| author | wenzelm | 
| Wed, 15 Oct 2008 21:45:02 +0200 | |
| changeset 28605 | 12d6087ec18c | 
| parent 26793 | e36a92ff543e | 
| child 29270 | 0eade173f77e | 
| permissions | -rw-r--r-- | 
| 7700 | 1 | (* Title: HOL/Inductive.thy | 
| 2 | ID: $Id$ | |
| 10402 | 3 | Author: Markus Wenzel, TU Muenchen | 
| 11688 | 4 | *) | 
| 10727 | 5 | |
| 24915 | 6 | header {* Knaster-Tarski Fixpoint Theorem and inductive definitions *}
 | 
| 1187 | 7 | |
| 15131 | 8 | theory Inductive | 
| 24915 | 9 | imports Lattices Sum_Type | 
| 16417 | 10 | uses | 
| 10402 | 11 |   ("Tools/inductive_package.ML")
 | 
| 24625 
0398a5e802d3
separated code for inductive sequences from inductive_codegen.ML
 haftmann parents: 
24349diff
changeset | 12 | "Tools/dseq.ML" | 
| 12437 
6d4e02b6dd43
Moved code generator setup from Recdef to Inductive.
 berghofe parents: 
12023diff
changeset | 13 |   ("Tools/inductive_codegen.ML")
 | 
| 10402 | 14 |   ("Tools/datatype_aux.ML")
 | 
| 15 |   ("Tools/datatype_prop.ML")
 | |
| 16 |   ("Tools/datatype_rep_proofs.ML")
 | |
| 17 |   ("Tools/datatype_abs_proofs.ML")
 | |
| 22783 | 18 |   ("Tools/datatype_case.ML")
 | 
| 10402 | 19 |   ("Tools/datatype_package.ML")
 | 
| 25557 | 20 |   ("Tools/old_primrec_package.ML")
 | 
| 15131 | 21 |   ("Tools/primrec_package.ML")
 | 
| 25534 
d0b74fdd6067
simplified infrastructure for code generator operational equality
 haftmann parents: 
25510diff
changeset | 22 |   ("Tools/datatype_codegen.ML")
 | 
| 15131 | 23 | begin | 
| 10727 | 24 | |
| 24915 | 25 | subsection {* Least and greatest fixed points *}
 | 
| 26 | ||
| 26013 
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
 haftmann parents: 
25557diff
changeset | 27 | context complete_lattice | 
| 
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
 haftmann parents: 
25557diff
changeset | 28 | begin | 
| 
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
 haftmann parents: 
25557diff
changeset | 29 | |
| 24915 | 30 | definition | 
| 26013 
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
 haftmann parents: 
25557diff
changeset | 31 |   lfp :: "('a \<Rightarrow> 'a) \<Rightarrow> 'a" where
 | 
| 24915 | 32 |   "lfp f = Inf {u. f u \<le> u}"    --{*least fixed point*}
 | 
| 33 | ||
| 34 | definition | |
| 26013 
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
 haftmann parents: 
25557diff
changeset | 35 |   gfp :: "('a \<Rightarrow> 'a) \<Rightarrow> 'a" where
 | 
| 24915 | 36 |   "gfp f = Sup {u. u \<le> f u}"    --{*greatest fixed point*}
 | 
| 37 | ||
| 38 | ||
| 39 | subsection{* Proof of Knaster-Tarski Theorem using @{term lfp} *}
 | |
| 40 | ||
| 41 | text{*@{term "lfp f"} is the least upper bound of 
 | |
| 42 |       the set @{term "{u. f(u) \<le> u}"} *}
 | |
| 43 | ||
| 44 | lemma lfp_lowerbound: "f A \<le> A ==> lfp f \<le> A" | |
| 45 | by (auto simp add: lfp_def intro: Inf_lower) | |
| 46 | ||
| 47 | lemma lfp_greatest: "(!!u. f u \<le> u ==> A \<le> u) ==> A \<le> lfp f" | |
| 48 | by (auto simp add: lfp_def intro: Inf_greatest) | |
| 49 | ||
| 26013 
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
 haftmann parents: 
25557diff
changeset | 50 | end | 
| 
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
 haftmann parents: 
25557diff
changeset | 51 | |
