| author | wenzelm | 
| Fri, 27 Apr 2012 20:10:09 +0200 | |
| changeset 47799 | 0d5773841bc4 | 
| parent 47219 | 172c031ad743 | 
| child 53062 | 3af1a6020014 | 
| permissions | -rw-r--r-- | 
| 24333 | 1 | (* | 
| 2 | Author: Jeremy Dawson, NICTA | |
| 3 | ||
| 44939 
5930d35c976d
removed unused legacy lemma names, some comment cleanup.
 kleing parents: 
41842diff
changeset | 4 | Theorems to do with integers, expressed using Pls, Min, BIT, | 
| 24333 | 5 | theorems linking them to lists of booleans, and repeated splitting | 
| 6 | and concatenation. | |
| 7 | *) | |
| 8 | ||
| 9 | header "Bool lists and integers" | |
| 10 | ||
| 37658 | 11 | theory Bool_List_Representation | 
| 12 | imports Bit_Int | |
| 26557 | 13 | begin | 
| 24333 | 14 | |
| 37657 | 15 | subsection {* Operations on lists of booleans *}
 | 
| 16 | ||
| 17 | primrec bl_to_bin_aux :: "bool list \<Rightarrow> int \<Rightarrow> int" where | |
| 18 | Nil: "bl_to_bin_aux [] w = w" | |
| 19 | | Cons: "bl_to_bin_aux (b # bs) w = | |
| 20 | bl_to_bin_aux bs (w BIT (if b then 1 else 0))" | |
| 21 | ||
| 22 | definition bl_to_bin :: "bool list \<Rightarrow> int" where | |
| 46001 
0b562d564d5f
redefine some binary operations on integers work on abstract numerals instead of Int.Pls and Int.Min
 huffman parents: 
45997diff
changeset | 23 | bl_to_bin_def: "bl_to_bin bs = bl_to_bin_aux bs 0" | 
| 37667 | 24 | |
| 37657 | 25 | primrec bin_to_bl_aux :: "nat \<Rightarrow> int \<Rightarrow> bool list \<Rightarrow> bool list" where | 
| 26 | Z: "bin_to_bl_aux 0 w bl = bl" | |
| 27 | | Suc: "bin_to_bl_aux (Suc n) w bl = | |
| 28 | bin_to_bl_aux n (bin_rest w) ((bin_last w = 1) # bl)" | |
| 29 | ||
| 30 | definition bin_to_bl :: "nat \<Rightarrow> int \<Rightarrow> bool list" where | |
| 31 | bin_to_bl_def : "bin_to_bl n w = bin_to_bl_aux n w []" | |
| 32 | ||
| 33 | primrec bl_of_nth :: "nat \<Rightarrow> (nat \<Rightarrow> bool) \<Rightarrow> bool list" where | |
| 34 | Suc: "bl_of_nth (Suc n) f = f n # bl_of_nth n f" | |
| 35 | | Z: "bl_of_nth 0 f = []" | |
| 36 | ||
| 37 | primrec takefill :: "'a \<Rightarrow> nat \<Rightarrow> 'a list \<Rightarrow> 'a list" where | |
| 38 | Z: "takefill fill 0 xs = []" | |
| 39 | | Suc: "takefill fill (Suc n) xs = ( | |
| 40 | case xs of [] => fill # takefill fill n xs | |
| 41 | | y # ys => y # takefill fill n ys)" | |
| 42 | ||
| 43 | definition map2 :: "('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> 'a list \<Rightarrow> 'b list \<Rightarrow> 'c list" where
 | |
| 44 | "map2 f as bs = map (split f) (zip as bs)" | |
| 45 | ||
| 46 | lemma map2_Nil [simp]: "map2 f [] ys = []" | |
| 47 | unfolding map2_def by auto | |
| 48 | ||
| 49 | lemma map2_Nil2 [simp]: "map2 f xs [] = []" | |
| 50 | unfolding map2_def by auto | |
| 51 | ||
| 52 | lemma map2_Cons [simp]: | |
| 53 | "map2 f (x # xs) (y # ys) = f x y # map2 f xs ys" | |
| 54 | unfolding map2_def by auto | |
| 55 | ||
| 56 | ||
| 24465 | 57 | subsection "Arithmetic in terms of bool lists" | 
| 58 | ||
| 44939 
5930d35c976d
removed unused legacy lemma names, some comment cleanup.
 kleing parents: 
41842diff
changeset | 59 | text {* 
 | 
| 
5930d35c976d
removed unused legacy lemma names, some comment cleanup.
 kleing parents: 
41842diff
changeset | 60 | Arithmetic operations in terms of the reversed bool list, | 
| 
5930d35c976d
removed unused legacy lemma names, some comment cleanup.
 kleing parents: 
41842diff
changeset | 61 | assuming input list(s) the same length, and don't extend them. | 
| 
5930d35c976d
removed unused legacy lemma names, some comment cleanup.
 kleing parents: 
41842diff
changeset | 62 | *} | 
| 24465 | 63 | |
| 26557 | 64 | primrec rbl_succ :: "bool list => bool list" where | 
| 24465 | 65 | Nil: "rbl_succ Nil = Nil" | 
| 26557 | 66 | | Cons: "rbl_succ (x # xs) = (if x then False # rbl_succ xs else True # xs)" | 
| 24465 | 67 | |
| 26557 | 68 | primrec rbl_pred :: "bool list => bool list" where | 
| 69 | Nil: "rbl_pred Nil = Nil" | |
| 70 | | Cons: "rbl_pred (x # xs) = (if x then False # xs else True # rbl_pred xs)" | |
| 24465 | 71 | |
| 26557 | 72 | primrec rbl_add :: "bool list => bool list => bool list" where | 
| 44939 
5930d35c976d
removed unused legacy lemma names, some comment cleanup.
 kleing parents: 
41842diff
changeset | 73 | -- "result is length of first arg, second arg may be longer" | 
| 26557 | 74 | Nil: "rbl_add Nil x = Nil" | 
| 75 | | Cons: "rbl_add (y # ys) x = (let ws = rbl_add ys (tl x) in | |
| 24465 | 76 | (y ~= hd x) # (if hd x & y then rbl_succ ws else ws))" | 
| 77 | ||
| 26557 | 78 | primrec rbl_mult :: "bool list => bool list => bool list" where | 
| 44939 
5930d35c976d
removed unused legacy lemma names, some comment cleanup.
 kleing parents: 
41842diff
changeset | 79 | -- "result is length of first arg, second arg may be longer" | 
| 26557 | 80 | Nil: "rbl_mult Nil x = Nil" | 
| 81 | | Cons: "rbl_mult (y # ys) x = (let ws = False # rbl_mult ys x in | |
| 24465 | 82 | if y then rbl_add ws x else ws)" | 
| 24333 | 83 | |
| 84 | lemma butlast_power: | |
| 30971 | 85 | "(butlast ^^ n) bl = take (length bl - n) bl" | 
| 24333 | 86 | by (induct n) (auto simp: butlast_take) | 
| 87 | ||
| 46001 
0b562d564d5f
redefine some binary operations on integers work on abstract numerals instead of Int.Pls and Int.Min
 huffman parents: 
45997diff
changeset | 88 | lemma bin_to_bl_aux_zero_minus_simp [simp]: | 
| 
0b562d564d5f
redefine some binary operations on integers work on abstract numerals instead of Int.Pls and Int.Min
 huffman parents: 
45997diff
changeset | 89 | "0 < n \<Longrightarrow> bin_to_bl_aux n 0 bl = | 
| 
0b562d564d5f
redefine some binary operations on integers work on abstract numerals instead of Int.Pls and Int.Min
 huffman parents: 
45997diff
changeset | 90 | bin_to_bl_aux (n - 1) 0 (False # bl)" | 
| 
0b562d564d5f
redefine some binary operations on integers work on abstract numerals instead of Int.Pls and Int.Min
 huffman parents: 
45997diff
changeset | 91 | by (cases n) auto | 
| 
0b562d564d5f
redefine some binary operations on integers work on abstract numerals instead of Int.Pls and Int.Min
 huffman parents: 
45997diff
changeset | 92 | |
| 46617 
8c5d10d41391
make bool list functions respect int/bin distinction
 huffman parents: 
46240diff
changeset | 93 | lemma bin_to_bl_aux_minus1_minus_simp [simp]: | 
| 
8c5d10d41391
make bool list functions respect int/bin distinction
 huffman parents: 
46240diff
changeset | 94 | "0 < n ==> bin_to_bl_aux n -1 bl = | 
| 
8c5d10d41391
make bool list functions respect int/bin distinction
 huffman parents: 
46240diff
changeset | 95 | bin_to_bl_aux (n - 1) -1 (True # bl)" | 
| 24333 | 96 | by (cases n) auto | 
| 97 | ||
| 46617 
8c5d10d41391
make bool list functions respect int/bin distinction
 huffman parents: 
46240diff
changeset | 98 | lemma bin_to_bl_aux_one_minus_simp [simp]: | 
| 
8c5d10d41391
make bool list functions respect int/bin distinction
 huffman parents: 
46240diff
changeset | 99 | "0 < n \<Longrightarrow> bin_to_bl_aux n 1 bl = | 
| 
8c5d10d41391
make bool list functions respect int/bin distinction
 huffman parents: 
46240diff
changeset | 100 | bin_to_bl_aux (n - 1) 0 (True # bl)" | 
| 24333 | 101 | by (cases n) auto | 
| 102 | ||
| 26086 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 huffman parents: 
26008diff
changeset | 103 | lemma bin_to_bl_aux_Bit_minus_simp [simp]: | 
| 24333 | 104 | "0 < n ==> bin_to_bl_aux n (w BIT b) bl = | 
| 37654 | 105 | bin_to_bl_aux (n - 1) w ((b = 1) # bl)" | 
| 24333 | 106 | by (cases n) auto | 
| 107 | ||
| 26086 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 huffman parents: 
26008diff
changeset | 108 | lemma bin_to_bl_aux_Bit0_minus_simp [simp]: | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46655diff
changeset | 109 | "0 < n ==> bin_to_bl_aux n (numeral (Num.Bit0 w)) bl = | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46655diff
changeset | 110 | bin_to_bl_aux (n - 1) (numeral w) (False # bl)" | 
| 26086 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 huffman parents: 
26008diff
changeset | 111 | by (cases n) auto | 
| 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 huffman parents: 
26008diff
changeset | 112 | |
| 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 huffman parents: 
26008diff
changeset | 113 | lemma bin_to_bl_aux_Bit1_minus_simp [simp]: | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46655diff
changeset | 114 | "0 < n ==> bin_to_bl_aux n (numeral (Num.Bit1 w)) bl = | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46655diff
changeset | 115 | bin_to_bl_aux (n - 1) (numeral w) (True # bl)" | 
| 26086 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 huffman parents: 
26008diff
changeset | 116 | by (cases n) auto | 
| 24333 | 117 | |
| 44939 
5930d35c976d
removed unused legacy lemma names, some comment cleanup.
