src/HOL/Analysis/Gamma_Function.thy
author haftmann
Thu, 08 Nov 2018 09:11:52 +0100
changeset 69260 0a9688695a1b
parent 69064 5840724b1d71
child 69529 4ab9657b3257
permissions -rw-r--r--
removed relics of ASCII syntax for indexed big operators
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
63992
3aa9837d05c7 updated headers;
wenzelm
parents: 63952
diff changeset
     1
(*  Title:    HOL/Analysis/Gamma_Function.thy
62055
755fda743c49 Multivariate-Analysis: fixed headers and a LaTex error (c.f. Isabelle b0f941e207cf)
hoelzl
parents: 62049
diff changeset
     2
    Author:   Manuel Eberl, TU München
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
     3
*)
62055
755fda743c49 Multivariate-Analysis: fixed headers and a LaTex error (c.f. Isabelle b0f941e207cf)
hoelzl
parents: 62049
diff changeset
     4
755fda743c49 Multivariate-Analysis: fixed headers and a LaTex error (c.f. Isabelle b0f941e207cf)
hoelzl
parents: 62049
diff changeset
     5
section \<open>The Gamma Function\<close>
755fda743c49 Multivariate-Analysis: fixed headers and a LaTex error (c.f. Isabelle b0f941e207cf)
hoelzl
parents: 62049
diff changeset
     6
63594
bd218a9320b5 HOL-Multivariate_Analysis: rename theories for more descriptive names
hoelzl
parents: 63539
diff changeset
     7
theory Gamma_Function
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
     8
imports
66286
1c977b13414f poles and residues of the Gamma function
eberlm <eberlm@in.tum.de>
parents: 65587
diff changeset
     9
  Conformal_Mappings
63594
bd218a9320b5 HOL-Multivariate_Analysis: rename theories for more descriptive names
hoelzl
parents: 63539
diff changeset
    10
  Summation_Tests
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
    11
  Harmonic_Numbers
66453
cc19f7ca2ed6 session-qualified theory imports: isabelle imports -U -i -d '~~/src/Benchmarks' -a;
wenzelm
parents: 66447
diff changeset
    12
  "HOL-Library.Nonpos_Ints"
cc19f7ca2ed6 session-qualified theory imports: isabelle imports -U -i -d '~~/src/Benchmarks' -a;
wenzelm
parents: 66447
diff changeset
    13
  "HOL-Library.Periodic_Fun"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
    14
begin
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
    15
62055
755fda743c49 Multivariate-Analysis: fixed headers and a LaTex error (c.f. Isabelle b0f941e207cf)
hoelzl
parents: 62049
diff changeset
    16
text \<open>
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
    17
  Several equivalent definitions of the Gamma function and its
62055
755fda743c49 Multivariate-Analysis: fixed headers and a LaTex error (c.f. Isabelle b0f941e207cf)
hoelzl
parents: 62049
diff changeset
    18
  most important properties. Also contains the definition and some properties
755fda743c49 Multivariate-Analysis: fixed headers and a LaTex error (c.f. Isabelle b0f941e207cf)
hoelzl
parents: 62049
diff changeset
    19
  of the log-Gamma function and the Digamma function and the other Polygamma functions.
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
    20
62055
755fda743c49 Multivariate-Analysis: fixed headers and a LaTex error (c.f. Isabelle b0f941e207cf)
hoelzl
parents: 62049
diff changeset
    21
  Based on the Gamma function, we also prove the Weierstraß product form of the
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
    22
  sin function and, based on this, the solution of the Basel problem (the
62055
755fda743c49 Multivariate-Analysis: fixed headers and a LaTex error (c.f. Isabelle b0f941e207cf)
hoelzl
parents: 62049
diff changeset
    23
  sum over all @{term "1 / (n::nat)^2"}.
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
    24
\<close>
62055
755fda743c49 Multivariate-Analysis: fixed headers and a LaTex error (c.f. Isabelle b0f941e207cf)
hoelzl
parents: 62049
diff changeset
    25
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
    26
lemma pochhammer_eq_0_imp_nonpos_Int:
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
    27
  "pochhammer (x::'a::field_char_0) n = 0 \<Longrightarrow> x \<in> \<int>\<^sub>\<le>\<^sub>0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
    28
  by (auto simp: pochhammer_eq_0_iff)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
    29
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
    30
lemma closed_nonpos_Ints [simp]: "closed (\<int>\<^sub>\<le>\<^sub>0 :: 'a :: real_normed_algebra_1 set)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
    31
proof -
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
    32
  have "\<int>\<^sub>\<le>\<^sub>0 = (of_int ` {n. n \<le> 0} :: 'a set)"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
    33
    by (auto elim!: nonpos_Ints_cases intro!: nonpos_Ints_of_int)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
    34
  also have "closed \<dots>" by (rule closed_of_int_image)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
    35
  finally show ?thesis .
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
    36
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
    37
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
    38
lemma plus_one_in_nonpos_Ints_imp: "z + 1 \<in> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> z \<in> \<int>\<^sub>\<le>\<^sub>0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
    39
  using nonpos_Ints_diff_Nats[of "z+1" "1"] by simp_all
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
    40
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
    41
lemma of_int_in_nonpos_Ints_iff:
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
    42
  "(of_int n :: 'a :: ring_char_0) \<in> \<int>\<^sub>\<le>\<^sub>0 \<longleftrightarrow> n \<le> 0"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
    43
  by (auto simp: nonpos_Ints_def)
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
    44
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
    45
lemma one_plus_of_int_in_nonpos_Ints_iff:
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
    46
  "(1 + of_int n :: 'a :: ring_char_0) \<in> \<int>\<^sub>\<le>\<^sub>0 \<longleftrightarrow> n \<le> -1"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
    47
proof -
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
    48
  have "1 + of_int n = (of_int (n + 1) :: 'a)" by simp
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
    49
  also have "\<dots> \<in> \<int>\<^sub>\<le>\<^sub>0 \<longleftrightarrow> n + 1 \<le> 0" by (subst of_int_in_nonpos_Ints_iff) simp_all
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
    50
  also have "\<dots> \<longleftrightarrow> n \<le> -1" by presburger
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
    51
  finally show ?thesis .
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
    52
qed
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
    53
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
    54
lemma one_minus_of_nat_in_nonpos_Ints_iff:
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
    55
  "(1 - of_nat n :: 'a :: ring_char_0) \<in> \<int>\<^sub>\<le>\<^sub>0 \<longleftrightarrow> n > 0"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
    56
proof -
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
    57
  have "(1 - of_nat n :: 'a) = of_int (1 - int n)" by simp
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
    58
  also have "\<dots> \<in> \<int>\<^sub>\<le>\<^sub>0 \<longleftrightarrow> n > 0" by (subst of_int_in_nonpos_Ints_iff) presburger
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
    59
  finally show ?thesis .
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
    60
qed
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
    61
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
    62
lemma fraction_not_in_ints:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
    63
  assumes "\<not>(n dvd m)" "n \<noteq> 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
    64
  shows   "of_int m / of_int n \<notin> (\<int> :: 'a :: {division_ring,ring_char_0} set)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
    65
proof
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
    66
  assume "of_int m / (of_int n :: 'a) \<in> \<int>"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
    67
  then obtain k where "of_int m / of_int n = (of_int k :: 'a)" by (elim Ints_cases)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
    68
  with assms have "of_int m = (of_int (k * n) :: 'a)" by (auto simp add: divide_simps)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
    69
  hence "m = k * n" by (subst (asm) of_int_eq_iff)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
    70
  hence "n dvd m" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
    71
  with assms(1) show False by contradiction
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
    72
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
    73
63317
ca187a9f66da Various additions to polynomials, FPSs, Gamma function
eberlm
parents: 63296
diff changeset
    74
lemma fraction_not_in_nats:
ca187a9f66da Various additions to polynomials, FPSs, Gamma function
eberlm
parents: 63296
diff changeset
    75
  assumes "\<not>n dvd m" "n \<noteq> 0"
ca187a9f66da Various additions to polynomials, FPSs, Gamma function
eberlm
parents: 63296
diff changeset
    76
  shows   "of_int m / of_int n \<notin> (\<nat> :: 'a :: {division_ring,ring_char_0} set)"
ca187a9f66da Various additions to polynomials, FPSs, Gamma function
eberlm
parents: 63296
diff changeset
    77
proof
ca187a9f66da Various additions to polynomials, FPSs, Gamma function
eberlm
parents: 63296
diff changeset
    78
  assume "of_int m / of_int n \<in> (\<nat> :: 'a set)"
ca187a9f66da Various additions to polynomials, FPSs, Gamma function
eberlm
parents: 63296
diff changeset
    79
  also note Nats_subset_Ints
ca187a9f66da Various additions to polynomials, FPSs, Gamma function
eberlm
parents: 63296
diff changeset
    80
  finally have "of_int m / of_int n \<in> (\<int> :: 'a set)" .
ca187a9f66da Various additions to polynomials, FPSs, Gamma function
eberlm
parents: 63296
diff changeset
    81
  moreover have "of_int m / of_int n \<notin> (\<int> :: 'a set)"
ca187a9f66da Various additions to polynomials, FPSs, Gamma function
eberlm
parents: 63296
diff changeset
    82
    using assms by (intro fraction_not_in_ints)
ca187a9f66da Various additions to polynomials, FPSs, Gamma function
eberlm
parents: 63296
diff changeset
    83
  ultimately show False by contradiction
ca187a9f66da Various additions to polynomials, FPSs, Gamma function
eberlm
parents: 63296
diff changeset
    84
qed
ca187a9f66da Various additions to polynomials, FPSs, Gamma function
eberlm
parents: 63296
diff changeset
    85
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
    86
lemma not_in_Ints_imp_not_in_nonpos_Ints: "z \<notin> \<int> \<Longrightarrow> z \<notin> \<int>\<^sub>\<le>\<^sub>0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
    87
  by (auto simp: Ints_def nonpos_Ints_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
    88
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
    89
lemma double_in_nonpos_Ints_imp:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
    90
  assumes "2 * (z :: 'a :: field_char_0) \<in> \<int>\<^sub>\<le>\<^sub>0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
    91
  shows   "z \<in> \<int>\<^sub>\<le>\<^sub>0 \<or> z + 1/2 \<in> \<int>\<^sub>\<le>\<^sub>0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
    92
proof-
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
    93
  from assms obtain k where k: "2 * z = - of_nat k" by (elim nonpos_Ints_cases')
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
    94
  thus ?thesis by (cases "even k") (auto elim!: evenE oddE simp: field_simps)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
    95
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
    96
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
    97
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
    98
lemma sin_series: "(\<lambda>n. ((-1)^n / fact (2*n+1)) *\<^sub>R z^(2*n+1)) sums sin z"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
    99
proof -
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   100
  from sin_converges[of z] have "(\<lambda>n. sin_coeff n *\<^sub>R z^n) sums sin z" .
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   101
  also have "(\<lambda>n. sin_coeff n *\<^sub>R z^n) sums sin z \<longleftrightarrow>
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   102
                 (\<lambda>n. ((-1)^n / fact (2*n+1)) *\<^sub>R z^(2*n+1)) sums sin z"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   103
    by (subst sums_mono_reindex[of "\<lambda>n. 2*n+1", symmetric])
66447
a1f5c5c26fa6 Replaced subseq with strict_mono
eberlm <eberlm@in.tum.de>
parents: 66286
diff changeset
   104
       (auto simp: sin_coeff_def strict_mono_def ac_simps elim!: oddE)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   105
  finally show ?thesis .
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   106
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   107
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   108
lemma cos_series: "(\<lambda>n. ((-1)^n / fact (2*n)) *\<^sub>R z^(2*n)) sums cos z"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   109
proof -
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   110
  from cos_converges[of z] have "(\<lambda>n. cos_coeff n *\<^sub>R z^n) sums cos z" .
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   111
  also have "(\<lambda>n. cos_coeff n *\<^sub>R z^n) sums cos z \<longleftrightarrow>
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   112
                 (\<lambda>n. ((-1)^n / fact (2*n)) *\<^sub>R z^(2*n)) sums cos z"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   113
    by (subst sums_mono_reindex[of "\<lambda>n. 2*n", symmetric])
66447
a1f5c5c26fa6 Replaced subseq with strict_mono
eberlm <eberlm@in.tum.de>
parents: 66286
diff changeset
   114
       (auto simp: cos_coeff_def strict_mono_def ac_simps elim!: evenE)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   115
  finally show ?thesis .
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   116
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   117
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   118
lemma sin_z_over_z_series:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   119
  fixes z :: "'a :: {real_normed_field,banach}"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   120
  assumes "z \<noteq> 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   121
  shows   "(\<lambda>n. (-1)^n / fact (2*n+1) * z^(2*n)) sums (sin z / z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   122
proof -
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   123
  from sin_series[of z] have "(\<lambda>n. z * ((-1)^n / fact (2*n+1)) * z^(2*n)) sums sin z"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   124
    by (simp add: field_simps scaleR_conv_of_real)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   125
  from sums_mult[OF this, of "inverse z"] and assms show ?thesis
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   126
    by (simp add: field_simps)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   127
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   128
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   129
lemma sin_z_over_z_series':
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   130
  fixes z :: "'a :: {real_normed_field,banach}"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   131
  assumes "z \<noteq> 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   132
  shows   "(\<lambda>n. sin_coeff (n+1) *\<^sub>R z^n) sums (sin z / z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   133
proof -
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   134
  from sums_split_initial_segment[OF sin_converges[of z], of 1]
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   135
    have "(\<lambda>n. z * (sin_coeff (n+1) *\<^sub>R z ^ n)) sums sin z" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   136
  from sums_mult[OF this, of "inverse z"] assms show ?thesis by (simp add: field_simps)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   137
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   138
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   139
lemma has_field_derivative_sin_z_over_z:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   140
  fixes A :: "'a :: {real_normed_field,banach} set"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   141
  shows "((\<lambda>z. if z = 0 then 1 else sin z / z) has_field_derivative 0) (at 0 within A)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   142
      (is "(?f has_field_derivative ?f') _")
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   143
proof (rule has_field_derivative_at_within)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   144
  have "((\<lambda>z::'a. \<Sum>n. of_real (sin_coeff (n+1)) * z^n)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   145
            has_field_derivative (\<Sum>n. diffs (\<lambda>n. of_real (sin_coeff (n+1))) n * 0^n)) (at 0)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   146
  proof (rule termdiffs_strong)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   147
    from summable_ignore_initial_segment[OF sums_summable[OF sin_converges[of "1::'a"]], of 1]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   148
      show "summable (\<lambda>n. of_real (sin_coeff (n+1)) * (1::'a)^n)" by (simp add: of_real_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   149
  qed simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   150
  also have "(\<lambda>z::'a. \<Sum>n. of_real (sin_coeff (n+1)) * z^n) = ?f"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   151
  proof
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   152
    fix z
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   153
    show "(\<Sum>n. of_real (sin_coeff (n+1)) * z^n)  = ?f z"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   154
      by (cases "z = 0") (insert sin_z_over_z_series'[of z],
66936
cf8d8fc23891 tuned some proofs and added some lemmas
haftmann
parents: 66526
diff changeset
   155
            simp_all add: scaleR_conv_of_real sums_iff sin_coeff_def)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   156
  qed
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   157
  also have "(\<Sum>n. diffs (\<lambda>n. of_real (sin_coeff (n + 1))) n * (0::'a) ^ n) =
66936
cf8d8fc23891 tuned some proofs and added some lemmas
haftmann
parents: 66526
diff changeset
   158
                 diffs (\<lambda>n. of_real (sin_coeff (Suc n))) 0" by simp
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   159
  also have "\<dots> = 0" by (simp add: sin_coeff_def diffs_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   160
  finally show "((\<lambda>z::'a. if z = 0 then 1 else sin z / z) has_field_derivative 0) (at 0)" .
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   161
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   162
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   163
lemma round_Re_minimises_norm:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   164
  "norm ((z::complex) - of_int m) \<ge> norm (z - of_int (round (Re z)))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   165
proof -
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   166
  let ?n = "round (Re z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   167
  have "norm (z - of_int ?n) = sqrt ((Re z - of_int ?n)\<^sup>2 + (Im z)\<^sup>2)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   168
    by (simp add: cmod_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   169
  also have "\<bar>Re z - of_int ?n\<bar> \<le> \<bar>Re z - of_int m\<bar>" by (rule round_diff_minimal)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   170
  hence "sqrt ((Re z - of_int ?n)\<^sup>2 + (Im z)\<^sup>2) \<le> sqrt ((Re z - of_int m)\<^sup>2 + (Im z)\<^sup>2)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   171
    by (intro real_sqrt_le_mono add_mono) (simp_all add: abs_le_square_iff)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   172
  also have "\<dots> = norm (z - of_int m)" by (simp add: cmod_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   173
  finally show ?thesis .
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   174
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   175
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   176
lemma Re_pos_in_ball:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   177
  assumes "Re z > 0" "t \<in> ball z (Re z/2)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   178
  shows   "Re t > 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   179
proof -
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   180
  have "Re (z - t) \<le> norm (z - t)" by (rule complex_Re_le_cmod)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   181
  also from assms have "\<dots> < Re z / 2" by (simp add: dist_complex_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   182
  finally show "Re t > 0" using assms by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   183
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   184
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   185
lemma no_nonpos_Int_in_ball_complex:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   186
  assumes "Re z > 0" "t \<in> ball z (Re z/2)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   187
  shows   "t \<notin> \<int>\<^sub>\<le>\<^sub>0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   188
  using Re_pos_in_ball[OF assms] by (force elim!: nonpos_Ints_cases)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   189
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   190
lemma no_nonpos_Int_in_ball:
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   191
  assumes "t \<in> ball z (dist z (round (Re z)))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   192
  shows   "t \<notin> \<int>\<^sub>\<le>\<^sub>0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   193
proof
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   194
  assume "t \<in> \<int>\<^sub>\<le>\<^sub>0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   195
  then obtain n where "t = of_int n" by (auto elim!: nonpos_Ints_cases)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   196
  have "dist z (of_int n) \<le> dist z t + dist t (of_int n)" by (rule dist_triangle)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   197
  also from assms have "dist z t < dist z (round (Re z))" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   198
  also have "\<dots> \<le> dist z (of_int n)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   199
    using round_Re_minimises_norm[of z] by (simp add: dist_complex_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   200
  finally have "dist t (of_int n) > 0" by simp
62072
bf3d9f113474 isabelle update_cartouches -c -t;
wenzelm
parents: 62055
diff changeset
   201
  with \<open>t = of_int n\<close> show False by simp
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   202
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   203
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   204
lemma no_nonpos_Int_in_ball':
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   205
  assumes "(z :: 'a :: {euclidean_space,real_normed_algebra_1}) \<notin> \<int>\<^sub>\<le>\<^sub>0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   206
  obtains d where "d > 0" "\<And>t. t \<in> ball z d \<Longrightarrow> t \<notin> \<int>\<^sub>\<le>\<^sub>0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   207
proof (rule that)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   208
  from assms show "setdist {z} \<int>\<^sub>\<le>\<^sub>0 > 0" by (subst setdist_gt_0_compact_closed) auto
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   209
next
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   210
  fix t assume "t \<in> ball z (setdist {z} \<int>\<^sub>\<le>\<^sub>0)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   211
  thus "t \<notin> \<int>\<^sub>\<le>\<^sub>0" using setdist_le_dist[of z "{z}" t "\<int>\<^sub>\<le>\<^sub>0"] by force
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   212
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   213
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   214
lemma no_nonpos_Real_in_ball:
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   215
  assumes z: "z \<notin> \<real>\<^sub>\<le>\<^sub>0" and t: "t \<in> ball z (if Im z = 0 then Re z / 2 else abs (Im z) / 2)"
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   216
  shows   "t \<notin> \<real>\<^sub>\<le>\<^sub>0"
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   217
using z
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   218
proof (cases "Im z = 0")
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   219
  assume A: "Im z = 0"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   220
  with z have "Re z > 0" by (force simp add: complex_nonpos_Reals_iff)
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   221
  with t A Re_pos_in_ball[of z t] show ?thesis by (force simp add: complex_nonpos_Reals_iff)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   222
next
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   223
  assume A: "Im z \<noteq> 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   224
  have "abs (Im z) - abs (Im t) \<le> abs (Im z - Im t)" by linarith
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   225
  also have "\<dots> = abs (Im (z - t))" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   226
  also have "\<dots> \<le> norm (z - t)" by (rule abs_Im_le_cmod)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   227
  also from A t have "\<dots> \<le> abs (Im z) / 2" by (simp add: dist_complex_def)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   228
  finally have "abs (Im t) > 0" using A by simp
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   229
  thus ?thesis by (force simp add: complex_nonpos_Reals_iff)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   230
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   231
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   232
68624
205d352ed727 Tagged Ball_Volume and Gamma_Function in HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 68403
diff changeset
   233
subsection \<open>The Euler form and the logarithmic Gamma function\<close>
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   234
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   235
text \<open>
68624
205d352ed727 Tagged Ball_Volume and Gamma_Function in HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 68403
diff changeset
   236
  We define the Gamma function by first defining its multiplicative inverse \<open>rGamma\<close>.
205d352ed727 Tagged Ball_Volume and Gamma_Function in HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 68403
diff changeset
   237
  This is more convenient because \<open>rGamma\<close> is entire, which makes proofs of its
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   238
  properties more convenient because one does not have to watch out for discontinuities.
68624
205d352ed727 Tagged Ball_Volume and Gamma_Function in HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 68403
diff changeset
   239
  (e.g. \<open>rGamma\<close> fulfils \<open>rGamma z = z * rGamma (z + 1)\<close> everywhere, whereas the \<open>\<Gamma>\<close> function
205d352ed727 Tagged Ball_Volume and Gamma_Function in HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 68403
diff changeset
   240
  does not fulfil the analogous equation on the non-positive integers)
205d352ed727 Tagged Ball_Volume and Gamma_Function in HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 68403
diff changeset
   241
205d352ed727 Tagged Ball_Volume and Gamma_Function in HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 68403
diff changeset
   242
  We define the \<open>\<Gamma>\<close> function (resp.\ its reciprocale) in the Euler form. This form has the advantage
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   243
  that it is a relatively simple limit that converges everywhere. The limit at the poles is 0
68624
205d352ed727 Tagged Ball_Volume and Gamma_Function in HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 68403
diff changeset
   244
  (due to division by 0). The functional equation \<open>Gamma (z + 1) = z * Gamma z\<close> follows
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   245
  immediately from the definition.
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   246
\<close>
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   247
68624
205d352ed727 Tagged Ball_Volume and Gamma_Function in HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 68403
diff changeset
   248
definition%important Gamma_series :: "('a :: {banach,real_normed_field}) \<Rightarrow> nat \<Rightarrow> 'a" where
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   249
  "Gamma_series z n = fact n * exp (z * of_real (ln (of_nat n))) / pochhammer z (n+1)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   250
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   251
definition Gamma_series' :: "('a :: {banach,real_normed_field}) \<Rightarrow> nat \<Rightarrow> 'a" where
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   252
  "Gamma_series' z n = fact (n - 1) * exp (z * of_real (ln (of_nat n))) / pochhammer z n"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   253
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   254
definition rGamma_series :: "('a :: {banach,real_normed_field}) \<Rightarrow> nat \<Rightarrow> 'a" where
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   255
  "rGamma_series z n = pochhammer z (n+1) / (fact n * exp (z * of_real (ln (of_nat n))))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   256
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   257
lemma Gamma_series_altdef: "Gamma_series z n = inverse (rGamma_series z n)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   258
  and rGamma_series_altdef: "rGamma_series z n = inverse (Gamma_series z n)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   259
  unfolding Gamma_series_def rGamma_series_def by simp_all
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   260
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   261
lemma rGamma_series_minus_of_nat:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   262
  "eventually (\<lambda>n. rGamma_series (- of_nat k) n = 0) sequentially"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   263
  using eventually_ge_at_top[of k]
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   264
  by eventually_elim (auto simp: rGamma_series_def pochhammer_of_nat_eq_0_iff)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   265
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   266
lemma Gamma_series_minus_of_nat:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   267
  "eventually (\<lambda>n. Gamma_series (- of_nat k) n = 0) sequentially"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   268
  using eventually_ge_at_top[of k]
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   269
  by eventually_elim (auto simp: Gamma_series_def pochhammer_of_nat_eq_0_iff)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   270
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   271
lemma Gamma_series'_minus_of_nat:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   272
  "eventually (\<lambda>n. Gamma_series' (- of_nat k) n = 0) sequentially"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   273
  using eventually_gt_at_top[of k]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   274
  by eventually_elim (auto simp: Gamma_series'_def pochhammer_of_nat_eq_0_iff)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   275
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   276
lemma rGamma_series_nonpos_Ints_LIMSEQ: "z \<in> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> rGamma_series z \<longlonglongrightarrow> 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   277
  by (elim nonpos_Ints_cases', hypsubst, subst tendsto_cong, rule rGamma_series_minus_of_nat, simp)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   278
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   279
lemma Gamma_series_nonpos_Ints_LIMSEQ: "z \<in> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> Gamma_series z \<longlonglongrightarrow> 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   280
  by (elim nonpos_Ints_cases', hypsubst, subst tendsto_cong, rule Gamma_series_minus_of_nat, simp)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   281
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   282
lemma Gamma_series'_nonpos_Ints_LIMSEQ: "z \<in> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> Gamma_series' z \<longlonglongrightarrow> 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   283
  by (elim nonpos_Ints_cases', hypsubst, subst tendsto_cong, rule Gamma_series'_minus_of_nat, simp)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   284
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   285
lemma Gamma_series_Gamma_series':
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   286
  assumes z: "z \<notin> \<int>\<^sub>\<le>\<^sub>0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   287
  shows   "(\<lambda>n. Gamma_series' z n / Gamma_series z n) \<longlonglongrightarrow> 1"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   288
proof (rule Lim_transform_eventually)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   289
  from eventually_gt_at_top[of "0::nat"]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   290
    show "eventually (\<lambda>n. z / of_nat n + 1 = Gamma_series' z n / Gamma_series z n) sequentially"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   291
  proof eventually_elim
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   292
    fix n :: nat assume n: "n > 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   293
    from n z have "Gamma_series' z n / Gamma_series z n = (z + of_nat n) / of_nat n"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   294
      by (cases n, simp)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   295
         (auto simp add: Gamma_series_def Gamma_series'_def pochhammer_rec'
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   296
               dest: pochhammer_eq_0_imp_nonpos_Int plus_of_nat_eq_0_imp)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   297
    also from n have "\<dots> = z / of_nat n + 1" by (simp add: divide_simps)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   298
    finally show "z / of_nat n + 1 = Gamma_series' z n / Gamma_series z n" ..
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   299
  qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   300
  have "(\<lambda>x. z / of_nat x) \<longlonglongrightarrow> 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   301
    by (rule tendsto_norm_zero_cancel)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   302
       (insert tendsto_mult[OF tendsto_const[of "norm z"] lim_inverse_n],
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   303
        simp add:  norm_divide inverse_eq_divide)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   304
  from tendsto_add[OF this tendsto_const[of 1]] show "(\<lambda>n. z / of_nat n + 1) \<longlonglongrightarrow> 1" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   305
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   306
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   307
text \<open>
68624
205d352ed727 Tagged Ball_Volume and Gamma_Function in HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 68403
diff changeset
   308
  We now show that the series that defines the \<open>\<Gamma>\<close> function in the Euler form converges
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   309
  and that the function defined by it is continuous on the complex halfspace with positive
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   310
  real part.
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   311
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   312
  We do this by showing that the logarithm of the Euler series is continuous and converges
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   313
  locally uniformly, which means that the log-Gamma function defined by its limit is also
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   314
  continuous.
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   315
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   316
  This will later allow us to lift holomorphicity and continuity from the log-Gamma
62085
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
   317
  function to the inverse of the Gamma function, and from that to the Gamma function itself.
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   318
\<close>
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   319
68624
205d352ed727 Tagged Ball_Volume and Gamma_Function in HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 68403
diff changeset
   320
definition%important ln_Gamma_series :: "('a :: {banach,real_normed_field,ln}) \<Rightarrow> nat \<Rightarrow> 'a" where
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   321
  "ln_Gamma_series z n = z * ln (of_nat n) - ln z - (\<Sum>k=1..n. ln (z / of_nat k + 1))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   322
68624
205d352ed727 Tagged Ball_Volume and Gamma_Function in HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 68403
diff changeset
   323
definition%unimportant ln_Gamma_series' :: "('a :: {banach,real_normed_field,ln}) \<Rightarrow> nat \<Rightarrow> 'a" where
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   324
  "ln_Gamma_series' z n =
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   325
     - euler_mascheroni*z - ln z + (\<Sum>k=1..n. z / of_nat n - ln (z / of_nat k + 1))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   326
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   327
definition ln_Gamma :: "('a :: {banach,real_normed_field,ln}) \<Rightarrow> 'a" where
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   328
  "ln_Gamma z = lim (ln_Gamma_series z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   329
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   330
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   331
text \<open>
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   332
  We now show that the log-Gamma series converges locally uniformly for all complex numbers except
68624
205d352ed727 Tagged Ball_Volume and Gamma_Function in HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 68403
diff changeset
   333
  the non-positive integers. We do this by proving that the series is locally Cauchy.
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   334
\<close>
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   335
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   336
context
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   337
begin
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   338
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   339
private lemma ln_Gamma_series_complex_converges_aux:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   340
  fixes z :: complex and k :: nat
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   341
  assumes z: "z \<noteq> 0" and k: "of_nat k \<ge> 2*norm z" "k \<ge> 2"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   342
  shows "norm (z * ln (1 - 1/of_nat k) + ln (z/of_nat k + 1)) \<le> 2*(norm z + norm z^2) / of_nat k^2"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   343
proof -
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   344
  let ?k = "of_nat k :: complex" and ?z = "norm z"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   345
  have "z *ln (1 - 1/?k) + ln (z/?k+1) = z*(ln (1 - 1/?k :: complex) + 1/?k) + (ln (1+z/?k) - z/?k)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   346
    by (simp add: algebra_simps)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   347
  also have "norm ... \<le> ?z * norm (ln (1-1/?k) + 1/?k :: complex) + norm (ln (1+z/?k) - z/?k)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   348
    by (subst norm_mult [symmetric], rule norm_triangle_ineq)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   349
  also have "norm (Ln (1 + -1/?k) - (-1/?k)) \<le> (norm (-1/?k))\<^sup>2 / (1 - norm(-1/?k))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   350
    using k by (intro Ln_approx_linear) (simp add: norm_divide)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   351
  hence "?z * norm (ln (1-1/?k) + 1/?k) \<le> ?z * ((norm (1/?k))^2 / (1 - norm (1/?k)))"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   352
    by (intro mult_left_mono) simp_all
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   353
  also have "... \<le> (?z * (of_nat k / (of_nat k - 1))) / of_nat k^2" using k
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   354
    by (simp add: field_simps power2_eq_square norm_divide)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   355
  also have "... \<le> (?z * 2) / of_nat k^2" using k
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   356
    by (intro divide_right_mono mult_left_mono) (simp_all add: field_simps)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   357
  also have "norm (ln (1+z/?k) - z/?k) \<le> norm (z/?k)^2 / (1 - norm (z/?k))" using k
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   358
    by (intro Ln_approx_linear) (simp add: norm_divide)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   359
  hence "norm (ln (1+z/?k) - z/?k) \<le> ?z^2 / of_nat k^2 / (1 - ?z / of_nat k)"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   360
    by (simp add: field_simps norm_divide)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   361
  also have "... \<le> (?z^2 * (of_nat k / (of_nat k - ?z))) / of_nat k^2" using k
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   362
    by (simp add: field_simps power2_eq_square)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   363
  also have "... \<le> (?z^2 * 2) / of_nat k^2" using k
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   364
    by (intro divide_right_mono mult_left_mono) (simp_all add: field_simps)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   365
  also note add_divide_distrib [symmetric]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   366
  finally show ?thesis by (simp only: distrib_left mult.commute)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   367
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   368
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   369
lemma ln_Gamma_series_complex_converges:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   370
  assumes z: "z \<notin> \<int>\<^sub>\<le>\<^sub>0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   371
  assumes d: "d > 0" "\<And>n. n \<in> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> norm (z - of_int n) > d"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   372
  shows "uniformly_convergent_on (ball z d) (\<lambda>n z. ln_Gamma_series z n :: complex)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   373
proof (intro Cauchy_uniformly_convergent uniformly_Cauchy_onI')
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   374
  fix e :: real assume e: "e > 0"
69260
0a9688695a1b removed relics of ASCII syntax for indexed big operators
haftmann
parents: 69064
diff changeset
   375
  define e'' where "e'' = (SUP t\<in>ball z d. norm t + norm t^2)"
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62534
diff changeset
   376
  define e' where "e' = e / (2*e'')"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   377
  have "bounded ((\<lambda>t. norm t + norm t^2) ` cball z d)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   378
    by (intro compact_imp_bounded compact_continuous_image) (auto intro!: continuous_intros)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   379
  hence "bounded ((\<lambda>t. norm t + norm t^2) ` ball z d)" by (rule bounded_subset) auto
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   380
  hence bdd: "bdd_above ((\<lambda>t. norm t + norm t^2) ` ball z d)" by (rule bounded_imp_bdd_above)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   381
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   382
  with z d(1) d(2)[of "-1"] have e''_pos: "e'' > 0" unfolding e''_def
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   383
    by (subst less_cSUP_iff) (auto intro!: add_pos_nonneg bexI[of _ z])
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   384
  have e'': "norm t + norm t^2 \<le> e''" if "t \<in> ball z d" for t unfolding e''_def using that
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   385
    by (rule cSUP_upper[OF _ bdd])
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   386
  from e z e''_pos have e': "e' > 0" unfolding e'_def
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   387
    by (intro divide_pos_pos mult_pos_pos add_pos_pos) (simp_all add: field_simps)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   388
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   389
  have "summable (\<lambda>k. inverse ((real_of_nat k)^2))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   390
    by (rule inverse_power_summable) simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   391
  from summable_partial_sum_bound[OF this e'] guess M . note M = this
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   392
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62534
diff changeset
   393
  define N where "N = max 2 (max (nat \<lceil>2 * (norm z + d)\<rceil>) M)"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   394
  {
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   395
    from d have "\<lceil>2 * (cmod z + d)\<rceil> \<ge> \<lceil>0::real\<rceil>"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   396
      by (intro ceiling_mono mult_nonneg_nonneg add_nonneg_nonneg) simp_all
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   397
    hence "2 * (norm z + d) \<le> of_nat (nat \<lceil>2 * (norm z + d)\<rceil>)" unfolding N_def
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   398
      by (simp_all add: le_of_int_ceiling)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   399
    also have "... \<le> of_nat N" unfolding N_def
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   400
      by (subst of_nat_le_iff) (rule max.coboundedI2, rule max.cobounded1)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   401
    finally have "of_nat N \<ge> 2 * (norm z + d)" .
