => tac (Simplifier.the_context ss) (Simplifier.prems_of ss))); | 
| 21083 | 557 | |
| 558 | in | |
| 21248 | 559 | add_simprocs [ | 
| 560 |        ("antisym le", ["(x::'a::order) <= y"], prove_antisym_le),
 | |
| 561 |        ("antisym less", ["~ (x::'a::linorder) < y"], prove_antisym_less)
 | |
| 562 | ] | |
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 563 | #> add_solver "Transitivity" Orders.order_tac | 
| 21248 | 564 | (* Adding the transitivity reasoners also as safe solvers showed a slight | 
| 565 | speed up, but the reasoning strength appears to be not higher (at least | |
| 566 | no breaking of additional proofs in the entire HOL distribution, as | |
| 567 | of 5 March 2004, was observed). *) | |
| 21083 | 568 | end | 
| 569 | *} | |
| 15524 | 570 | |
| 571 | ||
| 21083 | 572 | subsection {* Bounded quantifiers *}
 | 
| 573 | ||
| 574 | syntax | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 575 |   "_All_less" :: "[idt, 'a, bool] => bool"    ("(3ALL _<_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 576 |   "_Ex_less" :: "[idt, 'a, bool] => bool"    ("(3EX _<_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 577 |   "_All_less_eq" :: "[idt, 'a, bool] => bool"    ("(3ALL _<=_./ _)" [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 578 |   "_Ex_less_eq" :: "[idt, 'a, bool] => bool"    ("(3EX _<=_./ _)" [0, 0, 10] 10)
 | 
| 21083 | 579 | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 580 |   "_All_greater" :: "[idt, 'a, bool] => bool"    ("(3ALL _>_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 581 |   "_Ex_greater" :: "[idt, 'a, bool] => bool"    ("(3EX _>_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 582 |   "_All_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3ALL _>=_./ _)" [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 583 |   "_Ex_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3EX _>=_./ _)" [0, 0, 10] 10)
 | 
| 21083 | 584 | |
| 585 | syntax (xsymbols) | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 586 |   "_All_less" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_<_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 587 |   "_Ex_less" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_<_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 588 |   "_All_less_eq" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_\<le>_./ _)" [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 589 |   "_Ex_less_eq" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_\<le>_./ _)" [0, 0, 10] 10)
 | 
| 21083 | 590 | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 591 |   "_All_greater" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_>_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 592 |   "_Ex_greater" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_>_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 593 |   "_All_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_\<ge>_./ _)" [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 594 |   "_Ex_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_\<ge>_./ _)" [0, 0, 10] 10)
 | 
| 21083 | 595 | |
| 596 | syntax (HOL) | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 597 |   "_All_less" :: "[idt, 'a, bool] => bool"    ("(3! _<_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 598 |   "_Ex_less" :: "[idt, 'a, bool] => bool"    ("(3? _<_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 599 |   "_All_less_eq" :: "[idt, 'a, bool] => bool"    ("(3! _<=_./ _)" [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 600 |   "_Ex_less_eq" :: "[idt, 'a, bool] => bool"    ("(3? _<=_./ _)" [0, 0, 10] 10)
 | 
| 21083 | 601 | |
| 602 | syntax (HTML output) | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 603 |   "_All_less" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_<_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 604 |   "_Ex_less" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_<_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 605 |   "_All_less_eq" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_\<le>_./ _)" [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 606 |   "_Ex_less_eq" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_\<le>_./ _)" [0, 0, 10] 10)
 | 
| 21083 | 607 | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 608 |   "_All_greater" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_>_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 609 |   "_Ex_greater" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_>_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 610 |   "_All_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_\<ge>_./ _)" [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 611 |   "_Ex_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_\<ge>_./ _)" [0, 0, 10] 10)
 | 
| 21083 | 612 | |
| 613 | translations | |
| 614 | "ALL x<y. P" => "ALL x. x < y \<longrightarrow> P" | |
| 615 | "EX x<y. P" => "EX x. x < y \<and> P" | |
| 616 | "ALL x<=y. P" => "ALL x. x <= y \<longrightarrow> P" | |
| 617 | "EX x<=y. P" => "EX x. x <= y \<and> P" | |
| 618 | "ALL x>y. P" => "ALL x. x > y \<longrightarrow> P" | |
| 619 | "EX x>y. P" => "EX x. x > y \<and> P" | |
| 620 | "ALL x>=y. P" => "ALL x. x >= y \<longrightarrow> P" | |
| 621 | "EX x>=y. P" => "EX x. x >= y \<and> P" | |
| 622 | ||
| 623 | print_translation {*
 | |
| 624 | let | |
| 42287 
d98eb048a2e4
discontinued special treatment of structure Mixfix;
 wenzelm parents: 
42284diff
changeset | 625 |   val All_binder = Mixfix.binder_name @{const_syntax All};
 | 
| 
d98eb048a2e4
discontinued special treatment of structure Mixfix;
 wenzelm parents: 
42284diff
changeset | 626 |   val Ex_binder = Mixfix.binder_name @{const_syntax Ex};
 | 
| 38786 
e46e7a9cb622
formerly unnamed infix impliciation now named HOL.implies
 haftmann parents: 
38715diff
changeset | 627 |   val impl = @{const_syntax HOL.implies};
 | 
| 38795 
848be46708dc
formerly unnamed infix conjunction and disjunction now named HOL.conj and HOL.disj
 haftmann parents: 
38786diff
changeset | 628 |   val conj = @{const_syntax HOL.conj};
 | 
| 22916 | 629 |   val less = @{const_syntax less};
 | 
| 630 |   val less_eq = @{const_syntax less_eq};
 | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 631 | |
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 632 | val trans = | 
| 35115 | 633 | [((All_binder, impl, less), | 
| 634 |     (@{syntax_const "_All_less"}, @{syntax_const "_All_greater"})),
 | |
| 635 | ((All_binder, impl, less_eq), | |
| 636 |     (@{syntax_const "_All_less_eq"}, @{syntax_const "_All_greater_eq"})),
 | |
| 637 | ((Ex_binder, conj, less), | |
| 638 |     (@{syntax_const "_Ex_less"}, @{syntax_const "_Ex_greater"})),
 | |
| 639 | ((Ex_binder, conj, less_eq), | |
| 640 |     (@{syntax_const "_Ex_less_eq"}, @{syntax_const "_Ex_greater_eq"}))];
 | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 641 | |
| 35115 | 642 | fun matches_bound v t = | 
| 643 | (case t of | |
| 35364 | 644 |       Const (@{syntax_const "_bound"}, _) $ Free (v', _) => v = v'
 | 
| 35115 | 645 | | _ => false); | 
