| author | wenzelm | 
| Fri, 27 Jul 2012 12:43:58 +0200 | |
| changeset 48542 | 0a5f598cacec | 
| parent 48350 | 09bf3b73e446 | 
| child 49560 | 11430dd89e35 | 
| permissions | -rw-r--r-- | 
| 6134 | 1 | (* Title: Pure/General/graph.ML | 
| 15759 | 2 | Author: Markus Wenzel and Stefan Berghofer, TU Muenchen | 
| 6134 | 3 | |
| 4 | Directed graphs. | |
| 5 | *) | |
| 6 | ||
| 7 | signature GRAPH = | |
| 8 | sig | |
| 9 | type key | |
| 44338 
700008399ee5
refined Graph implementation: more abstract/scalable Graph.Keys instead of plain lists -- order of adjacency is now standardized wrt. Key.ord;
 wenzelm parents: 
44202diff
changeset | 10 | structure Keys: | 
| 
700008399ee5
refined Graph implementation: more abstract/scalable Graph.Keys instead of plain lists -- order of adjacency is now standardized wrt. Key.ord;
 wenzelm parents: 
44202diff
changeset | 11 | sig | 
| 
700008399ee5
refined Graph implementation: more abstract/scalable Graph.Keys instead of plain lists -- order of adjacency is now standardized wrt. Key.ord;
 wenzelm parents: 
44202diff
changeset | 12 | type T | 
| 
700008399ee5
refined Graph implementation: more abstract/scalable Graph.Keys instead of plain lists -- order of adjacency is now standardized wrt. Key.ord;
 wenzelm parents: 
44202diff
changeset | 13 | val is_empty: T -> bool | 
| 
700008399ee5
refined Graph implementation: more abstract/scalable Graph.Keys instead of plain lists -- order of adjacency is now standardized wrt. Key.ord;
 wenzelm parents: 
44202diff
changeset | 14 | val fold: (key -> 'a -> 'a) -> T -> 'a -> 'a | 
| 
700008399ee5
refined Graph implementation: more abstract/scalable Graph.Keys instead of plain lists -- order of adjacency is now standardized wrt. Key.ord;
 wenzelm parents: 
44202diff
changeset | 15 | val fold_rev: (key -> 'a -> 'a) -> T -> 'a -> 'a | 
| 
700008399ee5
refined Graph implementation: more abstract/scalable Graph.Keys instead of plain lists -- order of adjacency is now standardized wrt. Key.ord;
 wenzelm parents: 
44202diff
changeset | 16 | val dest: T -> key list | 
| 
700008399ee5
refined Graph implementation: more abstract/scalable Graph.Keys instead of plain lists -- order of adjacency is now standardized wrt. Key.ord;
 wenzelm parents: 
44202diff
changeset | 17 | end | 
| 6134 | 18 | type 'a T | 
| 9321 | 19 | exception DUP of key | 
| 19029 | 20 | exception SAME | 
| 21 | exception UNDEF of key | |
| 6134 | 22 | val empty: 'a T | 
| 28204 | 23 | val is_empty: 'a T -> bool | 
| 6659 | 24 | val keys: 'a T -> key list | 
| 14793 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
 wenzelm parents: 
14161diff
changeset | 25 | val dest: 'a T -> (key * key list) list | 
| 44338 
700008399ee5
refined Graph implementation: more abstract/scalable Graph.Keys instead of plain lists -- order of adjacency is now standardized wrt. Key.ord;
 wenzelm parents: 
44202diff
changeset | 26 |   val get_first: (key * ('a * (Keys.T * Keys.T)) -> 'b option) -> 'a T -> 'b option
 | 
| 
700008399ee5
refined Graph implementation: more abstract/scalable Graph.Keys instead of plain lists -- order of adjacency is now standardized wrt. Key.ord;
 wenzelm parents: 
44202diff
changeset | 27 |   val fold: (key * ('a * (Keys.T * Keys.T)) -> 'b -> 'b) -> 'a T -> 'b -> 'b
 | 
| 
700008399ee5
refined Graph implementation: more abstract/scalable Graph.Keys instead of plain lists -- order of adjacency is now standardized wrt. Key.ord;
 wenzelm parents: 
44202diff
changeset | 28 |   val get_entry: 'a T -> key -> key * ('a * (Keys.T * Keys.T))        (*exception UNDEF*)
 | 
| 15759 | 29 | val get_node: 'a T -> key -> 'a (*exception UNDEF*) | 
| 6142 | 30 |   val map_node: key -> ('a -> 'a) -> 'a T -> 'a T
 | 
| 17767 | 31 |   val map_node_yield: key -> ('a -> 'b * 'a) -> 'a T -> 'b * 'a T
 | 
| 46611 | 32 | val map: (key -> 'a -> 'b) -> 'a T -> 'b T | 
| 44338 
700008399ee5
refined Graph implementation: more abstract/scalable Graph.Keys instead of plain lists -- order of adjacency is now standardized wrt. Key.ord;
 wenzelm parents: 
44202diff
changeset | 33 | val imm_preds: 'a T -> key -> Keys.T | 
| 
700008399ee5
refined Graph implementation: more abstract/scalable Graph.Keys instead of plain lists -- order of adjacency is now standardized wrt. Key.ord;
 wenzelm parents: 
44202diff
changeset | 34 | val imm_succs: 'a T -> key -> Keys.T | 
| 
700008399ee5
refined Graph implementation: more abstract/scalable Graph.Keys instead of plain lists -- order of adjacency is now standardized wrt. Key.ord;
 wenzelm parents: 
44202diff
changeset | 35 | val immediate_preds: 'a T -> key -> key list | 
| 
700008399ee5
refined Graph implementation: more abstract/scalable Graph.Keys instead of plain lists -- order of adjacency is now standardized wrt. Key.ord;
 wenzelm parents: 
44202diff
changeset | 36 | val immediate_succs: 'a T -> key -> key list | 
