| author | wenzelm | 
| Thu, 20 Aug 2015 17:39:07 +0200 | |
| changeset 60986 | 077f663b6c24 | 
| parent 60758 | d8d85a8172b5 | 
| child 61070 | b72a990adfe2 | 
| permissions | -rw-r--r-- | 
| 35372 | 1 | (* Title: HOL/Rat.thy | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: diff
changeset | 2 | Author: Markus Wenzel, TU Muenchen | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: diff
changeset | 3 | *) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: diff
changeset | 4 | |
| 60758 | 5 | section \<open>Rational numbers\<close> | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: diff
changeset | 6 | |
| 35372 | 7 | theory Rat | 
| 30097 
57df8626c23b
generalize floor/ceiling to work with real and rat; rename floor_mono2 to floor_mono
 huffman parents: 
30095diff
changeset | 8 | imports GCD Archimedean_Field | 
| 15131 | 9 | begin | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: diff
changeset | 10 | |
| 60758 | 11 | subsection \<open>Rational numbers as quotient\<close> | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: diff
changeset | 12 | |
| 60758 | 13 | subsubsection \<open>Construction of the type of rational numbers\<close> | 
| 18913 | 14 | |
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
20522diff
changeset | 15 | definition | 
| 47906 | 16 | ratrel :: "(int \<times> int) \<Rightarrow> (int \<times> int) \<Rightarrow> bool" where | 
| 17 | "ratrel = (\<lambda>x y. snd x \<noteq> 0 \<and> snd y \<noteq> 0 \<and> fst x * snd y = fst y * snd x)" | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: diff
changeset | 18 | |
| 18913 | 19 | lemma ratrel_iff [simp]: | 
| 47906 | 20 | "ratrel x y \<longleftrightarrow> snd x \<noteq> 0 \<and> snd y \<noteq> 0 \<and> fst x * snd y = fst y * snd x" | 
| 27551 | 21 | by (simp add: ratrel_def) | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: diff
changeset | 22 | |
| 47906 | 23 | lemma exists_ratrel_refl: "\<exists>x. ratrel x x" | 
| 24 | by (auto intro!: one_neq_zero) | |
| 18913 | 25 | |
| 47906 | 26 | lemma symp_ratrel: "symp ratrel" | 
| 27 | by (simp add: ratrel_def symp_def) | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: diff
changeset | 28 | |
| 47906 | 29 | lemma transp_ratrel: "transp ratrel" | 
| 30 | proof (rule transpI, unfold split_paired_all) | |
| 27551 | 31 | fix a b a' b' a'' b'' :: int | 
| 47906 | 32 | assume A: "ratrel (a, b) (a', b')" | 
| 33 | assume B: "ratrel (a', b') (a'', b'')" | |
| 27551 | 34 | have "b' * (a * b'') = b'' * (a * b')" by simp | 
| 35 | also from A have "a * b' = a' * b" by auto | |
| 36 | also have "b'' * (a' * b) = b * (a' * b'')" by simp | |
| 37 | also from B have "a' * b'' = a'' * b'" by auto | |
| 38 | also have "b * (a'' * b') = b' * (a'' * b)" by simp | |
| 39 | finally have "b' * (a * b'') = b' * (a'' * b)" . | |
| 40 | moreover from B have "b' \<noteq> 0" by auto | |
| 41 | ultimately have "a * b'' = a'' * b" by simp | |
| 47906 | 42 | with A B show "ratrel (a, b) (a'', b'')" by auto | 
| 27551 | 43 | qed | 
| 44 | ||
| 47906 | 45 | lemma part_equivp_ratrel: "part_equivp ratrel" | 
| 46 | by (rule part_equivpI [OF exists_ratrel_refl symp_ratrel transp_ratrel]) | |
| 47 | ||
| 48 | quotient_type rat = "int \<times> int" / partial: "ratrel" | |
| 49 | morphisms Rep_Rat Abs_Rat | |
| 50 | by (rule part_equivp_ratrel) | |
| 27551 | 51 | |
| 53012 
cb82606b8215
move Lifting/Transfer relevant parts of Library/Quotient_* to Main
 kuncar parents: 
52146diff
changeset | 52 | lemma Domainp_cr_rat [transfer_domain_rule]: "Domainp pcr_rat = (\<lambda>x. snd x \<noteq> 0)" | 
| 
cb82606b8215
move Lifting/Transfer relevant parts of Library/Quotient_* to Main
 kuncar parents: 
52146diff
changeset | 53 | by (simp add: rat.domain_eq) | 
| 27551 | 54 | |
| 60758 | 55 | subsubsection \<open>Representation and basic operations\<close> | 
| 27551 | 56 | |
| 47906 | 57 | lift_definition Fract :: "int \<Rightarrow> int \<Rightarrow> rat" | 
| 58 | is "\<lambda>a b. if b = 0 then (0, 1) else (a, b)" | |
| 59 | by simp | |
| 27551 | 60 | |
| 61 | lemma eq_rat: | |
| 62 | shows "\<And>a b c d. b \<noteq> 0 \<Longrightarrow> d \<noteq> 0 \<Longrightarrow> Fract a b = Fract c d \<longleftrightarrow> a * d = c * b" | |
| 27652 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 63 | and "\<And>a. Fract a 0 = Fract 0 1" | 
| 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 64 | and "\<And>a c. Fract 0 a = Fract 0 c" | 
| 47906 | 65 | by (transfer, simp)+ | 
| 27551 | 66 | |
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 67 | lemma Rat_cases [case_names Fract, cases type: rat]: | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 68 | assumes "\<And>a b. q = Fract a b \<Longrightarrow> b > 0 \<Longrightarrow> coprime a b \<Longrightarrow> C" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 69 | shows C | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 70 | proof - | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 71 | obtain a b :: int where "q = Fract a b" and "b \<noteq> 0" | 
| 47906 | 72 | by transfer simp | 
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 73 | let ?a = "a div gcd a b" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 74 | let ?b = "b div gcd a b" | 
| 60758 | 75 | from \<open>b \<noteq> 0\<close> have "?b * gcd a b = b" | 
| 58834 | 76 | by simp | 
| 60758 | 77 | with \<open>b \<noteq> 0\<close> have "?b \<noteq> 0" by fastforce | 
| 78 | from \<open>q = Fract a b\<close> \<open>b \<noteq> 0\<close> \<open>?b \<noteq> 0\<close> have q: "q = Fract ?a ?b" | |
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
57275diff
changeset | 79 | by (simp add: eq_rat dvd_div_mult mult.commute [of a]) | 
| 60758 | 80 | from \<open>b \<noteq> 0\<close> have coprime: "coprime ?a ?b" | 
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 81 | by (auto intro: div_gcd_coprime_int) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 82 | show C proof (cases "b > 0") | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 83 | case True | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 84 | note assms | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 85 | moreover note q | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 86 | moreover from True have "?b > 0" by (simp add: nonneg1_imp_zdiv_pos_iff) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 87 | moreover note coprime | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 88 | ultimately show C . | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 89 | next | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 90 | case False | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 91 | note assms | 
| 47906 | 92 | moreover have "q = Fract (- ?a) (- ?b)" unfolding q by transfer simp | 
| 60758 | 93 | moreover from False \<open>b \<noteq> 0\<close> have "- ?b > 0" by (simp add: pos_imp_zdiv_neg_iff) | 
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 94 | moreover from coprime have "coprime (- ?a) (- ?b)" by simp | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 95 | ultimately show C . | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 96 | qed | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 97 | qed | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 98 | |
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 99 | lemma Rat_induct [case_names Fract, induct type: rat]: | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 100 | assumes "\<And>a b. b > 0 \<Longrightarrow> coprime a b \<Longrightarrow> P (Fract a b)" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 101 | shows "P q" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 102 | using assms by (cases q) simp | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 103 | |
| 59867 
58043346ca64
given up separate type classes demanding `inverse 0 = 0`
 haftmann parents: 
59667diff
changeset | 104 | instantiation rat :: field | 
| 25571 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25502diff
changeset | 105 | begin | 
| 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25502diff
changeset | 106 | |
| 47906 | 107 | lift_definition zero_rat :: "rat" is "(0, 1)" | 
| 108 | by simp | |
| 109 | ||
| 110 | lift_definition one_rat :: "rat" is "(1, 1)" | |
| 111 | by simp | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: diff
changeset | 112 | |
| 47906 | 113 | lemma Zero_rat_def: "0 = Fract 0 1" | 
| 114 | by transfer simp | |
| 18913 | 115 | |
| 47906 | 116 | lemma One_rat_def: "1 = Fract 1 1" | 
| 117 | by transfer simp | |
| 118 | ||
| 119 | lift_definition plus_rat :: "rat \<Rightarrow> rat \<Rightarrow> rat" | |
| 120 | is "\<lambda>x y. (fst x * snd y + fst y * snd x, snd x * snd y)" | |
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
57512diff
changeset | 121 | by (clarsimp, simp add: distrib_right, simp add: ac_simps) | 
| 27551 | 122 | |
| 27652 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 123 | lemma add_rat [simp]: | 
| 27551 | 124 | assumes "b \<noteq> 0" and "d \<noteq> 0" | 
| 125 | shows "Fract a b + Fract c d = Fract (a * d + c * b) (b * d)" | |
| 47906 | 126 | using assms by transfer simp | 
| 18913 | 127 | |
| 47906 | 128 | lift_definition uminus_rat :: "rat \<Rightarrow> rat" is "\<lambda>x. (- fst x, snd x)" | 
| 129 | by simp | |
| 27551 | 130 | |
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 131 | lemma minus_rat [simp]: "- Fract a b = Fract (- a) b" | 
| 47906 | 132 | by transfer simp | 
| 27551 | 133 | |
| 27652 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 134 | lemma minus_rat_cancel [simp]: "Fract (- a) (- b) = Fract a b" | 
| 27551 | 135 | by (cases "b = 0") (simp_all add: eq_rat) | 
| 25571 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25502diff
changeset | 136 | |
| 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25502diff
changeset | 137 | definition | 
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 138 | diff_rat_def: "q - r = q + - (r::rat)" | 
| 18913 | 139 | |
| 27652 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 140 | lemma diff_rat [simp]: | 
| 27551 | 141 | assumes "b \<noteq> 0" and "d \<noteq> 0" | 
| 142 | shows "Fract a b - Fract c d = Fract (a * d - c * b) (b * d)" | |
| 27652 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 143 | using assms by (simp add: diff_rat_def) | 
| 25571 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25502diff
changeset | 144 | |
| 47906 | 145 | lift_definition times_rat :: "rat \<Rightarrow> rat \<Rightarrow> rat" | 
| 146 | is "\<lambda>x y. (fst x * fst y, snd x * snd y)" | |
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
57512diff
changeset | 147 | by (simp add: ac_simps) | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: diff
changeset | 148 | |
| 27652 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 149 | lemma mult_rat [simp]: "Fract a b * Fract c d = Fract (a * c) (b * d)" | 
| 47906 | 150 | by transfer simp | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: diff
changeset | 151 | |
| 27652 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 152 | lemma mult_rat_cancel: | 
| 27551 | 153 | assumes "c \<noteq> 0" | 
| 154 | shows "Fract (c * a) (c * b) = Fract a b" | |
| 47906 | 155 | using assms by transfer simp | 
| 156 | ||
| 157 | lift_definition inverse_rat :: "rat \<Rightarrow> rat" | |
| 158 | is "\<lambda>x. if fst x = 0 then (0, 1) else (snd x, fst x)" | |
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
57275diff
changeset | 159 | by (auto simp add: mult.commute) | 
| 47906 | 160 | |
| 161 | lemma inverse_rat [simp]: "inverse (Fract a b) = Fract b a" | |
| 162 | by transfer simp | |
| 163 | ||
| 164 | definition | |
| 60429 
d3d1e185cd63
uniform _ div _ as infix syntax for ring division
 haftmann parents: 
60352diff
changeset | 165 | divide_rat_def: "q div r = q * inverse (r::rat)" | 
| 47906 | 166 | |
| 60429 
d3d1e185cd63
uniform _ div _ as infix syntax for ring division
 haftmann parents: 
60352diff
changeset | 167 | lemma divide_rat [simp]: "Fract a b div Fract c d = Fract (a * d) (b * c)" | 
| 47906 | 168 | by (simp add: divide_rat_def) | 
| 27509 | 169 | |
| 170 | instance proof | |
| 47906 | 171 | fix q r s :: rat | 
| 172 | show "(q * r) * s = q * (r * s)" | |
| 173 | by transfer simp | |
| 174 | show "q * r = r * q" | |
| 175 | by transfer simp | |
| 176 | show "1 * q = q" | |
| 177 | by transfer simp | |
| 178 | show "(q + r) + s = q + (r + s)" | |
| 179 | by transfer (simp add: algebra_simps) | |
| 180 | show "q + r = r + q" | |
| 181 | by transfer simp | |
| 182 | show "0 + q = q" | |
| 183 | by transfer simp | |
| 184 | show "- q + q = 0" | |
| 185 | by transfer simp | |
| 186 | show "q - r = q + - r" | |
| 187 | by (fact diff_rat_def) | |
| 188 | show "(q + r) * s = q * s + r * s" | |
| 189 | by transfer (simp add: algebra_simps) | |
| 190 | show "(0::rat) \<noteq> 1" | |
| 191 | by transfer simp | |