| 646 | fun contains_var v = Term.exists_subterm (fn Free (x, _) => x = v | _ => false); | |
| 42284 | 647 | fun mk v c n P = Syntax.const c $ Syntax_Trans.mark_bound v $ n $ P; | 
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 648 | |
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 649 | fun tr' q = (q, | 
| 35364 | 650 |     fn [Const (@{syntax_const "_bound"}, _) $ Free (v, _),
 | 
| 651 | Const (c, _) $ (Const (d, _) $ t $ u) $ P] => | |
| 35115 | 652 | (case AList.lookup (op =) trans (q, c, d) of | 
| 653 | NONE => raise Match | |
| 654 | | SOME (l, g) => | |
| 655 | if matches_bound v t andalso not (contains_var v u) then mk v l u P | |
| 656 | else if matches_bound v u andalso not (contains_var v t) then mk v g t P | |
| 657 | else raise Match) | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 658 | | _ => raise Match); | 
| 21524 | 659 | in [tr' All_binder, tr' Ex_binder] end | 
| 21083 | 660 | *} | 
| 661 | ||
| 662 | ||
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 663 | subsection {* Transitivity reasoning *}
 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 664 | |
| 25193 | 665 | context ord | 
| 666 | begin | |
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 667 | |
| 25193 | 668 | lemma ord_le_eq_trans: "a \<le> b \<Longrightarrow> b = c \<Longrightarrow> a \<le> c" | 
| 669 | by (rule subst) | |
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 670 | |
| 25193 | 671 | lemma ord_eq_le_trans: "a = b \<Longrightarrow> b \<le> c \<Longrightarrow> a \<le> c" | 
| 672 | by (rule ssubst) | |
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 673 | |
| 25193 | 674 | lemma ord_less_eq_trans: "a < b \<Longrightarrow> b = c \<Longrightarrow> a < c" | 
| 675 | by (rule subst) | |
| 676 | ||
| 677 | lemma ord_eq_less_trans: "a = b \<Longrightarrow> b < c \<Longrightarrow> a < c" | |
| 678 | by (rule ssubst) | |
| 679 | ||
| 680 | end | |
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 681 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 682 | lemma order_less_subst2: "(a::'a::order) < b ==> f b < (c::'c::order) ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 683 | (!!x y. x < y ==> f x < f y) ==> f a < c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 684 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 685 | assume r: "!!x y. x < y ==> f x < f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 686 | assume "a < b" hence "f a < f b" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 687 | also assume "f b < c" | 
| 34250 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 688 | finally (less_trans) show ?thesis . | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 689 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 690 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 691 | lemma order_less_subst1: "(a::'a::order) < f b ==> (b::'b::order) < c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 692 | (!!x y. x < y ==> f x < f y) ==> a < f c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 693 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 694 | assume r: "!!x y. x < y ==> f x < f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 695 | assume "a < f b" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 696 | also assume "b < c" hence "f b < f c" by (rule r) | 
| 34250 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 697 | finally (less_trans) show ?thesis . | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 698 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 699 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 700 | lemma order_le_less_subst2: "(a::'a::order) <= b ==> f b < (c::'c::order) ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 701 | (!!x y. x <= y ==> f x <= f y) ==> f a < c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 702 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 703 | assume r: "!!x y. x <= y ==> f x <= f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 704 | assume "a <= b" hence "f a <= f b" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 705 | also assume "f b < c" | 
| 34250 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 706 | finally (le_less_trans) show ?thesis . | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 707 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 708 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 709 | lemma order_le_less_subst1: "(a::'a::order) <= f b ==> (b::'b::order) < c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 710 | (!!x y. x < y ==> f x < f y) ==> a < f c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 711 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 712 | assume r: "!!x y. x < y ==> f x < f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 713 | assume "a <= f b" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 714 | also assume "b < c" hence "f b < f c" by (rule r) | 
| 34250 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 715 | finally (le_less_trans) show ?thesis . | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 716 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 717 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 718 | lemma order_less_le_subst2: "(a::'a::order) < b ==> f b <= (c::'c::order) ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 719 | (!!x y. x < y ==> f x < f y) ==> f a < c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 720 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 721 | assume r: "!!x y. x < y ==> f x < f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 722 | assume "a < b" hence "f a < f b" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 723 | also assume "f b <= c" | 
| 34250 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 724 | finally (less_le_trans) show ?thesis . | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 725 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 726 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 727 | lemma order_less_le_subst1: "(a::'a::order) < f b ==> (b::'b::order) <= c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 728 | (!!x y. x <= y ==> f x <= f y) ==> a < f c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 729 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 730 | assume r: "!!x y. x <= y ==> f x <= f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 731 | assume "a < f b" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 732 | also assume "b <= c" hence "f b <= f c" by (rule r) | 
