src/HOL/List.thy
author nipkow
Sun Jun 03 12:58:28 2007 +0200 (2007-06-03)
changeset 23209 098a23702aba
parent 23192 ec73b9707d48
child 23212 82881b1ae9c6
permissions -rw-r--r--
*** empty log message ***
wenzelm@13462
     1
(*  Title:      HOL/List.thy
wenzelm@13462
     2
    ID:         $Id$
wenzelm@13462
     3
    Author:     Tobias Nipkow
clasohm@923
     4
*)
clasohm@923
     5
wenzelm@13114
     6
header {* The datatype of finite lists *}
wenzelm@13122
     7
nipkow@15131
     8
theory List
haftmann@22844
     9
imports PreList
wenzelm@21754
    10
uses "Tools/string_syntax.ML"
nipkow@15131
    11
begin
clasohm@923
    12
wenzelm@13142
    13
datatype 'a list =
wenzelm@13366
    14
    Nil    ("[]")
wenzelm@13366
    15
  | Cons 'a  "'a list"    (infixr "#" 65)
clasohm@923
    16
nipkow@15392
    17
subsection{*Basic list processing functions*}
nipkow@15302
    18
clasohm@923
    19
consts
haftmann@23029
    20
  append :: "'a list => 'a list => 'a list" (infixr "@" 65)
wenzelm@13366
    21
  filter:: "('a => bool) => 'a list => 'a list"
wenzelm@13366
    22
  concat:: "'a list list => 'a list"
wenzelm@13366
    23
  foldl :: "('b => 'a => 'b) => 'b => 'a list => 'b"
wenzelm@13366
    24
  foldr :: "('a => 'b => 'b) => 'a list => 'b => 'b"
wenzelm@13366
    25
  hd:: "'a list => 'a"
wenzelm@13366
    26
  tl:: "'a list => 'a list"
wenzelm@13366
    27
  last:: "'a list => 'a"
wenzelm@13366
    28
  butlast :: "'a list => 'a list"
wenzelm@13366
    29
  set :: "'a list => 'a set"
wenzelm@13366
    30
  map :: "('a=>'b) => ('a list => 'b list)"
nipkow@23096
    31
  listsum ::  "'a list => 'a::monoid_add"
wenzelm@13366
    32
  nth :: "'a list => nat => 'a"    (infixl "!" 100)
wenzelm@13366
    33
  list_update :: "'a list => nat => 'a => 'a list"
wenzelm@13366
    34
  take:: "nat => 'a list => 'a list"
wenzelm@13366
    35
  drop:: "nat => 'a list => 'a list"
wenzelm@13366
    36
  takeWhile :: "('a => bool) => 'a list => 'a list"
wenzelm@13366
    37
  dropWhile :: "('a => bool) => 'a list => 'a list"
wenzelm@13366
    38
  rev :: "'a list => 'a list"
wenzelm@13366
    39
  zip :: "'a list => 'b list => ('a * 'b) list"
nipkow@15425
    40
  upt :: "nat => nat => nat list" ("(1[_..</_'])")
wenzelm@13366
    41
  remdups :: "'a list => 'a list"
nipkow@15110
    42
  remove1 :: "'a => 'a list => 'a list"
wenzelm@13366
    43
  "distinct":: "'a list => bool"
wenzelm@13366
    44
  replicate :: "nat => 'a => 'a list"
nipkow@19390
    45
  splice :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list"
nipkow@22830
    46
  allpairs :: "('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> 'a list \<Rightarrow> 'b list \<Rightarrow> 'c list"
nipkow@15302
    47
wenzelm@19363
    48
abbreviation
wenzelm@21404
    49
  upto:: "nat => nat => nat list"  ("(1[_../_])") where
wenzelm@19363
    50
  "[i..j] == [i..<(Suc j)]"
wenzelm@19302
    51
clasohm@923
    52
nipkow@13146
    53
nonterminals lupdbinds lupdbind
nipkow@5077
    54
clasohm@923
    55
syntax
wenzelm@13366
    56
  -- {* list Enumeration *}
wenzelm@13366
    57
  "@list" :: "args => 'a list"    ("[(_)]")
clasohm@923
    58
wenzelm@13366
    59
  -- {* Special syntax for filter *}
wenzelm@13366
    60
  "@filter" :: "[pttrn, 'a list, bool] => 'a list"    ("(1[_:_./ _])")
clasohm@923
    61
wenzelm@13366
    62
  -- {* list update *}
wenzelm@13366
    63
  "_lupdbind":: "['a, 'a] => lupdbind"    ("(2_ :=/ _)")
wenzelm@13366
    64
  "" :: "lupdbind => lupdbinds"    ("_")
wenzelm@13366
    65
  "_lupdbinds" :: "[lupdbind, lupdbinds] => lupdbinds"    ("_,/ _")
wenzelm@13366
    66
  "_LUpdate" :: "['a, lupdbinds] => 'a"    ("_/[(_)]" [900,0] 900)
nipkow@5077
    67
clasohm@923
    68
translations
wenzelm@13366
    69
  "[x, xs]" == "x#[xs]"
wenzelm@13366
    70
  "[x]" == "x#[]"
wenzelm@13366
    71
  "[x:xs . P]"== "filter (%x. P) xs"
clasohm@923
    72
wenzelm@13366
    73
  "_LUpdate xs (_lupdbinds b bs)"== "_LUpdate (_LUpdate xs b) bs"
wenzelm@13366
    74
  "xs[i:=x]" == "list_update xs i x"
nipkow@5077
    75
nipkow@5427
    76
wenzelm@12114
    77
syntax (xsymbols)
wenzelm@13366
    78
  "@filter" :: "[pttrn, 'a list, bool] => 'a list"("(1[_\<in>_ ./ _])")
kleing@14565
    79
syntax (HTML output)
kleing@14565
    80
  "@filter" :: "[pttrn, 'a list, bool] => 'a list"("(1[_\<in>_ ./ _])")
paulson@3342
    81
paulson@3342
    82
wenzelm@13142
    83
text {*
wenzelm@14589
    84
  Function @{text size} is overloaded for all datatypes. Users may
wenzelm@13366
    85
  refer to the list version as @{text length}. *}
wenzelm@13142
    86
wenzelm@19363
    87
abbreviation
wenzelm@21404
    88
  length :: "'a list => nat" where
wenzelm@19363
    89
  "length == size"
nipkow@15302
    90
berghofe@5183
    91
primrec
paulson@15307
    92
  "hd(x#xs) = x"
paulson@15307
    93
berghofe@5183
    94
primrec
paulson@15307
    95
  "tl([]) = []"
paulson@15307
    96
  "tl(x#xs) = xs"
paulson@15307
    97
berghofe@5183
    98
primrec
paulson@15307
    99
  "last(x#xs) = (if xs=[] then x else last xs)"
paulson@15307
   100
berghofe@5183
   101
primrec
paulson@15307
   102
  "butlast []= []"
paulson@15307
   103
  "butlast(x#xs) = (if xs=[] then [] else x#butlast xs)"
paulson@15307
   104
berghofe@5183
   105
primrec
paulson@15307
   106
  "set [] = {}"
paulson@15307
   107
  "set (x#xs) = insert x (set xs)"
paulson@15307
   108
berghofe@5183
   109
primrec
paulson@15307
   110
  "map f [] = []"
paulson@15307
   111
  "map f (x#xs) = f(x)#map f xs"
paulson@15307
   112
berghofe@5183
   113
primrec
wenzelm@21754
   114
  append_Nil: "[]@ys = ys"
paulson@15307
   115
  append_Cons: "(x#xs)@ys = x#(xs@ys)"
paulson@15307
   116
berghofe@5183
   117
primrec
paulson@15307
   118
  "rev([]) = []"
paulson@15307
   119
  "rev(x#xs) = rev(xs) @ [x]"
paulson@15307
   120
berghofe@5183
   121
primrec
paulson@15307
   122
  "filter P [] = []"
paulson@15307
   123
  "filter P (x#xs) = (if P x then x#filter P xs else filter P xs)"
paulson@15307
   124
berghofe@5183
   125
primrec
paulson@15307
   126
  foldl_Nil:"foldl f a [] = a"
paulson@15307
   127
  foldl_Cons: "foldl f a (x#xs) = foldl f (f a x) xs"
paulson@15307
   128
paulson@8000
   129
primrec
paulson@15307
   130
  "foldr f [] a = a"
paulson@15307
   131
  "foldr f (x#xs) a = f x (foldr f xs a)"
paulson@15307
   132
berghofe@5183
   133
primrec
paulson@15307
   134
  "concat([]) = []"
paulson@15307
   135
  "concat(x#xs) = x @ concat(xs)"
paulson@15307
   136
berghofe@5183
   137
primrec
nipkow@23096
   138
"listsum [] = 0"
nipkow@23096
   139
"listsum (x # xs) = x + listsum xs"
nipkow@23096
   140
nipkow@23096
   141
primrec
paulson@15307
   142
  drop_Nil:"drop n [] = []"
paulson@15307
   143
  drop_Cons: "drop n (x#xs) = (case n of 0 => x#xs | Suc(m) => drop m xs)"
paulson@15307
   144
  -- {*Warning: simpset does not contain this definition, but separate
paulson@15307
   145
       theorems for @{text "n = 0"} and @{text "n = Suc k"} *}
paulson@15307
   146
berghofe@5183
   147
primrec
paulson@15307
   148
  take_Nil:"take n [] = []"
paulson@15307
   149
  take_Cons: "take n (x#xs) = (case n of 0 => [] | Suc(m) => x # take m xs)"
paulson@15307
   150
  -- {*Warning: simpset does not contain this definition, but separate
paulson@15307
   151
       theorems for @{text "n = 0"} and @{text "n = Suc k"} *}
paulson@15307
   152
wenzelm@13142
   153
primrec
paulson@15307
   154
  nth_Cons:"(x#xs)!n = (case n of 0 => x | (Suc k) => xs!k)"
paulson@15307
   155
  -- {*Warning: simpset does not contain this definition, but separate
paulson@15307
   156
       theorems for @{text "n = 0"} and @{text "n = Suc k"} *}
paulson@15307
   157
berghofe@5183
   158
primrec
paulson@15307
   159
  "[][i:=v] = []"
paulson@15307
   160
  "(x#xs)[i:=v] = (case i of 0 => v # xs | Suc j => x # xs[j:=v])"
paulson@15307
   161
paulson@15307
   162
primrec
paulson@15307
   163
  "takeWhile P [] = []"
paulson@15307
   164
  "takeWhile P (x#xs) = (if P x then x#takeWhile P xs else [])"
paulson@15307
   165
berghofe@5183
   166
primrec
paulson@15307
   167
  "dropWhile P [] = []"
paulson@15307
   168
  "dropWhile P (x#xs) = (if P x then dropWhile P xs else x#xs)"
paulson@15307
   169
berghofe@5183
   170
primrec
paulson@15307
   171
  "zip xs [] = []"
paulson@15307
   172
  zip_Cons: "zip xs (y#ys) = (case xs of [] => [] | z#zs => (z,y)#zip zs ys)"
paulson@15307
   173
  -- {*Warning: simpset does not contain this definition, but separate
paulson@15307
   174
       theorems for @{text "xs = []"} and @{text "xs = z # zs"} *}
paulson@15307
   175
nipkow@5427
   176
primrec
nipkow@15425
   177
  upt_0: "[i..<0] = []"
nipkow@15425
   178
  upt_Suc: "[i..<(Suc j)] = (if i <= j then [i..<j] @ [j] else [])"
paulson@15307
   179
berghofe@5183
   180
primrec
paulson@15307
   181
  "distinct [] = True"
paulson@15307
   182
  "distinct (x#xs) = (x ~: set xs \<and> distinct xs)"
paulson@15307
   183
berghofe@5183
   184
primrec
paulson@15307
   185
  "remdups [] = []"
paulson@15307
   186
  "remdups (x#xs) = (if x : set xs then remdups xs else x # remdups xs)"
paulson@15307
   187
berghofe@5183
   188
primrec
paulson@15307
   189
  "remove1 x [] = []"
paulson@15307
   190
  "remove1 x (y#xs) = (if x=y then xs else y # remove1 x xs)"
paulson@15307
   191
nipkow@15110
   192
primrec
paulson@15307
   193
  replicate_0: "replicate 0 x = []"
paulson@15307
   194
  replicate_Suc: "replicate (Suc n) x = x # replicate n x"
paulson@15307
   195
haftmann@21061
   196
definition
wenzelm@21404
   197
  rotate1 :: "'a list \<Rightarrow> 'a list" where
wenzelm@21404
   198
  "rotate1 xs = (case xs of [] \<Rightarrow> [] | x#xs \<Rightarrow> xs @ [x])"
wenzelm@21404
   199
wenzelm@21404
   200
definition
wenzelm@21404
   201
  rotate :: "nat \<Rightarrow> 'a list \<Rightarrow> 'a list" where
wenzelm@21404
   202
  "rotate n = rotate1 ^ n"
wenzelm@21404
   203
wenzelm@21404
   204
definition
wenzelm@21404
   205
  list_all2 :: "('a => 'b => bool) => 'a list => 'b list => bool" where
wenzelm@21404
   206
  "list_all2 P xs ys =
haftmann@21061
   207
    (length xs = length ys \<and> (\<forall>(x, y) \<in> set (zip xs ys). P x y))"
wenzelm@21404
   208
wenzelm@21404
   209
definition
wenzelm@21404
   210
  sublist :: "'a list => nat set => 'a list" where
wenzelm@21404
   211
  "sublist xs A = map fst (filter (\<lambda>p. snd p \<in> A) (zip xs [0..<size xs]))"
nipkow@17086
   212
nipkow@17086
   213
primrec
haftmann@21061
   214
  "splice [] ys = ys"
haftmann@21061
   215
  "splice (x#xs) ys = (if ys=[] then x#xs else x # hd ys # splice xs (tl ys))"
haftmann@21061
   216
    -- {*Warning: simpset does not contain the second eqn but a derived one. *}
haftmann@21061
   217
nipkow@22828
   218
primrec
nipkow@22830
   219
"allpairs f [] ys = []"
nipkow@22830
   220
"allpairs f (x # xs) ys = map (f x) ys @ allpairs f xs ys"
haftmann@21061
   221
nipkow@23192
   222
subsubsection {* List comprehehsion *}
nipkow@23192
   223
nipkow@23209
   224
text{* Input syntax for Haskell-like list comprehension
nipkow@23209
   225
notation. Typical example: @{text"[(x,y). x \<leftarrow> xs, y \<leftarrow> ys, x \<noteq> y]"}, the list of all pairs of distinct elements from @{text xs} and @{text ys}.
nipkow@23209
   226
nipkow@23209
   227
There are a number of differences to Haskell.  The general synatx is
nipkow@23209
   228
@{text"[e. p \<leftarrow> xs, \<dots>]"} rather than \verb![x| x <- xs, ...]!. The
nipkow@23209
   229
first qualifier must be a generator (@{text"p \<leftarrow> xs"}). Patterns in
nipkow@23209
   230
generators can only be tuples (at the moment). Finally, guards are
nipkow@23209
   231
translated into filters, which simplifies theorem proving.
nipkow@23209
   232
*}
nipkow@23209
   233
(*
nipkow@23192
   234
The print translation from internal form to list comprehensions would
nipkow@23192
   235
be nice. Unfortunately one cannot just turn the translations around
nipkow@23192
   236
because in the final equality @{text p} occurs twice on the
nipkow@23192
   237
right-hand side. Due to this restriction, the translation must be hand-coded.
nipkow@23192
   238
nipkow@23192
   239
A more substantial extension would be proper theorem proving
nipkow@23192
   240
support. For example, it would be nice if
nipkow@23192
   241
@{text"set[f x y. x \<leftarrow> xs, y \<leftarrow> ys, P x y]"}
nipkow@23192
   242
produced something like
nipkow@23209
   243
@{term"{z. EX x: set xs. EX y:set ys. P x y \<and> z = f x y}"}.
nipkow@23209
   244
*)
nipkow@23209
   245
nipkow@23209
   246
nonterminals lc_qual
nipkow@23192
   247
nipkow@23192
   248
syntax
nipkow@23209
   249
"_listcompr" :: "'a \<Rightarrow> pttrn \<Rightarrow> 'b list \<Rightarrow> lc_qual \<Rightarrow> 'a list"  ("[_ . _ \<leftarrow> __")
nipkow@23209
   250
"_listcompr" :: "'a \<Rightarrow> pttrn \<Rightarrow> 'b list \<Rightarrow> lc_qual \<Rightarrow> 'a list"  ("[_ . _ <- __")
nipkow@23209
   251
"_lc_end" :: "lc_qual" ("]")
nipkow@23209
   252
"_lc_gen" :: "pttrn \<Rightarrow> 'a list \<Rightarrow> lc_qual \<Rightarrow> lc_qual" (",_ \<leftarrow> __")
nipkow@23209
   253
"_lc_gen" :: "pttrn \<Rightarrow> 'a list \<Rightarrow> lc_qual \<Rightarrow> lc_qual" (",_ <- __")
nipkow@23209
   254
"_lc_test" :: "bool \<Rightarrow> lc_qual \<Rightarrow> lc_qual" (",__")
nipkow@23192
   255
nipkow@23192
   256
nipkow@23192
   257
translations
nipkow@23192
   258
"[e. p\<leftarrow>xs]" => "map (%p. e) xs"
nipkow@23192
   259
"_listcompr e p xs (_lc_gen q ys GT)" =>
nipkow@23192
   260
 "concat (map (%p. _listcompr e q ys GT) xs)"
nipkow@23192
   261
"_listcompr e p xs (_lc_test P GT)" => "_listcompr e p (filter (%p. P) xs) GT"
nipkow@23192
   262
nipkow@23192
   263
(* Some examples:
nipkow@23192
   264
term "[(x,y). x \<leftarrow> xs, x<y]"
nipkow@23192
   265
term "[(x,y). x \<leftarrow> xs, x<y, z\<leftarrow>zs]"
nipkow@23192
   266
term "[(x,y). x \<leftarrow> xs, y \<leftarrow> ys, x<y]"
nipkow@23192
   267
term "[(x,y,z). x \<leftarrow> xs, y \<leftarrow> ys, z\<leftarrow> zs]"
nipkow@23192
   268
term "[x. x \<leftarrow> xs, x < a, x > b]"
nipkow@23192
   269
*)
nipkow@23192
   270
haftmann@21061
   271
subsubsection {* @{const Nil} and @{const Cons} *}
haftmann@21061
   272
haftmann@21061
   273
lemma not_Cons_self [simp]:
haftmann@21061
   274
  "xs \<noteq> x # xs"
nipkow@13145
   275
by (induct xs) auto
wenzelm@13114
   276
wenzelm@13142
   277
lemmas not_Cons_self2 [simp] = not_Cons_self [symmetric]
wenzelm@13114
   278
wenzelm@13142
   279
lemma neq_Nil_conv: "(xs \<noteq> []) = (\<exists>y ys. xs = y # ys)"
nipkow@13145
   280
by (induct xs) auto
wenzelm@13114
   281
wenzelm@13142
   282
lemma length_induct:
haftmann@21061
   283
  "(\<And>xs. \<forall>ys. length ys < length xs \<longrightarrow> P ys \<Longrightarrow> P xs) \<Longrightarrow> P xs"
nipkow@17589
   284
by (rule measure_induct [of length]) iprover
wenzelm@13114
   285
wenzelm@13114
   286
haftmann@21061
   287
subsubsection {* @{const length} *}
wenzelm@13114
   288
wenzelm@13142
   289
text {*
haftmann@21061
   290
  Needs to come before @{text "@"} because of theorem @{text
haftmann@21061
   291
  append_eq_append_conv}.
wenzelm@13142
   292
*}
wenzelm@13114
   293
wenzelm@13142
   294
lemma length_append [simp]: "length (xs @ ys) = length xs + length ys"
nipkow@13145
   295
by (induct xs) auto
wenzelm@13114
   296
wenzelm@13142
   297
lemma length_map [simp]: "length (map f xs) = length xs"
nipkow@13145
   298
by (induct xs) auto
wenzelm@13114
   299
wenzelm@13142
   300
lemma length_rev [simp]: "length (rev xs) = length xs"
nipkow@13145
   301
by (induct xs) auto
wenzelm@13114
   302
wenzelm@13142
   303
lemma length_tl [simp]: "length (tl xs) = length xs - 1"
nipkow@13145
   304
by (cases xs) auto
wenzelm@13114
   305
nipkow@22828
   306
lemma length_allpairs[simp]:
nipkow@22830
   307
 "length(allpairs f xs ys) = length xs * length ys"
nipkow@22828
   308
by(induct xs) auto
nipkow@22828
   309
wenzelm@13142
   310
lemma length_0_conv [iff]: "(length xs = 0) = (xs = [])"
nipkow@13145
   311
by (induct xs) auto
wenzelm@13114
   312
wenzelm@13142
   313
lemma length_greater_0_conv [iff]: "(0 < length xs) = (xs \<noteq> [])"
nipkow@13145
   314
by (induct xs) auto
wenzelm@13114
   315
wenzelm@13114
   316
lemma length_Suc_conv:
nipkow@13145
   317
"(length xs = Suc n) = (\<exists>y ys. xs = y # ys \<and> length ys = n)"
nipkow@13145
   318
by (induct xs) auto
wenzelm@13142
   319
nipkow@14025
   320
lemma Suc_length_conv:
nipkow@14025
   321
"(Suc n = length xs) = (\<exists>y ys. xs = y # ys \<and> length ys = n)"
paulson@14208
   322
apply (induct xs, simp, simp)
nipkow@14025
   323
apply blast
nipkow@14025
   324
done
nipkow@14025
   325
oheimb@14099
   326
lemma impossible_Cons [rule_format]: 
oheimb@14099
   327
  "length xs <= length ys --> xs = x # ys = False"
wenzelm@20503
   328
apply (induct xs)
wenzelm@20503
   329
apply auto
oheimb@14099
   330
done
oheimb@14099
   331
nipkow@14247
   332
lemma list_induct2[consumes 1]: "\<And>ys.
nipkow@14247
   333
 \<lbrakk> length xs = length ys;
nipkow@14247
   334
   P [] [];
nipkow@14247
   335
   \<And>x xs y ys. \<lbrakk> length xs = length ys; P xs ys \<rbrakk> \<Longrightarrow> P (x#xs) (y#ys) \<rbrakk>
nipkow@14247
   336
 \<Longrightarrow> P xs ys"
nipkow@14247
   337
apply(induct xs)
nipkow@14247
   338
 apply simp
nipkow@14247
   339
apply(case_tac ys)
nipkow@14247
   340
 apply simp
nipkow@14247
   341
apply(simp)
nipkow@14247
   342
done
wenzelm@13114
   343
krauss@22493
   344
lemma list_induct2': 
krauss@22493
   345
  "\<lbrakk> P [] [];
krauss@22493
   346
  \<And>x xs. P (x#xs) [];
krauss@22493
   347
  \<And>y ys. P [] (y#ys);
krauss@22493
   348
   \<And>x xs y ys. P xs ys  \<Longrightarrow> P (x#xs) (y#ys) \<rbrakk>
krauss@22493
   349
 \<Longrightarrow> P xs ys"
krauss@22493
   350
by (induct xs arbitrary: ys) (case_tac x, auto)+
krauss@22493
   351
nipkow@22143
   352
lemma neq_if_length_neq: "length xs \<noteq> length ys \<Longrightarrow> (xs = ys) == False"
nipkow@22143
   353
apply(rule Eq_FalseI)
nipkow@22143
   354
by auto
nipkow@22143
   355
nipkow@22143
   356
(*
nipkow@22143
   357
Reduces xs=ys to False if xs and ys cannot be of the same length.
