author | wenzelm |
Fri, 19 Aug 2005 22:28:23 +0200 | |
changeset 17132 | 153fe83804c9 |
parent 12344 | 7237c6497cb1 |
permissions | -rw-r--r-- |
9767 | 1 |
% |
2 |
\begin{isabellebody}% |
|
9921 | 3 |
\def\isabellecontext{Group}% |
17132 | 4 |
\isamarkuptrue% |
8903 | 5 |
% |
10395 | 6 |
\isamarkupheader{Basic group theory% |
7 |
} |
|
17132 | 8 |
% |
9 |
\isadelimtheory |
|
10 |
% |
|
11 |
\endisadelimtheory |
|
12 |
% |
|
13 |
\isatagtheory |
|
14 |
\isamarkupfalse% |
|
15 |
\isacommand{theory}\ Group\ \isakeyword{imports}\ Main\ \isakeyword{begin}% |
|
16 |
\endisatagtheory |
|
17 |
{\isafoldtheory}% |
|
18 |
% |
|
19 |
\isadelimtheory |
|
20 |
% |
|
21 |
\endisadelimtheory |
|
11964 | 22 |
\isamarkuptrue% |
23 |
% |
|
8903 | 24 |
\begin{isamarkuptext}% |
10140 | 25 |
\medskip\noindent The meta-level type system of Isabelle supports |
12338
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11964
diff
changeset
|
26 |
\emph{intersections} and \emph{inclusions} of type classes. These |
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11964
diff
changeset
|
27 |
directly correspond to intersections and inclusions of type |
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11964
diff
changeset
|
28 |
predicates in a purely set theoretic sense. This is sufficient as a |
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11964
diff
changeset
|
29 |
means to describe simple hierarchies of structures. As an |
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11964
diff
changeset
|
30 |
illustration, we use the well-known example of semigroups, monoids, |
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11964
diff
changeset
|
31 |
general groups and Abelian groups.% |
8903 | 32 |
\end{isamarkuptext}% |
11964 | 33 |
\isamarkuptrue% |
8903 | 34 |
% |
10395 | 35 |
\isamarkupsubsection{Monoids and Groups% |
36 |
} |
|
11964 | 37 |
\isamarkuptrue% |
8903 | 38 |
% |
39 |
\begin{isamarkuptext}% |
|
40 |
First we declare some polymorphic constants required later for the |
|
12338
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11964
diff
changeset
|
41 |
signature parts of our structures.% |
8903 | 42 |
\end{isamarkuptext}% |
17132 | 43 |
\isamarkupfalse% |
8890 | 44 |
\isacommand{consts}\isanewline |
10207 | 45 |
\ \ times\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a{\isachardoublequote}\ \ \ \ {\isacharparenleft}\isakeyword{infixl}\ {\isachardoublequote}{\isasymodot}{\isachardoublequote}\ {\isadigit{7}}{\isadigit{0}}{\isacharparenright}\isanewline |
11071 | 46 |
\ \ invers\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a{\isachardoublequote}\ \ \ \ {\isacharparenleft}{\isachardoublequote}{\isacharparenleft}{\isacharunderscore}{\isasyminv}{\isacharparenright}{\isachardoublequote}\ {\isacharbrackleft}{\isadigit{1}}{\isadigit{0}}{\isadigit{0}}{\isadigit{0}}{\isacharbrackright}\ {\isadigit{9}}{\isadigit{9}}{\isadigit{9}}{\isacharparenright}\isanewline |
17132 | 47 |
\ \ one\ {\isacharcolon}{\isacharcolon}\ {\isacharprime}a\ \ \ \ {\isacharparenleft}{\isachardoublequote}{\isasymone}{\isachardoublequote}{\isacharparenright}\isamarkuptrue% |
11964 | 48 |
% |
8903 | 49 |
\begin{isamarkuptext}% |
10140 | 50 |
\noindent Next we define class \isa{monoid} of monoids with |
12344 | 51 |
operations \isa{{\isasymodot}} and \isa{{\isasymone}}. Note that multiple class |
12338
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11964
diff
changeset
|
52 |
axioms are allowed for user convenience --- they simply represent |
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11964
diff
changeset
|
53 |
the conjunction of their respective universal closures.% |
8903 | 54 |
\end{isamarkuptext}% |
17132 | 55 |
\isamarkupfalse% |
12338
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11964
diff
changeset
|
56 |
\isacommand{axclass}\ monoid\ {\isasymsubseteq}\ type\isanewline |
10140 | 57 |
\ \ assoc{\isacharcolon}\ {\isachardoublequote}{\isacharparenleft}x\ {\isasymodot}\ y{\isacharparenright}\ {\isasymodot}\ z\ {\isacharequal}\ x\ {\isasymodot}\ {\isacharparenleft}y\ {\isasymodot}\ z{\isacharparenright}{\isachardoublequote}\isanewline |
12344 | 58 |
\ \ left{\isacharunderscore}unit{\isacharcolon}\ {\isachardoublequote}{\isasymone}\ {\isasymodot}\ x\ {\isacharequal}\ x{\isachardoublequote}\isanewline |
17132 | 59 |
\ \ right{\isacharunderscore}unit{\isacharcolon}\ {\isachardoublequote}x\ {\isasymodot}\ {\isasymone}\ {\isacharequal}\ x{\isachardoublequote}\isamarkuptrue% |
11964 | 60 |
% |
8903 | 61 |
\begin{isamarkuptext}% |
12338
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11964
diff
changeset
|
62 |
\noindent So class \isa{monoid} contains exactly those types |
12344 | 63 |
\isa{{\isasymtau}} where \isa{{\isasymodot}\ {\isasymColon}\ {\isasymtau}\ {\isasymRightarrow}\ {\isasymtau}\ {\isasymRightarrow}\ {\isasymtau}} and \isa{{\isasymone}\ {\isasymColon}\ {\isasymtau}} |
12338
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11964
diff
changeset
|
64 |