 kleing parents: 
41842diff
changeset | 118 | text {* Link between bin and bool list. *}
 | 
| 24465 | 119 | |
| 26557 | 120 | lemma bl_to_bin_aux_append: | 
| 121 | "bl_to_bin_aux (bs @ cs) w = bl_to_bin_aux cs (bl_to_bin_aux bs w)" | |
| 122 | by (induct bs arbitrary: w) auto | |
| 24465 | 123 | |
| 26557 | 124 | lemma bin_to_bl_aux_append: | 
| 125 | "bin_to_bl_aux n w bs @ cs = bin_to_bl_aux n w (bs @ cs)" | |
| 126 | by (induct n arbitrary: w bs) auto | |
| 24333 | 127 | |
| 24465 | 128 | lemma bl_to_bin_append: | 
| 26557 | 129 | "bl_to_bin (bs @ cs) = bl_to_bin_aux cs (bl_to_bin bs)" | 
| 24465 | 130 | unfolding bl_to_bin_def by (rule bl_to_bin_aux_append) | 
| 131 | ||
| 24333 | 132 | lemma bin_to_bl_aux_alt: | 
| 133 | "bin_to_bl_aux n w bs = bin_to_bl n w @ bs" | |
| 134 | unfolding bin_to_bl_def by (simp add : bin_to_bl_aux_append) | |
| 135 | ||
| 45996 
e69d631fe9af
declare simp rules immediately, instead of using 'declare' commands
 huffman parents: 
45854diff
changeset | 136 | lemma bin_to_bl_0 [simp]: "bin_to_bl 0 bs = []" | 
| 24333 | 137 | unfolding bin_to_bl_def by auto | 
| 138 | ||
| 26557 | 139 | lemma size_bin_to_bl_aux: | 
| 140 | "size (bin_to_bl_aux n w bs) = n + length bs" | |
| 141 | by (induct n arbitrary: w bs) auto | |
| 24333 | 142 | |
| 45996 
e69d631fe9af
declare simp rules immediately, instead of using 'declare' commands
 huffman parents: 
45854diff
changeset | 143 | lemma size_bin_to_bl [simp]: "size (bin_to_bl n w) = n" | 
| 24333 | 144 | unfolding bin_to_bl_def by (simp add : size_bin_to_bl_aux) | 
| 145 | ||
| 26557 | 146 | lemma bin_bl_bin': | 
| 147 | "bl_to_bin (bin_to_bl_aux n w bs) = | |
| 148 | bl_to_bin_aux bs (bintrunc n w)" | |
| 149 | by (induct n arbitrary: w bs) (auto simp add : bl_to_bin_def) | |
| 24465 | 150 | |
| 45996 
e69d631fe9af
declare simp rules immediately, instead of using 'declare' commands
 huffman parents: 
45854diff
changeset | 151 | lemma bin_bl_bin [simp]: "bl_to_bin (bin_to_bl n w) = bintrunc n w" | 
| 24465 | 152 | unfolding bin_to_bl_def bin_bl_bin' by auto | 
| 153 | ||
| 26557 | 154 | lemma bl_bin_bl': | 
| 155 | "bin_to_bl (n + length bs) (bl_to_bin_aux bs w) = | |
| 24465 | 156 | bin_to_bl_aux n w bs" | 
| 26557 | 157 | apply (induct bs arbitrary: w n) | 
| 24465 | 158 | apply auto | 
| 159 | apply (simp_all only : add_Suc [symmetric]) | |
| 160 | apply (auto simp add : bin_to_bl_def) | |
| 161 | done | |
| 162 | ||
| 45996 
e69d631fe9af
declare simp rules immediately, instead of using 'declare' commands
 huffman parents: 
45854diff
changeset | 163 | lemma bl_bin_bl [simp]: "bin_to_bl (length bs) (bl_to_bin bs) = bs" | 
| 24465 | 164 | unfolding bl_to_bin_def | 
| 165 | apply (rule box_equals) | |
| 166 | apply (rule bl_bin_bl') | |
| 167 | prefer 2 | |
| 168 | apply (rule bin_to_bl_aux.Z) | |
| 169 | apply simp | |
| 170 | done | |
| 171 | ||
| 172 | lemma bl_to_bin_inj: | |
| 173 | "bl_to_bin bs = bl_to_bin cs ==> length bs = length cs ==> bs = cs" | |
| 174 | apply (rule_tac box_equals) | |
| 175 | defer | |
| 176 | apply (rule bl_bin_bl) | |
| 177 | apply (rule bl_bin_bl) | |
| 178 | apply simp | |
| 179 | done | |
| 180 | ||
| 45996 
e69d631fe9af
declare simp rules immediately, instead of using 'declare' commands
 huffman parents: 
45854diff
changeset | 181 | lemma bl_to_bin_False [simp]: "bl_to_bin (False # bl) = bl_to_bin bl" | 
| 46001 
0b562d564d5f
redefine some binary operations on integers work on abstract numerals instead of Int.Pls and Int.Min
 huffman parents: 
45997diff
changeset | 182 | unfolding bl_to_bin_def by auto | 
| 45996 
e69d631fe9af
declare simp rules immediately, instead of using 'declare' commands
 huffman parents: 
45854diff
changeset | 183 | |
| 46001 
0b562d564d5f
redefine some binary operations on integers work on abstract numerals instead of Int.Pls and Int.Min
 huffman parents: 
45997diff
changeset | 184 | lemma bl_to_bin_Nil [simp]: "bl_to_bin [] = 0" | 
| 24465 | 185 | unfolding bl_to_bin_def by auto | 
| 186 | ||
| 46001 
0b562d564d5f
redefine some binary operations on integers work on abstract numerals instead of Int.Pls and Int.Min
 huffman parents: 
45997diff
changeset | 187 | lemma bin_to_bl_zero_aux: | 
| 
0b562d564d5f
redefine some binary operations on integers work on abstract numerals instead of Int.Pls and Int.Min
 huffman parents: 
45997diff
changeset | 188 | "bin_to_bl_aux n 0 bl = replicate n False @ bl" | 
| 
0b562d564d5f
redefine some binary operations on integers work on abstract numerals instead of Int.Pls and Int.Min
 huffman parents: 
45997diff
changeset | 189 | by (induct n arbitrary: bl) (auto simp: replicate_app_Cons_same) | 
| 
0b562d564d5f
redefine some binary operations on integers work on abstract numerals instead of Int.Pls and Int.Min
 huffman parents: 
45997diff
changeset | 190 | |
| 46617 
8c5d10d41391
make bool list functions respect int/bin distinction
 huffman parents: 
46240diff
changeset | 191 | lemma bin_to_bl_zero: "bin_to_bl n 0 = replicate n False" | 
| 
8c5d10d41391
make bool list functions respect int/bin distinction
 huffman parents: 
46240diff
changeset | 192 | unfolding bin_to_bl_def by (simp add: bin_to_bl_zero_aux) | 
| 
8c5d10d41391
make bool list functions respect int/bin distinction
 huffman parents: 
46240diff
changeset | 193 | |
| 
8c5d10d41391
make bool list functions respect int/bin distinction
 huffman parents: 
46240diff
changeset | 194 | lemma bin_to_bl_minus1_aux: | 
| 
8c5d10d41391
make bool list functions respect int/bin distinction
 huffman parents: 
46240diff
changeset | 195 | "bin_to_bl_aux n -1 bl = replicate n True @ bl" | 
| 26557 | 196 | by (induct n arbitrary: bl) (auto simp: replicate_app_Cons_same) | 
| 24333 | 197 | |
| 46617 
8c5d10d41391
make bool list functions respect int/bin distinction
 huffman parents: 
46240diff
changeset | 198 | lemma bin_to_bl_minus1: "bin_to_bl n -1 = replicate n True" | 
| 
8c5d10d41391
make bool list functions respect int/bin distinction
 huffman parents: 
46240diff
changeset | 199 | unfolding bin_to_bl_def by (simp add: bin_to_bl_minus1_aux) | 
| 24333 | 200 | |
| 24465 | 201 | lemma bl_to_bin_rep_F: | 
| 202 | "bl_to_bin (replicate n False @ bl) = bl_to_bin bl" | |
| 46001 
0b562d564d5f
redefine some binary operations on integers work on abstract numerals instead of Int.Pls and Int.Min
 huffman parents: 
45997diff
changeset | 203 | apply (simp add: bin_to_bl_zero_aux [symmetric] bin_bl_bin') | 
| 24465 | 204 | apply (simp add: bl_to_bin_def) | 
| 205 | done | |
| 206 | ||
| 45996 
e69d631fe9af
declare simp rules immediately, instead of using 'declare' commands
 huffman parents: 
45854diff
changeset | 207 | lemma bin_to_bl_trunc [simp]: | 
| 24465 | 208 | "n <= m ==> bin_to_bl n (bintrunc m w) = bin_to_bl n w" | 
| 209 | by (auto intro: bl_to_bin_inj) | |
| 210 | ||
| 45997 
13392893ea12
use 'induct arbitrary' instead of 'rule_format' attribute
 huffman parents: 
45996diff
changeset | 211 | lemma bin_to_bl_aux_bintr: | 
| 
13392893ea12
use 'induct arbitrary' instead of 'rule_format' attribute
 huffman parents: 
45996diff
changeset | 212 | "bin_to_bl_aux n (bintrunc m bin) bl = | 
| 24333 | 213 | replicate (n - m) False @ bin_to_bl_aux (min n m) bin bl" | 
| 45997 
13392893ea12
use 'induct arbitrary' instead of 'rule_format' attribute
 huffman parents: 
45996diff
changeset | 214 | apply (induct n arbitrary: m bin bl) | 
| 24333 | 215 | apply clarsimp | 
| 216 | apply clarsimp | |
| 217 | apply (case_tac "m") | |
| 46001 
0b562d564d5f
redefine some binary operations on integers work on abstract numerals instead of Int.Pls and Int.Min
 huffman parents: 
45997diff
changeset | 218 | apply (clarsimp simp: bin_to_bl_zero_aux) | 
| 24333 | 219 | apply (erule thin_rl) | 
| 220 | apply (induct_tac n) | |
| 221 | apply auto | |
| 222 | done | |
| 223 | ||
| 45854 
40554613b4f0
replace many uses of 'lemmas' with explicit 'lemma'
 huffman parents: 
45847diff
changeset | 224 | lemma bin_to_bl_bintr: | 
| 
40554613b4f0
replace many uses of 'lemmas' with explicit 'lemma'
 huffman parents: 
45847diff
changeset | 225 | "bin_to_bl n (bintrunc m bin) = | 
| 
40554613b4f0
replace many uses of 'lemmas' with explicit 'lemma'
 huffman parents: 
45847diff
changeset | 226 | replicate (n - m) False @ bin_to_bl (min n m) bin" | 
| 
40554613b4f0
replace many uses of 'lemmas' with explicit 'lemma'
 huffman parents: 
45847diff
changeset | 227 | unfolding bin_to_bl_def by (rule bin_to_bl_aux_bintr) | 
| 24333 | 228 | |
| 46001 
0b562d564d5f
redefine some binary operations on integers work on abstract numerals instead of Int.Pls and Int.Min
 huffman parents: 
45997diff
changeset | 229 | lemma bl_to_bin_rep_False: "bl_to_bin (replicate n False) = 0" | 
| 24465 | 230 | by (induct n) auto | 
| 231 | ||
| 26557 | 232 | lemma len_bin_to_bl_aux: | 
| 233 | "length (bin_to_bl_aux n w bs) = n + length bs" | |
| 234 | by (induct n arbitrary: w bs) auto | |
| 24333 | 235 | |
| 236 | lemma len_bin_to_bl [simp]: "length (bin_to_bl n w) = n" | |
| 46617 
8c5d10d41391
make bool list functions respect int/bin distinction
 huffman parents: 
46240diff
changeset | 237 | by (fact size_bin_to_bl) (* FIXME: duplicate *) | 
| 24333 | 238 | |
| 26557 | 239 | lemma sign_bl_bin': | 
| 240 | "bin_sign (bl_to_bin_aux bs w) = bin_sign w" | |
| 241 | by (induct bs arbitrary: w) auto | |
| 24333 | 242 | |
| 46001 
0b562d564d5f
redefine some binary operations on integers work on abstract numerals instead of Int.Pls and Int.Min
 huffman parents: 
45997diff