| 34250 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 733 | finally (less_le_trans) show ?thesis . | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 734 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 735 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 736 | lemma order_subst1: "(a::'a::order) <= f b ==> (b::'b::order) <= c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 737 | (!!x y. x <= y ==> f x <= f y) ==> a <= f c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 738 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 739 | assume r: "!!x y. x <= y ==> f x <= f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 740 | assume "a <= f b" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 741 | also assume "b <= c" hence "f b <= f c" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 742 | finally (order_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 743 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 744 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 745 | lemma order_subst2: "(a::'a::order) <= b ==> f b <= (c::'c::order) ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 746 | (!!x y. x <= y ==> f x <= f y) ==> f a <= c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 747 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 748 | assume r: "!!x y. x <= y ==> f x <= f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 749 | assume "a <= b" hence "f a <= f b" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 750 | also assume "f b <= c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 751 | finally (order_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 752 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 753 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 754 | lemma ord_le_eq_subst: "a <= b ==> f b = c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 755 | (!!x y. x <= y ==> f x <= f y) ==> f a <= c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 756 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 757 | assume r: "!!x y. x <= y ==> f x <= f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 758 | assume "a <= b" hence "f a <= f b" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 759 | also assume "f b = c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 760 | finally (ord_le_eq_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 761 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 762 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 763 | lemma ord_eq_le_subst: "a = f b ==> b <= c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 764 | (!!x y. x <= y ==> f x <= f y) ==> a <= f c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 765 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 766 | assume r: "!!x y. x <= y ==> f x <= f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 767 | assume "a = f b" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 768 | also assume "b <= c" hence "f b <= f c" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 769 | finally (ord_eq_le_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 770 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 771 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 772 | lemma ord_less_eq_subst: "a < b ==> f b = c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 773 | (!!x y. x < y ==> f x < f y) ==> f a < c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 774 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 775 | assume r: "!!x y. x < y ==> f x < f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 776 | assume "a < b" hence "f a < f b" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 777 | also assume "f b = c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 778 | finally (ord_less_eq_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 779 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 780 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 781 | lemma ord_eq_less_subst: "a = f b ==> b < c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 782 | (!!x y. x < y ==> f x < f y) ==> a < f c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 783 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 784 | assume r: "!!x y. x < y ==> f x < f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 785 | assume "a = f b" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 786 | also assume "b < c" hence "f b < f c" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 787 | finally (ord_eq_less_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 788 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 789 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 790 | text {*
 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 791 | Note that this list of rules is in reverse order of priorities. | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 792 | *} | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 793 | |
| 27682 | 794 | lemmas [trans] = | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 795 | order_less_subst2 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 796 | order_less_subst1 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 797 | order_le_less_subst2 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 798 | order_le_less_subst1 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 799 | order_less_le_subst2 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 800 | order_less_le_subst1 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 801 | order_subst2 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 802 | order_subst1 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 803 | ord_le_eq_subst | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 804 | ord_eq_le_subst | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 805 | ord_less_eq_subst | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 806 | ord_eq_less_subst | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 807 | forw_subst | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 808 | back_subst | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 809 | rev_mp | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 810 | mp | 
| 27682 | 811 | |
| 812 | lemmas (in order) [trans] = | |
| 813 | neq_le_trans | |
| 814 | le_neq_trans | |
| 815 | ||
| 816 | lemmas (in preorder) [trans] = | |
| 817 | less_trans | |
| 818 | less_asym' | |
| 819 | le_less_trans | |
| 820 | less_le_trans | |
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 821 | order_trans | 
| 27682 | 822 | |
| 823 | lemmas (in order) [trans] = | |
| 824 | antisym | |
| 825 | ||
| 826 | lemmas (in ord) [trans] = | |
| 827 | ord_le_eq_trans | |
| 828 | ord_eq_le_trans | |
| 829 | ord_less_eq_trans | |
| 830 | ord_eq_less_trans | |
| 831 | ||
| 832 | lemmas [trans] = | |
| 833 | trans | |
| 834 | ||
| 835 | lemmas order_trans_rules = | |
| 836 | order_less_subst2 | |
| 837 | order_less_subst1 | |
| 838 | order_le_less_subst2 | |
| 839 | order_le_less_subst1 | |
| 840 | order_less_le_subst2 | |
| 841 | order_less_le_subst1 | |
| 842 | order_subst2 | |
| 843 | order_subst1 | |
| 844 | ord_le_eq_subst | |
| 845 | ord_eq_le_subst | |
| 846 | ord_less_eq_subst | |
| 847 | ord_eq_less_subst | |
| 848 | forw_subst | |
| 849 | back_subst | |
| 850 | rev_mp | |
| 851 | mp | |
| 852 | neq_le_trans | |
| 853 | le_neq_trans | |
| 854 | less_trans | |
| 855 | less_asym' | |
| 856 | le_less_trans | |
| 857 | less_le_trans | |
| 858 | order_trans | |
| 859 | antisym | |