| 6134 | 37 | val all_preds: 'a T -> key list -> key list | 
| 38 | val all_succs: 'a T -> key list -> key list | |
| 46613 | 39 | val strong_conn: 'a T -> key list list | 
| 44338 
700008399ee5
refined Graph implementation: more abstract/scalable Graph.Keys instead of plain lists -- order of adjacency is now standardized wrt. Key.ord;
 wenzelm parents: 
44202diff
changeset | 40 | val minimals: 'a T -> key list | 
| 
700008399ee5
refined Graph implementation: more abstract/scalable Graph.Keys instead of plain lists -- order of adjacency is now standardized wrt. Key.ord;
 wenzelm parents: 
44202diff
changeset | 41 | val maximals: 'a T -> key list | 
| 
700008399ee5
refined Graph implementation: more abstract/scalable Graph.Keys instead of plain lists -- order of adjacency is now standardized wrt. Key.ord;
 wenzelm parents: 
44202diff
changeset | 42 | val is_minimal: 'a T -> key -> bool | 
| 
700008399ee5
refined Graph implementation: more abstract/scalable Graph.Keys instead of plain lists -- order of adjacency is now standardized wrt. Key.ord;
 wenzelm parents: 
44202diff
changeset | 43 | val is_maximal: 'a T -> key -> bool | 
| 15759 | 44 | val new_node: key * 'a -> 'a T -> 'a T (*exception DUP*) | 
| 17179 | 45 | val default_node: key * 'a -> 'a T -> 'a T | 
| 28333 
507b64f4cd2a
added del_node, which is more efficient for sparse graphs;
 wenzelm parents: 
28204diff
changeset | 46 | val del_node: key -> 'a T -> 'a T (*exception UNDEF*) | 
| 14793 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
 wenzelm parents: 
14161diff
changeset | 47 | val is_edge: 'a T -> key * key -> bool | 
| 44202 | 48 | val add_edge: key * key -> 'a T -> 'a T (*exception UNDEF*) | 
| 49 | val del_edge: key * key -> 'a T -> 'a T (*exception UNDEF*) | |
| 46614 
165886a4fe64
clarified Graph.restrict (formerly Graph.subgraph) based on public graph operations;
 wenzelm parents: 
46613diff
changeset | 50 | val restrict: (key -> bool) -> 'a T -> 'a T | 
| 23655 
d2d1138e0ddc
replaced exception TableFun/GraphFun.DUPS by TableFun/GraphFun.DUP;
 wenzelm parents: 
21935diff
changeset | 51 |   val merge: ('a * 'a -> bool) -> 'a T * 'a T -> 'a T                 (*exception DUP*)
 | 
| 19029 | 52 | val join: (key -> 'a * 'a -> 'a) (*exception DUP/SAME*) -> | 
| 23655 
d2d1138e0ddc
replaced exception TableFun/GraphFun.DUPS by TableFun/GraphFun.DUP;
 wenzelm parents: 
21935diff
changeset | 53 | 'a T * 'a T -> 'a T (*exception DUP*) | 
| 19580 
c878a09fb849
replaced find_paths by irreducible_paths, i.e. produce paths within a Hasse diagram;
 wenzelm parents: 
19482diff
changeset | 54 | val irreducible_paths: 'a T -> key * key -> key list list | 
| 6142 | 55 | exception CYCLES of key list list | 
| 44202 | 56 | val add_edge_acyclic: key * key -> 'a T -> 'a T (*exception UNDEF | CYCLES*) | 
| 57 | val add_deps_acyclic: key * key list -> 'a T -> 'a T (*exception UNDEF | CYCLES*) | |
| 15759 | 58 |   val merge_acyclic: ('a * 'a -> bool) -> 'a T * 'a T -> 'a T         (*exception CYCLES*)
 | 
| 23964 | 59 | val topological_order: 'a T -> key list | 
| 44202 | 60 | val add_edge_trans_acyclic: key * key -> 'a T -> 'a T (*exception UNDEF | CYCLES*) | 
| 15759 | 61 |   val merge_trans_acyclic: ('a * 'a -> bool) -> 'a T * 'a T -> 'a T   (*exception CYCLES*)
 | 
| 44162 | 62 | exception DEP of key * key | 
| 63 | val schedule: ((key * 'b) list -> key * 'a -> 'b) -> 'a T -> 'b list (*exception DEP*) | |
| 6134 | 64 | end; | 
| 65 | ||
| 31971 
8c1b845ed105
renamed functor TableFun to Table, and GraphFun to Graph;
 wenzelm parents: 
31616diff
changeset | 66 | functor Graph(Key: KEY): GRAPH = | 
| 6134 | 67 | struct | 
| 68 | ||
| 69 | (* keys *) | |
| 70 | ||
| 71 | type key = Key.key; | |
| 18970 | 72 | val eq_key = is_equal o Key.ord; | 
| 6134 | 73 | |
| 44338 
700008399ee5
refined Graph implementation: more abstract/scalable Graph.Keys instead of plain lists -- order of adjacency is now standardized wrt. Key.ord;
 wenzelm parents: 
44202diff
changeset | 74 | structure Table = Table(Key); | 
| 
700008399ee5
refined Graph implementation: more abstract/scalable Graph.Keys instead of plain lists -- order of adjacency is now standardized wrt. Key.ord;
 wenzelm parents: 
44202diff
changeset | 75 | |
| 
700008399ee5
refined Graph implementation: more abstract/scalable Graph.Keys instead of plain lists -- order of adjacency is now standardized wrt. Key.ord;
 wenzelm parents: 
44202diff
changeset | 76 | structure Keys = | 
| 
700008399ee5
refined Graph implementation: more abstract/scalable Graph.Keys instead of plain lists -- order of adjacency is now standardized wrt. Key.ord;
 wenzelm parents: 
44202diff
changeset | 77 | struct | 
| 6152 | 78 | |
| 44338 
700008399ee5
refined Graph implementation: more abstract/scalable Graph.Keys instead of plain lists -- order of adjacency is now standardized wrt. Key.ord;