changeset | 243 | lemma sign_bl_bin: "bin_sign (bl_to_bin bs) = 0" | 
| 24333 | 244 | unfolding bl_to_bin_def by (simp add : sign_bl_bin') | 
| 245 | ||
| 26557 | 246 | lemma bl_sbin_sign_aux: | 
| 247 | "hd (bin_to_bl_aux (Suc n) w bs) = | |
| 46001 
0b562d564d5f
redefine some binary operations on integers work on abstract numerals instead of Int.Pls and Int.Min
 huffman parents: 
45997diff
changeset | 248 | (bin_sign (sbintrunc n w) = -1)" | 
| 26557 | 249 | apply (induct n arbitrary: w bs) | 
| 24333 | 250 | apply clarsimp | 
| 26557 | 251 | apply (cases w rule: bin_exhaust) | 
| 24333 | 252 | apply (simp split add : bit.split) | 
| 253 | apply clarsimp | |
| 254 | done | |
| 255 | ||
| 256 | lemma bl_sbin_sign: | |
| 46001 
0b562d564d5f
redefine some binary operations on integers work on abstract numerals instead of Int.Pls and Int.Min
 huffman parents: 
45997diff
changeset | 257 | "hd (bin_to_bl (Suc n) w) = (bin_sign (sbintrunc n w) = -1)" | 
| 24333 | 258 | unfolding bin_to_bl_def by (rule bl_sbin_sign_aux) | 
| 259 | ||
| 45997 
13392893ea12
use 'induct arbitrary' instead of 'rule_format' attribute
 huffman parents: 
45996diff
changeset | 260 | lemma bin_nth_of_bl_aux: | 
| 
13392893ea12
use 'induct arbitrary' instead of 'rule_format' attribute
 huffman parents: 
45996diff
changeset | 261 | "bin_nth (bl_to_bin_aux bl w) n = | 
| 24333 | 262 | (n < size bl & rev bl ! n | n >= length bl & bin_nth w (n - size bl))" | 
| 45997 
13392893ea12
use 'induct arbitrary' instead of 'rule_format' attribute
 huffman parents: 
45996diff
changeset | 263 | apply (induct bl arbitrary: w) | 
| 24333 | 264 | apply clarsimp | 
| 265 | apply clarsimp | |
| 45997 
13392893ea12
use 'induct arbitrary' instead of 'rule_format' attribute
 huffman parents: 
45996diff
changeset | 266 | apply (cut_tac x=n and y="size bl" in linorder_less_linear) | 
| 24333 | 267 | apply (erule disjE, simp add: nth_append)+ | 
| 26557 | 268 | apply auto | 
| 24333 | 269 | done | 
| 270 | ||
| 45475 | 271 | lemma bin_nth_of_bl: "bin_nth (bl_to_bin bl) n = (n < length bl & rev bl ! n)" | 
| 24333 | 272 | unfolding bl_to_bin_def by (simp add : bin_nth_of_bl_aux) | 
| 273 | ||
| 45997 
13392893ea12
use 'induct arbitrary' instead of 'rule_format' attribute
 huffman parents: 
45996diff
changeset | 274 | lemma bin_nth_bl: "n < m \<Longrightarrow> bin_nth w n = nth (rev (bin_to_bl m w)) n" | 
| 
13392893ea12
use 'induct arbitrary' instead of 'rule_format' attribute
 huffman parents: 
45996diff
changeset | 275 | apply (induct n arbitrary: m w) | 
| 24333 | 276 | apply clarsimp | 
| 277 | apply (case_tac m, clarsimp) | |
| 278 | apply (clarsimp simp: bin_to_bl_def) | |
| 279 | apply (simp add: bin_to_bl_aux_alt) | |
| 280 | apply clarsimp | |
| 281 | apply (case_tac m, clarsimp) | |
| 282 | apply (clarsimp simp: bin_to_bl_def) | |
| 283 | apply (simp add: bin_to_bl_aux_alt) | |
| 284 | done | |
| 285 | ||
| 45997 
13392893ea12
use 'induct arbitrary' instead of 'rule_format' attribute
 huffman parents: 
45996diff
changeset | 286 | lemma nth_rev: | 
| 
13392893ea12
use 'induct arbitrary' instead of 'rule_format' attribute
 huffman parents: 
45996diff
changeset | 287 | "n < length xs \<Longrightarrow> rev xs ! n = xs ! (length xs - 1 - n)" | 
| 
13392893ea12
use 'induct arbitrary' instead of 'rule_format' attribute
 huffman parents: 
45996diff
changeset | 288 | apply (induct xs) | 
| 24465 | 289 | apply simp | 
| 290 | apply (clarsimp simp add : nth_append nth.simps split add : nat.split) | |
| 45997 
13392893ea12
use 'induct arbitrary' instead of 'rule_format' attribute
 huffman parents: 
45996diff
changeset | 291 | apply (rule_tac f = "\<lambda>n. xs ! n" in arg_cong) | 
| 24465 | 292 | apply arith | 
| 293 | done | |
| 294 | ||
| 45854 
40554613b4f0
replace many uses of 'lemmas' with explicit 'lemma'
 huffman parents: 
45847diff
changeset | 295 | lemma nth_rev_alt: "n < length ys \<Longrightarrow> ys ! n = rev ys ! (length ys - Suc n)" | 
| 
40554613b4f0
replace many uses of 'lemmas' with explicit 'lemma'
 huffman parents: 
45847diff
changeset | 296 | by (simp add: nth_rev) | 
| 24465 | 297 | |
| 45997 
13392893ea12
use 'induct arbitrary' instead of 'rule_format' attribute
 huffman parents: 
45996diff
changeset | 298 | lemma nth_bin_to_bl_aux: | 
| 
13392893ea12
use 'induct arbitrary' instead of 'rule_format' attribute
 huffman parents: 
45996diff
changeset | 299 | "n < m + length bl \<Longrightarrow> (bin_to_bl_aux m w bl) ! n = | 
| 24333 | 300 | (if n < m then bin_nth w (m - 1 - n) else bl ! (n - m))" | 
| 45997 
13392893ea12
use 'induct arbitrary' instead of 'rule_format' attribute
 huffman parents: 
45996diff
changeset | 301 | apply (induct m arbitrary: w n bl) | 
| 24333 | 302 | apply clarsimp | 
| 303 | apply clarsimp | |
| 304 | apply (case_tac w rule: bin_exhaust) | |
| 305 | apply simp | |
| 306 | done | |
| 45997 
13392893ea12
use 'induct arbitrary' instead of 'rule_format' attribute
 huffman parents: 
45996diff
changeset | 307 | |
| 24333 | 308 | lemma nth_bin_to_bl: "n < m ==> (bin_to_bl m w) ! n = bin_nth w (m - Suc n)" | 
| 309 | unfolding bin_to_bl_def by (simp add : nth_bin_to_bl_aux) | |
| 310 | ||
| 45997 
13392893ea12
use 'induct arbitrary' instead of 'rule_format' attribute
 huffman parents: 
45996diff
changeset | 311 | lemma bl_to_bin_lt2p_aux: | 
| 
13392893ea12
use 'induct arbitrary' instead of 'rule_format' attribute
 huffman parents: 
45996diff
changeset | 312 | "bl_to_bin_aux bs w < (w + 1) * (2 ^ length bs)" | 
| 
13392893ea12
use 'induct arbitrary' instead of 'rule_format' attribute
 huffman parents: 
45996diff
changeset | 313 | apply (induct bs arbitrary: w) | 
| 24333 | 314 | apply clarsimp | 
| 315 | apply clarsimp | |
| 316 | apply safe | |
| 46240 
933f35c4e126
factor-cancellation simprocs now call the full simplifier to prove that factors are non-zero
 huffman parents: 
46001diff
changeset | 317 | apply (drule meta_spec, erule xtr8 [rotated], simp add: Bit_def)+ | 
| 24333 | 318 | done | 
| 319 | ||
| 320 | lemma bl_to_bin_lt2p: "bl_to_bin bs < (2 ^ length bs)" | |
| 321 | apply (unfold bl_to_bin_def) | |
| 322 | apply (rule xtr1) | |
| 323 | prefer 2 | |
| 324 | apply (rule bl_to_bin_lt2p_aux) | |
| 325 | apply simp | |
| 326 | done | |
| 327 | ||
| 45997 
13392893ea12
use 'induct arbitrary' instead of 'rule_format' attribute
 huffman parents: 
45996diff
changeset | 328 | lemma bl_to_bin_ge2p_aux: | 
| 
13392893ea12
use 'induct arbitrary' instead of 'rule_format' attribute
 huffman parents: 
45996diff
changeset | 329 | "bl_to_bin_aux bs w >= w * (2 ^ length bs)" | 
| 
13392893ea12
use 'induct arbitrary' instead of 'rule_format' attribute
 huffman parents: 
45996diff
changeset | 330 | apply (induct bs arbitrary: w) | 
| 24333 | 331 | apply clarsimp | 
| 332 | apply clarsimp | |
| 333 | apply safe | |
| 46652 | 334 | apply (drule meta_spec, erule order_trans [rotated], | 
| 335 | simp add: Bit_B0_2t Bit_B1_2t algebra_simps)+ | |
| 24333 | 336 | done | 
| 337 | ||
| 338 | lemma bl_to_bin_ge0: "bl_to_bin bs >= 0" | |
| 339 | apply (unfold bl_to_bin_def) | |
| 340 | apply (rule xtr4) | |
| 341 | apply (rule bl_to_bin_ge2p_aux) | |
| 46617 
8c5d10d41391
make bool list functions respect int/bin distinction
 huffman parents: 
46240diff
changeset | 342 | apply simp | 
| 24333 | 343 | done | 
| 344 | ||
| 345 | lemma butlast_rest_bin: | |
| 346 | "butlast (bin_to_bl n w) = bin_to_bl (n - 1) (bin_rest w)" | |
| 347 | apply (unfold bin_to_bl_def) | |
| 348 | apply (cases w rule: bin_exhaust) | |
| 349 | apply (cases n, clarsimp) | |
| 350 | apply clarsimp | |
| 351 | apply (auto simp add: bin_to_bl_aux_alt) | |
| 352 | done | |
| 353 | ||
| 45854 
40554613b4f0
replace many uses of 'lemmas' with explicit 'lemma'
 huffman parents: 
45847diff
changeset | 354 | lemma butlast_bin_rest: | 
| 
40554613b4f0
replace many uses of 'lemmas' with explicit 'lemma'
 huffman parents: 
45847diff
changeset | 355 | "butlast bl = bin_to_bl (length bl - Suc 0) (bin_rest (bl_to_bin bl))" | 
| 
40554613b4f0
replace many uses of 'lemmas' with explicit 'lemma'
 huffman parents: 
45847diff
changeset | 356 | using butlast_rest_bin [where w="bl_to_bin bl" and n="length bl"] by simp | 
| 24333 | 357 | |
| 26557 | 358 | lemma butlast_rest_bl2bin_aux: | 
| 359 | "bl ~= [] \<Longrightarrow> | |
| 360 | bl_to_bin_aux (butlast bl) w = bin_rest (bl_to_bin_aux bl w)" | |
| 361 | by (induct bl arbitrary: w) auto | |
| 24333 | 362 | |
| 363 | lemma butlast_rest_bl2bin: | |
| 364 | "bl_to_bin (butlast bl) = bin_rest (bl_to_bin bl)" | |
| 365 | apply (unfold bl_to_bin_def) | |
| 366 | apply (cases bl) | |
| 367 | apply (auto simp add: butlast_rest_bl2bin_aux) | |
| 368 | done | |
| 369 | ||
| 45997 
13392893ea12
use 'induct arbitrary' instead of 'rule_format' attribute
 huffman parents: 
45996diff
changeset | 370 | lemma trunc_bl2bin_aux: | 
| 
13392893ea12
use 'induct arbitrary' instead of 'rule_format' attribute
 huffman parents: 
45996diff
changeset | 371 | "bintrunc m (bl_to_bin_aux bl w) = | 
| 26557 | 372 | bl_to_bin_aux (drop (length bl - m) bl) (bintrunc (m - length bl) w)" | 
| 45997 
13392893ea12
use 'induct arbitrary' instead of 'rule_format' attribute
 huffman parents: 
45996diff
changeset | 373 | apply (induct bl arbitrary: w) | 
| 24333 | 374 | apply clarsimp | 
| 375 | apply clarsimp | |
| 376 | apply safe | |
| 45997 
13392893ea12
use 'induct arbitrary' instead of 'rule_format' attribute
 huffman parents: 
45996diff
changeset | 377 | apply (case_tac "m - size bl") | 