nipkow@22143
   358
This is the case if the atomic sublists of one are a submultiset
nipkow@22143
   359
of those of the other list and there are fewer Cons's in one than the other.
nipkow@22143
   360
*)
nipkow@22143
   361
ML_setup {*
nipkow@22143
   362
local
nipkow@22143
   363
nipkow@22143
   364
fun len (Const("List.list.Nil",_)) acc = acc
nipkow@22143
   365
  | len (Const("List.list.Cons",_) $ _ $ xs) (ts,n) = len xs (ts,n+1)
haftmann@23029
   366
  | len (Const("List.append",_) $ xs $ ys) acc = len xs (len ys acc)
nipkow@22143
   367
  | len (Const("List.rev",_) $ xs) acc = len xs acc
nipkow@22143
   368
  | len (Const("List.map",_) $ _ $ xs) acc = len xs acc
nipkow@22143
   369
  | len t (ts,n) = (t::ts,n);
nipkow@22143
   370
nipkow@22143
   371
fun list_eq ss (Const(_,eqT) $ lhs $ rhs) =
nipkow@22143
   372
  let
nipkow@22143
   373
    val (ls,m) = len lhs ([],0) and (rs,n) = len rhs ([],0);
nipkow@22143
   374
    fun prove_neq() =
nipkow@22143
   375
      let
nipkow@22143
   376
        val Type(_,listT::_) = eqT;
haftmann@22994
   377
        val size = HOLogic.size_const listT;
nipkow@22143
   378
        val eq_len = HOLogic.mk_eq (size $ lhs, size $ rhs);
nipkow@22143
   379
        val neq_len = HOLogic.mk_Trueprop (HOLogic.Not $ eq_len);
nipkow@22143
   380
        val thm = Goal.prove (Simplifier.the_context ss) [] [] neq_len
haftmann@22633
   381
          (K (simp_tac (Simplifier.inherit_context ss @{simpset}) 1));
haftmann@22633
   382
      in SOME (thm RS @{thm neq_if_length_neq}) end
nipkow@22143
   383
  in
nipkow@22143
   384
    if m < n andalso gen_submultiset (op aconv) (ls,rs) orelse
nipkow@22143
   385
       n < m andalso gen_submultiset (op aconv) (rs,ls)
nipkow@22143
   386
    then prove_neq() else NONE
nipkow@22143
   387
  end;
nipkow@22143
   388
nipkow@22143
   389
in
nipkow@22143
   390
nipkow@22143
   391
val list_neq_simproc =
haftmann@22633
   392
  Simplifier.simproc @{theory} "list_neq" ["(xs::'a list) = ys"] (K list_eq);
nipkow@22143
   393
nipkow@22143
   394
end;
nipkow@22143
   395
nipkow@22143
   396
Addsimprocs [list_neq_simproc];
nipkow@22143
   397
*}
nipkow@22143
   398
nipkow@22143
   399
nipkow@15392
   400
subsubsection {* @{text "@"} -- append *}
wenzelm@13114
   401
wenzelm@13142
   402
lemma append_assoc [simp]: "(xs @ ys) @ zs = xs @ (ys @ zs)"
nipkow@13145
   403
by (induct xs) auto
wenzelm@13114
   404
wenzelm@13142
   405
lemma append_Nil2 [simp]: "xs @ [] = xs"
nipkow@13145
   406
by (induct xs) auto
nipkow@3507
   407
wenzelm@13142
   408
lemma append_is_Nil_conv [iff]: "(xs @ ys = []) = (xs = [] \<and> ys = [])"
nipkow@13145
   409
by (induct xs) auto
wenzelm@13114
   410
wenzelm@13142
   411
lemma Nil_is_append_conv [iff]: "([] = xs @ ys) = (xs = [] \<and> ys = [])"
nipkow@13145
   412
by (induct xs) auto
wenzelm@13114
   413
wenzelm@13142
   414
lemma append_self_conv [iff]: "(xs @ ys = xs) = (ys = [])"
nipkow@13145
   415
by (induct xs) auto
wenzelm@13114
   416
wenzelm@13142
   417
lemma self_append_conv [iff]: "(xs = xs @ ys) = (ys = [])"
nipkow@13145
   418
by (induct xs) auto
wenzelm@13114
   419
berghofe@13883
   420
lemma append_eq_append_conv [simp]:
berghofe@13883
   421
 "!!ys. length xs = length ys \<or> length us = length vs
berghofe@13883
   422
 ==> (xs@us = ys@vs) = (xs=ys \<and> us=vs)"
berghofe@13883
   423
apply (induct xs)
paulson@14208
   424
 apply (case_tac ys, simp, force)
paulson@14208
   425
apply (case_tac ys, force, simp)
nipkow@13145
   426
done
wenzelm@13142
   427
nipkow@14495
   428
lemma append_eq_append_conv2: "!!ys zs ts.
nipkow@14495
   429
 (xs @ ys = zs @ ts) =
nipkow@14495
   430
 (EX us. xs = zs @ us & us @ ys = ts | xs @ us = zs & ys = us@ ts)"
nipkow@14495
   431
apply (induct xs)
nipkow@14495
   432
 apply fastsimp
nipkow@14495
   433
apply(case_tac zs)
nipkow@14495
   434
 apply simp
nipkow@14495
   435
apply fastsimp
nipkow@14495
   436
done
nipkow@14495
   437
wenzelm@13142
   438
lemma same_append_eq [iff]: "(xs @ ys = xs @ zs) = (ys = zs)"
nipkow@13145
   439
by simp
wenzelm@13142
   440
wenzelm@13142
   441
lemma append1_eq_conv [iff]: "(xs @ [x] = ys @ [y]) = (xs = ys \<and> x = y)"
nipkow@13145
   442
by simp
wenzelm@13114
   443
wenzelm@13142
   444
lemma append_same_eq [iff]: "(ys @ xs = zs @ xs) = (ys = zs)"
nipkow@13145
   445
by simp
wenzelm@13114
   446
wenzelm@13142
   447
lemma append_self_conv2 [iff]: "(xs @ ys = ys) = (xs = [])"
nipkow@13145
   448
using append_same_eq [of _ _ "[]"] by auto
nipkow@3507
   449
wenzelm@13142
   450
lemma self_append_conv2 [iff]: "(ys = xs @ ys) = (xs = [])"
nipkow@13145
   451
using append_same_eq [of "[]"] by auto
wenzelm@13114
   452
wenzelm@13142
   453
lemma hd_Cons_tl [simp]: "xs \<noteq> [] ==> hd xs # tl xs = xs"
nipkow@13145
   454
by (induct xs) auto
wenzelm@13114
   455
wenzelm@13142
   456
lemma hd_append: "hd (xs @ ys) = (if xs = [] then hd ys else hd xs)"
nipkow@13145
   457
by (induct xs) auto
wenzelm@13114
   458
wenzelm@13142
   459
lemma hd_append2 [simp]: "xs \<noteq> [] ==> hd (xs @ ys) = hd xs"
nipkow@13145
   460
by (simp add: hd_append split: list.split)
wenzelm@13114
   461
wenzelm@13142
   462
lemma tl_append: "tl (xs @ ys) = (case xs of [] => tl ys | z#zs => zs @ ys)"
nipkow@13145
   463
by (simp split: list.split)
wenzelm@13114
   464
wenzelm@13142
   465
lemma tl_append2 [simp]: "xs \<noteq> [] ==> tl (xs @ ys) = tl xs @ ys"
nipkow@13145
   466
by (simp add: tl_append split: list.split)
wenzelm@13114
   467
wenzelm@13114
   468
nipkow@14300
   469
lemma Cons_eq_append_conv: "x#xs = ys@zs =
nipkow@14300
   470
 (ys = [] & x#xs = zs | (EX ys'. x#ys' = ys & xs = ys'@zs))"
nipkow@14300
   471
by(cases ys) auto
nipkow@14300
   472
nipkow@15281
   473
lemma append_eq_Cons_conv: "(ys@zs = x#xs) =
nipkow@15281
   474
 (ys = [] & zs = x#xs | (EX ys'. ys = x#ys' & ys'@zs = xs))"
nipkow@15281
   475
by(cases ys) auto
nipkow@15281
   476
nipkow@14300
   477
wenzelm@13142
   478
text {* Trivial rules for solving @{text "@"}-equations automatically. *}
wenzelm@13114
   479
wenzelm@13114
   480
lemma eq_Nil_appendI: "xs = ys ==> xs = [] @ ys"
nipkow@13145
   481
by simp
wenzelm@13114
   482
wenzelm@13142
   483
lemma Cons_eq_appendI:
nipkow@13145
   484
"[| x # xs1 = ys; xs = xs1 @ zs |] ==> x # xs = ys @ zs"
nipkow@13145
   485
by (drule sym) simp
wenzelm@13114
   486
wenzelm@13142
   487
lemma append_eq_appendI:
nipkow@13145
   488
"[| xs @ xs1 = zs; ys = xs1 @ us |] ==> xs @ ys = zs @ us"
nipkow@13145
   489
by (drule sym) simp
wenzelm@13114
   490
wenzelm@13114
   491
wenzelm@13142
   492
text {*
nipkow@13145
   493
Simplification procedure for all list equalities.
nipkow@13145
   494
Currently only tries to rearrange @{text "@"} to see if
nipkow@13145
   495
- both lists end in a singleton list,
nipkow@13145
   496
- or both lists end in the same list.
wenzelm@13142
   497
*}
wenzelm@13142
   498
wenzelm@13142
   499
ML_setup {*
nipkow@3507
   500
local
nipkow@3507
   501
wenzelm@13114
   502
fun last (cons as Const("List.list.Cons",_) $ _ $ xs) =
wenzelm@13462
   503
  (case xs of Const("List.list.Nil",_) => cons | _ => last xs)
haftmann@23029
   504
  | last (Const("List.append",_) $ _ $ ys) = last ys
wenzelm@13462
   505
  | last t = t;
wenzelm@13114
   506
wenzelm@13114
   507
fun list1 (Const("List.list.Cons",_) $ _ $ Const("List.list.Nil",_)) = true
wenzelm@13462
   508
  | list1 _ = false;
wenzelm@13114
   509
wenzelm@13114
   510
fun butlast ((cons as Const("List.list.Cons",_) $ x) $ xs) =
wenzelm@13462
   511
  (case xs of Const("List.list.Nil",_) => xs | _ => cons $ butlast xs)
haftmann@23029
   512
  | butlast ((app as Const("List.append",_) $ xs) $ ys) = app $ butlast ys
wenzelm@13462
   513
  | butlast xs = Const("List.list.Nil",fastype_of xs);
wenzelm@13114
   514
haftmann@22633
   515
val rearr_ss = HOL_basic_ss addsimps [@{thm append_assoc},
haftmann@22633
   516
  @{thm append_Nil}, @{thm append_Cons}];
wenzelm@16973
   517
wenzelm@20044
   518
fun list_eq ss (F as (eq as Const(_,eqT)) $ lhs $ rhs) =
wenzelm@13462
   519
  let
wenzelm@13462
   520
    val lastl = last lhs and lastr = last rhs;
wenzelm@13462
   521
    fun rearr conv =
wenzelm@13462
   522
      let
wenzelm@13462
   523
        val lhs1 = butlast lhs and rhs1 = butlast rhs;
wenzelm@13462
   524
        val Type(_,listT::_) = eqT
wenzelm@13462
   525
        val appT = [listT,listT] ---> listT
haftmann@23029
   526
        val app = Const("List.append",appT)
wenzelm@13462
   527
        val F2 = eq $ (app$lhs1$lastl) $ (app$rhs1$lastr)
wenzelm@13480
   528
        val eq = HOLogic.mk_Trueprop (HOLogic.mk_eq (F,F2));
wenzelm@20044
   529
        val thm = Goal.prove (Simplifier.the_context ss) [] [] eq
wenzelm@17877
   530
          (K (simp_tac (Simplifier.inherit_context ss rearr_ss) 1));
skalberg@15531
   531
      in SOME ((conv RS (thm RS trans)) RS eq_reflection) end;
wenzelm@13114
   532
wenzelm@13462
   533
  in
haftmann@22633
   534
    if list1 lastl andalso list1 lastr then rearr @{thm append1_eq_conv}
haftmann@22633
   535
    else if lastl aconv lastr then rearr @{thm append_same_eq}
skalberg@15531
   536
    else NONE
wenzelm@13462
   537
  end;
wenzelm@13462
   538
wenzelm@13114
   539
in
wenzelm@13462
   540
wenzelm@13462
   541
val list_eq_simproc =
haftmann@22633
   542
  Simplifier.simproc @{theory} "list_eq" ["(xs::'a list) = ys"] (K list_eq);
wenzelm@13462
   543
wenzelm@13114
   544
end;
wenzelm@13114
   545
wenzelm@13114
   546
Addsimprocs [list_eq_simproc];
wenzelm@13114
   547
*}
wenzelm@13114
   548
wenzelm@13114
   549
nipkow@15392
   550
subsubsection {* @{text map} *}
wenzelm@13114
   551
wenzelm@13142
   552
lemma map_ext: "(!!x. x : set xs --> f x = g x) ==> map f xs = map g xs"
nipkow@13145
   553
by (induct xs) simp_all
wenzelm@13114
   554
wenzelm@13142
   555
lemma map_ident [simp]: "map (\<lambda>x. x) = (\<lambda>xs. xs)"
nipkow@13145
   556
by (rule ext, induct_tac xs) auto
wenzelm@13114
   557
wenzelm@13142
   558
lemma map_append [simp]: "map f (xs @ ys) = map f xs @ map f ys"
nipkow@13145
   559
by (induct xs) auto
wenzelm@13114
   560
wenzelm@13142
   561
lemma map_compose: "map (f o g) xs = map f (map g xs)"
nipkow@13145
   562
by (induct xs) (auto simp add: o_def)
wenzelm@13114
   563
wenzelm@13142
   564
lemma rev_map: "rev (map f xs) = map f (rev xs)"
nipkow@13145
   565
by (induct xs) auto
wenzelm@13114
   566
nipkow@13737
   567
lemma map_eq_conv[simp]: "(map f xs = map g xs) = (!x : set xs. f x = g x)"
nipkow@13737
   568
by (induct xs) auto
nipkow@13737
   569
krauss@19770
   570
lemma map_cong [fundef_cong, recdef_cong]:
nipkow@13145
   571
"xs = ys ==> (!!x. x : set ys ==> f x = g x) ==> map f xs = map g ys"
nipkow@13145
   572
-- {* a congruence rule for @{text map} *}
nipkow@13737
   573
by simp
wenzelm@13114
   574
wenzelm@13142
   575
lemma map_is_Nil_conv [iff]: "(map f xs = []) = (xs = [])"
nipkow@13145
   576
by (cases xs) auto
wenzelm@13114
   577
wenzelm@13142
   578
lemma Nil_is_map_conv [iff]: "([] = map f xs) = (xs = [])"
nipkow@13145
   579
by (cases xs) auto
wenzelm@13114
   580
paulson@18447
   581
lemma map_eq_Cons_conv:
nipkow@14025
   582
 "(map f xs = y#ys) = (\<exists>z zs. xs = z#zs \<and> f z = y \<and> map f zs = ys)"
nipkow@13145
   583
by (cases xs) auto
wenzelm@13114
   584
paulson@18447
   585
lemma Cons_eq_map_conv:
nipkow@14025
   586
 "(x#xs = map f ys) = (\<exists>z zs. ys = z#zs \<and> x = f z \<and> xs = map f zs)"
nipkow@14025
   587
by (cases ys) auto
nipkow@14025
   588
paulson@18447
   589
lemmas map_eq_Cons_D = map_eq_Cons_conv [THEN iffD1]
paulson@18447
   590
lemmas Cons_eq_map_D = Cons_eq_map_conv [THEN iffD1]
paulson@18447
   591
declare map_eq_Cons_D [dest!]  Cons_eq_map_D [dest!]
paulson@18447
   592
nipkow@14111
   593
lemma ex_map_conv:
nipkow@14111
   594
  "(EX xs. ys = map f xs) = (ALL y : set ys. EX x. y = f x)"
paulson@18447
   595
by(induct ys, auto simp add: Cons_eq_map_conv)
nipkow@14111
   596
nipkow@15110
   597
lemma map_eq_imp_length_eq:
nipkow@15110
   598
  "!!xs. map f xs = map f ys ==> length xs = length ys"
nipkow@15110
   599
apply (induct ys)
nipkow@15110
   600
 apply simp
nipkow@15110
   601
apply(simp (no_asm_use))
nipkow@15110
   602
apply clarify
nipkow@15110
   603
apply(simp (no_asm_use))
nipkow@15110
   604
apply fast
nipkow@15110
   605
done
nipkow@15110
   606
nipkow@15110
   607
lemma map_inj_on:
nipkow@15110
   608
 "[| map f xs = map f ys; inj_on f (set xs Un set ys) |]
nipkow@15110
   609
  ==> xs = ys"
nipkow@15110
   610
apply(frule map_eq_imp_length_eq)
nipkow@15110
   611
apply(rotate_tac -1)
nipkow@15110
   612
apply(induct rule:list_induct2)
nipkow@15110
   613
 apply simp
nipkow@15110
   614
apply(simp)
nipkow@15110
   615
apply (blast intro:sym)
nipkow@15110
   616
done
nipkow@15110
   617
nipkow@15110
   618
lemma inj_on_map_eq_map:
nipkow@15110
   619
 "inj_on f (set xs Un set ys) \<Longrightarrow> (map f xs = map f ys) = (xs = ys)"
nipkow@15110
   620
by(blast dest:map_inj_on)
nipkow@15110
   621
wenzelm@13114
   622
lemma map_injective:
nipkow@14338
   623
 "!!xs. map f xs = map f ys ==> inj f ==> xs = ys"
nipkow@14338
   624
by (induct ys) (auto dest!:injD)
wenzelm@13114
   625
nipkow@14339
   626
lemma inj_map_eq_map[simp]: "inj f \<Longrightarrow> (map f xs = map f ys) = (xs = ys)"
nipkow@14339
   627
by(blast dest:map_injective)
nipkow@14339
   628
wenzelm@13114
   629
lemma inj_mapI: "inj f ==> inj (map f)"
nipkow@17589
   630
by (iprover dest: map_injective injD intro: inj_onI)
wenzelm@13114
   631
wenzelm@13114
   632
lemma inj_mapD: "inj (map f) ==> inj f"
paulson@14208
   633
apply (unfold inj_on_def, clarify)
nipkow@13145
   634
apply (erule_tac x = "[x]" in ballE)
paulson@14208
   635
 apply (erule_tac x = "[y]" in ballE, simp, blast)
nipkow@13145
   636
apply blast
nipkow@13145
   637
done
wenzelm@13114
   638
nipkow@14339
   639
lemma inj_map[iff]: "inj (map f) = inj f"
nipkow@13145
   640
by (blast dest: inj_mapD intro: inj_mapI)
wenzelm@13114
   641
nipkow@15303
   642
lemma inj_on_mapI: "inj_on f (\<Union>(set ` A)) \<Longrightarrow> inj_on (map f) A"
nipkow@15303
   643
apply(rule inj_onI)
nipkow@15303
   644
apply(erule map_inj_on)
nipkow@15303
   645
apply(blast intro:inj_onI dest:inj_onD)
nipkow@15303
   646
done
nipkow@15303
   647
kleing@14343
   648
lemma map_idI: "(\<And>x. x \<in> set xs \<Longrightarrow> f x = x) \<Longrightarrow> map f xs = xs"
kleing@14343
   649
by (induct xs, auto)
wenzelm@13114
   650
nipkow@14402
   651
lemma map_fun_upd [simp]: "y \<notin> set xs \<Longrightarrow> map (f(y:=v)) xs = map f xs"
nipkow@14402
   652
by (induct xs) auto
nipkow@14402
   653
nipkow@15110
   654
lemma map_fst_zip[simp]:
nipkow@15110
   655
  "length xs = length ys \<Longrightarrow> map fst (zip xs ys) = xs"
nipkow@15110
   656
by (induct rule:list_induct2, simp_all)
nipkow@15110
   657
nipkow@15110
   658
lemma map_snd_zip[simp]:
nipkow@15110
   659
  "length xs = length ys \<Longrightarrow> map snd (zip xs ys) = ys"
nipkow@15110
   660
by (induct rule:list_induct2, simp_all)
nipkow@15110
   661
nipkow@15110
   662
nipkow@15392
   663
subsubsection {* @{text rev} *}
wenzelm@13114
   664
wenzelm@13142
   665
lemma rev_append [simp]: "rev (xs @ ys) = rev ys @ rev xs"
nipkow@13145
   666
by (induct xs) auto
wenzelm@13114
   667
wenzelm@13142
   668
lemma rev_rev_ident [simp]: "rev (rev xs) = xs"
nipkow@13145
   669
by (induct xs) auto
wenzelm@13114
   670
kleing@15870
   671
lemma rev_swap: "(rev xs = ys) = (xs = rev ys)"
kleing@15870
   672
by auto
kleing@15870
   673
wenzelm@13142
   674
lemma rev_is_Nil_conv [iff]: "(rev xs = []) = (xs = [])"
nipkow@13145
   675
by (induct xs) auto
wenzelm@13114
   676
wenzelm@13142
   677
lemma Nil_is_rev_conv [iff]: "([] = rev xs) = (xs = [])"
nipkow@13145
   678
by (induct xs) auto
wenzelm@13114
   679
kleing@15870
   680
lemma rev_singleton_conv [simp]: "(rev xs = [x]) = (xs = [x])"
kleing@15870
   681
by (cases xs) auto
kleing@15870
   682
kleing@15870
   683
lemma singleton_rev_conv [simp]: "([x] = rev xs) = (xs = [x])"
kleing@15870
   684
by (cases xs) auto
kleing@15870
   685
haftmann@21061
   686
lemma rev_is_rev_conv [iff]: "(rev xs = rev ys) = (xs = ys)"
haftmann@21061
   687
apply (induct xs arbitrary: ys, force)
paulson@14208
   688
apply (case_tac ys, simp, force)
nipkow@13145
   689
done
wenzelm@13114
   690
nipkow@15439
   691
lemma inj_on_rev[iff]: "inj_on rev A"
nipkow@15439
   692
by(simp add:inj_on_def)
nipkow@15439
   693
wenzelm@13366
   694
lemma rev_induct [case_names Nil snoc]:
wenzelm@13366
   695
  "[| P []; !!x xs. P xs ==> P (xs @ [x]) |] ==> P xs"