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   402
    moreover have "N \<ge> 2" "N \<ge> M" unfolding N_def by simp_all
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   403
    moreover have "(\<Sum>k=m..n. 1/(of_nat k)\<^sup>2) < e'" if "m \<ge> N" for m n
62072
bf3d9f113474 isabelle update_cartouches -c -t;
wenzelm
parents: 62055
diff changeset
   404
      using M[OF order.trans[OF \<open>N \<ge> M\<close> that]] unfolding real_norm_def
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63992
diff changeset
   405
      by (subst (asm) abs_of_nonneg) (auto intro: sum_nonneg simp: divide_simps)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   406
    moreover note calculation
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   407
  } note N = this
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   408
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   409
  show "\<exists>M. \<forall>t\<in>ball z d. \<forall>m\<ge>M. \<forall>n>m. dist (ln_Gamma_series t m) (ln_Gamma_series t n) < e"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   410
    unfolding dist_complex_def
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   411
  proof (intro exI[of _ N] ballI allI impI)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   412
    fix t m n assume t: "t \<in> ball z d" and mn: "m \<ge> N" "n > m"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   413
    from d(2)[of 0] t have "0 < dist z 0 - dist z t" by (simp add: field_simps dist_complex_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   414
    also have "dist z 0 - dist z t \<le> dist 0 t" using dist_triangle[of 0 z t]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   415
      by (simp add: dist_commute)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   416
    finally have t_nz: "t \<noteq> 0" by auto
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   417
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   418
    have "norm t \<le> norm z + norm (t - z)" by (rule norm_triangle_sub)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   419
    also from t have "norm (t - z) < d" by (simp add: dist_complex_def norm_minus_commute)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   420
    also have "2 * (norm z + d) \<le> of_nat N" by (rule N)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   421
    also have "N \<le> m" by (rule mn)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   422
    finally have norm_t: "2 * norm t < of_nat m" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   423
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   424
    have "ln_Gamma_series t m - ln_Gamma_series t n =
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   425
              (-(t * Ln (of_nat n)) - (-(t * Ln (of_nat m)))) +
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   426
              ((\<Sum>k=1..n. Ln (t / of_nat k + 1)) - (\<Sum>k=1..m. Ln (t / of_nat k + 1)))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   427
      by (simp add: ln_Gamma_series_def algebra_simps)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   428
    also have "(\<Sum>k=1..n. Ln (t / of_nat k + 1)) - (\<Sum>k=1..m. Ln (t / of_nat k + 1)) =
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   429
                 (\<Sum>k\<in>{1..n}-{1..m}. Ln (t / of_nat k + 1))" using mn
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63992
diff changeset
   430
      by (simp add: sum_diff)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   431
    also from mn have "{1..n}-{1..m} = {Suc m..n}" by fastforce
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   432
    also have "-(t * Ln (of_nat n)) - (-(t * Ln (of_nat m))) =
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   433
                   (\<Sum>k = Suc m..n. t * Ln (of_nat (k - 1)) - t * Ln (of_nat k))" using mn
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63992
diff changeset
   434
      by (subst sum_telescope'' [symmetric]) simp_all
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   435
    also have "... = (\<Sum>k = Suc m..n. t * Ln (of_nat (k - 1) / of_nat k))" using mn N
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63992
diff changeset
   436
      by (intro sum_cong_Suc)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   437
         (simp_all del: of_nat_Suc add: field_simps Ln_of_nat Ln_of_nat_over_of_nat)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   438
    also have "of_nat (k - 1) / of_nat k = 1 - 1 / (of_nat k :: complex)" if "k \<in> {Suc m..n}" for k
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   439
      using that of_nat_eq_0_iff[of "Suc i" for i] by (cases k) (simp_all add: divide_simps)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   440
    hence "(\<Sum>k = Suc m..n. t * Ln (of_nat (k - 1) / of_nat k)) =
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   441
             (\<Sum>k = Suc m..n. t * Ln (1 - 1 / of_nat k))" using mn N
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63992
diff changeset
   442
      by (intro sum.cong) simp_all
b9a1486e79be setsum -> sum
nipkow
parents: 63992
diff changeset
   443
    also note sum.distrib [symmetric]
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   444
    also have "norm (\<Sum>k=Suc m..n. t * Ln (1 - 1/of_nat k) + Ln (t/of_nat k + 1)) \<le>
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   445
      (\<Sum>k=Suc m..n. 2 * (norm t + (norm t)\<^sup>2) / (real_of_nat k)\<^sup>2)" using t_nz N(2) mn norm_t
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63992
diff changeset
   446
      by (intro order.trans[OF norm_sum sum_mono[OF ln_Gamma_series_complex_converges_aux]]) simp_all
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   447
    also have "... \<le> 2 * (norm t + norm t^2) * (\<Sum>k=Suc m..n. 1 / (of_nat k)\<^sup>2)"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63992
diff changeset
   448
      by (simp add: sum_distrib_left)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   449
    also have "... < 2 * (norm t + norm t^2) * e'" using mn z t_nz
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   450
      by (intro mult_strict_left_mono N mult_pos_pos add_pos_pos) simp_all
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   451
    also from e''_pos have "... = e * ((cmod t + (cmod t)\<^sup>2) / e'')"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   452
      by (simp add: e'_def field_simps power2_eq_square)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   453
    also from e''[OF t] e''_pos e
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   454
      have "\<dots> \<le> e * 1" by (intro mult_left_mono) (simp_all add: field_simps)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   455
    finally show "norm (ln_Gamma_series t m - ln_Gamma_series t n) < e" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   456
  qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   457
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   458
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   459
end
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   460
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   461
lemma ln_Gamma_series_complex_converges':
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   462
  assumes z: "(z :: complex) \<notin> \<int>\<^sub>\<le>\<^sub>0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   463
  shows "\<exists>d>0. uniformly_convergent_on (ball z d) (\<lambda>n z. ln_Gamma_series z n)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   464
proof -
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62534
diff changeset
   465
  define d' where "d' = Re z"
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62534
diff changeset
   466
  define d where "d = (if d' > 0 then d' / 2 else norm (z - of_int (round d')) / 2)"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   467
  have "of_int (round d') \<in> \<int>\<^sub>\<le>\<^sub>0" if "d' \<le> 0" using that
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   468
    by (intro nonpos_Ints_of_int) (simp_all add: round_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   469
  with assms have d_pos: "d > 0" unfolding d_def by (force simp: not_less)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   470
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   471
  have "d < cmod (z - of_int n)" if "n \<in> \<int>\<^sub>\<le>\<^sub>0" for n
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   472
  proof (cases "Re z > 0")
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   473
    case True
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   474
    from nonpos_Ints_nonpos[OF that] have n: "n \<le> 0" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   475
    from True have "d = Re z/2" by (simp add: d_def d'_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   476
    also from n True have "\<dots> < Re (z - of_int n)" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   477
    also have "\<dots> \<le> norm (z - of_int n)" by (rule complex_Re_le_cmod)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   478
    finally show ?thesis .
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   479
  next
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   480
    case False
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   481
    with assms nonpos_Ints_of_int[of "round (Re z)"]
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   482
      have "z \<noteq> of_int (round d')" by (auto simp: not_less)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   483
    with False have "d < norm (z - of_int (round d'))" by (simp add: d_def d'_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   484
    also have "\<dots> \<le> norm (z - of_int n)" unfolding d'_def by (rule round_Re_minimises_norm)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   485
    finally show ?thesis .
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   486
  qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   487
  hence conv: "uniformly_convergent_on (ball z d) (\<lambda>n z. ln_Gamma_series z n)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   488
    by (intro ln_Gamma_series_complex_converges d_pos z) simp_all
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   489
  from d_pos conv show ?thesis by blast
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   490
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   491
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   492
lemma ln_Gamma_series_complex_converges'': "(z :: complex) \<notin> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> convergent (ln_Gamma_series z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   493
  by (drule ln_Gamma_series_complex_converges') (auto intro: uniformly_convergent_imp_convergent)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   494
68624
205d352ed727 Tagged Ball_Volume and Gamma_Function in HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 68403
diff changeset
   495
theorem ln_Gamma_complex_LIMSEQ: "(z :: complex) \<notin> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> ln_Gamma_series z \<longlonglongrightarrow> ln_Gamma z"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   496
  using ln_Gamma_series_complex_converges'' by (simp add: convergent_LIMSEQ_iff ln_Gamma_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   497
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   498
lemma exp_ln_Gamma_series_complex:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   499
  assumes "n > 0" "z \<notin> \<int>\<^sub>\<le>\<^sub>0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   500
  shows   "exp (ln_Gamma_series z n :: complex) = Gamma_series z n"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   501
proof -
63417
c184ec919c70 more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
haftmann
parents: 63367
diff changeset
   502
  from assms obtain m where m: "n = Suc m" by (cases n) blast
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   503
  from assms have "z \<noteq> 0" by (intro notI) auto
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   504
  with assms have "exp (ln_Gamma_series z n) =
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   505
          (of_nat n) powr z / (z * (\<Prod>k=1..n. exp (Ln (z / of_nat k + 1))))"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63992
diff changeset
   506
    unfolding ln_Gamma_series_def powr_def by (simp add: exp_diff exp_sum)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   507
  also from assms have "(\<Prod>k=1..n. exp (Ln (z / of_nat k + 1))) = (\<Prod>k=1..n. z / of_nat k + 1)"
64272
f76b6dda2e56 setprod -> prod
nipkow
parents: 64267
diff changeset
   508
    by (intro prod.cong[OF refl], subst exp_Ln) (auto simp: field_simps plus_of_nat_eq_0_imp)
63417
c184ec919c70 more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
haftmann
parents: 63367
diff changeset
   509
  also have "... = (\<Prod>k=1..n. z + k) / fact n"
64272
f76b6dda2e56 setprod -> prod
nipkow
parents: 64267
diff changeset
   510
    by (simp add: fact_prod)
f76b6dda2e56 setprod -> prod
nipkow
parents: 64267
diff changeset
   511
    (subst prod_dividef [symmetric], simp_all add: field_simps)
63417
c184ec919c70 more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
haftmann
parents: 63367
diff changeset
   512
  also from m have "z * ... = (\<Prod>k=0..n. z + k) / fact n"
64272
f76b6dda2e56 setprod -> prod
nipkow
parents: 64267
diff changeset
   513
    by (simp add: prod.atLeast0_atMost_Suc_shift prod.atLeast_Suc_atMost_Suc_shift)
63417
c184ec919c70 more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
haftmann
parents: 63367
diff changeset
   514
  also have "(\<Prod>k=0..n. z + k) = pochhammer z (Suc n)"
64272
f76b6dda2e56 setprod -> prod
nipkow
parents: 64267
diff changeset
   515
    unfolding pochhammer_prod
f76b6dda2e56 setprod -> prod
nipkow
parents: 64267
diff changeset
   516
    by (simp add: prod.atLeast0_atMost_Suc atLeastLessThanSuc_atLeastAtMost)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   517
  also have "of_nat n powr z / (pochhammer z (Suc n) / fact n) = Gamma_series z n"
66936
cf8d8fc23891 tuned some proofs and added some lemmas
haftmann
parents: 66526
diff changeset
   518
    unfolding Gamma_series_def using assms by (simp add: divide_simps powr_def)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   519
  finally show ?thesis .
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   520
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   521
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   522
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   523
lemma ln_Gamma_series'_aux:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   524
  assumes "(z::complex) \<notin> \<int>\<^sub>\<le>\<^sub>0"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   525
  shows   "(\<lambda>k. z / of_nat (Suc k) - ln (1 + z / of_nat (Suc k))) sums
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   526
              (ln_Gamma z + euler_mascheroni * z + ln z)" (is "?f sums ?s")
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   527
unfolding sums_def
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   528
proof (rule Lim_transform)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   529
  show "(\<lambda>n. ln_Gamma_series z n + of_real (harm n - ln (of_nat n)) * z + ln z) \<longlonglongrightarrow> ?s"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   530
    (is "?g \<longlonglongrightarrow> _")
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   531
    by (intro tendsto_intros ln_Gamma_complex_LIMSEQ euler_mascheroni_LIMSEQ_of_real assms)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   532
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   533
  have A: "eventually (\<lambda>n. (\<Sum>k<n. ?f k) - ?g n = 0) sequentially"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   534
    using eventually_gt_at_top[of "0::nat"]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   535
  proof eventually_elim
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   536
    fix n :: nat assume n: "n > 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   537
    have "(\<Sum>k<n. ?f k) = (\<Sum>k=1..n. z / of_nat k - ln (1 + z / of_nat k))"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63992
diff changeset
   538
      by (subst atLeast0LessThan [symmetric], subst sum_shift_bounds_Suc_ivl [symmetric],
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   539
          subst atLeastLessThanSuc_atLeastAtMost) simp_all
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   540
    also have "\<dots> = z * of_real (harm n) - (\<Sum>k=1..n. ln (1 + z / of_nat k))"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63992
diff changeset
   541
      by (simp add: harm_def sum_subtractf sum_distrib_left divide_inverse)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   542
    also from n have "\<dots> - ?g n = 0"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63992
diff changeset
   543
      by (simp add: ln_Gamma_series_def sum_subtractf algebra_simps Ln_of_nat)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   544
    finally show "(\<Sum>k<n. ?f k) - ?g n = 0" .
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   545
  qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   546
  show "(\<lambda>n. (\<Sum>k<n. ?f k) - ?g n) \<longlonglongrightarrow> 0" by (subst tendsto_cong[OF A]) simp_all
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   547
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   548
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   549
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   550
lemma uniformly_summable_deriv_ln_Gamma:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   551
  assumes z: "(z :: 'a :: {real_normed_field,banach}) \<noteq> 0" and d: "d > 0" "d \<le> norm z/2"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   552
  shows "uniformly_convergent_on (ball z d)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   553
            (\<lambda>k z. \<Sum>i<k. inverse (of_nat (Suc i)) - inverse (z + of_nat (Suc i)))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   554
           (is "uniformly_convergent_on _ (\<lambda>k z. \<Sum>i<k. ?f i z)")
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   555
proof (rule weierstrass_m_test'_ev)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   556
  {
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   557
    fix t assume t: "t \<in> ball z d"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   558
    have "norm z = norm (t + (z - t))" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   559
    have "norm (t + (z - t)) \<le> norm t + norm (z - t)" by (rule norm_triangle_ineq)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   560
    also from t d have "norm (z - t) < norm z / 2" by (simp add: dist_norm)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   561
    finally have A: "norm t > norm z / 2" using z by (simp add: field_simps)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   562
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   563
    have "norm t = norm (z + (t - z))" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   564
    also have "\<dots> \<le> norm z + norm (t - z)" by (rule norm_triangle_ineq)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   565
    also from t d have "norm (t - z) \<le> norm z / 2" by (simp add: dist_norm norm_minus_commute)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   566
    also from z have "\<dots> < norm z" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   567
    finally have B: "norm t < 2 * norm z" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   568
    note A B
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   569
  } note ball = this
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   570
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   571
  show "eventually (\<lambda>n. \<forall>t\<in>ball z d. norm (?f n t) \<le> 4 * norm z * inverse (of_nat (Suc n)^2)) sequentially"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   572
    using eventually_gt_at_top apply eventually_elim
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   573
  proof safe
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   574
    fix t :: 'a assume t: "t \<in> ball z d"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   575
    from z ball[OF t] have t_nz: "t \<noteq> 0" by auto
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   576
    fix n :: nat assume n: "n > nat \<lceil>4 * norm z\<rceil>"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   577
    from ball[OF t] t_nz have "4 * norm z > 2 * norm t" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   578
    also from n have "\<dots>  < of_nat n" by linarith
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   579
    finally have n: "of_nat n > 2 * norm t" .
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   580
    hence "of_nat n > norm t" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   581
    hence t': "t \<noteq> -of_nat (Suc n)" by (intro notI) (simp del: of_nat_Suc)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   582
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   583
    with t_nz have "?f n t = 1 / (of_nat (Suc n) * (1 + of_nat (Suc n)/t))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   584
      by (simp add: divide_simps eq_neg_iff_add_eq_0 del: of_nat_Suc)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   585
    also have "norm \<dots> = inverse (of_nat (Suc n)) * inverse (norm (of_nat (Suc n)/t + 1))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   586
      by (simp add: norm_divide norm_mult divide_simps add_ac del: of_nat_Suc)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   587
    also {
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   588
      from z t_nz ball[OF t] have "of_nat (Suc n) / (4 * norm z) \<le> of_nat (Suc n) / (2 * norm t)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   589
        by (intro divide_left_mono mult_pos_pos) simp_all
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   590
      also have "\<dots> < norm (of_nat (Suc n) / t) - norm (1 :: 'a)"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   591
        using t_nz n by (simp add: field_simps norm_divide del: of_nat_Suc)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   592
      also have "\<dots> \<le> norm (of_nat (Suc n)/t + 1)" by (rule norm_diff_ineq)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   593
      finally have "inverse (norm (of_nat (Suc n)/t + 1)) \<le> 4 * norm z / of_nat (Suc n)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   594
        using z by (simp add: divide_simps norm_divide mult_ac del: of_nat_Suc)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   595
    }
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   596
    also have "inverse (real_of_nat (Suc n)) * (4 * norm z / real_of_nat (Suc n)) =
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   597
                 4 * norm z * inverse (of_nat (Suc n)^2)"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   598
                 by (simp add: divide_simps power2_eq_square del: of_nat_Suc)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   599
    finally show "norm (?f n t) \<le> 4 * norm z * inverse (of_nat (Suc n)^2)"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   600
      by (simp del: of_nat_Suc)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   601
  qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   602
next
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   603
  show "summable (\<lambda>n. 4 * norm z * inverse ((of_nat (Suc n))^2))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   604
    by (subst summable_Suc_iff) (simp add: summable_mult inverse_power_summable)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   605
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   606
68624
205d352ed727 Tagged Ball_Volume and Gamma_Function in HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 68403
diff changeset
   607
205d352ed727 Tagged Ball_Volume and Gamma_Function in HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 68403
diff changeset
   608
subsection \<open>The Polygamma functions\<close>
205d352ed727 Tagged Ball_Volume and Gamma_Function in HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 68403
diff changeset
   609
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   610
lemma summable_deriv_ln_Gamma:
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   611
  "z \<noteq> (0 :: 'a :: {real_normed_field,banach}) \<Longrightarrow>
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   612
     summable (\<lambda>n. inverse (of_nat (Suc n)) - inverse (z + of_nat (Suc n)))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   613
  unfolding summable_iff_convergent
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   614
  by (rule uniformly_convergent_imp_convergent,
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   615
      rule uniformly_summable_deriv_ln_Gamma[of z "norm z/2"]) simp_all
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   616
68624
205d352ed727 Tagged Ball_Volume and Gamma_Function in HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 68403
diff changeset
   617
definition%important Polygamma :: "nat \<Rightarrow> ('a :: {real_normed_field,banach}) \<Rightarrow> 'a" where
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   618
  "Polygamma n z = (if n = 0 then
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   619
      (\<Sum>k. inverse (of_nat (Suc k)) - inverse (z + of_nat k)) - euler_mascheroni else
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   620
      (-1)^Suc n * fact n * (\<Sum>k. inverse ((z + of_nat k)^Suc n)))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   621
68624
205d352ed727 Tagged Ball_Volume and Gamma_Function in HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 68403
diff changeset
   622
abbreviation%important Digamma :: "('a :: {real_normed_field,banach}) \<Rightarrow> 'a" where
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   623
  "Digamma \<equiv> Polygamma 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   624
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   625
lemma Digamma_def:
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   626
  "Digamma z = (\<Sum>k. inverse (of_nat (Suc k)) - inverse (z + of_nat k)) - euler_mascheroni"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   627
  by (simp add: Polygamma_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   628
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   629
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   630
lemma summable_Digamma:
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   631
  assumes "(z :: 'a :: {real_normed_field,banach}) \<noteq> 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   632
  shows   "summable (\<lambda>n. inverse (of_nat (Suc n)) - inverse (z + of_nat n))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   633
proof -
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   634
  have sums: "(\<lambda>n. inverse (z + of_nat (Suc n)) - inverse (z + of_nat n)) sums
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   635
                       (0 - inverse (z + of_nat 0))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   636
    by (intro telescope_sums filterlim_compose[OF tendsto_inverse_0]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   637
              tendsto_add_filterlim_at_infinity[OF tendsto_const] tendsto_of_nat)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   638
  from summable_add[OF summable_deriv_ln_Gamma[OF assms] sums_summable[OF sums]]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   639
    show "summable (\<lambda>n. inverse (of_nat (Suc n)) - inverse (z + of_nat n))" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   640
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   641
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   642
lemma summable_offset:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   643
  assumes "summable (\<lambda>n. f (n + k) :: 'a :: real_normed_vector)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   644
  shows   "summable f"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   645
proof -
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   646
  from assms have "convergent (\<lambda>m. \<Sum>n<m. f (n + k))" by (simp add: summable_iff_convergent)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   647
  hence "convergent (\<lambda>m. (\<Sum>n<k. f n) + (\<Sum>n<m. f (n + k)))"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   648
    by (intro convergent_add convergent_const)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   649
  also have "(\<lambda>m. (\<Sum>n<k. f n) + (\<Sum>n<m. f (n + k))) = (\<lambda>m. \<Sum>n<m+k. f n)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   650
  proof
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   651
    fix m :: nat
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   652
    have "{..<m+k} = {..<k} \<union> {k..<m+k}" by auto
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   653
    also have "(\<Sum>n\<in>\<dots>. f n) = (\<Sum>n<k. f n) + (\<Sum>n=k..<m+k. f n)"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63992
diff changeset
   654
      by (rule sum.union_disjoint) auto
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   655
    also have "(\<Sum>n=k..<m+k. f n) = (\<Sum>n=0..<m+k-k. f (n + k))"
66936
cf8d8fc23891 tuned some proofs and added some lemmas
haftmann
parents: 66526
diff changeset
   656
      using sum_shift_bounds_nat_ivl [of f 0 k m] by simp
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   657
    finally show "(\<Sum>n<k. f n) + (\<Sum>n<m. f (n + k)) = (\<Sum>n<m+k. f n)" by (simp add: atLeast0LessThan)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   658
  qed
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63992
diff changeset
   659
  finally have "(\<lambda>a. sum f {..<a}) \<longlonglongrightarrow> lim (\<lambda>m. sum f {..<m + k})"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   660
    by (auto simp: convergent_LIMSEQ_iff dest: LIMSEQ_offset)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   661
  thus ?thesis by (auto simp: summable_iff_convergent convergent_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   662
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   663
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   664
lemma Polygamma_converges:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   665
  fixes z :: "'a :: {real_normed_field,banach}"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   666
  assumes z: "z \<noteq> 0" and n: "n \<ge> 2"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   667
  shows "uniformly_convergent_on (ball z d) (\<lambda>k z. \<Sum>i<k. inverse ((z + of_nat i)^n))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   668
proof (rule weierstrass_m_test'_ev)
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62534
diff changeset
   669
  define e where "e = (1 + d / norm z)"
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62534
diff changeset
   670
  define m where "m = nat \<lceil>norm z * e\<rceil>"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   671
  {
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   672
    fix t assume t: "t \<in> ball z d"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   673
    have "norm t = norm (z + (t - z))" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   674
    also have "\<dots> \<le> norm z + norm (t - z)" by (rule norm_triangle_ineq)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   675
    also from t have "norm (t - z) < d" by (simp add: dist_norm norm_minus_commute)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   676
    finally have "norm t < norm z * e" using z by (simp add: divide_simps e_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   677
  } note ball = this
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   678
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   679
  show "eventually (\<lambda>k. \<forall>t\<in>ball z d. norm (inverse ((t + of_nat k)^n)) \<le>
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   680
            inverse (of_nat (k - m)^n)) sequentially"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   681
    using eventually_gt_at_top[of m] apply eventually_elim
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   682
  proof (intro ballI)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   683
    fix k :: nat and t :: 'a assume k: "k > m" and t: "t \<in> ball z d"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   684
    from k have "real_of_nat (k - m) = of_nat k - of_nat m" by (simp add: of_nat_diff)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   685
    also have "\<dots> \<le> norm (of_nat k :: 'a) - norm z * e"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   686
      unfolding m_def by (subst norm_of_nat) linarith
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   687
    also from ball[OF t] have "\<dots> \<le> norm (of_nat k :: 'a) - norm t" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   688
    also have "\<dots> \<le> norm (of_nat k + t)" by (rule norm_diff_ineq)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   689
    finally have "inverse ((norm (t + of_nat k))^n) \<le> inverse (real_of_nat (k - m)^n)" using k n
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   690
      by (intro le_imp_inverse_le power_mono) (simp_all add: add_ac del: of_nat_Suc)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   691
    thus "norm (inverse ((t + of_nat k)^n)) \<le> inverse (of_nat (k - m)^n)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   692
      by (simp add: norm_inverse norm_power power_inverse)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   693
  qed
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   694
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   695
  have "summable (\<lambda>k. inverse ((real_of_nat k)^n))"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   696
    using inverse_power_summable[of n] n by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   697
  hence "summable (\<lambda>k. inverse ((real_of_nat (k + m - m))^n))" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   698
  thus "summable (\<lambda>k. inverse ((real_of_nat (k - m))^n))" by (rule summable_offset)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   699
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   700
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   701
lemma Polygamma_converges':
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   702
  fixes z :: "'a :: {real_normed_field,banach}"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   703
  assumes z: "z \<noteq> 0" and n: "n \<ge> 2"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   704
  shows "summable (\<lambda>k. inverse ((z + of_nat k)^n))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   705
  using uniformly_convergent_imp_convergent[OF Polygamma_converges[OF assms, of 1], of z]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   706
  by (simp add: summable_iff_convergent)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   707
68624
205d352ed727 Tagged Ball_Volume and Gamma_Function in HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 68403
diff changeset
   708
theorem Digamma_LIMSEQ:
63721
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
   709
  fixes z :: "'a :: {banach,real_normed_field}"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
   710
  assumes z: "z \<noteq> 0"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
   711
  shows   "(\<lambda>m. of_real (ln (real m)) - (\<Sum>n<m. inverse (z + of_nat n))) \<longlonglongrightarrow> Digamma z"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
   712
proof -
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
   713
  have "(\<lambda>n. of_real (ln (real n / (real (Suc n))))) \<longlonglongrightarrow> (of_real (ln 1) :: 'a)"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
   714
    by (intro tendsto_intros LIMSEQ_n_over_Suc_n) simp_all
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
   715
  hence "(\<lambda>n. of_real (ln (real n / (real n + 1)))) \<longlonglongrightarrow> (0 :: 'a)" by (simp add: add_ac)
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
   716
  hence lim: "(\<lambda>n. of_real (ln (real n)) - of_real (ln (real n + 1))) \<longlonglongrightarrow> (0::'a)"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
   717
  proof (rule Lim_transform_eventually [rotated])
66512
89b6455b63b6 starting to unscramble bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66453
diff changeset
   718
    show "eventually (\<lambda>n. of_real (ln (real n / (real n + 1))) =
63721
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
   719
            of_real (ln (real n)) - (of_real (ln (real n + 1)) :: 'a)) at_top"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
   720
      using eventually_gt_at_top[of "0::nat"] by eventually_elim (simp add: ln_div)
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
   721
  qed
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
   722
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
   723
  from summable_Digamma[OF z]
66512
89b6455b63b6 starting to unscramble bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66453
diff changeset
   724
    have "(\<lambda>n. inverse (of_nat (n+1)) - inverse (z + of_nat n))
63721
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
   725
              sums (Digamma z + euler_mascheroni)"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
   726
    by (simp add: Digamma_def summable_sums)
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
   727
  from sums_diff[OF this euler_mascheroni_sum]
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
   728
    have "(\<lambda>n. of_real (ln (real (Suc n) + 1)) - of_real (ln (real n + 1)) - inverse (z + of_nat n))
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
   729
            sums Digamma z" by (simp add: add_ac)
66512
89b6455b63b6 starting to unscramble bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66453
diff changeset
   730
  hence "(\<lambda>m. (\<Sum>n<m. of_real (ln (real (Suc n) + 1)) - of_real (ln (real n + 1))) -
63721
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
   731
              (\<Sum>n<m. inverse (z + of_nat n))) \<longlonglongrightarrow> Digamma z"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63992
diff changeset
   732
    by (simp add: sums_def sum_subtractf)
66512
89b6455b63b6 starting to unscramble bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66453
diff changeset
   733
  also have "(\<lambda>m. (\<Sum>n<m. of_real (ln (real (Suc n) + 1)) - of_real (ln (real n + 1)))) =
63721
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
   734
                 (\<lambda>m. of_real (ln (m + 1)) :: 'a)"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63992
diff changeset
   735
    by (subst sum_lessThan_telescope) simp_all
63721
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
   736
  finally show ?thesis by (rule Lim_transform) (insert lim, simp)
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
   737
qed
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
   738
68624
205d352ed727 Tagged Ball_Volume and Gamma_Function in HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 68403
diff changeset
   739
theorem Polygamma_LIMSEQ:
205d352ed727 Tagged Ball_Volume and Gamma_Function in HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 68403
diff changeset
   740
  fixes z :: "'a :: {banach,real_normed_field}"
205d352ed727 Tagged Ball_Volume and Gamma_Function in HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 68403
diff changeset
   741
  assumes "z \<noteq> 0" and "n > 0"
205d352ed727 Tagged Ball_Volume and Gamma_Function in HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 68403
diff changeset
   742
  shows   "(\<lambda>k. inverse ((z + of_nat k)^Suc n)) sums ((-1) ^ Suc n * Polygamma n z / fact n)"
205d352ed727 Tagged Ball_Volume and Gamma_Function in HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 68403
diff changeset
   743
  using Polygamma_converges'[OF assms(1), of "Suc n"] assms(2)
205d352ed727 Tagged Ball_Volume and Gamma_Function in HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 68403
diff changeset
   744
  by (simp add: sums_iff Polygamma_def)
205d352ed727 Tagged Ball_Volume and Gamma_Function in HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 68403
diff changeset
   745
205d352ed727 Tagged Ball_Volume and Gamma_Function in HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 68403
diff changeset
   746
theorem has_field_derivative_ln_Gamma_complex [derivative_intros]:
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   747
  fixes z :: complex
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   748
  assumes z: "z \<notin> \<real>\<^sub>\<le>\<^sub>0"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   749
  shows   "(ln_Gamma has_field_derivative Digamma z) (at z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   750
proof -
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   751
  have not_nonpos_Int [simp]: "t \<notin> \<int>\<^sub>\<le>\<^sub>0" if "Re t > 0" for t
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   752
    using that by (auto elim!: nonpos_Ints_cases')
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   753
  from z have z': "z \<notin> \<int>\<^sub>\<le>\<^sub>0" and z'': "z \<noteq> 0" using nonpos_Ints_subset_nonpos_Reals nonpos_Reals_zero_I
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   754
     by blast+
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   755
  let ?f' = "\<lambda>z k. inverse (of_nat (Suc k)) - inverse (z + of_nat (Suc k))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   756
  let ?f = "\<lambda>z k. z / of_nat (Suc k) - ln (1 + z / of_nat (Suc k))" and ?F' = "\<lambda>z. \<Sum>n. ?f' z n"
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62534
diff changeset
   757
  define d where "d = min (norm z/2) (if Im z = 0 then Re z / 2 else abs (Im z) / 2)"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   758
  from z have d: "d > 0" "norm z/2 \<ge> d" by (auto simp add: complex_nonpos_Reals_iff d_def)
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   759
  have ball: "Im t = 0 \<longrightarrow> Re t > 0" if "dist z t < d" for t
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   760
    using no_nonpos_Real_in_ball[OF z, of t] that unfolding d_def by (force simp add: complex_nonpos_Reals_iff)
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   761
  have sums: "(\<lambda>n. inverse (z + of_nat (Suc n)) - inverse (z + of_nat n)) sums
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   762
                       (0 - inverse (z + of_nat 0))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   763
    by (intro telescope_sums filterlim_compose[OF tendsto_inverse_0]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   764
              tendsto_add_filterlim_at_infinity[OF tendsto_const] tendsto_of_nat)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   765
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   766
  have "((\<lambda>z. \<Sum>n. ?f z n) has_field_derivative ?F' z) (at z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   767
    using d z ln_Gamma_series'_aux[OF z']
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   768
    apply (intro has_field_derivative_series'(2)[of "ball z d" _ _ z] uniformly_summable_deriv_ln_Gamma)
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   769
    apply (auto intro!: derivative_eq_intros add_pos_pos mult_pos_pos dest!: ball
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   770
             simp: field_simps sums_iff nonpos_Reals_divide_of_nat_iff
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   771
             simp del: of_nat_Suc)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   772
    apply (auto simp add: complex_nonpos_Reals_iff)
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   773
    done
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   774
  with z have "((\<lambda>z. (\<Sum>k. ?f z k) - euler_mascheroni * z - Ln z) has_field_derivative
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   775
                   ?F' z - euler_mascheroni - inverse z) (at z)"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   776
    by (force intro!: derivative_eq_intros simp: Digamma_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   777
  also have "?F' z - euler_mascheroni - inverse z = (?F' z + -inverse z) - euler_mascheroni" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   778
  also from sums have "-inverse z = (\<Sum>n. inverse (z + of_nat (Suc n)) - inverse (z + of_nat n))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   779
    by (simp add: sums_iff)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   780
  also from sums summable_deriv_ln_Gamma[OF z'']
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   781
    have "?F' z + \<dots> =  (\<Sum>n. inverse (of_nat (Suc n)) - inverse (z + of_nat n))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   782
    by (subst suminf_add) (simp_all add: add_ac sums_iff)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   783
  also have "\<dots> - euler_mascheroni = Digamma z" by (simp add: Digamma_def)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   784
  finally have "((\<lambda>z. (\<Sum>k. ?f z k) - euler_mascheroni * z - Ln z)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   785
                    has_field_derivative Digamma z) (at z)" .
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   786
  moreover from eventually_nhds_ball[OF d(1), of z]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   787
    have "eventually (\<lambda>z. ln_Gamma z = (\<Sum>k. ?f z k) - euler_mascheroni * z - Ln z) (nhds z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   788
  proof eventually_elim
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   789
    fix t assume "t \<in> ball z d"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   790
    hence "t \<notin> \<int>\<^sub>\<le>\<^sub>0" by (auto dest!: ball elim!: nonpos_Ints_cases)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   791
    from ln_Gamma_series'_aux[OF this]
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   792
      show "ln_Gamma t = (\<Sum>k. ?f t k) - euler_mascheroni * t - Ln t" by (simp add: sums_iff)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   793
  qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   794
  ultimately show ?thesis by (subst DERIV_cong_ev[OF refl _ refl])
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   795
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   796
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   797
declare has_field_derivative_ln_Gamma_complex[THEN DERIV_chain2, derivative_intros]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   798
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   799
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   800
lemma Digamma_1 [simp]: "Digamma (1 :: 'a :: {real_normed_field,banach}) = - euler_mascheroni"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   801
  by (simp add: Digamma_def)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   802
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   803
lemma Digamma_plus1:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   804
  assumes "z \<noteq> 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   805
  shows   "Digamma (z+1) = Digamma z + 1/z"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   806
proof -
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   807
  have sums: "(\<lambda>k. inverse (z + of_nat k) - inverse (z + of_nat (Suc k)))
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   808
                  sums (inverse (z + of_nat 0) - 0)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   809
    by (intro telescope_sums'[OF filterlim_compose[OF tendsto_inverse_0]]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   810
              tendsto_add_filterlim_at_infinity[OF tendsto_const] tendsto_of_nat)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   811
  have "Digamma (z+1) = (\<Sum>k. inverse (of_nat (Suc k)) - inverse (z + of_nat (Suc k))) -
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   812
          euler_mascheroni" (is "_ = suminf ?f - _") by (simp add: Digamma_def add_ac)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   813
  also have "suminf ?f = (\<Sum>k. inverse (of_nat (Suc k)) - inverse (z + of_nat k)) +
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   814
                         (\<Sum>k. inverse (z + of_nat k) - inverse (z + of_nat (Suc k)))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   815
    using summable_Digamma[OF assms] sums by (subst suminf_add) (simp_all add: add_ac sums_iff)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   816
  also have "(\<Sum>k. inverse (z + of_nat k) - inverse (z + of_nat (Suc k))) = 1/z"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   817
    using sums by (simp add: sums_iff inverse_eq_divide)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   818
  finally show ?thesis by (simp add: Digamma_def[of z])
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   819
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   820
68624
205d352ed727 Tagged Ball_Volume and Gamma_Function in HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 68403
diff changeset
   821
theorem Polygamma_plus1:
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   822
  assumes "z \<noteq> 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   823
  shows   "Polygamma n (z + 1) = Polygamma n z + (-1)^n * fact n / (z ^ Suc n)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   824
proof (cases "n = 0")
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   825
  assume n: "n \<noteq> 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   826
  let ?f = "\<lambda>k. inverse ((z + of_nat k) ^ Suc n)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   827
  have "Polygamma n (z + 1) = (-1) ^ Suc n * fact n * (\<Sum>k. ?f (k+1))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   828
    using n by (simp add: Polygamma_def add_ac)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   829
  also have "(\<Sum>k. ?f (k+1)) + (\<Sum>k<1. ?f k) = (\<Sum>k. ?f k)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   830
    using Polygamma_converges'[OF assms, of "Suc n"] n
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   831
    by (subst suminf_split_initial_segment [symmetric]) simp_all
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   832
  hence "(\<Sum>k. ?f (k+1)) = (\<Sum>k. ?f k) - inverse (z ^ Suc n)" by (simp add: algebra_simps)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   833
  also have "(-1) ^ Suc n * fact n * ((\<Sum>k. ?f k) - inverse (z ^ Suc n)) =
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   834
               Polygamma n z + (-1)^n * fact n / (z ^ Suc n)" using n
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   835
    by (simp add: inverse_eq_divide algebra_simps Polygamma_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   836
  finally show ?thesis .
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   837
qed (insert assms, simp add: Digamma_plus1 inverse_eq_divide)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   838
68624
205d352ed727 Tagged Ball_Volume and Gamma_Function in HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 68403
diff changeset
   839
theorem Digamma_of_nat:
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   840
  "Digamma (of_nat (Suc n) :: 'a :: {real_normed_field,banach}) = harm n - euler_mascheroni"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   841
proof (induction n)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   842
  case (Suc n)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   843
  have "Digamma (of_nat (Suc (Suc n)) :: 'a) = Digamma (of_nat (Suc n) + 1)" by simp
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   844
  also have "\<dots> = Digamma (of_nat (Suc n)) + inverse (of_nat (Suc n))"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   845
    by (subst Digamma_plus1) (simp_all add: inverse_eq_divide del: of_nat_Suc)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   846
  also have "Digamma (of_nat (Suc n) :: 'a) = harm n - euler_mascheroni " by (rule Suc)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   847
  also have "\<dots> + inverse (of_nat (Suc n)) = harm (Suc n) - euler_mascheroni"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   848
    by (simp add: harm_Suc)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   849
  finally show ?case .
