| author | huffman | 
| Tue, 12 Oct 2010 06:20:05 -0700 | |
| changeset 40006 | 116e94f9543b | 
| parent 39302 | d7728f65b353 | 
| child 40969 | fb2d3ccda5a7 | 
| permissions | -rw-r--r-- | 
| 5181 
4ba3787d9709
New theory Datatype. Needed as an ancestor when defining datatypes.
 berghofe parents: diff
changeset | 1 | (* Title: HOL/Datatype.thy | 
| 20819 | 2 | Author: Lawrence C Paulson, Cambridge University Computer Laboratory | 
| 11954 | 3 | Author: Stefan Berghofer and Markus Wenzel, TU Muenchen | 
| 5181 
4ba3787d9709
New theory Datatype. Needed as an ancestor when defining datatypes.
 berghofe parents: diff
changeset | 4 | *) | 
| 
4ba3787d9709
New theory Datatype. Needed as an ancestor when defining datatypes.
 berghofe parents: diff
changeset | 5 | |
| 33968 
f94fb13ecbb3
modernized structures and tuned headers of datatype package modules; joined former datatype.ML and datatype_rep_proofs.ML
 haftmann parents: 
33963diff
changeset | 6 | header {* Datatype package: constructing datatypes from Cartesian Products and Disjoint Sums *}
 | 
| 11954 | 7 | |
| 15131 | 8 | theory Datatype | 
| 33959 
2afc55e8ed27
bootstrap datatype_rep_proofs in Datatype.thy (avoids unchecked dynamic name references)
 haftmann parents: 
33633diff
changeset | 9 | imports Product_Type Sum_Type Nat | 
| 
2afc55e8ed27
bootstrap datatype_rep_proofs in Datatype.thy (avoids unchecked dynamic name references)
 haftmann parents: 
33633diff
changeset | 10 | uses | 
| 33963 
977b94b64905
renamed former datatype.ML to datatype_data.ML; datatype.ML provides uniform view on datatype.ML and datatype_rep_proofs.ML
 haftmann parents: 
33959diff
changeset | 11 |   ("Tools/Datatype/datatype.ML")
 | 
| 33959 
2afc55e8ed27
bootstrap datatype_rep_proofs in Datatype.thy (avoids unchecked dynamic name references)
 haftmann parents: 
33633diff
changeset | 12 |   ("Tools/inductive_realizer.ML")
 | 
| 
2afc55e8ed27
bootstrap datatype_rep_proofs in Datatype.thy (avoids unchecked dynamic name references)
 haftmann parents: 
33633diff
changeset | 13 |   ("Tools/Datatype/datatype_realizer.ML")
 | 
| 15131 | 14 | begin | 
| 11954 | 15 | |
| 33959 
2afc55e8ed27
bootstrap datatype_rep_proofs in Datatype.thy (avoids unchecked dynamic name references)
 haftmann parents: 
33633diff
changeset | 16 | subsection {* The datatype universe *}
 | 
| 
2afc55e8ed27
bootstrap datatype_rep_proofs in Datatype.thy (avoids unchecked dynamic name references)
 haftmann parents: 
33633diff
changeset | 17 | |
| 20819 | 18 | typedef (Node) | 
| 19 |   ('a,'b) node = "{p. EX f x k. p = (f::nat=>'b+nat, x::'a+nat) & f k = Inr 0}"
 | |
| 20 |     --{*it is a subtype of @{text "(nat=>'b+nat) * ('a+nat)"}*}
 | |
| 21 | by auto | |
| 22 | ||
| 23 | text{*Datatypes will be represented by sets of type @{text node}*}
 | |
| 24 | ||
| 25 | types 'a item        = "('a, unit) node set"
 | |
| 26 |       ('a, 'b) dtree = "('a, 'b) node set"
 | |
| 27 | ||
| 28 | consts | |
| 29 |   Push      :: "[('b + nat), nat => ('b + nat)] => (nat => ('b + nat))"
 | |