berghofe@15489
   696
apply(simplesubst rev_rev_ident[symmetric])
nipkow@13145
   697
apply(rule_tac list = "rev xs" in list.induct, simp_all)
nipkow@13145
   698
done
wenzelm@13114
   699
nipkow@13145
   700
ML {* val rev_induct_tac = induct_thm_tac (thm "rev_induct") *}-- "compatibility"
wenzelm@13114
   701
wenzelm@13366
   702
lemma rev_exhaust [case_names Nil snoc]:
wenzelm@13366
   703
  "(xs = [] ==> P) ==>(!!ys y. xs = ys @ [y] ==> P) ==> P"
nipkow@13145
   704
by (induct xs rule: rev_induct) auto
wenzelm@13114
   705
wenzelm@13366
   706
lemmas rev_cases = rev_exhaust
wenzelm@13366
   707
nipkow@18423
   708
lemma rev_eq_Cons_iff[iff]: "(rev xs = y#ys) = (xs = rev ys @ [y])"
nipkow@18423
   709
by(rule rev_cases[of xs]) auto
nipkow@18423
   710
wenzelm@13114
   711
nipkow@15392
   712
subsubsection {* @{text set} *}
wenzelm@13114
   713
wenzelm@13142
   714
lemma finite_set [iff]: "finite (set xs)"
nipkow@13145
   715
by (induct xs) auto
wenzelm@13114
   716
wenzelm@13142
   717
lemma set_append [simp]: "set (xs @ ys) = (set xs \<union> set ys)"
nipkow@13145
   718
by (induct xs) auto
wenzelm@13114
   719
nipkow@17830
   720
lemma hd_in_set[simp]: "xs \<noteq> [] \<Longrightarrow> hd xs : set xs"
nipkow@17830
   721
by(cases xs) auto
oheimb@14099
   722
wenzelm@13142
   723
lemma set_subset_Cons: "set xs \<subseteq> set (x # xs)"
nipkow@13145
   724
by auto
wenzelm@13114
   725
oheimb@14099
   726
lemma set_ConsD: "y \<in> set (x # xs) \<Longrightarrow> y=x \<or> y \<in> set xs" 
oheimb@14099
   727
by auto
oheimb@14099
   728
wenzelm@13142
   729
lemma set_empty [iff]: "(set xs = {}) = (xs = [])"
nipkow@13145
   730
by (induct xs) auto
wenzelm@13114
   731
nipkow@15245
   732
lemma set_empty2[iff]: "({} = set xs) = (xs = [])"
nipkow@15245
   733
by(induct xs) auto
nipkow@15245
   734
wenzelm@13142
   735
lemma set_rev [simp]: "set (rev xs) = set xs"
nipkow@13145
   736
by (induct xs) auto
wenzelm@13114
   737
wenzelm@13142
   738
lemma set_map [simp]: "set (map f xs) = f`(set xs)"
nipkow@13145
   739
by (induct xs) auto
wenzelm@13114
   740
nipkow@22828
   741
lemma set_allpairs[simp]:
nipkow@22830
   742
 "set(allpairs f xs ys) = {z. EX x : set xs. EX y : set ys. z = f x y}"
nipkow@22828
   743
by(induct xs) auto
nipkow@22828
   744
wenzelm@13142
   745
lemma set_filter [simp]: "set (filter P xs) = {x. x : set xs \<and> P x}"
nipkow@13145
   746
by (induct xs) auto
wenzelm@13114
   747
nipkow@15425
   748
lemma set_upt [simp]: "set[i..<j] = {k. i \<le> k \<and> k < j}"
paulson@14208
   749
apply (induct j, simp_all)
paulson@14208
   750
apply (erule ssubst, auto)
nipkow@13145
   751
done
wenzelm@13114
   752
wenzelm@13142
   753
lemma in_set_conv_decomp: "(x : set xs) = (\<exists>ys zs. xs = ys @ x # zs)"
paulson@15113
   754
proof (induct xs)
paulson@15113
   755
  case Nil show ?case by simp
paulson@15113
   756
  case (Cons a xs)
paulson@15113
   757
  show ?case
paulson@15113
   758
  proof 
paulson@15113
   759
    assume "x \<in> set (a # xs)"
paulson@15113
   760
    with prems show "\<exists>ys zs. a # xs = ys @ x # zs"
paulson@15113
   761
      by (simp, blast intro: Cons_eq_appendI)
paulson@15113
   762
  next
paulson@15113
   763
    assume "\<exists>ys zs. a # xs = ys @ x # zs"
paulson@15113
   764
    then obtain ys zs where eq: "a # xs = ys @ x # zs" by blast
paulson@15113
   765
    show "x \<in> set (a # xs)" 
paulson@15113
   766
      by (cases ys, auto simp add: eq)
paulson@15113
   767
  qed
paulson@15113
   768
qed
wenzelm@13142
   769
nipkow@18049
   770
lemma in_set_conv_decomp_first:
nipkow@18049
   771
 "(x : set xs) = (\<exists>ys zs. xs = ys @ x # zs \<and> x \<notin> set ys)"
nipkow@18049
   772
proof (induct xs)
nipkow@18049
   773
  case Nil show ?case by simp
nipkow@18049
   774
next
nipkow@18049
   775
  case (Cons a xs)
nipkow@18049
   776
  show ?case
nipkow@18049
   777
  proof cases
nipkow@18049
   778
    assume "x = a" thus ?case using Cons by force
nipkow@18049
   779
  next
nipkow@18049
   780
    assume "x \<noteq> a"
nipkow@18049
   781
    show ?case
nipkow@18049
   782
    proof
nipkow@18049
   783
      assume "x \<in> set (a # xs)"
nipkow@18049
   784
      from prems show "\<exists>ys zs. a # xs = ys @ x # zs \<and> x \<notin> set ys"
nipkow@18049
   785
	by(fastsimp intro!: Cons_eq_appendI)
nipkow@18049
   786
    next
nipkow@18049
   787
      assume "\<exists>ys zs. a # xs = ys @ x # zs \<and> x \<notin> set ys"
nipkow@18049
   788
      then obtain ys zs where eq: "a # xs = ys @ x # zs" by blast
nipkow@18049
   789
      show "x \<in> set (a # xs)" by (cases ys, auto simp add: eq)
nipkow@18049
   790
    qed
nipkow@18049
   791
  qed
nipkow@18049
   792
qed
nipkow@18049
   793
nipkow@18049
   794
lemmas split_list       = in_set_conv_decomp[THEN iffD1, standard]
nipkow@18049
   795
lemmas split_list_first = in_set_conv_decomp_first[THEN iffD1, standard]
nipkow@18049
   796
nipkow@18049
   797
paulson@13508
   798
lemma finite_list: "finite A ==> EX l. set l = A"
paulson@13508
   799
apply (erule finite_induct, auto)
paulson@13508
   800
apply (rule_tac x="x#l" in exI, auto)
paulson@13508
   801
done
paulson@13508
   802
kleing@14388
   803
lemma card_length: "card (set xs) \<le> length xs"
kleing@14388
   804
by (induct xs) (auto simp add: card_insert_if)
wenzelm@13114
   805
paulson@15168
   806
nipkow@15392
   807
subsubsection {* @{text filter} *}
wenzelm@13114
   808
wenzelm@13142
   809
lemma filter_append [simp]: "filter P (xs @ ys) = filter P xs @ filter P ys"
nipkow@13145
   810
by (induct xs) auto
wenzelm@13114
   811
nipkow@15305
   812
lemma rev_filter: "rev (filter P xs) = filter P (rev xs)"
nipkow@15305
   813
by (induct xs) simp_all
nipkow@15305
   814
wenzelm@13142
   815
lemma filter_filter [simp]: "filter P (filter Q xs) = filter (\<lambda>x. Q x \<and> P x) xs"
nipkow@13145
   816
by (induct xs) auto
wenzelm@13114
   817
nipkow@16998
   818
lemma length_filter_le [simp]: "length (filter P xs) \<le> length xs"
nipkow@16998
   819
by (induct xs) (auto simp add: le_SucI)
nipkow@16998
   820
nipkow@18423
   821
lemma sum_length_filter_compl:
nipkow@18423
   822
  "length(filter P xs) + length(filter (%x. ~P x) xs) = length xs"
nipkow@18423
   823
by(induct xs) simp_all
nipkow@18423
   824
wenzelm@13142
   825
lemma filter_True [simp]: "\<forall>x \<in> set xs. P x ==> filter P xs = xs"
nipkow@13145
   826
by (induct xs) auto
wenzelm@13114
   827
wenzelm@13142
   828
lemma filter_False [simp]: "\<forall>x \<in> set xs. \<not> P x ==> filter P xs = []"
nipkow@13145
   829
by (induct xs) auto
wenzelm@13114
   830
nipkow@16998
   831
lemma filter_empty_conv: "(filter P xs = []) = (\<forall>x\<in>set xs. \<not> P x)" 
nipkow@16998
   832
  by (induct xs) simp_all
nipkow@16998
   833
nipkow@16998
   834
lemma filter_id_conv: "(filter P xs = xs) = (\<forall>x\<in>set xs. P x)"
nipkow@16998
   835
apply (induct xs)
nipkow@16998
   836
 apply auto
nipkow@16998
   837
apply(cut_tac P=P and xs=xs in length_filter_le)
nipkow@16998
   838
apply simp
nipkow@16998
   839
done
wenzelm@13114
   840
nipkow@16965
   841
lemma filter_map:
nipkow@16965
   842
  "filter P (map f xs) = map f (filter (P o f) xs)"
nipkow@16965
   843
by (induct xs) simp_all
nipkow@16965
   844
nipkow@16965
   845
lemma length_filter_map[simp]:
nipkow@16965
   846
  "length (filter P (map f xs)) = length(filter (P o f) xs)"
nipkow@16965
   847
by (simp add:filter_map)
nipkow@16965
   848
wenzelm@13142
   849
lemma filter_is_subset [simp]: "set (filter P xs) \<le> set xs"
nipkow@13145
   850
by auto
wenzelm@13114
   851
nipkow@15246
   852
lemma length_filter_less:
nipkow@15246
   853
  "\<lbrakk> x : set xs; ~ P x \<rbrakk> \<Longrightarrow> length(filter P xs) < length xs"
nipkow@15246
   854
proof (induct xs)
nipkow@15246
   855
  case Nil thus ?case by simp
nipkow@15246
   856
next
nipkow@15246
   857
  case (Cons x xs) thus ?case
nipkow@15246
   858
    apply (auto split:split_if_asm)
nipkow@15246
   859
    using length_filter_le[of P xs] apply arith
nipkow@15246
   860
  done
nipkow@15246
   861
qed
wenzelm@13114
   862
nipkow@15281
   863
lemma length_filter_conv_card:
nipkow@15281
   864
 "length(filter p xs) = card{i. i < length xs & p(xs!i)}"
nipkow@15281
   865
proof (induct xs)
nipkow@15281
   866
  case Nil thus ?case by simp
nipkow@15281
   867
next
nipkow@15281
   868
  case (Cons x xs)
nipkow@15281
   869
  let ?S = "{i. i < length xs & p(xs!i)}"
nipkow@15281
   870
  have fin: "finite ?S" by(fast intro: bounded_nat_set_is_finite)
nipkow@15281
   871
  show ?case (is "?l = card ?S'")
nipkow@15281
   872
  proof (cases)
nipkow@15281
   873
    assume "p x"
nipkow@15281
   874
    hence eq: "?S' = insert 0 (Suc ` ?S)"
nipkow@15281
   875
      by(auto simp add: nth_Cons image_def split:nat.split elim:lessE)
nipkow@15281
   876
    have "length (filter p (x # xs)) = Suc(card ?S)"
nipkow@15281
   877
      using Cons by simp
nipkow@15281
   878
    also have "\<dots> = Suc(card(Suc ` ?S))" using fin
nipkow@15281
   879
      by (simp add: card_image inj_Suc)
nipkow@15281
   880
    also have "\<dots> = card ?S'" using eq fin
nipkow@15281
   881
      by (simp add:card_insert_if) (simp add:image_def)
nipkow@15281
   882
    finally show ?thesis .
nipkow@15281
   883
  next
nipkow@15281
   884
    assume "\<not> p x"
nipkow@15281
   885
    hence eq: "?S' = Suc ` ?S"
nipkow@15281
   886
      by(auto simp add: nth_Cons image_def split:nat.split elim:lessE)
nipkow@15281
   887
    have "length (filter p (x # xs)) = card ?S"
nipkow@15281
   888
      using Cons by simp
nipkow@15281
   889
    also have "\<dots> = card(Suc ` ?S)" using fin
nipkow@15281
   890
      by (simp add: card_image inj_Suc)
nipkow@15281
   891
    also have "\<dots> = card ?S'" using eq fin
nipkow@15281
   892
      by (simp add:card_insert_if)
nipkow@15281
   893
    finally show ?thesis .
nipkow@15281
   894
  qed
nipkow@15281
   895
qed
nipkow@15281
   896
nipkow@17629
   897
lemma Cons_eq_filterD:
nipkow@17629
   898
 "x#xs = filter P ys \<Longrightarrow>
nipkow@17629
   899
  \<exists>us vs. ys = us @ x # vs \<and> (\<forall>u\<in>set us. \<not> P u) \<and> P x \<and> xs = filter P vs"
wenzelm@19585
   900
  (is "_ \<Longrightarrow> \<exists>us vs. ?P ys us vs")
nipkow@17629
   901
proof(induct ys)
nipkow@17629
   902
  case Nil thus ?case by simp
nipkow@17629
   903
next
nipkow@17629
   904
  case (Cons y ys)
nipkow@17629
   905
  show ?case (is "\<exists>x. ?Q x")
nipkow@17629
   906
  proof cases
nipkow@17629
   907
    assume Py: "P y"
nipkow@17629
   908
    show ?thesis
nipkow@17629
   909
    proof cases
nipkow@17629
   910
      assume xy: "x = y"
nipkow@17629
   911
      show ?thesis
nipkow@17629
   912
      proof from Py xy Cons(2) show "?Q []" by simp qed
nipkow@17629
   913
    next
nipkow@17629
   914
      assume "x \<noteq> y" with Py Cons(2) show ?thesis by simp
nipkow@17629
   915
    qed
nipkow@17629
   916
  next
nipkow@17629
   917
    assume Py: "\<not> P y"
nipkow@17629
   918
    with Cons obtain us vs where 1 : "?P (y#ys) (y#us) vs" by fastsimp
nipkow@17629
   919
    show ?thesis (is "? us. ?Q us")
nipkow@17629
   920
    proof show "?Q (y#us)" using 1 by simp qed
nipkow@17629
   921
  qed
nipkow@17629
   922
qed
nipkow@17629
   923
nipkow@17629
   924
lemma filter_eq_ConsD:
nipkow@17629
   925
 "filter P ys = x#xs \<Longrightarrow>
nipkow@17629
   926
  \<exists>us vs. ys = us @ x # vs \<and> (\<forall>u\<in>set us. \<not> P u) \<and> P x \<and> xs = filter P vs"
nipkow@17629
   927
by(rule Cons_eq_filterD) simp
nipkow@17629
   928
nipkow@17629
   929
lemma filter_eq_Cons_iff:
nipkow@17629
   930
 "(filter P ys = x#xs) =
nipkow@17629
   931
  (\<exists>us vs. ys = us @ x # vs \<and> (\<forall>u\<in>set us. \<not> P u) \<and> P x \<and> xs = filter P vs)"
nipkow@17629
   932
by(auto dest:filter_eq_ConsD)
nipkow@17629
   933
nipkow@17629
   934
lemma Cons_eq_filter_iff:
nipkow@17629
   935
 "(x#xs = filter P ys) =
nipkow@17629
   936
  (\<exists>us vs. ys = us @ x # vs \<and> (\<forall>u\<in>set us. \<not> P u) \<and> P x \<and> xs = filter P vs)"
nipkow@17629
   937
by(auto dest:Cons_eq_filterD)
nipkow@17629
   938
krauss@19770
   939
lemma filter_cong[fundef_cong, recdef_cong]:
nipkow@17501
   940
 "xs = ys \<Longrightarrow> (\<And>x. x \<in> set ys \<Longrightarrow> P x = Q x) \<Longrightarrow> filter P xs = filter Q ys"
nipkow@17501
   941
apply simp
nipkow@17501
   942
apply(erule thin_rl)
nipkow@17501
   943
by (induct ys) simp_all
nipkow@17501
   944
nipkow@15281
   945
nipkow@15392
   946
subsubsection {* @{text concat} *}
wenzelm@13114
   947
wenzelm@13142
   948
lemma concat_append [simp]: "concat (xs @ ys) = concat xs @ concat ys"
nipkow@13145
   949
by (induct xs) auto
wenzelm@13114
   950
paulson@18447
   951
lemma concat_eq_Nil_conv [simp]: "(concat xss = []) = (\<forall>xs \<in> set xss. xs = [])"
nipkow@13145
   952
by (induct xss) auto
wenzelm@13114
   953
paulson@18447
   954
lemma Nil_eq_concat_conv [simp]: "([] = concat xss) = (\<forall>xs \<in> set xss. xs = [])"
nipkow@13145
   955
by (induct xss) auto
wenzelm@13114
   956
wenzelm@13142
   957
lemma set_concat [simp]: "set (concat xs) = \<Union>(set ` set xs)"
nipkow@13145
   958
by (induct xs) auto
wenzelm@13114
   959
wenzelm@13142
   960
lemma map_concat: "map f (concat xs) = concat (map (map f) xs)"
nipkow@13145
   961
by (induct xs) auto
wenzelm@13114
   962
wenzelm@13142
   963
lemma filter_concat: "filter p (concat xs) = concat (map (filter p) xs)"
nipkow@13145
   964
by (induct xs) auto
wenzelm@13114
   965
wenzelm@13142
   966
lemma rev_concat: "rev (concat xs) = concat (map rev (rev xs))"
nipkow@13145
   967
by (induct xs) auto
wenzelm@13114
   968
wenzelm@13114
   969
nipkow@15392
   970
subsubsection {* @{text nth} *}
wenzelm@13114
   971
wenzelm@13142
   972
lemma nth_Cons_0 [simp]: "(x # xs)!0 = x"
nipkow@13145
   973
by auto
wenzelm@13114
   974
wenzelm@13142
   975
lemma nth_Cons_Suc [simp]: "(x # xs)!(Suc n) = xs!n"
nipkow@13145
   976
by auto
wenzelm@13114
   977
wenzelm@13142
   978
declare nth.simps [simp del]
wenzelm@13114
   979
wenzelm@13114
   980
lemma nth_append:
nipkow@13145
   981
"!!n. (xs @ ys)!n = (if n < length xs then xs!n else ys!(n - length xs))"
paulson@14208
   982
apply (induct "xs", simp)
paulson@14208
   983
apply (case_tac n, auto)
nipkow@13145
   984
done
wenzelm@13114
   985
nipkow@14402
   986
lemma nth_append_length [simp]: "(xs @ x # ys) ! length xs = x"
nipkow@14402
   987
by (induct "xs") auto
nipkow@14402
   988
nipkow@14402
   989
lemma nth_append_length_plus[simp]: "(xs @ ys) ! (length xs + n) = ys ! n"
nipkow@14402
   990
by (induct "xs") auto
nipkow@14402
   991
wenzelm@13142
   992
lemma nth_map [simp]: "!!n. n < length xs ==> (map f xs)!n = f(xs!n)"
paulson@14208
   993
apply (induct xs, simp)
paulson@14208
   994
apply (case_tac n, auto)
nipkow@13145
   995
done
wenzelm@13114
   996
nipkow@18423
   997
lemma hd_conv_nth: "xs \<noteq> [] \<Longrightarrow> hd xs = xs!0"
nipkow@18423
   998
by(cases xs) simp_all
nipkow@18423
   999
nipkow@18049
  1000
nipkow@18049
  1001
lemma list_eq_iff_nth_eq:
nipkow@18049
  1002
 "!!ys. (xs = ys) = (length xs = length ys \<and> (ALL i<length xs. xs!i = ys!i))"
nipkow@18049
  1003
apply(induct xs)
nipkow@18049
  1004
 apply simp apply blast
nipkow@18049
  1005
apply(case_tac ys)
nipkow@18049
  1006
 apply simp
nipkow@18049
  1007
apply(simp add:nth_Cons split:nat.split)apply blast
nipkow@18049
  1008
done
nipkow@18049
  1009
wenzelm@13142
  1010
lemma set_conv_nth: "set xs = {xs!i | i. i < length xs}"
paulson@15251
  1011
apply (induct xs, simp, simp)
nipkow@13145
  1012
apply safe
paulson@14208
  1013
apply (rule_tac x = 0 in exI, simp)
paulson@14208
  1014
 apply (rule_tac x = "Suc i" in exI, simp)
paulson@14208
  1015
apply (case_tac i, simp)
nipkow@13145
  1016
apply (rename_tac j)
paulson@14208
  1017
apply (rule_tac x = j in exI, simp)
nipkow@13145
  1018
done
wenzelm@13114
  1019
nipkow@17501
  1020
lemma in_set_conv_nth: "(x \<in> set xs) = (\<exists>i < length xs. xs!i = x)"
nipkow@17501
  1021
by(auto simp:set_conv_nth)
nipkow@17501
  1022
nipkow@13145
  1023
lemma list_ball_nth: "[| n < length xs; !x : set xs. P x|] ==> P(xs!n)"
nipkow@13145
  1024
by (auto simp add: set_conv_nth)
wenzelm@13114
  1025
wenzelm@13142
  1026
lemma nth_mem [simp]: "n < length xs ==> xs!n : set xs"
nipkow@13145
  1027
by (auto simp add: set_conv_nth)
wenzelm@13114
  1028
wenzelm@13114
  1029
lemma all_nth_imp_all_set:
nipkow@13145
  1030
"[| !i < length xs. P(xs!i); x : set xs|] ==> P x"
nipkow@13145
  1031
by (auto simp add: set_conv_nth)