| 192 |   { assume "q \<noteq> 0" thus "inverse q * q = 1"
 | |
| 193 | by transfer simp } | |
| 60429 
d3d1e185cd63
uniform _ div _ as infix syntax for ring division
 haftmann parents: 
60352diff
changeset | 194 | show "q div r = q * inverse r" | 
| 47906 | 195 | by (fact divide_rat_def) | 
| 196 | show "inverse 0 = (0::rat)" | |
| 197 | by transfer simp | |
| 27509 | 198 | qed | 
| 199 | ||
| 200 | end | |
| 201 | ||
| 27551 | 202 | lemma of_nat_rat: "of_nat k = Fract (of_nat k) 1" | 
| 27652 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 203 | by (induct k) (simp_all add: Zero_rat_def One_rat_def) | 
| 27551 | 204 | |
| 205 | lemma of_int_rat: "of_int k = Fract k 1" | |
| 27652 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 206 | by (cases k rule: int_diff_cases) (simp add: of_nat_rat) | 
| 27551 | 207 | |
| 208 | lemma Fract_of_nat_eq: "Fract (of_nat k) 1 = of_nat k" | |
| 209 | by (rule of_nat_rat [symmetric]) | |
| 210 | ||
| 211 | lemma Fract_of_int_eq: "Fract k 1 = of_int k" | |
| 212 | by (rule of_int_rat [symmetric]) | |
| 213 | ||
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 214 | lemma rat_number_collapse: | 
| 27551 | 215 | "Fract 0 k = 0" | 
| 216 | "Fract 1 1 = 1" | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 217 | "Fract (numeral w) 1 = numeral w" | 
| 54489 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54409diff
changeset | 218 | "Fract (- numeral w) 1 = - numeral w" | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54409diff
changeset | 219 | "Fract (- 1) 1 = - 1" | 
| 27551 | 220 | "Fract k 0 = 0" | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 221 | using Fract_of_int_eq [of "numeral w"] | 
| 54489 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54409diff
changeset | 222 | using Fract_of_int_eq [of "- numeral w"] | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 223 | by (simp_all add: Zero_rat_def One_rat_def eq_rat) | 
| 27551 | 224 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 225 | lemma rat_number_expand: | 
| 27551 | 226 | "0 = Fract 0 1" | 
| 227 | "1 = Fract 1 1" | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 228 | "numeral k = Fract (numeral k) 1" | 
| 54489 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54409diff
changeset | 229 | "- 1 = Fract (- 1) 1" | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54409diff
changeset | 230 | "- numeral k = Fract (- numeral k) 1" | 
| 27551 | 231 | by (simp_all add: rat_number_collapse) | 
| 232 | ||
| 233 | lemma Rat_cases_nonzero [case_names Fract 0]: | |
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 234 | assumes Fract: "\<And>a b. q = Fract a b \<Longrightarrow> b > 0 \<Longrightarrow> a \<noteq> 0 \<Longrightarrow> coprime a b \<Longrightarrow> C" | 
| 27551 | 235 | assumes 0: "q = 0 \<Longrightarrow> C" | 
| 236 | shows C | |
| 237 | proof (cases "q = 0") | |
| 238 | case True then show C using 0 by auto | |
| 239 | next | |
| 240 | case False | |
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 241 | then obtain a b where "q = Fract a b" and "b > 0" and "coprime a b" by (cases q) auto | 
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53017diff
changeset | 242 | with False have "0 \<noteq> Fract a b" by simp | 
| 60758 | 243 | with \<open>b > 0\<close> have "a \<noteq> 0" by (simp add: Zero_rat_def eq_rat) | 
| 244 | with Fract \<open>q = Fract a b\<close> \<open>b > 0\<close> \<open>coprime a b\<close> show C by blast | |
| 27551 | 245 | qed | 
| 246 | ||
| 60758 | 247 | subsubsection \<open>Function @{text normalize}\<close>
 | 
| 33805 | 248 | |
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 249 | lemma Fract_coprime: "Fract (a div gcd a b) (b div gcd a b) = Fract a b" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 250 | proof (cases "b = 0") | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 251 | case True then show ?thesis by (simp add: eq_rat) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 252 | next | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 253 | case False | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 254 | moreover have "b div gcd a b * gcd a b = b" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 255 | by (rule dvd_div_mult_self) simp | 
| 58834 | 256 | ultimately have "b div gcd a b * gcd a b \<noteq> 0" by simp | 
| 257 | then have "b div gcd a b \<noteq> 0" by fastforce | |
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
57275diff
changeset | 258 | with False show ?thesis by (simp add: eq_rat dvd_div_mult mult.commute [of a]) | 
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 259 | qed | 
| 33805 | 260 | |
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 261 | definition normalize :: "int \<times> int \<Rightarrow> int \<times> int" where | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 262 | "normalize p = (if snd p > 0 then (let a = gcd (fst p) (snd p) in (fst p div a, snd p div a)) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 263 | else if snd p = 0 then (0, 1) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 264 | else (let a = - gcd (fst p) (snd p) in (fst p div a, snd p div a)))" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 265 | |
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 266 | lemma normalize_crossproduct: | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 267 | assumes "q \<noteq> 0" "s \<noteq> 0" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 268 | assumes "normalize (p, q) = normalize (r, s)" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 269 | shows "p * s = r * q" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 270 | proof - | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 271 | have aux: "p * gcd r s = sgn (q * s) * r * gcd p q \<Longrightarrow> q * gcd r s = sgn (q * s) * s * gcd p q \<Longrightarrow> p * s = q * r" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 272 | proof - | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 273 | assume "p * gcd r s = sgn (q * s) * r * gcd p q" and "q * gcd r s = sgn (q * s) * s * gcd p q" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 274 | then have "(p * gcd r s) * (sgn (q * s) * s * gcd p q) = (q * gcd r s) * (sgn (q * s) * r * gcd p q)" by simp | 
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
57512diff
changeset | 275 | with assms show "p * s = q * r" by (auto simp add: ac_simps sgn_times sgn_0_0) | 
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 276 | qed | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 277 | from assms show ?thesis | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
57275diff
changeset | 278 | by (auto simp add: normalize_def Let_def dvd_div_div_eq_mult mult.commute sgn_times split: if_splits intro: aux) | 
| 33805 | 279 | qed | 
| 280 | ||
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 281 | lemma normalize_eq: "normalize (a, b) = (p, q) \<Longrightarrow> Fract p q = Fract a b" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 282 | by (auto simp add: normalize_def Let_def Fract_coprime dvd_div_neg rat_number_collapse | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 283 | split:split_if_asm) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 284 | |
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 285 | lemma normalize_denom_pos: "normalize r = (p, q) \<Longrightarrow> q > 0" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 286 | by (auto simp add: normalize_def Let_def dvd_div_neg pos_imp_zdiv_neg_iff nonneg1_imp_zdiv_pos_iff | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 287 | split:split_if_asm) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 288 | |
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 289 | lemma normalize_coprime: "normalize r = (p, q) \<Longrightarrow> coprime p q" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 290 | by (auto simp add: normalize_def Let_def dvd_div_neg div_gcd_coprime_int | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 291 | split:split_if_asm) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 292 | |
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 293 | lemma normalize_stable [simp]: | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 294 | "q > 0 \<Longrightarrow> coprime p q \<Longrightarrow> normalize (p, q) = (p, q)" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 295 | by (simp add: normalize_def) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 296 | |
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 297 | lemma normalize_denom_zero [simp]: | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 298 | "normalize (p, 0) = (0, 1)" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 299 | by (simp add: normalize_def) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 300 | |
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 301 | lemma normalize_negative [simp]: | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 302 | "q < 0 \<Longrightarrow> normalize (p, q) = normalize (- p, - q)" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 303 | by (simp add: normalize_def Let_def dvd_div_neg dvd_neg_div) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 304 | |
| 60758 | 305 | text\<open> | 
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 306 | Decompose a fraction into normalized, i.e. coprime numerator and denominator: | 
| 60758 | 307 | \<close> | 
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 308 | |
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 309 | definition quotient_of :: "rat \<Rightarrow> int \<times> int" where | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 310 | "quotient_of x = (THE pair. x = Fract (fst pair) (snd pair) & | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 311 | snd pair > 0 & coprime (fst pair) (snd pair))" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 312 | |
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 313 | lemma quotient_of_unique: | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 314 | "\<exists>!p. r = Fract (fst p) (snd p) \<and> snd p > 0 \<and> coprime (fst p) (snd p)" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 315 | proof (cases r) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 316 | case (Fract a b) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 317 | then have "r = Fract (fst (a, b)) (snd (a, b)) \<and> snd (a, b) > 0 \<and> coprime (fst (a, b)) (snd (a, b))" by auto | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 318 | then show ?thesis proof (rule ex1I) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 319 | fix p | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 320 | obtain c d :: int where p: "p = (c, d)" by (cases p) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 321 | assume "r = Fract (fst p) (snd p) \<and> snd p > 0 \<and> coprime (fst p) (snd p)" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 322 | with p have Fract': "r = Fract c d" "d > 0" "coprime c d" by simp_all | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 323 | have "c = a \<and> d = b" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 324 | proof (cases "a = 0") | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 325 | case True with Fract Fract' show ?thesis by (simp add: eq_rat) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 326 | next | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 327 | case False | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 328 | with Fract Fract' have *: "c * b = a * d" and "c \<noteq> 0" by (auto simp add: eq_rat) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 329 | then have "c * b > 0 \<longleftrightarrow> a * d > 0" by auto | 
| 60758 | 330 | with \<open>b > 0\<close> \<open>d > 0\<close> have "a > 0 \<longleftrightarrow> c > 0" by (simp add: zero_less_mult_iff) | 
| 331 | with \<open>a \<noteq> 0\<close> \<open>c \<noteq> 0\<close> have sgn: "sgn a = sgn c" by (auto simp add: not_less) | |
| 332 | from \<open>coprime a b\<close> \<open>coprime c d\<close> have "\<bar>a\<bar> * \<bar>d\<bar> = \<bar>c\<bar> * \<bar>b\<bar> \<longleftrightarrow> \<bar>a\<bar> = \<bar>c\<bar> \<and> \<bar>d\<bar> = \<bar>b\<bar>" | |
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 333 | by (simp add: coprime_crossproduct_int) | 
| 60758 | 334 | with \<open>b > 0\<close> \<open>d > 0\<close> have "\<bar>a\<bar> * d = \<bar>c\<bar> * b \<longleftrightarrow> \<bar>a\<bar> = \<bar>c\<bar> \<and> d = b" by simp | 
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 335 | then have "a * sgn a * d = c * sgn c * b \<longleftrightarrow> a * sgn a = c * sgn c \<and> d = b" by (simp add: abs_sgn) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 336 | with sgn * show ?thesis by (auto simp add: sgn_0_0) | 
| 33805 | 337 | qed | 
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 338 | with p show "p = (a, b)" by simp | 
| 33805 | 339 | qed | 