| 30 | ||
| 31 |   Push_Node :: "[('b + nat), ('a, 'b) node] => ('a, 'b) node"
 | |
| 32 |   ndepth    :: "('a, 'b) node => nat"
 | |
| 33 | ||
| 34 |   Atom      :: "('a + nat) => ('a, 'b) dtree"
 | |
| 35 |   Leaf      :: "'a => ('a, 'b) dtree"
 | |
| 36 |   Numb      :: "nat => ('a, 'b) dtree"
 | |
| 37 |   Scons     :: "[('a, 'b) dtree, ('a, 'b) dtree] => ('a, 'b) dtree"
 | |
| 38 |   In0       :: "('a, 'b) dtree => ('a, 'b) dtree"
 | |
| 39 |   In1       :: "('a, 'b) dtree => ('a, 'b) dtree"
 | |
| 40 |   Lim       :: "('b => ('a, 'b) dtree) => ('a, 'b) dtree"
 | |
| 41 | ||
| 42 |   ntrunc    :: "[nat, ('a, 'b) dtree] => ('a, 'b) dtree"
 | |
| 43 | ||
| 44 |   uprod     :: "[('a, 'b) dtree set, ('a, 'b) dtree set]=> ('a, 'b) dtree set"
 | |
| 45 |   usum      :: "[('a, 'b) dtree set, ('a, 'b) dtree set]=> ('a, 'b) dtree set"
 | |
| 46 | ||
| 47 |   Split     :: "[[('a, 'b) dtree, ('a, 'b) dtree]=>'c, ('a, 'b) dtree] => 'c"
 | |
| 48 |   Case      :: "[[('a, 'b) dtree]=>'c, [('a, 'b) dtree]=>'c, ('a, 'b) dtree] => 'c"
 | |
| 49 | ||
| 50 |   dprod     :: "[(('a, 'b) dtree * ('a, 'b) dtree)set, (('a, 'b) dtree * ('a, 'b) dtree)set]
 | |
| 51 |                 => (('a, 'b) dtree * ('a, 'b) dtree)set"
 | |
| 52 |   dsum      :: "[(('a, 'b) dtree * ('a, 'b) dtree)set, (('a, 'b) dtree * ('a, 'b) dtree)set]
 | |
| 53 |                 => (('a, 'b) dtree * ('a, 'b) dtree)set"
 | |
| 54 | ||
| 55 | ||
| 56 | defs | |
| 57 | ||
| 58 | Push_Node_def: "Push_Node == (%n x. Abs_Node (apfst (Push n) (Rep_Node x)))" | |
| 59 | ||
| 60 | (*crude "lists" of nats -- needed for the constructions*) | |
| 61 | Push_def: "Push == (%b h. nat_case b h)" | |
| 62 | ||
| 63 | (** operations on S-expressions -- sets of nodes **) | |
| 64 | ||
| 65 | (*S-expression constructors*) | |
| 66 |   Atom_def:   "Atom == (%x. {Abs_Node((%k. Inr 0, x))})"
 | |
| 67 | Scons_def: "Scons M N == (Push_Node (Inr 1) ` M) Un (Push_Node (Inr (Suc 1)) ` N)" | |
| 68 | ||
| 69 | (*Leaf nodes, with arbitrary or nat labels*) | |
| 70 | Leaf_def: "Leaf == Atom o Inl" | |
| 71 | Numb_def: "Numb == Atom o Inr" | |
| 72 | ||
| 73 | (*Injections of the "disjoint sum"*) | |
| 74 | In0_def: "In0(M) == Scons (Numb 0) M" | |
| 75 | In1_def: "In1(M) == Scons (Numb 1) M" | |
| 76 | ||
| 77 | (*Function spaces*) | |
| 78 |   Lim_def: "Lim f == Union {z. ? x. z = Push_Node (Inl x) ` (f x)}"
 | |
| 79 | ||
| 80 | (*the set of nodes with depth less than k*) | |
| 81 | ndepth_def: "ndepth(n) == (%(f,x). LEAST k. f k = Inr 0) (Rep_Node n)" | |
| 82 |   ntrunc_def: "ntrunc k N == {n. n:N & ndepth(n)<k}"
 | |
| 83 | ||
| 84 | (*products and sums for the "universe"*) | |
| 85 |   uprod_def:  "uprod A B == UN x:A. UN y:B. { Scons x y }"
 | |
| 86 | usum_def: "usum A B == In0`A Un In1`B" | |
| 87 | ||
| 88 | (*the corresponding eliminators*) | |
| 89 | Split_def: "Split c M == THE u. EX x y. M = Scons x y & u = c x y" | |
| 90 | ||
| 91 | Case_def: "Case c d M == THE u. (EX x . M = In0(x) & u = c(x)) | |
| 92 | | (EX y . M = In1(y) & u = d(y))" | |