wenzelm@13114
  1032
wenzelm@13114
  1033
lemma all_set_conv_all_nth:
nipkow@13145
  1034
"(\<forall>x \<in> set xs. P x) = (\<forall>i. i < length xs --> P (xs ! i))"
nipkow@13145
  1035
by (auto simp add: set_conv_nth)
wenzelm@13114
  1036
wenzelm@13114
  1037
nipkow@15392
  1038
subsubsection {* @{text list_update} *}
wenzelm@13114
  1039
wenzelm@13142
  1040
lemma length_list_update [simp]: "!!i. length(xs[i:=x]) = length xs"
nipkow@13145
  1041
by (induct xs) (auto split: nat.split)
wenzelm@13114
  1042
wenzelm@13114
  1043
lemma nth_list_update:
nipkow@13145
  1044
"!!i j. i < length xs==> (xs[i:=x])!j = (if i = j then x else xs!j)"
nipkow@13145
  1045
by (induct xs) (auto simp add: nth_Cons split: nat.split)
wenzelm@13114
  1046
wenzelm@13142
  1047
lemma nth_list_update_eq [simp]: "i < length xs ==> (xs[i:=x])!i = x"
nipkow@13145
  1048
by (simp add: nth_list_update)
wenzelm@13114
  1049
wenzelm@13142
  1050
lemma nth_list_update_neq [simp]: "!!i j. i \<noteq> j ==> xs[i:=x]!j = xs!j"
nipkow@13145
  1051
by (induct xs) (auto simp add: nth_Cons split: nat.split)
wenzelm@13114
  1052
wenzelm@13142
  1053
lemma list_update_overwrite [simp]:
nipkow@13145
  1054
"!!i. i < size xs ==> xs[i:=x, i:=y] = xs[i:=y]"
nipkow@13145
  1055
by (induct xs) (auto split: nat.split)
wenzelm@13114
  1056
nipkow@14402
  1057
lemma list_update_id[simp]: "!!i. i < length xs ==> xs[i := xs!i] = xs"
paulson@14208
  1058
apply (induct xs, simp)
nipkow@14187
  1059
apply(simp split:nat.splits)
nipkow@14187
  1060
done
nipkow@14187
  1061
nipkow@17501
  1062
lemma list_update_beyond[simp]: "\<And>i. length xs \<le> i \<Longrightarrow> xs[i:=x] = xs"
nipkow@17501
  1063
apply (induct xs)
nipkow@17501
  1064
 apply simp
nipkow@17501
  1065
apply (case_tac i)
nipkow@17501
  1066
apply simp_all
nipkow@17501
  1067
done
nipkow@17501
  1068
wenzelm@13114
  1069
lemma list_update_same_conv:
nipkow@13145
  1070
"!!i. i < length xs ==> (xs[i := x] = xs) = (xs!i = x)"
nipkow@13145
  1071
by (induct xs) (auto split: nat.split)
wenzelm@13114
  1072
nipkow@14187
  1073
lemma list_update_append1:
nipkow@14187
  1074
 "!!i. i < size xs \<Longrightarrow> (xs @ ys)[i:=x] = xs[i:=x] @ ys"
paulson@14208
  1075
apply (induct xs, simp)
nipkow@14187
  1076
apply(simp split:nat.split)
nipkow@14187
  1077
done
nipkow@14187
  1078
kleing@15868
  1079
lemma list_update_append:
kleing@15868
  1080
  "!!n. (xs @ ys) [n:= x] = 
kleing@15868
  1081
  (if n < length xs then xs[n:= x] @ ys else xs @ (ys [n-length xs:= x]))"
kleing@15868
  1082
by (induct xs) (auto split:nat.splits)
kleing@15868
  1083
nipkow@14402
  1084
lemma list_update_length [simp]:
nipkow@14402
  1085
 "(xs @ x # ys)[length xs := y] = (xs @ y # ys)"
nipkow@14402
  1086
by (induct xs, auto)
nipkow@14402
  1087
wenzelm@13114
  1088
lemma update_zip:
nipkow@13145
  1089
"!!i xy xs. length xs = length ys ==>
nipkow@13145
  1090
(zip xs ys)[i:=xy] = zip (xs[i:=fst xy]) (ys[i:=snd xy])"
nipkow@13145
  1091
by (induct ys) (auto, case_tac xs, auto split: nat.split)
wenzelm@13114
  1092
wenzelm@13114
  1093
lemma set_update_subset_insert: "!!i. set(xs[i:=x]) <= insert x (set xs)"
nipkow@13145
  1094
by (induct xs) (auto split: nat.split)
wenzelm@13114
  1095
wenzelm@13114
  1096
lemma set_update_subsetI: "[| set xs <= A; x:A |] ==> set(xs[i := x]) <= A"
nipkow@13145
  1097
by (blast dest!: set_update_subset_insert [THEN subsetD])
wenzelm@13114
  1098
kleing@15868
  1099
lemma set_update_memI: "!!n. n < length xs \<Longrightarrow> x \<in> set (xs[n := x])"
kleing@15868
  1100
by (induct xs) (auto split:nat.splits)
kleing@15868
  1101
wenzelm@13114
  1102
nipkow@15392
  1103
subsubsection {* @{text last} and @{text butlast} *}
wenzelm@13114
  1104
wenzelm@13142
  1105
lemma last_snoc [simp]: "last (xs @ [x]) = x"
nipkow@13145
  1106
by (induct xs) auto
wenzelm@13114
  1107
wenzelm@13142
  1108
lemma butlast_snoc [simp]: "butlast (xs @ [x]) = xs"
nipkow@13145
  1109
by (induct xs) auto
wenzelm@13114
  1110
nipkow@14302
  1111
lemma last_ConsL: "xs = [] \<Longrightarrow> last(x#xs) = x"
nipkow@14302
  1112
by(simp add:last.simps)
nipkow@14302
  1113
nipkow@14302
  1114
lemma last_ConsR: "xs \<noteq> [] \<Longrightarrow> last(x#xs) = last xs"
nipkow@14302
  1115
by(simp add:last.simps)
nipkow@14302
  1116
nipkow@14302
  1117
lemma last_append: "last(xs @ ys) = (if ys = [] then last xs else last ys)"
nipkow@14302
  1118
by (induct xs) (auto)
nipkow@14302
  1119
nipkow@14302
  1120
lemma last_appendL[simp]: "ys = [] \<Longrightarrow> last(xs @ ys) = last xs"
nipkow@14302
  1121
by(simp add:last_append)
nipkow@14302
  1122
nipkow@14302
  1123
lemma last_appendR[simp]: "ys \<noteq> [] \<Longrightarrow> last(xs @ ys) = last ys"
nipkow@14302
  1124
by(simp add:last_append)
nipkow@14302
  1125
nipkow@17762
  1126
lemma hd_rev: "xs \<noteq> [] \<Longrightarrow> hd(rev xs) = last xs"
nipkow@17762
  1127
by(rule rev_exhaust[of xs]) simp_all
nipkow@17762
  1128
nipkow@17762
  1129
lemma last_rev: "xs \<noteq> [] \<Longrightarrow> last(rev xs) = hd xs"
nipkow@17762
  1130
by(cases xs) simp_all
nipkow@17762
  1131
nipkow@17765
  1132
lemma last_in_set[simp]: "as \<noteq> [] \<Longrightarrow> last as \<in> set as"
nipkow@17765
  1133
by (induct as) auto
nipkow@17762
  1134
wenzelm@13142
  1135
lemma length_butlast [simp]: "length (butlast xs) = length xs - 1"
nipkow@13145
  1136
by (induct xs rule: rev_induct) auto
wenzelm@13114
  1137
wenzelm@13114
  1138
lemma butlast_append:
nipkow@13145
  1139
"!!ys. butlast (xs @ ys) = (if ys = [] then butlast xs else xs @ butlast ys)"
nipkow@13145
  1140
by (induct xs) auto
wenzelm@13114
  1141
wenzelm@13142
  1142
lemma append_butlast_last_id [simp]:
nipkow@13145
  1143
"xs \<noteq> [] ==> butlast xs @ [last xs] = xs"
nipkow@13145
  1144
by (induct xs) auto
wenzelm@13114
  1145
wenzelm@13142
  1146
lemma in_set_butlastD: "x : set (butlast xs) ==> x : set xs"
nipkow@13145
  1147
by (induct xs) (auto split: split_if_asm)
wenzelm@13114
  1148
wenzelm@13114
  1149
lemma in_set_butlast_appendI:
nipkow@13145
  1150
"x : set (butlast xs) | x : set (butlast ys) ==> x : set (butlast (xs @ ys))"
nipkow@13145
  1151
by (auto dest: in_set_butlastD simp add: butlast_append)
wenzelm@13114
  1152
nipkow@17501
  1153
lemma last_drop[simp]: "!!n. n < length xs \<Longrightarrow> last (drop n xs) = last xs"
nipkow@17501
  1154
apply (induct xs)
nipkow@17501
  1155
 apply simp
nipkow@17501
  1156
apply (auto split:nat.split)
nipkow@17501
  1157
done
nipkow@17501
  1158
nipkow@17589
  1159
lemma last_conv_nth: "xs\<noteq>[] \<Longrightarrow> last xs = xs!(length xs - 1)"
nipkow@17589
  1160
by(induct xs)(auto simp:neq_Nil_conv)
nipkow@17589
  1161
nipkow@15392
  1162
subsubsection {* @{text take} and @{text drop} *}
wenzelm@13114
  1163
wenzelm@13142
  1164
lemma take_0 [simp]: "take 0 xs = []"
nipkow@13145
  1165
by (induct xs) auto
wenzelm@13114
  1166
wenzelm@13142
  1167
lemma drop_0 [simp]: "drop 0 xs = xs"
nipkow@13145
  1168
by (induct xs) auto
wenzelm@13114
  1169
wenzelm@13142
  1170
lemma take_Suc_Cons [simp]: "take (Suc n) (x # xs) = x # take n xs"
nipkow@13145
  1171
by simp
wenzelm@13114
  1172
wenzelm@13142
  1173
lemma drop_Suc_Cons [simp]: "drop (Suc n) (x # xs) = drop n xs"
nipkow@13145
  1174
by simp
wenzelm@13114
  1175
wenzelm@13142
  1176
declare take_Cons [simp del] and drop_Cons [simp del]
wenzelm@13114
  1177
nipkow@15110
  1178
lemma take_Suc: "xs ~= [] ==> take (Suc n) xs = hd xs # take n (tl xs)"
nipkow@15110
  1179
by(clarsimp simp add:neq_Nil_conv)
nipkow@15110
  1180
nipkow@14187
  1181
lemma drop_Suc: "drop (Suc n) xs = drop n (tl xs)"
nipkow@14187
  1182
by(cases xs, simp_all)
nipkow@14187
  1183
nipkow@14187
  1184
lemma drop_tl: "!!n. drop n (tl xs) = tl(drop n xs)"
nipkow@14187
  1185
by(induct xs, simp_all add:drop_Cons drop_Suc split:nat.split)
nipkow@14187
  1186
nipkow@14187
  1187
lemma nth_via_drop: "!!n. drop n xs = y#ys \<Longrightarrow> xs!n = y"
paulson@14208
  1188
apply (induct xs, simp)
nipkow@14187
  1189
apply(simp add:drop_Cons nth_Cons split:nat.splits)
nipkow@14187
  1190
done
nipkow@14187
  1191
nipkow@13913
  1192
lemma take_Suc_conv_app_nth:
nipkow@13913
  1193
 "!!i. i < length xs \<Longrightarrow> take (Suc i) xs = take i xs @ [xs!i]"
paulson@14208
  1194
apply (induct xs, simp)
paulson@14208
  1195
apply (case_tac i, auto)
nipkow@13913
  1196
done
nipkow@13913
  1197
mehta@14591
  1198
lemma drop_Suc_conv_tl:
mehta@14591
  1199
  "!!i. i < length xs \<Longrightarrow> (xs!i) # (drop (Suc i) xs) = drop i xs"
mehta@14591
  1200
apply (induct xs, simp)
mehta@14591
  1201
apply (case_tac i, auto)
mehta@14591
  1202
done
mehta@14591
  1203
wenzelm@13142
  1204
lemma length_take [simp]: "!!xs. length (take n xs) = min (length xs) n"
nipkow@13145
  1205
by (induct n) (auto, case_tac xs, auto)
wenzelm@13114
  1206
wenzelm@13142
  1207
lemma length_drop [simp]: "!!xs. length (drop n xs) = (length xs - n)"
nipkow@13145
  1208
by (induct n) (auto, case_tac xs, auto)
wenzelm@13114
  1209
wenzelm@13142
  1210
lemma take_all [simp]: "!!xs. length xs <= n ==> take n xs = xs"
nipkow@13145
  1211
by (induct n) (auto, case_tac xs, auto)
wenzelm@13114
  1212
wenzelm@13142
  1213
lemma drop_all [simp]: "!!xs. length xs <= n ==> drop n xs = []"
nipkow@13145
  1214
by (induct n) (auto, case_tac xs, auto)
wenzelm@13114
  1215
wenzelm@13142
  1216
lemma take_append [simp]:
nipkow@13145
  1217
"!!xs. take n (xs @ ys) = (take n xs @ take (n - length xs) ys)"
nipkow@13145
  1218
by (induct n) (auto, case_tac xs, auto)
wenzelm@13114
  1219
wenzelm@13142
  1220
lemma drop_append [simp]:
nipkow@13145
  1221
"!!xs. drop n (xs @ ys) = drop n xs @ drop (n - length xs) ys"
nipkow@13145
  1222
by (induct n) (auto, case_tac xs, auto)
wenzelm@13114
  1223
wenzelm@13142
  1224
lemma take_take [simp]: "!!xs n. take n (take m xs) = take (min n m) xs"
paulson@14208
  1225
apply (induct m, auto)
paulson@14208
  1226
apply (case_tac xs, auto)
nipkow@15236
  1227
apply (case_tac n, auto)
nipkow@13145
  1228
done
wenzelm@13114
  1229
wenzelm@13142
  1230
lemma drop_drop [simp]: "!!xs. drop n (drop m xs) = drop (n + m) xs"
paulson@14208
  1231
apply (induct m, auto)
paulson@14208
  1232
apply (case_tac xs, auto)
nipkow@13145
  1233
done
wenzelm@13114
  1234
wenzelm@13114
  1235
lemma take_drop: "!!xs n. take n (drop m xs) = drop m (take (n + m) xs)"
paulson@14208
  1236
apply (induct m, auto)
paulson@14208
  1237
apply (case_tac xs, auto)
nipkow@13145
  1238
done
wenzelm@13114
  1239
nipkow@14802
  1240
lemma drop_take: "!!m n. drop n (take m xs) = take (m-n) (drop n xs)"
nipkow@14802
  1241
apply(induct xs)
nipkow@14802
  1242
 apply simp
nipkow@14802
  1243
apply(simp add: take_Cons drop_Cons split:nat.split)
nipkow@14802
  1244
done
nipkow@14802
  1245
wenzelm@13142
  1246
lemma append_take_drop_id [simp]: "!!xs. take n xs @ drop n xs = xs"
paulson@14208
  1247
apply (induct n, auto)
paulson@14208
  1248
apply (case_tac xs, auto)
nipkow@13145
  1249
done
wenzelm@13114
  1250
nipkow@15110
  1251
lemma take_eq_Nil[simp]: "!!n. (take n xs = []) = (n = 0 \<or> xs = [])"
nipkow@15110
  1252
apply(induct xs)
nipkow@15110
  1253
 apply simp
nipkow@15110
  1254
apply(simp add:take_Cons split:nat.split)
nipkow@15110
  1255
done
nipkow@15110
  1256
nipkow@15110
  1257
lemma drop_eq_Nil[simp]: "!!n. (drop n xs = []) = (length xs <= n)"
nipkow@15110
  1258
apply(induct xs)
nipkow@15110
  1259
apply simp
nipkow@15110
  1260
apply(simp add:drop_Cons split:nat.split)
nipkow@15110
  1261
done
nipkow@15110
  1262
wenzelm@13114
  1263
lemma take_map: "!!xs. take n (map f xs) = map f (take n xs)"
paulson@14208
  1264
apply (induct n, auto)
paulson@14208
  1265
apply (case_tac xs, auto)
nipkow@13145
  1266
done
wenzelm@13114
  1267
wenzelm@13142
  1268
lemma drop_map: "!!xs. drop n (map f xs) = map f (drop n xs)"
paulson@14208
  1269
apply (induct n, auto)
paulson@14208
  1270
apply (case_tac xs, auto)
nipkow@13145
  1271
done
wenzelm@13114
  1272
wenzelm@13114
  1273
lemma rev_take: "!!i. rev (take i xs) = drop (length xs - i) (rev xs)"
paulson@14208
  1274
apply (induct xs, auto)
paulson@14208
  1275
apply (case_tac i, auto)
nipkow@13145
  1276
done
wenzelm@13114
  1277
wenzelm@13114
  1278
lemma rev_drop: "!!i. rev (drop i xs) = take (length xs - i) (rev xs)"
paulson@14208
  1279
apply (induct xs, auto)
paulson@14208
  1280
apply (case_tac i, auto)
nipkow@13145
  1281
done
wenzelm@13114
  1282
wenzelm@13142
  1283
lemma nth_take [simp]: "!!n i. i < n ==> (take n xs)!i = xs!i"
paulson@14208
  1284
apply (induct xs, auto)
paulson@14208
  1285
apply (case_tac n, blast)
paulson@14208
  1286
apply (case_tac i, auto)
nipkow@13145
  1287
done
wenzelm@13114
  1288
wenzelm@13142
  1289
lemma nth_drop [simp]:
nipkow@13145
  1290
"!!xs i. n + i <= length xs ==> (drop n xs)!i = xs!(n + i)"
paulson@14208
  1291
apply (induct n, auto)
paulson@14208
  1292
apply (case_tac xs, auto)
nipkow@13145
  1293
done
nipkow@3507
  1294
nipkow@18423
  1295
lemma hd_drop_conv_nth: "\<lbrakk> xs \<noteq> []; n < length xs \<rbrakk> \<Longrightarrow> hd(drop n xs) = xs!n"
nipkow@18423
  1296
by(simp add: hd_conv_nth)
nipkow@18423
  1297
nipkow@14025
  1298
lemma set_take_subset: "\<And>n. set(take n xs) \<subseteq> set xs"
nipkow@14025
  1299
by(induct xs)(auto simp:take_Cons split:nat.split)
nipkow@14025
  1300
nipkow@14025
  1301
lemma set_drop_subset: "\<And>n. set(drop n xs) \<subseteq> set xs"
nipkow@14025
  1302
by(induct xs)(auto simp:drop_Cons split:nat.split)
nipkow@14025
  1303
nipkow@14187
  1304
lemma in_set_takeD: "x : set(take n xs) \<Longrightarrow> x : set xs"
nipkow@14187
  1305
using set_take_subset by fast
nipkow@14187
  1306
nipkow@14187
  1307
lemma in_set_dropD: "x : set(drop n xs) \<Longrightarrow> x : set xs"
nipkow@14187
  1308
using set_drop_subset by fast
nipkow@14187
  1309
wenzelm@13114
  1310
lemma append_eq_conv_conj:
nipkow@13145
  1311
"!!zs. (xs @ ys = zs) = (xs = take (length xs) zs \<and> ys = drop (length xs) zs)"
paulson@14208
  1312
apply (induct xs, simp, clarsimp)
paulson@14208
  1313
apply (case_tac zs, auto)
nipkow@13145
  1314
done
wenzelm@13142
  1315
paulson@14050
  1316
lemma take_add [rule_format]: 
paulson@14050
  1317
    "\<forall>i. i+j \<le> length(xs) --> take (i+j) xs = take i xs @ take j (drop i xs)"
paulson@14050
  1318
apply (induct xs, auto) 
paulson@14050
  1319
apply (case_tac i, simp_all) 
paulson@14050
  1320
done
paulson@14050
  1321
nipkow@14300
  1322
lemma append_eq_append_conv_if:
nipkow@14300
  1323
 "!! ys\<^isub>1. (xs\<^isub>1 @ xs\<^isub>2 = ys\<^isub>1 @ ys\<^isub>2) =
nipkow@14300
  1324
  (if size xs\<^isub>1 \<le> size ys\<^isub>1
nipkow@14300
  1325
   then xs\<^isub>1 = take (size xs\<^isub>1) ys\<^isub>1 \<and> xs\<^isub>2 = drop (size xs\<^isub>1) ys\<^isub>1 @ ys\<^isub>2
nipkow@14300
  1326
   else take (size ys\<^isub>1) xs\<^isub>1 = ys\<^isub>1 \<and> drop (size ys\<^isub>1) xs\<^isub>1 @ xs\<^isub>2 = ys\<^isub>2)"
nipkow@14300
  1327
apply(induct xs\<^isub>1)
nipkow@14300
  1328
 apply simp
nipkow@14300
  1329
apply(case_tac ys\<^isub>1)
nipkow@14300
  1330
apply simp_all
nipkow@14300
  1331
done
nipkow@14300
  1332
nipkow@15110
  1333
lemma take_hd_drop:
nipkow@15110
  1334
  "!!n. n < length xs \<Longrightarrow> take n xs @ [hd (drop n xs)] = take (n+1) xs"
nipkow@15110
  1335
apply(induct xs)
nipkow@15110
  1336
apply simp
nipkow@15110
  1337
apply(simp add:drop_Cons split:nat.split)
nipkow@15110
  1338
done
nipkow@15110
  1339
nipkow@17501
  1340
lemma id_take_nth_drop:
nipkow@17501
  1341
 "i < length xs \<Longrightarrow> xs = take i xs @ xs!i # drop (Suc i) xs" 
nipkow@17501
  1342
proof -
nipkow@17501
  1343
  assume si: "i < length xs"
nipkow@17501
  1344
  hence "xs = take (Suc i) xs @ drop (Suc i) xs" by auto
nipkow@17501
  1345
  moreover
nipkow@17501
  1346
  from si have "take (Suc i) xs = take i xs @ [xs!i]"
nipkow@17501
  1347
    apply (rule_tac take_Suc_conv_app_nth) by arith
nipkow@17501
  1348
  ultimately show ?thesis by auto
nipkow@17501
  1349
qed
nipkow@17501
  1350
  
nipkow@17501
  1351
lemma upd_conv_take_nth_drop:
nipkow@17501
  1352
 "i < length xs \<Longrightarrow> xs[i:=a] = take i xs @ a # drop (Suc i) xs"
nipkow@17501
  1353
proof -
nipkow@17501
  1354
  assume i: "i < length xs"
nipkow@17501
  1355
  have "xs[i:=a] = (take i xs @ xs!i # drop (Suc i) xs)[i:=a]"
nipkow@17501
  1356
    by(rule arg_cong[OF id_take_nth_drop[OF i]])
nipkow@17501
  1357
  also have "\<dots> = take i xs @ a # drop (Suc i) xs"
nipkow@17501
  1358
    using i by (simp add: list_update_append)
nipkow@17501
  1359
  finally show ?thesis .