| 24915 | 52 | lemma lfp_lemma2: "mono f ==> f (lfp f) \<le> lfp f" | 
| 53 | by (iprover intro: lfp_greatest order_trans monoD lfp_lowerbound) | |
| 54 | ||
| 55 | lemma lfp_lemma3: "mono f ==> lfp f \<le> f (lfp f)" | |
| 56 | by (iprover intro: lfp_lemma2 monoD lfp_lowerbound) | |
| 57 | ||
| 58 | lemma lfp_unfold: "mono f ==> lfp f = f (lfp f)" | |
| 59 | by (iprover intro: order_antisym lfp_lemma2 lfp_lemma3) | |
| 60 | ||
| 61 | lemma lfp_const: "lfp (\<lambda>x. t) = t" | |
| 62 | by (rule lfp_unfold) (simp add:mono_def) | |
| 63 | ||
| 64 | ||
| 65 | subsection {* General induction rules for least fixed points *}
 | |
| 66 | ||
| 67 | theorem lfp_induct: | |
| 68 | assumes mono: "mono f" and ind: "f (inf (lfp f) P) <= P" | |
| 69 | shows "lfp f <= P" | |
| 70 | proof - | |
| 71 | have "inf (lfp f) P <= lfp f" by (rule inf_le1) | |
| 72 | with mono have "f (inf (lfp f) P) <= f (lfp f)" .. | |
| 73 | also from mono have "f (lfp f) = lfp f" by (rule lfp_unfold [symmetric]) | |
| 74 | finally have "f (inf (lfp f) P) <= lfp f" . | |
| 75 | from this and ind have "f (inf (lfp f) P) <= inf (lfp f) P" by (rule le_infI) | |
| 76 | hence "lfp f <= inf (lfp f) P" by (rule lfp_lowerbound) | |
| 77 | also have "inf (lfp f) P <= P" by (rule inf_le2) | |
| 78 | finally show ?thesis . | |
| 79 | qed | |
| 80 | ||
| 81 | lemma lfp_induct_set: | |
| 82 | assumes lfp: "a: lfp(f)" | |
| 83 | and mono: "mono(f)" | |
| 84 |       and indhyp: "!!x. [| x: f(lfp(f) Int {x. P(x)}) |] ==> P(x)"
 | |
| 85 | shows "P(a)" | |
| 86 | by (rule lfp_induct [THEN subsetD, THEN CollectD, OF mono _ lfp]) | |
| 87 | (auto simp: inf_set_eq intro: indhyp) | |
| 88 | ||
| 26013 
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
 haftmann parents: 
25557diff
changeset | 89 | lemma lfp_ordinal_induct: | 
| 
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
 haftmann parents: 
25557diff
changeset | 90 | fixes f :: "'a\<Colon>complete_lattice \<Rightarrow> 'a" | 
| 
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
 haftmann parents: 
25557diff
changeset | 91 | assumes mono: "mono f" | 
| 
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
 haftmann parents: 
25557diff
changeset | 92 | and P_f: "\<And>S. P S \<Longrightarrow> P (f S)" | 
| 
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
 haftmann parents: 
25557diff
changeset | 93 | and P_Union: "\<And>M. \<forall>S\<in>M. P S \<Longrightarrow> P (Sup M)" | 
| 
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
 haftmann parents: 
25557diff
changeset | 94 | shows "P (lfp f)" | 
| 
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
 haftmann parents: 
25557diff
changeset | 95 | proof - | 
| 
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
 haftmann parents: 
25557diff
changeset | 96 |   let ?M = "{S. S \<le> lfp f \<and> P S}"
 | 
| 
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
 haftmann parents: 
25557diff
changeset | 97 | have "P (Sup ?M)" using P_Union by simp | 
| 
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
 haftmann parents: 
25557diff
changeset | 98 | also have "Sup ?M = lfp f" | 
| 
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
 haftmann parents: 
25557diff
changeset | 99 | proof (rule antisym) | 
| 
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