| 340 | qed | |
| 341 | ||
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 342 | lemma quotient_of_Fract [code]: | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 343 | "quotient_of (Fract a b) = normalize (a, b)" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 344 | proof - | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 345 | have "Fract a b = Fract (fst (normalize (a, b))) (snd (normalize (a, b)))" (is ?Fract) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 346 | by (rule sym) (auto intro: normalize_eq) | 
| 52146 | 347 | moreover have "0 < snd (normalize (a, b))" (is ?denom_pos) | 
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 348 | by (cases "normalize (a, b)") (rule normalize_denom_pos, simp) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 349 | moreover have "coprime (fst (normalize (a, b))) (snd (normalize (a, b)))" (is ?coprime) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 350 | by (rule normalize_coprime) simp | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 351 | ultimately have "?Fract \<and> ?denom_pos \<and> ?coprime" by blast | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 352 | with quotient_of_unique have | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 353 | "(THE p. Fract a b = Fract (fst p) (snd p) \<and> 0 < snd p \<and> coprime (fst p) (snd p)) = normalize (a, b)" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 354 | by (rule the1_equality) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 355 | then show ?thesis by (simp add: quotient_of_def) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 356 | qed | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 357 | |
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 358 | lemma quotient_of_number [simp]: | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 359 | "quotient_of 0 = (0, 1)" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 360 | "quotient_of 1 = (1, 1)" | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 361 | "quotient_of (numeral k) = (numeral k, 1)" | 
| 54489 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54409diff
changeset | 362 | "quotient_of (- 1) = (- 1, 1)" | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54409diff
changeset | 363 | "quotient_of (- numeral k) = (- numeral k, 1)" | 
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 364 | by (simp_all add: rat_number_expand quotient_of_Fract) | 
| 33805 | 365 | |
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 366 | lemma quotient_of_eq: "quotient_of (Fract a b) = (p, q) \<Longrightarrow> Fract p q = Fract a b" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 367 | by (simp add: quotient_of_Fract normalize_eq) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 368 | |
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 369 | lemma quotient_of_denom_pos: "quotient_of r = (p, q) \<Longrightarrow> q > 0" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 370 | by (cases r) (simp add: quotient_of_Fract normalize_denom_pos) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 371 | |
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 372 | lemma quotient_of_coprime: "quotient_of r = (p, q) \<Longrightarrow> coprime p q" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 373 | by (cases r) (simp add: quotient_of_Fract normalize_coprime) | 
| 33805 | 374 | |
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 375 | lemma quotient_of_inject: | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 376 | assumes "quotient_of a = quotient_of b" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 377 | shows "a = b" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 378 | proof - | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 379 | obtain p q r s where a: "a = Fract p q" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 380 | and b: "b = Fract r s" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 381 | and "q > 0" and "s > 0" by (cases a, cases b) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 382 | with assms show ?thesis by (simp add: eq_rat quotient_of_Fract normalize_crossproduct) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 383 | qed | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 384 | |
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 385 | lemma quotient_of_inject_eq: | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 386 | "quotient_of a = quotient_of b \<longleftrightarrow> a = b" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 387 | by (auto simp add: quotient_of_inject) | 
| 33805 | 388 | |
| 27551 | 389 | |
| 60758 | 390 | subsubsection \<open>Various\<close> | 
| 27551 | 391 | |
| 392 | lemma Fract_of_int_quotient: "Fract k l = of_int k / of_int l" | |
| 27652 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 393 | by (simp add: Fract_of_int_eq [symmetric]) | 
| 27551 | 394 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 395 | lemma Fract_add_one: "n \<noteq> 0 ==> Fract (m + n) n = Fract m n + 1" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 396 | by (simp add: rat_number_expand) | 
| 27551 | 397 | |
| 50178 | 398 | lemma quotient_of_div: | 
| 399 | assumes r: "quotient_of r = (n,d)" | |
| 400 | shows "r = of_int n / of_int d" | |
| 401 | proof - | |
| 402 | from theI'[OF quotient_of_unique[of r], unfolded r[unfolded quotient_of_def]] | |
| 403 | have "r = Fract n d" by simp | |
| 404 | thus ?thesis using Fract_of_int_quotient by simp | |
| 405 | qed | |
| 27551 | 406 | |
| 60758 | 407 | subsubsection \<open>The ordered field of rational numbers\<close> | 
| 27509 | 408 | |
| 47907 | 409 | lift_definition positive :: "rat \<Rightarrow> bool" | 
| 410 | is "\<lambda>x. 0 < fst x * snd x" | |
| 411 | proof (clarsimp) | |
| 412 | fix a b c d :: int | |
| 413 | assume "b \<noteq> 0" and "d \<noteq> 0" and "a * d = c * b" | |
| 414 | hence "a * d * b * d = c * b * b * d" | |
| 415 | by simp | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
52146diff
changeset | 416 | hence "a * b * d\<^sup>2 = c * d * b\<^sup>2" | 
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
57512diff
changeset | 417 | unfolding power2_eq_square by (simp add: ac_simps) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
52146diff
changeset | 418 | hence "0 < a * b * d\<^sup>2 \<longleftrightarrow> 0 < c * d * b\<^sup>2" | 
| 47907 | 419 | by simp | 
| 420 | thus "0 < a * b \<longleftrightarrow> 0 < c * d" | |
| 60758 | 421 | using \<open>b \<noteq> 0\<close> and \<open>d \<noteq> 0\<close> | 
| 47907 | 422 | by (simp add: zero_less_mult_iff) | 
| 423 | qed | |
| 424 | ||
| 425 | lemma positive_zero: "\<not> positive 0" | |
| 426 | by transfer simp | |
| 427 | ||
| 428 | lemma positive_add: | |
| 429 | "positive x \<Longrightarrow> positive y \<Longrightarrow> positive (x + y)" | |
| 430 | apply transfer | |
| 431 | apply (simp add: zero_less_mult_iff) | |
| 432 | apply (elim disjE, simp_all add: add_pos_pos add_neg_neg | |
| 56544 | 433 | mult_pos_neg mult_neg_pos mult_neg_neg) | 
| 47907 | 434 | done | 
| 435 | ||
| 436 | lemma positive_mult: | |
| 437 | "positive x \<Longrightarrow> positive y \<Longrightarrow> positive (x * y)" | |
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
57512diff
changeset | 438 | by transfer (drule (1) mult_pos_pos, simp add: ac_simps) | 
| 47907 | 439 | |
| 440 | lemma positive_minus: | |
| 441 | "\<not> positive x \<Longrightarrow> x \<noteq> 0 \<Longrightarrow> positive (- x)" | |
| 442 | by transfer (force simp: neq_iff zero_less_mult_iff mult_less_0_iff) | |
| 443 | ||
| 59867 
58043346ca64
given up separate type classes demanding `inverse 0 = 0`
 haftmann parents: 
59667diff
changeset | 444 | instantiation rat :: linordered_field | 
| 27509 | 445 | begin | 
| 446 | ||
| 47907 | 447 | definition | 
| 448 | "x < y \<longleftrightarrow> positive (y - x)" | |
| 449 | ||
| 450 | definition | |
| 451 | "x \<le> (y::rat) \<longleftrightarrow> x < y \<or> x = y" | |
| 452 | ||
| 453 | definition | |
| 454 | "abs (a::rat) = (if a < 0 then - a else a)" | |
| 455 | ||
| 456 | definition | |
| 457 | "sgn (a::rat) = (if a = 0 then 0 else if 0 < a then 1 else - 1)" | |
| 47906 | 458 | |
| 47907 | 459 | instance proof | 
| 460 | fix a b c :: rat | |
| 461 | show "\<bar>a\<bar> = (if a < 0 then - a else a)" | |
| 462 | by (rule abs_rat_def) | |
| 463 | show "a < b \<longleftrightarrow> a \<le> b \<and> \<not> b \<le> a" | |
| 464 | unfolding less_eq_rat_def less_rat_def | |
| 465 | by (auto, drule (1) positive_add, simp_all add: positive_zero) | |
| 466 | show "a \<le> a" | |
| 467 | unfolding less_eq_rat_def by simp | |
| 468 | show "a \<le> b \<Longrightarrow> b \<le> c \<Longrightarrow> a \<le> c" | |
| 469 | unfolding less_eq_rat_def less_rat_def | |
| 470 | by (auto, drule (1) positive_add, simp add: algebra_simps) | |
| 471 | show "a \<le> b \<Longrightarrow> b \<le> a \<Longrightarrow> a = b" | |
| 472 | unfolding less_eq_rat_def less_rat_def | |
| 473 | by (auto, drule (1) positive_add, simp add: positive_zero) | |
| 474 | show "a \<le> b \<Longrightarrow> c + a \<le> c + b" | |
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
53652diff
changeset | 475 | unfolding less_eq_rat_def less_rat_def by auto | 
| 47907 | 476 | show "sgn a = (if a = 0 then 0 else if 0 < a then 1 else - 1)" | 
| 477 | by (rule sgn_rat_def) | |
| 478 | show "a \<le> b \<or> b \<le> a" | |
| 479 | unfolding less_eq_rat_def less_rat_def | |
| 480 | by (auto dest!: positive_minus) | |
| 481 | show "a < b \<Longrightarrow> 0 < c \<Longrightarrow> c * a < c * b" | |
| 482 | unfolding less_rat_def | |
| 483 | by (drule (1) positive_mult, simp add: algebra_simps) | |
| 47906 | 484 | qed | 
| 27551 | 485 | |
| 47907 | 486 | end | 
| 487 | ||
| 488 | instantiation rat :: distrib_lattice | |
| 489 | begin | |
| 490 | ||
| 491 | definition | |
| 492 | "(inf :: rat \<Rightarrow> rat \<Rightarrow> rat) = min" | |
| 27509 | 493 | |
| 494 | definition | |
| 47907 | 495 | "(sup :: rat \<Rightarrow> rat \<Rightarrow> rat) = max" | 
| 496 | ||
| 497 | instance proof | |
| 54863 
82acc20ded73
prefer more canonical names for lemmas on min/max
 haftmann parents: 
54489diff
changeset | 498 | qed (auto simp add: inf_rat_def sup_rat_def max_min_distrib2) | 
| 47907 | 499 | |
| 500 | end | |
| 501 | ||
| 502 | lemma positive_rat: "positive (Fract a b) \<longleftrightarrow> 0 < a * b" | |
| 503 | by transfer simp | |
| 27509 | 504 | |
| 27652 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 505 | lemma less_rat [simp]: | 
| 27551 | 506 | assumes "b \<noteq> 0" and "d \<noteq> 0" | 
| 507 | shows "Fract a b < Fract c d \<longleftrightarrow> (a * d) * (b * d) < (c * b) * (b * d)" | |
| 47907 | 508 | using assms unfolding less_rat_def | 
| 509 | by (simp add: positive_rat algebra_simps) | |
| 27509 | 510 | |
| 47907 | 511 | lemma le_rat [simp]: | 
| 512 | assumes "b \<noteq> 0" and "d \<noteq> 0" | |
| 513 | shows "Fract a b \<le> Fract c d \<longleftrightarrow> (a * d) * (b * d) \<le> (c * b) * (b * d)" | |
| 514 | using assms unfolding le_less by (simp add: eq_rat) | |
| 27551 | 515 | |
| 27652 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 516 | lemma abs_rat [simp, code]: "\<bar>Fract a b\<bar> = Fract \<bar>a\<bar> \<bar>b\<bar>" | 
| 35216 | 517 | by (auto simp add: abs_rat_def zabs_def Zero_rat_def not_less le_less eq_rat zero_less_mult_iff) | 
| 27551 | 518 | |
| 27652 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 519 | lemma sgn_rat [simp, code]: "sgn (Fract a b) = of_int (sgn a * sgn b)" | 
| 27551 | 520 | unfolding Fract_of_int_eq | 
| 27652 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 521 | by (auto simp: zsgn_def sgn_rat_def Zero_rat_def eq_rat) | 
| 27551 | 522 | (auto simp: rat_number_collapse not_less le_less zero_less_mult_iff) | 
| 523 | ||
| 524 | lemma Rat_induct_pos [case_names Fract, induct type: rat]: | |
| 525 | assumes step: "\<And>a b. 0 < b \<Longrightarrow> P (Fract a b)" | |
| 526 | shows "P q" | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: diff
changeset | 527 | proof (cases q) | 
| 27551 | 528 | have step': "\<And>a b. b < 0 \<Longrightarrow> P (Fract a b)" | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: diff
changeset | 529 | proof - | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: diff
changeset | 530 | fix a::int and b::int | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: diff
changeset | 531 | assume b: "b < 0" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: diff
changeset | 532 | hence "0 < -b" by simp | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: diff
changeset | 533 | hence "P (Fract (-a) (-b))" by (rule step) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: diff
changeset | 534 | thus "P (Fract a b)" by (simp add: order_less_imp_not_eq [OF b]) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: diff
changeset | 535 | qed | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: diff