are specified appropriately, such that \isa{{\isasymodot}} is associative and |
12344 | 65 |
\isa{{\isasymone}} is a left and right unit element for the \isa{{\isasymodot}} |
12338
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11964
diff
changeset
|
66 |
operation.% |
8903 | 67 |
\end{isamarkuptext}% |
11964 | 68 |
\isamarkuptrue% |
8903 | 69 |
% |
70 |
\begin{isamarkuptext}% |
|
10140 | 71 |
\medskip Independently of \isa{monoid}, we now define a linear |
12338
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11964
diff
changeset
|
72 |
hierarchy of semigroups, general groups and Abelian groups. Note |
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11964
diff
changeset
|
73 |
that the names of class axioms are automatically qualified with each |
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11964
diff
changeset
|
74 |
class name, so we may re-use common names such as \isa{assoc}.% |
8903 | 75 |
\end{isamarkuptext}% |
17132 | 76 |
\isamarkupfalse% |
12338
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11964
diff
changeset
|
77 |
\isacommand{axclass}\ semigroup\ {\isasymsubseteq}\ type\isanewline |
10140 | 78 |
\ \ assoc{\isacharcolon}\ {\isachardoublequote}{\isacharparenleft}x\ {\isasymodot}\ y{\isacharparenright}\ {\isasymodot}\ z\ {\isacharequal}\ x\ {\isasymodot}\ {\isacharparenleft}y\ {\isasymodot}\ z{\isacharparenright}{\isachardoublequote}\isanewline |
8890 | 79 |
\isanewline |
11964 | 80 |
\isamarkupfalse% |
11099 | 81 |
\isacommand{axclass}\ group\ {\isasymsubseteq}\ semigroup\isanewline |
12344 | 82 |
\ \ left{\isacharunderscore}unit{\isacharcolon}\ {\isachardoublequote}{\isasymone}\ {\isasymodot}\ x\ {\isacharequal}\ x{\isachardoublequote}\isanewline |
83 |
\ \ left{\isacharunderscore}inverse{\isacharcolon}\ {\isachardoublequote}x{\isasyminv}\ {\isasymodot}\ x\ {\isacharequal}\ {\isasymone}{\isachardoublequote}\isanewline |
|
8903 | 84 |
\isanewline |
11964 | 85 |
\isamarkupfalse% |
11099 | 86 |
\isacommand{axclass}\ agroup\ {\isasymsubseteq}\ group\isanewline |
17132 | 87 |
\ \ commute{\isacharcolon}\ {\isachardoublequote}x\ {\isasymodot}\ y\ {\isacharequal}\ y\ {\isasymodot}\ x{\isachardoublequote}\isamarkuptrue% |
11964 | 88 |
% |
8903 | 89 |
\begin{isamarkuptext}% |
10140 | 90 |
\noindent Class \isa{group} inherits associativity of \isa{{\isasymodot}} |
12338
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11964
diff
changeset
|
91 |
from \isa{semigroup} and adds two further group axioms. Similarly, |
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11964
diff
changeset
|
92 |
\isa{agroup} is defined as the subset of \isa{group} such that |
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11964
diff
changeset
|
93 |
for all of its elements \isa{{\isasymtau}}, the operation \isa{{\isasymodot}\ {\isasymColon}\ {\isasymtau}\ {\isasymRightarrow}\ {\isasymtau}\ {\isasymRightarrow}\ {\isasymtau}} is even commutative.% |
8903 | 94 |
\end{isamarkuptext}% |
11964 | 95 |
\isamarkuptrue% |
8903 | 96 |
% |
10395 | 97 |
\isamarkupsubsection{Abstract reasoning% |
98 |
} |
|
11964 | 99 |
\isamarkuptrue% |
8903 | 100 |
% |
8890 | 101 |
\begin{isamarkuptext}% |
8903 | 102 |
In a sense, axiomatic type classes may be viewed as \emph{abstract |
12338
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11964
diff
changeset
|
103 |
theories}. Above class definitions gives rise to abstract axioms |
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11964
diff
changeset
|
104 |
\isa{assoc}, \isa{left{\isacharunderscore}unit}, \isa{left{\isacharunderscore}inverse}, \isa{commute}, where any of these contain a type variable \isa{{\isacharprime}a\ {\isasymColon}\ c} that is restricted to types of the corresponding class \isa{c}. \emph{Sort constraints} like this express a logical |
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11964
diff
changeset
|
105 |
precondition for the whole formula. For example, \isa{assoc} |
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11964
diff
changeset
|
106 |
states that for all \isa{{\isasymtau}}, provided that \isa{{\isasymtau}\ {\isasymColon}\ semigroup}, the operation \isa{{\isasymodot}\ {\isasymColon}\ {\isasymtau}\ {\isasymRightarrow}\ {\isasymtau}\ {\isasymRightarrow}\ {\isasymtau}} is associative. |
8903 | 107 |
|
12338
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11964
diff
changeset
|
108 |
\medskip From a technical point of view, abstract axioms are just |
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11964
diff
changeset
|
109 |
ordinary Isabelle theorems, which may be used in proofs without |
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11964
diff
changeset
|
110 |
special treatment. Such ``abstract proofs'' usually yield new |
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11964
diff
changeset
|
111 |
``abstract theorems''. For example, we may now derive the following |
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11964
diff
changeset
|
112 |
well-known laws of general groups.% |
8890 | 113 |
\end{isamarkuptext}% |