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 860 | ord_le_eq_trans | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 861 | ord_eq_le_trans | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 862 | ord_less_eq_trans | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 863 | ord_eq_less_trans | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 864 | trans | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 865 | |
| 21083 | 866 | text {* These support proving chains of decreasing inequalities
 | 
| 867 | a >= b >= c ... in Isar proofs. *} | |
| 868 | ||
| 45221 
3eadb9b6a055
mark "xt..." rules as "no_atp", since they are easy consequences of other better named properties
 blanchet parents: 
44921diff
changeset | 869 | lemma xt1 [no_atp]: | 
| 21083 | 870 | "a = b ==> b > c ==> a > c" | 
| 871 | "a > b ==> b = c ==> a > c" | |
| 872 | "a = b ==> b >= c ==> a >= c" | |
| 873 | "a >= b ==> b = c ==> a >= c" | |
| 874 | "(x::'a::order) >= y ==> y >= x ==> x = y" | |
| 875 | "(x::'a::order) >= y ==> y >= z ==> x >= z" | |
| 876 | "(x::'a::order) > y ==> y >= z ==> x > z" | |
| 877 | "(x::'a::order) >= y ==> y > z ==> x > z" | |
| 23417 | 878 | "(a::'a::order) > b ==> b > a ==> P" | 
| 21083 | 879 | "(x::'a::order) > y ==> y > z ==> x > z" | 
| 880 | "(a::'a::order) >= b ==> a ~= b ==> a > b" | |
| 881 | "(a::'a::order) ~= b ==> a >= b ==> a > b" | |
| 882 | "a = f b ==> b > c ==> (!!x y. x > y ==> f x > f y) ==> a > f c" | |
| 883 | "a > b ==> f b = c ==> (!!x y. x > y ==> f x > f y) ==> f a > c" | |
| 884 | "a = f b ==> b >= c ==> (!!x y. x >= y ==> f x >= f y) ==> a >= f c" | |
| 885 | "a >= b ==> f b = c ==> (!! x y. x >= y ==> f x >= f y) ==> f a >= c" | |
| 25076 | 886 | by auto | 
| 21083 | 887 | |
| 45221 
3eadb9b6a055
mark "xt..." rules as "no_atp", since they are easy consequences of other better named properties
 blanchet parents: 
44921diff
changeset | 888 | lemma xt2 [no_atp]: | 
| 21083 | 889 | "(a::'a::order) >= f b ==> b >= c ==> (!!x y. x >= y ==> f x >= f y) ==> a >= f c" | 
| 890 | by (subgoal_tac "f b >= f c", force, force) | |
| 891 | ||
| 45221 
3eadb9b6a055
mark "xt..." rules as "no_atp", since they are easy consequences of other better named properties
 blanchet parents: 
44921diff
changeset | 892 | lemma xt3 [no_atp]: "(a::'a::order) >= b ==> (f b::'b::order) >= c ==> | 
| 21083 | 893 | (!!x y. x >= y ==> f x >= f y) ==> f a >= c" | 
| 894 | by (subgoal_tac "f a >= f b", force, force) | |
| 895 | ||
| 45221 
3eadb9b6a055
mark "xt..." rules as "no_atp", since they are easy consequences of other better named properties
 blanchet parents: 
44921diff
changeset | 896 | lemma xt4 [no_atp]: "(a::'a::order) > f b ==> (b::'b::order) >= c ==> | 
| 21083 | 897 | (!!x y. x >= y ==> f x >= f y) ==> a > f c" | 
| 898 | by (subgoal_tac "f b >= f c", force, force) | |
| 899 | ||
| 45221 
3eadb9b6a055
mark "xt..." rules as "no_atp", since they are easy consequences of other better named properties
 blanchet parents: 
44921diff
changeset | 900 | lemma xt5 [no_atp]: "(a::'a::order) > b ==> (f b::'b::order) >= c==> | 
| 21083 | 901 | (!!x y. x > y ==> f x > f y) ==> f a > c" | 
| 902 | by (subgoal_tac "f a > f b", force, force) | |
| 903 | ||
| 45221 
3eadb9b6a055
mark "xt..." rules as "no_atp", since they are easy consequences of other better named properties
 blanchet parents: 
44921diff
changeset | 904 | lemma xt6 [no_atp]: "(a::'a::order) >= f b ==> b > c ==> | 
| 21083 | 905 | (!!x y. x > y ==> f x > f y) ==> a > f c" | 
| 906 | by (subgoal_tac "f b > f c", force, force) | |
| 907 | ||
| 45221 
3eadb9b6a055
mark "xt..." rules as "no_atp", since they are easy consequences of other better named properties
 blanchet parents: 
44921diff
changeset | 908 | lemma xt7 [no_atp]: "(a::'a::order) >= b ==> (f b::'b::order) > c ==> | 
| 21083 | 909 | (!!x y. x >= y ==> f x >= f y) ==> f a > c" | 
| 910 | by (subgoal_tac "f a >= f b", force, force) | |
| 911 | ||
| 45221 
3eadb9b6a055
mark "xt..." rules as "no_atp", since they are easy consequences of other better named properties
 blanchet parents: 
44921diff
changeset | 912 | lemma xt8 [no_atp]: "(a::'a::order) > f b ==> (b::'b::order) > c ==> | 
| 21083 | 913 | (!!x y. x > y ==> f x > f y) ==> a > f c" | 
| 914 | by (subgoal_tac "f b > f c", force, force) | |
| 915 | ||
| 45221 
3eadb9b6a055
mark "xt..." rules as "no_atp", since they are easy consequences of other better named properties
 blanchet parents: 
44921diff
changeset | 916 | lemma xt9 [no_atp]: "(a::'a::order) > b ==> (f b::'b::order) > c ==> | 
| 21083 | 917 | (!!x y. x > y ==> f x > f y) ==> f a > c" | 
| 918 | by (subgoal_tac "f a > f b", force, force) | |
| 919 | ||
| 45221 
3eadb9b6a055
mark "xt..." rules as "no_atp", since they are easy consequences of other better named properties
 blanchet parents: 
44921diff
changeset | 920 | lemmas xtrans = xt1 xt2 xt3 xt4 xt5 xt6 xt7 xt8 xt9 [no_atp] | 
| 21083 | 921 | |
| 922 | (* | |
| 923 | Since "a >= b" abbreviates "b <= a", the abbreviation "..." stands | |
| 924 | for the wrong thing in an Isar proof. | |
| 925 | ||
| 926 | The extra transitivity rules can be used as follows: | |
| 927 | ||
| 928 | lemma "(a::'a::order) > z" | |
| 929 | proof - | |
| 930 | have "a >= b" (is "_ >= ?rhs") | |
| 931 | sorry | |
| 932 | also have "?rhs >= c" (is "_ >= ?rhs") | |
| 933 | sorry | |
| 934 | also (xtrans) have "?rhs = d" (is "_ = ?rhs") | |
| 935 | sorry | |
| 936 | also (xtrans) have "?rhs >= e" (is "_ >= ?rhs") | |
| 937 | sorry | |
| 938 | also (xtrans) have "?rhs > f" (is "_ > ?rhs") | |
| 939 | sorry | |
| 940 | also (xtrans) have "?rhs > z" | |
| 941 | sorry | |
| 942 | finally (xtrans) show ?thesis . | |
| 943 | qed | |
| 944 | ||
| 945 | Alternatively, one can use "declare xtrans [trans]" and then | |
| 946 | leave out the "(xtrans)" above. | |
| 947 | *) | |
| 948 | ||
| 23881 | 949 | |
| 950 | subsection {* Monotonicity, least value operator and min/max *}
 | |
| 21083 | 951 | |
| 25076 | 952 | context order | 
| 953 | begin | |
| 954 | ||
| 30298 | 955 | definition mono :: "('a \<Rightarrow> 'b\<Colon>order) \<Rightarrow> bool" where
 | 
| 25076 | 956 | "mono f \<longleftrightarrow> (\<forall>x y. x \<le> y \<longrightarrow> f x \<le> f y)" | 
| 957 | ||
| 958 | lemma monoI [intro?]: | |
| 959 | fixes f :: "'a \<Rightarrow> 'b\<Colon>order" | |
| 960 | shows "(\<And>x y. x \<le> y \<Longrightarrow> f x \<le> f y) \<Longrightarrow> mono f" | |
| 961 | unfolding mono_def by iprover | |
| 21216 
1c8580913738
made locale partial_order compatible with axclass order; changed import order; consecutive changes
 haftmann parents: 
21204diff
changeset | 962 | |
| 25076 | 963 | lemma monoD [dest?]: | 
| 964 | fixes f :: "'a \<Rightarrow> 'b\<Colon>order" | |
| 965 | shows "mono f \<Longrightarrow> x \<le> y \<Longrightarrow> f x \<le> f y" | |
| 966 | unfolding mono_def by iprover | |
| 967 | ||
| 30298 | 968 | definition strict_mono :: "('a \<Rightarrow> 'b\<Colon>order) \<Rightarrow> bool" where
 | 
| 969 | "strict_mono f \<longleftrightarrow> (\<forall>x y. x < y \<longrightarrow> f x < f y)" | |
| 970 | ||
| 971 | lemma strict_monoI [intro?]: | |
| 972 | assumes "\<And>x y. x < y \<Longrightarrow> f x < f y" | |
| 973 | shows "strict_mono f" | |