 wenzelm parents: 
44202diff
changeset | 79 | abstype T = Keys of unit Table.table | 
| 
700008399ee5
refined Graph implementation: more abstract/scalable Graph.Keys instead of plain lists -- order of adjacency is now standardized wrt. Key.ord;
 wenzelm parents: 
44202diff
changeset | 80 | with | 
| 6134 | 81 | |
| 44338 
700008399ee5
refined Graph implementation: more abstract/scalable Graph.Keys instead of plain lists -- order of adjacency is now standardized wrt. Key.ord;
 wenzelm parents: 
44202diff
changeset | 82 | val empty = Keys Table.empty; | 
| 
700008399ee5
refined Graph implementation: more abstract/scalable Graph.Keys instead of plain lists -- order of adjacency is now standardized wrt. Key.ord;
 wenzelm parents: 
44202diff
changeset | 83 | fun is_empty (Keys tab) = Table.is_empty tab; | 
| 6134 | 84 | |
| 44338 
700008399ee5
refined Graph implementation: more abstract/scalable Graph.Keys instead of plain lists -- order of adjacency is now standardized wrt. Key.ord;
 wenzelm parents: 
44202diff
changeset | 85 | fun member (Keys tab) = Table.defined tab; | 
| 
700008399ee5
refined Graph implementation: more abstract/scalable Graph.Keys instead of plain lists -- order of adjacency is now standardized wrt. Key.ord;
 wenzelm parents: 
44202diff
changeset | 86 | fun insert x (Keys tab) = Keys (Table.insert (K true) (x, ()) tab); | 
| 
700008399ee5
refined Graph implementation: more abstract/scalable Graph.Keys instead of plain lists -- order of adjacency is now standardized wrt. Key.ord;
 wenzelm parents: 
44202diff
changeset | 87 | fun remove x (Keys tab) = Keys (Table.delete_safe x tab); | 
| 
700008399ee5
refined Graph implementation: more abstract/scalable Graph.Keys instead of plain lists -- order of adjacency is now standardized wrt. Key.ord;
 wenzelm parents: 
44202diff
changeset | 88 | |
| 
700008399ee5
refined Graph implementation: more abstract/scalable Graph.Keys instead of plain lists -- order of adjacency is now standardized wrt. Key.ord;
 wenzelm parents: 
44202diff
changeset | 89 | fun fold f (Keys tab) = Table.fold (f o #1) tab; | 
| 
700008399ee5
refined Graph implementation: more abstract/scalable Graph.Keys instead of plain lists -- order of adjacency is now standardized wrt. Key.ord;
 wenzelm parents: 
44202diff
changeset | 90 | fun fold_rev f (Keys tab) = Table.fold_rev (f o #1) tab; | 
| 6134 | 91 | |
| 44338 
700008399ee5
refined Graph implementation: more abstract/scalable Graph.Keys instead of plain lists -- order of adjacency is now standardized wrt. Key.ord;
 wenzelm parents: 
44202diff
changeset | 92 | fun dest keys = fold_rev cons keys []; | 
| 6142 | 93 | |
| 44338 
700008399ee5
refined Graph implementation: more abstract/scalable Graph.Keys instead of plain lists -- order of adjacency is now standardized wrt. Key.ord;
 wenzelm parents: 
44202diff
changeset | 94 | fun filter P keys = fold (fn x => P x ? insert x) keys empty; | 
| 
700008399ee5
refined Graph implementation: more abstract/scalable Graph.Keys instead of plain lists -- order of adjacency is now standardized wrt. Key.ord;
 wenzelm parents: 
44202diff
changeset | 95 | |
| 
700008399ee5
refined Graph implementation: more abstract/scalable Graph.Keys instead of plain lists -- order of adjacency is now standardized wrt. Key.ord;
 wenzelm parents: 
44202diff
changeset | 96 | end; | 
| 
700008399ee5
refined Graph implementation: more abstract/scalable Graph.Keys instead of plain lists -- order of adjacency is now standardized wrt. Key.ord;
 wenzelm parents: 
44202diff
changeset | 97 | end; | 
| 6134 | 98 | |
| 99 | ||
| 6142 | 100 | (* graphs *) | 
| 6134 | 101 | |
| 44338 
700008399ee5
refined Graph implementation: more abstract/scalable Graph.Keys instead of plain lists -- order of adjacency is now standardized wrt. Key.ord;
 wenzelm parents: 
44202diff
changeset | 102 | datatype 'a T = Graph of ('a * (Keys.T * Keys.T)) Table.table;
 | 
| 6134 | 103 | |
| 9321 | 104 | exception DUP = Table.DUP; | 
| 19029 | 105 | exception UNDEF = Table.UNDEF; | 
| 106 | exception SAME = Table.SAME; | |
| 6134 | 107 | |
| 108 | val empty = Graph Table.empty; | |
| 28204 | 109 | fun is_empty (Graph tab) = Table.is_empty tab; | 
| 6659 | 110 | fun keys (Graph tab) = Table.keys tab; | 
| 44338 
700008399ee5
refined Graph implementation: more abstract/scalable Graph.Keys instead of plain lists -- order of adjacency is now standardized wrt. Key.ord;
 wenzelm parents: 
44202diff
changeset | 111 | fun dest (Graph tab) = map (fn (x, (_, (_, succs))) => (x, Keys.dest succs)) (Table.dest tab); | 
| 14793 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
 wenzelm parents: 
14161diff
changeset | 112 | |
| 35012 
c3e3ac3ca091
removed unused "boundary" of Table/Graph.get_first;
 wenzelm parents: 
32710diff