 haftmann parents: 
25557diff
changeset | 100 | show "Sup ?M \<le> lfp f" by (blast intro: Sup_least) | 
| 
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
 haftmann parents: 
25557diff
changeset | 101 | hence "f (Sup ?M) \<le> f (lfp f)" by (rule mono [THEN monoD]) | 
| 
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
 haftmann parents: 
25557diff
changeset | 102 | hence "f (Sup ?M) \<le> lfp f" using mono [THEN lfp_unfold] by simp | 
| 
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
 haftmann parents: 
25557diff
changeset | 103 | hence "f (Sup ?M) \<in> ?M" using P_f P_Union by simp | 
| 
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
 haftmann parents: 
25557diff
changeset | 104 | hence "f (Sup ?M) \<le> Sup ?M" by (rule Sup_upper) | 
| 
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
 haftmann parents: 
25557diff
changeset | 105 | thus "lfp f \<le> Sup ?M" by (rule lfp_lowerbound) | 
| 
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
 haftmann parents: 
25557diff
changeset | 106 | qed | 
| 
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
 haftmann parents: 
25557diff
changeset | 107 | finally show ?thesis . | 
| 
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
 haftmann parents: 
25557diff
changeset | 108 | qed | 
| 
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
 haftmann parents: 
25557diff
changeset | 109 | |
| 
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
 haftmann parents: 
25557diff
changeset | 110 | lemma lfp_ordinal_induct_set: | 
| 24915 | 111 | assumes mono: "mono f" | 
| 112 | and P_f: "!!S. P S ==> P(f S)" | |
| 113 | and P_Union: "!!M. !S:M. P S ==> P(Union M)" | |
| 114 | shows "P(lfp f)" | |
| 26793 
e36a92ff543e
Instantiated some rules to avoid problems with HO unification.
 berghofe parents: 
26013diff
changeset | 115 | using assms unfolding Sup_set_eq [symmetric] | 
| 
e36a92ff543e
Instantiated some rules to avoid problems with HO unification.
 berghofe parents: 
26013diff
changeset | 116 | by (rule lfp_ordinal_induct [where P=P]) | 
| 24915 | 117 | |
| 118 | ||
| 119 | text{*Definition forms of @{text lfp_unfold} and @{text lfp_induct}, 
 | |
| 120 | to control unfolding*} | |
| 121 | ||
| 122 | lemma def_lfp_unfold: "[| h==lfp(f); mono(f) |] ==> h = f(h)" | |
| 123 | by (auto intro!: lfp_unfold) | |
| 124 | ||
| 125 | lemma def_lfp_induct: | |
| 126 | "[| A == lfp(f); mono(f); | |
| 127 | f (inf A P) \<le> P | |
| 128 | |] ==> A \<le> P" | |
| 129 | by (blast intro: lfp_induct) | |
| 130 | ||
| 131 | lemma def_lfp_induct_set: | |
| 132 | "[| A == lfp(f); mono(f); a:A; | |
| 133 |         !!x. [| x: f(A Int {x. P(x)}) |] ==> P(x)         
 | |
| 134 | |] ==> P(a)" | |
| 135 | by (blast intro: lfp_induct_set) | |
| 136 | ||
| 137 | (*Monotonicity of lfp!*) | |
| 138 | lemma lfp_mono: "(!!Z. f Z \<le> g Z) ==> lfp f \<le> lfp g" | |
| 139 | by (rule lfp_lowerbound [THEN lfp_greatest], blast intro: order_trans) | |
| 140 | ||
| 141 | ||
| 142 | subsection {* Proof of Knaster-Tarski Theorem using @{term gfp} *}
 | |
| 143 | ||
| 144 | text{*@{term "gfp f"} is the greatest lower bound of 
 | |
| 145 |       the set @{term "{u. u \<le> f(u)}"} *}
 | |
| 146 | ||
| 147 | lemma gfp_upperbound: "X \<le> f X ==> X \<le> gfp f" | |