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   850
qed (simp add: harm_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   851
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   852
lemma Digamma_numeral: "Digamma (numeral n) = harm (pred_numeral n) - euler_mascheroni"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   853
  by (subst of_nat_numeral[symmetric], subst numeral_eq_Suc, subst Digamma_of_nat) (rule refl)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   854
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   855
lemma Polygamma_of_real: "x \<noteq> 0 \<Longrightarrow> Polygamma n (of_real x) = of_real (Polygamma n x)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   856
  unfolding Polygamma_def using summable_Digamma[of x] Polygamma_converges'[of x "Suc n"]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   857
  by (simp_all add: suminf_of_real)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   858
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   859
lemma Polygamma_Real: "z \<in> \<real> \<Longrightarrow> z \<noteq> 0 \<Longrightarrow> Polygamma n z \<in> \<real>"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   860
  by (elim Reals_cases, hypsubst, subst Polygamma_of_real) simp_all
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   861
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   862
lemma Digamma_half_integer:
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   863
  "Digamma (of_nat n + 1/2 :: 'a :: {real_normed_field,banach}) =
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   864
      (\<Sum>k<n. 2 / (of_nat (2*k+1))) - euler_mascheroni - of_real (2 * ln 2)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   865
proof (induction n)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   866
  case 0
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   867
  have "Digamma (1/2 :: 'a) = of_real (Digamma (1/2))" by (simp add: Polygamma_of_real [symmetric])
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   868
  also have "Digamma (1/2::real) =
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   869
               (\<Sum>k. inverse (of_nat (Suc k)) - inverse (of_nat k + 1/2)) - euler_mascheroni"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   870
    by (simp add: Digamma_def add_ac)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   871
  also have "(\<Sum>k. inverse (of_nat (Suc k) :: real) - inverse (of_nat k + 1/2)) =
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   872
             (\<Sum>k. inverse (1/2) * (inverse (2 * of_nat (Suc k)) - inverse (2 * of_nat k + 1)))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   873
    by (simp_all add: add_ac inverse_mult_distrib[symmetric] ring_distribs del: inverse_divide)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   874
  also have "\<dots> = - 2 * ln 2" using sums_minus[OF alternating_harmonic_series_sums']
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   875
    by (subst suminf_mult) (simp_all add: algebra_simps sums_iff)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   876
  finally show ?case by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   877
next
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   878
  case (Suc n)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   879
  have nz: "2 * of_nat n + (1:: 'a) \<noteq> 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   880
     using of_nat_neq_0[of "2*n"] by (simp only: of_nat_Suc) (simp add: add_ac)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   881
  hence nz': "of_nat n + (1/2::'a) \<noteq> 0" by (simp add: field_simps)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   882
  have "Digamma (of_nat (Suc n) + 1/2 :: 'a) = Digamma (of_nat n + 1/2 + 1)" by simp
67976
75b94eb58c3d Analysis builds using set_borel_measurable_def, etc.
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   883
  also from nz' have "\<dots> = Digamma (of_nat n + 1/2) + 1 / (of_nat n + 1/2)"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   884
    by (rule Digamma_plus1)
67976
75b94eb58c3d Analysis builds using set_borel_measurable_def, etc.
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   885
  also from nz nz' have "1 / (of_nat n + 1/2 :: 'a) = 2 / (2 * of_nat n + 1)"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   886
    by (subst divide_eq_eq) simp_all
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   887
  also note Suc
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   888
  finally show ?case by (simp add: add_ac)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   889
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   890
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   891
lemma Digamma_one_half: "Digamma (1/2) = - euler_mascheroni - of_real (2 * ln 2)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   892
  using Digamma_half_integer[of 0] by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   893
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   894
lemma Digamma_real_three_halves_pos: "Digamma (3/2 :: real) > 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   895
proof -
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   896
  have "-Digamma (3/2 :: real) = -Digamma (of_nat 1 + 1/2)" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   897
  also have "\<dots> = 2 * ln 2 + euler_mascheroni - 2" by (subst Digamma_half_integer) simp
62085
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
   898
  also note euler_mascheroni_less_13_over_22
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
   899
  also note ln2_le_25_over_36
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   900
  finally show ?thesis by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   901
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   902
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   903
68624
205d352ed727 Tagged Ball_Volume and Gamma_Function in HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 68403
diff changeset
   904
theorem has_field_derivative_Polygamma [derivative_intros]:
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   905
  fixes z :: "'a :: {real_normed_field,euclidean_space}"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   906
  assumes z: "z \<notin> \<int>\<^sub>\<le>\<^sub>0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   907
  shows "(Polygamma n has_field_derivative Polygamma (Suc n) z) (at z within A)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   908
proof (rule has_field_derivative_at_within, cases "n = 0")
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   909
  assume n: "n = 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   910
  let ?f = "\<lambda>k z. inverse (of_nat (Suc k)) - inverse (z + of_nat k)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   911
  let ?F = "\<lambda>z. \<Sum>k. ?f k z" and ?f' = "\<lambda>k z. inverse ((z + of_nat k)\<^sup>2)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   912
  from no_nonpos_Int_in_ball'[OF z] guess d . note d = this
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   913
  from z have summable: "summable (\<lambda>k. inverse (of_nat (Suc k)) - inverse (z + of_nat k))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   914
    by (intro summable_Digamma) force
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   915
  from z have conv: "uniformly_convergent_on (ball z d) (\<lambda>k z. \<Sum>i<k. inverse ((z + of_nat i)\<^sup>2))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   916
    by (intro Polygamma_converges) auto
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   917
  with d have "summable (\<lambda>k. inverse ((z + of_nat k)\<^sup>2))" unfolding summable_iff_convergent
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   918
    by (auto dest!: uniformly_convergent_imp_convergent simp: summable_iff_convergent )
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   919
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   920
  have "(?F has_field_derivative (\<Sum>k. ?f' k z)) (at z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   921
  proof (rule has_field_derivative_series'[of "ball z d" _ _ z])
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   922
    fix k :: nat and t :: 'a assume t: "t \<in> ball z d"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   923
    from t d(2)[of t] show "((\<lambda>z. ?f k z) has_field_derivative ?f' k t) (at t within ball z d)"
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   924
      by (auto intro!: derivative_eq_intros simp: power2_eq_square simp del: of_nat_Suc
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   925
               dest!: plus_of_nat_eq_0_imp elim!: nonpos_Ints_cases)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   926
  qed (insert d(1) summable conv, (assumption|simp)+)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   927
  with z show "(Polygamma n has_field_derivative Polygamma (Suc n) z) (at z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   928
    unfolding Digamma_def [abs_def] Polygamma_def [abs_def] using n
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   929
    by (force simp: power2_eq_square intro!: derivative_eq_intros)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   930
next
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   931
  assume n: "n \<noteq> 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   932
  from z have z': "z \<noteq> 0" by auto
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   933
  from no_nonpos_Int_in_ball'[OF z] guess d . note d = this
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62534
diff changeset
   934
  define n' where "n' = Suc n"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   935
  from n have n': "n' \<ge> 2" by (simp add: n'_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   936
  have "((\<lambda>z. \<Sum>k. inverse ((z + of_nat k) ^ n')) has_field_derivative
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   937
                (\<Sum>k. - of_nat n' * inverse ((z + of_nat k) ^ (n'+1)))) (at z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   938
  proof (rule has_field_derivative_series'[of "ball z d" _ _ z])
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   939
    fix k :: nat and t :: 'a assume t: "t \<in> ball z d"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   940
    with d have t': "t \<notin> \<int>\<^sub>\<le>\<^sub>0" "t \<noteq> 0" by auto
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   941
    show "((\<lambda>a. inverse ((a + of_nat k) ^ n')) has_field_derivative
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   942
                - of_nat n' * inverse ((t + of_nat k) ^ (n'+1))) (at t within ball z d)" using t'
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   943
      by (fastforce intro!: derivative_eq_intros simp: divide_simps power_diff dest: plus_of_nat_eq_0_imp)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   944
  next
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   945
    have "uniformly_convergent_on (ball z d)
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   946
              (\<lambda>k z. (- of_nat n' :: 'a) * (\<Sum>i<k. inverse ((z + of_nat i) ^ (n'+1))))"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   947
      using z' n by (intro uniformly_convergent_mult Polygamma_converges) (simp_all add: n'_def)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   948
    thus "uniformly_convergent_on (ball z d)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   949
              (\<lambda>k z. \<Sum>i<k. - of_nat n' * inverse ((z + of_nat i :: 'a) ^ (n'+1)))"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63992
diff changeset
   950
      by (subst (asm) sum_distrib_left) simp
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   951
  qed (insert Polygamma_converges'[OF z' n'] d, simp_all)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   952
  also have "(\<Sum>k. - of_nat n' * inverse ((z + of_nat k) ^ (n' + 1))) =
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   953
               (- of_nat n') * (\<Sum>k. inverse ((z + of_nat k) ^ (n' + 1)))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   954
    using Polygamma_converges'[OF z', of "n'+1"] n' by (subst suminf_mult) simp_all
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   955
  finally have "((\<lambda>z. \<Sum>k. inverse ((z + of_nat k) ^ n')) has_field_derivative
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   956
                    - of_nat n' * (\<Sum>k. inverse ((z + of_nat k) ^ (n' + 1)))) (at z)" .
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   957
  from DERIV_cmult[OF this, of "(-1)^Suc n * fact n :: 'a"]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   958
    show "(Polygamma n has_field_derivative Polygamma (Suc n) z) (at z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   959
    unfolding n'_def Polygamma_def[abs_def] using n by (simp add: algebra_simps)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   960
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   961
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   962
declare has_field_derivative_Polygamma[THEN DERIV_chain2, derivative_intros]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   963
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   964
lemma isCont_Polygamma [continuous_intros]:
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   965
  fixes f :: "_ \<Rightarrow> 'a :: {real_normed_field,euclidean_space}"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   966
  shows "isCont f z \<Longrightarrow> f z \<notin> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> isCont (\<lambda>x. Polygamma n (f x)) z"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   967
  by (rule isCont_o2[OF _  DERIV_isCont[OF has_field_derivative_Polygamma]])
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   968
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   969
lemma continuous_on_Polygamma:
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   970
  "A \<inter> \<int>\<^sub>\<le>\<^sub>0 = {} \<Longrightarrow> continuous_on A (Polygamma n :: _ \<Rightarrow> 'a :: {real_normed_field,euclidean_space})"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   971
  by (intro continuous_at_imp_continuous_on isCont_Polygamma[OF continuous_ident] ballI) blast
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   972
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   973
lemma isCont_ln_Gamma_complex [continuous_intros]:
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   974
  fixes f :: "'a::t2_space \<Rightarrow> complex"
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   975
  shows "isCont f z \<Longrightarrow> f z \<notin> \<real>\<^sub>\<le>\<^sub>0 \<Longrightarrow> isCont (\<lambda>z. ln_Gamma (f z)) z"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   976
  by (rule isCont_o2[OF _  DERIV_isCont[OF has_field_derivative_ln_Gamma_complex]])
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   977
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   978
lemma continuous_on_ln_Gamma_complex [continuous_intros]:
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   979
  fixes A :: "complex set"
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   980
  shows "A \<inter> \<real>\<^sub>\<le>\<^sub>0 = {} \<Longrightarrow> continuous_on A ln_Gamma"
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   981
  by (intro continuous_at_imp_continuous_on ballI isCont_ln_Gamma_complex[OF continuous_ident])
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   982
     fastforce
66512
89b6455b63b6 starting to unscramble bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66453
diff changeset
   983
64969
a6953714799d Simplified Gamma_Function
eberlm <eberlm@in.tum.de>
parents: 64272
diff changeset
   984
lemma deriv_Polygamma:
a6953714799d Simplified Gamma_Function
eberlm <eberlm@in.tum.de>
parents: 64272
diff changeset
   985
  assumes "z \<notin> \<int>\<^sub>\<le>\<^sub>0"
66512
89b6455b63b6 starting to unscramble bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66453
diff changeset
   986
  shows   "deriv (Polygamma m) z =
64969
a6953714799d Simplified Gamma_Function
eberlm <eberlm@in.tum.de>
parents: 64272
diff changeset
   987
             Polygamma (Suc m) (z :: 'a :: {real_normed_field,euclidean_space})"
a6953714799d Simplified Gamma_Function
eberlm <eberlm@in.tum.de>
parents: 64272
diff changeset
   988
  by (intro DERIV_imp_deriv has_field_derivative_Polygamma assms)
a6953714799d Simplified Gamma_Function
eberlm <eberlm@in.tum.de>
parents: 64272
diff changeset
   989
    thm has_field_derivative_Polygamma
a6953714799d Simplified Gamma_Function
eberlm <eberlm@in.tum.de>
parents: 64272
diff changeset
   990
a6953714799d Simplified Gamma_Function
eberlm <eberlm@in.tum.de>
parents: 64272
diff changeset
   991
lemma higher_deriv_Polygamma:
a6953714799d Simplified Gamma_Function
eberlm <eberlm@in.tum.de>
parents: 64272
diff changeset
   992
  assumes "z \<notin> \<int>\<^sub>\<le>\<^sub>0"
66512
89b6455b63b6 starting to unscramble bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66453
diff changeset
   993
  shows   "(deriv ^^ n) (Polygamma m) z =
64969
a6953714799d Simplified Gamma_Function
eberlm <eberlm@in.tum.de>
parents: 64272
diff changeset
   994
             Polygamma (m + n) (z :: 'a :: {real_normed_field,euclidean_space})"
a6953714799d Simplified Gamma_Function
eberlm <eberlm@in.tum.de>
parents: 64272
diff changeset
   995
proof -
a6953714799d Simplified Gamma_Function
eberlm <eberlm@in.tum.de>
parents: 64272
diff changeset
   996
  have "eventually (\<lambda>u. (deriv ^^ n) (Polygamma m) u = Polygamma (m + n) u) (nhds z)"
a6953714799d Simplified Gamma_Function
eberlm <eberlm@in.tum.de>
parents: 64272
diff changeset
   997
  proof (induction n)
a6953714799d Simplified Gamma_Function
eberlm <eberlm@in.tum.de>
parents: 64272
diff changeset
   998
    case (Suc n)
a6953714799d Simplified Gamma_Function
eberlm <eberlm@in.tum.de>
parents: 64272
diff changeset
   999
    from Suc.IH have "eventually (\<lambda>z. eventually (\<lambda>u. (deriv ^^ n) (Polygamma m) u = Polygamma (m + n) u) (nhds z)) (nhds z)"
a6953714799d Simplified Gamma_Function
eberlm <eberlm@in.tum.de>
parents: 64272
diff changeset
  1000
      by (simp add: eventually_eventually)
66512
89b6455b63b6 starting to unscramble bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66453
diff changeset
  1001
    hence "eventually (\<lambda>z. deriv ((deriv ^^ n) (Polygamma m)) z =
64969
a6953714799d Simplified Gamma_Function
eberlm <eberlm@in.tum.de>
parents: 64272
diff changeset
  1002
             deriv (Polygamma (m + n)) z) (nhds z)"
a6953714799d Simplified Gamma_Function
eberlm <eberlm@in.tum.de>
parents: 64272
diff changeset
  1003
      by eventually_elim (intro deriv_cong_ev refl)
a6953714799d Simplified Gamma_Function
eberlm <eberlm@in.tum.de>
parents: 64272
diff changeset
  1004
    moreover have "eventually (\<lambda>z. z \<in> UNIV - \<int>\<^sub>\<le>\<^sub>0) (nhds z)" using assms
a6953714799d Simplified Gamma_Function
eberlm <eberlm@in.tum.de>
parents: 64272
diff changeset
  1005
      by (intro eventually_nhds_in_open open_Diff open_UNIV) auto
a6953714799d Simplified Gamma_Function
eberlm <eberlm@in.tum.de>
parents: 64272
diff changeset
  1006
    ultimately show ?case by eventually_elim (simp_all add: deriv_Polygamma)
a6953714799d Simplified Gamma_Function
eberlm <eberlm@in.tum.de>
parents: 64272
diff changeset
  1007
  qed simp_all
a6953714799d Simplified Gamma_Function
eberlm <eberlm@in.tum.de>
parents: 64272
diff changeset
  1008
  thus ?thesis by (rule eventually_nhds_x_imp_x)
a6953714799d Simplified Gamma_Function
eberlm <eberlm@in.tum.de>
parents: 64272
diff changeset
  1009
qed
a6953714799d Simplified Gamma_Function
eberlm <eberlm@in.tum.de>
parents: 64272
diff changeset
  1010
a6953714799d Simplified Gamma_Function
eberlm <eberlm@in.tum.de>
parents: 64272
diff changeset
  1011
lemma deriv_ln_Gamma_complex:
a6953714799d Simplified Gamma_Function
eberlm <eberlm@in.tum.de>
parents: 64272
diff changeset
  1012
  assumes "z \<notin> \<real>\<^sub>\<le>\<^sub>0"
a6953714799d Simplified Gamma_Function
eberlm <eberlm@in.tum.de>
parents: 64272
diff changeset
  1013
  shows   "deriv ln_Gamma z = Digamma (z :: complex)"
a6953714799d Simplified Gamma_Function
eberlm <eberlm@in.tum.de>
parents: 64272
diff changeset
  1014
  by (intro DERIV_imp_deriv has_field_derivative_ln_Gamma_complex assms)
a6953714799d Simplified Gamma_Function
eberlm <eberlm@in.tum.de>
parents: 64272
diff changeset
  1015
a6953714799d Simplified Gamma_Function
eberlm <eberlm@in.tum.de>
parents: 64272
diff changeset
  1016
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1017
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1018
text \<open>
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1019
  We define a type class that captures all the fundamental properties of the inverse of the Gamma function
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1020
  and defines the Gamma function upon that. This allows us to instantiate the type class both for
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1021
  the reals and for the complex numbers with a minimal amount of proof duplication.
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1022
\<close>
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1023
68624
205d352ed727 Tagged Ball_Volume and Gamma_Function in HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 68403
diff changeset
  1024
class%unimportant Gamma = real_normed_field + complete_space +
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1025
  fixes rGamma :: "'a \<Rightarrow> 'a"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1026
  assumes rGamma_eq_zero_iff_aux: "rGamma z = 0 \<longleftrightarrow> (\<exists>n. z = - of_nat n)"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1027
  assumes differentiable_rGamma_aux1:
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1028
    "(\<And>n. z \<noteq> - of_nat n) \<Longrightarrow>
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1029
     let d = (THE d. (\<lambda>n. \<Sum>k<n. inverse (of_nat (Suc k)) - inverse (z + of_nat k))
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1030
               \<longlonglongrightarrow> d) - scaleR euler_mascheroni 1
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1031
     in  filterlim (\<lambda>y. (rGamma y - rGamma z + rGamma z * d * (y - z)) /\<^sub>R
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1032
                        norm (y - z)) (nhds 0) (at z)"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1033
  assumes differentiable_rGamma_aux2:
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1034
    "let z = - of_nat n
64272
f76b6dda2e56 setprod -> prod
nipkow
parents: 64267
diff changeset
  1035
     in  filterlim (\<lambda>y. (rGamma y - rGamma z - (-1)^n * (prod of_nat {1..n}) * (y - z)) /\<^sub>R
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1036
                        norm (y - z)) (nhds 0) (at z)"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1037
  assumes rGamma_series_aux: "(\<And>n. z \<noteq> - of_nat n) \<Longrightarrow>
64272
f76b6dda2e56 setprod -> prod
nipkow
parents: 64267
diff changeset
  1038
             let fact' = (\<lambda>n. prod of_nat {1..n});
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1039
                 exp = (\<lambda>x. THE e. (\<lambda>n. \<Sum>k<n. x^k /\<^sub>R fact k) \<longlonglongrightarrow> e);
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1040
                 pochhammer' = (\<lambda>a n. (\<Prod>n = 0..n. a + of_nat n))
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1041
             in  filterlim (\<lambda>n. pochhammer' z n / (fact' n * exp (z * (ln (of_nat n) *\<^sub>R 1))))
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1042
                     (nhds (rGamma z)) sequentially"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1043
begin
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1044
subclass banach ..
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1045
end
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1046
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1047
definition "Gamma z = inverse (rGamma z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1048
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1050
subsection \<open>Basic properties\<close>
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1051
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1052
lemma Gamma_nonpos_Int: "z \<in> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> Gamma z = 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1053
  and rGamma_nonpos_Int: "z \<in> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> rGamma z = 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1054
  using rGamma_eq_zero_iff_aux[of z] unfolding Gamma_def by (auto elim!: nonpos_Ints_cases')
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1055
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1056
lemma Gamma_nonzero: "z \<notin> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> Gamma z \<noteq> 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1057
  and rGamma_nonzero: "z \<notin> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> rGamma z \<noteq> 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1058
  using rGamma_eq_zero_iff_aux[of z] unfolding Gamma_def by (auto elim!: nonpos_Ints_cases')
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1059
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1060
lemma Gamma_eq_zero_iff: "Gamma z = 0 \<longleftrightarrow> z \<in> \<int>\<^sub>\<le>\<^sub>0"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1061
  and rGamma_eq_zero_iff: "rGamma z = 0 \<longleftrightarrow> z \<in> \<int>\<^sub>\<le>\<^sub>0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1062
  using rGamma_eq_zero_iff_aux[of z] unfolding Gamma_def by (auto elim!: nonpos_Ints_cases')
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1063
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1064
lemma rGamma_inverse_Gamma: "rGamma z = inverse (Gamma z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1065
  unfolding Gamma_def by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1066
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1067
lemma rGamma_series_LIMSEQ [tendsto_intros]:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1068
  "rGamma_series z \<longlonglongrightarrow> rGamma z"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1069
proof (cases "z \<in> \<int>\<^sub>\<le>\<^sub>0")
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1070
  case False
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1071
  hence "z \<noteq> - of_nat n" for n by auto
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1072
  from rGamma_series_aux[OF this] show ?thesis
64272
f76b6dda2e56 setprod -> prod
nipkow
parents: 64267
diff changeset
  1073
    by (simp add: rGamma_series_def[abs_def] fact_prod pochhammer_Suc_prod
63367
6c731c8b7f03 simplified definitions of combinatorial functions
haftmann
parents: 63317
diff changeset
  1074
                  exp_def of_real_def[symmetric] suminf_def sums_def[abs_def] atLeast0AtMost)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1075
qed (insert rGamma_eq_zero_iff[of z], simp_all add: rGamma_series_nonpos_Ints_LIMSEQ)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1076
68624
205d352ed727 Tagged Ball_Volume and Gamma_Function in HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 68403
diff changeset
  1077
theorem Gamma_series_LIMSEQ [tendsto_intros]:
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1078
  "Gamma_series z \<longlonglongrightarrow> Gamma z"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1079
proof (cases "z \<in> \<int>\<^sub>\<le>\<^sub>0")
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1080
  case False
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1081
  hence "(\<lambda>n. inverse (rGamma_series z n)) \<longlonglongrightarrow> inverse (rGamma z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1082
    by (intro tendsto_intros) (simp_all add: rGamma_eq_zero_iff)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1083
  also have "(\<lambda>n. inverse (rGamma_series z n)) = Gamma_series z"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1084
    by (simp add: rGamma_series_def Gamma_series_def[abs_def])
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1085
  finally show ?thesis by (simp add: Gamma_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1086
qed (insert Gamma_eq_zero_iff[of z], simp_all add: Gamma_series_nonpos_Ints_LIMSEQ)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1087
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1088
lemma Gamma_altdef: "Gamma z = lim (Gamma_series z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1089
  using Gamma_series_LIMSEQ[of z] by (simp add: limI)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1090
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1091
lemma rGamma_1 [simp]: "rGamma 1 = 1"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1092
proof -
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1093
  have A: "eventually (\<lambda>n. rGamma_series 1 n = of_nat (Suc n) / of_nat n) sequentially"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1094
    using eventually_gt_at_top[of "0::nat"]
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1095
    by (force elim!: eventually_mono simp: rGamma_series_def exp_of_real pochhammer_fact
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1096
                    divide_simps pochhammer_rec' dest!: pochhammer_eq_0_imp_nonpos_Int)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1097
  have "rGamma_series 1 \<longlonglongrightarrow> 1" by (subst tendsto_cong[OF A]) (rule LIMSEQ_Suc_n_over_n)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1098
  moreover have "rGamma_series 1 \<longlonglongrightarrow> rGamma 1" by (rule tendsto_intros)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1099
  ultimately show ?thesis by (intro LIMSEQ_unique)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1100
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1101
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1102
lemma rGamma_plus1: "z * rGamma (z + 1) = rGamma z"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1103
proof -
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1104
  let ?f = "\<lambda>n. (z + 1) * inverse (of_nat n) + 1"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1105
  have "eventually (\<lambda>n. ?f n * rGamma_series z n = z * rGamma_series (z + 1) n) sequentially"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1106
    using eventually_gt_at_top[of "0::nat"]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1107
  proof eventually_elim
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1108
    fix n :: nat assume n: "n > 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1109
    hence "z * rGamma_series (z + 1) n = inverse (of_nat n) *
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1110
             pochhammer z (Suc (Suc n)) / (fact n * exp (z * of_real (ln (of_nat n))))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1111
      by (subst pochhammer_rec) (simp add: rGamma_series_def field_simps exp_add exp_of_real)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1112
    also from n have "\<dots> = ?f n * rGamma_series z n"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1113
      by (subst pochhammer_rec') (simp_all add: divide_simps rGamma_series_def add_ac)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1114
    finally show "?f n * rGamma_series z n = z * rGamma_series (z + 1) n" ..
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1115
  qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1116
  moreover have "(\<lambda>n. ?f n * rGamma_series z n) \<longlonglongrightarrow> ((z+1) * 0 + 1) * rGamma z"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1117
    by (intro tendsto_intros lim_inverse_n)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1118
  hence "(\<lambda>n. ?f n * rGamma_series z n) \<longlonglongrightarrow> rGamma z" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1119
  ultimately have "(\<lambda>n. z * rGamma_series (z + 1) n) \<longlonglongrightarrow> rGamma z"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1120
    by (rule Lim_transform_eventually)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1121
  moreover have "(\<lambda>n. z * rGamma_series (z + 1) n) \<longlonglongrightarrow> z * rGamma (z + 1)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1122
    by (intro tendsto_intros)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1123
  ultimately show "z * rGamma (z + 1) = rGamma z" using LIMSEQ_unique by blast
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1124
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1125
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1126
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1127
lemma pochhammer_rGamma: "rGamma z = pochhammer z n * rGamma (z + of_nat n)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1128
proof (induction n arbitrary: z)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1129
  case (Suc n z)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1130
  have "rGamma z = pochhammer z n * rGamma (z + of_nat n)" by (rule Suc.IH)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1131
  also note rGamma_plus1 [symmetric]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1132
  finally show ?case by (simp add: add_ac pochhammer_rec')
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1133
qed simp_all
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1134
68624
205d352ed727 Tagged Ball_Volume and Gamma_Function in HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 68403
diff changeset
  1135
theorem Gamma_plus1: "z \<notin> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> Gamma (z + 1) = z * Gamma z"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1136
  using rGamma_plus1[of z] by (simp add: rGamma_inverse_Gamma field_simps Gamma_eq_zero_iff)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1137
68624
205d352ed727 Tagged Ball_Volume and Gamma_Function in HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 68403
diff changeset
  1138
theorem pochhammer_Gamma: "z \<notin> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> pochhammer z n = Gamma (z + of_nat n) / Gamma z"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1139
  using pochhammer_rGamma[of z]
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1140
  by (simp add: rGamma_inverse_Gamma Gamma_eq_zero_iff field_simps)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1141
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1142
lemma Gamma_0 [simp]: "Gamma 0 = 0"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1143
  and rGamma_0 [simp]: "rGamma 0 = 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1144
  and Gamma_neg_1 [simp]: "Gamma (- 1) = 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1145
  and rGamma_neg_1 [simp]: "rGamma (- 1) = 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1146
  and Gamma_neg_numeral [simp]: "Gamma (- numeral n) = 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1147
  and rGamma_neg_numeral [simp]: "rGamma (- numeral n) = 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1148
  and Gamma_neg_of_nat [simp]: "Gamma (- of_nat m) = 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1149
  and rGamma_neg_of_nat [simp]: "rGamma (- of_nat m) = 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1150
  by (simp_all add: rGamma_eq_zero_iff Gamma_eq_zero_iff)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1151
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1152
lemma Gamma_1 [simp]: "Gamma 1 = 1" unfolding Gamma_def by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1153
68624
205d352ed727 Tagged Ball_Volume and Gamma_Function in HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 68403
diff changeset
  1154
theorem Gamma_fact: "Gamma (1 + of_nat n) = fact n"
68403
223172b97d0b reorient -> split; documented split
nipkow
parents: 68224
diff changeset
  1155
  by (simp add: pochhammer_fact pochhammer_Gamma of_nat_in_nonpos_Ints_iff flip: of_nat_Suc)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1156
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1157
lemma Gamma_numeral: "Gamma (numeral n) = fact (pred_numeral n)"
63594
bd218a9320b5 HOL-Multivariate_Analysis: rename theories for more descriptive names
hoelzl
parents: 63539
diff changeset
  1158
  by (subst of_nat_numeral[symmetric], subst numeral_eq_Suc,
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  1159
      subst of_nat_Suc, subst Gamma_fact) (rule refl)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1160
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1161
lemma Gamma_of_int: "Gamma (of_int n) = (if n > 0 then fact (nat (n - 1)) else 0)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1162
proof (cases "n > 0")
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1163
  case True
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1164
  hence "Gamma (of_int n) = Gamma (of_nat (Suc (nat (n - 1))))" by (subst of_nat_Suc) simp_all
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  1165
  with True show ?thesis by (subst (asm) of_nat_Suc, subst (asm) Gamma_fact) simp
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1166
qed (simp_all add: Gamma_eq_zero_iff nonpos_Ints_of_int)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1167
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1168
lemma rGamma_of_int: "rGamma (of_int n) = (if n > 0 then inverse (fact (nat (n - 1))) else 0)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1169
  by (simp add: Gamma_of_int rGamma_inverse_Gamma)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1170
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1171
lemma Gamma_seriesI:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1172
  assumes "(\<lambda>n. g n / Gamma_series z n) \<longlonglongrightarrow> 1"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1173
  shows   "g \<longlonglongrightarrow> Gamma z"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1174
proof (rule Lim_transform_eventually)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1175
  have "1/2 > (0::real)" by simp
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1176
  from tendstoD[OF assms, OF this]
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1177
    show "eventually (\<lambda>n. g n / Gamma_series z n * Gamma_series z n = g n) sequentially"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1178
    by (force elim!: eventually_mono simp: dist_real_def dist_0_norm)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1179
  from assms have "(\<lambda>n. g n / Gamma_series z n * Gamma_series z n) \<longlonglongrightarrow> 1 * Gamma z"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1180
    by (intro tendsto_intros)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1181
  thus "(\<lambda>n. g n / Gamma_series z n * Gamma_series z n) \<longlonglongrightarrow> Gamma z" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1182
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1183
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1184
lemma Gamma_seriesI':
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1185
  assumes "f \<longlonglongrightarrow> rGamma z"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1186
  assumes "(\<lambda>n. g n * f n) \<longlonglongrightarrow> 1"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1187
  assumes "z \<notin> \<int>\<^sub>\<le>\<^sub>0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1188
  shows   "g \<longlonglongrightarrow> Gamma z"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1189
proof (rule Lim_transform_eventually)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1190
  have "1/2 > (0::real)" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1191
  from tendstoD[OF assms(2), OF this] show "eventually (\<lambda>n. g n * f n / f n = g n) sequentially"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1192
    by (force elim!: eventually_mono simp: dist_real_def dist_0_norm)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1193
  from assms have "(\<lambda>n. g n * f n / f n) \<longlonglongrightarrow> 1 / rGamma z"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1194
    by (intro tendsto_divide assms) (simp_all add: rGamma_eq_zero_iff)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1195
  thus "(\<lambda>n. g n * f n / f n) \<longlonglongrightarrow> Gamma z" by (simp add: Gamma_def divide_inverse)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1196
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1197
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1198
lemma Gamma_series'_LIMSEQ: "Gamma_series' z \<longlonglongrightarrow> Gamma z"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1199
  by (cases "z \<in> \<int>\<^sub>\<le>\<^sub>0") (simp_all add: Gamma_nonpos_Int Gamma_seriesI[OF Gamma_series_Gamma_series']
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1200
                                      Gamma_series'_nonpos_Ints_LIMSEQ[of z])
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1201
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1202
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1203
subsection \<open>Differentiability\<close>
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1204
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1205
lemma has_field_derivative_rGamma_no_nonpos_int:
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1206
  assumes "z \<notin> \<int>\<^sub>\<le>\<^sub>0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1207
  shows   "(rGamma has_field_derivative -rGamma z * Digamma z) (at z within A)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1208
proof (rule has_field_derivative_at_within)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1209
  from assms have "z \<noteq> - of_nat n" for n by auto
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1210
  from differentiable_rGamma_aux1[OF this]
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1211
    show "(rGamma has_field_derivative -rGamma z * Digamma z) (at z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1212
         unfolding Digamma_def suminf_def sums_def[abs_def]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1213
                   has_field_derivative_def has_derivative_def netlimit_at
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1214
    by (simp add: Let_def bounded_linear_mult_right mult_ac of_real_def [symmetric])
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1215
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1216
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1217
lemma has_field_derivative_rGamma_nonpos_int:
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1218
  "(rGamma has_field_derivative (-1)^n * fact n) (at (- of_nat n) within A)"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1219
  apply (rule has_field_derivative_at_within)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1220
  using differentiable_rGamma_aux2[of n]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1221
  unfolding Let_def has_field_derivative_def has_derivative_def netlimit_at
64272
f76b6dda2e56 setprod -> prod
nipkow
parents: 64267
diff changeset
  1222
  by (simp only: bounded_linear_mult_right mult_ac of_real_def [symmetric] fact_prod) simp
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1223
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1224
lemma has_field_derivative_rGamma [derivative_intros]:
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1225
  "(rGamma has_field_derivative (if z \<in> \<int>\<^sub>\<le>\<^sub>0 then (-1)^(nat \<lfloor>norm z\<rfloor>) * fact (nat \<lfloor>norm z\<rfloor>)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1226
      else -rGamma z * Digamma z)) (at z within A)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1227
using has_field_derivative_rGamma_no_nonpos_int[of z A]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1228
      has_field_derivative_rGamma_nonpos_int[of "nat \<lfloor>norm z\<rfloor>" A]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1229
  by (auto elim!: nonpos_Ints_cases')
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1230
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1231
declare has_field_derivative_rGamma_no_nonpos_int [THEN DERIV_chain2, derivative_intros]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1232
declare has_field_derivative_rGamma [THEN DERIV_chain2, derivative_intros]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1233
declare has_field_derivative_rGamma_nonpos_int [derivative_intros]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1234
declare has_field_derivative_rGamma_no_nonpos_int [derivative_intros]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1235
declare has_field_derivative_rGamma [derivative_intros]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1236
68624
205d352ed727 Tagged Ball_Volume and Gamma_Function in HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 68403
diff changeset
  1237
theorem has_field_derivative_Gamma [derivative_intros]:
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1238
  "z \<notin> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> (Gamma has_field_derivative Gamma z * Digamma z) (at z within A)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1239
  unfolding Gamma_def [abs_def]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1240
  by (fastforce intro!: derivative_eq_intros simp: rGamma_eq_zero_iff)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1241
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1242
declare has_field_derivative_Gamma[THEN DERIV_chain2, derivative_intros]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1243
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1244
(* TODO: Hide ugly facts properly *)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1245
hide_fact rGamma_eq_zero_iff_aux differentiable_rGamma_aux1 differentiable_rGamma_aux2
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1246
          differentiable_rGamma_aux2 rGamma_series_aux Gamma_class.rGamma_eq_zero_iff_aux
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1247
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1248
lemma continuous_on_rGamma [continuous_intros]: "continuous_on A rGamma"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1249
  by (rule DERIV_continuous_on has_field_derivative_rGamma)+
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1250
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1251
lemma continuous_on_Gamma [continuous_intros]: "A \<inter> \<int>\<^sub>\<le>\<^sub>0 = {} \<Longrightarrow> continuous_on A Gamma"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1252
  by (rule DERIV_continuous_on has_field_derivative_Gamma)+ blast
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1253
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1254
lemma isCont_rGamma [continuous_intros]:
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1255
  "isCont f z \<Longrightarrow> isCont (\<lambda>x. rGamma (f x)) z"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1256
  by (rule isCont_o2[OF _  DERIV_isCont[OF has_field_derivative_rGamma]])
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1257
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1258
lemma isCont_Gamma [continuous_intros]:
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1259
  "isCont f z \<Longrightarrow> f z \<notin> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> isCont (\<lambda>x. Gamma (f x)) z"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1260
  by (rule isCont_o2[OF _  DERIV_isCont[OF has_field_derivative_Gamma]])
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1261
68624
205d352ed727 Tagged Ball_Volume and Gamma_Function in HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 68403
diff changeset
  1262
subsection%unimportant \<open>The complex Gamma function\<close>
205d352ed727 Tagged Ball_Volume and Gamma_Function in HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 68403
diff changeset
  1263
205d352ed727 Tagged Ball_Volume and Gamma_Function in HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 68403
diff changeset
  1264
instantiation%unimportant complex :: Gamma
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1265
begin
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1266
68624
205d352ed727 Tagged Ball_Volume and Gamma_Function in HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 68403
diff changeset
  1267
definition%unimportant rGamma_complex :: "complex \<Rightarrow> complex" where
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1268
  "rGamma_complex z = lim (rGamma_series z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1269
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1270
lemma rGamma_series_complex_converges:
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1271
        "convergent (rGamma_series (z :: complex))" (is "?thesis1")
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1272
  and rGamma_complex_altdef:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1273
        "rGamma z = (if z \<in> \<int>\<^sub>\<le>\<^sub>0 then 0 else exp (-ln_Gamma z))" (is "?thesis2")
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1274
proof -
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1275
  have "?thesis1 \<and> ?thesis2"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1276
  proof (cases "z \<in> \<int>\<^sub>\<le>\<^sub>0")
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1277
    case False
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1278
    have "rGamma_series z \<longlonglongrightarrow> exp (- ln_Gamma z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1279
    proof (rule Lim_transform_eventually)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1280
      from ln_Gamma_series_complex_converges'[OF False] guess d by (elim exE conjE)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1281
      from this(1) uniformly_convergent_imp_convergent[OF this(2), of z]
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1282
        have "ln_Gamma_series z \<longlonglongrightarrow> lim (ln_Gamma_series z)" by (simp add: convergent_LIMSEQ_iff)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1283
      thus "(\<lambda>n. exp (-ln_Gamma_series z n)) \<longlonglongrightarrow> exp (- ln_Gamma z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1284
        unfolding convergent_def ln_Gamma_def by (intro tendsto_exp tendsto_minus)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1285
      from eventually_gt_at_top[of "0::nat"] exp_ln_Gamma_series_complex False
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1286
        show "eventually (\<lambda>n. exp (-ln_Gamma_series z n) = rGamma_series z n) sequentially"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1287
        by (force elim!: eventually_mono simp: exp_minus Gamma_series_def rGamma_series_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1288
    qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1289
    with False show ?thesis
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1290
      by (auto simp: convergent_def rGamma_complex_def intro!: limI)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1291
  next
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1292
    case True
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1293
    then obtain k where "z = - of_nat k" by (erule nonpos_Ints_cases')
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1294
    also have "rGamma_series \<dots> \<longlonglongrightarrow> 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1295
      by (subst tendsto_cong[OF rGamma_series_minus_of_nat]) (simp_all add: convergent_const)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1296
    finally show ?thesis using True
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1297
      by (auto simp: rGamma_complex_def convergent_def intro!: limI)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1298
  qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1299
  thus "?thesis1" "?thesis2" by blast+
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1300
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1301
68624
205d352ed727 Tagged Ball_Volume and Gamma_Function in HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 68403
diff changeset
  1302
context%unimportant
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1303
begin
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1304
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1305
(* TODO: duplication *)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1306
private lemma rGamma_complex_plus1: "z * rGamma (z + 1) = rGamma (z :: complex)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1307
proof -
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1308
  let ?f = "\<lambda>n. (z + 1) * inverse (of_nat n) + 1"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1309
  have "eventually (\<lambda>n. ?f n * rGamma_series z n = z * rGamma_series (z + 1) n) sequentially"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1310
    using eventually_gt_at_top[of "0::nat"]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1311
  proof eventually_elim
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1312
    fix n :: nat assume n: "n > 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1313
    hence "z * rGamma_series (z + 1) n = inverse (of_nat n) *
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1314
             pochhammer z (Suc (Suc n)) / (fact n * exp (z * of_real (ln (of_nat n))))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1315
      by (subst pochhammer_rec) (simp add: rGamma_series_def field_simps exp_add exp_of_real)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1316
    also from n have "\<dots> = ?f n * rGamma_series z n"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1317
      by (subst pochhammer_rec') (simp_all add: divide_simps rGamma_series_def add_ac)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1318
    finally show "?f n * rGamma_series z n = z * rGamma_series (z + 1) n" ..