| 24333 | 378 | apply (simp add : diff_is_0_eq [THEN iffD1, THEN Suc_diff_le]) | 
| 46652 | 379 | apply simp | 
| 380 | apply (rule_tac f = "%nat. bl_to_bin_aux bl (bintrunc nat w BIT 1)" | |
| 45997 
13392893ea12
use 'induct arbitrary' instead of 'rule_format' attribute
 huffman parents: 
45996diff
changeset | 381 | in arg_cong) | 
| 24333 | 382 | apply simp | 
| 45997 
13392893ea12
use 'induct arbitrary' instead of 'rule_format' attribute
 huffman parents: 
45996diff
changeset | 383 | apply (case_tac "m - size bl") | 
| 24333 | 384 | apply (simp add: diff_is_0_eq [THEN iffD1, THEN Suc_diff_le]) | 
| 46652 | 385 | apply simp | 
| 386 | apply (rule_tac f = "%nat. bl_to_bin_aux bl (bintrunc nat w BIT 0)" | |
| 45997 
13392893ea12
use 'induct arbitrary' instead of 'rule_format' attribute
 huffman parents: 
45996diff
changeset | 387 | in arg_cong) | 
| 24333 | 388 | apply simp | 
| 389 | done | |
| 390 | ||
| 391 | lemma trunc_bl2bin: | |
| 392 | "bintrunc m (bl_to_bin bl) = bl_to_bin (drop (length bl - m) bl)" | |
| 393 | unfolding bl_to_bin_def by (simp add : trunc_bl2bin_aux) | |
| 394 | ||
| 45854 
40554613b4f0
replace many uses of 'lemmas' with explicit 'lemma'
 huffman parents: 
45847diff
changeset | 395 | lemma trunc_bl2bin_len [simp]: | 
| 
40554613b4f0
replace many uses of 'lemmas' with explicit 'lemma'
 huffman parents: 
45847diff
changeset | 396 | "bintrunc (length bl) (bl_to_bin bl) = bl_to_bin bl" | 
| 
40554613b4f0
replace many uses of 'lemmas' with explicit 'lemma'
 huffman parents: 
45847diff
changeset | 397 | by (simp add: trunc_bl2bin) | 
| 24333 | 398 | |
| 399 | lemma bl2bin_drop: | |
| 400 | "bl_to_bin (drop k bl) = bintrunc (length bl - k) (bl_to_bin bl)" | |
| 401 | apply (rule trans) | |
| 402 | prefer 2 | |
| 403 | apply (rule trunc_bl2bin [symmetric]) | |
| 404 | apply (cases "k <= length bl") | |
| 405 | apply auto | |
| 406 | done | |
| 407 | ||
| 45997 
13392893ea12
use 'induct arbitrary' instead of 'rule_format' attribute
 huffman parents: 
45996diff
changeset | 408 | lemma nth_rest_power_bin: | 
| 
13392893ea12
use 'induct arbitrary' instead of 'rule_format' attribute
 huffman parents: 
45996diff
changeset | 409 | "bin_nth ((bin_rest ^^ k) w) n = bin_nth w (n + k)" | 
| 
13392893ea12
use 'induct arbitrary' instead of 'rule_format' attribute
 huffman parents: 
45996diff
changeset | 410 | apply (induct k arbitrary: n, clarsimp) | 
| 24333 | 411 | apply clarsimp | 
| 412 | apply (simp only: bin_nth.Suc [symmetric] add_Suc) | |
| 413 | done | |
| 414 | ||
| 415 | lemma take_rest_power_bin: | |
| 30971 | 416 | "m <= n ==> take m (bin_to_bl n w) = bin_to_bl m ((bin_rest ^^ (n - m)) w)" | 
| 24333 | 417 | apply (rule nth_equalityI) | 
| 418 | apply simp | |
| 419 | apply (clarsimp simp add: nth_bin_to_bl nth_rest_power_bin) | |
| 420 | done | |
| 421 | ||
| 24465 | 422 | lemma hd_butlast: "size xs > 1 ==> hd (butlast xs) = hd xs" | 
| 423 | by (cases xs) auto | |
| 24333 | 424 | |
| 26557 | 425 | lemma last_bin_last': | 
| 37654 | 426 | "size xs > 0 \<Longrightarrow> last xs = (bin_last (bl_to_bin_aux xs w) = 1)" | 
| 26557 | 427 | by (induct xs arbitrary: w) auto | 
| 24333 | 428 | |
| 429 | lemma last_bin_last: | |
| 37654 | 430 | "size xs > 0 ==> last xs = (bin_last (bl_to_bin xs) = 1)" | 
| 24333 | 431 | unfolding bl_to_bin_def by (erule last_bin_last') | 
| 432 | ||
| 433 | lemma bin_last_last: | |
| 37654 | 434 | "bin_last w = (if last (bin_to_bl (Suc n) w) then 1 else 0)" | 
| 24333 | 435 | apply (unfold bin_to_bl_def) | 
| 436 | apply simp | |
| 437 | apply (auto simp add: bin_to_bl_aux_alt) | |
| 438 | done | |
| 439 | ||
| 24465 | 440 | (** links between bit-wise operations and operations on bool lists **) | 
| 441 | ||
| 45997 
13392893ea12
use 'induct arbitrary' instead of 'rule_format' attribute
 huffman parents: 
45996diff
changeset | 442 | lemma bl_xor_aux_bin: | 
| 
13392893ea12
use 'induct arbitrary' instead of 'rule_format' attribute
 huffman parents: 
45996diff
changeset | 443 | "map2 (%x y. x ~= y) (bin_to_bl_aux n v bs) (bin_to_bl_aux n w cs) = | 
| 26557 | 444 | bin_to_bl_aux n (v XOR w) (map2 (%x y. x ~= y) bs cs)" | 
| 45997 
13392893ea12
use 'induct arbitrary' instead of 'rule_format' attribute
 huffman parents: 
45996diff
changeset | 445 | apply (induct n arbitrary: v w bs cs) | 
| 
13392893ea12
use 'induct arbitrary' instead of 'rule_format' attribute
 huffman parents: 
45996diff
changeset | 446 | apply simp | 
| 
13392893ea12
use 'induct arbitrary' instead of 'rule_format' attribute
 huffman parents: 
45996diff
changeset | 447 | apply (case_tac v rule: bin_exhaust) | 
| 
13392893ea12
use 'induct arbitrary' instead of 'rule_format' attribute
 huffman parents: 
45996diff
changeset | 448 | apply (case_tac w rule: bin_exhaust) | 
| 
13392893ea12
use 'induct arbitrary' instead of 'rule_format' attribute
 huffman parents: 
45996diff
changeset | 449 | apply clarsimp | 
| 
13392893ea12
use 'induct arbitrary' instead of 'rule_format' attribute
 huffman parents: 
45996diff
changeset | 450 | apply (case_tac b) | 
| 
13392893ea12
use 'induct arbitrary' instead of 'rule_format' attribute
 huffman parents: 
45996diff
changeset | 451 | apply (case_tac ba, safe, simp_all)+ | 
| 
13392893ea12
use 'induct arbitrary' instead of 'rule_format' attribute
 huffman parents: 
45996diff
changeset | 452 | done | 
| 
13392893ea12
use 'induct arbitrary' instead of 'rule_format' attribute
 huffman parents: 
45996diff
changeset | 453 | |
| 
13392893ea12
use 'induct arbitrary' instead of 'rule_format' attribute
 huffman parents: 
45996diff
changeset | 454 | lemma bl_or_aux_bin: | 
| 
13392893ea12
use 'induct arbitrary' instead of 'rule_format' attribute
 huffman parents: 
45996diff
changeset | 455 | "map2 (op | ) (bin_to_bl_aux n v bs) (bin_to_bl_aux n w cs) = | 
| 
13392893ea12
use 'induct arbitrary' instead of 'rule_format' attribute
 huffman parents: 
45996diff
changeset | 456 | bin_to_bl_aux n (v OR w) (map2 (op | ) bs cs)" | 
| 
13392893ea12
use 'induct arbitrary' instead of 'rule_format' attribute
 huffman parents: 
45996diff
changeset | 457 | apply (induct n arbitrary: v w bs cs) | 
| 24333 | 458 | apply simp | 
| 459 | apply (case_tac v rule: bin_exhaust) | |
| 460 | apply (case_tac w rule: bin_exhaust) | |
| 461 | apply clarsimp | |
| 462 | apply (case_tac b) | |
| 463 | apply (case_tac ba, safe, simp_all)+ | |
| 464 | done | |
| 465 | ||
| 45997 
13392893ea12
use 'induct arbitrary' instead of 'rule_format' attribute
 huffman parents: 
45996diff
changeset | 466 | lemma bl_and_aux_bin: | 
| 
13392893ea12
use 'induct arbitrary' instead of 'rule_format' attribute
 huffman parents: 
45996diff
changeset | 467 | "map2 (op & ) (bin_to_bl_aux n v bs) (bin_to_bl_aux n w cs) = | 
| 26557 | 468 | bin_to_bl_aux n (v AND w) (map2 (op & ) bs cs)" | 
| 45997 
13392893ea12
use 'induct arbitrary' instead of 'rule_format' attribute
 huffman parents: 
45996diff
changeset | 469 | apply (induct n arbitrary: v w bs cs) | 
| 24333 | 470 | apply simp | 
| 471 | apply (case_tac v rule: bin_exhaust) | |
| 472 | apply (case_tac w rule: bin_exhaust) | |
| 473 | apply clarsimp | |
| 474 | done | |
| 475 | ||
| 45997 
13392893ea12
use 'induct arbitrary' instead of 'rule_format' attribute
 huffman parents: 
45996diff
changeset | 476 | lemma bl_not_aux_bin: | 
| 
13392893ea12
use 'induct arbitrary' instead of 'rule_format' attribute
 huffman parents: 
45996diff
changeset | 477 | "map Not (bin_to_bl_aux n w cs) = | 
| 24353 | 478 | bin_to_bl_aux n (NOT w) (map Not cs)" | 
| 45997 
13392893ea12
use 'induct arbitrary' instead of 'rule_format' attribute
 huffman parents: 
45996diff
changeset | 479 | apply (induct n arbitrary: w cs) | 
| 24333 | 480 | apply clarsimp | 
| 481 | apply clarsimp | |
| 482 | done | |
| 483 | ||
| 45854 
40554613b4f0
replace many uses of 'lemmas' with explicit 'lemma'
 huffman parents: 
45847diff
changeset | 484 | lemma bl_not_bin: "map Not (bin_to_bl n w) = bin_to_bl n (NOT w)" | 
| 
40554613b4f0
replace many uses of 'lemmas' with explicit 'lemma'
 huffman parents: 
45847diff
changeset | 485 | unfolding bin_to_bl_def by (simp add: bl_not_aux_bin) | 
| 24333 | 486 | |
| 45854 
40554613b4f0
replace many uses of 'lemmas' with explicit 'lemma'
 huffman parents: 
45847diff
changeset | 487 | lemma bl_and_bin: | 
| 
40554613b4f0
replace many uses of 'lemmas' with explicit 'lemma'
 huffman parents: 
45847diff
changeset | 488 | "map2 (op \<and>) (bin_to_bl n v) (bin_to_bl n w) = bin_to_bl n (v AND w)" | 
| 
40554613b4f0
replace many uses of 'lemmas' with explicit 'lemma'
 huffman parents: 
45847diff
changeset | 489 | unfolding bin_to_bl_def by (simp add: bl_and_aux_bin) | 
| 24333 | 490 | |
| 45854 
40554613b4f0
replace many uses of 'lemmas' with explicit 'lemma'
 huffman parents: 
45847diff
changeset | 491 | lemma bl_or_bin: | 
| 
40554613b4f0
replace many uses of 'lemmas' with explicit 'lemma'
 huffman parents: 
45847diff
changeset | 492 | "map2 (op \<or>) (bin_to_bl n v) (bin_to_bl n w) = bin_to_bl n (v OR w)" | 
| 
40554613b4f0
replace many uses of 'lemmas' with explicit 'lemma'
 huffman parents: 
45847diff
changeset | 493 | unfolding bin_to_bl_def by (simp add: bl_or_aux_bin) | 
| 24333 | 494 | |
| 45854 
40554613b4f0
replace many uses of 'lemmas' with explicit 'lemma'
 huffman parents: 
45847diff
changeset | 495 | lemma bl_xor_bin: | 
| 
40554613b4f0
replace many uses of 'lemmas' with explicit 'lemma'
 huffman parents: 
45847diff
changeset | 496 | "map2 (\<lambda>x y. x \<noteq> y) (bin_to_bl n v) (bin_to_bl n w) = bin_to_bl n (v XOR w)" | 