| 93 | ||
| 94 | ||
| 95 | (** equality for the "universe" **) | |
| 96 | ||
| 97 |   dprod_def:  "dprod r s == UN (x,x'):r. UN (y,y'):s. {(Scons x y, Scons x' y')}"
 | |
| 98 | ||
| 99 |   dsum_def:   "dsum r s == (UN (x,x'):r. {(In0(x),In0(x'))}) Un
 | |
| 100 |                           (UN (y,y'):s. {(In1(y),In1(y'))})"
 | |
| 101 | ||
| 102 | ||
| 103 | ||
| 104 | lemma apfst_convE: | |
| 105 | "[| q = apfst f p; !!x y. [| p = (x,y); q = (f(x),y) |] ==> R | |
| 106 | |] ==> R" | |
| 107 | by (force simp add: apfst_def) | |
| 108 | ||
| 109 | (** Push -- an injection, analogous to Cons on lists **) | |
| 110 | ||
| 111 | lemma Push_inject1: "Push i f = Push j g ==> i=j" | |
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 112 | apply (simp add: Push_def fun_eq_iff) | 
| 20819 | 113 | apply (drule_tac x=0 in spec, simp) | 
| 114 | done | |
| 115 | ||
| 116 | lemma Push_inject2: "Push i f = Push j g ==> f=g" | |
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 117 | apply (auto simp add: Push_def fun_eq_iff) | 
| 20819 | 118 | apply (drule_tac x="Suc x" in spec, simp) | 
| 119 | done | |
| 120 | ||
| 121 | lemma Push_inject: | |
| 122 | "[| Push i f =Push j g; [| i=j; f=g |] ==> P |] ==> P" | |
| 123 | by (blast dest: Push_inject1 Push_inject2) | |
| 124 | ||
| 125 | lemma Push_neq_K0: "Push (Inr (Suc k)) f = (%z. Inr 0) ==> P" | |
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 126 | by (auto simp add: Push_def fun_eq_iff split: nat.split_asm) | 
| 20819 | 127 | |
| 128 | lemmas Abs_Node_inj = Abs_Node_inject [THEN [2] rev_iffD1, standard] | |
| 129 | ||
| 130 | ||
| 131 | (*** Introduction rules for Node ***) | |
| 132 | ||
| 133 | lemma Node_K0_I: "(%k. Inr 0, a) : Node" | |
| 134 | by (simp add: Node_def) | |
| 135 | ||
| 136 | lemma Node_Push_I: "p: Node ==> apfst (Push i) p : Node" | |
| 137 | apply (simp add: Node_def Push_def) | |
| 138 | apply (fast intro!: apfst_conv nat_case_Suc [THEN trans]) | |
| 139 | done | |
| 140 | ||
| 141 | ||
| 142 | subsection{*Freeness: Distinctness of Constructors*}
 | |
| 143 | ||
| 144 | (** Scons vs Atom **) | |
| 145 | ||
| 146 | lemma Scons_not_Atom [iff]: "Scons M N \<noteq> Atom(a)" | |
| 35216 | 147 | unfolding Atom_def Scons_def Push_Node_def One_nat_def | 
| 148 | by (blast intro: Node_K0_I Rep_Node [THEN Node_Push_I] | |
| 20819 | 149 | dest!: Abs_Node_inj | 
| 150 | elim!: apfst_convE sym [THEN Push_neq_K0]) | |
| 151 | ||
| 21407 | 152 | lemmas Atom_not_Scons [iff] = Scons_not_Atom [THEN not_sym, standard] | 
| 153 | ||
| 20819 | 154 | |
| 155 | (*** Injectiveness ***) | |
| 156 | ||
| 157 | (** Atomic nodes **) | |
| 158 | ||
| 159 | lemma inj_Atom: "inj(Atom)" | |
| 160 | apply (simp add: Atom_def) | |
| 161 | apply (blast intro!: inj_onI Node_K0_I dest!: Abs_Node_inj) | |
| 162 | done | |
| 163 | lemmas Atom_inject = inj_Atom [THEN injD, standard] | |
| 164 | ||
| 165 | lemma Atom_Atom_eq [iff]: "(Atom(a)=Atom(b)) = (a=b)" | |
| 166 | by (blast dest!: Atom_inject) | |
| 167 | ||