changeset | 536 | case (Fract a b) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: diff
changeset | 537 | thus "P q" by (force simp add: linorder_neq_iff step step') | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: diff
changeset | 538 | qed | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: diff
changeset | 539 | |
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: diff
changeset | 540 | lemma zero_less_Fract_iff: | 
| 30095 
c6e184561159
add lemmas about comparisons of Fract a b with 0 and 1
 huffman parents: 
29940diff
changeset | 541 | "0 < b \<Longrightarrow> 0 < Fract a b \<longleftrightarrow> 0 < a" | 
| 
c6e184561159
add lemmas about comparisons of Fract a b with 0 and 1
 huffman parents: 
29940diff
changeset | 542 | by (simp add: Zero_rat_def zero_less_mult_iff) | 
| 
c6e184561159
add lemmas about comparisons of Fract a b with 0 and 1
 huffman parents: 
29940diff
changeset | 543 | |
| 
c6e184561159
add lemmas about comparisons of Fract a b with 0 and 1
 huffman parents: 
29940diff
changeset | 544 | lemma Fract_less_zero_iff: | 
| 
c6e184561159
add lemmas about comparisons of Fract a b with 0 and 1
 huffman parents: 
29940diff
changeset | 545 | "0 < b \<Longrightarrow> Fract a b < 0 \<longleftrightarrow> a < 0" | 
| 
c6e184561159
add lemmas about comparisons of Fract a b with 0 and 1
 huffman parents: 
29940diff
changeset | 546 | by (simp add: Zero_rat_def mult_less_0_iff) | 
| 
c6e184561159
add lemmas about comparisons of Fract a b with 0 and 1
 huffman parents: 
29940diff
changeset | 547 | |
| 
c6e184561159
add lemmas about comparisons of Fract a b with 0 and 1
 huffman parents: 
29940diff
changeset | 548 | lemma zero_le_Fract_iff: | 
| 
c6e184561159
add lemmas about comparisons of Fract a b with 0 and 1
 huffman parents: 
29940diff
changeset | 549 | "0 < b \<Longrightarrow> 0 \<le> Fract a b \<longleftrightarrow> 0 \<le> a" | 
| 
c6e184561159
add lemmas about comparisons of Fract a b with 0 and 1
 huffman parents: 
29940diff
changeset | 550 | by (simp add: Zero_rat_def zero_le_mult_iff) | 
| 
c6e184561159
add lemmas about comparisons of Fract a b with 0 and 1
 huffman parents: 
29940diff
changeset | 551 | |
| 
c6e184561159
add lemmas about comparisons of Fract a b with 0 and 1
 huffman parents: 
29940diff
changeset | 552 | lemma Fract_le_zero_iff: | 
| 
c6e184561159
add lemmas about comparisons of Fract a b with 0 and 1
 huffman parents: 
29940diff
changeset | 553 | "0 < b \<Longrightarrow> Fract a b \<le> 0 \<longleftrightarrow> a \<le> 0" | 
| 
c6e184561159
add lemmas about comparisons of Fract a b with 0 and 1
 huffman parents: 
29940diff
changeset | 554 | by (simp add: Zero_rat_def mult_le_0_iff) | 
| 
c6e184561159
add lemmas about comparisons of Fract a b with 0 and 1
 huffman parents: 
29940diff
changeset | 555 | |
| 
c6e184561159
add lemmas about comparisons of Fract a b with 0 and 1
 huffman parents: 
29940diff
changeset | 556 | lemma one_less_Fract_iff: | 
| 
c6e184561159
add lemmas about comparisons of Fract a b with 0 and 1
 huffman parents: 
29940diff
changeset | 557 | "0 < b \<Longrightarrow> 1 < Fract a b \<longleftrightarrow> b < a" | 
| 
c6e184561159
add lemmas about comparisons of Fract a b with 0 and 1
 huffman parents: 
29940diff
changeset | 558 | by (simp add: One_rat_def mult_less_cancel_right_disj) | 
| 
c6e184561159
add lemmas about comparisons of Fract a b with 0 and 1
 huffman parents: 
29940diff
changeset | 559 | |
| 
c6e184561159
add lemmas about comparisons of Fract a b with 0 and 1
 huffman parents: 
29940diff
changeset | 560 | lemma Fract_less_one_iff: | 
| 
c6e184561159
add lemmas about comparisons of Fract a b with 0 and 1
 huffman parents: 
29940diff
changeset | 561 | "0 < b \<Longrightarrow> Fract a b < 1 \<longleftrightarrow> a < b" | 
| 
c6e184561159
add lemmas about comparisons of Fract a b with 0 and 1
 huffman parents: 
29940diff
changeset | 562 | by (simp add: One_rat_def mult_less_cancel_right_disj) | 
| 
c6e184561159
add lemmas about comparisons of Fract a b with 0 and 1
 huffman parents: 
29940diff
changeset | 563 | |
| 
c6e184561159
add lemmas about comparisons of Fract a b with 0 and 1
 huffman parents: 
29940diff
changeset | 564 | lemma one_le_Fract_iff: | 
| 
c6e184561159
add lemmas about comparisons of Fract a b with 0 and 1
 huffman parents: 
29940diff
changeset | 565 | "0 < b \<Longrightarrow> 1 \<le> Fract a b \<longleftrightarrow> b \<le> a" | 
| 
c6e184561159
add lemmas about comparisons of Fract a b with 0 and 1
 huffman parents: 
29940diff
changeset | 566 | by (simp add: One_rat_def mult_le_cancel_right) | 
| 
c6e184561159
add lemmas about comparisons of Fract a b with 0 and 1
 huffman parents: 
29940diff
changeset | 567 | |
| 
c6e184561159
add lemmas about comparisons of Fract a b with 0 and 1
 huffman parents: 
29940diff
changeset | 568 | lemma Fract_le_one_iff: | 
| 
c6e184561159
add lemmas about comparisons of Fract a b with 0 and 1
 huffman parents: 
29940diff
changeset | 569 | "0 < b \<Longrightarrow> Fract a b \<le> 1 \<longleftrightarrow> a \<le> b" | 
| 
c6e184561159
add lemmas about comparisons of Fract a b with 0 and 1
 huffman parents: 
29940diff
changeset | 570 | by (simp add: One_rat_def mult_le_cancel_right) | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: diff
changeset | 571 | |
| 14378 
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
 paulson parents: 
14365diff
changeset | 572 | |
| 60758 | 573 | subsubsection \<open>Rationals are an Archimedean field\<close> | 
| 30097 
57df8626c23b
generalize floor/ceiling to work with real and rat; rename floor_mono2 to floor_mono
 huffman parents: 
30095diff
changeset | 574 | |
| 
57df8626c23b
generalize floor/ceiling to work with real and rat; rename floor_mono2 to floor_mono
 huffman parents: 
30095diff
changeset | 575 | lemma rat_floor_lemma: | 
| 
57df8626c23b
generalize floor/ceiling to work with real and rat; rename floor_mono2 to floor_mono
 huffman parents: 
30095diff
changeset | 576 | shows "of_int (a div b) \<le> Fract a b \<and> Fract a b < of_int (a div b + 1)" | 
| 
57df8626c23b
generalize floor/ceiling to work with real and rat; rename floor_mono2 to floor_mono
 huffman parents: 
30095diff
changeset | 577 | proof - | 
| 
57df8626c23b
generalize floor/ceiling to work with real and rat; rename floor_mono2 to floor_mono
 huffman parents: 
30095diff
changeset | 578 | have "Fract a b = of_int (a div b) + Fract (a mod b) b" | 
| 35293 
06a98796453e
remove unneeded premise from rat_floor_lemma and floor_Fract
 huffman parents: 
35216diff
changeset | 579 | by (cases "b = 0", simp, simp add: of_int_rat) | 
| 30097 
57df8626c23b
generalize floor/ceiling to work with real and rat; rename floor_mono2 to floor_mono
 huffman parents: 
30095diff
changeset | 580 | moreover have "0 \<le> Fract (a mod b) b \<and> Fract (a mod b) b < 1" | 
| 35293 
06a98796453e
remove unneeded premise from rat_floor_lemma and floor_Fract
 huffman parents: 
35216diff
changeset | 581 | unfolding Fract_of_int_quotient | 
| 56571 
f4635657d66f
added divide_nonneg_nonneg and co; made it a simp rule
 hoelzl parents: 
56544diff
changeset | 582 | by (rule linorder_cases [of b 0]) (simp_all add: divide_nonpos_neg) | 
| 30097 
57df8626c23b
generalize floor/ceiling to work with real and rat; rename floor_mono2 to floor_mono
 huffman parents: 
30095diff
changeset | 583 | ultimately show ?thesis by simp | 
| 
57df8626c23b
generalize floor/ceiling to work with real and rat; rename floor_mono2 to floor_mono
 huffman parents: 
30095diff
changeset | 584 | qed | 
| 
57df8626c23b
generalize floor/ceiling to work with real and rat; rename floor_mono2 to floor_mono
 huffman parents: 
30095diff
changeset | 585 | |
| 
57df8626c23b
generalize floor/ceiling to work with real and rat; rename floor_mono2 to floor_mono
 huffman parents: 
30095diff
changeset | 586 | instance rat :: archimedean_field | 
| 
57df8626c23b
generalize floor/ceiling to work with real and rat; rename floor_mono2 to floor_mono
 huffman parents: 
30095diff
changeset | 587 | proof | 
| 
57df8626c23b
generalize floor/ceiling to work with real and rat; rename floor_mono2 to floor_mono
 huffman parents: 
30095diff
changeset | 588 | fix r :: rat | 
| 
57df8626c23b
generalize floor/ceiling to work with real and rat; rename floor_mono2 to floor_mono
 huffman parents: 
30095diff
changeset | 589 | show "\<exists>z. r \<le> of_int z" | 
| 
57df8626c23b
generalize floor/ceiling to work with real and rat; rename floor_mono2 to floor_mono
 huffman parents: 
30095diff
changeset | 590 | proof (induct r) | 
| 
57df8626c23b
generalize floor/ceiling to work with real and rat; rename floor_mono2 to floor_mono
 huffman parents: 
30095diff
changeset | 591 | case (Fract a b) | 
| 35293 
06a98796453e
remove unneeded premise from rat_floor_lemma and floor_Fract
 huffman parents: 
35216diff
changeset | 592 | have "Fract a b \<le> of_int (a div b + 1)" | 
| 
06a98796453e
remove unneeded premise from rat_floor_lemma and floor_Fract
 huffman parents: 
35216diff
changeset | 593 | using rat_floor_lemma [of a b] by simp | 
| 30097 
57df8626c23b
generalize floor/ceiling to work with real and rat; rename floor_mono2 to floor_mono
 huffman parents: 
30095diff
changeset | 594 | then show "\<exists>z. Fract a b \<le> of_int z" .. | 
| 
57df8626c23b
generalize floor/ceiling to work with real and rat; rename floor_mono2 to floor_mono
 huffman parents: 
30095diff
changeset | 595 | qed | 
| 
57df8626c23b
generalize floor/ceiling to work with real and rat; rename floor_mono2 to floor_mono
 huffman parents: 
30095diff
changeset | 596 | qed | 
| 
57df8626c23b
generalize floor/ceiling to work with real and rat; rename floor_mono2 to floor_mono
 huffman parents: 
30095diff
changeset | 597 | |
| 43732 
6b2bdc57155b
adding a floor_ceiling type class for different instantiations of floor (changeset from Brian Huffman)
 bulwahn parents: 
42311diff
changeset | 598 | instantiation rat :: floor_ceiling | 
| 
6b2bdc57155b
adding a floor_ceiling type class for different instantiations of floor (changeset from Brian Huffman)
 bulwahn parents: 
42311diff
changeset | 599 | begin | 
| 
6b2bdc57155b
adding a floor_ceiling type class for different instantiations of floor (changeset from Brian Huffman)
 bulwahn parents: 
42311diff
changeset | 600 | |
| 
6b2bdc57155b
adding a floor_ceiling type class for different instantiations of floor (changeset from Brian Huffman)
 bulwahn parents: 
42311diff
changeset | 601 | definition [code del]: | 
| 
6b2bdc57155b
adding a floor_ceiling type class for different instantiations of floor (changeset from Brian Huffman)
 bulwahn parents: 
42311diff
changeset | 602 | "floor (x::rat) = (THE z. of_int z \<le> x \<and> x < of_int (z + 1))" | 
| 
6b2bdc57155b
adding a floor_ceiling type class for different instantiations of floor (changeset from Brian Huffman)
 bulwahn parents: 
42311diff
changeset | 603 | |
| 
6b2bdc57155b
adding a floor_ceiling type class for different instantiations of floor (changeset from Brian Huffman)
 bulwahn parents: 
42311diff
changeset | 604 | instance proof | 
| 
6b2bdc57155b
adding a floor_ceiling type class for different instantiations of floor (changeset from Brian Huffman)
 bulwahn parents: 
42311diff
changeset | 605 | fix x :: rat | 
| 
6b2bdc57155b
adding a floor_ceiling type class for different instantiations of floor (changeset from Brian Huffman)
 bulwahn parents: 
42311diff
changeset | 606 | show "of_int (floor x) \<le> x \<and> x < of_int (floor x + 1)" | 
| 
6b2bdc57155b
adding a floor_ceiling type class for different instantiations of floor (changeset from Brian Huffman)
 bulwahn parents: 
42311diff
changeset | 607 | unfolding floor_rat_def using floor_exists1 by (rule theI') | 
| 
6b2bdc57155b
adding a floor_ceiling type class for different instantiations of floor (changeset from Brian Huffman)
 bulwahn parents: 
42311diff
changeset | 608 | qed | 
| 
6b2bdc57155b
adding a floor_ceiling type class for different instantiations of floor (changeset from Brian Huffman)
 bulwahn parents: 
42311diff
changeset | 609 | |
| 
6b2bdc57155b
adding a floor_ceiling type class for different instantiations of floor (changeset from Brian Huffman)
 bulwahn parents: 
42311diff
changeset | 610 | end | 
| 
6b2bdc57155b
adding a floor_ceiling type class for different instantiations of floor (changeset from Brian Huffman)
 bulwahn parents: 
42311diff
changeset | 611 | |
| 35293 
06a98796453e
remove unneeded premise from rat_floor_lemma and floor_Fract
 huffman parents: 
35216diff
changeset | 612 | lemma floor_Fract: "floor (Fract a b) = a div b" | 
| 59984 
4f1eccec320c
conversion between division on nat/int and division in archmedean fields
 haftmann parents: 
59867diff
changeset | 613 | by (simp add: Fract_of_int_quotient floor_divide_of_int_eq) | 
| 30097 
57df8626c23b
generalize floor/ceiling to work with real and rat; rename floor_mono2 to floor_mono