| 148 | by (auto simp add: gfp_def intro: Sup_upper) | |
| 149 | ||
| 150 | lemma gfp_least: "(!!u. u \<le> f u ==> u \<le> X) ==> gfp f \<le> X" | |
| 151 | by (auto simp add: gfp_def intro: Sup_least) | |
| 152 | ||
| 153 | lemma gfp_lemma2: "mono f ==> gfp f \<le> f (gfp f)" | |
| 154 | by (iprover intro: gfp_least order_trans monoD gfp_upperbound) | |
| 155 | ||
| 156 | lemma gfp_lemma3: "mono f ==> f (gfp f) \<le> gfp f" | |
| 157 | by (iprover intro: gfp_lemma2 monoD gfp_upperbound) | |
| 158 | ||
| 159 | lemma gfp_unfold: "mono f ==> gfp f = f (gfp f)" | |
| 160 | by (iprover intro: order_antisym gfp_lemma2 gfp_lemma3) | |
| 161 | ||
| 162 | ||
| 163 | subsection {* Coinduction rules for greatest fixed points *}
 | |
| 164 | ||
| 165 | text{*weak version*}
 | |
| 166 | lemma weak_coinduct: "[| a: X; X \<subseteq> f(X) |] ==> a : gfp(f)" | |
| 167 | by (rule gfp_upperbound [THEN subsetD], auto) | |
| 168 | ||
| 169 | lemma weak_coinduct_image: "!!X. [| a : X; g`X \<subseteq> f (g`X) |] ==> g a : gfp f" | |
| 170 | apply (erule gfp_upperbound [THEN subsetD]) | |
| 171 | apply (erule imageI) | |
| 172 | done | |
| 173 | ||
| 174 | lemma coinduct_lemma: | |
| 175 | "[| X \<le> f (sup X (gfp f)); mono f |] ==> sup X (gfp f) \<le> f (sup X (gfp f))" | |
| 176 | apply (frule gfp_lemma2) | |
| 177 | apply (drule mono_sup) | |
| 178 | apply (rule le_supI) | |
| 179 | apply assumption | |
| 180 | apply (rule order_trans) | |
| 181 | apply (rule order_trans) | |
| 182 | apply assumption | |
| 183 | apply (rule sup_ge2) | |
| 184 | apply assumption | |
| 185 | done | |
| 186 | ||
| 187 | text{*strong version, thanks to Coen and Frost*}
 | |
| 188 | lemma coinduct_set: "[| mono(f); a: X; X \<subseteq> f(X Un gfp(f)) |] ==> a : gfp(f)" | |
| 189 | by (blast intro: weak_coinduct [OF _ coinduct_lemma, simplified sup_set_eq]) | |
| 190 | ||
| 191 | lemma coinduct: "[| mono(f); X \<le> f (sup X (gfp f)) |] ==> X \<le> gfp(f)" | |
| 192 | apply (rule order_trans) | |
| 193 | apply (rule sup_ge1) | |
| 194 | apply (erule gfp_upperbound [OF coinduct_lemma]) | |
| 195 | apply assumption | |
| 196 | done | |
| 197 | ||
| 198 | lemma gfp_fun_UnI2: "[| mono(f); a: gfp(f) |] ==> a: f(X Un gfp(f))" | |
| 199 | by (blast dest: gfp_lemma2 mono_Un) | |
| 200 | ||
| 201 | ||
| 202 | subsection {* Even Stronger Coinduction Rule, by Martin Coen *}
 | |
| 203 | ||
| 204 | text{* Weakens the condition @{term "X \<subseteq> f(X)"} to one expressed using both
 | |
| 205 |   @{term lfp} and @{term gfp}*}
 | |
| 206 | ||
| 207 | lemma coinduct3_mono_lemma: "mono(f) ==> mono(%x. f(x) Un X Un B)" | |
| 208 | by (iprover intro: subset_refl monoI Un_mono monoD) | |
| 209 | ||
| 210 | lemma coinduct3_lemma: | |
| 211 | "[| X \<subseteq> f(lfp(%x. f(x) Un X Un gfp(f))); mono(f) |] | |
| 212 | ==> lfp(%x. f(x) Un X Un gfp(f)) \<subseteq> f(lfp(%x. f(x) Un X Un gfp(f)))" | |
| 213 | apply (rule subset_trans) | |
| 214 | apply (erule coinduct3_mono_lemma [THEN lfp_lemma3]) | |
| 215 | apply (rule Un_least [THEN Un_least]) | |
| 216 | apply (rule subset_refl, assumption) | |
| 217 | apply (rule gfp_unfold [THEN equalityD1, THEN subset_trans], assumption) | |
| 26793 
e36a92ff543e
Instantiated some rules to avoid problems with HO unification.