changeset | 113 | fun get_first f (Graph tab) = Table.get_first f tab; | 
| 19615 | 114 | fun fold_graph f (Graph tab) = Table.fold f tab; | 
| 115 | ||
| 6142 | 116 | fun get_entry (Graph tab) x = | 
| 43792 
d5803c3d537a
Table.lookup_key and Graph.get_entry allow to retrieve the original key, which is not necessarily identical to the given one;
 wenzelm parents: 
39021diff
changeset | 117 | (case Table.lookup_key tab x of | 
| 15531 | 118 | SOME entry => entry | 
| 119 | | NONE => raise UNDEF x); | |
| 6134 | 120 | |
| 43792 
d5803c3d537a
Table.lookup_key and Graph.get_entry allow to retrieve the original key, which is not necessarily identical to the given one;
 wenzelm parents: 
39021diff
changeset | 121 | fun map_entry x f (G as Graph tab) = Graph (Table.update (x, f (#2 (get_entry G x))) tab); | 
| 19290 | 122 | |
| 17767 | 123 | fun map_entry_yield x f (G as Graph tab) = | 
| 43792 
d5803c3d537a
Table.lookup_key and Graph.get_entry allow to retrieve the original key, which is not necessarily identical to the given one;
 wenzelm parents: 
39021diff
changeset | 124 | let val (a, node') = f (#2 (get_entry G x)) | 
| 17767 | 125 | in (a, Graph (Table.update (x, node') tab)) end; | 
| 6134 | 126 | |
| 127 | ||
| 6142 | 128 | (* nodes *) | 
| 129 | ||
| 43792 
d5803c3d537a
Table.lookup_key and Graph.get_entry allow to retrieve the original key, which is not necessarily identical to the given one;
 wenzelm parents: 
39021diff
changeset | 130 | fun get_node G = #1 o #2 o get_entry G; | 
| 18133 | 131 | |
| 6142 | 132 | fun map_node x f = map_entry x (fn (i, ps) => (f i, ps)); | 
| 19290 | 133 | |
| 17767 | 134 | fun map_node_yield x f = map_entry_yield x (fn (i, ps) => | 
| 135 | let val (a, i') = f i in (a, (i', ps)) end); | |
| 6142 | 136 | |
| 46611 | 137 | fun map_nodes f (Graph tab) = Graph (Table.map (apfst o f) tab); | 
| 138 | ||
| 18133 | 139 | |
| 6142 | 140 | (* reachability *) | 
| 141 | ||
| 6659 | 142 | (*nodes reachable from xs -- topologically sorted for acyclic graphs*) | 
| 6142 | 143 | fun reachable next xs = | 
| 6134 | 144 | let | 
| 18006 
535de280c812
reachable - abandoned foldl_map in favor of fold_map
 haftmann parents: 
17912diff
changeset | 145 | fun reach x (rs, R) = | 
| 44338 
700008399ee5
refined Graph implementation: more abstract/scalable Graph.Keys instead of plain lists -- order of adjacency is now standardized wrt. Key.ord;
 wenzelm parents: 
44202diff
changeset | 146 | if Keys.member R x then (rs, R) | 
| 48350 
09bf3b73e446
clarified topological ordering: preserve order of adjacency via reverse fold;
 wenzelm parents: 
46668diff
changeset | 147 | else Keys.fold_rev reach (next x) (rs, Keys.insert x R) |>> cons x; | 
| 32710 | 148 | fun reachs x (rss, R) = | 
| 149 | reach x ([], R) |>> (fn rs => rs :: rss); | |
| 44338 
700008399ee5
refined Graph implementation: more abstract/scalable Graph.Keys instead of plain lists -- order of adjacency is now standardized wrt. Key.ord;
 wenzelm parents: 
44202diff
changeset | 150 | in fold reachs xs ([], Keys.empty) end; | 
| 6134 | 151 | |
| 6142 | 152 | (*immediate*) | 
| 43792 
d5803c3d537a
Table.lookup_key and Graph.get_entry allow to retrieve the original key, which is not necessarily identical to the given one;
 wenzelm parents: 
39021diff
changeset | 153 | fun imm_preds G = #1 o #2 o #2 o get_entry G; | 
| 
d5803c3d537a
Table.lookup_key and Graph.get_entry allow to retrieve the original key, which is not necessarily identical to the given one;
 wenzelm parents: 
39021diff
changeset | 154 | fun imm_succs G = #2 o #2 o #2 o get_entry G; | 
| 6134 | 155 | |
| 44338 
700008399ee5
refined Graph implementation: more abstract/scalable Graph.Keys instead of plain lists -- order of adjacency is now standardized wrt. Key.ord;
 wenzelm parents: 
44202diff
changeset | 156 | fun immediate_preds G = Keys.dest o imm_preds G; | 
| 
700008399ee5
refined Graph implementation: more abstract/scalable Graph.Keys instead of plain lists -- order of adjacency is now standardized wrt. Key.ord;
 wenzelm parents: 
44202diff
changeset | 157 | fun immediate_succs G = Keys.dest o imm_succs G; | 
| 
700008399ee5
refined Graph implementation: more abstract/scalable Graph.Keys instead of plain lists -- order of adjacency is now standardized wrt. Key.ord;
 wenzelm parents: 
44202diff
changeset | 158 | |
| 6142 | 159 | (*transitive*) | 
| 32710 | 160 | fun all_preds G = flat o #1 o reachable (imm_preds G); | 
| 161 | fun all_succs G = flat o #1 o reachable (imm_succs G); | |
| 14161 
73ad4884441f
Added function strong_conn for computing the strongly connected components
 berghofe parents: 
12451diff
changeset | 162 | |
| 46613 | 163 | (*strongly connected components; see: David King and John Launchbury, | 
| 164 | "Structuring Depth First Search Algorithms in Haskell"*) | |
| 165 | fun strong_conn G = | |