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1319
  qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1320
  moreover have "(\<lambda>n. ?f n * rGamma_series z n) \<longlonglongrightarrow> ((z+1) * 0 + 1) * rGamma z"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1321
    using rGamma_series_complex_converges
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1322
    by (intro tendsto_intros lim_inverse_n)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1323
       (simp_all add: convergent_LIMSEQ_iff rGamma_complex_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1324
  hence "(\<lambda>n. ?f n * rGamma_series z n) \<longlonglongrightarrow> rGamma z" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1325
  ultimately have "(\<lambda>n. z * rGamma_series (z + 1) n) \<longlonglongrightarrow> rGamma z"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1326
    by (rule Lim_transform_eventually)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1327
  moreover have "(\<lambda>n. z * rGamma_series (z + 1) n) \<longlonglongrightarrow> z * rGamma (z + 1)"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1328
    using rGamma_series_complex_converges
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1329
    by (auto intro!: tendsto_mult simp: rGamma_complex_def convergent_LIMSEQ_iff)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1330
  ultimately show "z * rGamma (z + 1) = rGamma z" using LIMSEQ_unique by blast
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1331
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1332
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1333
private lemma has_field_derivative_rGamma_complex_no_nonpos_Int:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1334
  assumes "(z :: complex) \<notin> \<int>\<^sub>\<le>\<^sub>0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1335
  shows   "(rGamma has_field_derivative - rGamma z * Digamma z) (at z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1336
proof -
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1337
  have diff: "(rGamma has_field_derivative - rGamma z * Digamma z) (at z)" if "Re z > 0" for z
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1338
  proof (subst DERIV_cong_ev[OF refl _ refl])
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1339
    from that have "eventually (\<lambda>t. t \<in> ball z (Re z/2)) (nhds z)"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1340
      by (intro eventually_nhds_in_nhd) simp_all
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1341
    thus "eventually (\<lambda>t. rGamma t = exp (- ln_Gamma t)) (nhds z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1342
      using no_nonpos_Int_in_ball_complex[OF that]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1343
      by (auto elim!: eventually_mono simp: rGamma_complex_altdef)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1344
  next
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1345
    have "z \<notin> \<real>\<^sub>\<le>\<^sub>0" using that by (simp add: complex_nonpos_Reals_iff)
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1346
    with that show "((\<lambda>t. exp (- ln_Gamma t)) has_field_derivative (-rGamma z * Digamma z)) (at z)"
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1347
     by (force elim!: nonpos_Ints_cases intro!: derivative_eq_intros simp: rGamma_complex_altdef)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1348
  qed
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1349
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1350
  from assms show "(rGamma has_field_derivative - rGamma z * Digamma z) (at z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1351
  proof (induction "nat \<lfloor>1 - Re z\<rfloor>" arbitrary: z)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1352
    case (Suc n z)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1353
    from Suc.prems have z: "z \<noteq> 0" by auto
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1354
    from Suc.hyps have "n = nat \<lfloor>- Re z\<rfloor>" by linarith
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1355
    hence A: "n = nat \<lfloor>1 - Re (z + 1)\<rfloor>" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1356
    from Suc.prems have B: "z + 1 \<notin> \<int>\<^sub>\<le>\<^sub>0" by (force dest: plus_one_in_nonpos_Ints_imp)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1357
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1358
    have "((\<lambda>z. z * (rGamma \<circ> (\<lambda>z. z + 1)) z) has_field_derivative
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1359
      -rGamma (z + 1) * (Digamma (z + 1) * z - 1)) (at z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1360
      by (rule derivative_eq_intros DERIV_chain Suc refl A B)+ (simp add: algebra_simps)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1361
    also have "(\<lambda>z. z * (rGamma \<circ> (\<lambda>z. z + 1 :: complex)) z) = rGamma"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1362
      by (simp add: rGamma_complex_plus1)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1363
    also from z have "Digamma (z + 1) * z - 1 = z * Digamma z"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1364
      by (subst Digamma_plus1) (simp_all add: field_simps)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1365
    also have "-rGamma (z + 1) * (z * Digamma z) = -rGamma z * Digamma z"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1366
      by (simp add: rGamma_complex_plus1[of z, symmetric])
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1367
    finally show ?case .
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1368
  qed (intro diff, simp)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1369
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1370
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1371
private lemma rGamma_complex_1: "rGamma (1 :: complex) = 1"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1372
proof -
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1373
  have A: "eventually (\<lambda>n. rGamma_series 1 n = of_nat (Suc n) / of_nat n) sequentially"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1374
    using eventually_gt_at_top[of "0::nat"]
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1375
    by (force elim!: eventually_mono simp: rGamma_series_def exp_of_real pochhammer_fact
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1376
                    divide_simps pochhammer_rec' dest!: pochhammer_eq_0_imp_nonpos_Int)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1377
  have "rGamma_series 1 \<longlonglongrightarrow> 1" by (subst tendsto_cong[OF A]) (rule LIMSEQ_Suc_n_over_n)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1378
  thus "rGamma 1 = (1 :: complex)" unfolding rGamma_complex_def by (rule limI)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1379
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1380
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1381
private lemma has_field_derivative_rGamma_complex_nonpos_Int:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1382
  "(rGamma has_field_derivative (-1)^n * fact n) (at (- of_nat n :: complex))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1383
proof (induction n)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1384
  case 0
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1385
  have A: "(0::complex) + 1 \<notin> \<int>\<^sub>\<le>\<^sub>0" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1386
  have "((\<lambda>z. z * (rGamma \<circ> (\<lambda>z. z + 1 :: complex)) z) has_field_derivative 1) (at 0)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1387
    by (rule derivative_eq_intros DERIV_chain refl
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1388
             has_field_derivative_rGamma_complex_no_nonpos_Int A)+ (simp add: rGamma_complex_1)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1389
    thus ?case by (simp add: rGamma_complex_plus1)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1390
next
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1391
  case (Suc n)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1392
  hence A: "(rGamma has_field_derivative (-1)^n * fact n)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1393
                (at (- of_nat (Suc n) + 1 :: complex))" by simp
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1394
   have "((\<lambda>z. z * (rGamma \<circ> (\<lambda>z. z + 1 :: complex)) z) has_field_derivative
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1395
             (- 1) ^ Suc n * fact (Suc n)) (at (- of_nat (Suc n)))"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1396
     by (rule derivative_eq_intros refl A DERIV_chain)+
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1397
        (simp add: algebra_simps rGamma_complex_altdef)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1398
  thus ?case by (simp add: rGamma_complex_plus1)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1399
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1400
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1401
instance proof
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1402
  fix z :: complex show "(rGamma z = 0) \<longleftrightarrow> (\<exists>n. z = - of_nat n)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1403
    by (auto simp: rGamma_complex_altdef elim!: nonpos_Ints_cases')
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1404
next
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1405
  fix z :: complex assume "\<And>n. z \<noteq> - of_nat n"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1406
  hence "z \<notin> \<int>\<^sub>\<le>\<^sub>0" by (auto elim!: nonpos_Ints_cases')
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1407
  from has_field_derivative_rGamma_complex_no_nonpos_Int[OF this]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1408
    show "let d = (THE d. (\<lambda>n. \<Sum>k<n. inverse (of_nat (Suc k)) - inverse (z + of_nat k))
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1409
                       \<longlonglongrightarrow> d) - euler_mascheroni *\<^sub>R 1 in  (\<lambda>y. (rGamma y - rGamma z +
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1410
              rGamma z * d * (y - z)) /\<^sub>R  cmod (y - z)) \<midarrow>z\<rightarrow> 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1411
      by (simp add: has_field_derivative_def has_derivative_def Digamma_def sums_def [abs_def]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1412
                    netlimit_at of_real_def[symmetric] suminf_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1413
next
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1414
  fix n :: nat
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1415
  from has_field_derivative_rGamma_complex_nonpos_Int[of n]
64272
f76b6dda2e56 setprod -> prod
nipkow
parents: 64267
diff changeset
  1416
  show "let z = - of_nat n in (\<lambda>y. (rGamma y - rGamma z - (- 1) ^ n * prod of_nat {1..n} *
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1417
                  (y - z)) /\<^sub>R cmod (y - z)) \<midarrow>z\<rightarrow> 0"
64272
f76b6dda2e56 setprod -> prod
nipkow
parents: 64267
diff changeset
  1418
    by (simp add: has_field_derivative_def has_derivative_def fact_prod netlimit_at Let_def)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1419
next
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1420
  fix z :: complex
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1421
  from rGamma_series_complex_converges[of z] have "rGamma_series z \<longlonglongrightarrow> rGamma z"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1422
    by (simp add: convergent_LIMSEQ_iff rGamma_complex_def)
64272
f76b6dda2e56 setprod -> prod
nipkow
parents: 64267
diff changeset
  1423
  thus "let fact' = \<lambda>n. prod of_nat {1..n};
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1424
            exp = \<lambda>x. THE e. (\<lambda>n. \<Sum>k<n. x ^ k /\<^sub>R fact k) \<longlonglongrightarrow> e;
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1425
            pochhammer' = \<lambda>a n. \<Prod>n = 0..n. a + of_nat n
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1426
        in  (\<lambda>n. pochhammer' z n / (fact' n * exp (z * ln (real_of_nat n) *\<^sub>R 1))) \<longlonglongrightarrow> rGamma z"
64272
f76b6dda2e56 setprod -> prod
nipkow
parents: 64267
diff changeset
  1427
    by (simp add: fact_prod pochhammer_Suc_prod rGamma_series_def [abs_def] exp_def
63367
6c731c8b7f03 simplified definitions of combinatorial functions
haftmann
parents: 63317
diff changeset
  1428
                  of_real_def [symmetric] suminf_def sums_def [abs_def] atLeast0AtMost)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1429
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1430
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1431
end
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1432
end
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1433
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1434
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1435
lemma Gamma_complex_altdef:
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1436
  "Gamma z = (if z \<in> \<int>\<^sub>\<le>\<^sub>0 then 0 else exp (ln_Gamma (z :: complex)))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1437
  unfolding Gamma_def rGamma_complex_altdef by (simp add: exp_minus)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1438
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1439
lemma cnj_rGamma: "cnj (rGamma z) = rGamma (cnj z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1440
proof -
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1441
  have "rGamma_series (cnj z) = (\<lambda>n. cnj (rGamma_series z n))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1442
    by (intro ext) (simp_all add: rGamma_series_def exp_cnj)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1443
  also have "... \<longlonglongrightarrow> cnj (rGamma z)" by (intro tendsto_cnj tendsto_intros)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1444
  finally show ?thesis unfolding rGamma_complex_def by (intro sym[OF limI])
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1445
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1446
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1447
lemma cnj_Gamma: "cnj (Gamma z) = Gamma (cnj z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1448
  unfolding Gamma_def by (simp add: cnj_rGamma)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1449
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1450
lemma Gamma_complex_real:
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1451
  "z \<in> \<real> \<Longrightarrow> Gamma z \<in> (\<real> :: complex set)" and rGamma_complex_real: "z \<in> \<real> \<Longrightarrow> rGamma z \<in> \<real>"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1452
  by (simp_all add: Reals_cnj_iff cnj_Gamma cnj_rGamma)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1453
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  1454
lemma field_differentiable_rGamma: "rGamma field_differentiable (at z within A)"
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  1455
  using has_field_derivative_rGamma[of z] unfolding field_differentiable_def by blast
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1456
64969
a6953714799d Simplified Gamma_Function
eberlm <eberlm@in.tum.de>
parents: 64272
diff changeset
  1457
lemma holomorphic_rGamma [holomorphic_intros]: "rGamma holomorphic_on A"
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  1458
  unfolding holomorphic_on_def by (auto intro!: field_differentiable_rGamma)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1459
68721
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68624
diff changeset
  1460
lemma holomorphic_rGamma' [holomorphic_intros]: 
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68624
diff changeset
  1461
  assumes "f holomorphic_on A"
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68624
diff changeset
  1462
  shows   "(\<lambda>x. rGamma (f x)) holomorphic_on A"
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68624
diff changeset
  1463
proof -
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68624
diff changeset
  1464
  have "rGamma \<circ> f holomorphic_on A" using assms
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68624
diff changeset
  1465
    by (intro holomorphic_on_compose assms holomorphic_rGamma)
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68624
diff changeset
  1466
  thus ?thesis by (simp only: o_def)
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68624
diff changeset
  1467
qed
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68624
diff changeset
  1468
64969
a6953714799d Simplified Gamma_Function
eberlm <eberlm@in.tum.de>
parents: 64272
diff changeset
  1469
lemma analytic_rGamma: "rGamma analytic_on A"
a6953714799d Simplified Gamma_Function
eberlm <eberlm@in.tum.de>
parents: 64272
diff changeset
  1470
  unfolding analytic_on_def by (auto intro!: exI[of _ 1] holomorphic_rGamma)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1471
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1472
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  1473
lemma field_differentiable_Gamma: "z \<notin> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> Gamma field_differentiable (at z within A)"
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  1474
  using has_field_derivative_Gamma[of z] unfolding field_differentiable_def by auto
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1475
64969
a6953714799d Simplified Gamma_Function
eberlm <eberlm@in.tum.de>
parents: 64272
diff changeset
  1476
lemma holomorphic_Gamma [holomorphic_intros]: "A \<inter> \<int>\<^sub>\<le>\<^sub>0 = {} \<Longrightarrow> Gamma holomorphic_on A"
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  1477
  unfolding holomorphic_on_def by (auto intro!: field_differentiable_Gamma)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1478
68721
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68624
diff changeset
  1479
lemma holomorphic_Gamma' [holomorphic_intros]: 
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68624
diff changeset
  1480
  assumes "f holomorphic_on A" and "\<And>x. x \<in> A \<Longrightarrow> f x \<notin> \<int>\<^sub>\<le>\<^sub>0"
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68624
diff changeset
  1481
  shows   "(\<lambda>x. Gamma (f x)) holomorphic_on A"
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68624
diff changeset
  1482
proof -
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68624
diff changeset
  1483
  have "Gamma \<circ> f holomorphic_on A" using assms
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68624
diff changeset
  1484
    by (intro holomorphic_on_compose assms holomorphic_Gamma) auto
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68624
diff changeset
  1485
  thus ?thesis by (simp only: o_def)
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68624
diff changeset
  1486
qed
53ad5c01be3f Small lemmas about analysis
eberlm <eberlm@in.tum.de>
parents: 68624
diff changeset
  1487
64969
a6953714799d Simplified Gamma_Function
eberlm <eberlm@in.tum.de>
parents: 64272
diff changeset
  1488
lemma analytic_Gamma: "A \<inter> \<int>\<^sub>\<le>\<^sub>0 = {} \<Longrightarrow> Gamma analytic_on A"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1489
  by (rule analytic_on_subset[of _ "UNIV - \<int>\<^sub>\<le>\<^sub>0"], subst analytic_on_open)
64969
a6953714799d Simplified Gamma_Function
eberlm <eberlm@in.tum.de>
parents: 64272
diff changeset
  1490
     (auto intro!: holomorphic_Gamma)
66512
89b6455b63b6 starting to unscramble bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66453
diff changeset
  1491
89b6455b63b6 starting to unscramble bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66453
diff changeset
  1492
89b6455b63b6 starting to unscramble bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66453
diff changeset
  1493
lemma field_differentiable_ln_Gamma_complex:
64969
a6953714799d Simplified Gamma_Function
eberlm <eberlm@in.tum.de>
parents: 64272
diff changeset
  1494
  "z \<notin> \<real>\<^sub>\<le>\<^sub>0 \<Longrightarrow> ln_Gamma field_differentiable (at (z::complex) within A)"
a6953714799d Simplified Gamma_Function
eberlm <eberlm@in.tum.de>
parents: 64272
diff changeset
  1495
  by (rule field_differentiable_within_subset[of _ _ UNIV])
a6953714799d Simplified Gamma_Function
eberlm <eberlm@in.tum.de>
parents: 64272
diff changeset
  1496
     (force simp: field_differentiable_def intro!: derivative_intros)+
a6953714799d Simplified Gamma_Function
eberlm <eberlm@in.tum.de>
parents: 64272
diff changeset
  1497
a6953714799d Simplified Gamma_Function
eberlm <eberlm@in.tum.de>
parents: 64272
diff changeset
  1498
lemma holomorphic_ln_Gamma [holomorphic_intros]: "A \<inter> \<real>\<^sub>\<le>\<^sub>0 = {} \<Longrightarrow> ln_Gamma holomorphic_on A"
a6953714799d Simplified Gamma_Function
eberlm <eberlm@in.tum.de>
parents: 64272
diff changeset
  1499
  unfolding holomorphic_on_def by (auto intro!: field_differentiable_ln_Gamma_complex)
a6953714799d Simplified Gamma_Function
eberlm <eberlm@in.tum.de>
parents: 64272
diff changeset
  1500
a6953714799d Simplified Gamma_Function
eberlm <eberlm@in.tum.de>
parents: 64272
diff changeset
  1501
lemma analytic_ln_Gamma: "A \<inter> \<real>\<^sub>\<le>\<^sub>0 = {} \<Longrightarrow> ln_Gamma analytic_on A"
a6953714799d Simplified Gamma_Function
eberlm <eberlm@in.tum.de>
parents: 64272
diff changeset
  1502
  by (rule analytic_on_subset[of _ "UNIV - \<real>\<^sub>\<le>\<^sub>0"], subst analytic_on_open)
a6953714799d Simplified Gamma_Function
eberlm <eberlm@in.tum.de>
parents: 64272
diff changeset
  1503
     (auto intro!: holomorphic_ln_Gamma)
a6953714799d Simplified Gamma_Function
eberlm <eberlm@in.tum.de>
parents: 64272
diff changeset
  1504
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1505
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1506
lemma has_field_derivative_rGamma_complex' [derivative_intros]:
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1507
  "(rGamma has_field_derivative (if z \<in> \<int>\<^sub>\<le>\<^sub>0 then (-1)^(nat \<lfloor>-Re z\<rfloor>) * fact (nat \<lfloor>-Re z\<rfloor>) else
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1508
        -rGamma z * Digamma z)) (at z within A)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1509
  using has_field_derivative_rGamma[of z] by (auto elim!: nonpos_Ints_cases')
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1510
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1511
declare has_field_derivative_rGamma_complex'[THEN DERIV_chain2, derivative_intros]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1512
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1513
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  1514
lemma field_differentiable_Polygamma:
64969
a6953714799d Simplified Gamma_Function
eberlm <eberlm@in.tum.de>
parents: 64272
diff changeset
  1515
  fixes z :: complex
62533
bc25f3916a99 new material to Blochj's theorem, as well as supporting lemmas
paulson <lp15@cam.ac.uk>
parents: 62398
diff changeset
  1516
  shows
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  1517
  "z \<notin> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> Polygamma n field_differentiable (at z within A)"
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  1518
  using has_field_derivative_Polygamma[of z n] unfolding field_differentiable_def by auto
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1519
64969
a6953714799d Simplified Gamma_Function
eberlm <eberlm@in.tum.de>
parents: 64272
diff changeset
  1520
lemma holomorphic_on_Polygamma [holomorphic_intros]: "A \<inter> \<int>\<^sub>\<le>\<^sub>0 = {} \<Longrightarrow> Polygamma n holomorphic_on A"
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  1521
  unfolding holomorphic_on_def by (auto intro!: field_differentiable_Polygamma)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1522
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1523
lemma analytic_on_Polygamma: "A \<inter> \<int>\<^sub>\<le>\<^sub>0 = {} \<Longrightarrow> Polygamma n analytic_on A"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1524
  by (rule analytic_on_subset[of _ "UNIV - \<int>\<^sub>\<le>\<^sub>0"], subst analytic_on_open)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1525
     (auto intro!: holomorphic_on_Polygamma)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1526
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1527
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1528
68624
205d352ed727 Tagged Ball_Volume and Gamma_Function in HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 68403
diff changeset
  1529
subsection%unimportant \<open>The real Gamma function\<close>
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1530
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1531
lemma rGamma_series_real:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1532
  "eventually (\<lambda>n. rGamma_series x n = Re (rGamma_series (of_real x) n)) sequentially"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1533
  using eventually_gt_at_top[of "0 :: nat"]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1534
proof eventually_elim
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1535
  fix n :: nat assume n: "n > 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1536
  have "Re (rGamma_series (of_real x) n) =
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1537
          Re (of_real (pochhammer x (Suc n)) / (fact n * exp (of_real (x * ln (real_of_nat n)))))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1538
    using n by (simp add: rGamma_series_def powr_def Ln_of_nat pochhammer_of_real)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1539
  also from n have "\<dots> = Re (of_real ((pochhammer x (Suc n)) /
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1540
                              (fact n * (exp (x * ln (real_of_nat n))))))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1541
    by (subst exp_of_real) simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1542
  also from n have "\<dots> = rGamma_series x n"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1543
    by (subst Re_complex_of_real) (simp add: rGamma_series_def powr_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1544
  finally show "rGamma_series x n = Re (rGamma_series (of_real x) n)" ..
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1545
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1546
68624
205d352ed727 Tagged Ball_Volume and Gamma_Function in HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 68403
diff changeset
  1547
instantiation%unimportant real :: Gamma
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1548
begin
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1549
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1550
definition "rGamma_real x = Re (rGamma (of_real x :: complex))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1551
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1552
instance proof
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1553
  fix x :: real
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1554
  have "rGamma x = Re (rGamma (of_real x))" by (simp add: rGamma_real_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1555
  also have "of_real \<dots> = rGamma (of_real x :: complex)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1556
    by (intro of_real_Re rGamma_complex_real) simp_all
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1557
  also have "\<dots> = 0 \<longleftrightarrow> x \<in> \<int>\<^sub>\<le>\<^sub>0" by (simp add: rGamma_eq_zero_iff of_real_in_nonpos_Ints_iff)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1558
  also have "\<dots> \<longleftrightarrow> (\<exists>n. x = - of_nat n)" by (auto elim!: nonpos_Ints_cases')
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1559
  finally show "(rGamma x) = 0 \<longleftrightarrow> (\<exists>n. x = - real_of_nat n)" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1560
next
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1561
  fix x :: real assume "\<And>n. x \<noteq> - of_nat n"
63539
70d4d9e5707b tuned proofs -- avoid improper use of "this";
wenzelm
parents: 63417
diff changeset
  1562
  hence x: "complex_of_real x \<notin> \<int>\<^sub>\<le>\<^sub>0"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1563
    by (subst of_real_in_nonpos_Ints_iff) (auto elim!: nonpos_Ints_cases')
63539
70d4d9e5707b tuned proofs -- avoid improper use of "this";
wenzelm
parents: 63417
diff changeset
  1564
  then have "x \<noteq> 0" by auto
70d4d9e5707b tuned proofs -- avoid improper use of "this";
wenzelm
parents: 63417
diff changeset
  1565
  with x have "(rGamma has_field_derivative - rGamma x * Digamma x) (at x)"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1566
    by (fastforce intro!: derivative_eq_intros has_vector_derivative_real_complex
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1567
                  simp: Polygamma_of_real rGamma_real_def [abs_def])
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1568
  thus "let d = (THE d. (\<lambda>n. \<Sum>k<n. inverse (of_nat (Suc k)) - inverse (x + of_nat k))
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1569
                       \<longlonglongrightarrow> d) - euler_mascheroni *\<^sub>R 1 in  (\<lambda>y. (rGamma y - rGamma x +
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1570
              rGamma x * d * (y - x)) /\<^sub>R  norm (y - x)) \<midarrow>x\<rightarrow> 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1571
      by (simp add: has_field_derivative_def has_derivative_def Digamma_def sums_def [abs_def]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1572
                    netlimit_at of_real_def[symmetric] suminf_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1573
next
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1574
  fix n :: nat
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1575
  have "(rGamma has_field_derivative (-1)^n * fact n) (at (- of_nat n :: real))"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1576
    by (fastforce intro!: derivative_eq_intros has_vector_derivative_real_complex
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1577
                  simp: Polygamma_of_real rGamma_real_def [abs_def])
64272
f76b6dda2e56 setprod -> prod
nipkow
parents: 64267
diff changeset
  1578
  thus "let x = - of_nat n in (\<lambda>y. (rGamma y - rGamma x - (- 1) ^ n * prod of_nat {1..n} *
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1579
                  (y - x)) /\<^sub>R norm (y - x)) \<midarrow>x::real\<rightarrow> 0"
64272
f76b6dda2e56 setprod -> prod
nipkow
parents: 64267
diff changeset
  1580
    by (simp add: has_field_derivative_def has_derivative_def fact_prod netlimit_at Let_def)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1581
next
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1582
  fix x :: real
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1583
  have "rGamma_series x \<longlonglongrightarrow> rGamma x"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1584
  proof (rule Lim_transform_eventually)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1585
    show "(\<lambda>n. Re (rGamma_series (of_real x) n)) \<longlonglongrightarrow> rGamma x" unfolding rGamma_real_def
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1586
      by (intro tendsto_intros)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1587
  qed (insert rGamma_series_real, simp add: eq_commute)
64272
f76b6dda2e56 setprod -> prod
nipkow
parents: 64267
diff changeset
  1588
  thus "let fact' = \<lambda>n. prod of_nat {1..n};
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1589
            exp = \<lambda>x. THE e. (\<lambda>n. \<Sum>k<n. x ^ k /\<^sub>R fact k) \<longlonglongrightarrow> e;
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1590
            pochhammer' = \<lambda>a n. \<Prod>n = 0..n. a + of_nat n
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1591
        in  (\<lambda>n. pochhammer' x n / (fact' n * exp (x * ln (real_of_nat n) *\<^sub>R 1))) \<longlonglongrightarrow> rGamma x"
64272
f76b6dda2e56 setprod -> prod
nipkow
parents: 64267
diff changeset
  1592
    by (simp add: fact_prod pochhammer_Suc_prod rGamma_series_def [abs_def] exp_def
63367
6c731c8b7f03 simplified definitions of combinatorial functions
haftmann
parents: 63317
diff changeset
  1593
                  of_real_def [symmetric] suminf_def sums_def [abs_def] atLeast0AtMost)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1594
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1595
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1596
end
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1597
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1598
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1599
lemma rGamma_complex_of_real: "rGamma (complex_of_real x) = complex_of_real (rGamma x)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1600
  unfolding rGamma_real_def using rGamma_complex_real by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1601
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1602
lemma Gamma_complex_of_real: "Gamma (complex_of_real x) = complex_of_real (Gamma x)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1603
  unfolding Gamma_def by (simp add: rGamma_complex_of_real)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1604
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1605
lemma rGamma_real_altdef: "rGamma x = lim (rGamma_series (x :: real))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1606
  by (rule sym, rule limI, rule tendsto_intros)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1607
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1608
lemma Gamma_real_altdef1: "Gamma x = lim (Gamma_series (x :: real))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1609
  by (rule sym, rule limI, rule tendsto_intros)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1610
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1611
lemma Gamma_real_altdef2: "Gamma x = Re (Gamma (of_real x))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1612
  using rGamma_complex_real[OF Reals_of_real[of x]]
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1613
  by (elim Reals_cases)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1614
     (simp only: Gamma_def rGamma_real_def of_real_inverse[symmetric] Re_complex_of_real)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1615
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1616
lemma ln_Gamma_series_complex_of_real:
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1617
  "x > 0 \<Longrightarrow> n > 0 \<Longrightarrow> ln_Gamma_series (complex_of_real x) n = of_real (ln_Gamma_series x n)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1618
proof -
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1619
  assume xn: "x > 0" "n > 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1620
  have "Ln (complex_of_real x / of_nat k + 1) = of_real (ln (x / of_nat k + 1))" if "k \<ge> 1" for k
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1621
    using that xn by (subst Ln_of_real [symmetric]) (auto intro!: add_nonneg_pos simp: field_simps)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1622
  with xn show ?thesis by (simp add: ln_Gamma_series_def Ln_of_nat Ln_of_real)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1623
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1624
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1625
lemma ln_Gamma_real_converges:
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1626
  assumes "(x::real) > 0"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1627
  shows   "convergent (ln_Gamma_series x)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1628
proof -
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1629
  have "(\<lambda>n. ln_Gamma_series (complex_of_real x) n) \<longlonglongrightarrow> ln_Gamma (of_real x)" using assms
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1630
    by (intro ln_Gamma_complex_LIMSEQ) (auto simp: of_real_in_nonpos_Ints_iff)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1631
  moreover from eventually_gt_at_top[of "0::nat"]
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1632
    have "eventually (\<lambda>n. complex_of_real (ln_Gamma_series x n) =
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1633
            ln_Gamma_series (complex_of_real x) n) sequentially"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1634
    by eventually_elim (simp add: ln_Gamma_series_complex_of_real assms)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1635
  ultimately have "(\<lambda>n. complex_of_real (ln_Gamma_series x n)) \<longlonglongrightarrow> ln_Gamma (of_real x)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1636
    by (subst tendsto_cong) assumption+
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1637
  from tendsto_Re[OF this] show ?thesis by (auto simp: convergent_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1638
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1639
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1640
lemma ln_Gamma_real_LIMSEQ: "(x::real) > 0 \<Longrightarrow> ln_Gamma_series x \<longlonglongrightarrow> ln_Gamma x"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1641
  using ln_Gamma_real_converges[of x] unfolding ln_Gamma_def by (simp add: convergent_LIMSEQ_iff)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1642
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1643
lemma ln_Gamma_complex_of_real: "x > 0 \<Longrightarrow> ln_Gamma (complex_of_real x) = of_real (ln_Gamma x)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1644
proof (unfold ln_Gamma_def, rule limI, rule Lim_transform_eventually)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1645
  assume x: "x > 0"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1646
  show "eventually (\<lambda>n. of_real (ln_Gamma_series x n) =
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1647
            ln_Gamma_series (complex_of_real x) n) sequentially"
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1648
    using eventually_gt_at_top[of "0::nat"]
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1649
    by eventually_elim (simp add: ln_Gamma_series_complex_of_real x)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1650
qed (intro tendsto_of_real, insert ln_Gamma_real_LIMSEQ[of x], simp add: ln_Gamma_def)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1651
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1652
lemma Gamma_real_pos_exp: "x > (0 :: real) \<Longrightarrow> Gamma x = exp (ln_Gamma x)"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1653
  by (auto simp: Gamma_real_altdef2 Gamma_complex_altdef of_real_in_nonpos_Ints_iff
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1654
                 ln_Gamma_complex_of_real exp_of_real)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1655
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1656
lemma ln_Gamma_real_pos: "x > 0 \<Longrightarrow> ln_Gamma x = ln (Gamma x :: real)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1657
  unfolding Gamma_real_pos_exp by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1658
64969
a6953714799d Simplified Gamma_Function
eberlm <eberlm@in.tum.de>
parents: 64272
diff changeset
  1659
lemma ln_Gamma_complex_conv_fact: "n > 0 \<Longrightarrow> ln_Gamma (of_nat n :: complex) = ln (fact (n - 1))"
a6953714799d Simplified Gamma_Function
eberlm <eberlm@in.tum.de>
parents: 64272
diff changeset
  1660
  using ln_Gamma_complex_of_real[of "real n"] Gamma_fact[of "n - 1", where 'a = real]
66512
89b6455b63b6 starting to unscramble bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66453
diff changeset
  1661
  by (simp add: ln_Gamma_real_pos of_nat_diff Ln_of_real [symmetric])
89b6455b63b6 starting to unscramble bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66453
diff changeset
  1662
64969
a6953714799d Simplified Gamma_Function
eberlm <eberlm@in.tum.de>
parents: 64272
diff changeset
  1663
lemma ln_Gamma_real_conv_fact: "n > 0 \<Longrightarrow> ln_Gamma (real n) = ln (fact (n - 1))"
a6953714799d Simplified Gamma_Function
eberlm <eberlm@in.tum.de>
parents: 64272
diff changeset
  1664
  using Gamma_fact[of "n - 1", where 'a = real]
a6953714799d Simplified Gamma_Function
eberlm <eberlm@in.tum.de>
parents: 64272
diff changeset
  1665
  by (simp add: ln_Gamma_real_pos of_nat_diff Ln_of_real [symmetric])
a6953714799d Simplified Gamma_Function
eberlm <eberlm@in.tum.de>
parents: 64272
diff changeset
  1666
67278
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  1667
lemma Gamma_real_pos [simp, intro]: "x > (0::real) \<Longrightarrow> Gamma x > 0"
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  1668
  by (simp add: Gamma_real_pos_exp)
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  1669
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  1670
lemma Gamma_real_nonneg [simp, intro]: "x > (0::real) \<Longrightarrow> Gamma x \<ge> 0"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1671
  by (simp add: Gamma_real_pos_exp)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1672
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1673
lemma has_field_derivative_ln_Gamma_real [derivative_intros]:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1674
  assumes x: "x > (0::real)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1675
  shows "(ln_Gamma has_field_derivative Digamma x) (at x)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1676
proof (subst DERIV_cong_ev[OF refl _ refl])
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1677
  from assms show "((Re \<circ> ln_Gamma \<circ> complex_of_real) has_field_derivative Digamma x) (at x)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1678
    by (auto intro!: derivative_eq_intros has_vector_derivative_real_complex
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1679
             simp: Polygamma_of_real o_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1680
  from eventually_nhds_in_nhd[of x "{0<..}"] assms
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1681
    show "eventually (\<lambda>y. ln_Gamma y = (Re \<circ> ln_Gamma \<circ> of_real) y) (nhds x)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1682
    by (auto elim!: eventually_mono simp: ln_Gamma_complex_of_real interior_open)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1683
qed
66512
89b6455b63b6 starting to unscramble bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66453
diff changeset
  1684
89b6455b63b6 starting to unscramble bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66453
diff changeset
  1685
lemma field_differentiable_ln_Gamma_real:
64969
a6953714799d Simplified Gamma_Function
eberlm <eberlm@in.tum.de>
parents: 64272
diff changeset
  1686
  "x > 0 \<Longrightarrow> ln_Gamma field_differentiable (at (x::real) within A)"
a6953714799d Simplified Gamma_Function
eberlm <eberlm@in.tum.de>
parents: 64272
diff changeset
  1687
  by (rule field_differentiable_within_subset[of _ _ UNIV])
a6953714799d Simplified Gamma_Function
eberlm <eberlm@in.tum.de>
parents: 64272
diff changeset
  1688
     (auto simp: field_differentiable_def intro!: derivative_intros)+
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1689
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1690
declare has_field_derivative_ln_Gamma_real[THEN DERIV_chain2, derivative_intros]
66512
89b6455b63b6 starting to unscramble bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66453
diff changeset
  1691
64969
a6953714799d Simplified Gamma_Function
eberlm <eberlm@in.tum.de>
parents: 64272
diff changeset
  1692
lemma deriv_ln_Gamma_real:
a6953714799d Simplified Gamma_Function
eberlm <eberlm@in.tum.de>
parents: 64272
diff changeset
  1693
  assumes "z > 0"
a6953714799d Simplified Gamma_Function
eberlm <eberlm@in.tum.de>
parents: 64272
diff changeset
  1694
  shows   "deriv ln_Gamma z = Digamma (z :: real)"
a6953714799d Simplified Gamma_Function
eberlm <eberlm@in.tum.de>
parents: 64272
diff changeset
  1695
  by (intro DERIV_imp_deriv has_field_derivative_ln_Gamma_real assms)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1696
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1697
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1698
lemma has_field_derivative_rGamma_real' [derivative_intros]:
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1699
  "(rGamma has_field_derivative (if x \<in> \<int>\<^sub>\<le>\<^sub>0 then (-1)^(nat \<lfloor>-x\<rfloor>) * fact (nat \<lfloor>-x\<rfloor>) else
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1700
        -rGamma x * Digamma x)) (at x within A)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1701
  using has_field_derivative_rGamma[of x] by (force elim!: nonpos_Ints_cases')
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1702
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1703
declare has_field_derivative_rGamma_real'[THEN DERIV_chain2, derivative_intros]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1704
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1705
lemma Polygamma_real_odd_pos:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1706
  assumes "(x::real) \<notin> \<int>\<^sub>\<le>\<^sub>0" "odd n"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1707
  shows   "Polygamma n x > 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1708
proof -
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1709
  from assms have "x \<noteq> 0" by auto
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1710
  with assms show ?thesis
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1711
    unfolding Polygamma_def using Polygamma_converges'[of x "Suc n"]
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1712
    by (auto simp: zero_less_power_eq simp del: power_Suc
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1713
             dest: plus_of_nat_eq_0_imp intro!: mult_pos_pos suminf_pos)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1714
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1715
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1716
lemma Polygamma_real_even_neg:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1717
  assumes "(x::real) > 0" "n > 0" "even n"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1718
  shows   "Polygamma n x < 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1719
  using assms unfolding Polygamma_def using Polygamma_converges'[of x "Suc n"]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1720
  by (auto intro!: mult_pos_pos suminf_pos)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1721
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1722
lemma Polygamma_real_strict_mono:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1723
  assumes "x > 0" "x < (y::real)" "even n"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1724
  shows   "Polygamma n x < Polygamma n y"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1725
proof -
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1726
  have "\<exists>\<xi>. x < \<xi> \<and> \<xi> < y \<and> Polygamma n y - Polygamma n x = (y - x) * Polygamma (Suc n) \<xi>"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1727
    using assms by (intro MVT2 derivative_intros impI allI) (auto elim!: nonpos_Ints_cases)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1728
  then guess \<xi> by (elim exE conjE) note \<xi> = this
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1729
  note \<xi>(3)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1730
  also from \<xi>(1,2) assms have "(y - x) * Polygamma (Suc n) \<xi> > 0"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1731
    by (intro mult_pos_pos Polygamma_real_odd_pos) (auto elim!: nonpos_Ints_cases)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1732
  finally show ?thesis by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1733
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1734
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1735
lemma Polygamma_real_strict_antimono:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1736
  assumes "x > 0" "x < (y::real)" "odd n"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1737
  shows   "Polygamma n x > Polygamma n y"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1738
proof -
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1739
  have "\<exists>\<xi>. x < \<xi> \<and> \<xi> < y \<and> Polygamma n y - Polygamma n x = (y - x) * Polygamma (Suc n) \<xi>"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1740
    using assms by (intro MVT2 derivative_intros impI allI) (auto elim!: nonpos_Ints_cases)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1741
  then guess \<xi> by (elim exE conjE) note \<xi> = this
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1742
  note \<xi>(3)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1743
  also from \<xi>(1,2) assms have "(y - x) * Polygamma (Suc n) \<xi> < 0"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1744
    by (intro mult_pos_neg Polygamma_real_even_neg) simp_all
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1745
  finally show ?thesis by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1746
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1747
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1748
lemma Polygamma_real_mono:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1749
  assumes "x > 0" "x \<le> (y::real)" "even n"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1750
  shows   "Polygamma n x \<le> Polygamma n y"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1751
  using Polygamma_real_strict_mono[OF assms(1) _ assms(3), of y] assms(2)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1752
  by (cases "x = y") simp_all
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1753
63721
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
  1754
lemma Digamma_real_strict_mono: "(0::real) < x \<Longrightarrow> x < y \<Longrightarrow> Digamma x < Digamma y"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
  1755
  by (rule Polygamma_real_strict_mono) simp_all
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
  1756
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
  1757
lemma Digamma_real_mono: "(0::real) < x \<Longrightarrow> x \<le> y \<Longrightarrow> Digamma x \<le> Digamma y"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
  1758
  by (rule Polygamma_real_mono) simp_all
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
  1759
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1760
lemma Digamma_real_ge_three_halves_pos:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1761
  assumes "x \<ge> 3/2"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1762
  shows   "Digamma (x :: real) > 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1763
proof -
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1764
  have "0 < Digamma (3/2 :: real)" by (fact Digamma_real_three_halves_pos)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1765
  also from assms have "\<dots> \<le> Digamma x" by (intro Polygamma_real_mono) simp_all
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1766
  finally show ?thesis .