| 
40554613b4f0
replace many uses of 'lemmas' with explicit 'lemma'
 huffman parents: 
45847diff
changeset | 497 | unfolding bin_to_bl_def by (simp only: bl_xor_aux_bin map2_Nil) | 
| 24333 | 498 | |
| 45997 
13392893ea12
use 'induct arbitrary' instead of 'rule_format' attribute
 huffman parents: 
45996diff
changeset | 499 | lemma drop_bin2bl_aux: | 
| 
13392893ea12
use 'induct arbitrary' instead of 'rule_format' attribute
 huffman parents: 
45996diff
changeset | 500 | "drop m (bin_to_bl_aux n bin bs) = | 
| 24333 | 501 | bin_to_bl_aux (n - m) bin (drop (m - n) bs)" | 
| 45997 
13392893ea12
use 'induct arbitrary' instead of 'rule_format' attribute
 huffman parents: 
45996diff
changeset | 502 | apply (induct n arbitrary: m bin bs, clarsimp) | 
| 24333 | 503 | apply clarsimp | 
| 504 | apply (case_tac bin rule: bin_exhaust) | |
| 505 | apply (case_tac "m <= n", simp) | |
| 506 | apply (case_tac "m - n", simp) | |
| 507 | apply simp | |
| 508 | apply (rule_tac f = "%nat. drop nat bs" in arg_cong) | |
| 509 | apply simp | |
| 510 | done | |
| 511 | ||
| 512 | lemma drop_bin2bl: "drop m (bin_to_bl n bin) = bin_to_bl (n - m) bin" | |
| 513 | unfolding bin_to_bl_def by (simp add : drop_bin2bl_aux) | |
| 514 | ||
| 45997 
13392893ea12
use 'induct arbitrary' instead of 'rule_format' attribute
 huffman parents: 
45996diff
changeset | 515 | lemma take_bin2bl_lem1: | 
| 
13392893ea12
use 'induct arbitrary' instead of 'rule_format' attribute
 huffman parents: 
45996diff
changeset | 516 | "take m (bin_to_bl_aux m w bs) = bin_to_bl m w" | 
| 
13392893ea12
use 'induct arbitrary' instead of 'rule_format' attribute
 huffman parents: 
45996diff
changeset | 517 | apply (induct m arbitrary: w bs, clarsimp) | 
| 24333 | 518 | apply clarsimp | 
| 519 | apply (simp add: bin_to_bl_aux_alt) | |
| 520 | apply (simp add: bin_to_bl_def) | |
| 521 | apply (simp add: bin_to_bl_aux_alt) | |
| 522 | done | |
| 523 | ||
| 45997 
13392893ea12
use 'induct arbitrary' instead of 'rule_format' attribute
 huffman parents: 
45996diff
changeset | 524 | lemma take_bin2bl_lem: | 
| 
13392893ea12
use 'induct arbitrary' instead of 'rule_format' attribute
 huffman parents: 
45996diff
changeset | 525 | "take m (bin_to_bl_aux (m + n) w bs) = | 
| 24333 | 526 | take m (bin_to_bl (m + n) w)" | 
| 45997 
13392893ea12
use 'induct arbitrary' instead of 'rule_format' attribute
 huffman parents: 
45996diff
changeset | 527 | apply (induct n arbitrary: w bs) | 
| 24333 | 528 | apply (simp_all (no_asm) add: bin_to_bl_def take_bin2bl_lem1) | 
| 529 | apply simp | |
| 530 | done | |
| 531 | ||
| 45997 
13392893ea12
use 'induct arbitrary' instead of 'rule_format' attribute
 huffman parents: 
45996diff
changeset | 532 | lemma bin_split_take: | 
| 
13392893ea12
use 'induct arbitrary' instead of 'rule_format' attribute
 huffman parents: 
45996diff
changeset | 533 | "bin_split n c = (a, b) \<Longrightarrow> | 
| 24333 | 534 | bin_to_bl m a = take m (bin_to_bl (m + n) c)" | 
| 45997 
13392893ea12
use 'induct arbitrary' instead of 'rule_format' attribute
 huffman parents: 
45996diff
changeset | 535 | apply (induct n arbitrary: b c) | 
| 24333 | 536 | apply clarsimp | 
| 537 | apply (clarsimp simp: Let_def split: ls_splits) | |
| 538 | apply (simp add: bin_to_bl_def) | |
| 539 | apply (simp add: take_bin2bl_lem) | |
| 540 | done | |
| 541 | ||
| 542 | lemma bin_split_take1: | |
| 543 | "k = m + n ==> bin_split n c = (a, b) ==> | |
| 544 | bin_to_bl m a = take m (bin_to_bl k c)" | |
| 545 | by (auto elim: bin_split_take) | |
| 546 | ||
| 45997 
13392893ea12
use 'induct arbitrary' instead of 'rule_format' attribute
 huffman parents: 
45996diff
changeset | 547 | lemma nth_takefill: "m < n \<Longrightarrow> | 
| 24333 | 548 | takefill fill n l ! m = (if m < length l then l ! m else fill)" | 
| 45997 
13392893ea12
use 'induct arbitrary' instead of 'rule_format' attribute
 huffman parents: 
45996diff
changeset | 549 | apply (induct n arbitrary: m l, clarsimp) | 
| 24333 | 550 | apply clarsimp | 
| 551 | apply (case_tac m) | |
| 552 | apply (simp split: list.split) | |
| 553 | apply (simp split: list.split) | |
| 554 | done | |
| 555 | ||
| 45997 
13392893ea12
use 'induct arbitrary' instead of 'rule_format' attribute
 huffman parents: 
45996diff
changeset | 556 | lemma takefill_alt: | 
| 
13392893ea12
use 'induct arbitrary' instead of 'rule_format' attribute
 huffman parents: 
45996diff
changeset | 557 | "takefill fill n l = take n l @ replicate (n - length l) fill" | 
| 
13392893ea12
use 'induct arbitrary' instead of 'rule_format' attribute
 huffman parents: 
45996diff
changeset | 558 | by (induct n arbitrary: l) (auto split: list.split) | 
| 24333 | 559 | |
| 560 | lemma takefill_replicate [simp]: | |
| 561 | "takefill fill n (replicate m fill) = replicate n fill" | |
| 562 | by (simp add : takefill_alt replicate_add [symmetric]) | |
| 563 | ||
| 45997 
13392893ea12
use 'induct arbitrary' instead of 'rule_format' attribute
 huffman parents: 
45996diff
changeset | 564 | lemma takefill_le': | 
| 
13392893ea12
use 'induct arbitrary' instead of 'rule_format' attribute
 huffman parents: 
45996diff
changeset | 565 | "n = m + k \<Longrightarrow> takefill x m (takefill x n l) = takefill x m l" | 
| 
13392893ea12
use 'induct arbitrary' instead of 'rule_format' attribute
 huffman parents: 
45996diff
changeset | 566 | by (induct m arbitrary: l n) (auto split: list.split) | 
| 24333 | 567 | |
| 568 | lemma length_takefill [simp]: "length (takefill fill n l) = n" | |
| 569 | by (simp add : takefill_alt) | |
| 570 | ||
| 571 | lemma take_takefill': | |
| 572 | "!!w n. n = k + m ==> take k (takefill fill n w) = takefill fill k w" | |
| 573 | by (induct k) (auto split add : list.split) | |
| 574 | ||
| 575 | lemma drop_takefill: | |
| 576 | "!!w. drop k (takefill fill (m + k) w) = takefill fill m (drop k w)" | |
| 577 | by (induct k) (auto split add : list.split) | |
| 578 | ||
| 579 | lemma takefill_le [simp]: | |
| 580 | "m \<le> n \<Longrightarrow> takefill x m (takefill x n l) = takefill x m l" | |
| 581 | by (auto simp: le_iff_add takefill_le') | |
| 582 | ||
| 583 | lemma take_takefill [simp]: | |
| 584 | "m \<le> n \<Longrightarrow> take m (takefill fill n w) = takefill fill m w" | |
| 585 | by (auto simp: le_iff_add take_takefill') | |
| 586 | ||
| 587 | lemma takefill_append: | |
| 588 | "takefill fill (m + length xs) (xs @ w) = xs @ (takefill fill m w)" | |
| 589 | by (induct xs) auto | |
| 590 | ||
| 591 | lemma takefill_same': | |
| 592 | "l = length xs ==> takefill fill l xs = xs" | |
| 593 | by clarify (induct xs, auto) | |
| 594 | ||
| 595 | lemmas takefill_same [simp] = takefill_same' [OF refl] | |
| 596 | ||
| 597 | lemma takefill_bintrunc: | |
| 598 | "takefill False n bl = rev (bin_to_bl n (bl_to_bin (rev bl)))" | |
| 599 | apply (rule nth_equalityI) | |
| 600 | apply simp | |
| 601 | apply (clarsimp simp: nth_takefill nth_rev nth_bin_to_bl bin_nth_of_bl) | |
| 602 | done | |
| 603 | ||
| 604 | lemma bl_bin_bl_rtf: | |
| 605 | "bin_to_bl n (bl_to_bin bl) = rev (takefill False n (rev bl))" | |
| 606 | by (simp add : takefill_bintrunc) | |
| 45854 
40554613b4f0
replace many uses of 'lemmas' with explicit 'lemma'
 huffman parents: 
45847diff
changeset | 607 | |
| 
40554613b4f0
replace many uses of 'lemmas' with explicit 'lemma'
 huffman parents: 
45847diff
changeset | 608 | lemma bl_bin_bl_rep_drop: | 
| 
40554613b4f0
replace many uses of 'lemmas' with explicit 'lemma'
 huffman parents: 
45847diff
changeset | 609 | "bin_to_bl n (bl_to_bin bl) = | 
| 
40554613b4f0
replace many uses of 'lemmas' with explicit 'lemma'
 huffman parents: 
45847diff
changeset | 610 | replicate (n - length bl) False @ drop (length bl - n) bl" | 
| 
40554613b4f0
replace many uses of 'lemmas' with explicit 'lemma'
 huffman parents: 
45847diff
changeset | 611 | by (simp add: bl_bin_bl_rtf takefill_alt rev_take) | 
| 24333 | 612 | |
| 613 | lemma tf_rev: | |
| 614 | "n + k = m + length bl ==> takefill x m (rev (takefill y n bl)) = | |
| 615 | rev (takefill y m (rev (takefill x k (rev bl))))" | |
| 616 | apply (rule nth_equalityI) | |
| 617 | apply (auto simp add: nth_takefill nth_rev) | |
| 618 | apply (rule_tac f = "%n. bl ! n" in arg_cong) | |
| 619 | apply arith | |
| 620 | done | |
| 621 | ||
| 622 | lemma takefill_minus: | |
| 623 | "0 < n ==> takefill fill (Suc (n - 1)) w = takefill fill n w" | |
| 624 | by auto | |
| 625 | ||
| 626 | lemmas takefill_Suc_cases = | |
| 45604 | 627 | list.cases [THEN takefill.Suc [THEN trans]] | 
| 24333 | 628 | |
| 629 | lemmas takefill_Suc_Nil = takefill_Suc_cases (1) | |
| 630 | lemmas takefill_Suc_Cons = takefill_Suc_cases (2) | |
| 631 | ||
| 632 | lemmas takefill_minus_simps = takefill_Suc_cases [THEN [2] | |
| 45604 | 633 | takefill_minus [symmetric, THEN trans]] | 
| 24333 | 634 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46655diff
changeset | 635 | lemma takefill_numeral_Nil [simp]: | 
| 47219 
172c031ad743
restate various simp rules for word operations using pred_numeral
 huffman parents: 
47108diff
changeset | 636 | "takefill fill (numeral k) [] = fill # takefill fill (pred_numeral k) []" | 
| 
172c031ad743
restate various simp rules for word operations using pred_numeral
 huffman parents: 
47108diff
changeset | 637 | by (simp add: numeral_eq_Suc) | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46655diff
changeset | 638 | |
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46655diff
changeset | 639 | lemma takefill_numeral_Cons [simp]: | 