17132 | 114 |
\isamarkupfalse% |
12344 | 115 |
\isacommand{theorem}\ group{\isacharunderscore}right{\isacharunderscore}inverse{\isacharcolon}\ {\isachardoublequote}x\ {\isasymodot}\ x{\isasyminv}\ {\isacharequal}\ {\isacharparenleft}{\isasymone}{\isasymColon}{\isacharprime}a{\isasymColon}group{\isacharparenright}{\isachardoublequote}\isanewline |
17132 | 116 |
% |
117 |
\isadelimproof |
|
118 |
% |
|
119 |
\endisadelimproof |
|
120 |
% |
|
121 |
\isatagproof |
|
11964 | 122 |
\isamarkupfalse% |
9665 | 123 |
\isacommand{proof}\ {\isacharminus}\isanewline |
11964 | 124 |
\ \ \isamarkupfalse% |
12344 | 125 |
\isacommand{have}\ {\isachardoublequote}x\ {\isasymodot}\ x{\isasyminv}\ {\isacharequal}\ {\isasymone}\ {\isasymodot}\ {\isacharparenleft}x\ {\isasymodot}\ x{\isasyminv}{\isacharparenright}{\isachardoublequote}\isanewline |
11964 | 126 |
\ \ \ \ \isamarkupfalse% |
127 |
\isacommand{by}\ {\isacharparenleft}simp\ only{\isacharcolon}\ group{\isachardot}left{\isacharunderscore}unit{\isacharparenright}\isanewline |
|
128 |
\ \ \isamarkupfalse% |
|
129 |
\isacommand{also}\ \isamarkupfalse% |
|
12344 | 130 |
\isacommand{have}\ {\isachardoublequote}{\isachardot}{\isachardot}{\isachardot}\ {\isacharequal}\ {\isasymone}\ {\isasymodot}\ x\ {\isasymodot}\ x{\isasyminv}{\isachardoublequote}\isanewline |
11964 | 131 |
\ \ \ \ \isamarkupfalse% |
132 |
\isacommand{by}\ {\isacharparenleft}simp\ only{\isacharcolon}\ semigroup{\isachardot}assoc{\isacharparenright}\isanewline |
|
133 |
\ \ \isamarkupfalse% |
|
134 |
\isacommand{also}\ \isamarkupfalse% |
|
135 |
\isacommand{have}\ {\isachardoublequote}{\isachardot}{\isachardot}{\isachardot}\ {\isacharequal}\ {\isacharparenleft}x{\isasyminv}{\isacharparenright}{\isasyminv}\ {\isasymodot}\ x{\isasyminv}\ {\isasymodot}\ x\ {\isasymodot}\ x{\isasyminv}{\isachardoublequote}\isanewline |
|
136 |
\ \ \ \ \isamarkupfalse% |
|
137 |
\isacommand{by}\ {\isacharparenleft}simp\ only{\isacharcolon}\ group{\isachardot}left{\isacharunderscore}inverse{\isacharparenright}\isanewline |
|
138 |
\ \ \isamarkupfalse% |
|
139 |
\isacommand{also}\ \isamarkupfalse% |
|
140 |
\isacommand{have}\ {\isachardoublequote}{\isachardot}{\isachardot}{\isachardot}\ {\isacharequal}\ {\isacharparenleft}x{\isasyminv}{\isacharparenright}{\isasyminv}\ {\isasymodot}\ {\isacharparenleft}x{\isasyminv}\ {\isasymodot}\ x{\isacharparenright}\ {\isasymodot}\ x{\isasyminv}{\isachardoublequote}\isanewline |
|
141 |
\ \ \ \ \isamarkupfalse% |
|
142 |
\isacommand{by}\ {\isacharparenleft}simp\ only{\isacharcolon}\ semigroup{\isachardot}assoc{\isacharparenright}\isanewline |
|
143 |
\ \ \isamarkupfalse% |
|
144 |
\isacommand{also}\ \isamarkupfalse% |
|
12344 | 145 |
\isacommand{have}\ {\isachardoublequote}{\isachardot}{\isachardot}{\isachardot}\ {\isacharequal}\ {\isacharparenleft}x{\isasyminv}{\isacharparenright}{\isasyminv}\ {\isasymodot}\ {\isasymone}\ {\isasymodot}\ x{\isasyminv}{\isachardoublequote}\isanewline |
11964 | 146 |
\ \ \ \ \isamarkupfalse% |
147 |
\isacommand{by}\ {\isacharparenleft}simp\ only{\isacharcolon}\ group{\isachardot}left{\isacharunderscore}inverse{\isacharparenright}\isanewline |
|
148 |
\ \ \isamarkupfalse% |
|
149 |
\isacommand{also}\ \isamarkupfalse% |
|
12344 | 150 |
\isacommand{have}\ {\isachardoublequote}{\isachardot}{\isachardot}{\isachardot}\ {\isacharequal}\ {\isacharparenleft}x{\isasyminv}{\isacharparenright}{\isasyminv}\ {\isasymodot}\ {\isacharparenleft}{\isasymone}\ {\isasymodot}\ x{\isasyminv}{\isacharparenright}{\isachardoublequote}\isanewline |
11964 | 151 |
\ \ \ \ \isamarkupfalse% |
152 |
\isacommand{by}\ {\isacharparenleft}simp\ only{\isacharcolon}\ semigroup{\isachardot}assoc{\isacharparenright}\isanewline |
|
153 |
\ \ \isamarkupfalse% |
|
154 |
\isacommand{also}\ \isamarkupfalse% |
|
155 |
\isacommand{have}\ {\isachardoublequote}{\isachardot}{\isachardot}{\isachardot}\ {\isacharequal}\ {\isacharparenleft}x{\isasyminv}{\isacharparenright}{\isasyminv}\ {\isasymodot}\ x{\isasyminv}{\isachardoublequote}\isanewline |
|
156 |
\ \ \ \ \isamarkupfalse% |
|
157 |
\isacommand{by}\ {\isacharparenleft}simp\ only{\isacharcolon}\ group{\isachardot}left{\isacharunderscore}unit{\isacharparenright}\isanewline |
|
158 |
\ \ \isamarkupfalse% |
|
159 |
\isacommand{also}\ \isamarkupfalse% |
|
12344 | 160 |
\isacommand{have}\ {\isachardoublequote}{\isachardot}{\isachardot}{\isachardot}\ {\isacharequal}\ {\isasymone}{\isachardoublequote}\isanewline |
11964 | 161 |
\ \ \ \ \isamarkupfalse% |
162 |
\isacommand{by}\ {\isacharparenleft}simp\ only{\isacharcolon}\ group{\isachardot}left{\isacharunderscore}inverse{\isacharparenright}\isanewline |
|
163 |
\ \ \isamarkupfalse% |
|
164 |
\isacommand{finally}\ \isamarkupfalse% |
|
165 |
\isacommand{show}\ {\isacharquery}thesis\ \isamarkupfalse% |
|
166 |
\isacommand{{\isachardot}}\isanewline |
|
167 |
\isamarkupfalse% |
|
17132 | 168 |
\isacommand{qed}% |
169 |
\endisatagproof |
|
170 |
{\isafoldproof}% |
|
171 |
% |
|
172 |
\isadelimproof |
|
173 |
% |
|
174 |