 berghofe parents: 
26013diff
changeset | 218 | apply (rule monoD [where f=f], assumption) | 
| 24915 | 219 | apply (subst coinduct3_mono_lemma [THEN lfp_unfold], auto) | 
| 220 | done | |
| 221 | ||
| 222 | lemma coinduct3: | |
| 223 | "[| mono(f); a:X; X \<subseteq> f(lfp(%x. f(x) Un X Un gfp(f))) |] ==> a : gfp(f)" | |
| 224 | apply (rule coinduct3_lemma [THEN [2] weak_coinduct]) | |
| 225 | apply (rule coinduct3_mono_lemma [THEN lfp_unfold, THEN ssubst], auto) | |
| 226 | done | |
| 227 | ||
| 228 | ||
| 229 | text{*Definition forms of @{text gfp_unfold} and @{text coinduct}, 
 | |
| 230 | to control unfolding*} | |
| 231 | ||
| 232 | lemma def_gfp_unfold: "[| A==gfp(f); mono(f) |] ==> A = f(A)" | |
| 233 | by (auto intro!: gfp_unfold) | |
| 234 | ||
| 235 | lemma def_coinduct: | |
| 236 | "[| A==gfp(f); mono(f); X \<le> f(sup X A) |] ==> X \<le> A" | |
| 237 | by (iprover intro!: coinduct) | |
| 238 | ||
| 239 | lemma def_coinduct_set: | |
| 240 | "[| A==gfp(f); mono(f); a:X; X \<subseteq> f(X Un A) |] ==> a: A" | |
| 241 | by (auto intro!: coinduct_set) | |
| 242 | ||
| 243 | (*The version used in the induction/coinduction package*) | |
| 244 | lemma def_Collect_coinduct: | |
| 245 | "[| A == gfp(%w. Collect(P(w))); mono(%w. Collect(P(w))); | |
| 246 | a: X; !!z. z: X ==> P (X Un A) z |] ==> | |
| 247 | a : A" | |
| 248 | apply (erule def_coinduct_set, auto) | |
| 249 | done | |
| 250 | ||
| 251 | lemma def_coinduct3: | |
| 252 | "[| A==gfp(f); mono(f); a:X; X \<subseteq> f(lfp(%x. f(x) Un X Un A)) |] ==> a: A" | |
| 253 | by (auto intro!: coinduct3) | |
| 254 | ||
| 255 | text{*Monotonicity of @{term gfp}!*}
 | |
| 256 | lemma gfp_mono: "(!!Z. f Z \<le> g Z) ==> gfp f \<le> gfp g" | |
| 257 | by (rule gfp_upperbound [THEN gfp_least], blast intro: order_trans) | |
| 258 | ||
| 259 | ||
| 23734 | 260 | subsection {* Inductive predicates and sets *}
 | 
| 11688 | 261 | |
| 262 | text {* Inversion of injective functions. *}
 | |
| 11436 | 263 | |
| 264 | constdefs | |
| 265 |   myinv :: "('a => 'b) => ('b => 'a)"
 | |
| 266 | "myinv (f :: 'a => 'b) == \<lambda>y. THE x. f x = y" | |
| 267 | ||
| 268 | lemma myinv_f_f: "inj f ==> myinv f (f x) = x" | |
| 269 | proof - | |
| 270 | assume "inj f" | |
| 271 | hence "(THE x'. f x' = f x) = (THE x'. x' = x)" | |
| 272 | by (simp only: inj_eq) | |
| 273 | also have "... = x" by (rule the_eq_trivial) | |
| 11439 | 274 | finally show ?thesis by (unfold myinv_def) | 
| 11436 | 275 | qed | 
| 276 | ||
| 277 | lemma f_myinv_f: "inj f ==> y \<in> range f ==> f (myinv f y) = y" | |
| 278 | proof (unfold myinv_def) | |
| 279 | assume inj: "inj f" | |
| 280 | assume "y \<in> range f" | |
| 281 | then obtain x where "y = f x" .. | |
| 282 | hence x: "f x = y" .. | |
| 283 | thus "f (THE x. f x = y) = y" | |