| 47219 
172c031ad743
restate various simp rules for word operations using pred_numeral
 huffman parents: 
47108diff
changeset | 640 | "takefill fill (numeral k) (x # xs) = x # takefill fill (pred_numeral k) xs" | 
| 
172c031ad743
restate various simp rules for word operations using pred_numeral
 huffman parents: 
47108diff
changeset | 641 | by (simp add: numeral_eq_Suc) | 
| 24333 | 642 | |
| 643 | (* links with function bl_to_bin *) | |
| 644 | ||
| 645 | lemma bl_to_bin_aux_cat: | |
| 26557 | 646 | "!!nv v. bl_to_bin_aux bs (bin_cat w nv v) = | 
| 647 | bin_cat w (nv + length bs) (bl_to_bin_aux bs v)" | |
| 24333 | 648 | apply (induct bs) | 
| 649 | apply simp | |
| 650 | apply (simp add: bin_cat_Suc_Bit [symmetric] del: bin_cat.simps) | |
| 651 | done | |
| 652 | ||
| 653 | lemma bin_to_bl_aux_cat: | |
| 654 | "!!w bs. bin_to_bl_aux (nv + nw) (bin_cat v nw w) bs = | |
| 655 | bin_to_bl_aux nv v (bin_to_bl_aux nw w bs)" | |
| 656 | by (induct nw) auto | |
| 657 | ||
| 45854 
40554613b4f0
replace many uses of 'lemmas' with explicit 'lemma'
 huffman parents: 
45847diff
changeset | 658 | lemma bl_to_bin_aux_alt: | 
| 
40554613b4f0
replace many uses of 'lemmas' with explicit 'lemma'
 huffman parents: 
45847diff
changeset | 659 | "bl_to_bin_aux bs w = bin_cat w (length bs) (bl_to_bin bs)" | 
| 46001 
0b562d564d5f
redefine some binary operations on integers work on abstract numerals instead of Int.Pls and Int.Min
 huffman parents: 
45997diff
changeset | 660 | using bl_to_bin_aux_cat [where nv = "0" and v = "0"] | 
| 45854 
40554613b4f0
replace many uses of 'lemmas' with explicit 'lemma'
 huffman parents: 
45847diff
changeset | 661 | unfolding bl_to_bin_def [symmetric] by simp | 
| 24333 | 662 | |
| 45854 
40554613b4f0
replace many uses of 'lemmas' with explicit 'lemma'
 huffman parents: 
45847diff
changeset | 663 | lemma bin_to_bl_cat: | 
| 
40554613b4f0
replace many uses of 'lemmas' with explicit 'lemma'
 huffman parents: 
45847diff
changeset | 664 | "bin_to_bl (nv + nw) (bin_cat v nw w) = | 
| 
40554613b4f0
replace many uses of 'lemmas' with explicit 'lemma'
 huffman parents: 
45847diff
changeset | 665 | bin_to_bl_aux nv v (bin_to_bl nw w)" | 
| 
40554613b4f0
replace many uses of 'lemmas' with explicit 'lemma'
 huffman parents: 
45847diff
changeset | 666 | unfolding bin_to_bl_def by (simp add: bin_to_bl_aux_cat) | 
| 24333 | 667 | |
| 668 | lemmas bl_to_bin_aux_app_cat = | |
| 669 | trans [OF bl_to_bin_aux_append bl_to_bin_aux_alt] | |
| 670 | ||
| 671 | lemmas bin_to_bl_aux_cat_app = | |
| 672 | trans [OF bin_to_bl_aux_cat bin_to_bl_aux_alt] | |
| 673 | ||
| 45854 
40554613b4f0
replace many uses of 'lemmas' with explicit 'lemma'
 huffman parents: 
45847diff
changeset | 674 | lemma bl_to_bin_app_cat: | 
| 
40554613b4f0
replace many uses of 'lemmas' with explicit 'lemma'
 huffman parents: 
45847diff
changeset | 675 | "bl_to_bin (bsa @ bs) = bin_cat (bl_to_bin bsa) (length bs) (bl_to_bin bs)" | 
| 
40554613b4f0
replace many uses of 'lemmas' with explicit 'lemma'
 huffman parents: 
45847diff
changeset | 676 | by (simp only: bl_to_bin_aux_app_cat bl_to_bin_def) | 
| 24333 | 677 | |
| 45854 
40554613b4f0
replace many uses of 'lemmas' with explicit 'lemma'
 huffman parents: 
45847diff
changeset | 678 | lemma bin_to_bl_cat_app: | 
| 
40554613b4f0
replace many uses of 'lemmas' with explicit 'lemma'
 huffman parents: 
45847diff
changeset | 679 | "bin_to_bl (n + nw) (bin_cat w nw wa) = bin_to_bl n w @ bin_to_bl nw wa" | 
| 
40554613b4f0
replace many uses of 'lemmas' with explicit 'lemma'
 huffman parents: 
45847diff
changeset | 680 | by (simp only: bin_to_bl_def bin_to_bl_aux_cat_app) | 
| 24333 | 681 | |
| 682 | (* bl_to_bin_app_cat_alt and bl_to_bin_app_cat are easily interderivable *) | |
| 683 | lemma bl_to_bin_app_cat_alt: | |
| 684 | "bin_cat (bl_to_bin cs) n w = bl_to_bin (cs @ bin_to_bl n w)" | |
| 685 | by (simp add : bl_to_bin_app_cat) | |
| 686 | ||
| 687 | lemma mask_lem: "(bl_to_bin (True # replicate n False)) = | |
| 46645 
573aff6b9b0a
adapt lemma mask_lem to respect int/bin distinction
 huffman parents: 
46617diff
changeset | 688 | (bl_to_bin (replicate n True)) + 1" | 
| 24333 | 689 | apply (unfold bl_to_bin_def) | 
| 690 | apply (induct n) | |
| 46645 
573aff6b9b0a
adapt lemma mask_lem to respect int/bin distinction
 huffman parents: 
46617diff
changeset | 691 | apply simp | 
| 31790 | 692 | apply (simp only: Suc_eq_plus1 replicate_add | 
| 24333 | 693 | append_Cons [symmetric] bl_to_bin_aux_append) | 
| 46645 
573aff6b9b0a
adapt lemma mask_lem to respect int/bin distinction
 huffman parents: 
46617diff
changeset | 694 | apply (simp add: Bit_B0_2t Bit_B1_2t) | 
| 24333 | 695 | done | 
| 696 | ||
| 24465 | 697 | (* function bl_of_nth *) | 
| 24333 | 698 | lemma length_bl_of_nth [simp]: "length (bl_of_nth n f) = n" | 
| 699 | by (induct n) auto | |
| 700 | ||
| 701 | lemma nth_bl_of_nth [simp]: | |
| 702 | "m < n \<Longrightarrow> rev (bl_of_nth n f) ! m = f m" | |
| 703 | apply (induct n) | |
| 704 | apply simp | |
| 705 | apply (clarsimp simp add : nth_append) | |
| 706 | apply (rule_tac f = "f" in arg_cong) | |
| 707 | apply simp | |
| 708 | done | |
| 709 | ||
| 710 | lemma bl_of_nth_inj: | |
| 711 | "(!!k. k < n ==> f k = g k) ==> bl_of_nth n f = bl_of_nth n g" | |
| 712 | by (induct n) auto | |
| 713 | ||
| 45997 
13392893ea12
use 'induct arbitrary' instead of 'rule_format' attribute
 huffman parents: 
45996diff
changeset | 714 | lemma bl_of_nth_nth_le: | 
| 
13392893ea12
use 'induct arbitrary' instead of 'rule_format' attribute
 huffman parents: 
45996diff
changeset | 715 | "n \<le> length xs \<Longrightarrow> bl_of_nth n (nth (rev xs)) = drop (length xs - n) xs" | 
| 
13392893ea12
use 'induct arbitrary' instead of 'rule_format' attribute
 huffman parents: 
45996diff
changeset | 716 | apply (induct n arbitrary: xs, clarsimp) | 
| 24333 | 717 | apply clarsimp | 
| 718 | apply (rule trans [OF _ hd_Cons_tl]) | |
| 719 | apply (frule Suc_le_lessD) | |
| 720 | apply (simp add: nth_rev trans [OF drop_Suc drop_tl, symmetric]) | |
| 721 | apply (subst hd_drop_conv_nth) | |
| 722 | apply force | |
| 723 | apply simp_all | |
| 724 | apply (rule_tac f = "%n. drop n xs" in arg_cong) | |
| 725 | apply simp | |
| 726 | done | |
| 727 | ||
| 45854 
40554613b4f0
replace many uses of 'lemmas' with explicit 'lemma'
 huffman parents: 
45847diff
changeset | 728 | lemma bl_of_nth_nth [simp]: "bl_of_nth (length xs) (op ! (rev xs)) = xs" | 
| 
40554613b4f0
replace many uses of 'lemmas' with explicit 'lemma'
 huffman parents: 
45847diff
changeset | 729 | by (simp add: bl_of_nth_nth_le) | 
| 24333 | 730 | |
| 731 | lemma size_rbl_pred: "length (rbl_pred bl) = length bl" | |
| 732 | by (induct bl) auto | |
| 733 | ||
| 734 | lemma size_rbl_succ: "length (rbl_succ bl) = length bl" | |
| 735 | by (induct bl) auto | |
| 736 | ||
| 737 | lemma size_rbl_add: | |
| 738 | "!!cl. length (rbl_add bl cl) = length bl" | |
| 739 | by (induct bl) (auto simp: Let_def size_rbl_succ) | |
| 740 | ||
| 741 | lemma size_rbl_mult: | |
| 742 | "!!cl. length (rbl_mult bl cl) = length bl" | |
| 743 | by (induct bl) (auto simp add : Let_def size_rbl_add) | |
| 744 | ||
| 745 | lemmas rbl_sizes [simp] = | |
| 746 | size_rbl_pred size_rbl_succ size_rbl_add size_rbl_mult | |
| 747 | ||
| 748 | lemmas rbl_Nils = | |
| 749 | rbl_pred.Nil rbl_succ.Nil rbl_add.Nil rbl_mult.Nil | |
| 750 | ||
| 46653 | 751 | lemma pred_BIT_simps [simp]: | 
| 752 | "x BIT 0 - 1 = (x - 1) BIT 1" | |
| 753 | "x BIT 1 - 1 = x BIT 0" | |
| 754 | by (simp_all add: Bit_B0_2t Bit_B1_2t) | |
| 755 | ||
| 756 | lemma rbl_pred: | |
| 757 | "rbl_pred (rev (bin_to_bl n bin)) = rev (bin_to_bl n (bin - 1))" | |
| 758 | apply (induct n arbitrary: bin, simp) | |
| 24333 | 759 | apply (unfold bin_to_bl_def) | 
| 760 | apply clarsimp | |
| 761 | apply (case_tac bin rule: bin_exhaust) | |
| 762 | apply (case_tac b) | |
| 46653 | 763 | apply (clarsimp simp: bin_to_bl_aux_alt)+ | 
| 24333 | 764 | done | 
| 765 | ||
| 46653 | 766 | lemma succ_BIT_simps [simp]: | 
| 767 | "x BIT 0 + 1 = x BIT 1" | |
| 768 | "x BIT 1 + 1 = (x + 1) BIT 0" | |
| 769 | by (simp_all add: Bit_B0_2t Bit_B1_2t) | |
| 770 | ||
| 24333 | 771 | lemma rbl_succ: | 
| 46653 | 772 | "rbl_succ (rev (bin_to_bl n bin)) = rev (bin_to_bl n (bin + 1))" | 
| 773 | apply (induct n arbitrary: bin, simp) | |
| 24333 | 774 | apply (unfold bin_to_bl_def) | 
| 775 | apply clarsimp | |
| 776 | apply (case_tac bin rule: bin_exhaust) | |
| 777 | apply (case_tac b) | |
| 46653 | 778 | apply (clarsimp simp: bin_to_bl_aux_alt)+ | 
| 24333 | 779 | done | 
| 780 | ||
| 46653 | 781 | lemma add_BIT_simps [simp]: (* FIXME: move *) | 
| 782 | "x BIT 0 + y BIT 0 = (x + y) BIT 0" | |
| 783 | "x BIT 0 + y BIT 1 = (x + y) BIT 1" | |
| 784 | "x BIT 1 + y BIT 0 = (x + y) BIT 1" | |
| 785 | "x BIT 1 + y BIT 1 = (x + y + 1) BIT 0" | |
| 786 | by (simp_all add: Bit_B0_2t Bit_B1_2t) | |
| 787 | ||
| 24333 | 788 | lemma rbl_add: | 
| 789 | "!!bina binb. rbl_add (rev (bin_to_bl n bina)) (rev (bin_to_bl n binb)) = | |
| 790 | rev (bin_to_bl n (bina + binb))" | |
| 791 | apply (induct n, simp) | |
| 792 | apply (unfold bin_to_bl_def) | |
| 793 | apply clarsimp | |
| 794 | apply (case_tac bina rule: bin_exhaust) | |
| 795 | apply (case_tac binb rule: bin_exhaust) | |
| 796 | apply (case_tac b) | |
| 797 | apply (case_tac [!] "ba") | |
| 46655 | 798 | apply (auto simp: rbl_succ bin_to_bl_aux_alt Let_def add_ac) | 
| 24333 | 799 | done | 