\endisadelimproof |
|
175 |
\isamarkuptrue% |
|
11964 | 176 |
% |
8890 | 177 |
\begin{isamarkuptext}% |
12338
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11964
diff
changeset
|
178 |
\noindent With \isa{group{\isacharunderscore}right{\isacharunderscore}inverse} already available, \isa{group{\isacharunderscore}right{\isacharunderscore}unit}\label{thm:group-right-unit} is now established |
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11964
diff
changeset
|
179 |
much easier.% |
8890 | 180 |
\end{isamarkuptext}% |
17132 | 181 |
\isamarkupfalse% |
12344 | 182 |
\isacommand{theorem}\ group{\isacharunderscore}right{\isacharunderscore}unit{\isacharcolon}\ {\isachardoublequote}x\ {\isasymodot}\ {\isasymone}\ {\isacharequal}\ {\isacharparenleft}x{\isasymColon}{\isacharprime}a{\isasymColon}group{\isacharparenright}{\isachardoublequote}\isanewline |
17132 | 183 |
% |
184 |
\isadelimproof |
|
185 |
% |
|
186 |
\endisadelimproof |
|
187 |
% |
|
188 |
\isatagproof |
|
11964 | 189 |
\isamarkupfalse% |
9665 | 190 |
\isacommand{proof}\ {\isacharminus}\isanewline |
11964 | 191 |
\ \ \isamarkupfalse% |
12344 | 192 |
\isacommand{have}\ {\isachardoublequote}x\ {\isasymodot}\ {\isasymone}\ {\isacharequal}\ x\ {\isasymodot}\ {\isacharparenleft}x{\isasyminv}\ {\isasymodot}\ x{\isacharparenright}{\isachardoublequote}\isanewline |
11964 | 193 |
\ \ \ \ \isamarkupfalse% |
194 |
\isacommand{by}\ {\isacharparenleft}simp\ only{\isacharcolon}\ group{\isachardot}left{\isacharunderscore}inverse{\isacharparenright}\isanewline |
|
195 |
\ \ \isamarkupfalse% |
|
196 |
\isacommand{also}\ \isamarkupfalse% |
|
197 |
\isacommand{have}\ {\isachardoublequote}{\isachardot}{\isachardot}{\isachardot}\ {\isacharequal}\ x\ {\isasymodot}\ x{\isasyminv}\ {\isasymodot}\ x{\isachardoublequote}\isanewline |
|
198 |
\ \ \ \ \isamarkupfalse% |
|
199 |
\isacommand{by}\ {\isacharparenleft}simp\ only{\isacharcolon}\ semigroup{\isachardot}assoc{\isacharparenright}\isanewline |
|
200 |
\ \ \isamarkupfalse% |
|
201 |
\isacommand{also}\ \isamarkupfalse% |
|
12344 | 202 |
\isacommand{have}\ {\isachardoublequote}{\isachardot}{\isachardot}{\isachardot}\ {\isacharequal}\ {\isasymone}\ {\isasymodot}\ x{\isachardoublequote}\isanewline |
11964 | 203 |
\ \ \ \ \isamarkupfalse% |
204 |
\isacommand{by}\ {\isacharparenleft}simp\ only{\isacharcolon}\ group{\isacharunderscore}right{\isacharunderscore}inverse{\isacharparenright}\isanewline |
|
205 |
\ \ \isamarkupfalse% |
|
206 |
\isacommand{also}\ \isamarkupfalse% |
|
207 |
\isacommand{have}\ {\isachardoublequote}{\isachardot}{\isachardot}{\isachardot}\ {\isacharequal}\ x{\isachardoublequote}\isanewline |
|
208 |
\ \ \ \ \isamarkupfalse% |
|
209 |
\isacommand{by}\ {\isacharparenleft}simp\ only{\isacharcolon}\ group{\isachardot}left{\isacharunderscore}unit{\isacharparenright}\isanewline |
|
210 |
\ \ \isamarkupfalse% |
|
211 |
\isacommand{finally}\ \isamarkupfalse% |
|
212 |
\isacommand{show}\ {\isacharquery}thesis\ \isamarkupfalse% |
|
213 |
\isacommand{{\isachardot}}\isanewline |
|
214 |
\isamarkupfalse% |
|
17132 | 215 |
\isacommand{qed}% |
216 |
\endisatagproof |
|
217 |
{\isafoldproof}% |
|
218 |
% |
|
219 |
\isadelimproof |
|
220 |
% |
|
221 |
\endisadelimproof |
|
222 |
\isamarkuptrue% |
|
11964 | 223 |
% |
8903 | 224 |
\begin{isamarkuptext}% |
225 |
\medskip Abstract theorems may be instantiated to only those types |
|
12338
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11964
diff
changeset
|
226 |
\isa{{\isasymtau}} where the appropriate class membership \isa{{\isasymtau}\ {\isasymColon}\ c} is |
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11964
diff
changeset
|
227 |
known at Isabelle's type signature level. Since we have \isa{agroup\ {\isasymsubseteq}\ group\ {\isasymsubseteq}\ semigroup} by definition, all theorems of \isa{semigroup} and \isa{group} are automatically inherited by \isa{group} and \isa{agroup}.% |
8903 | 228 |
\end{isamarkuptext}% |
11964 | 229 |
\isamarkuptrue% |
8903 | 230 |
% |
10395 | 231 |
\isamarkupsubsection{Abstract instantiation% |
232 |
} |
|
11964 | 233 |
\isamarkuptrue% |
8903 | 234 |
% |
235 |
\begin{isamarkuptext}% |
|
10140 | 236 |
From the definition, the \isa{monoid} and \isa{group} classes |
12338
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11964
diff
changeset
|
237 |
have been independent. Note that for monoids, \isa{right{\isacharunderscore}unit} |
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11964
diff
changeset
|
238 |
had to be included as an axiom, but for groups both \isa{right{\isacharunderscore}unit} and \isa{right{\isacharunderscore}inverse} are derivable from the other |
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11964
diff
changeset
|
239 |
axioms. With \isa{group{\isacharunderscore}right{\isacharunderscore}unit} derived as a theorem of group |
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11964
diff
changeset
|
240 |
theory (see page~\pageref{thm:group-right-unit}), we may now |
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11964