nipkow@17501
  1360
qed
nipkow@17501
  1361
wenzelm@13114
  1362
nipkow@15392
  1363
subsubsection {* @{text takeWhile} and @{text dropWhile} *}
wenzelm@13114
  1364
wenzelm@13142
  1365
lemma takeWhile_dropWhile_id [simp]: "takeWhile P xs @ dropWhile P xs = xs"
nipkow@13145
  1366
by (induct xs) auto
wenzelm@13114
  1367
wenzelm@13142
  1368
lemma takeWhile_append1 [simp]:
nipkow@13145
  1369
"[| x:set xs; ~P(x)|] ==> takeWhile P (xs @ ys) = takeWhile P xs"
nipkow@13145
  1370
by (induct xs) auto
wenzelm@13114
  1371
wenzelm@13142
  1372
lemma takeWhile_append2 [simp]:
nipkow@13145
  1373
"(!!x. x : set xs ==> P x) ==> takeWhile P (xs @ ys) = xs @ takeWhile P ys"
nipkow@13145
  1374
by (induct xs) auto
wenzelm@13114
  1375
wenzelm@13142
  1376
lemma takeWhile_tail: "\<not> P x ==> takeWhile P (xs @ (x#l)) = takeWhile P xs"
nipkow@13145
  1377
by (induct xs) auto
wenzelm@13114
  1378
wenzelm@13142
  1379
lemma dropWhile_append1 [simp]:
nipkow@13145
  1380
"[| x : set xs; ~P(x)|] ==> dropWhile P (xs @ ys) = (dropWhile P xs)@ys"
nipkow@13145
  1381
by (induct xs) auto
wenzelm@13114
  1382
wenzelm@13142
  1383
lemma dropWhile_append2 [simp]:
nipkow@13145
  1384
"(!!x. x:set xs ==> P(x)) ==> dropWhile P (xs @ ys) = dropWhile P ys"
nipkow@13145
  1385
by (induct xs) auto
wenzelm@13114
  1386
wenzelm@13142
  1387
lemma set_take_whileD: "x : set (takeWhile P xs) ==> x : set xs \<and> P x"
nipkow@13145
  1388
by (induct xs) (auto split: split_if_asm)
wenzelm@13114
  1389
nipkow@13913
  1390
lemma takeWhile_eq_all_conv[simp]:
nipkow@13913
  1391
 "(takeWhile P xs = xs) = (\<forall>x \<in> set xs. P x)"
nipkow@13913
  1392
by(induct xs, auto)
nipkow@13913
  1393
nipkow@13913
  1394
lemma dropWhile_eq_Nil_conv[simp]:
nipkow@13913
  1395
 "(dropWhile P xs = []) = (\<forall>x \<in> set xs. P x)"
nipkow@13913
  1396
by(induct xs, auto)
nipkow@13913
  1397
nipkow@13913
  1398
lemma dropWhile_eq_Cons_conv:
nipkow@13913
  1399
 "(dropWhile P xs = y#ys) = (xs = takeWhile P xs @ y # ys & \<not> P y)"
nipkow@13913
  1400
by(induct xs, auto)
nipkow@13913
  1401
nipkow@17501
  1402
text{* The following two lemmmas could be generalized to an arbitrary
nipkow@17501
  1403
property. *}
nipkow@17501
  1404
nipkow@17501
  1405
lemma takeWhile_neq_rev: "\<lbrakk>distinct xs; x \<in> set xs\<rbrakk> \<Longrightarrow>
nipkow@17501
  1406
 takeWhile (\<lambda>y. y \<noteq> x) (rev xs) = rev (tl (dropWhile (\<lambda>y. y \<noteq> x) xs))"
nipkow@17501
  1407
by(induct xs) (auto simp: takeWhile_tail[where l="[]"])
nipkow@17501
  1408
nipkow@17501
  1409
lemma dropWhile_neq_rev: "\<lbrakk>distinct xs; x \<in> set xs\<rbrakk> \<Longrightarrow>
nipkow@17501
  1410
  dropWhile (\<lambda>y. y \<noteq> x) (rev xs) = x # rev (takeWhile (\<lambda>y. y \<noteq> x) xs)"
nipkow@17501
  1411
apply(induct xs)
nipkow@17501
  1412
 apply simp
nipkow@17501
  1413
apply auto
nipkow@17501
  1414
apply(subst dropWhile_append2)
nipkow@17501
  1415
apply auto
nipkow@17501
  1416
done
nipkow@17501
  1417
nipkow@18423
  1418
lemma takeWhile_not_last:
nipkow@18423
  1419
 "\<lbrakk> xs \<noteq> []; distinct xs\<rbrakk> \<Longrightarrow> takeWhile (\<lambda>y. y \<noteq> last xs) xs = butlast xs"
nipkow@18423
  1420
apply(induct xs)
nipkow@18423
  1421
 apply simp
nipkow@18423
  1422
apply(case_tac xs)
nipkow@18423
  1423
apply(auto)
nipkow@18423
  1424
done
nipkow@18423
  1425
krauss@19770
  1426
lemma takeWhile_cong [fundef_cong, recdef_cong]:
krauss@18336
  1427
  "[| l = k; !!x. x : set l ==> P x = Q x |] 
krauss@18336
  1428
  ==> takeWhile P l = takeWhile Q k"
wenzelm@20503
  1429
  by (induct k arbitrary: l) (simp_all)
krauss@18336
  1430
krauss@19770
  1431
lemma dropWhile_cong [fundef_cong, recdef_cong]:
krauss@18336
  1432
  "[| l = k; !!x. x : set l ==> P x = Q x |] 
krauss@18336
  1433
  ==> dropWhile P l = dropWhile Q k"
wenzelm@20503
  1434
  by (induct k arbitrary: l, simp_all)
krauss@18336
  1435
wenzelm@13114
  1436
nipkow@15392
  1437
subsubsection {* @{text zip} *}
wenzelm@13114
  1438
wenzelm@13142
  1439
lemma zip_Nil [simp]: "zip [] ys = []"
nipkow@13145
  1440
by (induct ys) auto
wenzelm@13114
  1441
wenzelm@13142
  1442
lemma zip_Cons_Cons [simp]: "zip (x # xs) (y # ys) = (x, y) # zip xs ys"
nipkow@13145
  1443
by simp
wenzelm@13114
  1444
wenzelm@13142
  1445
declare zip_Cons [simp del]
wenzelm@13114
  1446
nipkow@15281
  1447
lemma zip_Cons1:
nipkow@15281
  1448
 "zip (x#xs) ys = (case ys of [] \<Rightarrow> [] | y#ys \<Rightarrow> (x,y)#zip xs ys)"
nipkow@15281
  1449
by(auto split:list.split)
nipkow@15281
  1450
wenzelm@13142
  1451
lemma length_zip [simp]:
krauss@22493
  1452
"length (zip xs ys) = min (length xs) (length ys)"
krauss@22493
  1453
by (induct xs ys rule:list_induct2') auto
wenzelm@13114
  1454
wenzelm@13114
  1455
lemma zip_append1:
krauss@22493
  1456
"zip (xs @ ys) zs =
nipkow@13145
  1457
zip xs (take (length xs) zs) @ zip ys (drop (length xs) zs)"
krauss@22493
  1458
by (induct xs zs rule:list_induct2') auto
wenzelm@13114
  1459
wenzelm@13114
  1460
lemma zip_append2:
krauss@22493
  1461
"zip xs (ys @ zs) =
nipkow@13145
  1462
zip (take (length ys) xs) ys @ zip (drop (length ys) xs) zs"
krauss@22493
  1463
by (induct xs ys rule:list_induct2') auto
wenzelm@13114
  1464
wenzelm@13142
  1465
lemma zip_append [simp]:
wenzelm@13142
  1466
 "[| length xs = length us; length ys = length vs |] ==>
nipkow@13145
  1467
zip (xs@ys) (us@vs) = zip xs us @ zip ys vs"
nipkow@13145
  1468
by (simp add: zip_append1)
wenzelm@13114
  1469
wenzelm@13114
  1470
lemma zip_rev:
nipkow@14247
  1471
"length xs = length ys ==> zip (rev xs) (rev ys) = rev (zip xs ys)"
nipkow@14247
  1472
by (induct rule:list_induct2, simp_all)
wenzelm@13114
  1473
nipkow@23096
  1474
lemma map_zip_map:
nipkow@23096
  1475
 "map f (zip (map g xs) ys) = map (%(x,y). f(g x, y)) (zip xs ys)"
nipkow@23096
  1476
apply(induct xs arbitrary:ys) apply simp
nipkow@23096
  1477
apply(case_tac ys)
nipkow@23096
  1478
apply simp_all
nipkow@23096
  1479
done
nipkow@23096
  1480
nipkow@23096
  1481
lemma map_zip_map2:
nipkow@23096
  1482
 "map f (zip xs (map g ys)) = map (%(x,y). f(x, g y)) (zip xs ys)"
nipkow@23096
  1483
apply(induct xs arbitrary:ys) apply simp
nipkow@23096
  1484
apply(case_tac ys)
nipkow@23096
  1485
apply simp_all
nipkow@23096
  1486
done
nipkow@23096
  1487
wenzelm@13142
  1488
lemma nth_zip [simp]:
nipkow@13145
  1489
"!!i xs. [| i < length xs; i < length ys|] ==> (zip xs ys)!i = (xs!i, ys!i)"
paulson@14208
  1490
apply (induct ys, simp)
nipkow@13145
  1491
apply (case_tac xs)
nipkow@13145
  1492
 apply (simp_all add: nth.simps split: nat.split)
nipkow@13145
  1493
done
wenzelm@13114
  1494
wenzelm@13114
  1495
lemma set_zip:
nipkow@13145
  1496
"set (zip xs ys) = {(xs!i, ys!i) | i. i < min (length xs) (length ys)}"
nipkow@13145
  1497
by (simp add: set_conv_nth cong: rev_conj_cong)
wenzelm@13114
  1498
wenzelm@13114
  1499
lemma zip_update:
nipkow@13145
  1500
"length xs = length ys ==> zip (xs[i:=x]) (ys[i:=y]) = (zip xs ys)[i:=(x,y)]"
nipkow@13145
  1501
by (rule sym, simp add: update_zip)
wenzelm@13114
  1502
wenzelm@13142
  1503
lemma zip_replicate [simp]:
nipkow@13145
  1504
"!!j. zip (replicate i x) (replicate j y) = replicate (min i j) (x,y)"
paulson@14208
  1505
apply (induct i, auto)
paulson@14208
  1506
apply (case_tac j, auto)
nipkow@13145
  1507
done
wenzelm@13114
  1508
nipkow@19487
  1509
lemma take_zip:
nipkow@19487
  1510
 "!!xs ys. take n (zip xs ys) = zip (take n xs) (take n ys)"
nipkow@19487
  1511
apply (induct n)
nipkow@19487
  1512
 apply simp
nipkow@19487
  1513
apply (case_tac xs, simp)
nipkow@19487
  1514
apply (case_tac ys, simp_all)
nipkow@19487
  1515
done
nipkow@19487
  1516
nipkow@19487
  1517
lemma drop_zip:
nipkow@19487
  1518
 "!!xs ys. drop n (zip xs ys) = zip (drop n xs) (drop n ys)"
nipkow@19487
  1519
apply (induct n)
nipkow@19487
  1520
 apply simp
nipkow@19487
  1521
apply (case_tac xs, simp)
nipkow@19487
  1522
apply (case_tac ys, simp_all)
nipkow@19487
  1523
done
nipkow@19487
  1524
krauss@22493
  1525
lemma set_zip_leftD:
krauss@22493
  1526
  "(x,y)\<in> set (zip xs ys) \<Longrightarrow> x \<in> set xs"
krauss@22493
  1527
by (induct xs ys rule:list_induct2') auto
krauss@22493
  1528
krauss@22493
  1529
lemma set_zip_rightD:
krauss@22493
  1530
  "(x,y)\<in> set (zip xs ys) \<Longrightarrow> y \<in> set ys"
krauss@22493
  1531
by (induct xs ys rule:list_induct2') auto
wenzelm@13142
  1532
nipkow@15392
  1533
subsubsection {* @{text list_all2} *}
wenzelm@13114
  1534
kleing@14316
  1535
lemma list_all2_lengthD [intro?]: 
kleing@14316
  1536
  "list_all2 P xs ys ==> length xs = length ys"
haftmann@19607
  1537
  by (simp add: list_all2_def)
haftmann@19607
  1538
haftmann@19787
  1539
lemma list_all2_Nil [iff, code]: "list_all2 P [] ys = (ys = [])"
haftmann@19607
  1540
  by (simp add: list_all2_def)
haftmann@19607
  1541
haftmann@19787
  1542
lemma list_all2_Nil2 [iff, code]: "list_all2 P xs [] = (xs = [])"
haftmann@19787
  1543
  by (simp add: list_all2_def)
haftmann@19607
  1544
haftmann@19607
  1545
lemma list_all2_Cons [iff, code]:
haftmann@19607
  1546
  "list_all2 P (x # xs) (y # ys) = (P x y \<and> list_all2 P xs ys)"
haftmann@19607
  1547
  by (auto simp add: list_all2_def)
wenzelm@13114
  1548
wenzelm@13114
  1549
lemma list_all2_Cons1:
nipkow@13145
  1550
"list_all2 P (x # xs) ys = (\<exists>z zs. ys = z # zs \<and> P x z \<and> list_all2 P xs zs)"
nipkow@13145
  1551
by (cases ys) auto
wenzelm@13114
  1552
wenzelm@13114
  1553
lemma list_all2_Cons2:
nipkow@13145
  1554
"list_all2 P xs (y # ys) = (\<exists>z zs. xs = z # zs \<and> P z y \<and> list_all2 P zs ys)"
nipkow@13145
  1555
by (cases xs) auto
wenzelm@13114
  1556
wenzelm@13142
  1557
lemma list_all2_rev [iff]:
nipkow@13145
  1558
"list_all2 P (rev xs) (rev ys) = list_all2 P xs ys"
nipkow@13145
  1559
by (simp add: list_all2_def zip_rev cong: conj_cong)
wenzelm@13114
  1560
kleing@13863
  1561
lemma list_all2_rev1:
kleing@13863
  1562
"list_all2 P (rev xs) ys = list_all2 P xs (rev ys)"
kleing@13863
  1563
by (subst list_all2_rev [symmetric]) simp
kleing@13863
  1564
wenzelm@13114
  1565
lemma list_all2_append1:
nipkow@13145
  1566
"list_all2 P (xs @ ys) zs =
nipkow@13145
  1567
(EX us vs. zs = us @ vs \<and> length us = length xs \<and> length vs = length ys \<and>
nipkow@13145
  1568
list_all2 P xs us \<and> list_all2 P ys vs)"
nipkow@13145
  1569
apply (simp add: list_all2_def zip_append1)
nipkow@13145
  1570
apply (rule iffI)
nipkow@13145
  1571
 apply (rule_tac x = "take (length xs) zs" in exI)
nipkow@13145
  1572
 apply (rule_tac x = "drop (length xs) zs" in exI)
paulson@14208
  1573
 apply (force split: nat_diff_split simp add: min_def, clarify)
nipkow@13145
  1574
apply (simp add: ball_Un)
nipkow@13145
  1575
done
wenzelm@13114
  1576
wenzelm@13114
  1577
lemma list_all2_append2:
nipkow@13145
  1578
"list_all2 P xs (ys @ zs) =
nipkow@13145
  1579
(EX us vs. xs = us @ vs \<and> length us = length ys \<and> length vs = length zs \<and>
nipkow@13145
  1580
list_all2 P us ys \<and> list_all2 P vs zs)"
nipkow@13145
  1581
apply (simp add: list_all2_def zip_append2)
nipkow@13145
  1582
apply (rule iffI)
nipkow@13145
  1583
 apply (rule_tac x = "take (length ys) xs" in exI)
nipkow@13145
  1584
 apply (rule_tac x = "drop (length ys) xs" in exI)
paulson@14208
  1585
 apply (force split: nat_diff_split simp add: min_def, clarify)
nipkow@13145
  1586
apply (simp add: ball_Un)
nipkow@13145
  1587
done
wenzelm@13114
  1588
kleing@13863
  1589
lemma list_all2_append:
nipkow@14247
  1590
  "length xs = length ys \<Longrightarrow>
nipkow@14247
  1591
  list_all2 P (xs@us) (ys@vs) = (list_all2 P xs ys \<and> list_all2 P us vs)"
nipkow@14247
  1592
by (induct rule:list_induct2, simp_all)
kleing@13863
  1593
kleing@13863
  1594
lemma list_all2_appendI [intro?, trans]:
kleing@13863
  1595
  "\<lbrakk> list_all2 P a b; list_all2 P c d \<rbrakk> \<Longrightarrow> list_all2 P (a@c) (b@d)"
kleing@13863
  1596
  by (simp add: list_all2_append list_all2_lengthD)
kleing@13863
  1597
wenzelm@13114
  1598
lemma list_all2_conv_all_nth:
nipkow@13145
  1599
"list_all2 P xs ys =
nipkow@13145
  1600
(length xs = length ys \<and> (\<forall>i < length xs. P (xs!i) (ys!i)))"
nipkow@13145
  1601
by (force simp add: list_all2_def set_zip)
wenzelm@13114
  1602
berghofe@13883
  1603
lemma list_all2_trans:
berghofe@13883
  1604
  assumes tr: "!!a b c. P1 a b ==> P2 b c ==> P3 a c"
berghofe@13883
  1605
  shows "!!bs cs. list_all2 P1 as bs ==> list_all2 P2 bs cs ==> list_all2 P3 as cs"
berghofe@13883
  1606
        (is "!!bs cs. PROP ?Q as bs cs")
berghofe@13883
  1607
proof (induct as)
berghofe@13883
  1608
  fix x xs bs assume I1: "!!bs cs. PROP ?Q xs bs cs"
berghofe@13883
  1609
  show "!!cs. PROP ?Q (x # xs) bs cs"
berghofe@13883
  1610
  proof (induct bs)
berghofe@13883
  1611
    fix y ys cs assume I2: "!!cs. PROP ?Q (x # xs) ys cs"
berghofe@13883
  1612
    show "PROP ?Q (x # xs) (y # ys) cs"
berghofe@13883
  1613
      by (induct cs) (auto intro: tr I1 I2)
berghofe@13883
  1614
  qed simp
berghofe@13883
  1615
qed simp
berghofe@13883
  1616
kleing@13863
  1617
lemma list_all2_all_nthI [intro?]:
kleing@13863
  1618
  "length a = length b \<Longrightarrow> (\<And>n. n < length a \<Longrightarrow> P (a!n) (b!n)) \<Longrightarrow> list_all2 P a b"
kleing@13863
  1619
  by (simp add: list_all2_conv_all_nth)
kleing@13863
  1620
paulson@14395
  1621
lemma list_all2I:
paulson@14395
  1622
  "\<forall>x \<in> set (zip a b). split P x \<Longrightarrow> length a = length b \<Longrightarrow> list_all2 P a b"
paulson@14395
  1623
  by (simp add: list_all2_def)
paulson@14395
  1624
kleing@14328
  1625
lemma list_all2_nthD:
kleing@13863
  1626
  "\<lbrakk> list_all2 P xs ys; p < size xs \<rbrakk> \<Longrightarrow> P (xs!p) (ys!p)"
kleing@13863
  1627
  by (simp add: list_all2_conv_all_nth)
kleing@13863
  1628
nipkow@14302
  1629
lemma list_all2_nthD2:
nipkow@14302
  1630
  "\<lbrakk>list_all2 P xs ys; p < size ys\<rbrakk> \<Longrightarrow> P (xs!p) (ys!p)"
nipkow@14302
  1631
  by (frule list_all2_lengthD) (auto intro: list_all2_nthD)
nipkow@14302
  1632
kleing@13863
  1633
lemma list_all2_map1: 
kleing@13863
  1634
  "list_all2 P (map f as) bs = list_all2 (\<lambda>x y. P (f x) y) as bs"
kleing@13863
  1635
  by (simp add: list_all2_conv_all_nth)
kleing@13863
  1636
kleing@13863
  1637
lemma list_all2_map2: 
kleing@13863
  1638
  "list_all2 P as (map f bs) = list_all2 (\<lambda>x y. P x (f y)) as bs"
kleing@13863
  1639
  by (auto simp add: list_all2_conv_all_nth)
kleing@13863
  1640
kleing@14316
  1641
lemma list_all2_refl [intro?]:
kleing@13863
  1642
  "(\<And>x. P x x) \<Longrightarrow> list_all2 P xs xs"
kleing@13863
  1643
  by (simp add: list_all2_conv_all_nth)
kleing@13863
  1644
kleing@13863
  1645
lemma list_all2_update_cong:
kleing@13863
  1646
  "\<lbrakk> i<size xs; list_all2 P xs ys; P x y \<rbrakk> \<Longrightarrow> list_all2 P (xs[i:=x]) (ys[i:=y])"
kleing@13863
  1647
  by (simp add: list_all2_conv_all_nth nth_list_update)
kleing@13863
  1648
kleing@13863
  1649
lemma list_all2_update_cong2:
kleing@13863
  1650
  "\<lbrakk>list_all2 P xs ys; P x y; i < length ys\<rbrakk> \<Longrightarrow> list_all2 P (xs[i:=x]) (ys[i:=y])"
kleing@13863
  1651
  by (simp add: list_all2_lengthD list_all2_update_cong)
kleing@13863
  1652
nipkow@14302
  1653
lemma list_all2_takeI [simp,intro?]:
nipkow@14302
  1654
  "\<And>n ys. list_all2 P xs ys \<Longrightarrow> list_all2 P (take n xs) (take n ys)"
nipkow@14302
  1655
  apply (induct xs)
nipkow@14302
  1656
   apply simp
nipkow@14302
  1657
  apply (clarsimp simp add: list_all2_Cons1)
nipkow@14302
  1658
  apply (case_tac n)
nipkow@14302
  1659
  apply auto
nipkow@14302
  1660
  done
nipkow@14302
  1661
nipkow@14302
  1662
lemma list_all2_dropI [simp,intro?]:
kleing@13863
  1663
  "\<And>n bs. list_all2 P as bs \<Longrightarrow> list_all2 P (drop n as) (drop n bs)"
paulson@14208
  1664
  apply (induct as, simp)
kleing@13863
  1665
  apply (clarsimp simp add: list_all2_Cons1)
paulson@14208
  1666
  apply (case_tac n, simp, simp)
kleing@13863
  1667
  done
kleing@13863
  1668
kleing@14327
  1669
lemma list_all2_mono [intro?]:
kleing@13863
  1670
  "\<And>y. list_all2 P x y \<Longrightarrow> (\<And>x y. P x y \<Longrightarrow> Q x y) \<Longrightarrow> list_all2 Q x y"
paulson@14208
  1671
  apply (induct x, simp)
paulson@14208
  1672
  apply (case_tac y, auto)
kleing@13863
  1673
  done
kleing@13863
  1674
haftmann@22551
  1675
lemma list_all2_eq:
haftmann@22551
  1676
  "xs = ys \<longleftrightarrow> list_all2 (op =) xs ys"
haftmann@22551
  1677
  by (induct xs ys rule: list_induct2') auto
haftmann@22551
  1678
wenzelm@13142
  1679
nipkow@15392
  1680
subsubsection {* @{text foldl} and @{text foldr} *}
wenzelm@13142
  1681
wenzelm@13142
  1682
lemma foldl_append [simp]:
nipkow@13145
  1683
"!!a. foldl f a (xs @ ys) = foldl f (foldl f a xs) ys"
nipkow@13145
  1684
by (induct xs) auto
wenzelm@13142
  1685
nipkow@14402
  1686
lemma foldr_append[simp]: "foldr f (xs @ ys) a = foldr f xs (foldr f ys a)"
nipkow@14402
  1687
by (induct xs) auto
nipkow@14402
  1688
nipkow@23096
  1689
lemma foldr_map: "foldr g (map f xs) a = foldr (g o f) xs a"
nipkow@23096
  1690
by(induct xs) simp_all
nipkow@23096
  1691
nipkow@23096
  1692
lemma foldl_map: "foldl g a (map f xs) = foldl (%a x. g a (f x)) a xs"
nipkow@23096
  1693
by(induct xs arbitrary:a) simp_all
nipkow@23096
  1694
krauss@19770
  1695
lemma foldl_cong [fundef_cong, recdef_cong]:
krauss@18336
  1696
  "[| a = b; l = k; !!a x. x : set l ==> f a x = g a x |] 
krauss@18336
  1697
  ==> foldl f a l = foldl g b k"
wenzelm@20503
  1698
  by (induct k arbitrary: a b l) simp_all
krauss@18336
  1699
krauss@19770
  1700
lemma foldr_cong [fundef_cong, recdef_cong]:
krauss@18336
  1701
  "[| a = b; l = k; !!a x. x : set l ==> f x a = g x a |] 
krauss@18336
  1702
  ==> foldr f l a = foldr g k b"
wenzelm@20503
  1703
  by (induct k arbitrary: a b l) simp_all
krauss@18336
  1704
nipkow@23096
  1705
text{* The ``First Duality Theorem'' in Bird \& Wadler: *}
nipkow@23096
  1706
nipkow@23096
  1707
lemma foldl_foldr1_lemma:
nipkow@23096
  1708
 "foldl op + a xs = a + foldr op + xs (0\<Colon>'a::monoid_add)"
nipkow@23096
  1709
by (induct xs arbitrary: a) (auto simp:add_assoc)
nipkow@23096
  1710
nipkow@23096
  1711
corollary foldl_foldr1:
nipkow@23096
  1712
 "foldl op + 0 xs = foldr op + xs (0\<Colon>'a::monoid_add)"
nipkow@23096
  1713
by (simp add:foldl_foldr1_lemma)
nipkow@23096
  1714
nipkow@23096
  1715
nipkow@23096
  1716
text{* The ``Third Duality Theorem'' in Bird \& Wadler: *}
nipkow@23096
  1717
nipkow@14402
  1718
lemma foldr_foldl: "foldr f xs a = foldl (%x y. f y x) a (rev xs)"
nipkow@14402
  1719
by (induct xs) auto
nipkow@14402
  1720
nipkow@14402
  1721
lemma foldl_foldr: "foldl f a xs = foldr (%x y. f y x) (rev xs) a"
nipkow@14402
  1722
by (simp add: foldr_foldl [of "%x y. f y x" "rev xs"])
nipkow@14402
  1723
wenzelm@13142
  1724
text {*
nipkow@13145
  1725
Note: @{text "n \<le> foldl (op +) n ns"} looks simpler, but is more
nipkow@13145
  1726
difficult to use because it requires an additional transitivity step.