| 166 | rev (filter_out null (#1 (reachable (imm_preds G) (all_succs G (keys G))))); | |
| 167 | ||
| 168 | ||
| 169 | (* minimal and maximal elements *) | |
| 170 | ||
| 44338 
700008399ee5
refined Graph implementation: more abstract/scalable Graph.Keys instead of plain lists -- order of adjacency is now standardized wrt. Key.ord;
 wenzelm parents: 
44202diff
changeset | 171 | fun minimals G = fold_graph (fn (m, (_, (preds, _))) => Keys.is_empty preds ? cons m) G []; | 
| 
700008399ee5
refined Graph implementation: more abstract/scalable Graph.Keys instead of plain lists -- order of adjacency is now standardized wrt. Key.ord;
 wenzelm parents: 
44202diff
changeset | 172 | fun maximals G = fold_graph (fn (m, (_, (_, succs))) => Keys.is_empty succs ? cons m) G []; | 
| 
700008399ee5
refined Graph implementation: more abstract/scalable Graph.Keys instead of plain lists -- order of adjacency is now standardized wrt. Key.ord;
 wenzelm parents: 
44202diff
changeset | 173 | fun is_minimal G x = Keys.is_empty (imm_preds G x); | 
| 
700008399ee5
refined Graph implementation: more abstract/scalable Graph.Keys instead of plain lists -- order of adjacency is now standardized wrt. Key.ord;
 wenzelm parents: 
44202diff
changeset | 174 | fun is_maximal G x = Keys.is_empty (imm_succs G x); | 
| 
700008399ee5
refined Graph implementation: more abstract/scalable Graph.Keys instead of plain lists -- order of adjacency is now standardized wrt. Key.ord;
 wenzelm parents: 
44202diff
changeset | 175 | |
| 18133 | 176 | |
| 46668 | 177 | (* node operations *) | 
| 6134 | 178 | |
| 6152 | 179 | fun new_node (x, info) (Graph tab) = | 
| 44338 
700008399ee5
refined Graph implementation: more abstract/scalable Graph.Keys instead of plain lists -- order of adjacency is now standardized wrt. Key.ord;
 wenzelm parents: 
44202diff
changeset | 180 | Graph (Table.update_new (x, (info, (Keys.empty, Keys.empty))) tab); | 
| 6134 | 181 | |
| 17179 | 182 | fun default_node (x, info) (Graph tab) = | 
| 44338 
700008399ee5
refined Graph implementation: more abstract/scalable Graph.Keys instead of plain lists -- order of adjacency is now standardized wrt. Key.ord;
 wenzelm parents: 
44202diff
changeset | 183 | Graph (Table.default (x, (info, (Keys.empty, Keys.empty))) tab); | 
| 17140 | 184 | |
| 28333 
507b64f4cd2a
added del_node, which is more efficient for sparse graphs;
 wenzelm parents: 
28204diff
changeset | 185 | fun del_node x (G as Graph tab) = | 
| 
507b64f4cd2a
added del_node, which is more efficient for sparse graphs;
 wenzelm parents: 
28204diff
changeset | 186 | let | 
| 44338 
700008399ee5
refined Graph implementation: more abstract/scalable Graph.Keys instead of plain lists -- order of adjacency is now standardized wrt. Key.ord;
 wenzelm parents: 
44202diff
changeset | 187 | fun del_adjacent which y = | 
| 
700008399ee5
refined Graph implementation: more abstract/scalable Graph.Keys instead of plain lists -- order of adjacency is now standardized wrt. Key.ord;
 wenzelm parents: 
44202diff
changeset | 188 | Table.map_entry y (fn (i, ps) => (i, (which (Keys.remove x) ps))); | 
| 43792 
d5803c3d537a
Table.lookup_key and Graph.get_entry allow to retrieve the original key, which is not necessarily identical to the given one;
 wenzelm parents: 
39021diff
changeset | 189 | val (preds, succs) = #2 (#2 (get_entry G x)); | 
| 28333 
507b64f4cd2a
added del_node, which is more efficient for sparse graphs;
 wenzelm parents: 
28204diff
changeset | 190 | in | 
| 
507b64f4cd2a
added del_node, which is more efficient for sparse graphs;
 wenzelm parents: 
28204diff
changeset | 191 | Graph (tab | 
| 
507b64f4cd2a
added del_node, which is more efficient for sparse graphs;
 wenzelm parents: 
28204diff
changeset | 192 | |> Table.delete x | 
| 44338 
700008399ee5
refined Graph implementation: more abstract/scalable Graph.Keys instead of plain lists -- order of adjacency is now standardized wrt. Key.ord;
 wenzelm parents: 
44202diff
changeset | 193 | |> Keys.fold (del_adjacent apsnd) preds | 
| 
700008399ee5
refined Graph implementation: more abstract/scalable Graph.Keys instead of plain lists -- order of adjacency is now standardized wrt. Key.ord;
 wenzelm parents: 
44202diff
changeset | 194 | |> Keys.fold (del_adjacent apfst) succs) | 
| 28333 
507b64f4cd2a
added del_node, which is more efficient for sparse graphs;
 wenzelm parents: 
28204diff
changeset | 195 | end; | 
| 
507b64f4cd2a
added del_node, which is more efficient for sparse graphs;
 wenzelm parents: 
28204diff
changeset | 196 | |
| 46614 
165886a4fe64
clarified Graph.restrict (formerly Graph.subgraph) based on public graph operations;
 wenzelm parents: 
46613diff
changeset | 197 | fun restrict pred G = | 
| 
165886a4fe64
clarified Graph.restrict (formerly Graph.subgraph) based on public graph operations;
 wenzelm parents: 