| 800 | ||
| 801 | lemma rbl_add_app2: | |
| 802 | "!!blb. length blb >= length bla ==> | |
| 803 | rbl_add bla (blb @ blc) = rbl_add bla blb" | |
| 804 | apply (induct bla, simp) | |
| 805 | apply clarsimp | |
| 806 | apply (case_tac blb, clarsimp) | |
| 807 | apply (clarsimp simp: Let_def) | |
| 808 | done | |
| 809 | ||
| 810 | lemma rbl_add_take2: | |
| 811 | "!!blb. length blb >= length bla ==> | |
| 812 | rbl_add bla (take (length bla) blb) = rbl_add bla blb" | |
| 813 | apply (induct bla, simp) | |
| 814 | apply clarsimp | |
| 815 | apply (case_tac blb, clarsimp) | |
| 816 | apply (clarsimp simp: Let_def) | |
| 817 | done | |
| 818 | ||
| 819 | lemma rbl_add_long: | |
| 820 | "m >= n ==> rbl_add (rev (bin_to_bl n bina)) (rev (bin_to_bl m binb)) = | |
| 821 | rev (bin_to_bl n (bina + binb))" | |
| 822 | apply (rule box_equals [OF _ rbl_add_take2 rbl_add]) | |
| 823 | apply (rule_tac f = "rbl_add (rev (bin_to_bl n bina))" in arg_cong) | |
| 824 | apply (rule rev_swap [THEN iffD1]) | |
| 825 | apply (simp add: rev_take drop_bin2bl) | |
| 826 | apply simp | |
| 827 | done | |
| 828 | ||
| 829 | lemma rbl_mult_app2: | |
| 830 | "!!blb. length blb >= length bla ==> | |
| 831 | rbl_mult bla (blb @ blc) = rbl_mult bla blb" | |
| 832 | apply (induct bla, simp) | |
| 833 | apply clarsimp | |
| 834 | apply (case_tac blb, clarsimp) | |
| 835 | apply (clarsimp simp: Let_def rbl_add_app2) | |
| 836 | done | |
| 837 | ||
| 838 | lemma rbl_mult_take2: | |
| 839 | "length blb >= length bla ==> | |
| 840 | rbl_mult bla (take (length bla) blb) = rbl_mult bla blb" | |
| 841 | apply (rule trans) | |
| 842 | apply (rule rbl_mult_app2 [symmetric]) | |
| 843 | apply simp | |
| 844 | apply (rule_tac f = "rbl_mult bla" in arg_cong) | |
| 845 | apply (rule append_take_drop_id) | |
| 846 | done | |
| 847 | ||
| 848 | lemma rbl_mult_gt1: | |
| 849 | "m >= length bl ==> rbl_mult bl (rev (bin_to_bl m binb)) = | |
| 850 | rbl_mult bl (rev (bin_to_bl (length bl) binb))" | |
| 851 | apply (rule trans) | |
| 852 | apply (rule rbl_mult_take2 [symmetric]) | |
| 853 | apply simp_all | |
| 854 | apply (rule_tac f = "rbl_mult bl" in arg_cong) | |
| 855 | apply (rule rev_swap [THEN iffD1]) | |
| 856 | apply (simp add: rev_take drop_bin2bl) | |
| 857 | done | |
| 858 | ||
| 859 | lemma rbl_mult_gt: | |
| 860 | "m > n ==> rbl_mult (rev (bin_to_bl n bina)) (rev (bin_to_bl m binb)) = | |
| 861 | rbl_mult (rev (bin_to_bl n bina)) (rev (bin_to_bl n binb))" | |
| 862 | by (auto intro: trans [OF rbl_mult_gt1]) | |
| 863 | ||
| 864 | lemmas rbl_mult_Suc = lessI [THEN rbl_mult_gt] | |
| 865 | ||
| 866 | lemma rbbl_Cons: | |
| 37654 | 867 | "b # rev (bin_to_bl n x) = rev (bin_to_bl (Suc n) (x BIT If b 1 0))" | 
| 24333 | 868 | apply (unfold bin_to_bl_def) | 
| 869 | apply simp | |
| 870 | apply (simp add: bin_to_bl_aux_alt) | |
| 871 | done | |
| 46653 | 872 | |
| 873 | lemma mult_BIT_simps [simp]: | |
| 874 | "x BIT 0 * y = (x * y) BIT 0" | |
| 875 | "x * y BIT 0 = (x * y) BIT 0" | |
| 876 | "x BIT 1 * y = (x * y) BIT 0 + y" | |
| 877 | by (simp_all add: Bit_B0_2t Bit_B1_2t algebra_simps) | |
| 878 | ||
| 24333 | 879 | lemma rbl_mult: "!!bina binb. | 
| 880 | rbl_mult (rev (bin_to_bl n bina)) (rev (bin_to_bl n binb)) = | |
| 881 | rev (bin_to_bl n (bina * binb))" | |
| 882 | apply (induct n) | |
| 883 | apply simp | |
| 884 | apply (unfold bin_to_bl_def) | |
| 885 | apply clarsimp | |
| 886 | apply (case_tac bina rule: bin_exhaust) | |
| 887 | apply (case_tac binb rule: bin_exhaust) | |
| 888 | apply (case_tac b) | |
| 889 | apply (case_tac [!] "ba") | |
| 46653 | 890 | apply (auto simp: bin_to_bl_aux_alt Let_def) | 
| 891 | apply (auto simp: rbbl_Cons rbl_mult_Suc rbl_add) | |
| 24333 | 892 | done | 
| 893 | ||
| 894 | lemma rbl_add_split: | |
| 895 | "P (rbl_add (y # ys) (x # xs)) = | |
| 896 | (ALL ws. length ws = length ys --> ws = rbl_add ys xs --> | |
| 26008 | 897 | (y --> ((x --> P (False # rbl_succ ws)) & (~ x --> P (True # ws)))) & | 
| 24333 | 898 | (~ y --> P (x # ws)))" | 
| 899 | apply (auto simp add: Let_def) | |
| 900 | apply (case_tac [!] "y") | |
| 901 | apply auto | |
| 902 | done | |
| 903 | ||
| 904 | lemma rbl_mult_split: | |
| 905 | "P (rbl_mult (y # ys) xs) = | |
| 906 | (ALL ws. length ws = Suc (length ys) --> ws = False # rbl_mult ys xs --> | |
| 907 | (y --> P (rbl_add ws xs)) & (~ y --> P ws))" | |
| 908 | by (clarsimp simp add : Let_def) | |
| 909 | ||
| 910 | lemma and_len: "xs = ys ==> xs = ys & length xs = length ys" | |
| 911 | by auto | |
| 912 | ||
| 913 | lemma size_if: "size (if p then xs else ys) = (if p then size xs else size ys)" | |
| 914 | by auto | |
| 915 | ||
| 916 | lemma tl_if: "tl (if p then xs else ys) = (if p then tl xs else tl ys)" | |
| 917 | by auto | |
| 918 | ||
| 919 | lemma hd_if: "hd (if p then xs else ys) = (if p then hd xs else hd ys)" | |
| 920 | by auto | |
| 921 | ||
| 24465 | 922 | lemma if_Not_x: "(if p then ~ x else x) = (p = (~ x))" | 
| 923 | by auto | |
| 924 | ||
| 925 | lemma if_x_Not: "(if p then x else ~ x) = (p = x)" | |
| 926 | by auto | |
| 927 | ||
| 24333 | 928 | lemma if_same_and: "(If p x y & If p u v) = (if p then x & u else y & v)" | 
| 929 | by auto | |
| 930 | ||
| 931 | lemma if_same_eq: "(If p x y = (If p u v)) = (if p then x = (u) else y = (v))" | |
| 932 | by auto | |
| 933 | ||
| 934 | lemma if_same_eq_not: | |
| 935 | "(If p x y = (~ If p u v)) = (if p then x = (~u) else y = (~v))" | |
| 936 | by auto | |
| 937 | ||
| 938 | (* note - if_Cons can cause blowup in the size, if p is complex, | |
| 939 | so make a simproc *) | |
| 940 | lemma if_Cons: "(if p then x # xs else y # ys) = If p x y # If p xs ys" | |
| 941 | by auto | |
| 942 | ||
| 943 | lemma if_single: | |
| 944 | "(if xc then [xab] else [an]) = [if xc then xab else an]" | |
| 945 | by auto | |
| 946 | ||
| 24465 | 947 | lemma if_bool_simps: | 
| 948 | "If p True y = (p | y) & If p False y = (~p & y) & | |
| 949 | If p y True = (p --> y) & If p y False = (p & y)" | |
| 950 | by auto | |
| 951 | ||
| 952 | lemmas if_simps = if_x_Not if_Not_x if_cancel if_True if_False if_bool_simps | |
| 953 | ||
| 45854 
40554613b4f0
replace many uses of 'lemmas' with explicit 'lemma'
 huffman parents: 
45847diff
changeset | 954 | lemmas seqr = eq_reflection [where x = "size w"] for w (* FIXME: delete *) | 
| 24333 | 955 | |
| 45854 
40554613b4f0
replace many uses of 'lemmas' with explicit 'lemma'
 huffman parents: 
45847diff
changeset | 956 | (* TODO: move name bindings to List.thy *) | 
| 24333 | 957 | lemmas tl_Nil = tl.simps (1) | 
| 958 | lemmas tl_Cons = tl.simps (2) | |
| 959 | ||
| 960 | ||
| 24350 | 961 | subsection "Repeated splitting or concatenation" | 
| 24333 | 962 | |
| 963 | lemma sclem: | |
| 964 | "size (concat (map (bin_to_bl n) xs)) = length xs * n" | |
| 965 | by (induct xs) auto | |
| 966 | ||
| 45997 
13392893ea12
use 'induct arbitrary' instead of 'rule_format' attribute
 huffman parents: 
45996diff
changeset | 967 | lemma bin_cat_foldl_lem: | 
| 
13392893ea12
use 'induct arbitrary' instead of 'rule_format' attribute
 huffman parents: 
45996diff
changeset | 968 | "foldl (%u. bin_cat u n) x xs = | 
| 24333 | 969 | bin_cat x (size xs * n) (foldl (%u. bin_cat u n) y xs)" | 
| 45997 
13392893ea12
use 'induct arbitrary' instead of 'rule_format' attribute
 huffman parents: 
45996diff
changeset | 970 | apply (induct xs arbitrary: x) | 
| 24333 | 971 | apply simp | 
| 972 | apply (simp (no_asm)) | |
| 973 | apply (frule asm_rl) | |
| 45997 
13392893ea12
use 'induct arbitrary' instead of 'rule_format' attribute
 huffman parents: 
45996diff
changeset | 974 | apply (drule meta_spec) | 
| 24333 | 975 | apply (erule trans) | 
| 45997 
13392893ea12
use 'induct arbitrary' instead of 'rule_format' attribute
 huffman parents: 
45996diff
changeset | 976 | apply (drule_tac x = "bin_cat y n a" in meta_spec) | 
| 32642 
026e7c6a6d08
be more cautious wrt. simp rules: inf_absorb1, inf_absorb2, sup_absorb1, sup_absorb2 are no simp rules by default any longer
 haftmann parents: 
32439diff
changeset | 977 | apply (simp add : bin_cat_assoc_sym min_max.inf_absorb2) | 
| 24333 | 978 | done | 
| 979 | ||
| 980 | lemma bin_rcat_bl: | |
| 981 | "(bin_rcat n wl) = bl_to_bin (concat (map (bin_to_bl n) wl))" | |
| 982 | apply (unfold bin_rcat_def) | |
| 983 | apply (rule sym) | |
| 984 | apply (induct wl) | |
| 985 | apply (auto simp add : bl_to_bin_append) | |
| 986 | apply (simp add : bl_to_bin_aux_alt sclem) | |
| 987 | apply (simp add : bin_cat_foldl_lem [symmetric]) | |
| 988 | done | |
| 989 | ||
| 990 | lemmas bin_rsplit_aux_simps = bin_rsplit_aux.simps bin_rsplitl_aux.simps | |
| 991 | lemmas rsplit_aux_simps = bin_rsplit_aux_simps | |
| 992 | ||
| 45604 | 993 | lemmas th_if_simp1 = split_if [where P = "op = l", THEN iffD1, THEN conjunct1, THEN mp] for l | 
| 994 | lemmas th_if_simp2 = split_if [where P = "op = l", THEN iffD1, THEN conjunct2, THEN mp] for l | |
| 24333 | 995 | |
| 996 | lemmas rsplit_aux_simp1s = rsplit_aux_simps [THEN th_if_simp1] | |
| 997 | ||
| 998 | lemmas rsplit_aux_simp2ls = rsplit_aux_simps [THEN th_if_simp2] | |
| 999 | (* these safe to [simp add] as require calculating m - n *) | |
| 1000 | lemmas bin_rsplit_aux_simp2s [simp] = rsplit_aux_simp2ls [unfolded Let_def] | |
| 1001 | lemmas rbscl = bin_rsplit_aux_simp2s (2) | |
| 1002 | ||
| 1003 | lemmas rsplit_aux_0_simps [simp] = | |
| 1004 | rsplit_aux_simp1s [OF disjI1] rsplit_aux_simp1s [OF disjI2] | |
| 1005 | ||
| 1006 | lemma bin_rsplit_aux_append: | |