 huffman parents: 
30095diff
changeset | 614 | |
| 
57df8626c23b
generalize floor/ceiling to work with real and rat; rename floor_mono2 to floor_mono
 huffman parents: 
30095diff
changeset | 615 | |
| 60758 | 616 | subsection \<open>Linear arithmetic setup\<close> | 
| 14387 
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
 paulson parents: 
14378diff
changeset | 617 | |
| 60758 | 618 | declaration \<open> | 
| 31100 | 619 |   K (Lin_Arith.add_inj_thms [@{thm of_nat_le_iff} RS iffD2, @{thm of_nat_eq_iff} RS iffD2]
 | 
| 620 | (* not needed because x < (y::nat) can be rewritten as Suc x <= y: of_nat_less_iff RS iffD2 *) | |
| 621 |   #> Lin_Arith.add_inj_thms [@{thm of_int_le_iff} RS iffD2, @{thm of_int_eq_iff} RS iffD2]
 | |
| 622 | (* not needed because x < (y::int) can be rewritten as x + 1 <= y: of_int_less_iff RS iffD2 *) | |
| 623 |   #> Lin_Arith.add_simps [@{thm neg_less_iff_less},
 | |
| 624 |       @{thm True_implies_equals},
 | |
| 55143 
04448228381d
explicit eigen-context for attributes "where", "of", and corresponding read_instantiate, instantiate_tac;
 wenzelm parents: 
54863diff
changeset | 625 |       @{thm distrib_left [where a = "numeral v" for v]},
 | 
| 
04448228381d
explicit eigen-context for attributes "where", "of", and corresponding read_instantiate, instantiate_tac;
 wenzelm parents: 
54863diff
changeset | 626 |       @{thm distrib_left [where a = "- numeral v" for v]},
 | 
| 31100 | 627 |       @{thm divide_1}, @{thm divide_zero_left},
 | 
| 628 |       @{thm times_divide_eq_right}, @{thm times_divide_eq_left},
 | |
| 629 |       @{thm minus_divide_left} RS sym, @{thm minus_divide_right} RS sym,
 | |
| 630 |       @{thm of_int_minus}, @{thm of_int_diff},
 | |
| 631 |       @{thm of_int_of_nat_eq}]
 | |
| 57136 
653e56c6c963
must not cancel common factors on both sides of (in)equations in linear arithmetic decicision procedure
 nipkow parents: 
56571diff
changeset | 632 | #> Lin_Arith.add_simprocs Numeral_Simprocs.field_divide_cancel_numeral_factor | 
| 31100 | 633 |   #> Lin_Arith.add_inj_const (@{const_name of_nat}, @{typ "nat => rat"})
 | 
| 634 |   #> Lin_Arith.add_inj_const (@{const_name of_int}, @{typ "int => rat"}))
 | |
| 60758 | 635 | \<close> | 
| 14387 
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
 paulson parents: 
14378diff
changeset | 636 | |
| 23342 | 637 | |
| 60758 | 638 | subsection \<open>Embedding from Rationals to other Fields\<close> | 
| 23342 | 639 | |
| 27551 | 640 | context field_char_0 | 
| 641 | begin | |
| 642 | ||
| 47906 | 643 | lift_definition of_rat :: "rat \<Rightarrow> 'a" | 
| 644 | is "\<lambda>x. of_int (fst x) / of_int (snd x)" | |
| 23342 | 645 | apply (clarsimp simp add: nonzero_divide_eq_eq nonzero_eq_divide_eq) | 
| 646 | apply (simp only: of_int_mult [symmetric]) | |
| 647 | done | |
| 648 | ||
| 47906 | 649 | end | 
| 650 | ||
| 27551 | 651 | lemma of_rat_rat: "b \<noteq> 0 \<Longrightarrow> of_rat (Fract a b) = of_int a / of_int b" | 
| 47906 | 652 | by transfer simp | 
| 23342 | 653 | |
| 654 | lemma of_rat_0 [simp]: "of_rat 0 = 0" | |
| 47906 | 655 | by transfer simp | 
| 23342 | 656 | |
| 657 | lemma of_rat_1 [simp]: "of_rat 1 = 1" | |
| 47906 | 658 | by transfer simp | 
| 23342 | 659 | |
| 660 | lemma of_rat_add: "of_rat (a + b) = of_rat a + of_rat b" | |
| 47906 | 661 | by transfer (simp add: add_frac_eq) | 
| 23342 | 662 | |
| 23343 | 663 | lemma of_rat_minus: "of_rat (- a) = - of_rat a" | 
| 56479 
91958d4b30f7
revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
 hoelzl parents: 
56409diff
changeset | 664 | by transfer simp | 
| 23343 | 665 | |
| 54489 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54409diff
changeset | 666 | lemma of_rat_neg_one [simp]: | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54409diff
changeset | 667 | "of_rat (- 1) = - 1" | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54409diff
changeset | 668 | by (simp add: of_rat_minus) | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54409diff
changeset | 669 | |
| 23343 | 670 | lemma of_rat_diff: "of_rat (a - b) = of_rat a - of_rat b" | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
53652diff
changeset | 671 | using of_rat_add [of a "- b"] by (simp add: of_rat_minus) | 
| 23343 | 672 | |
| 23342 | 673 | lemma of_rat_mult: "of_rat (a * b) = of_rat a * of_rat b" | 
| 47906 | 674 | apply transfer | 
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
57512diff
changeset | 675 | apply (simp add: divide_inverse nonzero_inverse_mult_distrib ac_simps) | 
| 23342 | 676 | done | 
| 677 | ||
| 59000 | 678 | lemma of_rat_setsum: "of_rat (\<Sum>a\<in>A. f a) = (\<Sum>a\<in>A. of_rat (f a))" | 
| 679 | by (induct rule: infinite_finite_induct) (auto simp: of_rat_add) | |
| 680 | ||
| 681 | lemma of_rat_setprod: "of_rat (\<Prod>a\<in>A. f a) = (\<Prod>a\<in>A. of_rat (f a))" | |
| 682 | by (induct rule: infinite_finite_induct) (auto simp: of_rat_mult) | |
| 683 | ||
| 23342 | 684 | lemma nonzero_of_rat_inverse: | 
| 685 | "a \<noteq> 0 \<Longrightarrow> of_rat (inverse a) = inverse (of_rat a)" | |
| 23343 | 686 | apply (rule inverse_unique [symmetric]) | 
| 687 | apply (simp add: of_rat_mult [symmetric]) | |
| 23342 | 688 | done | 
| 689 | ||
| 690 | lemma of_rat_inverse: | |
| 59867 
58043346ca64
given up separate type classes demanding `inverse 0 = 0`
 haftmann parents: 
59667diff
changeset | 691 |   "(of_rat (inverse a)::'a::{field_char_0, field}) =
 | 
| 23342 | 692 | inverse (of_rat a)" | 
| 693 | by (cases "a = 0", simp_all add: nonzero_of_rat_inverse) | |
| 694 | ||
| 695 | lemma nonzero_of_rat_divide: | |
| 696 | "b \<noteq> 0 \<Longrightarrow> of_rat (a / b) = of_rat a / of_rat b" | |
| 697 | by (simp add: divide_inverse of_rat_mult nonzero_of_rat_inverse) | |
| 698 | ||
| 699 | lemma of_rat_divide: | |
| 59867 
58043346ca64
given up separate type classes demanding `inverse 0 = 0`
 haftmann parents: 
59667diff
changeset | 700 |   "(of_rat (a / b)::'a::{field_char_0, field})
 | 
| 23342 | 701 | = of_rat a / of_rat b" | 
| 27652 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 702 | by (cases "b = 0") (simp_all add: nonzero_of_rat_divide) | 
| 23342 | 703 | |
| 23343 | 704 | lemma of_rat_power: | 
| 31017 | 705 | "(of_rat (a ^ n)::'a::field_char_0) = of_rat a ^ n" | 
| 30273 
ecd6f0ca62ea
declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
 huffman parents: 
30242diff
changeset | 706 | by (induct n) (simp_all add: of_rat_mult) | 
| 23343 | 707 | |
| 708 | lemma of_rat_eq_iff [simp]: "(of_rat a = of_rat b) = (a = b)" | |
| 47906 | 709 | apply transfer | 
| 23343 | 710 | apply (simp add: nonzero_divide_eq_eq nonzero_eq_divide_eq) | 
| 711 | apply (simp only: of_int_mult [symmetric] of_int_eq_iff) | |
| 712 | done | |
| 713 | ||
| 54409 | 714 | lemma of_rat_eq_0_iff [simp]: "(of_rat a = 0) = (a = 0)" | 
| 715 | using of_rat_eq_iff [of _ 0] by simp | |
| 716 | ||
| 717 | lemma zero_eq_of_rat_iff [simp]: "(0 = of_rat a) = (0 = a)" | |
| 718 | by simp | |
| 719 | ||
| 720 | lemma of_rat_eq_1_iff [simp]: "(of_rat a = 1) = (a = 1)" | |
| 721 | using of_rat_eq_iff [of _ 1] by simp | |
| 722 | ||
| 723 | lemma one_eq_of_rat_iff [simp]: "(1 = of_rat a) = (1 = a)" | |
| 724 | by simp | |
| 725 | ||
| 27652 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 726 | lemma of_rat_less: | 
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
33814diff
changeset | 727 | "(of_rat r :: 'a::linordered_field) < of_rat s \<longleftrightarrow> r < s" | 
| 27652 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 728 | proof (induct r, induct s) | 
| 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 729 | fix a b c d :: int | 
| 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 730 | assume not_zero: "b > 0" "d > 0" | 
| 56544 | 731 | then have "b * d > 0" by simp | 
| 27652 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 732 | have of_int_divide_less_eq: | 
| 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 733 | "(of_int a :: 'a) / of_int b < of_int c / of_int d | 
| 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 734 | \<longleftrightarrow> (of_int a :: 'a) * of_int d < of_int c * of_int b" | 
| 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 735 | using not_zero by (simp add: pos_less_divide_eq pos_divide_less_eq) | 
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
33814diff
changeset | 736 | show "(of_rat (Fract a b) :: 'a::linordered_field) < of_rat (Fract c d) | 
| 27652 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 737 | \<longleftrightarrow> Fract a b < Fract c d" | 
| 60758 | 738 | using not_zero \<open>b * d > 0\<close> | 
| 27652 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 739 | by (simp add: of_rat_rat of_int_divide_less_eq of_int_mult [symmetric] del: of_int_mult) | 
| 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 740 | qed | 
| 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 741 | |
| 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 742 | lemma of_rat_less_eq: | 
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
33814diff
changeset | 743 | "(of_rat r :: 'a::linordered_field) \<le> of_rat s \<longleftrightarrow> r \<le> s" | 
| 27652 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 744 | unfolding le_less by (auto simp add: of_rat_less) | 
| 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 745 | |
| 54409 | 746 | lemma of_rat_le_0_iff [simp]: "((of_rat r :: 'a::linordered_field) \<le> 0) = (r \<le> 0)" | 
| 747 | using of_rat_less_eq [of r 0, where 'a='a] by simp | |
| 748 | ||
| 749 | lemma zero_le_of_rat_iff [simp]: "(0 \<le> (of_rat r :: 'a::linordered_field)) = (0 \<le> r)" | |
| 750 | using of_rat_less_eq [of 0 r, where 'a='a] by simp | |
| 751 | ||
| 752 | lemma of_rat_le_1_iff [simp]: "((of_rat r :: 'a::linordered_field) \<le> 1) = (r \<le> 1)" | |
| 753 | using of_rat_less_eq [of r 1] by simp | |
| 754 | ||
| 755 | lemma one_le_of_rat_iff [simp]: "(1 \<le> (of_rat r :: 'a::linordered_field)) = (1 \<le> r)" | |
| 756 | using of_rat_less_eq [of 1 r] by simp | |
| 757 | ||
| 758 | lemma of_rat_less_0_iff [simp]: "((of_rat r :: 'a::linordered_field) < 0) = (r < 0)" | |
| 759 | using of_rat_less [of r 0, where 'a='a] by simp | |
| 760 | ||
| 761 | lemma zero_less_of_rat_iff [simp]: "(0 < (of_rat r :: 'a::linordered_field)) = (0 < r)" | |
| 762 | using of_rat_less [of 0 r, where 'a='a] by simp | |
| 763 | ||
| 764 | lemma of_rat_less_1_iff [simp]: "((of_rat r :: 'a::linordered_field) < 1) = (r < 1)" | |
| 765 | using of_rat_less [of r 1] by simp | |
| 766 | ||
| 767 | lemma one_less_of_rat_iff [simp]: "(1 < (of_rat r :: 'a::linordered_field)) = (1 < r)" | |
| 768 | using of_rat_less [of 1 r] by simp | |
| 23343 | 769 | |
| 27652 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 770 | lemma of_rat_eq_id [simp]: "of_rat = id" | 
| 23343 | 771 | proof | 
| 772 | fix a | |
| 773 | show "of_rat a = id a" | |
| 774 | by (induct a) | |
| 27652 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 775 | (simp add: of_rat_rat Fract_of_int_eq [symmetric]) | 
| 23343 | 776 | qed | 
| 777 | ||
| 60758 | 778 | text\<open>Collapse nested embeddings\<close> | 
| 23343 | 779 | lemma of_rat_of_nat_eq [simp]: "of_rat (of_nat n) = of_nat n" | 
| 780 | by (induct n) (simp_all add: of_rat_add) | |
| 781 | ||
| 782 | lemma of_rat_of_int_eq [simp]: "of_rat (of_int z) = of_int z" | |
| 27652 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 783 | by (cases z rule: int_diff_cases) (simp add: of_rat_diff) | 
| 23343 | 784 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 785 | lemma of_rat_numeral_eq [simp]: | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 786 | "of_rat (numeral w) = numeral w" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 787 | using of_rat_of_int_eq [of "numeral w"] by simp | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 788 | |
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 789 | lemma of_rat_neg_numeral_eq [simp]: | 
| 54489 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54409diff
changeset | 790 | "of_rat (- numeral w) = - numeral w" | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54409diff
changeset | 791 | using of_rat_of_int_eq [of "- numeral w"] by simp | 
| 23343 | 792 | |
| 23879 | 793 | lemmas zero_rat = Zero_rat_def | 
| 794 | lemmas one_rat = One_rat_def | |
| 795 | ||
| 24198 | 796 | abbreviation | 
| 797 | rat_of_nat :: "nat \<Rightarrow> rat" | |
| 798 | where | |
| 799 | "rat_of_nat \<equiv> of_nat" | |
| 800 | ||
| 801 | abbreviation | |
| 802 | rat_of_int :: "int \<Rightarrow> rat" | |
| 803 | where | |
| 804 | "rat_of_int \<equiv> of_int" | |
| 805 | ||
| 60758 | 806 | subsection \<open>The Set of Rational Numbers\<close> | 
| 24533 
fe1f93f6a15a
Added code generator setup (taken from Library/Executable_Rat.thy,
 berghofe parents: 
24506diff
changeset | 807 | |
| 28001 | 808 | context field_char_0 | 