| 168 | lemma inj_Leaf: "inj(Leaf)" | |
| 169 | apply (simp add: Leaf_def o_def) | |
| 170 | apply (rule inj_onI) | |
| 171 | apply (erule Atom_inject [THEN Inl_inject]) | |
| 172 | done | |
| 173 | ||
| 21407 | 174 | lemmas Leaf_inject [dest!] = inj_Leaf [THEN injD, standard] | 
| 20819 | 175 | |
| 176 | lemma inj_Numb: "inj(Numb)" | |
| 177 | apply (simp add: Numb_def o_def) | |
| 178 | apply (rule inj_onI) | |
| 179 | apply (erule Atom_inject [THEN Inr_inject]) | |
| 180 | done | |
| 181 | ||
| 21407 | 182 | lemmas Numb_inject [dest!] = inj_Numb [THEN injD, standard] | 
| 20819 | 183 | |
| 184 | ||
| 185 | (** Injectiveness of Push_Node **) | |
| 186 | ||
| 187 | lemma Push_Node_inject: | |
| 188 | "[| Push_Node i m =Push_Node j n; [| i=j; m=n |] ==> P | |
| 189 | |] ==> P" | |
| 190 | apply (simp add: Push_Node_def) | |
| 191 | apply (erule Abs_Node_inj [THEN apfst_convE]) | |
| 192 | apply (rule Rep_Node [THEN Node_Push_I])+ | |
| 193 | apply (erule sym [THEN apfst_convE]) | |
| 194 | apply (blast intro: Rep_Node_inject [THEN iffD1] trans sym elim!: Push_inject) | |
| 195 | done | |
| 196 | ||
| 197 | ||
| 198 | (** Injectiveness of Scons **) | |
| 199 | ||
| 200 | lemma Scons_inject_lemma1: "Scons M N <= Scons M' N' ==> M<=M'" | |
| 35216 | 201 | unfolding Scons_def One_nat_def | 
| 202 | by (blast dest!: Push_Node_inject) | |
| 20819 | 203 | |
| 204 | lemma Scons_inject_lemma2: "Scons M N <= Scons M' N' ==> N<=N'" | |
| 35216 | 205 | unfolding Scons_def One_nat_def | 
| 206 | by (blast dest!: Push_Node_inject) | |
| 20819 | 207 | |
| 208 | lemma Scons_inject1: "Scons M N = Scons M' N' ==> M=M'" | |
| 209 | apply (erule equalityE) | |
| 210 | apply (iprover intro: equalityI Scons_inject_lemma1) | |
| 211 | done | |
| 212 | ||
| 213 | lemma Scons_inject2: "Scons M N = Scons M' N' ==> N=N'" | |
| 214 | apply (erule equalityE) | |
| 215 | apply (iprover intro: equalityI Scons_inject_lemma2) | |
| 216 | done | |
| 217 | ||
| 218 | lemma Scons_inject: | |
| 219 | "[| Scons M N = Scons M' N'; [| M=M'; N=N' |] ==> P |] ==> P" | |
| 220 | by (iprover dest: Scons_inject1 Scons_inject2) | |
| 221 | ||
| 222 | lemma Scons_Scons_eq [iff]: "(Scons M N = Scons M' N') = (M=M' & N=N')" | |
| 223 | by (blast elim!: Scons_inject) | |
| 224 | ||
| 225 | (*** Distinctness involving Leaf and Numb ***) | |
| 226 | ||
| 227 | (** Scons vs Leaf **) | |
| 228 | ||
| 229 | lemma Scons_not_Leaf [iff]: "Scons M N \<noteq> Leaf(a)" | |
| 35216 | 230 | unfolding Leaf_def o_def by (rule Scons_not_Atom) | 
| 20819 | 231 | |
| 21407 | 232 | lemmas Leaf_not_Scons [iff] = Scons_not_Leaf [THEN not_sym, standard] | 
| 20819 | 233 | |
| 234 | (** Scons vs Numb **) | |
| 235 | ||
| 236 | lemma Scons_not_Numb [iff]: "Scons M N \<noteq> Numb(k)" | |
| 35216 | 237 | unfolding Numb_def o_def by (rule Scons_not_Atom) | 
| 20819 | 238 | |
| 21407 | 239 | lemmas Numb_not_Scons [iff] = Scons_not_Numb [THEN not_sym, standard] | 
| 20819 | 240 | |
| 241 | ||
| 242 | (** Leaf vs Numb **) | |
| 243 | ||
| 244 | lemma Leaf_not_Numb [iff]: "Leaf(a) \<noteq> Numb(k)" | |