| 284 | proof (rule theI) | |
| 285 | fix x' assume "f x' = y" | |
| 286 | with x have "f x' = f x" by simp | |
| 287 | with inj show "x' = x" by (rule injD) | |
| 288 | qed | |
| 289 | qed | |
| 290 | ||
| 291 | hide const myinv | |
| 292 | ||
| 293 | ||
| 11688 | 294 | text {* Package setup. *}
 | 
| 10402 | 295 | |
| 23734 | 296 | theorems basic_monos = | 
| 22218 | 297 | subset_refl imp_refl disj_mono conj_mono ex_mono all_mono if_bool_eq_conj | 
| 11688 | 298 | Collect_mono in_mono vimage_mono | 
| 299 | imp_conv_disj not_not de_Morgan_disj de_Morgan_conj | |
| 300 | not_all not_ex | |
| 301 | Ball_def Bex_def | |
| 18456 | 302 | induct_rulify_fallback | 
| 11688 | 303 | |
| 24915 | 304 | ML {*
 | 
| 305 | val def_lfp_unfold = @{thm def_lfp_unfold}
 | |
| 306 | val def_gfp_unfold = @{thm def_gfp_unfold}
 | |
| 307 | val def_lfp_induct = @{thm def_lfp_induct}
 | |
| 308 | val def_coinduct = @{thm def_coinduct}
 | |
| 25510 | 309 | val inf_bool_eq = @{thm inf_bool_eq} RS @{thm eq_reflection}
 | 
| 310 | val inf_fun_eq = @{thm inf_fun_eq} RS @{thm eq_reflection}
 | |
| 311 | val sup_bool_eq = @{thm sup_bool_eq} RS @{thm eq_reflection}
 | |
| 312 | val sup_fun_eq = @{thm sup_fun_eq} RS @{thm eq_reflection}
 | |
| 24915 | 313 | val le_boolI = @{thm le_boolI}
 | 
| 314 | val le_boolI' = @{thm le_boolI'}
 | |
| 315 | val le_funI = @{thm le_funI}
 | |
| 316 | val le_boolE = @{thm le_boolE}
 | |
| 317 | val le_funE = @{thm le_funE}
 | |
| 318 | val le_boolD = @{thm le_boolD}
 | |
| 319 | val le_funD = @{thm le_funD}
 | |
| 25510 | 320 | val le_bool_def = @{thm le_bool_def} RS @{thm eq_reflection}
 | 
| 321 | val le_fun_def = @{thm le_fun_def} RS @{thm eq_reflection}
 | |
| 24915 | 322 | *} | 
| 323 | ||
| 21018 
e6b8d6784792
Added new package for inductive definitions, moved old package
 berghofe parents: 
20604diff
changeset | 324 | use "Tools/inductive_package.ML" | 
| 
e6b8d6784792
Added new package for inductive definitions, moved old package
 berghofe parents: 
20604diff
changeset | 325 | setup InductivePackage.setup | 
| 
e6b8d6784792
Added new package for inductive definitions, moved old package
 berghofe parents: 
20604diff
changeset | 326 | |
| 23734 | 327 | theorems [mono] = | 
| 22218 | 328 | imp_refl disj_mono conj_mono ex_mono all_mono if_bool_eq_conj | 
| 21018 
e6b8d6784792
Added new package for inductive definitions, moved old package
 berghofe parents: 
20604diff
changeset | 329 | imp_conv_disj not_not de_Morgan_disj de_Morgan_conj | 
| 
e6b8d6784792
Added new package for inductive definitions, moved old package
 berghofe parents: 
20604diff
changeset | 330 | not_all not_ex | 
| 
e6b8d6784792
Added new package for inductive definitions, moved old package
 berghofe parents: 
20604diff
changeset | 331 | Ball_def Bex_def | 
| 
e6b8d6784792