| 974 | using assms unfolding strict_mono_def by auto | |
| 975 | ||
| 976 | lemma strict_monoD [dest?]: | |
| 977 | "strict_mono f \<Longrightarrow> x < y \<Longrightarrow> f x < f y" | |
| 978 | unfolding strict_mono_def by auto | |
| 979 | ||
| 980 | lemma strict_mono_mono [dest?]: | |
| 981 | assumes "strict_mono f" | |
| 982 | shows "mono f" | |
| 983 | proof (rule monoI) | |
| 984 | fix x y | |
| 985 | assume "x \<le> y" | |
| 986 | show "f x \<le> f y" | |
| 987 | proof (cases "x = y") | |
| 988 | case True then show ?thesis by simp | |
| 989 | next | |
| 990 | case False with `x \<le> y` have "x < y" by simp | |
| 991 | with assms strict_monoD have "f x < f y" by auto | |
| 992 | then show ?thesis by simp | |
| 993 | qed | |
| 994 | qed | |
| 995 | ||
| 25076 | 996 | end | 
| 997 | ||
| 998 | context linorder | |
| 999 | begin | |
| 1000 | ||
| 30298 | 1001 | lemma strict_mono_eq: | 
| 1002 | assumes "strict_mono f" | |
| 1003 | shows "f x = f y \<longleftrightarrow> x = y" | |
| 1004 | proof | |
| 1005 | assume "f x = f y" | |
| 1006 | show "x = y" proof (cases x y rule: linorder_cases) | |
| 1007 | case less with assms strict_monoD have "f x < f y" by auto | |
| 1008 | with `f x = f y` show ?thesis by simp | |
| 1009 | next | |
| 1010 | case equal then show ?thesis . | |
| 1011 | next | |
| 1012 | case greater with assms strict_monoD have "f y < f x" by auto | |
| 1013 | with `f x = f y` show ?thesis by simp | |
| 1014 | qed | |
| 1015 | qed simp | |
| 1016 | ||
| 1017 | lemma strict_mono_less_eq: | |
| 1018 | assumes "strict_mono f" | |
| 1019 | shows "f x \<le> f y \<longleftrightarrow> x \<le> y" | |
| 1020 | proof | |
| 1021 | assume "x \<le> y" | |
| 1022 | with assms strict_mono_mono monoD show "f x \<le> f y" by auto | |
| 1023 | next | |
| 1024 | assume "f x \<le> f y" | |
| 1025 | show "x \<le> y" proof (rule ccontr) | |
| 1026 | assume "\<not> x \<le> y" then have "y < x" by simp | |
| 1027 | with assms strict_monoD have "f y < f x" by auto | |
| 1028 | with `f x \<le> f y` show False by simp | |
| 1029 | qed | |
| 1030 | qed | |
| 1031 | ||
| 1032 | lemma strict_mono_less: | |
| 1033 | assumes "strict_mono f" | |
| 1034 | shows "f x < f y \<longleftrightarrow> x < y" | |
| 1035 | using assms | |
| 1036 | by (auto simp add: less_le Orderings.less_le strict_mono_eq strict_mono_less_eq) | |
| 1037 | ||
| 25076 | 1038 | lemma min_of_mono: | 
| 1039 | fixes f :: "'a \<Rightarrow> 'b\<Colon>linorder" | |
| 25377 | 1040 | shows "mono f \<Longrightarrow> min (f m) (f n) = f (min m n)" | 
| 25076 | 1041 | by (auto simp: mono_def Orderings.min_def min_def intro: Orderings.antisym) | 
| 1042 | ||
| 1043 | lemma max_of_mono: | |
| 1044 | fixes f :: "'a \<Rightarrow> 'b\<Colon>linorder" | |
| 25377 | 1045 | shows "mono f \<Longrightarrow> max (f m) (f n) = f (max m n)" | 
| 25076 | 1046 | by (auto simp: mono_def Orderings.max_def max_def intro: Orderings.antisym) | 
| 1047 | ||
| 1048 | end | |
| 21083 | 1049 | |
| 45931 | 1050 | lemma min_absorb1: "x \<le> y \<Longrightarrow> min x y = x" | 
| 23212 | 1051 | by (simp add: min_def) | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 1052 | |
| 45931 | 1053 | lemma max_absorb2: "x \<le> y ==> max x y = y" | 
| 23212 | 1054 | by (simp add: max_def) | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 1055 | |
| 45931 | 1056 | lemma min_absorb2: "(y\<Colon>'a\<Colon>order) \<le> x \<Longrightarrow> min x y = y" | 
| 1057 | by (simp add:min_def) | |
| 45893 | 1058 | |
| 45931 | 1059 | lemma max_absorb1: "(y\<Colon>'a\<Colon>order) \<le> x \<Longrightarrow> max x y = x" | 
| 45893 | 1060 | by (simp add: max_def) | 
| 1061 | ||
| 1062 | ||
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 1063 | |
| 43813 
07f0650146f2
tightened specification of classes bot and top: uniqueness of top and bot elements
 haftmann parents: 
43597diff
changeset | 1064 | subsection {* (Unique) top and bottom elements *}
 | 
| 28685 | 1065 | |
| 43813 
07f0650146f2
tightened specification of classes bot and top: uniqueness of top and bot elements
 haftmann parents: 
43597diff
changeset | 1066 | class bot = order + | 
| 43853 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1067 |   fixes bot :: 'a ("\<bottom>")
 | 
| 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1068 | assumes bot_least [simp]: "\<bottom> \<le> a" | 
| 43814 
58791b75cf1f
moved lemmas bot_less and less_top to classes bot and top respectively
 haftmann parents: 
43813diff
changeset | 1069 | begin | 
| 
58791b75cf1f
moved lemmas bot_less and less_top to classes bot and top respectively
 haftmann parents: 
43813diff
changeset | 1070 | |
| 43853 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1071 | lemma le_bot: | 
| 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1072 | "a \<le> \<bottom> \<Longrightarrow> a = \<bottom>" | 
| 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1073 | by (auto intro: antisym) | 
| 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1074 | |
| 43816 | 1075 | lemma bot_unique: | 
| 43853 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1076 | "a \<le> \<bottom> \<longleftrightarrow> a = \<bottom>" | 
| 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1077 | by (auto intro: antisym) | 
| 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1078 | |
| 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1079 | lemma not_less_bot [simp]: | 
| 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1080 | "\<not> (a < \<bottom>)" | 
| 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1081 | using bot_least [of a] by (auto simp: le_less) | 
| 43816 | 1082 | |
| 43814 
58791b75cf1f
moved lemmas bot_less and less_top to classes bot and top respectively
 haftmann parents: 
43813diff
changeset | 1083 | lemma bot_less: | 
| 43853 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1084 | "a \<noteq> \<bottom> \<longleftrightarrow> \<bottom> < a" | 
| 43814 
58791b75cf1f
moved lemmas bot_less and less_top to classes bot and top respectively
 haftmann parents: 
43813diff
changeset | 1085 | by (auto simp add: less_le_not_le intro!: antisym) | 
| 
58791b75cf1f
moved lemmas bot_less and less_top to classes bot and top respectively
 haftmann parents: 
43813diff
changeset | 1086 | |
| 
58791b75cf1f
moved lemmas bot_less and less_top to classes bot and top respectively
 haftmann parents: 
43813diff
changeset | 1087 | end | 
| 41082 | 1088 | |
| 43813 
07f0650146f2
tightened specification of classes bot and top: uniqueness of top and bot elements
 haftmann parents: 
43597diff
changeset | 1089 | class top = order + | 
| 43853 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1090 |   fixes top :: 'a ("\<top>")
 | 
| 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1091 | assumes top_greatest [simp]: "a \<le> \<top>" | 
| 43814 
58791b75cf1f
moved lemmas bot_less and less_top to classes bot and top respectively
 haftmann parents: 
43813diff
changeset | 1092 | begin | 
| 
58791b75cf1f
moved lemmas bot_less and less_top to classes bot and top respectively
 haftmann parents: 
43813diff
changeset | 1093 | |