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1767
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1768
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1769
lemma ln_Gamma_real_strict_mono:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1770
  assumes "x \<ge> 3/2" "x < y"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1771
  shows   "ln_Gamma (x :: real) < ln_Gamma y"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1772
proof -
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1773
  have "\<exists>\<xi>. x < \<xi> \<and> \<xi> < y \<and> ln_Gamma y - ln_Gamma x = (y - x) * Digamma \<xi>"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1774
    using assms by (intro MVT2 derivative_intros impI allI) (auto elim!: nonpos_Ints_cases)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1775
  then guess \<xi> by (elim exE conjE) note \<xi> = this
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1776
  note \<xi>(3)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1777
  also from \<xi>(1,2) assms have "(y - x) * Digamma \<xi> > 0"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1778
    by (intro mult_pos_pos Digamma_real_ge_three_halves_pos) simp_all
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1779
  finally show ?thesis by simp
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1780
qed
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1781
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1782
lemma Gamma_real_strict_mono:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1783
  assumes "x \<ge> 3/2" "x < y"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1784
  shows   "Gamma (x :: real) < Gamma y"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1785
proof -
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1786
  from Gamma_real_pos_exp[of x] assms have "Gamma x = exp (ln_Gamma x)" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1787
  also have "\<dots> < exp (ln_Gamma y)" by (intro exp_less_mono ln_Gamma_real_strict_mono assms)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1788
  also from Gamma_real_pos_exp[of y] assms have "\<dots> = Gamma y" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1789
  finally show ?thesis .
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1790
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1791
68624
205d352ed727 Tagged Ball_Volume and Gamma_Function in HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 68403
diff changeset
  1792
theorem log_convex_Gamma_real: "convex_on {0<..} (ln \<circ> Gamma :: real \<Rightarrow> real)"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1793
  by (rule convex_on_realI[of _ _ Digamma])
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1794
     (auto intro!: derivative_eq_intros Polygamma_real_mono Gamma_real_pos
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1795
           simp: o_def Gamma_eq_zero_iff elim!: nonpos_Ints_cases')
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1796
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1797
63725
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1798
subsection \<open>The uniqueness of the real Gamma function\<close>
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1799
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1800
text \<open>
66512
89b6455b63b6 starting to unscramble bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66453
diff changeset
  1801
  The following is a proof of the Bohr--Mollerup theorem, which states that
63725
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1802
  any log-convex function $G$ on the positive reals that fulfils $G(1) = 1$ and
66512
89b6455b63b6 starting to unscramble bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66453
diff changeset
  1803
  satisfies the functional equation $G(x+1) = x G(x)$ must be equal to the
63725
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1804
  Gamma function.
66512
89b6455b63b6 starting to unscramble bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66453
diff changeset
  1805
  In principle, if $G$ is a holomorphic complex function, one could then extend
89b6455b63b6 starting to unscramble bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66453
diff changeset
  1806
  this from the positive reals to the entire complex plane (minus the non-positive
63725
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1807
  integers, where the Gamma function is not defined).
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1808
\<close>
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1809
68624
205d352ed727 Tagged Ball_Volume and Gamma_Function in HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 68403
diff changeset
  1810
context%unimportant
63725
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1811
  fixes G :: "real \<Rightarrow> real"
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1812
  assumes G_1: "G 1 = 1"
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1813
  assumes G_plus1: "x > 0 \<Longrightarrow> G (x + 1) = x * G x"
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1814
  assumes G_pos: "x > 0 \<Longrightarrow> G x > 0"
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1815
  assumes log_convex_G: "convex_on {0<..} (ln \<circ> G)"
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1816
begin
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1817
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1818
private lemma G_fact: "G (of_nat n + 1) = fact n"
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1819
  using G_plus1[of "real n + 1" for n]
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1820
  by (induction n) (simp_all add: G_1 G_plus1)
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1821
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1822
private definition S :: "real \<Rightarrow> real \<Rightarrow> real" where
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1823
  "S x y = (ln (G y) - ln (G x)) / (y - x)"
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1824
66512
89b6455b63b6 starting to unscramble bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66453
diff changeset
  1825
private lemma S_eq:
63725
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1826
  "n \<ge> 2 \<Longrightarrow> S (of_nat n) (of_nat n + x) = (ln (G (real n + x)) - ln (fact (n - 1))) / x"
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1827
  by (subst G_fact [symmetric]) (simp add: S_def add_ac of_nat_diff)
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1828
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1829
private lemma G_lower:
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1830
  assumes x: "x > 0" and n: "n \<ge> 1"
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1831
  shows  "Gamma_series x n \<le> G x"
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1832
proof -
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1833
  have "(ln \<circ> G) (real (Suc n)) \<le> ((ln \<circ> G) (real (Suc n) + x) -
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1834
          (ln \<circ> G) (real (Suc n) - 1)) / (real (Suc n) + x - (real (Suc n) - 1)) *
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1835
           (real (Suc n) - (real (Suc n) - 1)) + (ln \<circ> G) (real (Suc n) - 1)"
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1836
    using x n by (intro convex_onD_Icc' convex_on_subset[OF log_convex_G]) auto
66512
89b6455b63b6 starting to unscramble bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66453
diff changeset
  1837
  hence "S (of_nat n) (of_nat (Suc n)) \<le> S (of_nat (Suc n)) (of_nat (Suc n) + x)"
63725
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1838
    unfolding S_def using x by (simp add: field_simps)
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1839
  also have "S (of_nat n) (of_nat (Suc n)) = ln (fact n) - ln (fact (n-1))"
66512
89b6455b63b6 starting to unscramble bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66453
diff changeset
  1840
    unfolding S_def using n
63725
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1841
    by (subst (1 2) G_fact [symmetric]) (simp_all add: add_ac of_nat_diff)
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1842
  also have "\<dots> = ln (fact n / fact (n-1))" by (subst ln_div) simp_all
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1843
  also from n have "fact n / fact (n - 1) = n" by (cases n) simp_all
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1844
  finally have "x * ln (real n) + ln (fact n) \<le> ln (G (real (Suc n) + x))"
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1845
    using x n by (subst (asm) S_eq) (simp_all add: field_simps)
66512
89b6455b63b6 starting to unscramble bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66453
diff changeset
  1846
  also have "x * ln (real n) + ln (fact n) = ln (exp (x * ln (real n)) * fact n)"
63725
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1847
    using x by (simp add: ln_mult)
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1848
  finally have "exp (x * ln (real n)) * fact n \<le> G (real (Suc n) + x)" using x
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1849
    by (subst (asm) ln_le_cancel_iff) (simp_all add: G_pos)
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1850
  also have "G (real (Suc n) + x) = pochhammer x (Suc n) * G x"
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1851
    using G_plus1[of "real (Suc n) + x" for n] G_plus1[of x] x
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1852
    by (induction n) (simp_all add: pochhammer_Suc add_ac)
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1853
  finally show "Gamma_series x n \<le> G x"
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1854
    using x by (simp add: field_simps pochhammer_pos Gamma_series_def)
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1855
qed
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1856
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1857
private lemma G_upper:
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1858
  assumes x: "x > 0" "x \<le> 1" and n: "n \<ge> 2"
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1859
  shows  "G x \<le> Gamma_series x n * (1 + x / real n)"
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1860
proof -
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1861
  have "(ln \<circ> G) (real n + x) \<le> ((ln \<circ> G) (real n + 1) -
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1862
          (ln \<circ> G) (real n)) / (real n + 1 - (real n)) *
66512
89b6455b63b6 starting to unscramble bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66453
diff changeset
  1863
           ((real n + x) - real n) + (ln \<circ> G) (real n)"
63725
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1864
    using x n by (intro convex_onD_Icc' convex_on_subset[OF log_convex_G]) auto
66512
89b6455b63b6 starting to unscramble bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66453
diff changeset
  1865
  hence "S (of_nat n) (of_nat n + x) \<le> S (of_nat n) (of_nat n + 1)"
63725
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1866
    unfolding S_def using x by (simp add: field_simps)
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1867
  also from n have "S (of_nat n) (of_nat n + 1) = ln (fact n) - ln (fact (n-1))"
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1868
    by (subst (1 2) G_fact [symmetric]) (simp add: S_def add_ac of_nat_diff)
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1869
  also have "\<dots> = ln (fact n / (fact (n-1)))" using n by (subst ln_div) simp_all
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1870
  also from n have "fact n / fact (n - 1) = n" by (cases n) simp_all
66512
89b6455b63b6 starting to unscramble bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66453
diff changeset
  1871
  finally have "ln (G (real n + x)) \<le> x * ln (real n) + ln (fact (n - 1))"
63725
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1872
    using x n by (subst (asm) S_eq) (simp_all add: field_simps)
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1873
  also have "\<dots> = ln (exp (x * ln (real n)) * fact (n - 1))" using x
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1874
    by (simp add: ln_mult)
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1875
  finally have "G (real n + x) \<le> exp (x * ln (real n)) * fact (n - 1)" using x
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1876
    by (subst (asm) ln_le_cancel_iff) (simp_all add: G_pos)
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1877
  also have "G (real n + x) = pochhammer x n * G x"
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1878
    using G_plus1[of "real n + x" for n] x
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1879
    by (induction n) (simp_all add: pochhammer_Suc add_ac)
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1880
  finally have "G x \<le> exp (x * ln (real n)) * fact (n- 1) / pochhammer x n"
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1881
    using x by (simp add: field_simps pochhammer_pos)
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1882
  also from n have "fact (n - 1) = fact n / n" by (cases n) simp_all
66512
89b6455b63b6 starting to unscramble bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66453
diff changeset
  1883
  also have "exp (x * ln (real n)) * \<dots> / pochhammer x n =
63725
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1884
               Gamma_series x n * (1 + x / real n)" using n x
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1885
    by (simp add: Gamma_series_def divide_simps pochhammer_Suc)
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1886
  finally show ?thesis .
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1887
qed
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1888
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1889
private lemma G_eq_Gamma_aux:
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1890
  assumes x: "x > 0" "x \<le> 1"
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1891
  shows   "G x = Gamma x"
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1892
proof (rule antisym)
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1893
  show "G x \<ge> Gamma x"
63952
354808e9f44b new material connected with HOL Light measure theory, plus more rationalisation
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1894
  proof (rule tendsto_upperbound)
63725
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1895
    from G_lower[of x] show "eventually (\<lambda>n. Gamma_series x n \<le> G x) sequentially"
65578
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 64969
diff changeset
  1896
      using  x by (auto intro: eventually_mono[OF eventually_ge_at_top[of "1::nat"]])
63725
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1897
  qed (simp_all add: Gamma_series_LIMSEQ)
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1898
next
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1899
  show "G x \<le> Gamma x"
63952
354808e9f44b new material connected with HOL Light measure theory, plus more rationalisation
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1900
  proof (rule tendsto_lowerbound)
63725
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1901
    have "(\<lambda>n. Gamma_series x n * (1 + x / real n)) \<longlonglongrightarrow> Gamma x * (1 + 0)"
66512
89b6455b63b6 starting to unscramble bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66453
diff changeset
  1902
      by (rule tendsto_intros real_tendsto_divide_at_top
63725
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1903
               Gamma_series_LIMSEQ filterlim_real_sequentially)+
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1904
    thus "(\<lambda>n. Gamma_series x n * (1 + x / real n)) \<longlonglongrightarrow> Gamma x" by simp
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1905
  next
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1906
    from G_upper[of x] show "eventually (\<lambda>n. Gamma_series x n * (1 + x / real n) \<ge> G x) sequentially"
65578
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 64969
diff changeset
  1907
      using x by (auto intro: eventually_mono[OF eventually_ge_at_top[of "2::nat"]])
63725
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1908
  qed simp_all
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1909
qed
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1910
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1911
theorem Gamma_pos_real_unique:
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1912
  assumes x: "x > 0"
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1913
  shows   "G x = Gamma x"
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1914
proof -
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1915
  have G_eq: "G (real n + x) = Gamma (real n + x)" if "x \<in> {0<..1}" for n x using that
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1916
  proof (induction n)
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1917
    case (Suc n)
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1918
    from Suc have "x + real n > 0" by simp
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1919
    hence "x + real n \<notin> \<int>\<^sub>\<le>\<^sub>0" by auto
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1920
    with Suc show ?case using G_plus1[of "real n + x"] Gamma_plus1[of "real n + x"]
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1921
      by (auto simp: add_ac)
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1922
  qed (simp_all add: G_eq_Gamma_aux)
66512
89b6455b63b6 starting to unscramble bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66453
diff changeset
  1923
63725
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1924
  show ?thesis
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1925
  proof (cases "frac x = 0")
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1926
    case True
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1927
    hence "x = of_int (floor x)" by (simp add: frac_def)
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1928
    with x have x_eq: "x = of_nat (nat (floor x) - 1) + 1" by simp
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1929
    show ?thesis by (subst (1 2) x_eq, rule G_eq) simp_all
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1930
  next
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1931
    case False
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1932
    from assms have x_eq: "x = of_nat (nat (floor x)) + frac x"
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1933
      by (simp add: frac_def)
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1934
    have frac_le_1: "frac x \<le> 1" unfolding frac_def by linarith
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1935
    show ?thesis
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1936
      by (subst (1 2) x_eq, rule G_eq, insert False frac_le_1) simp_all
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1937
  qed
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1938
qed
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1939
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1940
end
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1941
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1942
68624
205d352ed727 Tagged Ball_Volume and Gamma_Function in HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 68403
diff changeset
  1943
subsection \<open>The Beta function\<close>
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1944
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1945
definition Beta where "Beta a b = Gamma a * Gamma b / Gamma (a + b)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1946
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1947
lemma Beta_altdef: "Beta a b = Gamma a * Gamma b * rGamma (a + b)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1948
  by (simp add: inverse_eq_divide Beta_def Gamma_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1949
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1950
lemma Beta_commute: "Beta a b = Beta b a"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1951
  unfolding Beta_def by (simp add: ac_simps)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1952
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1953
lemma has_field_derivative_Beta1 [derivative_intros]:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1954
  assumes "x \<notin> \<int>\<^sub>\<le>\<^sub>0" "x + y \<notin> \<int>\<^sub>\<le>\<^sub>0"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1955
  shows   "((\<lambda>x. Beta x y) has_field_derivative (Beta x y * (Digamma x - Digamma (x + y))))
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1956
               (at x within A)" unfolding Beta_altdef
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1957
  by (rule DERIV_cong, (rule derivative_intros assms)+) (simp add: algebra_simps)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1958
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  1959
lemma Beta_pole1: "x \<in> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> Beta x y = 0"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  1960
  by (auto simp add: Beta_def elim!: nonpos_Ints_cases')
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  1961
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  1962
lemma Beta_pole2: "y \<in> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> Beta x y = 0"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  1963
  by (auto simp add: Beta_def elim!: nonpos_Ints_cases')
63594
bd218a9320b5 HOL-Multivariate_Analysis: rename theories for more descriptive names
hoelzl
parents: 63539
diff changeset
  1964
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  1965
lemma Beta_zero: "x + y \<in> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> Beta x y = 0"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  1966
  by (auto simp add: Beta_def elim!: nonpos_Ints_cases')
63594
bd218a9320b5 HOL-Multivariate_Analysis: rename theories for more descriptive names
hoelzl
parents: 63539
diff changeset
  1967
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1968
lemma has_field_derivative_Beta2 [derivative_intros]:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1969
  assumes "y \<notin> \<int>\<^sub>\<le>\<^sub>0" "x + y \<notin> \<int>\<^sub>\<le>\<^sub>0"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1970
  shows   "((\<lambda>y. Beta x y) has_field_derivative (Beta x y * (Digamma y - Digamma (x + y))))
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1971
               (at y within A)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1972
  using has_field_derivative_Beta1[of y x A] assms by (simp add: Beta_commute add_ac)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1973
68624
205d352ed727 Tagged Ball_Volume and Gamma_Function in HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 68403
diff changeset
  1974
theorem Beta_plus1_plus1:
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1975
  assumes "x \<notin> \<int>\<^sub>\<le>\<^sub>0" "y \<notin> \<int>\<^sub>\<le>\<^sub>0"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1976
  shows   "Beta (x + 1) y + Beta x (y + 1) = Beta x y"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1977
proof -
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1978
  have "Beta (x + 1) y + Beta x (y + 1) =
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1979
            (Gamma (x + 1) * Gamma y + Gamma x * Gamma (y + 1)) * rGamma ((x + y) + 1)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1980
    by (simp add: Beta_altdef add_divide_distrib algebra_simps)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1981
  also have "\<dots> = (Gamma x * Gamma y) * ((x + y) * rGamma ((x + y) + 1))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1982
    by (subst assms[THEN Gamma_plus1])+ (simp add: algebra_simps)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1983
  also from assms have "\<dots> = Beta x y" unfolding Beta_altdef by (subst rGamma_plus1) simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1984
  finally show ?thesis .
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1985
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1986
68624
205d352ed727 Tagged Ball_Volume and Gamma_Function in HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 68403
diff changeset
  1987
theorem Beta_plus1_left:
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  1988
  assumes "x \<notin> \<int>\<^sub>\<le>\<^sub>0"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1989
  shows   "(x + y) * Beta (x + 1) y = x * Beta x y"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1990
proof -
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1991
  have "(x + y) * Beta (x + 1) y = Gamma (x + 1) * Gamma y * ((x + y) * rGamma ((x + y) + 1))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1992
    unfolding Beta_altdef by (simp only: ac_simps)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1993
  also have "\<dots> = x * Beta x y" unfolding Beta_altdef
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1994
     by (subst assms[THEN Gamma_plus1] rGamma_plus1)+ (simp only: ac_simps)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1995
  finally show ?thesis .
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1996
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1997
68624
205d352ed727 Tagged Ball_Volume and Gamma_Function in HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 68403
diff changeset
  1998
theorem Beta_plus1_right:
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  1999
  assumes "y \<notin> \<int>\<^sub>\<le>\<^sub>0"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2000
  shows   "(x + y) * Beta x (y + 1) = y * Beta x y"
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2001
  using Beta_plus1_left[of y x] assms by (simp_all add: Beta_commute add.commute)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2002
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2003
lemma Gamma_Gamma_Beta:
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2004
  assumes "x + y \<notin> \<int>\<^sub>\<le>\<^sub>0"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2005
  shows   "Gamma x * Gamma y = Beta x y * Gamma (x + y)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2006
  unfolding Beta_altdef using assms Gamma_eq_zero_iff[of "x+y"]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2007
  by (simp add: rGamma_inverse_Gamma)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2008
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2009
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2010
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2011
subsection \<open>Legendre duplication theorem\<close>
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2012
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2013
context
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2014
begin
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2015
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2016
private lemma Gamma_legendre_duplication_aux:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2017
  fixes z :: "'a :: Gamma"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2018
  assumes "z \<notin> \<int>\<^sub>\<le>\<^sub>0" "z + 1/2 \<notin> \<int>\<^sub>\<le>\<^sub>0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2019
  shows "Gamma z * Gamma (z + 1/2) = exp ((1 - 2*z) * of_real (ln 2)) * Gamma (1/2) * Gamma (2*z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2020
proof -
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2021
  let ?powr = "\<lambda>b a. exp (a * of_real (ln (of_nat b)))"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2022
  let ?h = "\<lambda>n. (fact (n-1))\<^sup>2 / fact (2*n-1) * of_nat (2^(2*n)) *
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2023
                exp (1/2 * of_real (ln (real_of_nat n)))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2024
  {
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2025
    fix z :: 'a assume z: "z \<notin> \<int>\<^sub>\<le>\<^sub>0" "z + 1/2 \<notin> \<int>\<^sub>\<le>\<^sub>0"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2026
    let ?g = "\<lambda>n. ?powr 2 (2*z) * Gamma_series' z n * Gamma_series' (z + 1/2) n /
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2027
                      Gamma_series' (2*z) (2*n)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2028
    have "eventually (\<lambda>n. ?g n = ?h n) sequentially" using eventually_gt_at_top
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2029
    proof eventually_elim
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2030
      fix n :: nat assume n: "n > 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2031
      let ?f = "fact (n - 1) :: 'a" and ?f' = "fact (2*n - 1) :: 'a"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2032
      have A: "exp t * exp t = exp (2*t :: 'a)" for t by (subst exp_add [symmetric]) simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2033
      have A: "Gamma_series' z n * Gamma_series' (z + 1/2) n = ?f^2 * ?powr n (2*z + 1/2) /
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2034
                (pochhammer z n * pochhammer (z + 1/2) n)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2035
        by (simp add: Gamma_series'_def exp_add ring_distribs power2_eq_square A mult_ac)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2036
      have B: "Gamma_series' (2*z) (2*n) =
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2037
                       ?f' * ?powr 2 (2*z) * ?powr n (2*z) /
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2038
                       (of_nat (2^(2*n)) * pochhammer z n * pochhammer (z+1/2) n)" using n
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2039
        by (simp add: Gamma_series'_def ln_mult exp_add ring_distribs pochhammer_double)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2040
      from z have "pochhammer z n \<noteq> 0" by (auto dest: pochhammer_eq_0_imp_nonpos_Int)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2041
      moreover from z have "pochhammer (z + 1/2) n \<noteq> 0" by (auto dest: pochhammer_eq_0_imp_nonpos_Int)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2042
      ultimately have "?powr 2 (2*z) * (Gamma_series' z n * Gamma_series' (z + 1/2) n) / Gamma_series' (2*z) (2*n) =
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2043
         ?f^2 / ?f' * of_nat (2^(2*n)) * (?powr n ((4*z + 1)/2) * ?powr n (-2*z))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2044
        using n unfolding A B by (simp add: divide_simps exp_minus)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2045
      also have "?powr n ((4*z + 1)/2) * ?powr n (-2*z) = ?powr n (1/2)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2046
        by (simp add: algebra_simps exp_add[symmetric] add_divide_distrib)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2047
      finally show "?g n = ?h n" by (simp only: mult_ac)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2048
    qed
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2049
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2050
    moreover from z double_in_nonpos_Ints_imp[of z] have "2 * z \<notin> \<int>\<^sub>\<le>\<^sub>0" by auto
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2051
    hence "?g \<longlonglongrightarrow> ?powr 2 (2*z) * Gamma z * Gamma (z+1/2) / Gamma (2*z)"
69064
5840724b1d71 Prefix form of infix with * on either side no longer needs special treatment
nipkow
parents: 68721
diff changeset
  2052
      using LIMSEQ_subseq_LIMSEQ[OF Gamma_series'_LIMSEQ, of "(*)2" "2*z"]
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2053
      by (intro tendsto_intros Gamma_series'_LIMSEQ)
66447
a1f5c5c26fa6 Replaced subseq with strict_mono
eberlm <eberlm@in.tum.de>
parents: 66286
diff changeset
  2054
         (simp_all add: o_def strict_mono_def Gamma_eq_zero_iff)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2055
    ultimately have "?h \<longlonglongrightarrow> ?powr 2 (2*z) * Gamma z * Gamma (z+1/2) / Gamma (2*z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2056
      by (rule Lim_transform_eventually)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2057
  } note lim = this
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2058
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2059
  from assms double_in_nonpos_Ints_imp[of z] have z': "2 * z \<notin> \<int>\<^sub>\<le>\<^sub>0" by auto
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2060
  from fraction_not_in_ints[of 2 1] have "(1/2 :: 'a) \<notin> \<int>\<^sub>\<le>\<^sub>0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2061
    by (intro not_in_Ints_imp_not_in_nonpos_Ints) simp_all
67976
75b94eb58c3d Analysis builds using set_borel_measurable_def, etc.
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
  2062
  with lim[of "1/2 :: 'a"] have "?h \<longlonglongrightarrow> 2 * Gamma (1/2 :: 'a)" by (simp add: exp_of_real)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2063
  from LIMSEQ_unique[OF this lim[OF assms]] z' show ?thesis
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2064
    by (simp add: divide_simps Gamma_eq_zero_iff ring_distribs exp_diff exp_of_real ac_simps)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2065
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2066
68624
205d352ed727 Tagged Ball_Volume and Gamma_Function in HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 68403
diff changeset
  2067
theorem Gamma_reflection_complex:
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2068
  fixes z :: complex
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2069
  shows "Gamma z * Gamma (1 - z) = of_real pi / sin (of_real pi * z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2070
proof -
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2071
  let ?g = "\<lambda>z::complex. Gamma z * Gamma (1 - z) * sin (of_real pi * z)"
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62534
diff changeset
  2072
  define g where [abs_def]: "g z = (if z \<in> \<int> then of_real pi else ?g z)" for z :: complex
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2073
  let ?h = "\<lambda>z::complex. (of_real pi * cot (of_real pi*z) + Digamma z - Digamma (1 - z))"
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62534
diff changeset
  2074
  define h where [abs_def]: "h z = (if z \<in> \<int> then 0 else ?h z)" for z :: complex
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2075
62072
bf3d9f113474 isabelle update_cartouches -c -t;
wenzelm
parents: 62055
diff changeset
  2076
  \<comment> \<open>@{term g} is periodic with period 1.\<close>
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2077
  interpret g: periodic_fun_simple' g
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2078
  proof
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2079
    fix z :: complex
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2080
    show "g (z + 1) = g z"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2081
    proof (cases "z \<in> \<int>")
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2082
      case False
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2083
      hence "z * g z = z * Beta z (- z + 1) * sin (of_real pi * z)" by (simp add: g_def Beta_def)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2084
      also have "z * Beta z (- z + 1) = (z + 1 + -z) * Beta (z + 1) (- z + 1)"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2085
        using False Ints_diff[of 1 "1 - z"] nonpos_Ints_subset_Ints
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2086
        by (subst Beta_plus1_left [symmetric]) auto
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2087
      also have "\<dots> * sin (of_real pi * z) = z * (Beta (z + 1) (-z) * sin (of_real pi * (z + 1)))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2088
        using False Ints_diff[of "z+1" 1] Ints_minus[of "-z"] nonpos_Ints_subset_Ints
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2089
        by (subst Beta_plus1_right) (auto simp: ring_distribs sin_plus_pi)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2090
      also from False have "Beta (z + 1) (-z) * sin (of_real pi * (z + 1)) = g (z + 1)"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2091
        using Ints_diff[of "z+1" 1] by (auto simp: g_def Beta_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2092
      finally show "g (z + 1) = g z" using False by (subst (asm) mult_left_cancel) auto
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2093
    qed (simp add: g_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2094
  qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2095
62072
bf3d9f113474 isabelle update_cartouches -c -t;
wenzelm
parents: 62055
diff changeset
  2096
  \<comment> \<open>@{term g} is entire.\<close>
64969
a6953714799d Simplified Gamma_Function
eberlm <eberlm@in.tum.de>
parents: 64272
diff changeset
  2097
  have g_g' [derivative_intros]: "(g has_field_derivative (h z * g z)) (at z)" for z :: complex
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2098
  proof (cases "z \<in> \<int>")
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2099
    let ?h' = "\<lambda>z. Beta z (1 - z) * ((Digamma z - Digamma (1 - z)) * sin (z * of_real pi) +
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2100
                     of_real pi * cos (z * of_real pi))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2101
    case False
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2102
    from False have "eventually (\<lambda>t. t \<in> UNIV - \<int>) (nhds z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2103
      by (intro eventually_nhds_in_open) (auto simp: open_Diff)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2104
    hence "eventually (\<lambda>t. g t = ?g t) (nhds z)" by eventually_elim (simp add: g_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2105
    moreover {
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2106
      from False Ints_diff[of 1 "1-z"] have "1 - z \<notin> \<int>" by auto
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2107
      hence "(?g has_field_derivative ?h' z) (at z)" using nonpos_Ints_subset_Ints
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2108
        by (auto intro!: derivative_eq_intros simp: algebra_simps Beta_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2109
      also from False have "sin (of_real pi * z) \<noteq> 0" by (subst sin_eq_0) auto
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2110
      hence "?h' z = h z * g z"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2111
        using False unfolding g_def h_def cot_def by (simp add: field_simps Beta_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2112
      finally have "(?g has_field_derivative (h z * g z)) (at z)" .