wenzelm@13142
  1727
*}
wenzelm@13142
  1728
wenzelm@13142
  1729
lemma start_le_sum: "!!n::nat. m <= n ==> m <= foldl (op +) n ns"
nipkow@13145
  1730
by (induct ns) auto
wenzelm@13142
  1731
wenzelm@13142
  1732
lemma elem_le_sum: "!!n::nat. n : set ns ==> n <= foldl (op +) 0 ns"
nipkow@13145
  1733
by (force intro: start_le_sum simp add: in_set_conv_decomp)
wenzelm@13142
  1734
wenzelm@13142
  1735
lemma sum_eq_0_conv [iff]:
nipkow@13145
  1736
"!!m::nat. (foldl (op +) m ns = 0) = (m = 0 \<and> (\<forall>n \<in> set ns. n = 0))"
nipkow@13145
  1737
by (induct ns) auto
wenzelm@13114
  1738
nipkow@23096
  1739
subsubsection {* List summation: @{const listsum} and @{text"\<Sum>"}*}
nipkow@23096
  1740
nipkow@23096
  1741
lemma listsum_foldr:
nipkow@23096
  1742
 "listsum xs = foldr (op +) xs 0"
nipkow@23096
  1743
by(induct xs) auto
nipkow@23096
  1744
nipkow@23096
  1745
(* for efficient code generation *)
nipkow@23096
  1746
lemma listsum[code]: "listsum xs = foldl (op +) 0 xs"
nipkow@23096
  1747
by(simp add:listsum_foldr foldl_foldr1)
nipkow@23096
  1748
nipkow@23096
  1749
text{* Some syntactic sugar for summing a function over a list: *}
nipkow@23096
  1750
nipkow@23096
  1751
syntax
nipkow@23096
  1752
  "_listsum" :: "pttrn => 'a list => 'b => 'b"    ("(3SUM _<-_. _)" [0, 51, 10] 10)
nipkow@23096
  1753
syntax (xsymbols)
nipkow@23096
  1754
  "_listsum" :: "pttrn => 'a list => 'b => 'b"    ("(3\<Sum>_\<leftarrow>_. _)" [0, 51, 10] 10)
nipkow@23096
  1755
syntax (HTML output)
nipkow@23096
  1756
  "_listsum" :: "pttrn => 'a list => 'b => 'b"    ("(3\<Sum>_\<leftarrow>_. _)" [0, 51, 10] 10)
nipkow@23096
  1757
nipkow@23096
  1758
translations -- {* Beware of argument permutation! *}
nipkow@23096
  1759
  "SUM x<-xs. b" == "CONST listsum (map (%x. b) xs)"
nipkow@23096
  1760
  "\<Sum>x\<leftarrow>xs. b" == "CONST listsum (map (%x. b) xs)"
nipkow@23096
  1761
nipkow@23096
  1762
lemma listsum_0 [simp]: "(\<Sum>x\<leftarrow>xs. 0) = 0"
nipkow@23096
  1763
by (induct xs) simp_all
nipkow@23096
  1764
nipkow@23096
  1765
text{* For non-Abelian groups @{text xs} needs to be reversed on one side: *}
nipkow@23096
  1766
lemma uminus_listsum_map:
nipkow@23096
  1767
 "- listsum (map f xs) = (listsum (map (uminus o f) xs) :: 'a::ab_group_add)"
nipkow@23096
  1768
by(induct xs) simp_all
nipkow@23096
  1769
wenzelm@13114
  1770
nipkow@15392
  1771
subsubsection {* @{text upto} *}
wenzelm@13114
  1772
nipkow@17090
  1773
lemma upt_rec[code]: "[i..<j] = (if i<j then i#[Suc i..<j] else [])"
nipkow@17090
  1774
-- {* simp does not terminate! *}
nipkow@13145
  1775
by (induct j) auto
wenzelm@13142
  1776
nipkow@15425
  1777
lemma upt_conv_Nil [simp]: "j <= i ==> [i..<j] = []"
nipkow@13145
  1778
by (subst upt_rec) simp
wenzelm@13114
  1779
nipkow@15425
  1780
lemma upt_eq_Nil_conv[simp]: "([i..<j] = []) = (j = 0 \<or> j <= i)"
nipkow@15281
  1781
by(induct j)simp_all
nipkow@15281
  1782
nipkow@15281
  1783
lemma upt_eq_Cons_conv:
nipkow@15425
  1784
 "!!x xs. ([i..<j] = x#xs) = (i < j & i = x & [i+1..<j] = xs)"
nipkow@15281
  1785
apply(induct j)
nipkow@15281
  1786
 apply simp
nipkow@15281
  1787
apply(clarsimp simp add: append_eq_Cons_conv)
nipkow@15281
  1788
apply arith
nipkow@15281
  1789
done
nipkow@15281
  1790
nipkow@15425
  1791
lemma upt_Suc_append: "i <= j ==> [i..<(Suc j)] = [i..<j]@[j]"
nipkow@13145
  1792
-- {* Only needed if @{text upt_Suc} is deleted from the simpset. *}
nipkow@13145
  1793
by simp
wenzelm@13114
  1794
nipkow@15425
  1795
lemma upt_conv_Cons: "i < j ==> [i..<j] = i # [Suc i..<j]"
nipkow@13145
  1796
apply(rule trans)
nipkow@13145
  1797
apply(subst upt_rec)
paulson@14208
  1798
 prefer 2 apply (rule refl, simp)
nipkow@13145
  1799
done
wenzelm@13114
  1800
nipkow@15425
  1801
lemma upt_add_eq_append: "i<=j ==> [i..<j+k] = [i..<j]@[j..<j+k]"
nipkow@13145
  1802
-- {* LOOPS as a simprule, since @{text "j <= j"}. *}
nipkow@13145
  1803
by (induct k) auto
wenzelm@13114
  1804
nipkow@15425
  1805
lemma length_upt [simp]: "length [i..<j] = j - i"
nipkow@13145
  1806
by (induct j) (auto simp add: Suc_diff_le)
wenzelm@13114
  1807
nipkow@15425
  1808
lemma nth_upt [simp]: "i + k < j ==> [i..<j] ! k = i + k"
nipkow@13145
  1809
apply (induct j)
nipkow@13145
  1810
apply (auto simp add: less_Suc_eq nth_append split: nat_diff_split)
nipkow@13145
  1811
done
wenzelm@13114
  1812
nipkow@17906
  1813
nipkow@17906
  1814
lemma hd_upt[simp]: "i < j \<Longrightarrow> hd[i..<j] = i"
nipkow@17906
  1815
by(simp add:upt_conv_Cons)
nipkow@17906
  1816
nipkow@17906
  1817
lemma last_upt[simp]: "i < j \<Longrightarrow> last[i..<j] = j - 1"
nipkow@17906
  1818
apply(cases j)
nipkow@17906
  1819
 apply simp
nipkow@17906
  1820
by(simp add:upt_Suc_append)
nipkow@17906
  1821
nipkow@15425
  1822
lemma take_upt [simp]: "!!i. i+m <= n ==> take m [i..<n] = [i..<i+m]"
paulson@14208
  1823
apply (induct m, simp)
nipkow@13145
  1824
apply (subst upt_rec)
nipkow@13145
  1825
apply (rule sym)
nipkow@13145
  1826
apply (subst upt_rec)
nipkow@13145
  1827
apply (simp del: upt.simps)
nipkow@13145
  1828
done
nipkow@3507
  1829
nipkow@17501
  1830
lemma drop_upt[simp]: "drop m [i..<j] = [i+m..<j]"
nipkow@17501
  1831
apply(induct j)
nipkow@17501
  1832
apply auto
nipkow@17501
  1833
done
nipkow@17501
  1834
nipkow@15425
  1835
lemma map_Suc_upt: "map Suc [m..<n] = [Suc m..n]"
nipkow@13145
  1836
by (induct n) auto
wenzelm@13114
  1837
nipkow@15425
  1838
lemma nth_map_upt: "!!i. i < n-m ==> (map f [m..<n]) ! i = f(m+i)"
nipkow@13145
  1839
apply (induct n m rule: diff_induct)
nipkow@13145
  1840
prefer 3 apply (subst map_Suc_upt[symmetric])
nipkow@13145
  1841
apply (auto simp add: less_diff_conv nth_upt)
nipkow@13145
  1842
done
wenzelm@13114
  1843
berghofe@13883
  1844
lemma nth_take_lemma:
berghofe@13883
  1845
  "!!xs ys. k <= length xs ==> k <= length ys ==>
berghofe@13883
  1846
     (!!i. i < k --> xs!i = ys!i) ==> take k xs = take k ys"
berghofe@13883
  1847
apply (atomize, induct k)
paulson@14208
  1848
apply (simp_all add: less_Suc_eq_0_disj all_conj_distrib, clarify)
nipkow@13145
  1849
txt {* Both lists must be non-empty *}
paulson@14208
  1850
apply (case_tac xs, simp)
paulson@14208
  1851
apply (case_tac ys, clarify)
nipkow@13145
  1852
 apply (simp (no_asm_use))
nipkow@13145
  1853
apply clarify
nipkow@13145
  1854
txt {* prenexing's needed, not miniscoping *}
nipkow@13145
  1855
apply (simp (no_asm_use) add: all_simps [symmetric] del: all_simps)
nipkow@13145
  1856
apply blast
nipkow@13145
  1857
done
wenzelm@13114
  1858
wenzelm@13114
  1859
lemma nth_equalityI:
wenzelm@13114
  1860
 "[| length xs = length ys; ALL i < length xs. xs!i = ys!i |] ==> xs = ys"
nipkow@13145
  1861
apply (frule nth_take_lemma [OF le_refl eq_imp_le])
nipkow@13145
  1862
apply (simp_all add: take_all)
nipkow@13145
  1863
done
wenzelm@13142
  1864
kleing@13863
  1865
(* needs nth_equalityI *)
kleing@13863
  1866
lemma list_all2_antisym:
kleing@13863
  1867
  "\<lbrakk> (\<And>x y. \<lbrakk>P x y; Q y x\<rbrakk> \<Longrightarrow> x = y); list_all2 P xs ys; list_all2 Q ys xs \<rbrakk> 
kleing@13863
  1868
  \<Longrightarrow> xs = ys"
kleing@13863
  1869
  apply (simp add: list_all2_conv_all_nth) 
paulson@14208
  1870
  apply (rule nth_equalityI, blast, simp)
kleing@13863
  1871
  done
kleing@13863
  1872
wenzelm@13142
  1873
lemma take_equalityI: "(\<forall>i. take i xs = take i ys) ==> xs = ys"
nipkow@13145
  1874
-- {* The famous take-lemma. *}
nipkow@13145
  1875
apply (drule_tac x = "max (length xs) (length ys)" in spec)
nipkow@13145
  1876
apply (simp add: le_max_iff_disj take_all)
nipkow@13145
  1877
done
wenzelm@13142
  1878
wenzelm@13142
  1879
nipkow@15302
  1880
lemma take_Cons':
nipkow@15302
  1881
     "take n (x # xs) = (if n = 0 then [] else x # take (n - 1) xs)"
nipkow@15302
  1882
by (cases n) simp_all
nipkow@15302
  1883
nipkow@15302
  1884
lemma drop_Cons':
nipkow@15302
  1885
     "drop n (x # xs) = (if n = 0 then x # xs else drop (n - 1) xs)"
nipkow@15302
  1886
by (cases n) simp_all
nipkow@15302
  1887
nipkow@15302
  1888
lemma nth_Cons': "(x # xs)!n = (if n = 0 then x else xs!(n - 1))"
nipkow@15302
  1889
by (cases n) simp_all
nipkow@15302
  1890
paulson@18622
  1891
lemmas take_Cons_number_of = take_Cons'[of "number_of v",standard]
paulson@18622
  1892
lemmas drop_Cons_number_of = drop_Cons'[of "number_of v",standard]
paulson@18622
  1893
lemmas nth_Cons_number_of = nth_Cons'[of _ _ "number_of v",standard]
paulson@18622
  1894
paulson@18622
  1895
declare take_Cons_number_of [simp] 
paulson@18622
  1896
        drop_Cons_number_of [simp] 
paulson@18622
  1897
        nth_Cons_number_of [simp] 
nipkow@15302
  1898
nipkow@15302
  1899
nipkow@15392
  1900
subsubsection {* @{text "distinct"} and @{text remdups} *}
wenzelm@13142
  1901
wenzelm@13142
  1902
lemma distinct_append [simp]:
nipkow@13145
  1903
"distinct (xs @ ys) = (distinct xs \<and> distinct ys \<and> set xs \<inter> set ys = {})"
nipkow@13145
  1904
by (induct xs) auto
wenzelm@13142
  1905
nipkow@15305
  1906
lemma distinct_rev[simp]: "distinct(rev xs) = distinct xs"
nipkow@15305
  1907
by(induct xs) auto
nipkow@15305
  1908
wenzelm@13142
  1909
lemma set_remdups [simp]: "set (remdups xs) = set xs"
nipkow@13145
  1910
by (induct xs) (auto simp add: insert_absorb)
wenzelm@13142
  1911
wenzelm@13142
  1912
lemma distinct_remdups [iff]: "distinct (remdups xs)"
nipkow@13145
  1913
by (induct xs) auto
wenzelm@13142
  1914
paulson@15072
  1915
lemma remdups_eq_nil_iff [simp]: "(remdups x = []) = (x = [])"
paulson@15251
  1916
  by (induct x, auto) 
paulson@15072
  1917
paulson@15072
  1918
lemma remdups_eq_nil_right_iff [simp]: "([] = remdups x) = (x = [])"
paulson@15251
  1919
  by (induct x, auto)
paulson@15072
  1920
nipkow@15245
  1921
lemma length_remdups_leq[iff]: "length(remdups xs) <= length xs"
nipkow@15245
  1922
by (induct xs) auto
nipkow@15245
  1923
nipkow@15245
  1924
lemma length_remdups_eq[iff]:
nipkow@15245
  1925
  "(length (remdups xs) = length xs) = (remdups xs = xs)"
nipkow@15245
  1926
apply(induct xs)
nipkow@15245
  1927
 apply auto
nipkow@15245
  1928
apply(subgoal_tac "length (remdups xs) <= length xs")
nipkow@15245
  1929
 apply arith
nipkow@15245
  1930
apply(rule length_remdups_leq)
nipkow@15245
  1931
done
nipkow@15245
  1932
nipkow@18490
  1933
nipkow@18490
  1934
lemma distinct_map:
nipkow@18490
  1935
  "distinct(map f xs) = (distinct xs & inj_on f (set xs))"
nipkow@18490
  1936
by (induct xs) auto
nipkow@18490
  1937
nipkow@18490
  1938
wenzelm@13142
  1939
lemma distinct_filter [simp]: "distinct xs ==> distinct (filter P xs)"
nipkow@13145
  1940
by (induct xs) auto
wenzelm@13114
  1941
nipkow@17501
  1942
lemma distinct_upt[simp]: "distinct[i..<j]"
nipkow@17501
  1943
by (induct j) auto
nipkow@17501
  1944
nipkow@17501
  1945
lemma distinct_take[simp]: "\<And>i. distinct xs \<Longrightarrow> distinct (take i xs)"
nipkow@17501
  1946
apply(induct xs)
nipkow@17501
  1947
 apply simp
nipkow@17501
  1948
apply (case_tac i)
nipkow@17501
  1949
 apply simp_all
nipkow@17501
  1950
apply(blast dest:in_set_takeD)
nipkow@17501
  1951
done
nipkow@17501
  1952
nipkow@17501
  1953
lemma distinct_drop[simp]: "\<And>i. distinct xs \<Longrightarrow> distinct (drop i xs)"
nipkow@17501
  1954
apply(induct xs)
nipkow@17501
  1955
 apply simp
nipkow@17501
  1956
apply (case_tac i)
nipkow@17501
  1957
 apply simp_all
nipkow@17501
  1958
done
nipkow@17501
  1959
nipkow@17501
  1960
lemma distinct_list_update:
nipkow@17501
  1961
assumes d: "distinct xs" and a: "a \<notin> set xs - {xs!i}"
nipkow@17501
  1962
shows "distinct (xs[i:=a])"
nipkow@17501
  1963
proof (cases "i < length xs")
nipkow@17501
  1964
  case True
nipkow@17501
  1965
  with a have "a \<notin> set (take i xs @ xs ! i # drop (Suc i) xs) - {xs!i}"
nipkow@17501
  1966
    apply (drule_tac id_take_nth_drop) by simp
nipkow@17501
  1967
  with d True show ?thesis
nipkow@17501
  1968
    apply (simp add: upd_conv_take_nth_drop)
nipkow@17501
  1969
    apply (drule subst [OF id_take_nth_drop]) apply assumption
nipkow@17501
  1970
    apply simp apply (cases "a = xs!i") apply simp by blast
nipkow@17501
  1971
next
nipkow@17501
  1972
  case False with d show ?thesis by auto
nipkow@17501
  1973
qed
nipkow@17501
  1974
nipkow@17501
  1975
nipkow@17501
  1976
text {* It is best to avoid this indexed version of distinct, but
nipkow@17501
  1977
sometimes it is useful. *}
nipkow@17501
  1978
wenzelm@13142
  1979
lemma distinct_conv_nth:
nipkow@17501
  1980
"distinct xs = (\<forall>i < size xs. \<forall>j < size xs. i \<noteq> j --> xs!i \<noteq> xs!j)"
paulson@15251
  1981
apply (induct xs, simp, simp)
paulson@14208
  1982
apply (rule iffI, clarsimp)
nipkow@13145
  1983
 apply (case_tac i)
paulson@14208
  1984
apply (case_tac j, simp)
nipkow@13145
  1985
apply (simp add: set_conv_nth)
nipkow@13145
  1986
 apply (case_tac j)
paulson@14208
  1987
apply (clarsimp simp add: set_conv_nth, simp)
nipkow@13145
  1988
apply (rule conjI)
nipkow@13145
  1989
 apply (clarsimp simp add: set_conv_nth)
nipkow@17501
  1990
 apply (erule_tac x = 0 in allE, simp)
paulson@14208
  1991
 apply (erule_tac x = "Suc i" in allE, simp, clarsimp)
nipkow@17501
  1992
apply (erule_tac x = "Suc i" in allE, simp)
paulson@14208
  1993
apply (erule_tac x = "Suc j" in allE, simp)
nipkow@13145
  1994
done
wenzelm@13114
  1995
nipkow@18490
  1996
lemma nth_eq_iff_index_eq:
nipkow@18490
  1997
 "\<lbrakk> distinct xs; i < length xs; j < length xs \<rbrakk> \<Longrightarrow> (xs!i = xs!j) = (i = j)"
nipkow@18490
  1998
by(auto simp: distinct_conv_nth)
nipkow@18490
  1999
nipkow@15110
  2000
lemma distinct_card: "distinct xs ==> card (set xs) = size xs"
kleing@14388
  2001
  by (induct xs) auto
kleing@14388
  2002
nipkow@15110
  2003
lemma card_distinct: "card (set xs) = size xs ==> distinct xs"
kleing@14388
  2004
proof (induct xs)
kleing@14388
  2005
  case Nil thus ?case by simp
kleing@14388
  2006
next
kleing@14388
  2007
  case (Cons x xs)
kleing@14388
  2008
  show ?case
kleing@14388
  2009
  proof (cases "x \<in> set xs")
kleing@14388
  2010
    case False with Cons show ?thesis by simp
kleing@14388
  2011
  next
kleing@14388
  2012
    case True with Cons.prems
kleing@14388
  2013
    have "card (set xs) = Suc (length xs)" 
kleing@14388
  2014
      by (simp add: card_insert_if split: split_if_asm)
kleing@14388
  2015
    moreover have "card (set xs) \<le> length xs" by (rule card_length)
kleing@14388
  2016
    ultimately have False by simp
kleing@14388
  2017
    thus ?thesis ..