diff
changeset
|
241 |
instantiate \isa{monoid\ {\isasymsubseteq}\ semigroup} and \isa{group\ {\isasymsubseteq}\ monoid} properly as follows (cf.\ \figref{fig:monoid-group}). |
8903 | 242 |
|
243 |
\begin{figure}[htbp] |
|
244 |
\begin{center} |
|
245 |
\small |
|
246 |
\unitlength 0.6mm |
|
247 |
\begin{picture}(65,90)(0,-10) |
|
248 |
\put(15,10){\line(0,1){10}} \put(15,30){\line(0,1){10}} |
|
249 |
\put(15,50){\line(1,1){10}} \put(35,60){\line(1,-1){10}} |
|
10140 | 250 |
\put(15,5){\makebox(0,0){\isa{agroup}}} |
251 |
\put(15,25){\makebox(0,0){\isa{group}}} |
|
252 |
\put(15,45){\makebox(0,0){\isa{semigroup}}} |
|
12338
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11964
diff
changeset
|
253 |
\put(30,65){\makebox(0,0){\isa{type}}} \put(50,45){\makebox(0,0){\isa{monoid}}} |
8903 | 254 |
\end{picture} |
255 |
\hspace{4em} |
|
256 |
\begin{picture}(30,90)(0,0) |
|
257 |
\put(15,10){\line(0,1){10}} \put(15,30){\line(0,1){10}} |
|
258 |
\put(15,50){\line(0,1){10}} \put(15,70){\line(0,1){10}} |
|
10140 | 259 |
\put(15,5){\makebox(0,0){\isa{agroup}}} |
260 |
\put(15,25){\makebox(0,0){\isa{group}}} |
|
261 |
\put(15,45){\makebox(0,0){\isa{monoid}}} |
|
262 |
\put(15,65){\makebox(0,0){\isa{semigroup}}} |
|
12338
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11964
diff
changeset
|
263 |
\put(15,85){\makebox(0,0){\isa{type}}} |
8903 | 264 |
\end{picture} |
265 |
\caption{Monoids and groups: according to definition, and by proof} |
|
266 |
\label{fig:monoid-group} |
|
267 |
\end{center} |
|
8907 | 268 |
\end{figure}% |
8903 | 269 |
\end{isamarkuptext}% |
17132 | 270 |
\isamarkupfalse% |
11099 | 271 |
\isacommand{instance}\ monoid\ {\isasymsubseteq}\ semigroup\isanewline |
17132 | 272 |
% |
273 |
\isadelimproof |
|
274 |
% |
|
275 |
\endisadelimproof |
|
276 |
% |
|
277 |
\isatagproof |
|
11964 | 278 |
\isamarkupfalse% |
10310 | 279 |
\isacommand{proof}\isanewline |
11964 | 280 |
\ \ \isamarkupfalse% |
281 |
\isacommand{fix}\ x\ y\ z\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}{\isacharprime}a{\isasymColon}monoid{\isachardoublequote}\isanewline |
|
282 |
\ \ \isamarkupfalse% |
|
283 |
\isacommand{show}\ {\isachardoublequote}x\ {\isasymodot}\ y\ {\isasymodot}\ z\ {\isacharequal}\ x\ {\isasymodot}\ {\isacharparenleft}y\ {\isasymodot}\ z{\isacharparenright}{\isachardoublequote}\isanewline |
|
284 |
\ \ \ \ \isamarkupfalse% |
|
285 |
\isacommand{by}\ {\isacharparenleft}rule\ monoid{\isachardot}assoc{\isacharparenright}\isanewline |
|
286 |
\isamarkupfalse% |
|
17132 | 287 |
\isacommand{qed}% |
288 |
\endisatagproof |
|
289 |
{\isafoldproof}% |
|
290 |
% |
|
291 |
\isadelimproof |
|
292 |
\isanewline |
|
293 |
% |
|
294 |
\endisadelimproof |
|
8890 | 295 |
\isanewline |
11964 | 296 |
\isamarkupfalse% |
11099 | 297 |
\isacommand{instance}\ group\ {\isasymsubseteq}\ monoid\isanewline |
17132 | 298 |
% |
299 |
\isadelimproof |
|
300 |
% |
|
301 |
\endisadelimproof |
|
302 |
% |
|
303 |
\isatagproof |
|
11964 | 304 |
\isamarkupfalse% |
10310 | 305 |
\isacommand{proof}\isanewline |
11964 | 306 |
\ \ \isamarkupfalse% |
307 |
\isacommand{fix}\ x\ y\ z\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}{\isacharprime}a{\isasymColon}group{\isachardoublequote}\isanewline |
|
308 |
\ \ \isamarkupfalse% |
|
309 |
\isacommand{show}\ {\isachardoublequote}x\ {\isasymodot}\ y\ {\isasymodot}\ z\ {\isacharequal}\ x\ {\isasymodot}\ {\isacharparenleft}y\ {\isasymodot}\ z{\isacharparenright}{\isachardoublequote}\isanewline |
|
310 |
\ \ \ \ \isamarkupfalse% |
|
311 |
\isacommand{by}\ {\isacharparenleft}rule\ semigroup{\isachardot}assoc{\isacharparenright}\isanewline |
|
312 |
\ \ \isamarkupfalse% |
|
12344 | 313 |
\isacommand{show}\ {\isachardoublequote}{\isasymone}\ {\isasymodot}\ x\ {\isacharequal}\ x{\isachardoublequote}\isanewline |
11964 | 314 |
\ \ \ \ \isamarkupfalse% |
315 |
\isacommand{by}\ {\isacharparenleft}rule\ group{\isachardot}left{\isacharunderscore}unit{\isacharparenright}\isanewline |
|
316 |
\ \ \isamarkupfalse% |
|
12344 | 317 |
\isacommand{show}\ {\isachardoublequote}x\ {\isasymodot}\ {\isasymone}\ {\isacharequal}\ x{\isachardoublequote}\isanewline |
11964 | 318 |
\ \ \ \ \isamarkupfalse% |
319 |
\isacommand{by}\ {\isacharparenleft}rule\ group{\isacharunderscore}right{\isacharunderscore}unit{\isacharparenright}\isanewline |
|
320 |
\isamarkupfalse% |
|
17132 | 321 |
\isacommand{qed}% |
322 |
\endisatagproof |
|
323 |
{\isafoldproof}% |
|
324 |
% |
|
325 |
\isadelimproof |
|
326 |
% |
|
327 |
\endisadelimproof |
|
328 |
\isamarkuptrue% |
|
11964 | 329 |
% |
8903 | 330 |
\begin{isamarkuptext}% |
10223 | 331 |
\medskip The $\INSTANCE$ command sets up an appropriate goal that |
12338
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11964
diff
changeset
|
332 |
represents the class inclusion (or type arity, see |
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11964
diff
changeset
|
333 |
\secref{sec:inst-arity}) to be proven (see also |
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11964