| 43853 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1094 | lemma top_le: | 
| 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1095 | "\<top> \<le> a \<Longrightarrow> a = \<top>" | 
| 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1096 | by (rule antisym) auto | 
| 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1097 | |
| 43816 | 1098 | lemma top_unique: | 
| 43853 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1099 | "\<top> \<le> a \<longleftrightarrow> a = \<top>" | 
| 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1100 | by (auto intro: antisym) | 
| 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1101 | |
| 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1102 | lemma not_top_less [simp]: "\<not> (\<top> < a)" | 
| 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1103 | using top_greatest [of a] by (auto simp: le_less) | 
| 43816 | 1104 | |
| 43814 
58791b75cf1f
moved lemmas bot_less and less_top to classes bot and top respectively
 haftmann parents: 
43813diff
changeset | 1105 | lemma less_top: | 
| 43853 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1106 | "a \<noteq> \<top> \<longleftrightarrow> a < \<top>" | 
| 43814 
58791b75cf1f
moved lemmas bot_less and less_top to classes bot and top respectively
 haftmann parents: 
43813diff
changeset | 1107 | by (auto simp add: less_le_not_le intro!: antisym) | 
| 
58791b75cf1f
moved lemmas bot_less and less_top to classes bot and top respectively
 haftmann parents: 
43813diff
changeset | 1108 | |
| 
58791b75cf1f
moved lemmas bot_less and less_top to classes bot and top respectively
 haftmann parents: 
43813diff
changeset | 1109 | end | 
| 28685 | 1110 | |
| 1111 | ||
| 27823 | 1112 | subsection {* Dense orders *}
 | 
| 1113 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34974diff
changeset | 1114 | class dense_linorder = linorder + | 
| 27823 | 1115 | assumes gt_ex: "\<exists>y. x < y" | 
| 1116 | and lt_ex: "\<exists>y. y < x" | |
| 1117 | and dense: "x < y \<Longrightarrow> (\<exists>z. x < z \<and> z < y)" | |
| 35579 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1118 | begin | 
| 27823 | 1119 | |
| 35579 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1120 | lemma dense_le: | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1121 | fixes y z :: 'a | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1122 | assumes "\<And>x. x < y \<Longrightarrow> x \<le> z" | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1123 | shows "y \<le> z" | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1124 | proof (rule ccontr) | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1125 | assume "\<not> ?thesis" | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1126 | hence "z < y" by simp | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1127 | from dense[OF this] | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1128 | obtain x where "x < y" and "z < x" by safe | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1129 | moreover have "x \<le> z" using assms[OF `x < y`] . | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1130 | ultimately show False by auto | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1131 | qed | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1132 | |
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1133 | lemma dense_le_bounded: | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1134 | fixes x y z :: 'a | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1135 | assumes "x < y" | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1136 | assumes *: "\<And>w. \<lbrakk> x < w ; w < y \<rbrakk> \<Longrightarrow> w \<le> z" | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1137 | shows "y \<le> z" | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1138 | proof (rule dense_le) | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1139 | fix w assume "w < y" | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1140 | from dense[OF `x < y`] obtain u where "x < u" "u < y" by safe | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1141 | from linear[of u w] | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1142 | show "w \<le> z" | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1143 | proof (rule disjE) | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1144 | assume "u \<le> w" | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1145 | from less_le_trans[OF `x < u` `u \<le> w`] `w < y` | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1146 | show "w \<le> z" by (rule *) | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1147 | next | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1148 | assume "w \<le> u" | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1149 | from `w \<le> u` *[OF `x < u` `u < y`] | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1150 | show "w \<le> z" by (rule order_trans) | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1151 | qed | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1152 | qed | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1153 | |
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1154 | end | 
| 27823 | 1155 | |
| 1156 | subsection {* Wellorders *}
 | |
| 1157 | ||
| 1158 | class wellorder = linorder + | |
| 1159 | assumes less_induct [case_names less]: "(\<And>x. (\<And>y. y < x \<Longrightarrow> P y) \<Longrightarrow> P x) \<Longrightarrow> P a" | |
| 1160 | begin | |
| 1161 | ||
| 1162 | lemma wellorder_Least_lemma: | |
| 1163 | fixes k :: 'a | |
| 1164 | assumes "P k" | |
| 34250 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1165 | shows LeastI: "P (LEAST x. P x)" and Least_le: "(LEAST x. P x) \<le> k" | 
| 27823 | 1166 | proof - | 
| 1167 | have "P (LEAST x. P x) \<and> (LEAST x. P x) \<le> k" | |
| 1168 | using assms proof (induct k rule: less_induct) | |
| 1169 | case (less x) then have "P x" by simp | |
| 1170 | show ?case proof (rule classical) | |
| 1171 | assume assm: "\<not> (P (LEAST a. P a) \<and> (LEAST a. P a) \<le> x)" | |
| 1172 | have "\<And>y. P y \<Longrightarrow> x \<le> y" | |
| 1173 | proof (rule classical) | |
| 1174 | fix y | |
| 38705 | 1175 | assume "P y" and "\<not> x \<le> y" | 
| 27823 | 1176 | with less have "P (LEAST a. P a)" and "(LEAST a. P a) \<le> y" | 
| 1177 | by (auto simp add: not_le) | |
| 1178 | with assm have "x < (LEAST a. P a)" and "(LEAST a. P a) \<le> y" | |
| 1179 | by auto | |
| 1180 | then show "x \<le> y" by auto | |
| 1181 | qed | |
| 1182 | with `P x` have Least: "(LEAST a. P a) = x" | |
| 1183 | by (rule Least_equality) | |
| 1184 | with `P x` show ?thesis by simp | |
| 1185 | qed | |
| 1186 | qed | |
| 1187 | then show "P (LEAST x. P x)" and "(LEAST x. P x) \<le> k" by auto | |
| 1188 | qed | |
| 1189 | ||
| 1190 | -- "The following 3 lemmas are due to Brian Huffman" | |
| 1191 | lemma LeastI_ex: "\<exists>x. P x \<Longrightarrow> P (Least P)" | |
| 1192 | by (erule exE) (erule LeastI) | |
| 1193 | ||
| 1194 | lemma LeastI2: | |
| 1195 | "P a \<Longrightarrow> (\<And>x. P x \<Longrightarrow> Q x) \<Longrightarrow> Q (Least P)" | |
| 1196 | by (blast intro: LeastI) | |