Added new package for inductive definitions, moved old package
 berghofe parents: 
20604diff
changeset | 332 | induct_rulify_fallback | 
| 
e6b8d6784792
Added new package for inductive definitions, moved old package
 berghofe parents: 
20604diff
changeset | 333 | |
| 11688 | 334 | |
| 12023 | 335 | subsection {* Inductive datatypes and primitive recursion *}
 | 
| 11688 | 336 | |
| 11825 | 337 | text {* Package setup. *}
 | 
| 338 | ||
| 10402 | 339 | use "Tools/datatype_aux.ML" | 
| 340 | use "Tools/datatype_prop.ML" | |
| 341 | use "Tools/datatype_rep_proofs.ML" | |
| 342 | use "Tools/datatype_abs_proofs.ML" | |
| 22783 | 343 | use "Tools/datatype_case.ML" | 
| 10402 | 344 | use "Tools/datatype_package.ML" | 
| 7700 | 345 | setup DatatypePackage.setup | 
| 25557 | 346 | use "Tools/old_primrec_package.ML" | 
| 24699 
c6674504103f
datatype interpretators for size and datatype_realizer
 haftmann parents: 
24626diff
changeset | 347 | use "Tools/primrec_package.ML" | 
| 12437 
6d4e02b6dd43
Moved code generator setup from Recdef to Inductive.
 berghofe parents: 
12023diff
changeset | 348 | |
| 25534 
d0b74fdd6067
simplified infrastructure for code generator operational equality
 haftmann parents: 
25510diff
changeset | 349 | use "Tools/datatype_codegen.ML" | 
| 
d0b74fdd6067
simplified infrastructure for code generator operational equality
 haftmann parents: 
25510diff
changeset | 350 | setup DatatypeCodegen.setup | 
| 
d0b74fdd6067
simplified infrastructure for code generator operational equality
 haftmann parents: 
25510diff
changeset | 351 | |
| 12437 
6d4e02b6dd43
Moved code generator setup from Recdef to Inductive.
 berghofe parents: 
12023diff
changeset | 352 | use "Tools/inductive_codegen.ML" | 
| 
6d4e02b6dd43
Moved code generator setup from Recdef to Inductive.
 berghofe parents: 
12023diff
changeset | 353 | setup InductiveCodegen.setup | 
| 
6d4e02b6dd43
Moved code generator setup from Recdef to Inductive.
 berghofe parents: 
12023diff
changeset | 354 | |
| 23526 | 355 | text{* Lambda-abstractions with pattern matching: *}
 | 
| 356 | ||
| 357 | syntax | |
| 23529 | 358 |   "_lam_pats_syntax" :: "cases_syn => 'a => 'b"               ("(%_)" 10)
 | 
| 23526 | 359 | syntax (xsymbols) | 
| 23529 | 360 |   "_lam_pats_syntax" :: "cases_syn => 'a => 'b"               ("(\<lambda>_)" 10)
 | 
| 23526 | 361 | |
| 23529 | 362 | parse_translation (advanced) {*
 | 
| 363 | let | |
| 364 | fun fun_tr ctxt [cs] = | |
| 365 | let | |
| 366 | val x = Free (Name.variant (add_term_free_names (cs, [])) "x", dummyT); | |
| 24349 | 367 | val ft = DatatypeCase.case_tr true DatatypePackage.datatype_of_constr | 
| 368 | ctxt [x, cs] | |
| 23529 | 369 | in lambda x ft end | 
| 370 | in [("_lam_pats_syntax", fun_tr)] end
 | |
| 23526 | 371 | *} | 
| 372 | ||
| 373 | end |