diff
changeset
|
334 |
\cite{isabelle-isar-ref}). The initial proof step causes |
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11964
diff
changeset
|
335 |
back-chaining of class membership statements wrt.\ the hierarchy of |
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11964
diff
changeset
|
336 |
any classes defined in the current theory; the effect is to reduce |
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11964
diff
changeset
|
337 |
to the initial statement to a number of goals that directly |
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11964
diff
changeset
|
338 |
correspond to any class axioms encountered on the path upwards |
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11964
diff
changeset
|
339 |
through the class hierarchy.% |
8903 | 340 |
\end{isamarkuptext}% |
11964 | 341 |
\isamarkuptrue% |
8903 | 342 |
% |
10395 | 343 |
\isamarkupsubsection{Concrete instantiation \label{sec:inst-arity}% |
344 |
} |
|
11964 | 345 |
\isamarkuptrue% |
8903 | 346 |
% |
347 |
\begin{isamarkuptext}% |
|
11099 | 348 |
So far we have covered the case of the form $\INSTANCE$~\isa{c\isactrlsub {\isadigit{1}}\ {\isasymsubseteq}\ c\isactrlsub {\isadigit{2}}}, namely \emph{abstract instantiation} --- |
12338
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11964
diff
changeset
|
349 |
$c@1$ is more special than \isa{c\isactrlsub {\isadigit{1}}} and thus an instance |
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11964
diff
changeset
|
350 |
of \isa{c\isactrlsub {\isadigit{2}}}. Even more interesting for practical |
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11964
diff
changeset
|
351 |
applications are \emph{concrete instantiations} of axiomatic type |
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11964
diff
changeset
|
352 |
classes. That is, certain simple schemes \isa{{\isacharparenleft}{\isasymalpha}\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ {\isasymalpha}\isactrlsub n{\isacharparenright}\ t\ {\isasymColon}\ c} of class membership may be established at the |
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11964
diff
changeset
|
353 |
logical level and then transferred to Isabelle's type signature |
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11964
diff
changeset
|
354 |
level. |
8903 | 355 |
|
12338
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11964
diff
changeset
|
356 |
\medskip As a typical example, we show that type \isa{bool} with |
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11964
diff
changeset
|
357 |
exclusive-or as \isa{{\isasymodot}} operation, identity as \isa{{\isasyminv}}, and |
12344 | 358 |
\isa{False} as \isa{{\isasymone}} forms an Abelian group.% |
8903 | 359 |
\end{isamarkuptext}% |
17132 | 360 |
\isamarkupfalse% |
9665 | 361 |
\isacommand{defs}\ {\isacharparenleft}\isakeyword{overloaded}{\isacharparenright}\isanewline |
10140 | 362 |
\ \ times{\isacharunderscore}bool{\isacharunderscore}def{\isacharcolon}\ {\isachardoublequote}x\ {\isasymodot}\ y\ {\isasymequiv}\ x\ {\isasymnoteq}\ {\isacharparenleft}y{\isasymColon}bool{\isacharparenright}{\isachardoublequote}\isanewline |
9672 | 363 |
\ \ inverse{\isacharunderscore}bool{\isacharunderscore}def{\isacharcolon}\ {\isachardoublequote}x{\isasyminv}\ {\isasymequiv}\ x{\isasymColon}bool{\isachardoublequote}\isanewline |
17132 | 364 |
\ \ unit{\isacharunderscore}bool{\isacharunderscore}def{\isacharcolon}\ {\isachardoublequote}{\isasymone}\ {\isasymequiv}\ False{\isachardoublequote}\isamarkuptrue% |
11964 | 365 |
% |
8903 | 366 |
\begin{isamarkuptext}% |
367 |
\medskip It is important to note that above $\DEFS$ are just |
|
12338
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11964
diff
changeset
|
368 |
overloaded meta-level constant definitions, where type classes are |
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11964
diff
changeset
|
369 |
not yet involved at all. This form of constant definition with |
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11964
diff
changeset
|
370 |
overloading (and optional recursion over the syntactic structure of |
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11964
diff
changeset
|
371 |
simple types) are admissible as definitional extensions of plain HOL |
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11964
diff
changeset
|
372 |
\cite{Wenzel:1997:TPHOL}. The Haskell-style type system is not |
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11964
diff
changeset
|
373 |
required for overloading. Nevertheless, overloaded definitions are |
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11964
diff
changeset
|
374 |
best applied in the context of type classes. |
8903 | 375 |
|
12338
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11964
diff
changeset
|
376 |
\medskip Since we have chosen above $\DEFS$ of the generic group |
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11964
diff
changeset
|
377 |
operations on type \isa{bool} appropriately, the class membership |