kleing@14388
  2018
  qed
kleing@14388
  2019
qed
kleing@14388
  2020
nipkow@18490
  2021
nipkow@18490
  2022
lemma length_remdups_concat:
nipkow@18490
  2023
 "length(remdups(concat xss)) = card(\<Union>xs \<in> set xss. set xs)"
nipkow@18490
  2024
by(simp add: distinct_card[symmetric])
nipkow@17906
  2025
nipkow@17906
  2026
nipkow@15392
  2027
subsubsection {* @{text remove1} *}
nipkow@15110
  2028
nipkow@18049
  2029
lemma remove1_append:
nipkow@18049
  2030
  "remove1 x (xs @ ys) =
nipkow@18049
  2031
  (if x \<in> set xs then remove1 x xs @ ys else xs @ remove1 x ys)"
nipkow@18049
  2032
by (induct xs) auto
nipkow@18049
  2033
nipkow@15110
  2034
lemma set_remove1_subset: "set(remove1 x xs) <= set xs"
nipkow@15110
  2035
apply(induct xs)
nipkow@15110
  2036
 apply simp
nipkow@15110
  2037
apply simp
nipkow@15110
  2038
apply blast
nipkow@15110
  2039
done
nipkow@15110
  2040
paulson@17724
  2041
lemma set_remove1_eq [simp]: "distinct xs ==> set(remove1 x xs) = set xs - {x}"
nipkow@15110
  2042
apply(induct xs)
nipkow@15110
  2043
 apply simp
nipkow@15110
  2044
apply simp
nipkow@15110
  2045
apply blast
nipkow@15110
  2046
done
nipkow@15110
  2047
nipkow@18049
  2048
lemma remove1_filter_not[simp]:
nipkow@18049
  2049
  "\<not> P x \<Longrightarrow> remove1 x (filter P xs) = filter P xs"
nipkow@18049
  2050
by(induct xs) auto
nipkow@18049
  2051
nipkow@15110
  2052
lemma notin_set_remove1[simp]: "x ~: set xs ==> x ~: set(remove1 y xs)"
nipkow@15110
  2053
apply(insert set_remove1_subset)
nipkow@15110
  2054
apply fast
nipkow@15110
  2055
done
nipkow@15110
  2056
nipkow@15110
  2057
lemma distinct_remove1[simp]: "distinct xs ==> distinct(remove1 x xs)"
nipkow@15110
  2058
by (induct xs) simp_all
nipkow@15110
  2059
wenzelm@13114
  2060
nipkow@15392
  2061
subsubsection {* @{text replicate} *}
wenzelm@13114
  2062
wenzelm@13142
  2063
lemma length_replicate [simp]: "length (replicate n x) = n"
nipkow@13145
  2064
by (induct n) auto
nipkow@13124
  2065
wenzelm@13142
  2066
lemma map_replicate [simp]: "map f (replicate n x) = replicate n (f x)"
nipkow@13145
  2067
by (induct n) auto
wenzelm@13114
  2068
wenzelm@13114
  2069
lemma replicate_app_Cons_same:
nipkow@13145
  2070
"(replicate n x) @ (x # xs) = x # replicate n x @ xs"
nipkow@13145
  2071
by (induct n) auto
wenzelm@13114
  2072
wenzelm@13142
  2073
lemma rev_replicate [simp]: "rev (replicate n x) = replicate n x"
paulson@14208
  2074
apply (induct n, simp)
nipkow@13145
  2075
apply (simp add: replicate_app_Cons_same)
nipkow@13145
  2076
done
wenzelm@13114
  2077
wenzelm@13142
  2078
lemma replicate_add: "replicate (n + m) x = replicate n x @ replicate m x"
nipkow@13145
  2079
by (induct n) auto
wenzelm@13114
  2080
nipkow@16397
  2081
text{* Courtesy of Matthias Daum: *}
nipkow@16397
  2082
lemma append_replicate_commute:
nipkow@16397
  2083
  "replicate n x @ replicate k x = replicate k x @ replicate n x"
nipkow@16397
  2084
apply (simp add: replicate_add [THEN sym])
nipkow@16397
  2085
apply (simp add: add_commute)
nipkow@16397
  2086
done
nipkow@16397
  2087
wenzelm@13142
  2088
lemma hd_replicate [simp]: "n \<noteq> 0 ==> hd (replicate n x) = x"
nipkow@13145
  2089
by (induct n) auto
wenzelm@13114
  2090
wenzelm@13142
  2091
lemma tl_replicate [simp]: "n \<noteq> 0 ==> tl (replicate n x) = replicate (n - 1) x"
nipkow@13145
  2092
by (induct n) auto
wenzelm@13114
  2093
wenzelm@13142
  2094
lemma last_replicate [simp]: "n \<noteq> 0 ==> last (replicate n x) = x"
nipkow@13145
  2095
by (atomize (full), induct n) auto
wenzelm@13114
  2096
wenzelm@13142
  2097
lemma nth_replicate[simp]: "!!i. i < n ==> (replicate n x)!i = x"
paulson@14208
  2098
apply (induct n, simp)
nipkow@13145
  2099
apply (simp add: nth_Cons split: nat.split)
nipkow@13145
  2100
done
wenzelm@13114
  2101
nipkow@16397
  2102
text{* Courtesy of Matthias Daum (2 lemmas): *}
nipkow@16397
  2103
lemma take_replicate[simp]: "take i (replicate k x) = replicate (min i k) x"
nipkow@16397
  2104
apply (case_tac "k \<le> i")
nipkow@16397
  2105
 apply  (simp add: min_def)
nipkow@16397
  2106
apply (drule not_leE)
nipkow@16397
  2107
apply (simp add: min_def)
nipkow@16397
  2108
apply (subgoal_tac "replicate k x = replicate i x @ replicate (k - i) x")
nipkow@16397
  2109
 apply  simp
nipkow@16397
  2110
apply (simp add: replicate_add [symmetric])
nipkow@16397
  2111
done
nipkow@16397
  2112
nipkow@16397
  2113
lemma drop_replicate[simp]: "!!i. drop i (replicate k x) = replicate (k-i) x"
nipkow@16397
  2114
apply (induct k)
nipkow@16397
  2115
 apply simp
nipkow@16397
  2116
apply clarsimp
nipkow@16397
  2117
apply (case_tac i)
nipkow@16397
  2118
 apply simp
nipkow@16397
  2119
apply clarsimp
nipkow@16397
  2120
done
nipkow@16397
  2121
nipkow@16397
  2122
wenzelm@13142
  2123
lemma set_replicate_Suc: "set (replicate (Suc n) x) = {x}"
nipkow@13145
  2124
by (induct n) auto
wenzelm@13114
  2125
wenzelm@13142
  2126
lemma set_replicate [simp]: "n \<noteq> 0 ==> set (replicate n x) = {x}"
nipkow@13145
  2127
by (fast dest!: not0_implies_Suc intro!: set_replicate_Suc)
wenzelm@13114
  2128
wenzelm@13142
  2129
lemma set_replicate_conv_if: "set (replicate n x) = (if n = 0 then {} else {x})"
nipkow@13145
  2130
by auto
wenzelm@13114
  2131
wenzelm@13142
  2132
lemma in_set_replicateD: "x : set (replicate n y) ==> x = y"
nipkow@13145
  2133
by (simp add: set_replicate_conv_if split: split_if_asm)
wenzelm@13114
  2134
wenzelm@13114
  2135
nipkow@15392
  2136
subsubsection{*@{text rotate1} and @{text rotate}*}
nipkow@15302
  2137
nipkow@15302
  2138
lemma rotate_simps[simp]: "rotate1 [] = [] \<and> rotate1 (x#xs) = xs @ [x]"
nipkow@15302
  2139
by(simp add:rotate1_def)
nipkow@15302
  2140
nipkow@15302
  2141
lemma rotate0[simp]: "rotate 0 = id"
nipkow@15302
  2142
by(simp add:rotate_def)
nipkow@15302
  2143
nipkow@15302
  2144
lemma rotate_Suc[simp]: "rotate (Suc n) xs = rotate1(rotate n xs)"
nipkow@15302
  2145
by(simp add:rotate_def)
nipkow@15302
  2146
nipkow@15302
  2147
lemma rotate_add:
nipkow@15302
  2148
  "rotate (m+n) = rotate m o rotate n"
nipkow@15302
  2149
by(simp add:rotate_def funpow_add)
nipkow@15302
  2150
nipkow@15302
  2151
lemma rotate_rotate: "rotate m (rotate n xs) = rotate (m+n) xs"
nipkow@15302
  2152
by(simp add:rotate_add)
nipkow@15302
  2153
nipkow@18049
  2154
lemma rotate1_rotate_swap: "rotate1 (rotate n xs) = rotate n (rotate1 xs)"
nipkow@18049
  2155
by(simp add:rotate_def funpow_swap1)
nipkow@18049
  2156
nipkow@15302
  2157
lemma rotate1_length01[simp]: "length xs <= 1 \<Longrightarrow> rotate1 xs = xs"
nipkow@15302
  2158
by(cases xs) simp_all
nipkow@15302
  2159
nipkow@15302
  2160
lemma rotate_length01[simp]: "length xs <= 1 \<Longrightarrow> rotate n xs = xs"
nipkow@15302
  2161
apply(induct n)
nipkow@15302
  2162
 apply simp
nipkow@15302
  2163
apply (simp add:rotate_def)
nipkow@13145
  2164
done
wenzelm@13114
  2165
nipkow@15302
  2166
lemma rotate1_hd_tl: "xs \<noteq> [] \<Longrightarrow> rotate1 xs = tl xs @ [hd xs]"
nipkow@15302
  2167
by(simp add:rotate1_def split:list.split)
nipkow@15302
  2168
nipkow@15302
  2169
lemma rotate_drop_take:
nipkow@15302
  2170
  "rotate n xs = drop (n mod length xs) xs @ take (n mod length xs) xs"
nipkow@15302
  2171
apply(induct n)
nipkow@15302
  2172
 apply simp
nipkow@15302
  2173
apply(simp add:rotate_def)
nipkow@15302
  2174
apply(cases "xs = []")
nipkow@15302
  2175
 apply (simp)
nipkow@15302
  2176
apply(case_tac "n mod length xs = 0")
nipkow@15302
  2177
 apply(simp add:mod_Suc)
nipkow@15302
  2178
 apply(simp add: rotate1_hd_tl drop_Suc take_Suc)
nipkow@15302
  2179
apply(simp add:mod_Suc rotate1_hd_tl drop_Suc[symmetric] drop_tl[symmetric]
nipkow@15302
  2180
                take_hd_drop linorder_not_le)
nipkow@13145
  2181
done
wenzelm@13114
  2182
nipkow@15302
  2183
lemma rotate_conv_mod: "rotate n xs = rotate (n mod length xs) xs"
nipkow@15302
  2184
by(simp add:rotate_drop_take)
nipkow@15302
  2185
nipkow@15302
  2186
lemma rotate_id[simp]: "n mod length xs = 0 \<Longrightarrow> rotate n xs = xs"
nipkow@15302
  2187
by(simp add:rotate_drop_take)
nipkow@15302
  2188
nipkow@15302
  2189
lemma length_rotate1[simp]: "length(rotate1 xs) = length xs"
nipkow@15302
  2190
by(simp add:rotate1_def split:list.split)
nipkow@15302
  2191
nipkow@15302
  2192
lemma length_rotate[simp]: "!!xs. length(rotate n xs) = length xs"
nipkow@15302
  2193
by (induct n) (simp_all add:rotate_def)
nipkow@15302
  2194
nipkow@15302
  2195
lemma distinct1_rotate[simp]: "distinct(rotate1 xs) = distinct xs"
nipkow@15302
  2196
by(simp add:rotate1_def split:list.split) blast
nipkow@15302
  2197
nipkow@15302
  2198
lemma distinct_rotate[simp]: "distinct(rotate n xs) = distinct xs"
nipkow@15302
  2199
by (induct n) (simp_all add:rotate_def)
nipkow@15302
  2200
nipkow@15302
  2201
lemma rotate_map: "rotate n (map f xs) = map f (rotate n xs)"
nipkow@15302
  2202
by(simp add:rotate_drop_take take_map drop_map)
nipkow@15302
  2203
nipkow@15302
  2204
lemma set_rotate1[simp]: "set(rotate1 xs) = set xs"
nipkow@15302
  2205
by(simp add:rotate1_def split:list.split)
nipkow@15302
  2206
nipkow@15302
  2207
lemma set_rotate[simp]: "set(rotate n xs) = set xs"
nipkow@15302
  2208
by (induct n) (simp_all add:rotate_def)
nipkow@15302
  2209
nipkow@15302
  2210
lemma rotate1_is_Nil_conv[simp]: "(rotate1 xs = []) = (xs = [])"
nipkow@15302
  2211
by(simp add:rotate1_def split:list.split)
nipkow@15302
  2212
nipkow@15302
  2213
lemma rotate_is_Nil_conv[simp]: "(rotate n xs = []) = (xs = [])"
nipkow@15302
  2214
by (induct n) (simp_all add:rotate_def)
wenzelm@13114
  2215
nipkow@15439
  2216
lemma rotate_rev:
nipkow@15439
  2217
  "rotate n (rev xs) = rev(rotate (length xs - (n mod length xs)) xs)"
nipkow@15439
  2218
apply(simp add:rotate_drop_take rev_drop rev_take)
nipkow@15439
  2219
apply(cases "length xs = 0")
nipkow@15439
  2220
 apply simp
nipkow@15439
  2221
apply(cases "n mod length xs = 0")
nipkow@15439
  2222
 apply simp
nipkow@15439
  2223
apply(simp add:rotate_drop_take rev_drop rev_take)
nipkow@15439
  2224
done
nipkow@15439
  2225
nipkow@18423
  2226
lemma hd_rotate_conv_nth: "xs \<noteq> [] \<Longrightarrow> hd(rotate n xs) = xs!(n mod length xs)"
nipkow@18423
  2227
apply(simp add:rotate_drop_take hd_append hd_drop_conv_nth hd_conv_nth)
nipkow@18423
  2228
apply(subgoal_tac "length xs \<noteq> 0")
nipkow@18423
  2229
 prefer 2 apply simp
nipkow@18423
  2230
using mod_less_divisor[of "length xs" n] by arith
nipkow@18423
  2231
wenzelm@13114
  2232
nipkow@15392
  2233
subsubsection {* @{text sublist} --- a generalization of @{text nth} to sets *}
wenzelm@13114
  2234
wenzelm@13142
  2235
lemma sublist_empty [simp]: "sublist xs {} = []"
nipkow@13145
  2236
by (auto simp add: sublist_def)
wenzelm@13114
  2237
wenzelm@13142
  2238
lemma sublist_nil [simp]: "sublist [] A = []"
nipkow@13145
  2239
by (auto simp add: sublist_def)
wenzelm@13114
  2240
nipkow@15281
  2241
lemma length_sublist:
nipkow@15281
  2242
  "length(sublist xs I) = card{i. i < length xs \<and> i : I}"
nipkow@15281
  2243
by(simp add: sublist_def length_filter_conv_card cong:conj_cong)
nipkow@15281
  2244
nipkow@15281
  2245
lemma sublist_shift_lemma_Suc:
nipkow@15281
  2246
  "!!is. map fst (filter (%p. P(Suc(snd p))) (zip xs is)) =
nipkow@15281
  2247
         map fst (filter (%p. P(snd p)) (zip xs (map Suc is)))"
nipkow@15281
  2248
apply(induct xs)
nipkow@15281
  2249
 apply simp
nipkow@15281
  2250
apply (case_tac "is")
nipkow@15281
  2251
 apply simp
nipkow@15281
  2252
apply simp
nipkow@15281
  2253
done
nipkow@15281
  2254
wenzelm@13114
  2255
lemma sublist_shift_lemma:
nipkow@15425
  2256
     "map fst [p:zip xs [i..<i + length xs] . snd p : A] =
nipkow@15425
  2257
      map fst [p:zip xs [0..<length xs] . snd p + i : A]"
nipkow@13145
  2258
by (induct xs rule: rev_induct) (simp_all add: add_commute)
wenzelm@13114
  2259
wenzelm@13114
  2260
lemma sublist_append:
paulson@15168
  2261
     "sublist (l @ l') A = sublist l A @ sublist l' {j. j + length l : A}"
nipkow@13145
  2262
apply (unfold sublist_def)
paulson@14208
  2263
apply (induct l' rule: rev_induct, simp)
nipkow@13145
  2264
apply (simp add: upt_add_eq_append[of 0] zip_append sublist_shift_lemma)
nipkow@13145
  2265
apply (simp add: add_commute)
nipkow@13145
  2266
done
wenzelm@13114
  2267
wenzelm@13114
  2268
lemma sublist_Cons:
nipkow@13145
  2269
"sublist (x # l) A = (if 0:A then [x] else []) @ sublist l {j. Suc j : A}"
nipkow@13145
  2270
apply (induct l rule: rev_induct)
nipkow@13145
  2271
 apply (simp add: sublist_def)
nipkow@13145
  2272
apply (simp del: append_Cons add: append_Cons[symmetric] sublist_append)
nipkow@13145
  2273
done
wenzelm@13114
  2274
nipkow@15281
  2275
lemma set_sublist: "!!I. set(sublist xs I) = {xs!i|i. i<size xs \<and> i \<in> I}"
nipkow@15281
  2276
apply(induct xs)
nipkow@15281
  2277
 apply simp
nipkow@15281
  2278
apply(auto simp add:sublist_Cons nth_Cons split:nat.split elim: lessE)
nipkow@15281
  2279
 apply(erule lessE)
nipkow@15281
  2280
  apply auto
nipkow@15281
  2281
apply(erule lessE)
nipkow@15281
  2282
apply auto
nipkow@15281
  2283
done
nipkow@15281
  2284
nipkow@15281
  2285
lemma set_sublist_subset: "set(sublist xs I) \<subseteq> set xs"
nipkow@15281
  2286
by(auto simp add:set_sublist)
nipkow@15281
  2287
nipkow@15281
  2288
lemma notin_set_sublistI[simp]: "x \<notin> set xs \<Longrightarrow> x \<notin> set(sublist xs I)"
nipkow@15281
  2289
by(auto simp add:set_sublist)
nipkow@15281
  2290
nipkow@15281
  2291
lemma in_set_sublistD: "x \<in> set(sublist xs I) \<Longrightarrow> x \<in> set xs"
nipkow@15281
  2292
by(auto simp add:set_sublist)
nipkow@15281
  2293
wenzelm@13142
  2294
lemma sublist_singleton [simp]: "sublist [x] A = (if 0 : A then [x] else [])"
nipkow@13145
  2295
by (simp add: sublist_Cons)
wenzelm@13114
  2296
nipkow@15281
  2297
nipkow@15281
  2298
lemma distinct_sublistI[simp]: "!!I. distinct xs \<Longrightarrow> distinct(sublist xs I)"
nipkow@15281
  2299
apply(induct xs)
nipkow@15281
  2300
 apply simp
nipkow@15281
  2301
apply(auto simp add:sublist_Cons)
nipkow@15281
  2302
done
nipkow@15281
  2303
nipkow@15281
  2304
nipkow@15045
  2305
lemma sublist_upt_eq_take [simp]: "sublist l {..<n} = take n l"
paulson@14208
  2306
apply (induct l rule: rev_induct, simp)
nipkow@13145
  2307
apply (simp split: nat_diff_split add: sublist_append)
nipkow@13145
  2308
done
wenzelm@13114
  2309
nipkow@17501
  2310
lemma filter_in_sublist: "\<And>s. distinct xs \<Longrightarrow>
nipkow@17501
  2311
  filter (%x. x \<in> set(sublist xs s)) xs = sublist xs s"
nipkow@17501
  2312
proof (induct xs)
nipkow@17501
  2313
  case Nil thus ?case by simp
nipkow@17501
  2314
next
nipkow@17501
  2315
  case (Cons a xs)
nipkow@17501
  2316
  moreover hence "!x. x: set xs \<longrightarrow> x \<noteq> a" by auto
nipkow@17501
  2317
  ultimately show ?case by(simp add: sublist_Cons cong:filter_cong)
nipkow@17501
  2318
qed
nipkow@17501
  2319
wenzelm@13114
  2320
nipkow@19390
  2321
subsubsection {* @{const splice} *}
nipkow@19390
  2322
haftmann@19607
  2323
lemma splice_Nil2 [simp, code]:
nipkow@19390
  2324
 "splice xs [] = xs"
nipkow@19390
  2325
by (cases xs) simp_all
nipkow@19390
  2326
haftmann@19607
  2327
lemma splice_Cons_Cons [simp, code]:
nipkow@19390
  2328
 "splice (x#xs) (y#ys) = x # y # splice xs ys"
nipkow@19390
  2329
by simp
nipkow@19390
  2330
haftmann@19607
  2331
declare splice.simps(2) [simp del, code del]
nipkow@19390
  2332
nipkow@22793
  2333
lemma length_splice[simp]: "!!ys. length(splice xs ys) = length xs + length ys"
nipkow@22793
  2334
apply(induct xs) apply simp
nipkow@22793
  2335
apply(case_tac ys)
nipkow@22793
  2336
 apply auto
nipkow@22793
  2337
done
nipkow@22793
  2338
nipkow@22828
  2339
nipkow@22828
  2340
subsubsection {* @{const allpairs} *}
nipkow@22828
  2341
nipkow@22940
  2342
lemma allpairs_conv_concat:
nipkow@22940
  2343
 "allpairs f xs ys = concat(map (%x. map (f x) ys) xs)"
nipkow@22940
  2344
by(induct xs) auto
nipkow@22940
  2345
nipkow@22828
  2346
lemma allpairs_append:
nipkow@22830
  2347
 "allpairs f (xs @ ys) zs = allpairs f xs zs @ allpairs f ys zs"
nipkow@22828
  2348
by(induct xs) auto
nipkow@22828
  2349
nipkow@22828
  2350
nipkow@15392
  2351
subsubsection{*Sets of Lists*}
nipkow@15392
  2352
nipkow@15392
  2353
subsubsection {* @{text lists}: the list-forming operator over sets *}
nipkow@15302
  2354
berghofe@22262
  2355
inductive2
berghofe@22262
  2356
  listsp :: "('a \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> bool"
berghofe@22262
  2357
  for A :: "'a \<Rightarrow> bool"
berghofe@22262
  2358
where
berghofe@22262
  2359
    Nil [intro!]: "listsp A []"
berghofe@22262
  2360
  | Cons [intro!]: "[| A a; listsp A l |] ==> listsp A (a # l)"
berghofe@22262
  2361
berghofe@22262
  2362
constdefs
berghofe@22262
  2363
  lists :: "'a set => 'a list set"
berghofe@22262
  2364
  "lists A == Collect (listsp (member A))"
berghofe@22262
  2365
berghofe@22262
  2366
lemma listsp_lists_eq [pred_set_conv]: "listsp (member A) = member (lists A)"
berghofe@22262
  2367
  by (simp add: lists_def)
berghofe@22262
  2368
berghofe@22262
  2369
lemmas lists_intros [intro!] = listsp.intros [to_set]
berghofe@22262
  2370
berghofe@22262
  2371
lemmas lists_induct [consumes 1, case_names Nil Cons, induct set: lists] =
berghofe@22262
  2372
  listsp.induct [to_set]
berghofe@22262
  2373
berghofe@22262
  2374
inductive_cases2 listspE [elim!]: "listsp A (x # l)"
berghofe@22262
  2375
berghofe@22262
  2376
lemmas listsE [elim!] = listspE [to_set]
berghofe@22262
  2377
berghofe@22262
  2378
lemma listsp_mono [mono2]: "A \<le> B ==> listsp A \<le> listsp B"
berghofe@22262
  2379
  by (clarify, erule listsp.induct, blast+)
berghofe@22262
  2380
berghofe@22262
  2381
lemmas lists_mono [mono] = listsp_mono [to_set]
berghofe@22262
  2382
haftmann@22422
  2383
lemma listsp_infI:
haftmann@22422
  2384
  assumes l: "listsp A l" shows "listsp B l ==> listsp (inf A B) l" using l
nipkow@15302
  2385
  by induct blast+
nipkow@15302
  2386
haftmann@22422
  2387
lemmas lists_IntI = listsp_infI [to_set]
haftmann@22422
  2388
haftmann@22422
  2389
lemma listsp_inf_eq [simp]: "listsp (inf A B) = inf (listsp A) (listsp B)"
haftmann@22422
  2390
proof (rule mono_inf [where f=listsp, THEN order_antisym])
berghofe@22262
  2391
  show "mono listsp" by (simp add: mono_def listsp_mono)
haftmann@22422
  2392
  show "inf (listsp A) (listsp B) \<le> listsp (inf A B)" by (blast intro: listsp_infI)
kleing@14388
  2393
qed
kleing@14388
  2394
haftmann@22422
  2395
lemmas listsp_conj_eq [simp] = listsp_inf_eq [simplified inf_fun_eq inf_bool_eq]
haftmann@22422
  2396
haftmann@22422
  2397
lemmas lists_Int_eq [simp] = listsp_inf_eq [to_set]
berghofe@22262
  2398
berghofe@22262
  2399
lemma append_in_listsp_conv [iff]:
berghofe@22262
  2400
     "(listsp A (xs @ ys)) = (listsp A xs \<and> listsp A ys)"
nipkow@15302
  2401
by (induct xs) auto
nipkow@15302
  2402
berghofe@22262
  2403
lemmas append_in_lists_conv [iff] = append_in_listsp_conv [to_set]
berghofe@22262
  2404
berghofe@22262
  2405