46613diff
changeset | 198 | fold_graph (fn (x, _) => not (pred x) ? del_node x) G G; | 
| 
165886a4fe64
clarified Graph.restrict (formerly Graph.subgraph) based on public graph operations;
 wenzelm parents: 
46613diff
changeset | 199 | |
| 6152 | 200 | |
| 46668 | 201 | (* edge operations *) | 
| 9321 | 202 | |
| 44338 
700008399ee5
refined Graph implementation: more abstract/scalable Graph.Keys instead of plain lists -- order of adjacency is now standardized wrt. Key.ord;
 wenzelm parents: 
44202diff
changeset | 203 | fun is_edge G (x, y) = Keys.member (imm_succs G x) y handle UNDEF _ => false; | 
| 14793 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
 wenzelm parents: 
14161diff
changeset | 204 | |
| 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
 wenzelm parents: 
14161diff
changeset | 205 | fun add_edge (x, y) G = | 
| 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
 wenzelm parents: 
14161diff
changeset | 206 | if is_edge G (x, y) then G | 
| 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
 wenzelm parents: 
14161diff
changeset | 207 | else | 
| 44338 
700008399ee5
refined Graph implementation: more abstract/scalable Graph.Keys instead of plain lists -- order of adjacency is now standardized wrt. Key.ord;
 wenzelm parents: 
44202diff
changeset | 208 | G |> map_entry y (fn (i, (preds, succs)) => (i, (Keys.insert x preds, succs))) | 
| 
700008399ee5
refined Graph implementation: more abstract/scalable Graph.Keys instead of plain lists -- order of adjacency is now standardized wrt. Key.ord;
 wenzelm parents: 
44202diff
changeset | 209 | |> map_entry x (fn (i, (preds, succs)) => (i, (preds, Keys.insert y succs))); | 
| 14793 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
 wenzelm parents: 
14161diff
changeset | 210 | |
| 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
 wenzelm parents: 
14161diff
changeset | 211 | fun del_edge (x, y) G = | 
| 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
 wenzelm parents: 
14161diff
changeset | 212 | if is_edge G (x, y) then | 
| 44338 
700008399ee5
refined Graph implementation: more abstract/scalable Graph.Keys instead of plain lists -- order of adjacency is now standardized wrt. Key.ord;
 wenzelm parents: 
44202diff
changeset | 213 | G |> map_entry y (fn (i, (preds, succs)) => (i, (Keys.remove x preds, succs))) | 
| 
700008399ee5
refined Graph implementation: more abstract/scalable Graph.Keys instead of plain lists -- order of adjacency is now standardized wrt. Key.ord;
 wenzelm parents: 
44202diff
changeset | 214 | |> map_entry x (fn (i, (preds, succs)) => (i, (preds, Keys.remove y succs))) | 
| 14793 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
 wenzelm parents: 
14161diff
changeset | 215 | else G; | 
| 9321 | 216 | |
| 14793 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
 wenzelm parents: 
14161diff
changeset | 217 | fun diff_edges G1 G2 = | 
| 19482 
9f11af8f7ef9
tuned basic list operators (flat, maps, map_filter);
 wenzelm parents: 
19409diff
changeset | 218 | flat (dest G1 |> map (fn (x, ys) => ys |> map_filter (fn y => | 
| 15531 | 219 | if is_edge G2 (x, y) then NONE else SOME (x, y)))); | 
| 14793 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
 wenzelm parents: 
14161diff
changeset | 220 | |
| 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
 wenzelm parents: 
14161diff
changeset | 221 | fun edges G = diff_edges G empty; | 
| 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
 wenzelm parents: 
14161diff
changeset | 222 | |
| 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
 wenzelm parents: 
14161diff
changeset | 223 | |
| 18126 | 224 | (* join and merge *) | 
| 225 | ||
| 44338 
700008399ee5
refined Graph implementation: more abstract/scalable Graph.Keys instead of plain lists -- order of adjacency is now standardized wrt. Key.ord;
 wenzelm parents: 
44202diff
changeset | 226 | fun no_edges (i, _) = (i, (Keys.empty, Keys.empty)); | 
| 18133 | 227 | |
| 35974 
3a588b344749
low-level tuning for join/merge: ignore identical versions (SUBTLE CHANGE IN SEMANTICS);
 wenzelm parents: 
35405diff
changeset | 228 | fun join f (G1 as Graph tab1, G2 as Graph tab2) = | 
| 
3a588b344749
low-level tuning for join/merge: ignore identical versions (SUBTLE CHANGE IN SEMANTICS);
 wenzelm parents: 
35405diff
changeset | 229 | let fun join_node key ((i1, edges1), (i2, _)) = (f key (i1, i2), edges1) in | 
| 
3a588b344749
low-level tuning for join/merge: ignore identical versions (SUBTLE CHANGE IN SEMANTICS);
 wenzelm parents: 
35405diff
changeset | 230 | if pointer_eq (G1, G2) then G1 | 
| 39020 | 231 | else fold add_edge (edges G2) (Graph (Table.join join_node (tab1, Table.map (K no_edges) tab2))) | 
| 35974 
3a588b344749
low-level tuning for join/merge: ignore identical versions (SUBTLE CHANGE IN SEMANTICS);
 wenzelm parents: 