| 245 | by (simp add: Leaf_def Numb_def) | |
| 246 | ||
| 21407 | 247 | lemmas Numb_not_Leaf [iff] = Leaf_not_Numb [THEN not_sym, standard] | 
| 20819 | 248 | |
| 249 | ||
| 250 | (*** ndepth -- the depth of a node ***) | |
| 251 | ||
| 252 | lemma ndepth_K0: "ndepth (Abs_Node(%k. Inr 0, x)) = 0" | |
| 253 | by (simp add: ndepth_def Node_K0_I [THEN Abs_Node_inverse] Least_equality) | |
| 254 | ||
| 255 | lemma ndepth_Push_Node_aux: | |
| 256 | "nat_case (Inr (Suc i)) f k = Inr 0 --> Suc(LEAST x. f x = Inr 0) <= k" | |
| 257 | apply (induct_tac "k", auto) | |
| 258 | apply (erule Least_le) | |
| 259 | done | |
| 260 | ||
| 261 | lemma ndepth_Push_Node: | |
| 262 | "ndepth (Push_Node (Inr (Suc i)) n) = Suc(ndepth(n))" | |
| 263 | apply (insert Rep_Node [of n, unfolded Node_def]) | |
| 264 | apply (auto simp add: ndepth_def Push_Node_def | |
| 265 | Rep_Node [THEN Node_Push_I, THEN Abs_Node_inverse]) | |
| 266 | apply (rule Least_equality) | |
| 267 | apply (auto simp add: Push_def ndepth_Push_Node_aux) | |
| 268 | apply (erule LeastI) | |
| 269 | done | |
| 270 | ||
| 271 | ||
| 272 | (*** ntrunc applied to the various node sets ***) | |
| 273 | ||
| 274 | lemma ntrunc_0 [simp]: "ntrunc 0 M = {}"
 | |
| 275 | by (simp add: ntrunc_def) | |
| 276 | ||
| 277 | lemma ntrunc_Atom [simp]: "ntrunc (Suc k) (Atom a) = Atom(a)" | |
| 278 | by (auto simp add: Atom_def ntrunc_def ndepth_K0) | |
| 279 | ||
| 280 | lemma ntrunc_Leaf [simp]: "ntrunc (Suc k) (Leaf a) = Leaf(a)" | |
| 35216 | 281 | unfolding Leaf_def o_def by (rule ntrunc_Atom) | 
| 20819 | 282 | |
| 283 | lemma ntrunc_Numb [simp]: "ntrunc (Suc k) (Numb i) = Numb(i)" | |
| 35216 | 284 | unfolding Numb_def o_def by (rule ntrunc_Atom) | 
| 20819 | 285 | |
| 286 | lemma ntrunc_Scons [simp]: | |
| 287 | "ntrunc (Suc k) (Scons M N) = Scons (ntrunc k M) (ntrunc k N)" | |
| 35216 | 288 | unfolding Scons_def ntrunc_def One_nat_def | 
| 289 | by (auto simp add: ndepth_Push_Node) | |
| 20819 | 290 | |
| 291 | ||
| 292 | ||
| 293 | (** Injection nodes **) | |
| 294 | ||
| 295 | lemma ntrunc_one_In0 [simp]: "ntrunc (Suc 0) (In0 M) = {}"
 | |
| 296 | apply (simp add: In0_def) | |
| 297 | apply (simp add: Scons_def) | |
| 298 | done | |
| 299 | ||
| 300 | lemma ntrunc_In0 [simp]: "ntrunc (Suc(Suc k)) (In0 M) = In0 (ntrunc (Suc k) M)" | |
| 301 | by (simp add: In0_def) | |
| 302 | ||
| 303 | lemma ntrunc_one_In1 [simp]: "ntrunc (Suc 0) (In1 M) = {}"
 | |
| 304 | apply (simp add: In1_def) | |
| 305 | apply (simp add: Scons_def) | |
| 306 | done | |
| 307 | ||
| 308 | lemma ntrunc_In1 [simp]: "ntrunc (Suc(Suc k)) (In1 M) = In1 (ntrunc (Suc k) M)" | |
| 309 | by (simp add: In1_def) | |
| 310 | ||
| 311 | ||
| 312 | subsection{*Set Constructions*}
 | |
| 313 | ||
| 314 | ||
| 315 | (*** Cartesian Product ***) | |
| 316 | ||
| 317 | lemma uprodI [intro!]: "[| M:A; N:B |] ==> Scons M N : uprod A B" | |
| 318 | by (simp add: uprod_def) | |
| 319 | ||
| 320 | (*The general elimination rule*) | |
| 321 | lemma uprodE [elim!]: | |