| 26557 | 1007 | "bin_rsplit_aux n m c (bs @ cs) = bin_rsplit_aux n m c bs @ cs" | 
| 1008 | apply (induct n m c bs rule: bin_rsplit_aux.induct) | |
| 24333 | 1009 | apply (subst bin_rsplit_aux.simps) | 
| 1010 | apply (subst bin_rsplit_aux.simps) | |
| 1011 | apply (clarsimp split: ls_splits) | |
| 26557 | 1012 | apply auto | 
| 24333 | 1013 | done | 
| 1014 | ||
| 1015 | lemma bin_rsplitl_aux_append: | |
| 26557 | 1016 | "bin_rsplitl_aux n m c (bs @ cs) = bin_rsplitl_aux n m c bs @ cs" | 
| 1017 | apply (induct n m c bs rule: bin_rsplitl_aux.induct) | |
| 24333 | 1018 | apply (subst bin_rsplitl_aux.simps) | 
| 1019 | apply (subst bin_rsplitl_aux.simps) | |
| 1020 | apply (clarsimp split: ls_splits) | |
| 26557 | 1021 | apply auto | 
| 24333 | 1022 | done | 
| 1023 | ||
| 1024 | lemmas rsplit_aux_apps [where bs = "[]"] = | |
| 1025 | bin_rsplit_aux_append bin_rsplitl_aux_append | |
| 1026 | ||
| 1027 | lemmas rsplit_def_auxs = bin_rsplit_def bin_rsplitl_def | |
| 1028 | ||
| 1029 | lemmas rsplit_aux_alts = rsplit_aux_apps | |
| 1030 | [unfolded append_Nil rsplit_def_auxs [symmetric]] | |
| 1031 | ||
| 1032 | lemma bin_split_minus: "0 < n ==> bin_split (Suc (n - 1)) w = bin_split n w" | |
| 1033 | by auto | |
| 1034 | ||
| 1035 | lemmas bin_split_minus_simp = | |
| 45604 | 1036 | bin_split.Suc [THEN [2] bin_split_minus [symmetric, THEN trans]] | 
| 24333 | 1037 | |
| 1038 | lemma bin_split_pred_simp [simp]: | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46655diff
changeset | 1039 | "(0::nat) < numeral bin \<Longrightarrow> | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46655diff
changeset | 1040 | bin_split (numeral bin) w = | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46655diff
changeset | 1041 | (let (w1, w2) = bin_split (numeral bin - 1) (bin_rest w) | 
| 24333 | 1042 | in (w1, w2 BIT bin_last w))" | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46655diff
changeset | 1043 | by (simp only: bin_split_minus_simp) | 
| 24333 | 1044 | |
| 1045 | lemma bin_rsplit_aux_simp_alt: | |
| 26557 | 1046 | "bin_rsplit_aux n m c bs = | 
| 24333 | 1047 | (if m = 0 \<or> n = 0 | 
| 1048 | then bs | |
| 1049 | else let (a, b) = bin_split n c in bin_rsplit n (m - n, a) @ b # bs)" | |
| 26557 | 1050 | unfolding bin_rsplit_aux.simps [of n m c bs] | 
| 1051 | apply simp | |
| 1052 | apply (subst rsplit_aux_alts) | |
| 1053 | apply (simp add: bin_rsplit_def) | |
| 24333 | 1054 | done | 
| 1055 | ||
| 1056 | lemmas bin_rsplit_simp_alt = | |
| 45604 | 1057 | trans [OF bin_rsplit_def bin_rsplit_aux_simp_alt] | 
| 24333 | 1058 | |
| 1059 | lemmas bthrs = bin_rsplit_simp_alt [THEN [2] trans] | |
| 1060 | ||
| 1061 | lemma bin_rsplit_size_sign' [rule_format] : | |
| 45997 
13392893ea12
use 'induct arbitrary' instead of 'rule_format' attribute
 huffman parents: 
45996diff
changeset | 1062 | "\<lbrakk>n > 0; rev sw = bin_rsplit n (nw, w)\<rbrakk> \<Longrightarrow> | 
| 
13392893ea12
use 'induct arbitrary' instead of 'rule_format' attribute
 huffman parents: 
45996diff
changeset | 1063 | (ALL v: set sw. bintrunc n v = v)" | 
| 
13392893ea12
use 'induct arbitrary' instead of 'rule_format' attribute
 huffman parents: 
45996diff
changeset | 1064 | apply (induct sw arbitrary: nw w v) | 
| 24333 | 1065 | apply clarsimp | 
| 1066 | apply clarsimp | |
| 1067 | apply (drule bthrs) | |
| 1068 | apply (simp (no_asm_use) add: Let_def split: ls_splits) | |
| 1069 | apply clarify | |
| 1070 | apply (drule split_bintrunc) | |
| 1071 | apply simp | |
| 1072 | done | |
| 1073 | ||
| 1074 | lemmas bin_rsplit_size_sign = bin_rsplit_size_sign' [OF asm_rl | |
| 45604 | 1075 | rev_rev_ident [THEN trans] set_rev [THEN equalityD2 [THEN subsetD]]] | 
| 24333 | 1076 | |
| 1077 | lemma bin_nth_rsplit [rule_format] : | |
| 1078 | "n > 0 ==> m < n ==> (ALL w k nw. rev sw = bin_rsplit n (nw, w) --> | |
| 1079 | k < size sw --> bin_nth (sw ! k) m = bin_nth w (k * n + m))" | |
| 1080 | apply (induct sw) | |
| 1081 | apply clarsimp | |
| 1082 | apply clarsimp | |
| 1083 | apply (drule bthrs) | |
| 1084 | apply (simp (no_asm_use) add: Let_def split: ls_splits) | |
| 1085 | apply clarify | |
| 1086 | apply (erule allE, erule impE, erule exI) | |
| 1087 | apply (case_tac k) | |
| 1088 | apply clarsimp | |
| 1089 | prefer 2 | |
| 1090 | apply clarsimp | |
| 1091 | apply (erule allE) | |
| 1092 | apply (erule (1) impE) | |
| 1093 | apply (drule bin_nth_split, erule conjE, erule allE, | |
| 1094 | erule trans, simp add : add_ac)+ | |
| 1095 | done | |
| 1096 | ||
| 1097 | lemma bin_rsplit_all: | |
| 1098 | "0 < nw ==> nw <= n ==> bin_rsplit n (nw, w) = [bintrunc n w]" | |
| 1099 | unfolding bin_rsplit_def | |
| 1100 | by (clarsimp dest!: split_bintrunc simp: rsplit_aux_simp2ls split: ls_splits) | |
| 1101 | ||
| 1102 | lemma bin_rsplit_l [rule_format] : | |
| 1103 | "ALL bin. bin_rsplitl n (m, bin) = bin_rsplit n (m, bintrunc m bin)" | |
| 1104 | apply (rule_tac a = "m" in wf_less_than [THEN wf_induct]) | |
| 1105 | apply (simp (no_asm) add : bin_rsplitl_def bin_rsplit_def) | |
| 1106 | apply (rule allI) | |
| 1107 | apply (subst bin_rsplitl_aux.simps) | |
| 1108 | apply (subst bin_rsplit_aux.simps) | |
| 26557 | 1109 | apply (clarsimp simp: Let_def split: ls_splits) | 
| 24333 | 1110 | apply (drule bin_split_trunc) | 
| 1111 | apply (drule sym [THEN trans], assumption) | |
| 26557 | 1112 | apply (subst rsplit_aux_alts(1)) | 
| 1113 | apply (subst rsplit_aux_alts(2)) | |
| 1114 | apply clarsimp | |
| 1115 | unfolding bin_rsplit_def bin_rsplitl_def | |
| 1116 | apply simp | |
| 24333 | 1117 | done | 
| 26557 | 1118 | |
| 24333 | 1119 | lemma bin_rsplit_rcat [rule_format] : | 
| 1120 | "n > 0 --> bin_rsplit n (n * size ws, bin_rcat n ws) = map (bintrunc n) ws" | |
| 1121 | apply (unfold bin_rsplit_def bin_rcat_def) | |
| 1122 | apply (rule_tac xs = "ws" in rev_induct) | |
| 1123 | apply clarsimp | |
| 1124 | apply clarsimp | |
| 26557 | 1125 | apply (subst rsplit_aux_alts) | 
| 1126 | unfolding bin_split_cat | |
| 1127 | apply simp | |
| 24333 | 1128 | done | 
| 1129 | ||
| 1130 | lemma bin_rsplit_aux_len_le [rule_format] : | |
| 26557 | 1131 | "\<forall>ws m. n \<noteq> 0 \<longrightarrow> ws = bin_rsplit_aux n nw w bs \<longrightarrow> | 
| 1132 | length ws \<le> m \<longleftrightarrow> nw + length bs * n \<le> m * n" | |
| 1133 | apply (induct n nw w bs rule: bin_rsplit_aux.induct) | |
| 24333 | 1134 | apply (subst bin_rsplit_aux.simps) | 
| 26557 | 1135 | apply (simp add: lrlem Let_def split: ls_splits) | 
| 24333 | 1136 | done | 
| 1137 | ||
| 1138 | lemma bin_rsplit_len_le: | |
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 1139 | "n \<noteq> 0 --> ws = bin_rsplit n (nw, w) --> (length ws <= m) = (nw <= m * n)" | 
| 24333 | 1140 | unfolding bin_rsplit_def by (clarsimp simp add : bin_rsplit_aux_len_le) | 
| 1141 | ||
| 45997 
13392893ea12
use 'induct arbitrary' instead of 'rule_format' attribute
 huffman parents: 
45996diff
changeset | 1142 | lemma bin_rsplit_aux_len: | 
| 
13392893ea12
use 'induct arbitrary' instead of 'rule_format' attribute
 huffman parents: 
45996diff
changeset | 1143 | "n \<noteq> 0 \<Longrightarrow> length (bin_rsplit_aux n nw w cs) = | 
| 24333 | 1144 | (nw + n - 1) div n + length cs" | 
| 26557 | 1145 | apply (induct n nw w cs rule: bin_rsplit_aux.induct) | 
| 24333 | 1146 | apply (subst bin_rsplit_aux.simps) | 
| 1147 | apply (clarsimp simp: Let_def split: ls_splits) | |
| 1148 | apply (erule thin_rl) | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27105diff
changeset | 1149 | apply (case_tac m) | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27105diff
changeset | 1150 | apply simp | 
| 24333 | 1151 | apply (case_tac "m <= n") | 
| 27677 | 1152 | apply auto | 
| 24333 | 1153 | done | 
| 1154 | ||
| 1155 | lemma bin_rsplit_len: | |
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 1156 | "n\<noteq>0 ==> length (bin_rsplit n (nw, w)) = (nw + n - 1) div n" | 
| 24333 | 1157 | unfolding bin_rsplit_def by (clarsimp simp add : bin_rsplit_aux_len) | 
| 1158 | ||
| 26557 | 1159 | lemma bin_rsplit_aux_len_indep: | 
| 1160 | "n \<noteq> 0 \<Longrightarrow> length bs = length cs \<Longrightarrow> | |
| 1161 | length (bin_rsplit_aux n nw v bs) = | |
| 1162 | length (bin_rsplit_aux n nw w cs)" | |
| 1163 | proof (induct n nw w cs arbitrary: v bs rule: bin_rsplit_aux.induct) | |
| 1164 | case (1 n m w cs v bs) show ?case | |
| 1165 | proof (cases "m = 0") | |
| 28298 | 1166 | case True then show ?thesis using `length bs = length cs` by simp | 
| 26557 | 1167 | next | 
| 1168 | case False | |
| 1169 | from "1.hyps" `m \<noteq> 0` `n \<noteq> 0` have hyp: "\<And>v bs. length bs = Suc (length cs) \<Longrightarrow> | |
| 1170 | length (bin_rsplit_aux n (m - n) v bs) = | |
| 1171 | length (bin_rsplit_aux n (m - n) (fst (bin_split n w)) (snd (bin_split n w) # cs))" | |
| 1172 | by auto | |
| 1173 | show ?thesis using `length bs = length cs` `n \<noteq> 0` | |
| 1174 | by (auto simp add: bin_rsplit_aux_simp_alt Let_def bin_rsplit_len | |
| 1175 | split: ls_splits) | |
| 1176 | qed | |
| 1177 | qed | |
| 24333 | 1178 | |
| 1179 | lemma bin_rsplit_len_indep: | |
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 1180 | "n\<noteq>0 ==> length (bin_rsplit n (nw, v)) = length (bin_rsplit n (nw, w))" | 
| 24333 | 1181 | apply (unfold bin_rsplit_def) | 
| 26557 | 1182 | apply (simp (no_asm)) | 
| 24333 | 1183 | apply (erule bin_rsplit_aux_len_indep) | 
| 1184 | apply (rule refl) | |
| 1185 | done | |
| 1186 | ||
| 1187 | end |