35405diff
changeset | 232 | end; | 
| 6152 | 233 | |
| 35974 
3a588b344749
low-level tuning for join/merge: ignore identical versions (SUBTLE CHANGE IN SEMANTICS);
 wenzelm parents: 
35405diff
changeset | 234 | fun gen_merge add eq (G1 as Graph tab1, G2 as Graph tab2) = | 
| 
3a588b344749
low-level tuning for join/merge: ignore identical versions (SUBTLE CHANGE IN SEMANTICS);
 wenzelm parents: 
35405diff
changeset | 235 | let fun eq_node ((i1, _), (i2, _)) = eq (i1, i2) in | 
| 
3a588b344749
low-level tuning for join/merge: ignore identical versions (SUBTLE CHANGE IN SEMANTICS);
 wenzelm parents: 
35405diff
changeset | 236 | if pointer_eq (G1, G2) then G1 | 
| 39020 | 237 | else fold add (edges G2) (Graph (Table.merge eq_node (tab1, Table.map (K no_edges) tab2))) | 
| 35974 
3a588b344749
low-level tuning for join/merge: ignore identical versions (SUBTLE CHANGE IN SEMANTICS);
 wenzelm parents: 
35405diff
changeset | 238 | end; | 
| 6152 | 239 | |
| 14793 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
 wenzelm parents: 
14161diff
changeset | 240 | fun merge eq GG = gen_merge add_edge eq GG; | 
| 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
 wenzelm parents: 
14161diff
changeset | 241 | |
| 18133 | 242 | |
| 19580 
c878a09fb849
replaced find_paths by irreducible_paths, i.e. produce paths within a Hasse diagram;
 wenzelm parents: 
19482diff
changeset | 243 | (* irreducible paths -- Hasse diagram *) | 
| 
c878a09fb849
replaced find_paths by irreducible_paths, i.e. produce paths within a Hasse diagram;
 wenzelm parents: 
19482diff
changeset | 244 | |
| 
c878a09fb849
replaced find_paths by irreducible_paths, i.e. produce paths within a Hasse diagram;
 wenzelm parents: 
19482diff
changeset | 245 | fun irreducible_preds G X path z = | 
| 
c878a09fb849
replaced find_paths by irreducible_paths, i.e. produce paths within a Hasse diagram;
 wenzelm parents: 
19482diff
changeset | 246 | let | 
| 
c878a09fb849
replaced find_paths by irreducible_paths, i.e. produce paths within a Hasse diagram;
 wenzelm parents: 
19482diff
changeset | 247 | fun red x x' = is_edge G (x, x') andalso not (eq_key (x', z)); | 
| 
c878a09fb849
replaced find_paths by irreducible_paths, i.e. produce paths within a Hasse diagram;
 wenzelm parents: 
19482diff
changeset | 248 | fun irreds [] xs' = xs' | 
| 
c878a09fb849
replaced find_paths by irreducible_paths, i.e. produce paths within a Hasse diagram;
 wenzelm parents: 
19482diff
changeset | 249 | | irreds (x :: xs) xs' = | 
| 44338 
700008399ee5
refined Graph implementation: more abstract/scalable Graph.Keys instead of plain lists -- order of adjacency is now standardized wrt. Key.ord;
 wenzelm parents: 
44202diff
changeset | 250 | if not (Keys.member X x) orelse eq_key (x, z) orelse member eq_key path x orelse | 
| 19580 
c878a09fb849
replaced find_paths by irreducible_paths, i.e. produce paths within a Hasse diagram;
 wenzelm parents: 
19482diff
changeset | 251 | exists (red x) xs orelse exists (red x) xs' | 
| 
c878a09fb849
replaced find_paths by irreducible_paths, i.e. produce paths within a Hasse diagram;
 wenzelm parents: 
19482diff
changeset | 252 | then irreds xs xs' | 
| 
c878a09fb849
replaced find_paths by irreducible_paths, i.e. produce paths within a Hasse diagram;
 wenzelm parents: 
19482diff
changeset | 253 | else irreds xs (x :: xs'); | 
| 44338 
700008399ee5
refined Graph implementation: more abstract/scalable Graph.Keys instead of plain lists -- order of adjacency is now standardized wrt. Key.ord;
 wenzelm parents: 
44202diff
changeset | 254 | in irreds (immediate_preds G z) [] end; | 
| 19580 
c878a09fb849
replaced find_paths by irreducible_paths, i.e. produce paths within a Hasse diagram;
 wenzelm parents: 
19482diff
changeset | 255 | |
| 
c878a09fb849
replaced find_paths by irreducible_paths, i.e. produce paths within a Hasse diagram;
 wenzelm parents: 
19482diff
changeset | 256 | fun irreducible_paths G (x, y) = | 
| 
c878a09fb849
replaced find_paths by irreducible_paths, i.e. produce paths within a Hasse diagram;
 wenzelm parents: 
19482diff
changeset | 257 | let | 
| 
c878a09fb849
replaced find_paths by irreducible_paths, i.e. produce paths within a Hasse diagram;
 wenzelm parents: 
19482diff
changeset | 258 | val (_, X) = reachable (imm_succs G) [x]; | 
| 
c878a09fb849
replaced find_paths by irreducible_paths, i.e. produce paths within a Hasse diagram;
 wenzelm parents: 
19482diff
changeset | 259 | fun paths path z = | 
| 
c878a09fb849
replaced find_paths by irreducible_paths, i.e. produce paths within a Hasse diagram;
 wenzelm parents: 
19482diff
changeset | 260 | if eq_key (x, z) then cons (z :: path) | 
| 
c878a09fb849
replaced find_paths by irreducible_paths, i.e. produce paths within a Hasse diagram;
 wenzelm parents: 
19482diff
changeset | 261 | else fold (paths (z :: path)) (irreducible_preds G X path z); | 