lemma in_listsp_conv_set: "(listsp A xs) = (\<forall>x \<in> set xs. A x)"
berghofe@22262
  2406
-- {* eliminate @{text listsp} in favour of @{text set} *}
nipkow@15302
  2407
by (induct xs) auto
nipkow@15302
  2408
berghofe@22262
  2409
lemmas in_lists_conv_set = in_listsp_conv_set [to_set]
berghofe@22262
  2410
berghofe@22262
  2411
lemma in_listspD [dest!]: "listsp A xs ==> \<forall>x\<in>set xs. A x"
berghofe@22262
  2412
by (rule in_listsp_conv_set [THEN iffD1])
berghofe@22262
  2413
berghofe@22262
  2414
lemmas in_listsD [dest!] = in_listspD [to_set]
berghofe@22262
  2415
berghofe@22262
  2416
lemma in_listspI [intro!]: "\<forall>x\<in>set xs. A x ==> listsp A xs"
berghofe@22262
  2417
by (rule in_listsp_conv_set [THEN iffD2])
berghofe@22262
  2418
berghofe@22262
  2419
lemmas in_listsI [intro!] = in_listspI [to_set]
nipkow@15302
  2420
nipkow@15302
  2421
lemma lists_UNIV [simp]: "lists UNIV = UNIV"
nipkow@15302
  2422
by auto
nipkow@15302
  2423
nipkow@17086
  2424
nipkow@17086
  2425
nipkow@17086
  2426
subsubsection{* Inductive definition for membership *}
nipkow@17086
  2427
berghofe@22262
  2428
inductive2 ListMem :: "'a \<Rightarrow> 'a list \<Rightarrow> bool"
berghofe@22262
  2429
where
berghofe@22262
  2430
    elem:  "ListMem x (x # xs)"
berghofe@22262
  2431
  | insert:  "ListMem x xs \<Longrightarrow> ListMem x (y # xs)"
berghofe@22262
  2432
berghofe@22262
  2433
lemma ListMem_iff: "(ListMem x xs) = (x \<in> set xs)"
nipkow@17086
  2434
apply (rule iffI)
nipkow@17086
  2435
 apply (induct set: ListMem)
nipkow@17086
  2436
  apply auto
nipkow@17086
  2437
apply (induct xs)
nipkow@17086
  2438
 apply (auto intro: ListMem.intros)
nipkow@17086
  2439
done
nipkow@17086
  2440
nipkow@17086
  2441
nipkow@17086
  2442
nipkow@15392
  2443
subsubsection{*Lists as Cartesian products*}
nipkow@15302
  2444
nipkow@15302
  2445
text{*@{text"set_Cons A Xs"}: the set of lists with head drawn from
nipkow@15302
  2446
@{term A} and tail drawn from @{term Xs}.*}
nipkow@15302
  2447
nipkow@15302
  2448
constdefs
nipkow@15302
  2449
  set_Cons :: "'a set \<Rightarrow> 'a list set \<Rightarrow> 'a list set"
nipkow@15302
  2450
  "set_Cons A XS == {z. \<exists>x xs. z = x#xs & x \<in> A & xs \<in> XS}"
nipkow@15302
  2451
paulson@17724
  2452
lemma set_Cons_sing_Nil [simp]: "set_Cons A {[]} = (%x. [x])`A"
nipkow@15302
  2453
by (auto simp add: set_Cons_def)
nipkow@15302
  2454
nipkow@15302
  2455
text{*Yields the set of lists, all of the same length as the argument and
nipkow@15302
  2456
with elements drawn from the corresponding element of the argument.*}
nipkow@15302
  2457
nipkow@15302
  2458
consts  listset :: "'a set list \<Rightarrow> 'a list set"
nipkow@15302
  2459
primrec
nipkow@15302
  2460
   "listset []    = {[]}"
nipkow@15302
  2461
   "listset(A#As) = set_Cons A (listset As)"
nipkow@15302
  2462
nipkow@15302
  2463
paulson@15656
  2464
subsection{*Relations on Lists*}
paulson@15656
  2465
paulson@15656
  2466
subsubsection {* Length Lexicographic Ordering *}
paulson@15656
  2467
paulson@15656
  2468
text{*These orderings preserve well-foundedness: shorter lists 
paulson@15656
  2469
  precede longer lists. These ordering are not used in dictionaries.*}
paulson@15656
  2470
paulson@15656
  2471
consts lexn :: "('a * 'a)set => nat => ('a list * 'a list)set"
paulson@15656
  2472
        --{*The lexicographic ordering for lists of the specified length*}
nipkow@15302
  2473
primrec
paulson@15656
  2474
  "lexn r 0 = {}"
paulson@15656
  2475
  "lexn r (Suc n) =
paulson@15656
  2476
    (prod_fun (%(x,xs). x#xs) (%(x,xs). x#xs) ` (r <*lex*> lexn r n)) Int
paulson@15656
  2477
    {(xs,ys). length xs = Suc n \<and> length ys = Suc n}"
nipkow@15302
  2478
nipkow@15302
  2479
constdefs
paulson@15656
  2480
  lex :: "('a \<times> 'a) set => ('a list \<times> 'a list) set"
paulson@15656
  2481
    "lex r == \<Union>n. lexn r n"
paulson@15656
  2482
        --{*Holds only between lists of the same length*}
paulson@15656
  2483
nipkow@15693
  2484
  lenlex :: "('a \<times> 'a) set => ('a list \<times> 'a list) set"
nipkow@15693
  2485
    "lenlex r == inv_image (less_than <*lex*> lex r) (%xs. (length xs, xs))"
paulson@15656
  2486
        --{*Compares lists by their length and then lexicographically*}
nipkow@15302
  2487
nipkow@15302
  2488
nipkow@15302
  2489
lemma wf_lexn: "wf r ==> wf (lexn r n)"
nipkow@15302
  2490
apply (induct n, simp, simp)
nipkow@15302
  2491
apply(rule wf_subset)
nipkow@15302
  2492
 prefer 2 apply (rule Int_lower1)
nipkow@15302
  2493
apply(rule wf_prod_fun_image)
nipkow@15302
  2494
 prefer 2 apply (rule inj_onI, auto)
nipkow@15302
  2495
done
nipkow@15302
  2496
nipkow@15302
  2497
lemma lexn_length:
nipkow@15302
  2498
     "!!xs ys. (xs, ys) : lexn r n ==> length xs = n \<and> length ys = n"
nipkow@15302
  2499
by (induct n) auto
nipkow@15302
  2500
nipkow@15302
  2501
lemma wf_lex [intro!]: "wf r ==> wf (lex r)"
nipkow@15302
  2502
apply (unfold lex_def)
nipkow@15302
  2503
apply (rule wf_UN)
nipkow@15302
  2504
apply (blast intro: wf_lexn, clarify)
nipkow@15302
  2505
apply (rename_tac m n)
nipkow@15302
  2506
apply (subgoal_tac "m \<noteq> n")
nipkow@15302
  2507
 prefer 2 apply blast
nipkow@15302
  2508
apply (blast dest: lexn_length not_sym)
nipkow@15302
  2509
done
nipkow@15302
  2510
nipkow@15302
  2511
lemma lexn_conv:
paulson@15656
  2512
  "lexn r n =
paulson@15656
  2513
    {(xs,ys). length xs = n \<and> length ys = n \<and>
paulson@15656
  2514
    (\<exists>xys x y xs' ys'. xs= xys @ x#xs' \<and> ys= xys @ y # ys' \<and> (x, y):r)}"
nipkow@18423
  2515
apply (induct n, simp)
nipkow@15302
  2516
apply (simp add: image_Collect lex_prod_def, safe, blast)
nipkow@15302
  2517
 apply (rule_tac x = "ab # xys" in exI, simp)
nipkow@15302
  2518
apply (case_tac xys, simp_all, blast)
nipkow@15302
  2519
done
nipkow@15302
  2520
nipkow@15302
  2521
lemma lex_conv:
paulson@15656
  2522
  "lex r =
paulson@15656
  2523
    {(xs,ys). length xs = length ys \<and>
paulson@15656
  2524
    (\<exists>xys x y xs' ys'. xs = xys @ x # xs' \<and> ys = xys @ y # ys' \<and> (x, y):r)}"
nipkow@15302
  2525
by (force simp add: lex_def lexn_conv)
nipkow@15302
  2526
nipkow@15693
  2527
lemma wf_lenlex [intro!]: "wf r ==> wf (lenlex r)"
nipkow@15693
  2528
by (unfold lenlex_def) blast
nipkow@15693
  2529
nipkow@15693
  2530
lemma lenlex_conv:
nipkow@15693
  2531
    "lenlex r = {(xs,ys). length xs < length ys |
paulson@15656
  2532
                 length xs = length ys \<and> (xs, ys) : lex r}"
nipkow@19623
  2533
by (simp add: lenlex_def diag_def lex_prod_def inv_image_def)
nipkow@15302
  2534
nipkow@15302
  2535
lemma Nil_notin_lex [iff]: "([], ys) \<notin> lex r"
nipkow@15302
  2536
by (simp add: lex_conv)
nipkow@15302
  2537
nipkow@15302
  2538
lemma Nil2_notin_lex [iff]: "(xs, []) \<notin> lex r"
nipkow@15302
  2539
by (simp add:lex_conv)
nipkow@15302
  2540
paulson@18447
  2541
lemma Cons_in_lex [simp]:
paulson@15656
  2542
    "((x # xs, y # ys) : lex r) =
paulson@15656
  2543
      ((x, y) : r \<and> length xs = length ys | x = y \<and> (xs, ys) : lex r)"
nipkow@15302
  2544
apply (simp add: lex_conv)
nipkow@15302
  2545
apply (rule iffI)
nipkow@15302
  2546
 prefer 2 apply (blast intro: Cons_eq_appendI, clarify)
nipkow@15302
  2547
apply (case_tac xys, simp, simp)
nipkow@15302
  2548
apply blast
nipkow@15302
  2549
done
nipkow@15302
  2550
nipkow@15302
  2551
paulson@15656
  2552
subsubsection {* Lexicographic Ordering *}
paulson@15656
  2553
paulson@15656
  2554
text {* Classical lexicographic ordering on lists, ie. "a" < "ab" < "b".
paulson@15656
  2555
    This ordering does \emph{not} preserve well-foundedness.
nipkow@17090
  2556
     Author: N. Voelker, March 2005. *} 
paulson@15656
  2557
paulson@15656
  2558
constdefs 
paulson@15656
  2559
  lexord :: "('a * 'a)set \<Rightarrow> ('a list * 'a list) set" 
paulson@15656
  2560
  "lexord  r == {(x,y). \<exists> a v. y = x @ a # v \<or> 
paulson@15656
  2561
            (\<exists> u a b v w. (a,b) \<in> r \<and> x = u @ (a # v) \<and> y = u @ (b # w))}"
paulson@15656
  2562
paulson@15656
  2563
lemma lexord_Nil_left[simp]:  "([],y) \<in> lexord r = (\<exists> a x. y = a # x)"
paulson@15656
  2564
  by (unfold lexord_def, induct_tac y, auto) 
paulson@15656
  2565
paulson@15656
  2566
lemma lexord_Nil_right[simp]: "(x,[]) \<notin> lexord r"
paulson@15656
  2567
  by (unfold lexord_def, induct_tac x, auto)
paulson@15656
  2568
paulson@15656
  2569
lemma lexord_cons_cons[simp]:
paulson@15656
  2570
     "((a # x, b # y) \<in> lexord r) = ((a,b)\<in> r | (a = b & (x,y)\<in> lexord r))"
paulson@15656
  2571
  apply (unfold lexord_def, safe, simp_all)
paulson@15656
  2572
  apply (case_tac u, simp, simp)
paulson@15656
  2573
  apply (case_tac u, simp, clarsimp, blast, blast, clarsimp)
paulson@15656
  2574
  apply (erule_tac x="b # u" in allE)
paulson@15656
  2575
  by force
paulson@15656
  2576
paulson@15656
  2577
lemmas lexord_simps = lexord_Nil_left lexord_Nil_right lexord_cons_cons
paulson@15656
  2578
paulson@15656
  2579
lemma lexord_append_rightI: "\<exists> b z. y = b # z \<Longrightarrow> (x, x @ y) \<in> lexord r"
paulson@15656
  2580
  by (induct_tac x, auto)  
paulson@15656
  2581
paulson@15656
  2582
lemma lexord_append_left_rightI:
paulson@15656
  2583
     "(a,b) \<in> r \<Longrightarrow> (u @ a # x, u @ b # y) \<in> lexord r"
paulson@15656
  2584
  by (induct_tac u, auto)
paulson@15656
  2585
paulson@15656
  2586
lemma lexord_append_leftI: " (u,v) \<in> lexord r \<Longrightarrow> (x @ u, x @ v) \<in> lexord r"
paulson@15656
  2587
  by (induct x, auto)
paulson@15656
  2588
paulson@15656
  2589
lemma lexord_append_leftD:
paulson@15656
  2590
     "\<lbrakk> (x @ u, x @ v) \<in> lexord r; (! a. (a,a) \<notin> r) \<rbrakk> \<Longrightarrow> (u,v) \<in> lexord r"
paulson@15656
  2591
  by (erule rev_mp, induct_tac x, auto)
paulson@15656
  2592
paulson@15656
  2593
lemma lexord_take_index_conv: 
paulson@15656
  2594
   "((x,y) : lexord r) = 
paulson@15656
  2595
    ((length x < length y \<and> take (length x) y = x) \<or> 
paulson@15656
  2596
     (\<exists>i. i < min(length x)(length y) & take i x = take i y & (x!i,y!i) \<in> r))"
paulson@15656
  2597
  apply (unfold lexord_def Let_def, clarsimp) 
paulson@15656
  2598
  apply (rule_tac f = "(% a b. a \<or> b)" in arg_cong2)
paulson@15656
  2599
  apply auto 
paulson@15656
  2600
  apply (rule_tac x="hd (drop (length x) y)" in exI)
paulson@15656
  2601
  apply (rule_tac x="tl (drop (length x) y)" in exI)
paulson@15656
  2602
  apply (erule subst, simp add: min_def) 
paulson@15656
  2603
  apply (rule_tac x ="length u" in exI, simp) 
paulson@15656
  2604
  apply (rule_tac x ="take i x" in exI) 
paulson@15656
  2605
  apply (rule_tac x ="x ! i" in exI) 
paulson@15656
  2606
  apply (rule_tac x ="y ! i" in exI, safe) 
paulson@15656
  2607
  apply (rule_tac x="drop (Suc i) x" in exI)
paulson@15656
  2608
  apply (drule sym, simp add: drop_Suc_conv_tl) 
paulson@15656
  2609
  apply (rule_tac x="drop (Suc i) y" in exI)
paulson@15656
  2610
  by (simp add: drop_Suc_conv_tl) 
paulson@15656
  2611
paulson@15656
  2612
-- {* lexord is extension of partial ordering List.lex *} 
paulson@15656
  2613
lemma lexord_lex: " (x,y) \<in> lex r = ((x,y) \<in> lexord r \<and> length x = length y)"
paulson@15656
  2614
  apply (rule_tac x = y in spec) 
paulson@15656
  2615
  apply (induct_tac x, clarsimp) 
paulson@15656
  2616
  by (clarify, case_tac x, simp, force)
paulson@15656
  2617
paulson@15656
  2618
lemma lexord_irreflexive: "(! x. (x,x) \<notin> r) \<Longrightarrow> (y,y) \<notin> lexord r"
paulson@15656
  2619
  by (induct y, auto)
paulson@15656
  2620
paulson@15656
  2621
lemma lexord_trans: 
paulson@15656
  2622
    "\<lbrakk> (x, y) \<in> lexord r; (y, z) \<in> lexord r; trans r \<rbrakk> \<Longrightarrow> (x, z) \<in> lexord r"
paulson@15656
  2623
   apply (erule rev_mp)+
paulson@15656
  2624
   apply (rule_tac x = x in spec) 
paulson@15656
  2625
  apply (rule_tac x = z in spec) 
paulson@15656
  2626
  apply ( induct_tac y, simp, clarify)
paulson@15656
  2627
  apply (case_tac xa, erule ssubst) 
paulson@15656
  2628
  apply (erule allE, erule allE) -- {* avoid simp recursion *} 
paulson@15656
  2629
  apply (case_tac x, simp, simp) 
paulson@15656
  2630
  apply (case_tac x, erule allE, erule allE, simp) 
paulson@15656
  2631
  apply (erule_tac x = listb in allE) 
paulson@15656
  2632
  apply (erule_tac x = lista in allE, simp)
paulson@15656
  2633
  apply (unfold trans_def)
paulson@15656
  2634
  by blast
paulson@15656
  2635
paulson@15656
  2636
lemma lexord_transI:  "trans r \<Longrightarrow> trans (lexord r)"
paulson@15656
  2637
  by (rule transI, drule lexord_trans, blast) 
paulson@15656
  2638
paulson@15656
  2639
lemma lexord_linear: "(! a b. (a,b)\<in> r | a = b | (b,a) \<in> r) \<Longrightarrow> (x,y) : lexord r | x = y | (y,x) : lexord r"
paulson@15656
  2640
  apply (rule_tac x = y in spec) 
paulson@15656
  2641
  apply (induct_tac x, rule allI) 
paulson@15656
  2642
  apply (case_tac x, simp, simp) 
paulson@15656
  2643
  apply (rule allI, case_tac x, simp, simp) 
paulson@15656
  2644
  by blast
paulson@15656
  2645
paulson@15656
  2646
krauss@21103
  2647
subsection {* Lexicographic combination of measure functions *}
krauss@21103
  2648
krauss@21103
  2649
text {* These are useful for termination proofs *}
krauss@21103
  2650
krauss@21103
  2651
definition
krauss@21103
  2652
  "measures fs = inv_image (lex less_than) (%a. map (%f. f a) fs)"
krauss@21103
  2653
krauss@21106
  2654
lemma wf_measures[recdef_wf, simp]: "wf (measures fs)"
krauss@21103
  2655
  unfolding measures_def
krauss@21103
  2656
  by blast
krauss@21103
  2657
krauss@21103
  2658
lemma in_measures[simp]: 
krauss@21103
  2659
  "(x, y) \<in> measures [] = False"
krauss@21103
  2660
  "(x, y) \<in> measures (f # fs)
krauss@21103
  2661
         = (f x < f y \<or> (f x = f y \<and> (x, y) \<in> measures fs))"  
krauss@21103
  2662
  unfolding measures_def
krauss@21103
  2663
  by auto
krauss@21103
  2664
krauss@21103
  2665
lemma measures_less: "f x < f y ==> (x, y) \<in> measures (f#fs)"
krauss@21103
  2666
  by simp
krauss@21103
  2667
krauss@21103
  2668
lemma measures_lesseq: "f x <= f y ==> (x, y) \<in> measures fs ==> (x, y) \<in> measures (f#fs)"
krauss@21103
  2669
  by auto
krauss@21103
  2670
krauss@21211
  2671
(* install the lexicographic_order method and the "fun" command *)
bulwahn@21131
  2672
use "Tools/function_package/lexicographic_order.ML"
krauss@21211
  2673
use "Tools/function_package/fundef_datatype.ML"
krauss@21211
  2674
setup LexicographicOrder.setup
krauss@21211
  2675
setup FundefDatatype.setup
krauss@21211
  2676
krauss@21103
  2677
nipkow@15392
  2678
subsubsection{*Lifting a Relation on List Elements to the Lists*}
nipkow@15302
  2679
berghofe@22262
  2680
inductive2
berghofe@22262
  2681
  list_all2' :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> 'b list \<Rightarrow> bool"
berghofe@22262
  2682
  for r :: "'a \<Rightarrow> 'b \<Rightarrow> bool"
berghofe@22262
  2683
where
berghofe@22262
  2684
    Nil:  "list_all2' r [] []"
berghofe@22262
  2685
  | Cons: "[| r x y; list_all2' r xs ys |] ==> list_all2' r (x#xs) (y#ys)"
berghofe@22262
  2686
berghofe@22262
  2687
constdefs
berghofe@22262
  2688
  listrel :: "('a * 'b) set => ('a list * 'b list) set"
berghofe@22262
  2689
  "listrel r == Collect2 (list_all2' (member2 r))"
berghofe@22262
  2690
berghofe@22262
  2691
lemma list_all2_listrel_eq [pred_set_conv]:
berghofe@22262
  2692
  "list_all2' (member2 r) = member2 (listrel r)"
berghofe@22262
  2693
  by (simp add: listrel_def)
berghofe@22262
  2694
berghofe@22262
  2695
lemmas listrel_induct [consumes 1, case_names Nil Cons, induct set: listrel] =
berghofe@22262
  2696
  list_all2'.induct [to_set]
berghofe@22262
  2697
berghofe@22262
  2698
lemmas listrel_intros = list_all2'.intros [to_set]
berghofe@22262
  2699
berghofe@22262
  2700
inductive_cases2 listrel_Nil1 [to_set, elim!]: "list_all2' r [] xs"
berghofe@22262
  2701
inductive_cases2 listrel_Nil2 [to_set, elim!]: "list_all2' r xs []"
berghofe@22262
  2702
inductive_cases2 listrel_Cons1 [to_set, elim!]: "list_all2' r  (y#ys) xs"
berghofe@22262
  2703
inductive_cases2 listrel_Cons2 [to_set, elim!]: "list_all2' r xs (y#ys)"
nipkow@15302
  2704
nipkow@15302
  2705
nipkow@15302
  2706
lemma listrel_mono: "r \<subseteq> s \<Longrightarrow> listrel r \<subseteq> listrel s"
nipkow@15302
  2707
apply clarify  
berghofe@22262
  2708
apply (erule listrel_induct)
berghofe@22262
  2709
apply (blast intro: listrel_intros)+
nipkow@15302
  2710
done
nipkow@15302
  2711
nipkow@15302
  2712
lemma listrel_subset: "r \<subseteq> A \<times> A \<Longrightarrow> listrel r \<subseteq> lists A \<times> lists A"
nipkow@15302
  2713
apply clarify 
berghofe@22262
  2714
apply (erule listrel_induct, auto) 
nipkow@15302
  2715
done
nipkow@15302
  2716
nipkow@15302
  2717
lemma listrel_refl: "refl A r \<Longrightarrow> refl (lists A) (listrel r)" 
nipkow@15302
  2718
apply (simp add: refl_def listrel_subset Ball_def)
nipkow@15302
  2719
apply (rule allI) 
nipkow@15302
  2720
apply (induct_tac x) 
berghofe@22262
  2721
apply (auto intro: listrel_intros)
nipkow@15302
  2722
done
nipkow@15302
  2723
nipkow@15302
  2724
lemma listrel_sym: "sym r \<Longrightarrow> sym (listrel r)" 
nipkow@15302
  2725
apply (auto simp add: sym_def)
berghofe@22262
  2726
apply (erule listrel_induct) 
berghofe@22262
  2727
apply (blast intro: listrel_intros)+
nipkow@15302
  2728
done
nipkow@15302
  2729
nipkow@15302
  2730
lemma listrel_trans: "trans r \<Longrightarrow> trans (listrel r)" 
nipkow@15302
  2731
apply (simp add: trans_def)
nipkow@15302
  2732
apply (intro allI) 
nipkow@15302
  2733
apply (rule impI) 
berghofe@22262
  2734
apply (erule listrel_induct) 
berghofe@22262
  2735
apply (blast intro: listrel_intros)+
nipkow@15302
  2736
done
nipkow@15302
  2737
nipkow@15302
  2738
theorem equiv_listrel: "equiv A r \<Longrightarrow> equiv (lists A) (listrel r)"
nipkow@15302
  2739
by (simp add: equiv_def listrel_refl listrel_sym listrel_trans) 
nipkow@15302
  2740
nipkow@15302
  2741
lemma listrel_Nil [simp]: "listrel r `` {[]} = {[]}"
berghofe@22262
  2742
by (blast intro: listrel_intros)
nipkow@15302
  2743
nipkow@15302
  2744
lemma listrel_Cons:
nipkow@15302
  2745
     "listrel r `` {x#xs} = set_Cons (r``{x}) (listrel r `` {xs})";
berghofe@22262
  2746
by (auto simp add: set_Cons_def intro: listrel_intros) 
nipkow@15302
  2747
nipkow@15302
  2748
nipkow@15392
  2749
subsection{*Miscellany*}
nipkow@15392
  2750
nipkow@15392
  2751
subsubsection {* Characters and strings *}
wenzelm@13366
  2752
wenzelm@13366
  2753
datatype nibble =
wenzelm@13366
  2754
    Nibble0 | Nibble1 | Nibble2 | Nibble3 | Nibble4 | Nibble5 | Nibble6 | Nibble7
wenzelm@13366
  2755
  | Nibble8 | Nibble9 | NibbleA | NibbleB | NibbleC | NibbleD | NibbleE | NibbleF
wenzelm@13366
  2756
wenzelm@13366
  2757
datatype char = Char nibble nibble
wenzelm@13366
  2758
  -- "Note: canonical order of character encoding coincides with standard term ordering"
wenzelm@13366
  2759
wenzelm@13366