| 809 | begin | |
| 810 | ||
| 811 | definition | |
| 812 | Rats :: "'a set" where | |
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 813 | "Rats = range of_rat" | 
| 28001 | 814 | |
| 815 | notation (xsymbols) | |
| 816 |   Rats  ("\<rat>")
 | |
| 817 | ||
| 818 | end | |
| 819 | ||
| 28010 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 820 | lemma Rats_of_rat [simp]: "of_rat r \<in> Rats" | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 821 | by (simp add: Rats_def) | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 822 | |
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 823 | lemma Rats_of_int [simp]: "of_int z \<in> Rats" | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 824 | by (subst of_rat_of_int_eq [symmetric], rule Rats_of_rat) | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 825 | |
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 826 | lemma Rats_of_nat [simp]: "of_nat n \<in> Rats" | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 827 | by (subst of_rat_of_nat_eq [symmetric], rule Rats_of_rat) | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 828 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 829 | lemma Rats_number_of [simp]: "numeral w \<in> Rats" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 830 | by (subst of_rat_numeral_eq [symmetric], rule Rats_of_rat) | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 831 | |
| 28010 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 832 | lemma Rats_0 [simp]: "0 \<in> Rats" | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 833 | apply (unfold Rats_def) | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 834 | apply (rule range_eqI) | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 835 | apply (rule of_rat_0 [symmetric]) | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 836 | done | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 837 | |
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 838 | lemma Rats_1 [simp]: "1 \<in> Rats" | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 839 | apply (unfold Rats_def) | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 840 | apply (rule range_eqI) | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 841 | apply (rule of_rat_1 [symmetric]) | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 842 | done | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 843 | |
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 844 | lemma Rats_add [simp]: "\<lbrakk>a \<in> Rats; b \<in> Rats\<rbrakk> \<Longrightarrow> a + b \<in> Rats" | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 845 | apply (auto simp add: Rats_def) | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 846 | apply (rule range_eqI) | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 847 | apply (rule of_rat_add [symmetric]) | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 848 | done | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 849 | |
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 850 | lemma Rats_minus [simp]: "a \<in> Rats \<Longrightarrow> - a \<in> Rats" | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 851 | apply (auto simp add: Rats_def) | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 852 | apply (rule range_eqI) | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 853 | apply (rule of_rat_minus [symmetric]) | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 854 | done | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 855 | |
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 856 | lemma Rats_diff [simp]: "\<lbrakk>a \<in> Rats; b \<in> Rats\<rbrakk> \<Longrightarrow> a - b \<in> Rats" | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 857 | apply (auto simp add: Rats_def) | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 858 | apply (rule range_eqI) | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 859 | apply (rule of_rat_diff [symmetric]) | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 860 | done | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 861 | |
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 862 | lemma Rats_mult [simp]: "\<lbrakk>a \<in> Rats; b \<in> Rats\<rbrakk> \<Longrightarrow> a * b \<in> Rats" | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 863 | apply (auto simp add: Rats_def) | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 864 | apply (rule range_eqI) | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 865 | apply (rule of_rat_mult [symmetric]) | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 866 | done | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 867 | |
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 868 | lemma nonzero_Rats_inverse: | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 869 | fixes a :: "'a::field_char_0" | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 870 | shows "\<lbrakk>a \<in> Rats; a \<noteq> 0\<rbrakk> \<Longrightarrow> inverse a \<in> Rats" | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 871 | apply (auto simp add: Rats_def) | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 872 | apply (rule range_eqI) | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 873 | apply (erule nonzero_of_rat_inverse [symmetric]) | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 874 | done | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 875 | |
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 876 | lemma Rats_inverse [simp]: | 
| 59867 
58043346ca64
given up separate type classes demanding `inverse 0 = 0`
 haftmann parents: 
59667diff
changeset | 877 |   fixes a :: "'a::{field_char_0, field}"
 | 
| 28010 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 878 | shows "a \<in> Rats \<Longrightarrow> inverse a \<in> Rats" | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 879 | apply (auto simp add: Rats_def) | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 880 | apply (rule range_eqI) | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 881 | apply (rule of_rat_inverse [symmetric]) | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 882 | done | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 883 | |
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 884 | lemma nonzero_Rats_divide: | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 885 | fixes a b :: "'a::field_char_0" | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 886 | shows "\<lbrakk>a \<in> Rats; b \<in> Rats; b \<noteq> 0\<rbrakk> \<Longrightarrow> a / b \<in> Rats" | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 887 | apply (auto simp add: Rats_def) | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 888 | apply (rule range_eqI) | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 889 | apply (erule nonzero_of_rat_divide [symmetric]) | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 890 | done | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 891 | |
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 892 | lemma Rats_divide [simp]: | 
| 59867 
58043346ca64
given up separate type classes demanding `inverse 0 = 0`
 haftmann parents: 
59667diff
changeset | 893 |   fixes a b :: "'a::{field_char_0, field}"
 | 
| 28010 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 894 | shows "\<lbrakk>a \<in> Rats; b \<in> Rats\<rbrakk> \<Longrightarrow> a / b \<in> Rats" | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 895 | apply (auto simp add: Rats_def) | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 896 | apply (rule range_eqI) | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 897 | apply (rule of_rat_divide [symmetric]) | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 898 | done | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 899 | |
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 900 | lemma Rats_power [simp]: | 
| 31017 | 901 | fixes a :: "'a::field_char_0" | 
| 28010 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 902 | shows "a \<in> Rats \<Longrightarrow> a ^ n \<in> Rats" | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 903 | apply (auto simp add: Rats_def) | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 904 | apply (rule range_eqI) | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 905 | apply (rule of_rat_power [symmetric]) | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 906 | done | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 907 | |
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 908 | lemma Rats_cases [cases set: Rats]: | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 909 | assumes "q \<in> \<rat>" | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 910 | obtains (of_rat) r where "q = of_rat r" | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 911 | proof - | 
| 60758 | 912 | from \<open>q \<in> \<rat>\<close> have "q \<in> range of_rat" unfolding Rats_def . | 
| 28010 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 913 | then obtain r where "q = of_rat r" .. | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 914 | then show thesis .. | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 915 | qed | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 916 | |
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 917 | lemma Rats_induct [case_names of_rat, induct set: Rats]: | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 918 | "q \<in> \<rat> \<Longrightarrow> (\<And>r. P (of_rat r)) \<Longrightarrow> P q" | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 919 | by (rule Rats_cases) auto | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 920 | |
| 57275 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
57136diff
changeset | 921 | lemma Rats_infinite: "\<not> finite \<rat>" | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
57136diff
changeset | 922 | by (auto dest!: finite_imageD simp: inj_on_def infinite_UNIV_char_0 Rats_def) | 
| 28001 | 923 | |
| 60758 | 924 | subsection \<open>Implementation of rational numbers as pairs of integers\<close> | 
| 24533 
fe1f93f6a15a
Added code generator setup (taken from Library/Executable_Rat.thy,
 berghofe parents: 
24506diff
changeset | 925 | |
| 60758 | 926 | text \<open>Formal constructor\<close> | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 927 | |
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 928 | definition Frct :: "int \<times> int \<Rightarrow> rat" where | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 929 | [simp]: "Frct p = Fract (fst p) (snd p)" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 930 | |
| 36112 
7fa17a225852
user interface for abstract datatypes is an attribute, not a command
 haftmann parents: 
35726diff
changeset | 931 | lemma [code abstype]: | 
| 
7fa17a225852
user interface for abstract datatypes is an attribute, not a command
 haftmann parents: 
35726diff
changeset | 932 | "Frct (quotient_of q) = q" | 
| 
7fa17a225852
user interface for abstract datatypes is an attribute, not a command
 haftmann parents: 
35726diff
changeset | 933 | by (cases q) (auto intro: quotient_of_eq) | 
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 934 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 935 | |
| 60758 | 936 | text \<open>Numerals\<close> | 
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 937 | |
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 938 | declare quotient_of_Fract [code abstract] | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 939 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 940 | definition of_int :: "int \<Rightarrow> rat" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 941 | where | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 942 | [code_abbrev]: "of_int = Int.of_int" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 943 | hide_const (open) of_int | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 944 | |
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 945 | lemma quotient_of_int [code abstract]: | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 946 | "quotient_of (Rat.of_int a) = (a, 1)" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 947 | by (simp add: of_int_def of_int_rat quotient_of_Fract) | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 948 | |
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 949 | lemma [code_unfold]: | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 950 | "numeral k = Rat.of_int (numeral k)" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 951 | by (simp add: Rat.of_int_def) | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 952 | |
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 953 | lemma [code_unfold]: | 
| 54489 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54409diff
changeset | 954 | "- numeral k = Rat.of_int (- numeral k)" | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 955 | by (simp add: Rat.of_int_def) | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 956 | |