| 322 | "[| c : uprod A B; | |
| 323 | !!x y. [| x:A; y:B; c = Scons x y |] ==> P | |
| 324 | |] ==> P" | |
| 325 | by (auto simp add: uprod_def) | |
| 326 | ||
| 327 | ||
| 328 | (*Elimination of a pair -- introduces no eigenvariables*) | |
| 329 | lemma uprodE2: "[| Scons M N : uprod A B; [| M:A; N:B |] ==> P |] ==> P" | |
| 330 | by (auto simp add: uprod_def) | |
| 331 | ||
| 332 | ||
| 333 | (*** Disjoint Sum ***) | |
| 334 | ||
| 335 | lemma usum_In0I [intro]: "M:A ==> In0(M) : usum A B" | |
| 336 | by (simp add: usum_def) | |
| 337 | ||
| 338 | lemma usum_In1I [intro]: "N:B ==> In1(N) : usum A B" | |
| 339 | by (simp add: usum_def) | |
| 340 | ||
| 341 | lemma usumE [elim!]: | |
| 342 | "[| u : usum A B; | |
| 343 | !!x. [| x:A; u=In0(x) |] ==> P; | |
| 344 | !!y. [| y:B; u=In1(y) |] ==> P | |
| 345 | |] ==> P" | |
| 346 | by (auto simp add: usum_def) | |
| 347 | ||
| 348 | ||
| 349 | (** Injection **) | |
| 350 | ||
| 351 | lemma In0_not_In1 [iff]: "In0(M) \<noteq> In1(N)" | |
| 35216 | 352 | unfolding In0_def In1_def One_nat_def by auto | 
| 20819 | 353 | |
| 21407 | 354 | lemmas In1_not_In0 [iff] = In0_not_In1 [THEN not_sym, standard] | 
| 20819 | 355 | |
| 356 | lemma In0_inject: "In0(M) = In0(N) ==> M=N" | |
| 357 | by (simp add: In0_def) | |
| 358 | ||
| 359 | lemma In1_inject: "In1(M) = In1(N) ==> M=N" | |
| 360 | by (simp add: In1_def) | |
| 361 | ||
| 362 | lemma In0_eq [iff]: "(In0 M = In0 N) = (M=N)" | |
| 363 | by (blast dest!: In0_inject) | |
| 364 | ||
| 365 | lemma In1_eq [iff]: "(In1 M = In1 N) = (M=N)" | |
| 366 | by (blast dest!: In1_inject) | |
| 367 | ||
| 368 | lemma inj_In0: "inj In0" | |
| 369 | by (blast intro!: inj_onI) | |
| 370 | ||
| 371 | lemma inj_In1: "inj In1" | |
| 372 | by (blast intro!: inj_onI) | |
| 373 | ||
| 374 | ||
| 375 | (*** Function spaces ***) | |
| 376 | ||
| 377 | lemma Lim_inject: "Lim f = Lim g ==> f = g" | |
| 378 | apply (simp add: Lim_def) | |
| 379 | apply (rule ext) | |
| 380 | apply (blast elim!: Push_Node_inject) | |
| 381 | done | |
| 382 | ||
| 383 | ||
| 384 | (*** proving equality of sets and functions using ntrunc ***) | |
| 385 | ||
| 386 | lemma ntrunc_subsetI: "ntrunc k M <= M" | |
| 387 | by (auto simp add: ntrunc_def) | |
| 388 | ||
| 389 | lemma ntrunc_subsetD: "(!!k. ntrunc k M <= N) ==> M<=N" | |
| 390 | by (auto simp add: ntrunc_def) | |
| 391 | ||
| 392 | (*A generalized form of the take-lemma*) | |
| 393 | lemma ntrunc_equality: "(!!k. ntrunc k M = ntrunc k N) ==> M=N" | |
| 394 | apply (rule equalityI) | |
| 395 | apply (rule_tac [!] ntrunc_subsetD) | |
| 396 | apply (rule_tac [!] ntrunc_subsetI [THEN [2] subset_trans], auto) | |
| 397 | done | |
| 398 | ||
| 399 | lemma ntrunc_o_equality: | |
| 400 | "[| !!k. (ntrunc(k) o h1) = (ntrunc(k) o h2) |] ==> h1=h2" | |
| 401 | apply (rule ntrunc_equality [THEN ext]) | |
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 402 | apply (simp add: fun_eq_iff) | 
| 20819 | 403 | done | 
| 404 | ||
| 405 | ||
| 406 | (*** Monotonicity ***) | |