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2113
    }
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2114
    ultimately show ?thesis by (subst DERIV_cong_ev[OF refl _ refl])
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2115
  next
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2116
    case True
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2117
    then obtain n where z: "z = of_int n" by (auto elim!: Ints_cases)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2118
    let ?t = "(\<lambda>z::complex. if z = 0 then 1 else sin z / z) \<circ> (\<lambda>z. of_real pi * z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2119
    have deriv_0: "(g has_field_derivative 0) (at 0)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2120
    proof (subst DERIV_cong_ev[OF refl _ refl])
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2121
      show "eventually (\<lambda>z. g z = of_real pi * Gamma (1 + z) * Gamma (1 - z) * ?t z) (nhds 0)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2122
        using eventually_nhds_ball[OF zero_less_one, of "0::complex"]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2123
      proof eventually_elim
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2124
        fix z :: complex assume z: "z \<in> ball 0 1"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2125
        show "g z = of_real pi * Gamma (1 + z) * Gamma (1 - z) * ?t z"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2126
        proof (cases "z = 0")
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2127
          assume z': "z \<noteq> 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2128
          with z have z'': "z \<notin> \<int>\<^sub>\<le>\<^sub>0" "z \<notin> \<int>" by (auto elim!: Ints_cases simp: dist_0_norm)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2129
          from Gamma_plus1[OF this(1)] have "Gamma z = Gamma (z + 1) / z" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2130
          with z'' z' show ?thesis by (simp add: g_def ac_simps)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2131
        qed (simp add: g_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2132
      qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2133
      have "(?t has_field_derivative (0 * of_real pi)) (at 0)"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2134
        using has_field_derivative_sin_z_over_z[of "UNIV :: complex set"]
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2135
        by (intro DERIV_chain) simp_all
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2136
      thus "((\<lambda>z. of_real pi * Gamma (1 + z) * Gamma (1 - z) * ?t z) has_field_derivative 0) (at 0)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2137
        by (auto intro!: derivative_eq_intros simp: o_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2138
    qed
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2139
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2140
    have "((g \<circ> (\<lambda>x. x - of_int n)) has_field_derivative 0 * 1) (at (of_int n))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2141
      using deriv_0 by (intro DERIV_chain) (auto intro!: derivative_eq_intros)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2142
    also have "g \<circ> (\<lambda>x. x - of_int n) = g" by (intro ext) (simp add: g.minus_of_int)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2143
    finally show "(g has_field_derivative (h z * g z)) (at z)" by (simp add: z h_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2144
  qed
66512
89b6455b63b6 starting to unscramble bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66453
diff changeset
  2145
64969
a6953714799d Simplified Gamma_Function
eberlm <eberlm@in.tum.de>
parents: 64272
diff changeset
  2146
  have g_holo [holomorphic_intros]: "g holomorphic_on A" for A
66512
89b6455b63b6 starting to unscramble bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66453
diff changeset
  2147
    by (rule holomorphic_on_subset[of _ UNIV])
64969
a6953714799d Simplified Gamma_Function
eberlm <eberlm@in.tum.de>
parents: 64272
diff changeset
  2148
       (force simp: holomorphic_on_open intro!: derivative_intros)+
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2149
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2150
  have g_eq: "g (z/2) * g ((z+1)/2) = Gamma (1/2)^2 * g z" if "Re z > -1" "Re z < 2" for z
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2151
  proof (cases "z \<in> \<int>")
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2152
    case True
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2153
    with that have "z = 0 \<or> z = 1" by (force elim!: Ints_cases)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2154
    moreover have "g 0 * g (1/2) = Gamma (1/2)^2 * g 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2155
      using fraction_not_in_ints[where 'a = complex, of 2 1] by (simp add: g_def power2_eq_square)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2156
    moreover have "g (1/2) * g 1 = Gamma (1/2)^2 * g 1"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2157
        using fraction_not_in_ints[where 'a = complex, of 2 1]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2158
        by (simp add: g_def power2_eq_square Beta_def algebra_simps)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2159
    ultimately show ?thesis by force
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2160
  next
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2161
    case False
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2162
    hence z: "z/2 \<notin> \<int>" "(z+1)/2 \<notin> \<int>" using Ints_diff[of "z+1" 1] by (auto elim!: Ints_cases)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2163
    hence z': "z/2 \<notin> \<int>\<^sub>\<le>\<^sub>0" "(z+1)/2 \<notin> \<int>\<^sub>\<le>\<^sub>0" by (auto elim!: nonpos_Ints_cases)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2164
    from z have "1-z/2 \<notin> \<int>" "1-((z+1)/2) \<notin> \<int>"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2165
      using Ints_diff[of 1 "1-z/2"] Ints_diff[of 1 "1-((z+1)/2)"] by auto
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2166
    hence z'': "1-z/2 \<notin> \<int>\<^sub>\<le>\<^sub>0" "1-((z+1)/2) \<notin> \<int>\<^sub>\<le>\<^sub>0" by (auto elim!: nonpos_Ints_cases)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2167
    from z have "g (z/2) * g ((z+1)/2) =
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2168
      (Gamma (z/2) * Gamma ((z+1)/2)) * (Gamma (1-z/2) * Gamma (1-((z+1)/2))) *
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2169
      (sin (of_real pi * z/2) * sin (of_real pi * (z+1)/2))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2170
      by (simp add: g_def)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2171
    also from z' Gamma_legendre_duplication_aux[of "z/2"]
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2172
      have "Gamma (z/2) * Gamma ((z+1)/2) = exp ((1-z) * of_real (ln 2)) * Gamma (1/2) * Gamma z"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2173
      by (simp add: add_divide_distrib)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2174
    also from z'' Gamma_legendre_duplication_aux[of "1-(z+1)/2"]
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2175
      have "Gamma (1-z/2) * Gamma (1-(z+1)/2) =
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2176
              Gamma (1-z) * Gamma (1/2) * exp (z * of_real (ln 2))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2177
      by (simp add: add_divide_distrib ac_simps)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2178
    finally have "g (z/2) * g ((z+1)/2) = Gamma (1/2)^2 * (Gamma z * Gamma (1-z) *
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2179
                    (2 * (sin (of_real pi*z/2) * sin (of_real pi*(z+1)/2))))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2180
      by (simp add: add_ac power2_eq_square exp_add ring_distribs exp_diff exp_of_real)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2181
    also have "sin (of_real pi*(z+1)/2) = cos (of_real pi*z/2)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2182
      using cos_sin_eq[of "- of_real pi * z/2", symmetric]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2183
      by (simp add: ring_distribs add_divide_distrib ac_simps)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2184
    also have "2 * (sin (of_real pi*z/2) * cos (of_real pi*z/2)) = sin (of_real pi * z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2185
      by (subst sin_times_cos) (simp add: field_simps)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2186
    also have "Gamma z * Gamma (1 - z) * sin (complex_of_real pi * z) = g z"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2187
      using \<open>z \<notin> \<int>\<close> by (simp add: g_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2188
    finally show ?thesis .
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2189
  qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2190
  have g_eq: "g (z/2) * g ((z+1)/2) = Gamma (1/2)^2 * g z" for z
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2191
  proof -
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62534
diff changeset
  2192
    define r where "r = \<lfloor>Re z / 2\<rfloor>"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2193
    have "Gamma (1/2)^2 * g z = Gamma (1/2)^2 * g (z - of_int (2*r))" by (simp only: g.minus_of_int)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2194
    also have "of_int (2*r) = 2 * of_int r" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2195
    also have "Re z - 2 * of_int r > -1" "Re z - 2 * of_int r < 2" unfolding r_def by linarith+
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2196
    hence "Gamma (1/2)^2 * g (z - 2 * of_int r) =
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2197
                   g ((z - 2 * of_int r)/2) * g ((z - 2 * of_int r + 1)/2)"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2198
      unfolding r_def by (intro g_eq[symmetric]) simp_all
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2199
    also have "(z - 2 * of_int r) / 2 = z/2 - of_int r" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2200
    also have "g \<dots> = g (z/2)" by (rule g.minus_of_int)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2201
    also have "(z - 2 * of_int r + 1) / 2 = (z + 1)/2 - of_int r" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2202
    also have "g \<dots> = g ((z+1)/2)" by (rule g.minus_of_int)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2203
    finally show ?thesis ..
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2204
  qed
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2205
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2206
  have g_nz [simp]: "g z \<noteq> 0" for z :: complex
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2207
  unfolding g_def using Ints_diff[of 1 "1 - z"]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2208
    by (auto simp: Gamma_eq_zero_iff sin_eq_0 dest!: nonpos_Ints_Int)
66512
89b6455b63b6 starting to unscramble bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66453
diff changeset
  2209
64969
a6953714799d Simplified Gamma_Function
eberlm <eberlm@in.tum.de>
parents: 64272
diff changeset
  2210
  have h_altdef: "h z = deriv g z / g z" for z :: complex
a6953714799d Simplified Gamma_Function
eberlm <eberlm@in.tum.de>
parents: 64272
diff changeset
  2211
    using DERIV_imp_deriv[OF g_g', of z] by simp
66512
89b6455b63b6 starting to unscramble bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66453
diff changeset
  2212
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2213
  have h_eq: "h z = (h (z/2) + h ((z+1)/2)) / 2" for z
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2214
  proof -
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2215
    have "((\<lambda>t. g (t/2) * g ((t+1)/2)) has_field_derivative
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2216
                       (g (z/2) * g ((z+1)/2)) * ((h (z/2) + h ((z+1)/2)) / 2)) (at z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2217
      by (auto intro!: derivative_eq_intros g_g'[THEN DERIV_chain2] simp: field_simps)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2218
    hence "((\<lambda>t. Gamma (1/2)^2 * g t) has_field_derivative
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2219
              Gamma (1/2)^2 * g z * ((h (z/2) + h ((z+1)/2)) / 2)) (at z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2220
      by (subst (1 2) g_eq[symmetric]) simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2221
    from DERIV_cmult[OF this, of "inverse ((Gamma (1/2))^2)"]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2222
      have "(g has_field_derivative (g z * ((h (z/2) + h ((z+1)/2))/2))) (at z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2223
      using fraction_not_in_ints[where 'a = complex, of 2 1]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2224
      by (simp add: divide_simps Gamma_eq_zero_iff not_in_Ints_imp_not_in_nonpos_Ints)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2225
    moreover have "(g has_field_derivative (g z * h z)) (at z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2226
      using g_g'[of z] by (simp add: ac_simps)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2227
    ultimately have "g z * h z = g z * ((h (z/2) + h ((z+1)/2))/2)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2228
      by (intro DERIV_unique)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2229
    thus "h z = (h (z/2) + h ((z+1)/2)) / 2" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2230
  qed
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2231
64969
a6953714799d Simplified Gamma_Function
eberlm <eberlm@in.tum.de>
parents: 64272
diff changeset
  2232
  have h_holo [holomorphic_intros]: "h holomorphic_on A" for A
a6953714799d Simplified Gamma_Function
eberlm <eberlm@in.tum.de>
parents: 64272
diff changeset
  2233
    unfolding h_altdef [abs_def]
a6953714799d Simplified Gamma_Function
eberlm <eberlm@in.tum.de>
parents: 64272
diff changeset
  2234
    by (rule holomorphic_on_subset[of _ UNIV]) (auto intro!: holomorphic_intros)
a6953714799d Simplified Gamma_Function
eberlm <eberlm@in.tum.de>
parents: 64272
diff changeset
  2235
  define h' where "h' = deriv h"
a6953714799d Simplified Gamma_Function
eberlm <eberlm@in.tum.de>
parents: 64272
diff changeset
  2236
  have h_h': "(h has_field_derivative h' z) (at z)" for z unfolding h'_def
a6953714799d Simplified Gamma_Function
eberlm <eberlm@in.tum.de>
parents: 64272
diff changeset
  2237
    by (auto intro!: holomorphic_derivI[of _ UNIV] holomorphic_intros)
a6953714799d Simplified Gamma_Function
eberlm <eberlm@in.tum.de>
parents: 64272
diff changeset
  2238
  have h'_holo [holomorphic_intros]: "h' holomorphic_on A" for A unfolding h'_def
a6953714799d Simplified Gamma_Function
eberlm <eberlm@in.tum.de>
parents: 64272
diff changeset
  2239
    by (rule holomorphic_on_subset[of _ UNIV]) (auto intro!: holomorphic_intros)
a6953714799d Simplified Gamma_Function
eberlm <eberlm@in.tum.de>
parents: 64272
diff changeset
  2240
  have h'_cont: "continuous_on UNIV h'"
a6953714799d Simplified Gamma_Function
eberlm <eberlm@in.tum.de>
parents: 64272
diff changeset
  2241
    by (intro holomorphic_on_imp_continuous_on holomorphic_intros)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2242
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2243
  have h'_eq: "h' z = (h' (z/2) + h' ((z+1)/2)) / 4" for z
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2244
  proof -
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2245
    have "((\<lambda>t. (h (t/2) + h ((t+1)/2)) / 2) has_field_derivative
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2246
                       ((h' (z/2) + h' ((z+1)/2)) / 4)) (at z)"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2247
      by (fastforce intro!: derivative_eq_intros h_h'[THEN DERIV_chain2])
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2248
    hence "(h has_field_derivative ((h' (z/2) + h' ((z+1)/2))/4)) (at z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2249
      by (subst (asm) h_eq[symmetric])
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2250
    from h_h' and this show "h' z = (h' (z/2) + h' ((z+1)/2)) / 4" by (rule DERIV_unique)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2251
  qed
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2252
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2253
  have h'_zero: "h' z = 0" for z
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2254
  proof -
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62534
diff changeset
  2255
    define m where "m = max 1 \<bar>Re z\<bar>"
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62534
diff changeset
  2256
    define B where "B = {t. abs (Re t) \<le> m \<and> abs (Im t) \<le> abs (Im z)}"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2257
    have "closed ({t. Re t \<ge> -m} \<inter> {t. Re t \<le> m} \<inter>
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2258
                  {t. Im t \<ge> -\<bar>Im z\<bar>} \<inter> {t. Im t \<le> \<bar>Im z\<bar>})"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2259
      (is "closed ?B") by (intro closed_Int closed_halfspace_Re_ge closed_halfspace_Re_le
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2260
                                 closed_halfspace_Im_ge closed_halfspace_Im_le)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2261
    also have "?B = B" unfolding B_def by fastforce
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2262
    finally have "closed B" .
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2263
    moreover have "bounded B" unfolding bounded_iff
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2264
    proof (intro ballI exI)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2265
      fix t assume t: "t \<in> B"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2266
      have "norm t \<le> \<bar>Re t\<bar> + \<bar>Im t\<bar>" by (rule cmod_le)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2267
      also from t have "\<bar>Re t\<bar> \<le> m" unfolding B_def by blast
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2268
      also from t have "\<bar>Im t\<bar> \<le> \<bar>Im z\<bar>" unfolding B_def by blast
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2269
      finally show "norm t \<le> m + \<bar>Im z\<bar>" by - simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2270
    qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2271
    ultimately have compact: "compact B" by (subst compact_eq_bounded_closed) blast
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2272
69260
0a9688695a1b removed relics of ASCII syntax for indexed big operators
haftmann
parents: 69064
diff changeset
  2273
    define M where "M = (SUP z\<in>B. norm (h' z))"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2274
    have "compact (h' ` B)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2275
      by (intro compact_continuous_image continuous_on_subset[OF h'_cont] compact) blast+
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2276
    hence bdd: "bdd_above ((\<lambda>z. norm (h' z)) ` B)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2277
      using bdd_above_norm[of "h' ` B"] by (simp add: image_comp o_def compact_imp_bounded)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2278
    have "norm (h' z) \<le> M" unfolding M_def by (intro cSUP_upper bdd) (simp_all add: B_def m_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2279
    also have "M \<le> M/2"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2280
    proof (subst M_def, subst cSUP_le_iff)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2281
      have "z \<in> B" unfolding B_def m_def by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2282
      thus "B \<noteq> {}" by auto
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2283
    next
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2284
      show "\<forall>z\<in>B. norm (h' z) \<le> M/2"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2285
      proof
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2286
        fix t :: complex assume t: "t \<in> B"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2287
        from h'_eq[of t] t have "h' t = (h' (t/2) + h' ((t+1)/2)) / 4" by (simp add: dist_0_norm)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2288
        also have "norm \<dots> = norm (h' (t/2) + h' ((t+1)/2)) / 4" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2289
        also have "norm (h' (t/2) + h' ((t+1)/2)) \<le> norm (h' (t/2)) + norm (h' ((t+1)/2))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2290
          by (rule norm_triangle_ineq)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2291
        also from t have "abs (Re ((t + 1)/2)) \<le> m" unfolding m_def B_def by auto
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2292
        with t have "t/2 \<in> B" "(t+1)/2 \<in> B" unfolding B_def by auto
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2293
        hence "norm (h' (t/2)) + norm (h' ((t+1)/2)) \<le> M + M" unfolding M_def
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2294
          by (intro add_mono cSUP_upper bdd) (auto simp: B_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2295
        also have "(M + M) / 4 = M / 2" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2296
        finally show "norm (h' t) \<le> M/2" by - simp_all
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2297
      qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2298
    qed (insert bdd, auto simp: cball_eq_empty)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2299
    hence "M \<le> 0" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2300
    finally show "h' z = 0" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2301
  qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2302
  have h_h'_2: "(h has_field_derivative 0) (at z)" for z
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2303
    using h_h'[of z] h'_zero[of z] by simp
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2304
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2305
  have g_real: "g z \<in> \<real>" if "z \<in> \<real>" for z
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2306
    unfolding g_def using that by (auto intro!: Reals_mult Gamma_complex_real)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2307
  have h_real: "h z \<in> \<real>" if "z \<in> \<real>" for z
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2308
    unfolding h_def using that by (auto intro!: Reals_mult Reals_add Reals_diff Polygamma_Real)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2309
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2310
  from h'_zero h_h'_2 have "\<exists>c. \<forall>z\<in>UNIV. h z = c"
66936
cf8d8fc23891 tuned some proofs and added some lemmas
haftmann
parents: 66526
diff changeset
  2311
    by (intro has_field_derivative_zero_constant) simp_all
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2312
  then obtain c where c: "\<And>z. h z = c" by auto
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2313
  have "\<exists>u. u \<in> closed_segment 0 1 \<and> Re (g 1) - Re (g 0) = Re (h u * g u * (1 - 0))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2314
    by (intro complex_mvt_line g_g')
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2315
  then guess u by (elim exE conjE) note u = this
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2316
  from u(1) have u': "u \<in> \<real>" unfolding closed_segment_def
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2317
    by (auto simp: scaleR_conv_of_real)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2318
  from u' g_real[of u] g_nz[of u] have "Re (g u) \<noteq> 0" by (auto elim!: Reals_cases)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2319
  with u(2) c[of u] g_real[of u] g_nz[of u] u'
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2320
    have "Re c = 0" by (simp add: complex_is_Real_iff g.of_1)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2321
  with h_real[of 0] c[of 0] have "c = 0" by (auto elim!: Reals_cases)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2322
  with c have A: "h z * g z = 0" for z by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2323
  hence "(g has_field_derivative 0) (at z)" for z using g_g'[of z] by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2324
  hence "\<exists>c'. \<forall>z\<in>UNIV. g z = c'" by (intro has_field_derivative_zero_constant) simp_all
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2325
  then obtain c' where c: "\<And>z. g z = c'" by (force simp: dist_0_norm)
63539
70d4d9e5707b tuned proofs -- avoid improper use of "this";
wenzelm
parents: 63417
diff changeset
  2326
  from this[of 0] have "c' = pi" unfolding g_def by simp
70d4d9e5707b tuned proofs -- avoid improper use of "this";
wenzelm
parents: 63417
diff changeset
  2327
  with c have "g z = pi" by simp
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2328
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2329
  show ?thesis
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2330
  proof (cases "z \<in> \<int>")
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2331
    case False
62072
bf3d9f113474 isabelle update_cartouches -c -t;
wenzelm
parents: 62055
diff changeset
  2332
    with \<open>g z = pi\<close> show ?thesis by (auto simp: g_def divide_simps)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2333
  next
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2334
    case True
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2335
    then obtain n where n: "z = of_int n" by (elim Ints_cases)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2336
    with sin_eq_0[of "of_real pi * z"] have "sin (of_real pi * z) = 0" by force
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2337
    moreover have "of_int (1 - n) \<in> \<int>\<^sub>\<le>\<^sub>0" if "n > 0" using that by (intro nonpos_Ints_of_int) simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2338
    ultimately show ?thesis using n
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2339
      by (cases "n \<le> 0") (auto simp: Gamma_eq_zero_iff nonpos_Ints_of_int)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2340
  qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2341
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2342
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2343
lemma rGamma_reflection_complex:
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2344
  "rGamma z * rGamma (1 - z :: complex) = sin (of_real pi * z) / of_real pi"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2345
  using Gamma_reflection_complex[of z]
62390
842917225d56 more canonical names
nipkow
parents: 62131
diff changeset
  2346
    by (simp add: Gamma_def divide_simps split: if_split_asm)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2347
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2348
lemma rGamma_reflection_complex':
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2349
  "rGamma z * rGamma (- z :: complex) = -z * sin (of_real pi * z) / of_real pi"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2350
proof -
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2351
  have "rGamma z * rGamma (-z) = -z * (rGamma z * rGamma (1 - z))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2352
    using rGamma_plus1[of "-z", symmetric] by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2353
  also have "rGamma z * rGamma (1 - z) = sin (of_real pi * z) / of_real pi"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2354
    by (rule rGamma_reflection_complex)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2355
  finally show ?thesis by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2356
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2357
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2358
lemma Gamma_reflection_complex':
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2359
  "Gamma z * Gamma (- z :: complex) = - of_real pi / (z * sin (of_real pi * z))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2360
  using rGamma_reflection_complex'[of z] by (force simp add: Gamma_def divide_simps mult_ac)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2361
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2362
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2363
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2364
lemma Gamma_one_half_real: "Gamma (1/2 :: real) = sqrt pi"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2365
proof -
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2366
  from Gamma_reflection_complex[of "1/2"] fraction_not_in_ints[where 'a = complex, of 2 1]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2367
    have "Gamma (1/2 :: complex)^2 = of_real pi" by (simp add: power2_eq_square)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2368
  hence "of_real pi = Gamma (complex_of_real (1/2))^2" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2369
  also have "\<dots> = of_real ((Gamma (1/2))^2)" by (subst Gamma_complex_of_real) simp_all
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2370
  finally have "Gamma (1/2)^2 = pi" by (subst (asm) of_real_eq_iff) simp_all
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2371
  moreover have "Gamma (1/2 :: real) \<ge> 0" using Gamma_real_pos[of "1/2"] by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2372
  ultimately show ?thesis by (rule real_sqrt_unique [symmetric])
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2373
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2374
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2375
lemma Gamma_one_half_complex: "Gamma (1/2 :: complex) = of_real (sqrt pi)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2376
proof -
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2377
  have "Gamma (1/2 :: complex) = Gamma (of_real (1/2))" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2378
  also have "\<dots> = of_real (sqrt pi)" by (simp only: Gamma_complex_of_real Gamma_one_half_real)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2379
  finally show ?thesis .
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2380
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2381
68624
205d352ed727 Tagged Ball_Volume and Gamma_Function in HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 68403
diff changeset
  2382
theorem Gamma_legendre_duplication:
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2383
  fixes z :: complex
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2384
  assumes "z \<notin> \<int>\<^sub>\<le>\<^sub>0" "z + 1/2 \<notin> \<int>\<^sub>\<le>\<^sub>0"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2385
  shows "Gamma z * Gamma (z + 1/2) =
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2386
             exp ((1 - 2*z) * of_real (ln 2)) * of_real (sqrt pi) * Gamma (2*z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2387
  using Gamma_legendre_duplication_aux[OF assms] by (simp add: Gamma_one_half_complex)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2388
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2389
end
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2390
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2391
68624
205d352ed727 Tagged Ball_Volume and Gamma_Function in HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 68403
diff changeset
  2392
subsection%unimportant \<open>Limits and residues\<close>
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2393
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2394
text \<open>
62085
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  2395
  The inverse of the Gamma function has simple zeros:
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2396
\<close>
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2397
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2398
lemma rGamma_zeros:
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2399
  "(\<lambda>z. rGamma z / (z + of_nat n)) \<midarrow> (- of_nat n) \<rightarrow> ((-1)^n * fact n :: 'a :: Gamma)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2400
proof (subst tendsto_cong)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2401
  let ?f = "\<lambda>z. pochhammer z n * rGamma (z + of_nat (Suc n)) :: 'a"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2402
  from eventually_at_ball'[OF zero_less_one, of "- of_nat n :: 'a" UNIV]
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2403
    show "eventually (\<lambda>z. rGamma z / (z + of_nat n) = ?f z) (at (- of_nat n))"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2404
    by (subst pochhammer_rGamma[of _ "Suc n"])
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2405
       (auto elim!: eventually_mono simp: divide_simps pochhammer_rec' eq_neg_iff_add_eq_0)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2406
  have "isCont ?f (- of_nat n)" by (intro continuous_intros)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2407
  thus "?f \<midarrow> (- of_nat n) \<rightarrow> (- 1) ^ n * fact n" unfolding isCont_def
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2408
    by (simp add: pochhammer_same)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2409
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2410
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2411
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2412
text \<open>
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2413
  The simple zeros of the inverse of the Gamma function correspond to simple poles of the Gamma function,
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2414
  and their residues can easily be computed from the limit we have just proven:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2415
\<close>
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2416
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2417
lemma Gamma_poles: "filterlim Gamma at_infinity (at (- of_nat n :: 'a :: Gamma))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2418
proof -
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2419
  from eventually_at_ball'[OF zero_less_one, of "- of_nat n :: 'a" UNIV]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2420
    have "eventually (\<lambda>z. rGamma z \<noteq> (0 :: 'a)) (at (- of_nat n))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2421
    by (auto elim!: eventually_mono nonpos_Ints_cases'
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2422
             simp: rGamma_eq_zero_iff dist_of_nat dist_minus)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2423
  with isCont_rGamma[of "- of_nat n :: 'a", OF continuous_ident]
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2424
    have "filterlim (\<lambda>z. inverse (rGamma z) :: 'a) at_infinity (at (- of_nat n))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2425
    unfolding isCont_def by (intro filterlim_compose[OF filterlim_inverse_at_infinity])
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2426
                            (simp_all add: filterlim_at)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2427
  moreover have "(\<lambda>z. inverse (rGamma z) :: 'a) = Gamma"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2428
    by (intro ext) (simp add: rGamma_inverse_Gamma)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2429
  ultimately show ?thesis by (simp only: )
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2430
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2431
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2432
lemma Gamma_residues:
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2433
  "(\<lambda>z. Gamma z * (z + of_nat n)) \<midarrow> (- of_nat n) \<rightarrow> ((-1)^n / fact n :: 'a :: Gamma)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2434
proof (subst tendsto_cong)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2435
  let ?c = "(- 1) ^ n / fact n :: 'a"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2436
  from eventually_at_ball'[OF zero_less_one, of "- of_nat n :: 'a" UNIV]
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2437
    show "eventually (\<lambda>z. Gamma z * (z + of_nat n) = inverse (rGamma z / (z + of_nat n)))
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2438
            (at (- of_nat n))"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2439
    by (auto elim!: eventually_mono simp: divide_simps rGamma_inverse_Gamma)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2440
  have "(\<lambda>z. inverse (rGamma z / (z + of_nat n))) \<midarrow> (- of_nat n) \<rightarrow>
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2441
          inverse ((- 1) ^ n * fact n :: 'a)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2442
    by (intro tendsto_intros rGamma_zeros) simp_all
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2443
  also have "inverse ((- 1) ^ n * fact n) = ?c"
68403
223172b97d0b reorient -> split; documented split
nipkow
parents: 68224
diff changeset
  2444
    by (simp_all add: field_simps flip: power_mult_distrib)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2445
  finally show "(\<lambda>z. inverse (rGamma z / (z + of_nat n))) \<midarrow> (- of_nat n) \<rightarrow> ?c" .
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2446
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2447
66286
1c977b13414f poles and residues of the Gamma function
eberlm <eberlm@in.tum.de>
parents: 65587
diff changeset
  2448
lemma is_pole_Gamma: "is_pole Gamma (- of_nat n)"
1c977b13414f poles and residues of the Gamma function
eberlm <eberlm@in.tum.de>
parents: 65587
diff changeset
  2449
  unfolding is_pole_def using Gamma_poles .
1c977b13414f poles and residues of the Gamma function
eberlm <eberlm@in.tum.de>
parents: 65587
diff changeset
  2450
1c977b13414f poles and residues of the Gamma function
eberlm <eberlm@in.tum.de>
parents: 65587
diff changeset
  2451
lemma Gamme_residue:
1c977b13414f poles and residues of the Gamma function
eberlm <eberlm@in.tum.de>
parents: 65587
diff changeset
  2452
  "residue Gamma (- of_nat n) = (-1) ^ n / fact n"
1c977b13414f poles and residues of the Gamma function
eberlm <eberlm@in.tum.de>
parents: 65587
diff changeset
  2453
proof (rule residue_simple')
1c977b13414f poles and residues of the Gamma function
eberlm <eberlm@in.tum.de>
parents: 65587
diff changeset
  2454
  show "open (- (\<int>\<^sub>\<le>\<^sub>0 - {-of_nat n}) :: complex set)"
1c977b13414f poles and residues of the Gamma function
eberlm <eberlm@in.tum.de>
parents: 65587
diff changeset
  2455
    by (intro open_Compl closed_subset_Ints) auto
1c977b13414f poles and residues of the Gamma function
eberlm <eberlm@in.tum.de>
parents: 65587
diff changeset
  2456
  show "Gamma holomorphic_on (- (\<int>\<^sub>\<le>\<^sub>0 - {-of_nat n}) - {- of_nat n})"
1c977b13414f poles and residues of the Gamma function
eberlm <eberlm@in.tum.de>
parents: 65587
diff changeset
  2457
    by (rule holomorphic_Gamma) auto
1c977b13414f poles and residues of the Gamma function
eberlm <eberlm@in.tum.de>
parents: 65587
diff changeset
  2458
  show "(\<lambda>w. Gamma w * (w - - of_nat n)) \<midarrow>- of_nat n \<rightarrow> (- 1) ^ n / fact n"
1c977b13414f poles and residues of the Gamma function
eberlm <eberlm@in.tum.de>
parents: 65587
diff changeset
  2459
    using Gamma_residues[of n] by simp
1c977b13414f poles and residues of the Gamma function
eberlm <eberlm@in.tum.de>
parents: 65587
diff changeset
  2460
qed auto
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2461
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2462
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2463
subsection \<open>Alternative definitions\<close>
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2464
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2465
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2466
subsubsection \<open>Variant of the Euler form\<close>
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2467
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2468
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2469
definition Gamma_series_euler' where
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2470
  "Gamma_series_euler' z n =
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2471
     inverse z * (\<Prod>k=1..n. exp (z * of_real (ln (1 + inverse (of_nat k)))) / (1 + z / of_nat k))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2472
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2473
context
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2474
begin
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2475
private lemma Gamma_euler'_aux1:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2476
  fixes z :: "'a :: {real_normed_field,banach}"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2477
  assumes n: "n > 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2478
  shows "exp (z * of_real (ln (of_nat n + 1))) = (\<Prod>k=1..n. exp (z * of_real (ln (1 + 1 / of_nat k))))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2479
proof -
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2480
  have "(\<Prod>k=1..n. exp (z * of_real (ln (1 + 1 / of_nat k)))) =
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2481
          exp (z * of_real (\<Sum>k = 1..n. ln (1 + 1 / real_of_nat k)))"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63992
diff changeset
  2482
    by (subst exp_sum [symmetric]) (simp_all add: sum_distrib_left)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2483
  also have "(\<Sum>k=1..n. ln (1 + 1 / of_nat k) :: real) = ln (\<Prod>k=1..n. 1 + 1 / real_of_nat k)"
64272
f76b6dda2e56 setprod -> prod
nipkow
parents: 64267
diff changeset
  2484
    by (subst ln_prod [symmetric]) (auto intro!: add_pos_nonneg)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2485
  also have "(\<Prod>k=1..n. 1 + 1 / of_nat k :: real) = (\<Prod>k=1..n. (of_nat k + 1) / of_nat k)"
64272
f76b6dda2e56 setprod -> prod
nipkow
parents: 64267
diff changeset
  2486
    by (intro prod.cong) (simp_all add: divide_simps)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2487
  also have "(\<Prod>k=1..n. (of_nat k + 1) / of_nat k :: real) = of_nat n + 1"
64272
f76b6dda2e56 setprod -> prod
nipkow
parents: 64267
diff changeset
  2488
    by (induction n) (simp_all add: prod_nat_ivl_Suc' divide_simps)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2489
  finally show ?thesis ..
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2490
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2491
68624
205d352ed727 Tagged Ball_Volume and Gamma_Function in HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 68403
diff changeset
  2492
theorem Gamma_series_euler':
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2493
  assumes z: "(z :: 'a :: Gamma) \<notin> \<int>\<^sub>\<le>\<^sub>0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2494
  shows "(\<lambda>n. Gamma_series_euler' z n) \<longlonglongrightarrow> Gamma z"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2495
proof (rule Gamma_seriesI, rule Lim_transform_eventually)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2496
  let ?f = "\<lambda>n. fact n * exp (z * of_real (ln (of_nat n + 1))) / pochhammer z (n + 1)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2497
  let ?r = "\<lambda>n. ?f n / Gamma_series z n"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2498
  let ?r' = "\<lambda>n. exp (z * of_real (ln (of_nat (Suc n) / of_nat n)))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2499
  from z have z': "z \<noteq> 0" by auto
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2500
66512
89b6455b63b6 starting to unscramble bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66453
diff changeset
  2501
  have "eventually (\<lambda>n. ?r' n = ?r n) sequentially"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2502
    using z by (auto simp: divide_simps Gamma_series_def ring_distribs exp_diff ln_div add_ac
65578
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 64969
diff changeset
  2503
                     intro: eventually_mono eventually_gt_at_top[of "0::nat"] dest: pochhammer_eq_0_imp_nonpos_Int)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2504
  moreover have "?r' \<longlonglongrightarrow> exp (z * of_real (ln 1))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2505
    by (intro tendsto_intros LIMSEQ_Suc_n_over_n) simp_all
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2506
  ultimately show "?r \<longlonglongrightarrow> 1" by (force dest!: Lim_transform_eventually)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2507
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2508
  from eventually_gt_at_top[of "0::nat"]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2509
    show "eventually (\<lambda>n. ?r n = Gamma_series_euler' z n / Gamma_series z n) sequentially"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2510
  proof eventually_elim
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2511
    fix n :: nat assume n: "n > 0"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2512
    from n z' have "Gamma_series_euler' z n =
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2513
      exp (z * of_real (ln (of_nat n + 1))) / (z * (\<Prod>k=1..n. (1 + z / of_nat k)))"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2514
      by (subst Gamma_euler'_aux1)
64272
f76b6dda2e56 setprod -> prod
nipkow
parents: 64267
diff changeset
  2515
         (simp_all add: Gamma_series_euler'_def prod.distrib
f76b6dda2e56 setprod -> prod
nipkow
parents: 64267
diff changeset
  2516
                        prod_inversef[symmetric] divide_inverse)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2517
    also have "(\<Prod>k=1..n. (1 + z / of_nat k)) = pochhammer (z + 1) n / fact n"
64272
f76b6dda2e56 setprod -> prod
nipkow
parents: 64267
diff changeset
  2518
      by (cases n) (simp_all add: pochhammer_prod fact_prod atLeastLessThanSuc_atLeastAtMost
f76b6dda2e56 setprod -> prod
nipkow
parents: 64267
diff changeset
  2519
        prod_dividef [symmetric] field_simps prod.atLeast_Suc_atMost_Suc_shift)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2520
    also have "z * \<dots> = pochhammer z (Suc n) / fact n" by (simp add: pochhammer_rec)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2521
    finally show "?r n = Gamma_series_euler' z n / Gamma_series z n" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2522
  qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2523
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2524
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2525
end
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2526
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2527
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2528
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2529
subsubsection \<open>Weierstrass form\<close>
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2530
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2531
definition Gamma_series_weierstrass :: "'a :: {banach,real_normed_field} \<Rightarrow> nat \<Rightarrow> 'a" where
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2532
  "Gamma_series_weierstrass z n =
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2533
     exp (-euler_mascheroni * z) / z * (\<Prod>k=1..n. exp (z / of_nat k) / (1 + z / of_nat k))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2534
68624
205d352ed727 Tagged Ball_Volume and Gamma_Function in HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 68403
diff changeset
  2535
definition%unimportant
205d352ed727 Tagged Ball_Volume and Gamma_Function in HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 68403
diff changeset
  2536
  rGamma_series_weierstrass :: "'a :: {banach,real_normed_field} \<Rightarrow> nat \<Rightarrow> 'a" where
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2537
  "rGamma_series_weierstrass z n =
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2538
     exp (euler_mascheroni * z) * z * (\<Prod>k=1..n. (1 + z / of_nat k) * exp (-z / of_nat k))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2539
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2540
lemma Gamma_series_weierstrass_nonpos_Ints:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2541
  "eventually (\<lambda>k. Gamma_series_weierstrass (- of_nat n) k = 0) sequentially"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2542
  using eventually_ge_at_top[of n] by eventually_elim (auto simp: Gamma_series_weierstrass_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2543
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2544
lemma rGamma_series_weierstrass_nonpos_Ints:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2545
  "eventually (\<lambda>k. rGamma_series_weierstrass (- of_nat n) k = 0) sequentially"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2546
  using eventually_ge_at_top[of n] by eventually_elim (auto simp: rGamma_series_weierstrass_def)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2547
68624
205d352ed727 Tagged Ball_Volume and Gamma_Function in HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 68403
diff changeset
  2548
theorem Gamma_weierstrass_complex: "Gamma_series_weierstrass z \<longlonglongrightarrow> Gamma (z :: complex)"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2549
proof (cases "z \<in> \<int>\<^sub>\<le>\<^sub>0")
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2550
  case True
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2551
  then obtain n where "z = - of_nat n" by (elim nonpos_Ints_cases')
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2552
  also from True have "Gamma_series_weierstrass \<dots> \<longlonglongrightarrow> Gamma z"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2553
    by (simp add: tendsto_cong[OF Gamma_series_weierstrass_nonpos_Ints] Gamma_nonpos_Int)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2554
  finally show ?thesis .