| 
c878a09fb849
replaced find_paths by irreducible_paths, i.e. produce paths within a Hasse diagram;
 wenzelm parents: 
19482diff
changeset | 262 | in if eq_key (x, y) andalso not (is_edge G (x, x)) then [[]] else paths [] y [] end; | 
| 
c878a09fb849
replaced find_paths by irreducible_paths, i.e. produce paths within a Hasse diagram;
 wenzelm parents: 
19482diff
changeset | 263 | |
| 
c878a09fb849
replaced find_paths by irreducible_paths, i.e. produce paths within a Hasse diagram;
 wenzelm parents: 
19482diff
changeset | 264 | |
| 14793 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
 wenzelm parents: 
14161diff
changeset | 265 | (* maintain acyclic graphs *) | 
| 6142 | 266 | |
| 267 | exception CYCLES of key list list; | |
| 6134 | 268 | |
| 269 | fun add_edge_acyclic (x, y) G = | |
| 14793 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
 wenzelm parents: 
14161diff
changeset | 270 | if is_edge G (x, y) then G | 
| 9347 | 271 | else | 
| 19580 
c878a09fb849
replaced find_paths by irreducible_paths, i.e. produce paths within a Hasse diagram;
 wenzelm parents: 
19482diff
changeset | 272 | (case irreducible_paths G (y, x) of | 
| 9347 | 273 | [] => add_edge (x, y) G | 
| 274 | | cycles => raise CYCLES (map (cons x) cycles)); | |
| 6134 | 275 | |
| 15759 | 276 | fun add_deps_acyclic (y, xs) = fold (fn x => add_edge_acyclic (x, y)) xs; | 
| 9321 | 277 | |
| 14793 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
 wenzelm parents: 
14161diff
changeset | 278 | fun merge_acyclic eq GG = gen_merge add_edge_acyclic eq GG; | 
| 9321 | 279 | |
| 23964 | 280 | fun topological_order G = minimals G |> all_succs G; | 
| 281 | ||
| 14793 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
 wenzelm parents: 
14161diff
changeset | 282 | |
| 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
 wenzelm parents: 
14161diff
changeset | 283 | (* maintain transitive acyclic graphs *) | 
| 9321 | 284 | |
| 14793 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
 wenzelm parents: 
14161diff
changeset | 285 | fun add_edge_trans_acyclic (x, y) G = | 
| 19290 | 286 | add_edge_acyclic (x, y) G | 
| 25538 | 287 | |> fold_product (curry add_edge) (all_preds G [x]) (all_succs G [y]); | 
| 9321 | 288 | |
| 14793 
32d94d1e4842
added dest, minimals, maximals, is_edge, add_edge/merge_trans_acyclic;
 wenzelm parents: 
14161diff
changeset | 289 | fun merge_trans_acyclic eq (G1, G2) = | 
| 35974 
3a588b344749
low-level tuning for join/merge: ignore identical versions (SUBTLE CHANGE IN SEMANTICS);
 wenzelm parents: 
35405diff
changeset | 290 | if pointer_eq (G1, G2) then G1 | 
| 
3a588b344749
low-level tuning for join/merge: ignore identical versions (SUBTLE CHANGE IN SEMANTICS);
 wenzelm parents: 
35405diff
changeset | 291 | else | 
| 
3a588b344749
low-level tuning for join/merge: ignore identical versions (SUBTLE CHANGE IN SEMANTICS);
 wenzelm parents: 
35405diff
changeset | 292 | merge_acyclic eq (G1, G2) | 
| 
3a588b344749
low-level tuning for join/merge: ignore identical versions (SUBTLE CHANGE IN SEMANTICS);
 wenzelm parents: 
35405diff
changeset | 293 | |> fold add_edge_trans_acyclic (diff_edges G1 G2) | 
| 
3a588b344749
low-level tuning for join/merge: ignore identical versions (SUBTLE CHANGE IN SEMANTICS);
 wenzelm parents: 
35405diff
changeset | 294 | |> fold add_edge_trans_acyclic (diff_edges G2 G1); | 
| 6134 | 295 | |
| 31540 | 296 | |
| 44162 | 297 | (* schedule acyclic graph *) | 
| 298 | ||
| 299 | exception DEP of key * key; | |
| 300 | ||
| 301 | fun schedule f G = | |
| 302 | let | |
| 303 | val xs = topological_order G; | |
| 304 | val results = (xs, Table.empty) |-> fold (fn x => fn tab => | |
| 305 | let | |
| 306 | val a = get_node G x; | |
| 44338 
700008399ee5
refined Graph implementation: more abstract/scalable Graph.Keys instead of plain lists -- order of adjacency is now standardized wrt. Key.ord;
 wenzelm parents: 
44202diff
changeset | 307 | val deps = immediate_preds G x |> map (fn y => | 
| 44162 | 308 | (case Table.lookup tab y of | 
| 309 | SOME b => (y, b) | |
| 310 | | NONE => raise DEP (x, y))); | |
| 311 | in Table.update (x, f deps (x, a)) tab end); | |
| 312 | in map (the o Table.lookup results) xs end; | |
| 313 | ||
| 314 | ||
| 19615 | 315 | (*final declarations of this structure!*) | 
| 39021 | 316 | val map = map_nodes; | 
| 19615 | 317 | val fold = fold_graph; | 
| 318 | ||
| 6134 | 319 | end; | 
| 320 | ||
| 31971 
8c1b845ed105
renamed functor TableFun to Table, and GraphFun to Graph;
 wenzelm parents: 
31616diff
changeset | 321 | structure Graph = Graph(type key = string val ord = fast_string_ord); | 
| 46667 | 322 | structure String_Graph = Graph(type key = string val ord = string_ord); | 
| 35403 | 323 | structure Int_Graph = Graph(type key = int val ord = int_ord); |