| 407 | ||
| 408 | lemma uprod_mono: "[| A<=A'; B<=B' |] ==> uprod A B <= uprod A' B'" | |
| 409 | by (simp add: uprod_def, blast) | |
| 410 | ||
| 411 | lemma usum_mono: "[| A<=A'; B<=B' |] ==> usum A B <= usum A' B'" | |
| 412 | by (simp add: usum_def, blast) | |
| 413 | ||
| 414 | lemma Scons_mono: "[| M<=M'; N<=N' |] ==> Scons M N <= Scons M' N'" | |
| 415 | by (simp add: Scons_def, blast) | |
| 416 | ||
| 417 | lemma In0_mono: "M<=N ==> In0(M) <= In0(N)" | |
| 35216 | 418 | by (simp add: In0_def Scons_mono) | 
| 20819 | 419 | |
| 420 | lemma In1_mono: "M<=N ==> In1(M) <= In1(N)" | |
| 35216 | 421 | by (simp add: In1_def Scons_mono) | 
| 20819 | 422 | |
| 423 | ||
| 424 | (*** Split and Case ***) | |
| 425 | ||
| 426 | lemma Split [simp]: "Split c (Scons M N) = c M N" | |
| 427 | by (simp add: Split_def) | |
| 428 | ||
| 429 | lemma Case_In0 [simp]: "Case c d (In0 M) = c(M)" | |
| 430 | by (simp add: Case_def) | |
| 431 | ||
| 432 | lemma Case_In1 [simp]: "Case c d (In1 N) = d(N)" | |
| 433 | by (simp add: Case_def) | |
| 434 | ||
| 435 | ||
| 436 | ||
| 437 | (**** UN x. B(x) rules ****) | |
| 438 | ||
| 439 | lemma ntrunc_UN1: "ntrunc k (UN x. f(x)) = (UN x. ntrunc k (f x))" | |
| 440 | by (simp add: ntrunc_def, blast) | |
| 441 | ||
| 442 | lemma Scons_UN1_x: "Scons (UN x. f x) M = (UN x. Scons (f x) M)" | |
| 443 | by (simp add: Scons_def, blast) | |
| 444 | ||
| 445 | lemma Scons_UN1_y: "Scons M (UN x. f x) = (UN x. Scons M (f x))" | |
| 446 | by (simp add: Scons_def, blast) | |
| 447 | ||
| 448 | lemma In0_UN1: "In0(UN x. f(x)) = (UN x. In0(f(x)))" | |
| 449 | by (simp add: In0_def Scons_UN1_y) | |
| 450 | ||
| 451 | lemma In1_UN1: "In1(UN x. f(x)) = (UN x. In1(f(x)))" | |
| 452 | by (simp add: In1_def Scons_UN1_y) | |
| 453 | ||
| 454 | ||
| 455 | (*** Equality for Cartesian Product ***) | |
| 456 | ||
| 457 | lemma dprodI [intro!]: | |
| 458 | "[| (M,M'):r; (N,N'):s |] ==> (Scons M N, Scons M' N') : dprod r s" | |
| 459 | by (auto simp add: dprod_def) | |
| 460 | ||
| 461 | (*The general elimination rule*) | |
| 462 | lemma dprodE [elim!]: | |
| 463 | "[| c : dprod r s; | |
| 464 | !!x y x' y'. [| (x,x') : r; (y,y') : s; | |
| 465 | c = (Scons x y, Scons x' y') |] ==> P | |
| 466 | |] ==> P" | |
| 467 | by (auto simp add: dprod_def) | |
| 468 | ||
| 469 | ||
| 470 | (*** Equality for Disjoint Sum ***) | |
| 471 | ||
| 472 | lemma dsum_In0I [intro]: "(M,M'):r ==> (In0(M), In0(M')) : dsum r s" | |
| 473 | by (auto simp add: dsum_def) | |
| 474 | ||
| 475 | lemma dsum_In1I [intro]: "(N,N'):s ==> (In1(N), In1(N')) : dsum r s" | |
| 476 | by (auto simp add: dsum_def) | |
| 477 | ||
| 478 | lemma dsumE [elim!]: | |
| 479 | "[| w : dsum r s; | |
| 480 | !!x x'. [| (x,x') : r; w = (In0(x), In0(x')) |] ==> P; | |
| 481 | !!y y'. [| (y,y') : s; w = (In1(y), In1(y')) |] ==> P | |
| 482 | |] ==> P" | |
| 483 | by (auto simp add: dsum_def) | |
| 484 | ||
| 485 | ||
| 486 | (*** Monotonicity ***) | |
| 487 | ||
| 488 | lemma dprod_mono: "[| r<=r'; s<=s' |] ==> dprod r s <= dprod r' s'" | |