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2555
next
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2556
  case False
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2557
  hence z: "z \<noteq> 0" by auto
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2558
  let ?f = "(\<lambda>x. \<Prod>x = Suc 0..x. exp (z / of_nat x) / (1 + z / of_nat x))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2559
  have A: "exp (ln (1 + z / of_nat n)) = (1 + z / of_nat n)" if "n \<ge> 1" for n :: nat
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2560
    using False that by (subst exp_Ln) (auto simp: field_simps dest!: plus_of_nat_eq_0_imp)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2561
  have "(\<lambda>n. \<Sum>k=1..n. z / of_nat k - ln (1 + z / of_nat k)) \<longlonglongrightarrow> ln_Gamma z + euler_mascheroni * z + ln z"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2562
    using ln_Gamma_series'_aux[OF False]
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2563
    by (simp only: atLeastLessThanSuc_atLeastAtMost [symmetric] One_nat_def
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63992
diff changeset
  2564
                   sum_shift_bounds_Suc_ivl sums_def atLeast0LessThan)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2565
  from tendsto_exp[OF this] False z have "?f \<longlonglongrightarrow> z * exp (euler_mascheroni * z) * Gamma z"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63992
diff changeset
  2566
    by (simp add: exp_add exp_sum exp_diff mult_ac Gamma_complex_altdef A)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2567
  from tendsto_mult[OF tendsto_const[of "exp (-euler_mascheroni * z) / z"] this] z
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2568
    show "Gamma_series_weierstrass z \<longlonglongrightarrow> Gamma z"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2569
    by (simp add: exp_minus divide_simps Gamma_series_weierstrass_def [abs_def])
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2570
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2571
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2572
lemma tendsto_complex_of_real_iff: "((\<lambda>x. complex_of_real (f x)) \<longlongrightarrow> of_real c) F = (f \<longlongrightarrow> c) F"
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2573
  by (rule tendsto_of_real_iff)
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2574
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2575
lemma Gamma_weierstrass_real: "Gamma_series_weierstrass x \<longlonglongrightarrow> Gamma (x :: real)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2576
  using Gamma_weierstrass_complex[of "of_real x"] unfolding Gamma_series_weierstrass_def[abs_def]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2577
  by (subst tendsto_complex_of_real_iff [symmetric])
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2578
     (simp_all add: exp_of_real[symmetric] Gamma_complex_of_real)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2579
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2580
lemma rGamma_weierstrass_complex: "rGamma_series_weierstrass z \<longlonglongrightarrow> rGamma (z :: complex)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2581
proof (cases "z \<in> \<int>\<^sub>\<le>\<^sub>0")
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2582
  case True
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2583
  then obtain n where "z = - of_nat n" by (elim nonpos_Ints_cases')
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2584
  also from True have "rGamma_series_weierstrass \<dots> \<longlonglongrightarrow> rGamma z"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2585
    by (simp add: tendsto_cong[OF rGamma_series_weierstrass_nonpos_Ints] rGamma_nonpos_Int)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2586
  finally show ?thesis .
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2587
next
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2588
  case False
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2589
  have "rGamma_series_weierstrass z = (\<lambda>n. inverse (Gamma_series_weierstrass z n))"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2590
    by (simp add: rGamma_series_weierstrass_def[abs_def] Gamma_series_weierstrass_def
64272
f76b6dda2e56 setprod -> prod
nipkow
parents: 64267
diff changeset
  2591
                  exp_minus divide_inverse prod_inversef[symmetric] mult_ac)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2592
  also from False have "\<dots> \<longlonglongrightarrow> inverse (Gamma z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2593
    by (intro tendsto_intros Gamma_weierstrass_complex) (simp add: Gamma_eq_zero_iff)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2594
  finally show ?thesis by (simp add: Gamma_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2595
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2596
62085
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  2597
subsubsection \<open>Binomial coefficient form\<close>
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  2598
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2599
lemma Gamma_gbinomial:
62085
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  2600
  "(\<lambda>n. ((z + of_nat n) gchoose n) * exp (-z * of_real (ln (of_nat n)))) \<longlonglongrightarrow> rGamma (z+1)"
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  2601
proof (cases "z = 0")
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  2602
  case False
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  2603
  show ?thesis
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  2604
  proof (rule Lim_transform_eventually)
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  2605
    let ?powr = "\<lambda>a b. exp (b * of_real (ln (of_nat a)))"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2606
    show "eventually (\<lambda>n. rGamma_series z n / z =
62085
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  2607
            ((z + of_nat n) gchoose n) * ?powr n (-z)) sequentially"
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  2608
    proof (intro always_eventually allI)
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  2609
      fix n :: nat
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  2610
      from False have "((z + of_nat n) gchoose n) = pochhammer z (Suc n) / z / fact n"
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  2611
        by (simp add: gbinomial_pochhammer' pochhammer_rec)
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  2612
      also have "pochhammer z (Suc n) / z / fact n * ?powr n (-z) = rGamma_series z n / z"
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  2613
        by (simp add: rGamma_series_def divide_simps exp_minus)
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  2614
      finally show "rGamma_series z n / z = ((z + of_nat n) gchoose n) * ?powr n (-z)" ..
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  2615
    qed
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2616
62085
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  2617
    from False have "(\<lambda>n. rGamma_series z n / z) \<longlonglongrightarrow> rGamma z / z" by (intro tendsto_intros)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2618
    also from False have "rGamma z / z = rGamma (z + 1)" using rGamma_plus1[of z]
62085
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  2619
      by (simp add: field_simps)
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  2620
    finally show "(\<lambda>n. rGamma_series z n / z) \<longlonglongrightarrow> rGamma (z+1)" .
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  2621
  qed
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  2622
qed (simp_all add: binomial_gbinomial [symmetric])
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  2623
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2624
lemma gbinomial_minus': "(a + of_nat b) gchoose b = (- 1) ^ b * (- (a + 1) gchoose b)"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2625
  by (subst gbinomial_minus) (simp add: power_mult_distrib [symmetric])
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2626
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2627
lemma gbinomial_asymptotic:
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2628
  fixes z :: "'a :: Gamma"
63594
bd218a9320b5 HOL-Multivariate_Analysis: rename theories for more descriptive names
hoelzl
parents: 63539
diff changeset
  2629
  shows "(\<lambda>n. (z gchoose n) / ((-1)^n / exp ((z+1) * of_real (ln (real n))))) \<longlonglongrightarrow>
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2630
           inverse (Gamma (- z))"
63594
bd218a9320b5 HOL-Multivariate_Analysis: rename theories for more descriptive names
hoelzl
parents: 63539
diff changeset
  2631
  unfolding rGamma_inverse_Gamma [symmetric] using Gamma_gbinomial[of "-z-1"]
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2632
  by (subst (asm) gbinomial_minus')
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2633
     (simp add: add_ac mult_ac divide_inverse power_inverse [symmetric])
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2634
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2635
lemma fact_binomial_limit:
62085
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  2636
  "(\<lambda>n. of_nat ((k + n) choose n) / of_nat (n ^ k) :: 'a :: Gamma) \<longlonglongrightarrow> 1 / fact k"
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  2637
proof (rule Lim_transform_eventually)
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  2638
  have "(\<lambda>n. of_nat ((k + n) choose n) / of_real (exp (of_nat k * ln (real_of_nat n))))
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  2639
            \<longlonglongrightarrow> 1 / Gamma (of_nat (Suc k) :: 'a)" (is "?f \<longlonglongrightarrow> _")
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2640
    using Gamma_gbinomial[of "of_nat k :: 'a"]
62085
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  2641
    by (simp add: binomial_gbinomial add_ac Gamma_def divide_simps exp_of_real [symmetric] exp_minus)
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2642
  also have "Gamma (of_nat (Suc k)) = fact k" by (simp add: Gamma_fact)
62085
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  2643
  finally show "?f \<longlonglongrightarrow> 1 / fact k" .
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  2644
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  2645
  show "eventually (\<lambda>n. ?f n = of_nat ((k + n) choose n) / of_nat (n ^ k)) sequentially"
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  2646
    using eventually_gt_at_top[of "0::nat"]
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  2647
  proof eventually_elim
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  2648
    fix n :: nat assume n: "n > 0"
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  2649
    from n have "exp (real_of_nat k * ln (real_of_nat n)) = real_of_nat (n^k)"
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  2650
      by (simp add: exp_of_nat_mult)
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  2651
    thus "?f n = of_nat ((k + n) choose n) / of_nat (n ^ k)" by simp
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  2652
  qed
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  2653
qed
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  2654
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2655
lemma binomial_asymptotic':
62085
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  2656
  "(\<lambda>n. of_nat ((k + n) choose n) / (of_nat (n ^ k) / fact k) :: 'a :: Gamma) \<longlonglongrightarrow> 1"
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  2657
  using tendsto_mult[OF fact_binomial_limit[of k] tendsto_const[of "fact k :: 'a"]] by simp
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  2658
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2659
lemma gbinomial_Beta:
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2660
  assumes "z + 1 \<notin> \<int>\<^sub>\<le>\<^sub>0"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2661
  shows   "((z::'a::Gamma) gchoose n) = inverse ((z + 1) * Beta (z - of_nat n + 1) (of_nat n + 1))"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2662
using assms
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2663
proof (induction n arbitrary: z)
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2664
  case 0
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2665
  hence "z + 2 \<notin> \<int>\<^sub>\<le>\<^sub>0"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2666
    using plus_one_in_nonpos_Ints_imp[of "z+1"] by (auto simp: add.commute)
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2667
  with 0 show ?case
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2668
    by (auto simp: Beta_def Gamma_eq_zero_iff Gamma_plus1 [symmetric] add.commute)
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2669
next
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2670
  case (Suc n z)
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2671
  show ?case
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2672
  proof (cases "z \<in> \<int>\<^sub>\<le>\<^sub>0")
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2673
    case True
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2674
    with Suc.prems have "z = 0"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2675
      by (auto elim!: nonpos_Ints_cases simp: algebra_simps one_plus_of_int_in_nonpos_Ints_iff)
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2676
    show ?thesis
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2677
    proof (cases "n = 0")
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2678
      case True
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2679
      with \<open>z = 0\<close> show ?thesis
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2680
        by (simp add: Beta_def Gamma_eq_zero_iff Gamma_plus1 [symmetric])
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2681
    next
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2682
      case False
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2683
      with \<open>z = 0\<close> show ?thesis
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2684
        by (simp_all add: Beta_pole1 one_minus_of_nat_in_nonpos_Ints_iff gbinomial_1)
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2685
    qed
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2686
  next
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2687
    case False
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2688
    have "(z gchoose (Suc n)) = ((z - 1 + 1) gchoose (Suc n))" by simp
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2689
    also have "\<dots> = (z - 1 gchoose n) * ((z - 1) + 1) / of_nat (Suc n)"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2690
      by (subst gbinomial_factors) (simp add: field_simps)
63594
bd218a9320b5 HOL-Multivariate_Analysis: rename theories for more descriptive names
hoelzl
parents: 63539
diff changeset
  2691
    also from False have "\<dots> = inverse (of_nat (Suc n) * Beta (z - of_nat n) (of_nat (Suc n)))"
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2692
      (is "_ = inverse ?x") by (subst Suc.IH) (simp_all add: field_simps Beta_pole1)
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2693
    also have "of_nat (Suc n) \<notin> (\<int>\<^sub>\<le>\<^sub>0 :: 'a set)" by (subst of_nat_in_nonpos_Ints_iff) simp_all
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2694
    hence "?x = (z + 1) * Beta (z - of_nat (Suc n) + 1) (of_nat (Suc n) + 1)"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2695
      by (subst Beta_plus1_right [symmetric]) simp_all
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2696
    finally show ?thesis .
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2697
  qed
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2698
qed
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2699
68624
205d352ed727 Tagged Ball_Volume and Gamma_Function in HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 68403
diff changeset
  2700
theorem gbinomial_Gamma:
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2701
  assumes "z + 1 \<notin> \<int>\<^sub>\<le>\<^sub>0"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2702
  shows   "(z gchoose n) = Gamma (z + 1) / (fact n * Gamma (z - of_nat n + 1))"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2703
proof -
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2704
  have "(z gchoose n) = Gamma (z + 2) / (z + 1) / (fact n * Gamma (z - of_nat n + 1))"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2705
    by (subst gbinomial_Beta[OF assms]) (simp_all add: Beta_def Gamma_fact [symmetric] add_ac)
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2706
  also from assms have "Gamma (z + 2) / (z + 1) = Gamma (z + 1)"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2707
    using Gamma_plus1[of "z+1"] by (auto simp add: divide_simps mult_ac add_ac)
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2708
  finally show ?thesis .
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2709
qed
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2710
62085
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  2711
63296
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2712
subsubsection \<open>Integral form\<close>
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2713
66526
322120e880c5 More material on infinite sums
eberlm <eberlm@in.tum.de>
parents: 66512
diff changeset
  2714
lemma integrable_on_powr_from_0':
322120e880c5 More material on infinite sums
eberlm <eberlm@in.tum.de>
parents: 66512
diff changeset
  2715
  assumes a: "a > (-1::real)" and c: "c \<ge> 0"
322120e880c5 More material on infinite sums
eberlm <eberlm@in.tum.de>
parents: 66512
diff changeset
  2716
  shows   "(\<lambda>x. x powr a) integrable_on {0<..c}"
322120e880c5 More material on infinite sums
eberlm <eberlm@in.tum.de>
parents: 66512
diff changeset
  2717
proof -
322120e880c5 More material on infinite sums
eberlm <eberlm@in.tum.de>
parents: 66512
diff changeset
  2718
  from c have *: "{0<..c} - {0..c} = {}" "{0..c} - {0<..c} = {0}" by auto
322120e880c5 More material on infinite sums
eberlm <eberlm@in.tum.de>
parents: 66512
diff changeset
  2719
  show ?thesis
322120e880c5 More material on infinite sums
eberlm <eberlm@in.tum.de>
parents: 66512
diff changeset
  2720
  by (rule integrable_spike_set [OF integrable_on_powr_from_0[OF a c]]) (simp_all add: *)
322120e880c5 More material on infinite sums
eberlm <eberlm@in.tum.de>
parents: 66512
diff changeset
  2721
qed
322120e880c5 More material on infinite sums
eberlm <eberlm@in.tum.de>
parents: 66512
diff changeset
  2722
322120e880c5 More material on infinite sums
eberlm <eberlm@in.tum.de>
parents: 66512
diff changeset
  2723
lemma absolutely_integrable_Gamma_integral:
322120e880c5 More material on infinite sums
eberlm <eberlm@in.tum.de>
parents: 66512
diff changeset
  2724
  assumes "Re z > 0" "a > 0"
322120e880c5 More material on infinite sums
eberlm <eberlm@in.tum.de>
parents: 66512
diff changeset
  2725
  shows   "(\<lambda>t. complex_of_real t powr (z - 1) / of_real (exp (a * t))) 
322120e880c5 More material on infinite sums
eberlm <eberlm@in.tum.de>
parents: 66512
diff changeset
  2726
             absolutely_integrable_on {0<..}" (is "?f absolutely_integrable_on _")
322120e880c5 More material on infinite sums
eberlm <eberlm@in.tum.de>
parents: 66512
diff changeset
  2727
proof -
322120e880c5 More material on infinite sums
eberlm <eberlm@in.tum.de>
parents: 66512
diff changeset
  2728
  have "((\<lambda>x. (Re z - 1) * (ln x / x)) \<longlongrightarrow> (Re z - 1) * 0) at_top"
322120e880c5 More material on infinite sums
eberlm <eberlm@in.tum.de>
parents: 66512
diff changeset
  2729
    by (intro tendsto_intros ln_x_over_x_tendsto_0)
322120e880c5 More material on infinite sums
eberlm <eberlm@in.tum.de>
parents: 66512
diff changeset
  2730
  hence "((\<lambda>x. ((Re z - 1) * ln x) / x) \<longlongrightarrow> 0) at_top" by simp
322120e880c5 More material on infinite sums
eberlm <eberlm@in.tum.de>
parents: 66512
diff changeset
  2731
  from order_tendstoD(2)[OF this, of "a/2"] and \<open>a > 0\<close>
322120e880c5 More material on infinite sums
eberlm <eberlm@in.tum.de>
parents: 66512
diff changeset
  2732
    have "eventually (\<lambda>x. (Re z - 1) * ln x / x < a/2) at_top" by simp
322120e880c5 More material on infinite sums
eberlm <eberlm@in.tum.de>
parents: 66512
diff changeset
  2733
  from eventually_conj[OF this eventually_gt_at_top[of 0]]
322120e880c5 More material on infinite sums
eberlm <eberlm@in.tum.de>
parents: 66512
diff changeset
  2734
    obtain x0 where "\<forall>x\<ge>x0. (Re z - 1) * ln x / x < a/2 \<and> x > 0"
322120e880c5 More material on infinite sums
eberlm <eberlm@in.tum.de>
parents: 66512
diff changeset
  2735
      by (auto simp: eventually_at_top_linorder)
322120e880c5 More material on infinite sums
eberlm <eberlm@in.tum.de>
parents: 66512
diff changeset
  2736
  hence "x0 > 0" by simp
322120e880c5 More material on infinite sums
eberlm <eberlm@in.tum.de>
parents: 66512
diff changeset
  2737
  have "x powr (Re z - 1) / exp (a * x) < exp (-(a/2) * x)" if "x \<ge> x0" for x
322120e880c5 More material on infinite sums
eberlm <eberlm@in.tum.de>
parents: 66512
diff changeset
  2738
  proof -
322120e880c5 More material on infinite sums
eberlm <eberlm@in.tum.de>
parents: 66512
diff changeset
  2739
    from that and \<open>\<forall>x\<ge>x0. _\<close> have x: "(Re z - 1) * ln x / x < a / 2" "x > 0" by auto
322120e880c5 More material on infinite sums
eberlm <eberlm@in.tum.de>
parents: 66512
diff changeset
  2740
    have "x powr (Re z - 1) = exp ((Re z - 1) * ln x)"
322120e880c5 More material on infinite sums
eberlm <eberlm@in.tum.de>
parents: 66512
diff changeset
  2741
      using \<open>x > 0\<close> by (simp add: powr_def)
322120e880c5 More material on infinite sums
eberlm <eberlm@in.tum.de>
parents: 66512
diff changeset
  2742
    also from x have "(Re z - 1) * ln x < (a * x) / 2" by (simp add: field_simps)
322120e880c5 More material on infinite sums
eberlm <eberlm@in.tum.de>
parents: 66512
diff changeset
  2743
    finally show ?thesis by (simp add: field_simps exp_add [symmetric])
322120e880c5 More material on infinite sums
eberlm <eberlm@in.tum.de>
parents: 66512
diff changeset
  2744
  qed
322120e880c5 More material on infinite sums
eberlm <eberlm@in.tum.de>
parents: 66512
diff changeset
  2745
  note x0 = \<open>x0 > 0\<close> this
322120e880c5 More material on infinite sums
eberlm <eberlm@in.tum.de>
parents: 66512
diff changeset
  2746
322120e880c5 More material on infinite sums
eberlm <eberlm@in.tum.de>
parents: 66512
diff changeset
  2747
  have "?f absolutely_integrable_on ({0<..x0} \<union> {x0..})"
322120e880c5 More material on infinite sums
eberlm <eberlm@in.tum.de>
parents: 66512
diff changeset
  2748
  proof (rule set_integrable_Un)
322120e880c5 More material on infinite sums
eberlm <eberlm@in.tum.de>
parents: 66512
diff changeset
  2749
    show "?f absolutely_integrable_on {0<..x0}"
67976
75b94eb58c3d Analysis builds using set_borel_measurable_def, etc.
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
  2750
      unfolding set_integrable_def
66526
322120e880c5 More material on infinite sums
eberlm <eberlm@in.tum.de>
parents: 66512
diff changeset
  2751
    proof (rule Bochner_Integration.integrable_bound [OF _ _ AE_I2])
67976
75b94eb58c3d Analysis builds using set_borel_measurable_def, etc.
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
  2752
      show "integrable lebesgue (\<lambda>x. indicat_real {0<..x0} x *\<^sub>R x powr (Re z - 1))"         
75b94eb58c3d Analysis builds using set_borel_measurable_def, etc.
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
  2753
        using x0(1) assms
75b94eb58c3d Analysis builds using set_borel_measurable_def, etc.
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
  2754
        by (intro nonnegative_absolutely_integrable_1 [unfolded set_integrable_def] integrable_on_powr_from_0') auto
75b94eb58c3d Analysis builds using set_borel_measurable_def, etc.
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
  2755
      show "(\<lambda>x. indicat_real {0<..x0} x *\<^sub>R (x powr (z - 1) / exp (a * x))) \<in> borel_measurable lebesgue"
66526
322120e880c5 More material on infinite sums
eberlm <eberlm@in.tum.de>
parents: 66512
diff changeset
  2756
        by (intro measurable_completion)
322120e880c5 More material on infinite sums
eberlm <eberlm@in.tum.de>
parents: 66512
diff changeset
  2757
           (auto intro!: borel_measurable_continuous_on_indicator continuous_intros)
322120e880c5 More material on infinite sums
eberlm <eberlm@in.tum.de>
parents: 66512
diff changeset
  2758
      fix x :: real 
322120e880c5 More material on infinite sums
eberlm <eberlm@in.tum.de>
parents: 66512
diff changeset
  2759
      have "x powr (Re z - 1) / exp (a * x) \<le> x powr (Re z - 1) / 1" if "x \<ge> 0"
322120e880c5 More material on infinite sums
eberlm <eberlm@in.tum.de>
parents: 66512
diff changeset
  2760
        using that assms by (intro divide_left_mono) auto
322120e880c5 More material on infinite sums
eberlm <eberlm@in.tum.de>
parents: 66512
diff changeset
  2761
      thus "norm (indicator {0<..x0} x *\<^sub>R ?f x) \<le> 
322120e880c5 More material on infinite sums
eberlm <eberlm@in.tum.de>
parents: 66512
diff changeset
  2762
               norm (indicator {0<..x0} x *\<^sub>R x powr (Re z - 1))"
322120e880c5 More material on infinite sums
eberlm <eberlm@in.tum.de>
parents: 66512
diff changeset
  2763
        by (simp_all add: norm_divide norm_powr_real_powr indicator_def)
322120e880c5 More material on infinite sums
eberlm <eberlm@in.tum.de>
parents: 66512
diff changeset
  2764
    qed
322120e880c5 More material on infinite sums
eberlm <eberlm@in.tum.de>
parents: 66512
diff changeset
  2765
  next
322120e880c5 More material on infinite sums
eberlm <eberlm@in.tum.de>
parents: 66512
diff changeset
  2766
    show "?f absolutely_integrable_on {x0..}"
67976
75b94eb58c3d Analysis builds using set_borel_measurable_def, etc.
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
  2767
      unfolding set_integrable_def
66526
322120e880c5 More material on infinite sums
eberlm <eberlm@in.tum.de>
parents: 66512
diff changeset
  2768
    proof (rule Bochner_Integration.integrable_bound [OF _ _ AE_I2])
67976
75b94eb58c3d Analysis builds using set_borel_measurable_def, etc.
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
  2769
      show "integrable lebesgue (\<lambda>x. indicat_real {x0..} x *\<^sub>R exp (- (a / 2) * x))" using assms
75b94eb58c3d Analysis builds using set_borel_measurable_def, etc.
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
  2770
        by (intro nonnegative_absolutely_integrable_1 [unfolded set_integrable_def] integrable_on_exp_minus_to_infinity) auto
75b94eb58c3d Analysis builds using set_borel_measurable_def, etc.
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
  2771
      show "(\<lambda>x. indicat_real {x0..} x *\<^sub>R (x powr (z - 1) / exp (a * x))) \<in> borel_measurable lebesgue" using x0(1)
66526
322120e880c5 More material on infinite sums
eberlm <eberlm@in.tum.de>
parents: 66512
diff changeset
  2772
        by (intro measurable_completion)
322120e880c5 More material on infinite sums
eberlm <eberlm@in.tum.de>
parents: 66512
diff changeset
  2773
           (auto intro!: borel_measurable_continuous_on_indicator continuous_intros)
322120e880c5 More material on infinite sums
eberlm <eberlm@in.tum.de>
parents: 66512
diff changeset
  2774
      fix x :: real 
322120e880c5 More material on infinite sums
eberlm <eberlm@in.tum.de>
parents: 66512
diff changeset
  2775
      show "norm (indicator {x0..} x *\<^sub>R ?f x) \<le> 
322120e880c5 More material on infinite sums
eberlm <eberlm@in.tum.de>
parents: 66512
diff changeset
  2776
               norm (indicator {x0..} x *\<^sub>R exp (-(a/2) * x))" using x0
322120e880c5 More material on infinite sums
eberlm <eberlm@in.tum.de>
parents: 66512
diff changeset
  2777
        by (auto simp: norm_divide norm_powr_real_powr indicator_def less_imp_le)
322120e880c5 More material on infinite sums
eberlm <eberlm@in.tum.de>
parents: 66512
diff changeset
  2778
    qed
322120e880c5 More material on infinite sums
eberlm <eberlm@in.tum.de>
parents: 66512
diff changeset
  2779
  qed auto
322120e880c5 More material on infinite sums
eberlm <eberlm@in.tum.de>
parents: 66512
diff changeset
  2780
  also have "{0<..x0} \<union> {x0..} = {0<..}" using x0(1) by auto
322120e880c5 More material on infinite sums
eberlm <eberlm@in.tum.de>
parents: 66512
diff changeset
  2781
  finally show ?thesis .
322120e880c5 More material on infinite sums
eberlm <eberlm@in.tum.de>
parents: 66512
diff changeset
  2782
qed
322120e880c5 More material on infinite sums
eberlm <eberlm@in.tum.de>
parents: 66512
diff changeset
  2783
63296
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2784
lemma integrable_Gamma_integral_bound:
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2785
  fixes a c :: real
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2786
  assumes a: "a > -1" and c: "c \<ge> 0"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2787
  defines "f \<equiv> \<lambda>x. if x \<in> {0..c} then x powr a else exp (-x/2)"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2788
  shows   "f integrable_on {0..}"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2789
proof -
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2790
  have "f integrable_on {0..c}"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2791
    by (rule integrable_spike_finite[of "{}", OF _ _ integrable_on_powr_from_0[of a c]])
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2792
       (insert a c, simp_all add: f_def)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2793
  moreover have A: "(\<lambda>x. exp (-x/2)) integrable_on {c..}"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2794
    using integrable_on_exp_minus_to_infinity[of "1/2"] by simp
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2795
  have "f integrable_on {c..}"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2796
    by (rule integrable_spike_finite[of "{c}", OF _ _ A]) (simp_all add: f_def)
63594
bd218a9320b5 HOL-Multivariate_Analysis: rename theories for more descriptive names
hoelzl
parents: 63539
diff changeset
  2797
  ultimately show "f integrable_on {0..}"
66512
89b6455b63b6 starting to unscramble bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66453
diff changeset
  2798
    by (rule integrable_Un') (insert c, auto simp: max_def)
63594
bd218a9320b5 HOL-Multivariate_Analysis: rename theories for more descriptive names
hoelzl
parents: 63539
diff changeset
  2799
qed
63296
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2800
68624
205d352ed727 Tagged Ball_Volume and Gamma_Function in HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 68403
diff changeset
  2801
theorem Gamma_integral_complex:
63296
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2802
  assumes z: "Re z > 0"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2803
  shows   "((\<lambda>t. of_real t powr (z - 1) / of_real (exp t)) has_integral Gamma z) {0..}"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2804
proof -
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2805
  have A: "((\<lambda>t. (of_real t) powr (z - 1) * of_real ((1 - t) ^ n))
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2806
          has_integral (fact n / pochhammer z (n+1))) {0..1}"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2807
    if "Re z > 0" for n z using that
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2808
  proof (induction n arbitrary: z)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2809
    case 0
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2810
    have "((\<lambda>t. complex_of_real t powr (z - 1)) has_integral
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2811
            (of_real 1 powr z / z - of_real 0 powr z / z)) {0..1}" using 0
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2812
      by (intro fundamental_theorem_of_calculus_interior)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2813
         (auto intro!: continuous_intros derivative_eq_intros has_vector_derivative_real_complex)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2814
    thus ?case by simp
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2815
  next
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2816
    case (Suc n)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2817
    let ?f = "\<lambda>t. complex_of_real t powr z / z"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2818
    let ?f' = "\<lambda>t. complex_of_real t powr (z - 1)"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2819
    let ?g = "\<lambda>t. (1 - complex_of_real t) ^ Suc n"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2820
    let ?g' = "\<lambda>t. - ((1 - complex_of_real t) ^ n) * of_nat (Suc n)"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2821
    have "((\<lambda>t. ?f' t * ?g t) has_integral
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2822
            (of_nat (Suc n)) * fact n / pochhammer z (n+2)) {0..1}"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2823
      (is "(_ has_integral ?I) _")
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2824
    proof (rule integration_by_parts_interior[where f' = ?f' and g = ?g])
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2825
      from Suc.prems show "continuous_on {0..1} ?f" "continuous_on {0..1} ?g"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2826
        by (auto intro!: continuous_intros)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2827
    next
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2828
      fix t :: real assume t: "t \<in> {0<..<1}"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2829
      show "(?f has_vector_derivative ?f' t) (at t)" using t Suc.prems
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2830
        by (auto intro!: derivative_eq_intros has_vector_derivative_real_complex)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2831
      show "(?g has_vector_derivative ?g' t) (at t)"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2832
        by (rule has_vector_derivative_real_complex derivative_eq_intros refl)+ simp_all
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2833
    next
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2834
      from Suc.prems have [simp]: "z \<noteq> 0" by auto
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2835
      from Suc.prems have A: "Re (z + of_nat n) > 0" for n by simp
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2836
      have [simp]: "z + of_nat n \<noteq> 0" "z + 1 + of_nat n \<noteq> 0" for n
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2837
        using A[of n] A[of "Suc n"] by (auto simp add: add.assoc simp del: plus_complex.sel)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2838
      have "((\<lambda>x. of_real x powr z * of_real ((1 - x) ^ n) * (- of_nat (Suc n) / z)) has_integral
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2839
              fact n / pochhammer (z+1) (n+1) * (- of_nat (Suc n) / z)) {0..1}"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2840
        (is "(?A has_integral ?B) _")
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2841
        using Suc.IH[of "z+1"] Suc.prems by (intro has_integral_mult_left) (simp_all add: add_ac pochhammer_rec)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2842
      also have "?A = (\<lambda>t. ?f t * ?g' t)" by (intro ext) (simp_all add: field_simps)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2843
      also have "?B = - (of_nat (Suc n) * fact n / pochhammer z (n+2))"
63417
c184ec919c70 more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
haftmann
parents: 63367
diff changeset
  2844
        by (simp add: divide_simps pochhammer_rec
64272
f76b6dda2e56 setprod -> prod
nipkow
parents: 64267
diff changeset
  2845
              prod_shift_bounds_cl_Suc_ivl del: of_nat_Suc)
63296
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2846
      finally show "((\<lambda>t. ?f t * ?g' t) has_integral (?f 1 * ?g 1 - ?f 0 * ?g 0 - ?I)) {0..1}"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2847
        by simp
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2848
    qed (simp_all add: bounded_bilinear_mult)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2849
    thus ?case by simp
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2850
  qed
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2851
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2852
  have B: "((\<lambda>t. if t \<in> {0..of_nat n} then
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2853
             of_real t powr (z - 1) * (1 - of_real t / of_nat n) ^ n else 0)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2854
           has_integral (of_nat n powr z * fact n / pochhammer z (n+1))) {0..}" for n
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2855
  proof (cases "n > 0")
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2856
    case [simp]: True
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2857
    hence [simp]: "n \<noteq> 0" by auto
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2858
    with has_integral_affinity01[OF A[OF z, of n], of "inverse (of_nat n)" 0]
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2859
      have "((\<lambda>x. (of_nat n - of_real x) ^ n * (of_real x / of_nat n) powr (z - 1) / of_nat n ^ n)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2860
              has_integral fact n * of_nat n / pochhammer z (n+1)) ((\<lambda>x. real n * x)`{0..1})"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2861
      (is "(?f has_integral ?I) ?ivl") by (simp add: field_simps scaleR_conv_of_real)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2862
    also from True have "((\<lambda>x. real n*x)`{0..1}) = {0..real n}"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2863
      by (subst image_mult_atLeastAtMost) simp_all
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2864
    also have "?f = (\<lambda>x. (of_real x / of_nat n) powr (z - 1) * (1 - of_real x / of_nat n) ^ n)"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2865
      using True by (intro ext) (simp add: field_simps)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2866
    finally have "((\<lambda>x. (of_real x / of_nat n) powr (z - 1) * (1 - of_real x / of_nat n) ^ n)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2867
                    has_integral ?I) {0..real n}" (is ?P) .
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2868
    also have "?P \<longleftrightarrow> ((\<lambda>x. exp ((z - 1) * of_real (ln (x / of_nat n))) * (1 - of_real x / of_nat n) ^ n)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2869
                        has_integral ?I) {0..real n}"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2870
      by (intro has_integral_spike_finite_eq[of "{0}"]) (auto simp: powr_def Ln_of_real [symmetric])
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2871
    also have "\<dots> \<longleftrightarrow> ((\<lambda>x. exp ((z - 1) * of_real (ln x - ln (of_nat n))) * (1 - of_real x / of_nat n) ^ n)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2872
                        has_integral ?I) {0..real n}"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2873
      by (intro has_integral_spike_finite_eq[of "{0}"]) (simp_all add: ln_div)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2874
    finally have \<dots> .
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2875
    note B = has_integral_mult_right[OF this, of "exp ((z - 1) * ln (of_nat n))"]
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2876
    have "((\<lambda>x. exp ((z - 1) * of_real (ln x)) * (1 - of_real x / of_nat n) ^ n)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2877
            has_integral (?I * exp ((z - 1) * ln (of_nat n)))) {0..real n}" (is ?P)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2878
      by (insert B, subst (asm) mult.assoc [symmetric], subst (asm) exp_add [symmetric])
66936
cf8d8fc23891 tuned some proofs and added some lemmas
haftmann
parents: 66526
diff changeset
  2879
         (simp add: algebra_simps)
63296
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2880
    also have "?P \<longleftrightarrow> ((\<lambda>x. of_real x powr (z - 1) * (1 - of_real x / of_nat n) ^ n)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2881
            has_integral (?I * exp ((z - 1) * ln (of_nat n)))) {0..real n}"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2882
      by (intro has_integral_spike_finite_eq[of "{0}"]) (simp_all add: powr_def Ln_of_real)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2883
    also have "fact n * of_nat n / pochhammer z (n+1) * exp ((z - 1) * Ln (of_nat n)) =
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2884
                 (of_nat n powr z * fact n / pochhammer z (n+1))"
65587
16a8991ab398 New material (and some tidying) purely in the Analysis directory
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
  2885
      by (auto simp add: powr_def algebra_simps exp_diff exp_of_real)
63296
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2886
    finally show ?thesis by (subst has_integral_restrict) simp_all
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2887
  next
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2888
    case False
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2889
    thus ?thesis by (subst has_integral_restrict) (simp_all add: has_integral_refl)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2890
  qed
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2891
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2892
  have "eventually (\<lambda>n. Gamma_series z n =
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2893
          of_nat n powr z * fact n / pochhammer z (n+1)) sequentially"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2894
    using eventually_gt_at_top[of "0::nat"]
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2895
    by eventually_elim (simp add: powr_def algebra_simps Ln_of_nat Gamma_series_def)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2896
  from this and Gamma_series_LIMSEQ[of z]
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2897
    have C: "(\<lambda>k. of_nat k powr z * fact k / pochhammer z (k+1)) \<longlonglongrightarrow> Gamma z"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2898
    by (rule Lim_transform_eventually)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2899
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2900
  {
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2901
    fix x :: real assume x: "x \<ge> 0"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2902
    have lim_exp: "(\<lambda>k. (1 - x / real k) ^ k) \<longlonglongrightarrow> exp (-x)"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2903
      using tendsto_exp_limit_sequentially[of "-x"] by simp
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2904
    have "(\<lambda>k. of_real x powr (z - 1) * of_real ((1 - x / of_nat k) ^ k))
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2905
            \<longlonglongrightarrow> of_real x powr (z - 1) * of_real (exp (-x))" (is ?P)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2906
      by (intro tendsto_intros lim_exp)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2907
    also from eventually_gt_at_top[of "nat \<lceil>x\<rceil>"]
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2908
      have "eventually (\<lambda>k. of_nat k > x) sequentially" by eventually_elim linarith
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2909
    hence "?P \<longleftrightarrow> (\<lambda>k. if x \<le> of_nat k then
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2910
                 of_real x powr (z - 1) * of_real ((1 - x / of_nat k) ^ k) else 0)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2911
                   \<longlonglongrightarrow> of_real x powr (z - 1) * of_real (exp (-x))"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2912
      by (intro tendsto_cong) (auto elim!: eventually_mono)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2913
    finally have \<dots> .