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 957 | lemma Frct_code_post [code_post]: | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 958 | "Frct (0, a) = 0" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 959 | "Frct (a, 0) = 0" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 960 | "Frct (1, 1) = 1" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 961 | "Frct (numeral k, 1) = numeral k" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 962 | "Frct (1, numeral k) = 1 / numeral k" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 963 | "Frct (numeral k, numeral l) = numeral k / numeral l" | 
| 57576 
083dfad2727c
more appropriate postprocessing of rational numbers: extract sign to front of fraction
 haftmann parents: 
57514diff
changeset | 964 | "Frct (- a, b) = - Frct (a, b)" | 
| 
083dfad2727c
more appropriate postprocessing of rational numbers: extract sign to front of fraction
 haftmann parents: 
57514diff
changeset | 965 | "Frct (a, - b) = - Frct (a, b)" | 
| 
083dfad2727c
more appropriate postprocessing of rational numbers: extract sign to front of fraction
 haftmann parents: 
57514diff
changeset | 966 | "- (- Frct q) = Frct q" | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 967 | by (simp_all add: Fract_of_int_quotient) | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 968 | |
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 969 | |
| 60758 | 970 | text \<open>Operations\<close> | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 971 | |
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 972 | lemma rat_zero_code [code abstract]: | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 973 | "quotient_of 0 = (0, 1)" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 974 | by (simp add: Zero_rat_def quotient_of_Fract normalize_def) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 975 | |
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 976 | lemma rat_one_code [code abstract]: | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 977 | "quotient_of 1 = (1, 1)" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 978 | by (simp add: One_rat_def quotient_of_Fract normalize_def) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 979 | |
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 980 | lemma rat_plus_code [code abstract]: | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 981 | "quotient_of (p + q) = (let (a, c) = quotient_of p; (b, d) = quotient_of q | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 982 | in normalize (a * d + b * c, c * d))" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 983 | by (cases p, cases q) (simp add: quotient_of_Fract) | 
| 27652 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 984 | |
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 985 | lemma rat_uminus_code [code abstract]: | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 986 | "quotient_of (- p) = (let (a, b) = quotient_of p in (- a, b))" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 987 | by (cases p) (simp add: quotient_of_Fract) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 988 | |
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 989 | lemma rat_minus_code [code abstract]: | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 990 | "quotient_of (p - q) = (let (a, c) = quotient_of p; (b, d) = quotient_of q | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 991 | in normalize (a * d - b * c, c * d))" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 992 | by (cases p, cases q) (simp add: quotient_of_Fract) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 993 | |
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 994 | lemma rat_times_code [code abstract]: | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 995 | "quotient_of (p * q) = (let (a, c) = quotient_of p; (b, d) = quotient_of q | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 996 | in normalize (a * b, c * d))" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 997 | by (cases p, cases q) (simp add: quotient_of_Fract) | 
| 24533 
fe1f93f6a15a
Added code generator setup (taken from Library/Executable_Rat.thy,
 berghofe parents: 
24506diff
changeset | 998 | |
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 999 | lemma rat_inverse_code [code abstract]: | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 1000 | "quotient_of (inverse p) = (let (a, b) = quotient_of p | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 1001 | in if a = 0 then (0, 1) else (sgn a * b, \<bar>a\<bar>))" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 1002 | proof (cases p) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 1003 | case (Fract a b) then show ?thesis | 
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60429diff
changeset | 1004 | by (cases "0::int" a rule: linorder_cases) (simp_all add: quotient_of_Fract gcd.commute) | 
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 1005 | qed | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 1006 | |
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 1007 | lemma rat_divide_code [code abstract]: | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 1008 | "quotient_of (p / q) = (let (a, c) = quotient_of p; (b, d) = quotient_of q | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 1009 | in normalize (a * d, c * b))" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 1010 | by (cases p, cases q) (simp add: quotient_of_Fract) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 1011 | |
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 1012 | lemma rat_abs_code [code abstract]: | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 1013 | "quotient_of \<bar>p\<bar> = (let (a, b) = quotient_of p in (\<bar>a\<bar>, b))" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 1014 | by (cases p) (simp add: quotient_of_Fract) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 1015 | |
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 1016 | lemma rat_sgn_code [code abstract]: | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 1017 | "quotient_of (sgn p) = (sgn (fst (quotient_of p)), 1)" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 1018 | proof (cases p) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 1019 | case (Fract a b) then show ?thesis | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 1020 | by (cases "0::int" a rule: linorder_cases) (simp_all add: quotient_of_Fract) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 1021 | qed | 
| 24533 
fe1f93f6a15a
Added code generator setup (taken from Library/Executable_Rat.thy,
 berghofe parents: 
24506diff
changeset | 1022 | |
| 43733 
a6ca7b83612f
adding code equations to execute floor and ceiling on rational and real numbers
 bulwahn parents: 
43732diff
changeset | 1023 | lemma rat_floor_code [code]: | 
| 
a6ca7b83612f
adding code equations to execute floor and ceiling on rational and real numbers
 bulwahn parents: 
43732diff
changeset | 1024 | "floor p = (let (a, b) = quotient_of p in a div b)" | 
| 
a6ca7b83612f
adding code equations to execute floor and ceiling on rational and real numbers
 bulwahn parents: 
43732diff
changeset | 1025 | by (cases p) (simp add: quotient_of_Fract floor_Fract) | 
| 
a6ca7b83612f
adding code equations to execute floor and ceiling on rational and real numbers
 bulwahn parents: 
43732diff
changeset | 1026 | |
| 38857 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 haftmann parents: 
38287diff
changeset | 1027 | instantiation rat :: equal | 
| 26513 | 1028 | begin | 
| 1029 | ||
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 1030 | definition [code]: | 
| 38857 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 haftmann parents: 
38287diff
changeset | 1031 | "HOL.equal a b \<longleftrightarrow> quotient_of a = quotient_of b" | 
| 26513 | 1032 | |
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 1033 | instance proof | 
| 38857 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 haftmann parents: 
38287diff
changeset | 1034 | qed (simp add: equal_rat_def quotient_of_inject_eq) | 
| 26513 | 1035 | |
| 28351 | 1036 | lemma rat_eq_refl [code nbe]: | 
| 38857 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 haftmann parents: 
38287diff
changeset | 1037 | "HOL.equal (r::rat) r \<longleftrightarrow> True" | 
| 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 haftmann parents: 
38287diff
changeset | 1038 | by (rule equal_refl) | 
| 28351 | 1039 | |
| 26513 | 1040 | end | 
| 24533 
fe1f93f6a15a
Added code generator setup (taken from Library/Executable_Rat.thy,
 berghofe parents: 
24506diff
changeset | 1041 | |
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 1042 | lemma rat_less_eq_code [code]: | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 1043 | "p \<le> q \<longleftrightarrow> (let (a, c) = quotient_of p; (b, d) = quotient_of q in a * d \<le> c * b)" | 
| 35726 | 1044 | by (cases p, cases q) (simp add: quotient_of_Fract mult.commute) | 
| 24533 
fe1f93f6a15a
Added code generator setup (taken from Library/Executable_Rat.thy,
 berghofe parents: 
24506diff
changeset | 1045 | |
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 1046 | lemma rat_less_code [code]: | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 1047 | "p < q \<longleftrightarrow> (let (a, c) = quotient_of p; (b, d) = quotient_of q in a * d < c * b)" | 
| 35726 | 1048 | by (cases p, cases q) (simp add: quotient_of_Fract mult.commute) | 
| 24533 
fe1f93f6a15a
Added code generator setup (taken from Library/Executable_Rat.thy,
 berghofe parents: 
24506diff
changeset | 1049 | |
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 1050 | lemma [code]: | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 1051 | "of_rat p = (let (a, b) = quotient_of p in of_int a / of_int b)" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 1052 | by (cases p) (simp add: quotient_of_Fract of_rat_rat) | 
| 27652 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 1053 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 1054 | |
| 60758 | 1055 | text \<open>Quickcheck\<close> | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 1056 | |
| 31203 
5c8fb4fd67e0
moved Code_Index, Random and Quickcheck before Main
 haftmann parents: 
31100diff
changeset | 1057 | definition (in term_syntax) | 
| 32657 | 1058 | valterm_fract :: "int \<times> (unit \<Rightarrow> Code_Evaluation.term) \<Rightarrow> int \<times> (unit \<Rightarrow> Code_Evaluation.term) \<Rightarrow> rat \<times> (unit \<Rightarrow> Code_Evaluation.term)" where | 
| 1059 |   [code_unfold]: "valterm_fract k l = Code_Evaluation.valtermify Fract {\<cdot>} k {\<cdot>} l"
 | |
| 31203 
5c8fb4fd67e0
moved Code_Index, Random and Quickcheck before Main
 haftmann parents: 
31100diff
changeset | 1060 | |
| 37751 | 1061 | notation fcomp (infixl "\<circ>>" 60) | 
| 1062 | notation scomp (infixl "\<circ>\<rightarrow>" 60) | |
| 31203 
5c8fb4fd67e0
moved Code_Index, Random and Quickcheck before Main
 haftmann parents: 
31100diff
changeset | 1063 | |
| 
5c8fb4fd67e0
moved Code_Index, Random and Quickcheck before Main
 haftmann parents: 
31100diff
changeset | 1064 | instantiation rat :: random | 
| 
5c8fb4fd67e0
moved Code_Index, Random and Quickcheck before Main
 haftmann parents: 
31100diff
changeset | 1065 | begin | 
| 
5c8fb4fd67e0
moved Code_Index, Random and Quickcheck before Main
 haftmann parents: 
31100diff
changeset | 1066 | |
| 
5c8fb4fd67e0
moved Code_Index, Random and Quickcheck before Main
 haftmann parents: 
31100diff
changeset | 1067 | definition | 
| 51126 
df86080de4cb
reform of predicate compiler / quickcheck theories:
 haftmann parents: 
50178diff
changeset | 1068 | "Quickcheck_Random.random i = Quickcheck_Random.random i \<circ>\<rightarrow> (\<lambda>num. Random.range i \<circ>\<rightarrow> (\<lambda>denom. Pair ( | 
| 51143 
0a2371e7ced3
two target language numeral types: integer and natural, as replacement for code_numeral;
 haftmann parents: 
51126diff
changeset | 1069 | let j = int_of_integer (integer_of_natural (denom + 1)) | 
| 32657 | 1070 | in valterm_fract num (j, \<lambda>u. Code_Evaluation.term_of j))))" | 
| 31203 
5c8fb4fd67e0
moved Code_Index, Random and Quickcheck before Main
 haftmann parents: 
31100diff
changeset | 1071 | |
| 
5c8fb4fd67e0
moved Code_Index, Random and Quickcheck before Main
 haftmann parents: 
31100diff
changeset | 1072 | instance .. | 
| 
5c8fb4fd67e0
moved Code_Index, Random and Quickcheck before Main
 haftmann parents: 
31100diff
changeset | 1073 | |
| 
5c8fb4fd67e0
moved Code_Index, Random and Quickcheck before Main
 haftmann parents: 
31100diff
changeset | 1074 | end | 
| 
5c8fb4fd67e0
moved Code_Index, Random and Quickcheck before Main
 haftmann parents: 
31100diff
changeset | 1075 | |
| 37751 | 1076 | no_notation fcomp (infixl "\<circ>>" 60) | 