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11964
diff
changeset
|
378 |
\isa{bool\ {\isasymColon}\ agroup} may be now derived as follows.% |
8903 | 379 |
\end{isamarkuptext}% |
17132 | 380 |
\isamarkupfalse% |
9672 | 381 |
\isacommand{instance}\ bool\ {\isacharcolon}{\isacharcolon}\ agroup\isanewline |
17132 | 382 |
% |
383 |
\isadelimproof |
|
384 |
% |
|
385 |
\endisadelimproof |
|
386 |
% |
|
387 |
\isatagproof |
|
11964 | 388 |
\isamarkupfalse% |
9672 | 389 |
\isacommand{proof}\ {\isacharparenleft}intro{\isacharunderscore}classes{\isacharcomma}\isanewline |
9665 | 390 |
\ \ \ \ unfold\ times{\isacharunderscore}bool{\isacharunderscore}def\ inverse{\isacharunderscore}bool{\isacharunderscore}def\ unit{\isacharunderscore}bool{\isacharunderscore}def{\isacharparenright}\isanewline |
11964 | 391 |
\ \ \isamarkupfalse% |
392 |
\isacommand{fix}\ x\ y\ z\isanewline |
|
393 |
\ \ \isamarkupfalse% |
|
394 |
\isacommand{show}\ {\isachardoublequote}{\isacharparenleft}{\isacharparenleft}x\ {\isasymnoteq}\ y{\isacharparenright}\ {\isasymnoteq}\ z{\isacharparenright}\ {\isacharequal}\ {\isacharparenleft}x\ {\isasymnoteq}\ {\isacharparenleft}y\ {\isasymnoteq}\ z{\isacharparenright}{\isacharparenright}{\isachardoublequote}\ \isamarkupfalse% |
|
395 |
\isacommand{by}\ blast\isanewline |
|
396 |
\ \ \isamarkupfalse% |
|
397 |
\isacommand{show}\ {\isachardoublequote}{\isacharparenleft}False\ {\isasymnoteq}\ x{\isacharparenright}\ {\isacharequal}\ x{\isachardoublequote}\ \isamarkupfalse% |
|
398 |
\isacommand{by}\ blast\isanewline |
|
399 |
\ \ \isamarkupfalse% |
|
400 |
\isacommand{show}\ {\isachardoublequote}{\isacharparenleft}x\ {\isasymnoteq}\ x{\isacharparenright}\ {\isacharequal}\ False{\isachardoublequote}\ \isamarkupfalse% |
|
401 |
\isacommand{by}\ blast\isanewline |
|
402 |
\ \ \isamarkupfalse% |
|
403 |
\isacommand{show}\ {\isachardoublequote}{\isacharparenleft}x\ {\isasymnoteq}\ y{\isacharparenright}\ {\isacharequal}\ {\isacharparenleft}y\ {\isasymnoteq}\ x{\isacharparenright}{\isachardoublequote}\ \isamarkupfalse% |
|
404 |
\isacommand{by}\ blast\isanewline |
|
405 |
\isamarkupfalse% |
|
17132 | 406 |
\isacommand{qed}% |
407 |
\endisatagproof |
|
408 |
{\isafoldproof}% |
|
409 |
% |
|
410 |
\isadelimproof |
|
411 |
% |
|
412 |
\endisadelimproof |
|
413 |
\isamarkuptrue% |
|
11964 | 414 |
% |
8903 | 415 |
\begin{isamarkuptext}% |
12338
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11964
diff
changeset
|
416 |
The result of an $\INSTANCE$ statement is both expressed as a |
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11964
diff
changeset
|
417 |
theorem of Isabelle's meta-logic, and as a type arity of the type |
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11964
diff
changeset
|
418 |
signature. The latter enables type-inference system to take care of |
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11964
diff
changeset
|
419 |
this new instance automatically. |
8903 | 420 |
|
12338
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11964
diff
changeset
|
421 |
\medskip We could now also instantiate our group theory classes to |
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11964
diff
changeset
|
422 |
many other concrete types. For example, \isa{int\ {\isasymColon}\ agroup} |
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11964
diff
changeset
|
423 |
(e.g.\ by defining \isa{{\isasymodot}} as addition, \isa{{\isasyminv}} as negation |
12344 | 424 |
and \isa{{\isasymone}} as zero) or \isa{list\ {\isasymColon}\ {\isacharparenleft}type{\isacharparenright}\ semigroup} |
12338
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11964
diff
changeset
|
425 |
(e.g.\ if \isa{{\isasymodot}} is defined as list append). Thus, the |
12344 | 426 |
characteristic constants \isa{{\isasymodot}}, \isa{{\isasyminv}}, \isa{{\isasymone}} |
12338
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11964
diff
changeset
|
427 |
really become overloaded, i.e.\ have different meanings on different |
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11964
diff
changeset
|
428 |
types.% |
8903 | 429 |
\end{isamarkuptext}% |
11964 | 430 |
\isamarkuptrue% |
8903 | 431 |
% |
10395 | 432 |
\isamarkupsubsection{Lifting and Functors% |
433 |
} |
|
11964 | 434 |
\isamarkuptrue% |
8903 | 435 |
% |
436 |
\begin{isamarkuptext}% |
|
437 |
As already mentioned above, overloading in the simply-typed HOL |
|
12338
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11964
diff
changeset
|
438 |
systems may include recursion over the syntactic structure of types. |
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11964
diff
changeset
|
439 |
That is, definitional equations \isa{c\isactrlsup {\isasymtau}\ {\isasymequiv}\ t} may also |
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11964
diff
changeset
|
440 |
contain constants of name \isa{c} on the right-hand side --- if |
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11964
diff
changeset
|
441 |