| 489 | by blast | |
| 490 | ||
| 491 | lemma dsum_mono: "[| r<=r'; s<=s' |] ==> dsum r s <= dsum r' s'" | |
| 492 | by blast | |
| 493 | ||
| 494 | ||
| 495 | (*** Bounding theorems ***) | |
| 496 | ||
| 497 | lemma dprod_Sigma: "(dprod (A <*> B) (C <*> D)) <= (uprod A C) <*> (uprod B D)" | |
| 498 | by blast | |
| 499 | ||
| 500 | lemmas dprod_subset_Sigma = subset_trans [OF dprod_mono dprod_Sigma, standard] | |
| 501 | ||
| 502 | (*Dependent version*) | |
| 503 | lemma dprod_subset_Sigma2: | |
| 504 | "(dprod (Sigma A B) (Sigma C D)) <= | |
| 505 | Sigma (uprod A C) (Split (%x y. uprod (B x) (D y)))" | |
| 506 | by auto | |
| 507 | ||
| 508 | lemma dsum_Sigma: "(dsum (A <*> B) (C <*> D)) <= (usum A C) <*> (usum B D)" | |
| 509 | by blast | |
| 510 | ||
| 511 | lemmas dsum_subset_Sigma = subset_trans [OF dsum_mono dsum_Sigma, standard] | |
| 512 | ||
| 513 | ||
| 24162 
8dfd5dd65d82
split off theory Option for benefit of code generator
 haftmann parents: 
22886diff
changeset | 514 | text {* hides popular names *}
 | 
| 36176 
3fe7e97ccca8
replaced generic 'hide' command by more conventional 'hide_class', 'hide_type', 'hide_const', 'hide_fact' -- frees some popular keywords;
 wenzelm parents: 
35216diff
changeset | 515 | hide_type (open) node item | 
| 
3fe7e97ccca8
replaced generic 'hide' command by more conventional 'hide_class', 'hide_type', 'hide_const', 'hide_fact' -- frees some popular keywords;
 wenzelm parents: 
35216diff
changeset | 516 | hide_const (open) Push Node Atom Leaf Numb Lim Split Case | 
| 20819 | 517 | |
| 33963 
977b94b64905
renamed former datatype.ML to datatype_data.ML; datatype.ML provides uniform view on datatype.ML and datatype_rep_proofs.ML
 haftmann parents: 
33959diff
changeset | 518 | use "Tools/Datatype/datatype.ML" | 
| 12918 | 519 | |
| 33959 
2afc55e8ed27
bootstrap datatype_rep_proofs in Datatype.thy (avoids unchecked dynamic name references)
 haftmann parents: 
33633diff
changeset | 520 | use "Tools/inductive_realizer.ML" | 
| 
2afc55e8ed27
bootstrap datatype_rep_proofs in Datatype.thy (avoids unchecked dynamic name references)
 haftmann parents: 
33633diff
changeset | 521 | setup InductiveRealizer.setup | 
| 13635 
c41e88151b54
Added functions Suml and Sumr which are useful for constructing
 berghofe parents: 
12918diff
changeset | 522 | |
| 33959 
2afc55e8ed27
bootstrap datatype_rep_proofs in Datatype.thy (avoids unchecked dynamic name references)
 haftmann parents: 
33633diff
changeset | 523 | use "Tools/Datatype/datatype_realizer.ML" | 
| 33968 
f94fb13ecbb3
modernized structures and tuned headers of datatype package modules; joined former datatype.ML and datatype_rep_proofs.ML
 haftmann parents: 
33963diff
changeset | 524 | setup Datatype_Realizer.setup | 
| 13635 
c41e88151b54
Added functions Suml and Sumr which are useful for constructing
 berghofe parents: 
12918diff
changeset | 525 | |
| 5181 
4ba3787d9709
New theory Datatype. Needed as an ancestor when defining datatypes.
 berghofe parents: diff
changeset | 526 | end |