| 1077 | no_notation scomp (infixl "\<circ>\<rightarrow>" 60) | |
| 31203 
5c8fb4fd67e0
moved Code_Index, Random and Quickcheck before Main
 haftmann parents: 
31100diff
changeset | 1078 | |
| 41920 
d4fb7a418152
moving exhaustive_generators.ML to Quickcheck directory
 bulwahn parents: 
41792diff
changeset | 1079 | instantiation rat :: exhaustive | 
| 41231 
2e901158675e
adding exhaustive tester instances for numeric types: code_numeral, nat, rat and real
 bulwahn parents: 
40819diff
changeset | 1080 | begin | 
| 
2e901158675e
adding exhaustive tester instances for numeric types: code_numeral, nat, rat and real
 bulwahn parents: 
40819diff
changeset | 1081 | |
| 
2e901158675e
adding exhaustive tester instances for numeric types: code_numeral, nat, rat and real
 bulwahn parents: 
40819diff
changeset | 1082 | definition | 
| 51143 
0a2371e7ced3
two target language numeral types: integer and natural, as replacement for code_numeral;
 haftmann parents: 
51126diff
changeset | 1083 | "exhaustive_rat f d = Quickcheck_Exhaustive.exhaustive | 
| 
0a2371e7ced3
two target language numeral types: integer and natural, as replacement for code_numeral;
 haftmann parents: 
51126diff
changeset | 1084 | (\<lambda>l. Quickcheck_Exhaustive.exhaustive (\<lambda>k. f (Fract k (int_of_integer (integer_of_natural l) + 1))) d) d" | 
| 42311 
eb32a8474a57
rational and real instances for new compilation scheme for exhaustive quickcheck
 bulwahn parents: 
41920diff
changeset | 1085 | |
| 
eb32a8474a57
rational and real instances for new compilation scheme for exhaustive quickcheck
 bulwahn parents: 
41920diff
changeset | 1086 | instance .. | 
| 
eb32a8474a57
rational and real instances for new compilation scheme for exhaustive quickcheck
 bulwahn parents: 
41920diff
changeset | 1087 | |
| 
eb32a8474a57
rational and real instances for new compilation scheme for exhaustive quickcheck
 bulwahn parents: 
41920diff
changeset | 1088 | end | 
| 
eb32a8474a57
rational and real instances for new compilation scheme for exhaustive quickcheck
 bulwahn parents: 
41920diff
changeset | 1089 | |
| 
eb32a8474a57
rational and real instances for new compilation scheme for exhaustive quickcheck
 bulwahn parents: 
41920diff
changeset | 1090 | instantiation rat :: full_exhaustive | 
| 
eb32a8474a57
rational and real instances for new compilation scheme for exhaustive quickcheck
 bulwahn parents: 
41920diff
changeset | 1091 | begin | 
| 
eb32a8474a57
rational and real instances for new compilation scheme for exhaustive quickcheck
 bulwahn parents: 
41920diff
changeset | 1092 | |
| 
eb32a8474a57
rational and real instances for new compilation scheme for exhaustive quickcheck
 bulwahn parents: 
41920diff
changeset | 1093 | definition | 
| 45818 
53a697f5454a
hiding constants and facts in the Quickcheck_Exhaustive and Quickcheck_Narrowing theory;
 bulwahn parents: 
45694diff
changeset | 1094 | "full_exhaustive_rat f d = Quickcheck_Exhaustive.full_exhaustive (%(l, _). Quickcheck_Exhaustive.full_exhaustive (%k. | 
| 51143 
0a2371e7ced3
two target language numeral types: integer and natural, as replacement for code_numeral;
 haftmann parents: 
51126diff
changeset | 1095 | f (let j = int_of_integer (integer_of_natural l) + 1 | 
| 45507 
6975db7fd6f0
improved generators for rational numbers to generate negative numbers;
 bulwahn parents: 
45478diff
changeset | 1096 | in valterm_fract k (j, %_. Code_Evaluation.term_of j))) d) d" | 
| 41231 
2e901158675e
adding exhaustive tester instances for numeric types: code_numeral, nat, rat and real
 bulwahn parents: 
40819diff
changeset | 1097 | |
| 
2e901158675e
adding exhaustive tester instances for numeric types: code_numeral, nat, rat and real
 bulwahn parents: 
40819diff
changeset | 1098 | instance .. | 
| 
2e901158675e
adding exhaustive tester instances for numeric types: code_numeral, nat, rat and real
 bulwahn parents: 
40819diff
changeset | 1099 | |
| 
2e901158675e
adding exhaustive tester instances for numeric types: code_numeral, nat, rat and real
 bulwahn parents: 
40819diff
changeset | 1100 | end | 
| 
2e901158675e
adding exhaustive tester instances for numeric types: code_numeral, nat, rat and real
 bulwahn parents: 
40819diff
changeset | 1101 | |
| 43889 
90d24cafb05d
adding code equations for partial_term_of for rational numbers
 bulwahn parents: 
43887diff
changeset | 1102 | instantiation rat :: partial_term_of | 
| 
90d24cafb05d
adding code equations for partial_term_of for rational numbers
 bulwahn parents: 
43887diff
changeset | 1103 | begin | 
| 
90d24cafb05d
adding code equations for partial_term_of for rational numbers
 bulwahn parents: 
43887diff
changeset | 1104 | |
| 
90d24cafb05d
adding code equations for partial_term_of for rational numbers
 bulwahn parents: 
43887diff
changeset | 1105 | instance .. | 
| 
90d24cafb05d
adding code equations for partial_term_of for rational numbers
 bulwahn parents: 
43887diff
changeset | 1106 | |
| 
90d24cafb05d
adding code equations for partial_term_of for rational numbers
 bulwahn parents: 
43887diff
changeset | 1107 | end | 
| 
90d24cafb05d
adding code equations for partial_term_of for rational numbers
 bulwahn parents: 
43887diff
changeset | 1108 | |
| 
90d24cafb05d
adding code equations for partial_term_of for rational numbers
 bulwahn parents: 
43887diff
changeset | 1109 | lemma [code]: | 
| 46758 
4106258260b3
choosing longer constant names in Quickcheck_Narrowing to reduce the chances of name clashes in Quickcheck-Narrowing
 bulwahn parents: 
45818diff
changeset | 1110 | "partial_term_of (ty :: rat itself) (Quickcheck_Narrowing.Narrowing_variable p tt) == Code_Evaluation.Free (STR ''_'') (Typerep.Typerep (STR ''Rat.rat'') [])" | 
| 
4106258260b3
choosing longer constant names in Quickcheck_Narrowing to reduce the chances of name clashes in Quickcheck-Narrowing
 bulwahn parents: 
45818diff
changeset | 1111 | "partial_term_of (ty :: rat itself) (Quickcheck_Narrowing.Narrowing_constructor 0 [l, k]) == | 
| 45507 
6975db7fd6f0
improved generators for rational numbers to generate negative numbers;
 bulwahn parents: 
45478diff
changeset | 1112 | Code_Evaluation.App (Code_Evaluation.Const (STR ''Rat.Frct'') | 
| 
6975db7fd6f0
improved generators for rational numbers to generate negative numbers;
 bulwahn parents: 
45478diff
changeset | 1113 | (Typerep.Typerep (STR ''fun'') [Typerep.Typerep (STR ''Product_Type.prod'') [Typerep.Typerep (STR ''Int.int'') [], Typerep.Typerep (STR ''Int.int'') []], | 
| 
6975db7fd6f0
improved generators for rational numbers to generate negative numbers;
 bulwahn parents: 
45478diff
changeset | 1114 | Typerep.Typerep (STR ''Rat.rat'') []])) (Code_Evaluation.App (Code_Evaluation.App (Code_Evaluation.Const (STR ''Product_Type.Pair'') (Typerep.Typerep (STR ''fun'') [Typerep.Typerep (STR ''Int.int'') [], Typerep.Typerep (STR ''fun'') [Typerep.Typerep (STR ''Int.int'') [], Typerep.Typerep (STR ''Product_Type.prod'') [Typerep.Typerep (STR ''Int.int'') [], Typerep.Typerep (STR ''Int.int'') []]]])) (partial_term_of (TYPE(int)) l)) (partial_term_of (TYPE(int)) k))" | 
| 43889 
90d24cafb05d
adding code equations for partial_term_of for rational numbers
 bulwahn parents: 
43887diff
changeset | 1115 | by (rule partial_term_of_anything)+ | 
| 
90d24cafb05d
adding code equations for partial_term_of for rational numbers
 bulwahn parents: 
43887diff
changeset | 1116 | |
| 43887 | 1117 | instantiation rat :: narrowing | 
| 1118 | begin | |
| 1119 | ||
| 1120 | definition | |
| 45507 
6975db7fd6f0
improved generators for rational numbers to generate negative numbers;
 bulwahn parents: 
45478diff
changeset | 1121 | "narrowing = Quickcheck_Narrowing.apply (Quickcheck_Narrowing.apply | 
| 
6975db7fd6f0
improved generators for rational numbers to generate negative numbers;
 bulwahn parents: 
45478diff
changeset | 1122 | (Quickcheck_Narrowing.cons (%nom denom. Fract nom denom)) narrowing) narrowing" | 
| 43887 | 1123 | |
| 1124 | instance .. | |
| 1125 | ||
| 1126 | end | |
| 1127 | ||
| 1128 | ||
| 60758 | 1129 | subsection \<open>Setup for Nitpick\<close> | 
| 24533 
fe1f93f6a15a
Added code generator setup (taken from Library/Executable_Rat.thy,
 berghofe parents: 
24506diff
changeset | 1130 | |
| 60758 | 1131 | declaration \<open> | 
| 38287 | 1132 |   Nitpick_HOL.register_frac_type @{type_name rat}
 | 
| 33209 | 1133 |    [(@{const_name zero_rat_inst.zero_rat}, @{const_name Nitpick.zero_frac}),
 | 
| 1134 |     (@{const_name one_rat_inst.one_rat}, @{const_name Nitpick.one_frac}),
 | |
| 1135 |     (@{const_name plus_rat_inst.plus_rat}, @{const_name Nitpick.plus_frac}),
 | |
| 1136 |     (@{const_name times_rat_inst.times_rat}, @{const_name Nitpick.times_frac}),
 | |
| 1137 |     (@{const_name uminus_rat_inst.uminus_rat}, @{const_name Nitpick.uminus_frac}),
 | |
| 1138 |     (@{const_name inverse_rat_inst.inverse_rat}, @{const_name Nitpick.inverse_frac}),
 | |
| 37397 
18000f9d783e
adjust Nitpick's handling of "<" on "rat"s and "reals"
 blanchet parents: 
37143diff
changeset | 1139 |     (@{const_name ord_rat_inst.less_rat}, @{const_name Nitpick.less_frac}),
 | 
| 33209 | 1140 |     (@{const_name ord_rat_inst.less_eq_rat}, @{const_name Nitpick.less_eq_frac}),
 | 
| 45478 | 1141 |     (@{const_name field_char_0_class.of_rat}, @{const_name Nitpick.of_frac})]
 | 
| 60758 | 1142 | \<close> | 
| 33197 
de6285ebcc05
continuation of Nitpick's integration into Isabelle;
 blanchet parents: 
32657diff
changeset | 1143 | |
| 41792 
ff3cb0c418b7
renamed "nitpick\_def" to "nitpick_unfold" to reflect its new semantics
 blanchet parents: 
41231diff
changeset | 1144 | lemmas [nitpick_unfold] = inverse_rat_inst.inverse_rat | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 1145 | one_rat_inst.one_rat ord_rat_inst.less_rat | 
| 37397 
18000f9d783e
adjust Nitpick's handling of "<" on "rat"s and "reals"
 blanchet parents: 
37143diff
changeset | 1146 | ord_rat_inst.less_eq_rat plus_rat_inst.plus_rat times_rat_inst.times_rat | 
| 
18000f9d783e
adjust Nitpick's handling of "<" on "rat"s and "reals"
 blanchet parents: 
37143diff
changeset | 1147 | uminus_rat_inst.uminus_rat zero_rat_inst.zero_rat | 
| 33197 
de6285ebcc05
continuation of Nitpick's integration into Isabelle;
 blanchet parents: 
32657diff
changeset | 1148 | |
| 52146 | 1149 | |
| 60758 | 1150 | subsection \<open>Float syntax\<close> | 
| 35343 | 1151 | |
| 1152 | syntax "_Float" :: "float_const \<Rightarrow> 'a"    ("_")
 | |
| 1153 | ||
| 60758 | 1154 | parse_translation \<open> | 
| 52146 | 1155 | let | 
| 1156 | fun mk_frac str = | |
| 1157 | let | |
| 1158 |         val {mant = i, exp = n} = Lexicon.read_float str;
 | |
| 1159 |         val exp = Syntax.const @{const_syntax Power.power};
 | |
| 58410 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
57576diff
changeset | 1160 | val ten = Numeral.mk_number_syntax 10; | 
| 60352 
d46de31a50c4
separate class for division operator, with particular syntax added in more specific classes
 haftmann parents: 
59984diff
changeset | 1161 | val exp10 = if n = 1 then ten else exp $ ten $ Numeral.mk_number_syntax n; | 
| 
d46de31a50c4
separate class for division operator, with particular syntax added in more specific classes
 haftmann parents: 
59984diff
changeset | 1162 |       in Syntax.const @{const_syntax Fields.inverse_divide} $ Numeral.mk_number_syntax i $ exp10 end;
 | 
| 52146 | 1163 | |
| 1164 |     fun float_tr [(c as Const (@{syntax_const "_constrain"}, _)) $ t $ u] = c $ float_tr [t] $ u
 | |
| 1165 | | float_tr [t as Const (str, _)] = mk_frac str | |
| 1166 |       | float_tr ts = raise TERM ("float_tr", ts);
 | |
| 1167 |   in [(@{syntax_const "_Float"}, K float_tr)] end
 | |
| 60758 | 1168 | \<close> | 
| 35343 | 1169 | |
| 60758 | 1170 | text\<open>Test:\<close> | 
| 35343 | 1171 | lemma "123.456 = -111.111 + 200 + 30 + 4 + 5/10 + 6/100 + (7/1000::rat)" | 
| 52146 | 1172 | by simp | 
| 35343 | 1173 | |
| 55974 
c835a9379026
more official const syntax: avoid educated guessing by Syntax_Phases.decode_term;
 wenzelm parents: 
55143diff
changeset | 1174 | |
| 60758 | 1175 | subsection \<open>Hiding implementation details\<close> | 
| 37143 | 1176 | |
| 47907 | 1177 | hide_const (open) normalize positive | 
| 37143 | 1178 | |
| 53652 
18fbca265e2e
use lifting_forget for deregistering numeric types as a quotient type
 kuncar parents: 
53374diff
changeset | 1179 | lifting_update rat.lifting | 
| 
18fbca265e2e
use lifting_forget for deregistering numeric types as a quotient type
 kuncar parents: 
53374diff
changeset | 1180 | lifting_forget rat.lifting | 
| 47906 | 1181 | |
| 29880 
3dee8ff45d3d
move countability proof from Rational to Countable; add instance rat :: countable
 huffman parents: 
29667diff
changeset | 1182 | end | 
| 51143 
0a2371e7ced3
two target language numeral types: integer and natural, as replacement for code_numeral;
 haftmann parents: 
51126diff
changeset | 1183 |