| 1197 | ||
| 1198 | lemma LeastI2_ex: | |
| 1199 | "\<exists>a. P a \<Longrightarrow> (\<And>x. P x \<Longrightarrow> Q x) \<Longrightarrow> Q (Least P)" | |
| 1200 | by (blast intro: LeastI_ex) | |
| 1201 | ||
| 38705 | 1202 | lemma LeastI2_wellorder: | 
| 1203 | assumes "P a" | |
| 1204 | and "\<And>a. \<lbrakk> P a; \<forall>b. P b \<longrightarrow> a \<le> b \<rbrakk> \<Longrightarrow> Q a" | |
| 1205 | shows "Q (Least P)" | |
| 1206 | proof (rule LeastI2_order) | |
| 1207 | show "P (Least P)" using `P a` by (rule LeastI) | |
| 1208 | next | |
| 1209 | fix y assume "P y" thus "Least P \<le> y" by (rule Least_le) | |
| 1210 | next | |
| 1211 | fix x assume "P x" "\<forall>y. P y \<longrightarrow> x \<le> y" thus "Q x" by (rule assms(2)) | |
| 1212 | qed | |
| 1213 | ||
| 27823 | 1214 | lemma not_less_Least: "k < (LEAST x. P x) \<Longrightarrow> \<not> P k" | 
| 1215 | apply (simp (no_asm_use) add: not_le [symmetric]) | |
| 1216 | apply (erule contrapos_nn) | |
| 1217 | apply (erule Least_le) | |
| 1218 | done | |
| 1219 | ||
| 38705 | 1220 | end | 
| 27823 | 1221 | |
| 28685 | 1222 | |
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1223 | subsection {* Order on @{typ bool} *}
 | 
| 28685 | 1224 | |
| 45262 | 1225 | instantiation bool :: "{bot, top, linorder}"
 | 
| 28685 | 1226 | begin | 
| 1227 | ||
| 1228 | definition | |
| 41080 | 1229 | le_bool_def [simp]: "P \<le> Q \<longleftrightarrow> P \<longrightarrow> Q" | 
| 28685 | 1230 | |
| 1231 | definition | |
| 41080 | 1232 | [simp]: "(P\<Colon>bool) < Q \<longleftrightarrow> \<not> P \<and> Q" | 
| 28685 | 1233 | |
| 1234 | definition | |
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1235 | [simp]: "\<bottom> \<longleftrightarrow> False" | 
| 28685 | 1236 | |
| 1237 | definition | |
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1238 | [simp]: "\<top> \<longleftrightarrow> True" | 
| 28685 | 1239 | |
| 1240 | instance proof | |
| 41080 | 1241 | qed auto | 
| 28685 | 1242 | |
| 15524 | 1243 | end | 
| 28685 | 1244 | |
| 1245 | lemma le_boolI: "(P \<Longrightarrow> Q) \<Longrightarrow> P \<le> Q" | |
| 41080 | 1246 | by simp | 
| 28685 | 1247 | |
| 1248 | lemma le_boolI': "P \<longrightarrow> Q \<Longrightarrow> P \<le> Q" | |
| 41080 | 1249 | by simp | 
| 28685 | 1250 | |
| 1251 | lemma le_boolE: "P \<le> Q \<Longrightarrow> P \<Longrightarrow> (Q \<Longrightarrow> R) \<Longrightarrow> R" | |
| 41080 | 1252 | by simp | 
| 28685 | 1253 | |
| 1254 | lemma le_boolD: "P \<le> Q \<Longrightarrow> P \<longrightarrow> Q" | |
| 41080 | 1255 | by simp | 
| 32899 | 1256 | |
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1257 | lemma bot_boolE: "\<bottom> \<Longrightarrow> P" | 
| 41080 | 1258 | by simp | 
| 32899 | 1259 | |
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1260 | lemma top_boolI: \<top> | 
| 41080 | 1261 | by simp | 
| 28685 | 1262 | |
| 1263 | lemma [code]: | |
| 1264 | "False \<le> b \<longleftrightarrow> True" | |
| 1265 | "True \<le> b \<longleftrightarrow> b" | |
| 1266 | "False < b \<longleftrightarrow> b" | |
| 1267 | "True < b \<longleftrightarrow> False" | |
| 41080 | 1268 | by simp_all | 
| 28685 | 1269 | |
| 1270 | ||
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1271 | subsection {* Order on @{typ "_ \<Rightarrow> _"} *}
 | 
| 28685 | 1272 | |
| 1273 | instantiation "fun" :: (type, ord) ord | |
| 1274 | begin | |
| 1275 | ||
| 1276 | definition | |
| 37767 | 1277 | le_fun_def: "f \<le> g \<longleftrightarrow> (\<forall>x. f x \<le> g x)" | 
| 28685 | 1278 | |
| 1279 | definition | |
| 41080 | 1280 | "(f\<Colon>'a \<Rightarrow> 'b) < g \<longleftrightarrow> f \<le> g \<and> \<not> (g \<le> f)" | 
| 28685 | 1281 | |
| 1282 | instance .. | |
| 1283 | ||
| 1284 | end | |
| 1285 | ||
| 1286 | instance "fun" :: (type, preorder) preorder proof | |
| 1287 | qed (auto simp add: le_fun_def less_fun_def | |
| 44921 | 1288 | intro: order_trans antisym) | 
| 28685 | 1289 | |
| 1290 | instance "fun" :: (type, order) order proof | |
| 44921 | 1291 | qed (auto simp add: le_fun_def intro: antisym) | 
| 28685 | 1292 | |
| 41082 | 1293 | instantiation "fun" :: (type, bot) bot | 
| 1294 | begin | |
| 1295 | ||
| 1296 | definition | |
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1297 | "\<bottom> = (\<lambda>x. \<bottom>)" | 
| 41082 | 1298 | |
| 46882 | 1299 | lemma bot_apply [simp] (* CANDIDATE [code] *): | 
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1300 | "\<bottom> x = \<bottom>" | 
| 41082 | 1301 | by (simp add: bot_fun_def) | 
| 1302 | ||
| 1303 | instance proof | |
| 46884 | 1304 | qed (simp add: le_fun_def) | 
| 41082 | 1305 | |
| 1306 | end | |
| 1307 | ||
| 28685 | 1308 | instantiation "fun" :: (type, top) top | 
| 1309 | begin | |
| 1310 | ||
| 1311 | definition | |
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1312 | [no_atp]: "\<top> = (\<lambda>x. \<top>)" | 
| 28685 | 1313 | |
| 46882 | 1314 | lemma top_apply [simp] (* CANDIDATE [code] *): | 
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1315 | "\<top> x = \<top>" | 
| 41080 | 1316 | by (simp add: top_fun_def) | 
| 1317 | ||
| 28685 | 1318 | instance proof | 
| 46884 | 1319 | qed (simp add: le_fun_def) | 
| 28685 | 1320 | |
| 1321 | end | |
| 1322 | ||
| 1323 | lemma le_funI: "(\<And>x. f x \<le> g x) \<Longrightarrow> f \<le> g" | |
| 1324 | unfolding le_fun_def by simp | |
| 1325 | ||
| 1326 | lemma le_funE: "f \<le> g \<Longrightarrow> (f x \<le> g x \<Longrightarrow> P) \<Longrightarrow> P" | |
| 1327 | unfolding le_fun_def by simp | |
| 1328 | ||
| 1329 | lemma le_funD: "f \<le> g \<Longrightarrow> f x \<le> g x" | |
| 1330 | unfolding le_fun_def by simp | |
| 1331 | ||
| 34250 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1332 | |
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1333 | subsection {* Order on unary and binary predicates *}
 | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1334 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1335 | lemma predicate1I: | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1336 | assumes PQ: "\<And>x. P x \<Longrightarrow> Q x" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1337 | shows "P \<le> Q" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1338 | apply (rule le_funI) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1339 | apply (rule le_boolI) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1340 | apply (rule PQ) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1341 | apply assumption | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1342 | done | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1343 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1344 | lemma predicate1D: | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1345 | "P \<le> Q \<Longrightarrow> P x \<Longrightarrow> Q x" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1346 | apply (erule le_funE) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1347 | apply (erule le_boolE) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1348 | apply assumption+ | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1349 | done | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1350 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1351 | lemma rev_predicate1D: | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1352 | "P x \<Longrightarrow> P \<le> Q \<Longrightarrow> Q x" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1353 | by (rule predicate1D) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1354 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1355 | lemma predicate2I: | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1356 | assumes PQ: "\<And>x y. P x y \<Longrightarrow> Q x y" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1357 | shows "P \<le> Q" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1358 | apply (rule le_funI)+ | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1359 | apply (rule le_boolI) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1360 | apply (rule PQ) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1361 | apply assumption | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1362 | done | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1363 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1364 | lemma predicate2D: | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1365 | "P \<le> Q \<Longrightarrow> P x y \<Longrightarrow> Q x y" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1366 | apply (erule le_funE)+ | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1367 | apply (erule le_boolE) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1368 | apply assumption+ | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1369 | done | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1370 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1371 | lemma rev_predicate2D: | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1372 | "P x y \<Longrightarrow> P \<le> Q \<Longrightarrow> Q x y" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1373 | by (rule predicate2D) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1374 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1375 | lemma bot1E [no_atp]: "\<bottom> x \<Longrightarrow> P" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1376 | by (simp add: bot_fun_def) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1377 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1378 | lemma bot2E: "\<bottom> x y \<Longrightarrow> P" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1379 | by (simp add: bot_fun_def) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1380 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1381 | lemma top1I: "\<top> x" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1382 | by (simp add: top_fun_def) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1383 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1384 | lemma top2I: "\<top> x y" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1385 | by (simp add: top_fun_def) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1386 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1387 | |
| 34250 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1388 | subsection {* Name duplicates *}
 | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1389 | |
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1390 | lemmas order_eq_refl = preorder_class.eq_refl | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1391 | lemmas order_less_irrefl = preorder_class.less_irrefl | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1392 | lemmas order_less_imp_le = preorder_class.less_imp_le | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1393 | lemmas order_less_not_sym = preorder_class.less_not_sym | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1394 | lemmas order_less_asym = preorder_class.less_asym | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1395 | lemmas order_less_trans = preorder_class.less_trans | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1396 | lemmas order_le_less_trans = preorder_class.le_less_trans | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1397 | lemmas order_less_le_trans = preorder_class.less_le_trans | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1398 | lemmas order_less_imp_not_less = preorder_class.less_imp_not_less | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1399 | lemmas order_less_imp_triv = preorder_class.less_imp_triv | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1400 | lemmas order_less_asym' = preorder_class.less_asym' | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1401 | |
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1402 | lemmas order_less_le = order_class.less_le | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1403 | lemmas order_le_less = order_class.le_less | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1404 | lemmas order_le_imp_less_or_eq = order_class.le_imp_less_or_eq | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1405 | lemmas order_less_imp_not_eq = order_class.less_imp_not_eq | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1406 | lemmas order_less_imp_not_eq2 = order_class.less_imp_not_eq2 | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1407 | lemmas order_neq_le_trans = order_class.neq_le_trans | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1408 | lemmas order_le_neq_trans = order_class.le_neq_trans | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1409 | lemmas order_antisym = order_class.antisym | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1410 | lemmas order_eq_iff = order_class.eq_iff | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1411 | lemmas order_antisym_conv = order_class.antisym_conv | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1412 | |
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1413 | lemmas linorder_linear = linorder_class.linear | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1414 | lemmas linorder_less_linear = linorder_class.less_linear | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1415 | lemmas linorder_le_less_linear = linorder_class.le_less_linear | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1416 | lemmas linorder_le_cases = linorder_class.le_cases | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1417 | lemmas linorder_not_less = linorder_class.not_less | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1418 | lemmas linorder_not_le = linorder_class.not_le | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1419 | lemmas linorder_neq_iff = linorder_class.neq_iff | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1420 | lemmas linorder_neqE = linorder_class.neqE | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1421 | lemmas linorder_antisym_conv1 = linorder_class.antisym_conv1 | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1422 | lemmas linorder_antisym_conv2 = linorder_class.antisym_conv2 | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1423 | lemmas linorder_antisym_conv3 = linorder_class.antisym_conv3 | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1424 | |
| 28685 | 1425 | end |