these have types that are structurally simpler than \isa{{\isasymtau}}. |
8903 | 442 |
|
12338
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11964
diff
changeset
|
443 |
This feature enables us to \emph{lift operations}, say to Cartesian |
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11964
diff
changeset
|
444 |
products, direct sums or function spaces. Subsequently we lift |
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11964
diff
changeset
|
445 |
\isa{{\isasymodot}} component-wise to binary products \isa{{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}b}.% |
8903 | 446 |
\end{isamarkuptext}% |
17132 | 447 |
\isamarkupfalse% |
9665 | 448 |
\isacommand{defs}\ {\isacharparenleft}\isakeyword{overloaded}{\isacharparenright}\isanewline |
17132 | 449 |
\ \ times{\isacharunderscore}prod{\isacharunderscore}def{\isacharcolon}\ {\isachardoublequote}p\ {\isasymodot}\ q\ {\isasymequiv}\ {\isacharparenleft}fst\ p\ {\isasymodot}\ fst\ q{\isacharcomma}\ snd\ p\ {\isasymodot}\ snd\ q{\isacharparenright}{\isachardoublequote}\isamarkuptrue% |
11964 | 450 |
% |
8903 | 451 |
\begin{isamarkuptext}% |
10140 | 452 |
It is very easy to see that associativity of \isa{{\isasymodot}} on \isa{{\isacharprime}a} |
12338
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11964
diff
changeset
|
453 |
and \isa{{\isasymodot}} on \isa{{\isacharprime}b} transfers to \isa{{\isasymodot}} on \isa{{\isacharprime}a\ {\isasymtimes}\ {\isacharprime}b}. Hence the binary type constructor \isa{{\isasymodot}} maps semigroups |
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11964
diff
changeset
|
454 |
to semigroups. This may be established formally as follows.% |
8903 | 455 |
\end{isamarkuptext}% |
17132 | 456 |
\isamarkupfalse% |
9672 | 457 |
\isacommand{instance}\ {\isacharasterisk}\ {\isacharcolon}{\isacharcolon}\ {\isacharparenleft}semigroup{\isacharcomma}\ semigroup{\isacharparenright}\ semigroup\isanewline |
17132 | 458 |
% |
459 |
\isadelimproof |
|
460 |
% |
|
461 |
\endisadelimproof |
|
462 |
% |
|
463 |
\isatagproof |
|
11964 | 464 |
\isamarkupfalse% |
9672 | 465 |
\isacommand{proof}\ {\isacharparenleft}intro{\isacharunderscore}classes{\isacharcomma}\ unfold\ times{\isacharunderscore}prod{\isacharunderscore}def{\isacharparenright}\isanewline |
11964 | 466 |
\ \ \isamarkupfalse% |
467 |
\isacommand{fix}\ p\ q\ r\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}{\isacharprime}a{\isasymColon}semigroup\ {\isasymtimes}\ {\isacharprime}b{\isasymColon}semigroup{\isachardoublequote}\isanewline |
|
468 |
\ \ \isamarkupfalse% |
|
469 |
\isacommand{show}\isanewline |
|
10140 | 470 |
\ \ \ \ {\isachardoublequote}{\isacharparenleft}fst\ {\isacharparenleft}fst\ p\ {\isasymodot}\ fst\ q{\isacharcomma}\ snd\ p\ {\isasymodot}\ snd\ q{\isacharparenright}\ {\isasymodot}\ fst\ r{\isacharcomma}\isanewline |
471 |
\ \ \ \ \ \ snd\ {\isacharparenleft}fst\ p\ {\isasymodot}\ fst\ q{\isacharcomma}\ snd\ p\ {\isasymodot}\ snd\ q{\isacharparenright}\ {\isasymodot}\ snd\ r{\isacharparenright}\ {\isacharequal}\isanewline |
|
472 |
\ \ \ \ \ \ \ {\isacharparenleft}fst\ p\ {\isasymodot}\ fst\ {\isacharparenleft}fst\ q\ {\isasymodot}\ fst\ r{\isacharcomma}\ snd\ q\ {\isasymodot}\ snd\ r{\isacharparenright}{\isacharcomma}\isanewline |
|
473 |
\ \ \ \ \ \ \ \ snd\ p\ {\isasymodot}\ snd\ {\isacharparenleft}fst\ q\ {\isasymodot}\ fst\ r{\isacharcomma}\ snd\ q\ {\isasymodot}\ snd\ r{\isacharparenright}{\isacharparenright}{\isachardoublequote}\isanewline |
|
11964 | 474 |
\ \ \ \ \isamarkupfalse% |
475 |
\isacommand{by}\ {\isacharparenleft}simp\ add{\isacharcolon}\ semigroup{\isachardot}assoc{\isacharparenright}\isanewline |
|
476 |
\isamarkupfalse% |
|
17132 | 477 |
\isacommand{qed}% |
478 |
\endisatagproof |
|
479 |
{\isafoldproof}% |
|
480 |
% |
|
481 |
\isadelimproof |
|
482 |
% |
|
483 |
\endisadelimproof |
|
484 |
\isamarkuptrue% |
|
11964 | 485 |
% |
8903 | 486 |
\begin{isamarkuptext}% |
487 |
Thus, if we view class instances as ``structures'', then overloaded |
|
12338
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11964
diff
changeset
|
488 |
constant definitions with recursion over types indirectly provide |
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11964
diff
changeset
|
489 |
some kind of ``functors'' --- i.e.\ mappings between abstract |
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11964
diff
changeset
|
490 |
theories.% |
8903 | 491 |
\end{isamarkuptext}% |
17132 | 492 |
% |
493 |
\isadelimtheory |
|
494 |
% |
|
495 |
\endisadelimtheory |
|
496 |
% |
|
497 |
\isatagtheory |
|
12338
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11964
diff
changeset
|
498 |
\isamarkupfalse% |
17132 | 499 |
\isacommand{end}% |
500 |
\endisatagtheory |
|
501 |
{\isafoldtheory}% |
|
502 |
% |
|
503 |
\isadelimtheory |
|
504 |
% |
|
505 |
\endisadelimtheory |
|
506 |
\isanewline |
|
11964 | 507 |
\end{isabellebody}% |
9145 | 508 |
%%% Local Variables: |
509 |
%%% mode: latex |
|
510 |
%%% TeX-master: "root" |
|
511 |
%%% End: |