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2914
  }
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2915
  hence D: "\<forall>x\<in>{0..}. (\<lambda>k. if x \<in> {0..real k} then
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2916
              of_real x powr (z - 1) * (1 - of_real x / of_nat k) ^ k else 0)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2917
             \<longlonglongrightarrow> of_real x powr (z - 1) / of_real (exp x)"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2918
    by (simp add: exp_minus field_simps cong: if_cong)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2919
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2920
  have "((\<lambda>x. (Re z - 1) * (ln x / x)) \<longlongrightarrow> (Re z - 1) * 0) at_top"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2921
    by (intro tendsto_intros ln_x_over_x_tendsto_0)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2922
  hence "((\<lambda>x. ((Re z - 1) * ln x) / x) \<longlongrightarrow> 0) at_top" by simp
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2923
  from order_tendstoD(2)[OF this, of "1/2"]
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2924
    have "eventually (\<lambda>x. (Re z - 1) * ln x / x < 1/2) at_top" by simp
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2925
  from eventually_conj[OF this eventually_gt_at_top[of 0]]
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2926
    obtain x0 where "\<forall>x\<ge>x0. (Re z - 1) * ln x / x < 1/2 \<and> x > 0"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2927
    by (auto simp: eventually_at_top_linorder)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2928
  hence x0: "x0 > 0" "\<And>x. x \<ge> x0 \<Longrightarrow> (Re z - 1) * ln x < x / 2" by auto
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2929
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2930
  define h where "h = (\<lambda>x. if x \<in> {0..x0} then x powr (Re z - 1) else exp (-x/2))"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2931
  have le_h: "x powr (Re z - 1) * exp (-x) \<le> h x" if x: "x \<ge> 0" for x
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2932
  proof (cases "x > x0")
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2933
    case True
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2934
    from True x0(1) have "x powr (Re z - 1) * exp (-x) = exp ((Re z - 1) * ln x - x)"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2935
      by (simp add: powr_def exp_diff exp_minus field_simps exp_add)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2936
    also from x0(2)[of x] True have "\<dots> < exp (-x/2)"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2937
      by (simp add: field_simps)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2938
    finally show ?thesis using True by (auto simp add: h_def)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2939
  next
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2940
    case False
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2941
    from x have "x powr (Re z - 1) * exp (- x) \<le> x powr (Re z - 1) * 1"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2942
      by (intro mult_left_mono) simp_all
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2943
    with False show ?thesis by (auto simp add: h_def)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2944
  qed
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2945
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2946
  have E: "\<forall>x\<in>{0..}. cmod (if x \<in> {0..real k} then of_real x powr (z - 1) *
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2947
                   (1 - complex_of_real x / of_nat k) ^ k else 0) \<le> h x"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2948
    (is "\<forall>x\<in>_. ?f x \<le> _") for k
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2949
  proof safe
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2950
    fix x :: real assume x: "x \<ge> 0"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2951
    {
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2952
      fix x :: real and n :: nat assume x: "x \<le> of_nat n"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2953
      have "(1 - complex_of_real x / of_nat n) = complex_of_real ((1 - x / of_nat n))" by simp
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2954
      also have "norm \<dots> = \<bar>(1 - x / real n)\<bar>" by (subst norm_of_real) (rule refl)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2955
      also from x have "\<dots> = (1 - x / real n)" by (intro abs_of_nonneg) (simp_all add: divide_simps)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2956
      finally have "cmod (1 - complex_of_real x / of_nat n) = 1 - x / real n" .
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2957
    } note D = this
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2958
    from D[of x k] x
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2959
      have "?f x \<le> (if of_nat k \<ge> x \<and> k > 0 then x powr (Re z - 1) * (1 - x / real k) ^ k else 0)"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2960
      by (auto simp: norm_mult norm_powr_real_powr norm_power intro!: mult_nonneg_nonneg)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2961
    also have "\<dots> \<le> x powr (Re z - 1) * exp  (-x)"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2962
      by (auto intro!: mult_left_mono exp_ge_one_minus_x_over_n_power_n)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2963
    also from x have "\<dots> \<le> h x" by (rule le_h)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2964
    finally show "?f x \<le> h x" .
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2965
  qed
63594
bd218a9320b5 HOL-Multivariate_Analysis: rename theories for more descriptive names
hoelzl
parents: 63539
diff changeset
  2966
63296
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2967
  have F: "h integrable_on {0..}" unfolding h_def
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2968
    by (rule integrable_Gamma_integral_bound) (insert assms x0(1), simp_all)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2969
  show ?thesis
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2970
    by (rule has_integral_dominated_convergence[OF B F E D C])
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2971
qed
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2972
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2973
lemma Gamma_integral_real:
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2974
  assumes x: "x > (0 :: real)"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2975
  shows   "((\<lambda>t. t powr (x - 1) / exp t) has_integral Gamma x) {0..}"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2976
proof -
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2977
  have A: "((\<lambda>t. complex_of_real t powr (complex_of_real x - 1) /
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2978
          complex_of_real (exp t)) has_integral complex_of_real (Gamma x)) {0..}"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2979
    using Gamma_integral_complex[of x] assms by (simp_all add: Gamma_complex_of_real powr_of_real)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2980
  have "((\<lambda>t. complex_of_real (t powr (x - 1) / exp t)) has_integral of_real (Gamma x)) {0..}"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2981
    by (rule has_integral_eq[OF _ A]) (simp_all add: powr_of_real [symmetric])
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2982
  from has_integral_linear[OF this bounded_linear_Re] show ?thesis by (simp add: o_def)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2983
qed
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2984
66526
322120e880c5 More material on infinite sums
eberlm <eberlm@in.tum.de>
parents: 66512
diff changeset
  2985
lemma absolutely_integrable_Gamma_integral':
322120e880c5 More material on infinite sums
eberlm <eberlm@in.tum.de>
parents: 66512
diff changeset
  2986
  assumes "Re z > 0"
322120e880c5 More material on infinite sums
eberlm <eberlm@in.tum.de>
parents: 66512
diff changeset
  2987
  shows   "(\<lambda>t. complex_of_real t powr (z - 1) / of_real (exp t)) absolutely_integrable_on {0<..}"
322120e880c5 More material on infinite sums
eberlm <eberlm@in.tum.de>
parents: 66512
diff changeset
  2988
  using absolutely_integrable_Gamma_integral [OF assms zero_less_one] by simp
322120e880c5 More material on infinite sums
eberlm <eberlm@in.tum.de>
parents: 66512
diff changeset
  2989
322120e880c5 More material on infinite sums
eberlm <eberlm@in.tum.de>
parents: 66512
diff changeset
  2990
lemma Gamma_integral_complex':
322120e880c5 More material on infinite sums
eberlm <eberlm@in.tum.de>
parents: 66512
diff changeset
  2991
  assumes z: "Re z > 0"
322120e880c5 More material on infinite sums
eberlm <eberlm@in.tum.de>
parents: 66512
diff changeset
  2992
  shows   "((\<lambda>t. of_real t powr (z - 1) / of_real (exp t)) has_integral Gamma z) {0<..}"
322120e880c5 More material on infinite sums
eberlm <eberlm@in.tum.de>
parents: 66512
diff changeset
  2993
proof -
322120e880c5 More material on infinite sums
eberlm <eberlm@in.tum.de>
parents: 66512
diff changeset
  2994
  have "((\<lambda>t. of_real t powr (z - 1) / of_real (exp t)) has_integral Gamma z) {0..}"
322120e880c5 More material on infinite sums
eberlm <eberlm@in.tum.de>
parents: 66512
diff changeset
  2995
    by (rule Gamma_integral_complex) fact+
322120e880c5 More material on infinite sums
eberlm <eberlm@in.tum.de>
parents: 66512
diff changeset
  2996
  hence "((\<lambda>t. if t \<in> {0<..} then of_real t powr (z - 1) / of_real (exp t) else 0) 
322120e880c5 More material on infinite sums
eberlm <eberlm@in.tum.de>
parents: 66512
diff changeset
  2997
           has_integral Gamma z) {0..}"
322120e880c5 More material on infinite sums
eberlm <eberlm@in.tum.de>
parents: 66512
diff changeset
  2998
    by (rule has_integral_spike [of "{0}", rotated 2]) auto
322120e880c5 More material on infinite sums
eberlm <eberlm@in.tum.de>
parents: 66512
diff changeset
  2999
  also have "?this = ?thesis"
322120e880c5 More material on infinite sums
eberlm <eberlm@in.tum.de>
parents: 66512
diff changeset
  3000
    by (subst has_integral_restrict) auto
322120e880c5 More material on infinite sums
eberlm <eberlm@in.tum.de>
parents: 66512
diff changeset
  3001
  finally show ?thesis .
322120e880c5 More material on infinite sums
eberlm <eberlm@in.tum.de>
parents: 66512
diff changeset
  3002
qed
322120e880c5 More material on infinite sums
eberlm <eberlm@in.tum.de>
parents: 66512
diff changeset
  3003
67278
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3004
lemma Gamma_conv_nn_integral_real:
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3005
  assumes "s > (0::real)"
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3006
  shows   "Gamma s = nn_integral lborel (\<lambda>t. ennreal (indicator {0..} t * t powr (s - 1) / exp t))"
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3007
  using nn_integral_has_integral_lebesgue[OF _ Gamma_integral_real[OF assms]] by simp
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3008
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3009
lemma integrable_Beta:
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3010
  assumes "a > 0" "b > (0::real)"
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3011
  shows   "set_integrable lborel {0..1} (\<lambda>t. t powr (a - 1) * (1 - t) powr (b - 1))"
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3012
proof -
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3013
  define C where "C = max 1 ((1/2) powr (b - 1))"
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3014
  define D where "D = max 1 ((1/2) powr (a - 1))"
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3015
  have C: "(1 - x) powr (b - 1) \<le> C" if "x \<in> {0..1/2}" for x
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3016
  proof (cases "b < 1")
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3017
    case False
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3018
    with that have "(1 - x) powr (b - 1) \<le> (1 powr (b - 1))" by (intro powr_mono2) auto
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3019
    thus ?thesis by (auto simp: C_def)
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3020
  qed (insert that, auto simp: max.coboundedI1 max.coboundedI2 powr_mono2' powr_mono2 C_def)
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3021
  have D: "x powr (a - 1) \<le> D" if "x \<in> {1/2..1}" for x
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3022
  proof (cases "a < 1")
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3023
    case False
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3024
    with that have "x powr (a - 1) \<le> (1 powr (a - 1))" by (intro powr_mono2) auto
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3025
    thus ?thesis by (auto simp: D_def)
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3026
  next
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3027
    case True
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3028
  qed (insert that, auto simp: max.coboundedI1 max.coboundedI2 powr_mono2' powr_mono2 D_def)
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3029
  have [simp]: "C \<ge> 0" "D \<ge> 0" by (simp_all add: C_def D_def)
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3030
67976
75b94eb58c3d Analysis builds using set_borel_measurable_def, etc.
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
  3031
  have I1: "set_integrable lborel {0..1/2} (\<lambda>t. t powr (a - 1) * (1 - t) powr (b - 1))"
75b94eb58c3d Analysis builds using set_borel_measurable_def, etc.
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
  3032
    unfolding set_integrable_def
67278
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3033
  proof (rule Bochner_Integration.integrable_bound[OF _ _ AE_I2])
67976
75b94eb58c3d Analysis builds using set_borel_measurable_def, etc.
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
  3034
    have "(\<lambda>t. t powr (a - 1)) integrable_on {0..1/2}"
67278
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3035
      by (rule integrable_on_powr_from_0) (use assms in auto)
67976
75b94eb58c3d Analysis builds using set_borel_measurable_def, etc.
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
  3036
    hence "(\<lambda>t. t powr (a - 1)) absolutely_integrable_on {0..1/2}"
67278
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3037
      by (subst absolutely_integrable_on_iff_nonneg) auto
67976
75b94eb58c3d Analysis builds using set_borel_measurable_def, etc.
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
  3038
    from integrable_mult_right[OF this [unfolded set_integrable_def], of C]
75b94eb58c3d Analysis builds using set_borel_measurable_def, etc.
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
  3039
    show "integrable lborel (\<lambda>x. indicat_real {0..1/2} x *\<^sub>R (C * x powr (a - 1)))"
67278
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3040
      by (subst (asm) integrable_completion) (auto simp: mult_ac)
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3041
  next
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3042
    fix x :: real
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3043
    have "x powr (a - 1) * (1 - x) powr (b - 1) \<le> x powr (a - 1) * C" if "x \<in> {0..1/2}"
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3044
      using that by (intro mult_left_mono powr_mono2 C) auto
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3045
    thus "norm (indicator {0..1/2} x *\<^sub>R (x powr (a - 1) * (1 - x) powr (b - 1))) \<le>
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3046
            norm (indicator {0..1/2} x *\<^sub>R (C * x powr (a - 1)))"
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3047
      by (auto simp: indicator_def abs_mult mult_ac)
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3048
  qed (auto intro!: AE_I2 simp: indicator_def)
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3049
67976
75b94eb58c3d Analysis builds using set_borel_measurable_def, etc.
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
  3050
  have I2: "set_integrable lborel {1/2..1} (\<lambda>t. t powr (a - 1) * (1 - t) powr (b - 1))"
75b94eb58c3d Analysis builds using set_borel_measurable_def, etc.
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
  3051
    unfolding set_integrable_def
67278
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3052
  proof (rule Bochner_Integration.integrable_bound[OF _ _ AE_I2])
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3053
    have "(\<lambda>t. t powr (b - 1)) integrable_on {0..1/2}"
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3054
      by (rule integrable_on_powr_from_0) (use assms in auto)
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3055
    hence "(\<lambda>t. t powr (b - 1)) integrable_on (cbox 0 (1/2))" by simp
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3056
    from integrable_affinity[OF this, of "-1" 1]
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3057
      have "(\<lambda>t. (1 - t) powr (b - 1)) integrable_on {1/2..1}" by simp
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3058
    hence "(\<lambda>t. (1 - t) powr (b - 1)) absolutely_integrable_on {1/2..1}"
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3059
      by (subst absolutely_integrable_on_iff_nonneg) auto
67976
75b94eb58c3d Analysis builds using set_borel_measurable_def, etc.
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
  3060
    from integrable_mult_right[OF this [unfolded set_integrable_def], of D]
75b94eb58c3d Analysis builds using set_borel_measurable_def, etc.
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
  3061
    show "integrable lborel (\<lambda>x. indicat_real {1/2..1} x *\<^sub>R (D * (1 - x) powr (b - 1)))"
67278
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3062
      by (subst (asm) integrable_completion) (auto simp: mult_ac)
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3063
  next
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3064
    fix x :: real
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3065
    have "x powr (a - 1) * (1 - x) powr (b - 1) \<le> D * (1 - x) powr (b - 1)" if "x \<in> {1/2..1}"
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3066
      using that by (intro mult_right_mono powr_mono2 D) auto
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3067
    thus "norm (indicator {1/2..1} x *\<^sub>R (x powr (a - 1) * (1 - x) powr (b - 1))) \<le>
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3068
            norm (indicator {1/2..1} x *\<^sub>R (D * (1 - x) powr (b - 1)))"
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3069
      by (auto simp: indicator_def abs_mult mult_ac)
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3070
  qed (auto intro!: AE_I2 simp: indicator_def)
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3071
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3072
  have "set_integrable lborel ({0..1/2} \<union> {1/2..1}) (\<lambda>t. t powr (a - 1) * (1 - t) powr (b - 1))"
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3073
    by (intro set_integrable_Un I1 I2) auto
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3074
  also have "{0..1/2} \<union> {1/2..1} = {0..(1::real)}" by auto
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3075
  finally show ?thesis .
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3076
qed
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3077
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3078
lemma integrable_Beta':
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3079
  assumes "a > 0" "b > (0::real)"
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3080
  shows   "(\<lambda>t. t powr (a - 1) * (1 - t) powr (b - 1)) integrable_on {0..1}"
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3081
  using integrable_Beta[OF assms] by (rule set_borel_integral_eq_integral)
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3082
68624
205d352ed727 Tagged Ball_Volume and Gamma_Function in HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 68403
diff changeset
  3083
theorem has_integral_Beta_real:
67278
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3084
  assumes a: "a > 0" and b: "b > (0 :: real)"
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3085
  shows "((\<lambda>t. t powr (a - 1) * (1 - t) powr (b - 1)) has_integral Beta a b) {0..1}"
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3086
proof -
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3087
  define B where "B = integral {0..1} (\<lambda>x. x powr (a - 1) * (1 - x) powr (b - 1))"
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3088
  have [simp]: "B \<ge> 0" unfolding B_def using a b
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3089
    by (intro integral_nonneg integrable_Beta') auto
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3090
  from a b have "ennreal (Gamma a * Gamma b) =
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3091
    (\<integral>\<^sup>+ t. ennreal (indicator {0..} t * t powr (a - 1) / exp t) \<partial>lborel) *
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3092
    (\<integral>\<^sup>+ t. ennreal (indicator {0..} t * t powr (b - 1) / exp t) \<partial>lborel)"
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3093
    by (subst ennreal_mult') (simp_all add: Gamma_conv_nn_integral_real)
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3094
  also have "\<dots> = (\<integral>\<^sup>+t. \<integral>\<^sup>+u. ennreal (indicator {0..} t * t powr (a - 1) / exp t) *
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3095
                            ennreal (indicator {0..} u * u powr (b - 1) / exp u) \<partial>lborel \<partial>lborel)"
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3096
    by (simp add: nn_integral_cmult nn_integral_multc)
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3097
  also have "\<dots> = (\<integral>\<^sup>+t. \<integral>\<^sup>+u. ennreal (indicator ({0..}\<times>{0..}) (t,u) * t powr (a - 1) * u powr (b - 1)
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3098
                            / exp (t + u)) \<partial>lborel \<partial>lborel)"
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3099
    by (intro nn_integral_cong)
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3100
       (auto simp: indicator_def divide_ennreal ennreal_mult' [symmetric] exp_add)
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3101
  also have "\<dots> = (\<integral>\<^sup>+t. \<integral>\<^sup>+u. ennreal (indicator ({0..}\<times>{t..}) (t,u) * t powr (a - 1) * 
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3102
                              (u - t) powr (b - 1) / exp u) \<partial>lborel \<partial>lborel)"
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3103
  proof (rule nn_integral_cong, goal_cases)
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3104
    case (1 t)
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3105
    have "(\<integral>\<^sup>+u. ennreal (indicator ({0..}\<times>{0..}) (t,u) * t powr (a - 1) * 
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 67278
diff changeset
  3106
                              u powr (b - 1) / exp (t + u)) \<partial>distr lborel borel ((+) (-t))) =
67278
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3107
               (\<integral>\<^sup>+u. ennreal (indicator ({0..}\<times>{t..}) (t,u) * t powr (a - 1) * 
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3108
                              (u - t) powr (b - 1) / exp u) \<partial>lborel)"
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3109
      by (subst nn_integral_distr) (auto intro!: nn_integral_cong simp: indicator_def)
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3110
    thus ?case by (subst (asm) lborel_distr_plus)
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3111
  qed
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3112
  also have "\<dots> = (\<integral>\<^sup>+u. \<integral>\<^sup>+t. ennreal (indicator ({0..}\<times>{t..}) (t,u) * t powr (a - 1) * 
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3113
                              (u - t) powr (b - 1) / exp u) \<partial>lborel \<partial>lborel)"
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3114
    by (subst lborel_pair.Fubini')
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3115
       (auto simp: case_prod_unfold indicator_def cong: measurable_cong_sets)
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3116
  also have "\<dots> = (\<integral>\<^sup>+u. \<integral>\<^sup>+t. ennreal (indicator {0..u} t * t powr (a - 1) * (u - t) powr (b - 1)) *
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3117
                              ennreal (indicator {0..} u / exp u) \<partial>lborel \<partial>lborel)"
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3118
    by (intro nn_integral_cong) (auto simp: indicator_def ennreal_mult' [symmetric])
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3119
  also have "\<dots> = (\<integral>\<^sup>+u. (\<integral>\<^sup>+t. ennreal (indicator {0..u} t * t powr (a - 1) * (u - t) powr (b - 1)) 
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3120
                          \<partial>lborel) * ennreal (indicator {0..} u / exp u) \<partial>lborel)"
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3121
    by (subst nn_integral_multc [symmetric]) auto 
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3122
  also have "\<dots> = (\<integral>\<^sup>+u. (\<integral>\<^sup>+t. ennreal (indicator {0..u} t * t powr (a - 1) * (u - t) powr (b - 1)) 
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3123
                          \<partial>lborel) * ennreal (indicator {0<..} u / exp u) \<partial>lborel)"
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3124
    by (intro nn_integral_cong_AE eventually_mono[OF AE_lborel_singleton[of 0]]) 
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3125
       (auto simp: indicator_def)
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3126
  also have "\<dots> = (\<integral>\<^sup>+u. ennreal B * ennreal (indicator {0..} u / exp u * u powr (a + b - 1)) \<partial>lborel)"
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3127
  proof (intro nn_integral_cong, goal_cases)
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3128
    case (1 u)
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3129
    show ?case
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3130
    proof (cases "u > 0")
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3131
      case True
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3132
      have "(\<integral>\<^sup>+t. ennreal (indicator {0..u} t * t powr (a - 1) * (u - t) powr (b - 1)) \<partial>lborel) = 
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3133
              (\<integral>\<^sup>+t. ennreal (indicator {0..1} t * (u * t) powr (a - 1) * (u - u * t) powr (b - 1)) 
69064
5840724b1d71 Prefix form of infix with * on either side no longer needs special treatment
nipkow
parents: 68721
diff changeset
  3134
                \<partial>distr lborel borel ((*) (1 / u)))" (is "_ = nn_integral _ ?f")
67278
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3135
        using True
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3136
        by (subst nn_integral_distr) (auto simp: indicator_def field_simps intro!: nn_integral_cong)
69064
5840724b1d71 Prefix form of infix with * on either side no longer needs special treatment
nipkow
parents: 68721
diff changeset
  3137
      also have "distr lborel borel ((*) (1 / u)) = density lborel (\<lambda>_. u)"
67278
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3138
        using \<open>u > 0\<close> by (subst lborel_distr_mult) auto
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3139
      also have "nn_integral \<dots> ?f = (\<integral>\<^sup>+x. ennreal (indicator {0..1} x * (u * (u * x) powr (a - 1) *
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3140
                                              (u * (1 - x)) powr (b - 1))) \<partial>lborel)" using \<open>u > 0\<close>
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3141
        by (subst nn_integral_density) (auto simp: ennreal_mult' [symmetric] algebra_simps)
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3142
      also have "\<dots> = (\<integral>\<^sup>+x. ennreal (u powr (a + b - 1)) * 
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3143
                            ennreal (indicator {0..1} x * x powr (a - 1) *
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3144
                                       (1 - x) powr (b - 1)) \<partial>lborel)" using \<open>u > 0\<close> a b
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3145
        by (intro nn_integral_cong)
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3146
           (auto simp: indicator_def powr_mult powr_add powr_diff mult_ac ennreal_mult' [symmetric])
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3147
      also have "\<dots> = ennreal (u powr (a + b - 1)) * 
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3148
                        (\<integral>\<^sup>+x. ennreal (indicator {0..1} x * x powr (a - 1) *
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3149
                                         (1 - x) powr (b - 1)) \<partial>lborel)"
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3150
        by (subst nn_integral_cmult) auto
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3151
      also have "((\<lambda>x. x powr (a - 1) * (1 - x) powr (b - 1)) has_integral 
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3152
                   integral {0..1} (\<lambda>x. x powr (a - 1) * (1 - x) powr (b - 1))) {0..1}"
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3153
        using a b by (intro integrable_integral integrable_Beta')
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3154
      from nn_integral_has_integral_lebesgue[OF _ this] a b
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3155
        have "(\<integral>\<^sup>+x. ennreal (indicator {0..1} x * x powr (a - 1) *
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3156
                         (1 - x) powr (b - 1)) \<partial>lborel) = B" by (simp add: mult_ac B_def)
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3157
      finally show ?thesis using \<open>u > 0\<close> by (simp add: ennreal_mult' [symmetric] mult_ac)
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3158
    qed auto
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3159
  qed
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3160
  also have "\<dots> = ennreal B * ennreal (Gamma (a + b))"
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3161
    using a b by (subst nn_integral_cmult) (auto simp: Gamma_conv_nn_integral_real)
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3162
  also have "\<dots> = ennreal (B * Gamma (a + b))"
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3163
    by (subst (1 2) mult.commute, intro ennreal_mult' [symmetric]) (use a b in auto)
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3164
  finally have "B = Beta a b" using a b Gamma_real_pos[of "a + b"]
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3165
    by (subst (asm) ennreal_inj) (auto simp: field_simps Beta_def Gamma_eq_zero_iff)
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3166
  moreover have "(\<lambda>t. t powr (a - 1) * (1 - t) powr (b - 1)) integrable_on {0..1}"
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3167
    by (intro integrable_Beta' a b)
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3168
  ultimately show ?thesis by (simp add: has_integral_iff B_def)
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66936
diff changeset
  3169
qed
63296
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  3170
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  3171
62085
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  3172
subsection \<open>The Weierstraß product formula for the sine\<close>
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  3173
68624
205d352ed727 Tagged Ball_Volume and Gamma_Function in HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 68403
diff changeset
  3174
theorem sin_product_formula_complex:
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3175
  fixes z :: complex
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3176
  shows "(\<lambda>n. of_real pi * z * (\<Prod>k=1..n. 1 - z^2 / of_nat k^2)) \<longlonglongrightarrow> sin (of_real pi * z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3177
proof -
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3178
  let ?f = "rGamma_series_weierstrass"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3179
  have "(\<lambda>n. (- of_real pi * inverse z) * (?f z n * ?f (- z) n))
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3180
            \<longlonglongrightarrow> (- of_real pi * inverse z) * (rGamma z * rGamma (- z))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3181
    by (intro tendsto_intros rGamma_weierstrass_complex)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3182
  also have "(\<lambda>n. (- of_real pi * inverse z) * (?f z n * ?f (-z) n)) =
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3183
                    (\<lambda>n. of_real pi * z * (\<Prod>k=1..n. 1 - z^2 / of_nat k ^ 2))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3184
  proof
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3185
    fix n :: nat
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  3186
    have "(- of_real pi * inverse z) * (?f z n * ?f (-z) n) =
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3187
              of_real pi * z * (\<Prod>k=1..n. (of_nat k - z) * (of_nat k + z) / of_nat k ^ 2)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3188
      by (simp add: rGamma_series_weierstrass_def mult_ac exp_minus
64272
f76b6dda2e56 setprod -> prod
nipkow
parents: 64267
diff changeset
  3189
                    divide_simps prod.distrib[symmetric] power2_eq_square)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3190
    also have "(\<Prod>k=1..n. (of_nat k - z) * (of_nat k + z) / of_nat k ^ 2) =
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3191
                 (\<Prod>k=1..n. 1 - z^2 / of_nat k ^ 2)"
64272
f76b6dda2e56 setprod -> prod
nipkow
parents: 64267
diff changeset
  3192
      by (intro prod.cong) (simp_all add: power2_eq_square field_simps)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  3193
    finally show "(- of_real pi * inverse z) * (?f z n * ?f (-z) n) = of_real pi * z * \<dots>"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3194
      by (simp add: divide_simps)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3195
  qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3196
  also have "(- of_real pi * inverse z) * (rGamma z * rGamma (- z)) = sin (of_real pi * z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3197
    by (subst rGamma_reflection_complex') (simp add: divide_simps)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3198
  finally show ?thesis .
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3199
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3200
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3201
lemma sin_product_formula_real:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3202
  "(\<lambda>n. pi * (x::real) * (\<Prod>k=1..n. 1 - x^2 / of_nat k^2)) \<longlonglongrightarrow> sin (pi * x)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3203
proof -
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3204
  from sin_product_formula_complex[of "of_real x"]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3205
    have "(\<lambda>n. of_real pi * of_real x * (\<Prod>k=1..n. 1 - (of_real x)^2 / (of_nat k)^2))
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3206
              \<longlonglongrightarrow> sin (of_real pi * of_real x :: complex)" (is "?f \<longlonglongrightarrow> ?y") .
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3207
  also have "?f = (\<lambda>n. of_real (pi * x * (\<Prod>k=1..n. 1 - x^2 / (of_nat k^2))))" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3208
  also have "?y = of_real (sin (pi * x))" by (simp only: sin_of_real [symmetric] of_real_mult)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3209
  finally show ?thesis by (subst (asm) tendsto_of_real_iff)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3210
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3211
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3212
lemma sin_product_formula_real':
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3213
  assumes "x \<noteq> (0::real)"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  3214
  shows   "(\<lambda>n. (\<Prod>k=1..n. 1 - x^2 / of_nat k^2)) \<longlonglongrightarrow> sin (pi * x) / (pi * x)"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3215
  using tendsto_divide[OF sin_product_formula_real[of x] tendsto_const[of "pi * x"]] assms
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3216
  by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3217
63721
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
  3218
theorem wallis: "(\<lambda>n. \<Prod>k=1..n. (4*real k^2) / (4*real k^2 - 1)) \<longlonglongrightarrow> pi / 2"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
  3219
proof -
66512
89b6455b63b6 starting to unscramble bounded_variation_absolutely_integrable_interval
paulson <lp15@cam.ac.uk>
parents: 66453
diff changeset
  3220
  from tendsto_inverse[OF tendsto_mult[OF
63721
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
  3221
         sin_product_formula_real[of "1/2"] tendsto_const[of "2/pi"]]]
67976
75b94eb58c3d Analysis builds using set_borel_measurable_def, etc.
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
  3222
    have "(\<lambda>n. (\<Prod>k=1..n. inverse (1 - (1/2)\<^sup>2 / (real k)\<^sup>2))) \<longlonglongrightarrow> pi/2"
64272
f76b6dda2e56 setprod -> prod
nipkow
parents: 64267
diff changeset
  3223
    by (simp add: prod_inversef [symmetric])
67976
75b94eb58c3d Analysis builds using set_borel_measurable_def, etc.
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
  3224
  also have "(\<lambda>n. (\<Prod>k=1..n. inverse (1 - (1/2)\<^sup>2 / (real k)\<^sup>2))) =
63721
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
  3225
               (\<lambda>n. (\<Prod>k=1..n. (4*real k^2)/(4*real k^2 - 1)))"
64272
f76b6dda2e56 setprod -> prod
nipkow
parents: 64267
diff changeset
  3226
    by (intro ext prod.cong refl) (simp add: divide_simps)
63721
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
  3227
  finally show ?thesis .
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
  3228
qed
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
  3229
62085
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  3230
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  3231
subsection \<open>The Solution to the Basel problem\<close>
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  3232
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3233
theorem inverse_squares_sums: "(\<lambda>n. 1 / (n + 1)\<^sup>2) sums (pi\<^sup>2 / 6)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3234
proof -
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62534
diff changeset
  3235
  define P where "P x n = (\<Prod>k=1..n. 1 - x^2 / of_nat k^2)" for x :: real and n
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62534
diff changeset
  3236
  define K where "K = (\<Sum>n. inverse (real_of_nat (Suc n))^2)"
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62534
diff changeset
  3237
  define f where [abs_def]: "f x = (\<Sum>n. P x n / of_nat (Suc n)^2)" for x
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62534
diff changeset
  3238
  define g where [abs_def]: "g x = (1 - sin (pi * x) / (pi * x))" for x
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  3239
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3240
  have sums: "(\<lambda>n. P x n / of_nat (Suc n)^2) sums (if x = 0 then K else g x / x^2)" for x
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3241
  proof (cases "x = 0")
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3242
    assume x: "x = 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3243
    have "summable (\<lambda>n. inverse ((real_of_nat (Suc n))\<^sup>2))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3244
      using inverse_power_summable[of 2] by (subst summable_Suc_iff) simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3245
    thus ?thesis by (simp add: x g_def P_def K_def inverse_eq_divide power_divide summable_sums)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3246
  next
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3247
    assume x: "x \<noteq> 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3248
    have "(\<lambda>n. P x n - P x (Suc n)) sums (P x 0 - sin (pi * x) / (pi * x))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3249
      unfolding P_def using x by (intro telescope_sums' sin_product_formula_real')
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3250
    also have "(\<lambda>n. P x n - P x (Suc n)) = (\<lambda>n. (x^2 / of_nat (Suc n)^2) * P x n)"
64272
f76b6dda2e56 setprod -> prod
nipkow
parents: 64267
diff changeset
  3251
      unfolding P_def by (simp add: prod_nat_ivl_Suc' algebra_simps)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3252
    also have "P x 0 = 1" by (simp add: P_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3253
    finally have "(\<lambda>n. x\<^sup>2 / (of_nat (Suc n))\<^sup>2 * P x n) sums (1 - sin (pi * x) / (pi * x))" .
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3254
    from sums_divide[OF this, of "x^2"] x show ?thesis unfolding g_def by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3255
  qed
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  3256
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3257
  have "continuous_on (ball 0 1) f"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3258
  proof (rule uniform_limit_theorem; (intro always_eventually allI)?)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3259
    show "uniform_limit (ball 0 1) (\<lambda>n x. \<Sum>k<n. P x k / of_nat (Suc k)^2) f sequentially"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3260
    proof (unfold f_def, rule weierstrass_m_test)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3261
      fix n :: nat and x :: real assume x: "x \<in> ball 0 1"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3262
      {
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3263
        fix k :: nat assume k: "k \<ge> 1"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3264
        from x have "x^2 < 1" by (auto simp: dist_0_norm abs_square_less_1)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3265
        also from k have "\<dots> \<le> of_nat k^2" by simp
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  3266
        finally have "(1 - x^2 / of_nat k^2) \<in> {0..1}" using k
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3267
          by (simp_all add: field_simps del: of_nat_Suc)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3268
      }
64272
f76b6dda2e56 setprod -> prod
nipkow
parents: 64267
diff changeset
  3269
      hence "(\<Prod>k=1..n. abs (1 - x^2 / of_nat k^2)) \<le> (\<Prod>k=1..n. 1)" by (intro prod_mono) simp
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3270
      thus "norm (P x n / (of_nat (Suc n)^2)) \<le> 1 / of_nat (Suc n)^2"
64272
f76b6dda2e56 setprod -> prod
nipkow
parents: 64267
diff changeset
  3271
        unfolding P_def by (simp add: field_simps abs_prod del: of_nat_Suc)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3272
    qed (subst summable_Suc_iff, insert inverse_power_summable[of 2], simp add: inverse_eq_divide)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3273
  qed (auto simp: P_def intro!: continuous_intros)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3274
  hence "isCont f 0" by (subst (asm) continuous_on_eq_continuous_at) simp_all
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3275
  hence "(f \<midarrow> 0 \<rightarrow> f 0)" by (simp add: isCont_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3276
  also have "f 0 = K" unfolding f_def P_def K_def by (simp add: inverse_eq_divide power_divide)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  3277
  finally have "f \<midarrow> 0 \<rightarrow> K" .
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  3278
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3279
  moreover have "f \<midarrow> 0 \<rightarrow> pi^2 / 6"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3280
  proof (rule Lim_transform_eventually)
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62534
diff changeset
  3281
    define f' where [abs_def]: "f' x = (\<Sum>n. - sin_coeff (n+3) * pi ^ (n+2) * x^n)" for x
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  3282
    have "eventually (\<lambda>x. x \<noteq> (0::real)) (at 0)"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3283
      by (auto simp add: eventually_at intro!: exI[of _ 1])
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3284
    thus "eventually (\<lambda>x. f' x = f x) (at 0)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3285
    proof eventually_elim
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3286
      fix x :: real assume x: "x \<noteq> 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3287
      have "sin_coeff 1 = (1 :: real)" "sin_coeff 2 = (0::real)" by (simp_all add: sin_coeff_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3288
      with sums_split_initial_segment[OF sums_minus[OF sin_converges], of 3 "pi*x"]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3289
      have "(\<lambda>n. - (sin_coeff (n+3) * (pi*x)^(n+3))) sums (pi * x - sin (pi*x))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3290
        by (simp add: eval_nat_numeral)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3291
      from sums_divide[OF this, of "x^3 * pi"] x
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3292
        have "(\<lambda>n. - (sin_coeff (n+3) * pi^(n+2) * x^n)) sums ((1 - sin (pi*x) / (pi*x)) / x^2)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3293
        by (simp add: divide_simps eval_nat_numeral power_mult_distrib mult_ac)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3294
      with x have "(\<lambda>n. - (sin_coeff (n+3) * pi^(n+2) * x^n)) sums (g x / x^2)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3295
        by (simp add: g_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3296
      hence "f' x = g x / x^2" by (simp add: sums_iff f'_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3297
      also have "\<dots> = f x" using sums[of x] x by (simp add: sums_iff g_def f_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3298
      finally show "f' x = f x" .
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3299
    qed
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  3300
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3301
    have "isCont f' 0" unfolding f'_def
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  3302
    proof (intro isCont_powser_converges_everywhere)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3303
      fix x :: real show "summable (\<lambda>n. -sin_coeff (n+3) * pi^(n+2) * x^n)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3304
      proof (cases "x = 0")
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3305
        assume x: "x \<noteq> 0"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  3306
        from summable_divide[OF sums_summable[OF sums_split_initial_segment[OF
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3307
               sin_converges[of "pi*x"]], of 3], of "-pi*x^3"] x
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3308
          show ?thesis by (simp add: mult_ac power_mult_distrib divide_simps eval_nat_numeral)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3309
      qed (simp only: summable_0_powser)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3310
    qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3311
    hence "f' \<midarrow> 0 \<rightarrow> f' 0" by (simp add: isCont_def)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  3312
    also have "f' 0 = pi * pi / fact 3" unfolding f'_def
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3313
      by (subst powser_zero) (simp add: sin_coeff_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3314
    finally show "f' \<midarrow> 0 \<rightarrow> pi^2 / 6" by (simp add: eval_nat_numeral)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3315
  qed
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  3316
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3317
  ultimately have "K = pi^2 / 6" by (rule LIM_unique)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3318
  moreover from inverse_power_summable[of 2]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3319
    have "summable (\<lambda>n. (inverse (real_of_nat (Suc n)))\<^sup>2)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3320
    by (subst summable_Suc_iff) (simp add: power_inverse)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  3321
  ultimately show ?thesis unfolding K_def
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3322
    by (auto simp add: sums_iff power_divide inverse_eq_divide)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3323
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3324
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3325
end