| author | wenzelm | 
| Fri, 22 Dec 2017 20:15:16 +0100 | |
| changeset 67264 | 16f74b7c248a | 
| parent 67091 | 1393c2340eec | 
| child 67398 | 5eb932e604a2 | 
| permissions | -rw-r--r-- | 
| 28685 | 1 | (* Title: HOL/Orderings.thy | 
| 15524 | 2 | Author: Tobias Nipkow, Markus Wenzel, and Larry Paulson | 
| 3 | *) | |
| 4 | ||
| 60758 | 5 | section \<open>Abstract orderings\<close> | 
| 15524 | 6 | |
| 7 | theory Orderings | |
| 35301 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35115diff
changeset | 8 | imports HOL | 
| 46950 
d0181abdbdac
declare command keywords via theory header, including strict checking outside Pure;
 wenzelm parents: 
46884diff
changeset | 9 | keywords "print_orders" :: diag | 
| 15524 | 10 | begin | 
| 11 | ||
| 48891 | 12 | ML_file "~~/src/Provers/order.ML" | 
| 13 | ML_file "~~/src/Provers/quasi.ML" (* FIXME unused? *) | |
| 14 | ||
| 60758 | 15 | subsection \<open>Abstract ordering\<close> | 
| 51487 | 16 | |
| 17 | locale ordering = | |
| 63290 
9ac558ab0906
boldify syntax in abstract algebraic structures, to avoid clashes with concrete syntax in corresponding type classes
 haftmann parents: 
63172diff
changeset | 18 | fixes less_eq :: "'a \<Rightarrow> 'a \<Rightarrow> bool" (infix "\<^bold>\<le>" 50) | 
| 
9ac558ab0906
boldify syntax in abstract algebraic structures, to avoid clashes with concrete syntax in corresponding type classes
 haftmann parents: 
63172diff
changeset | 19 | and less :: "'a \<Rightarrow> 'a \<Rightarrow> bool" (infix "\<^bold><" 50) | 
| 
9ac558ab0906
boldify syntax in abstract algebraic structures, to avoid clashes with concrete syntax in corresponding type classes
 haftmann parents: 
63172diff
changeset | 20 | assumes strict_iff_order: "a \<^bold>< b \<longleftrightarrow> a \<^bold>\<le> b \<and> a \<noteq> b" | 
| 
9ac558ab0906
boldify syntax in abstract algebraic structures, to avoid clashes with concrete syntax in corresponding type classes
 haftmann parents: 
63172diff
changeset | 21 | assumes refl: "a \<^bold>\<le> a" \<comment> \<open>not \<open>iff\<close>: makes problems due to multiple (dual) interpretations\<close> | 
| 
9ac558ab0906
boldify syntax in abstract algebraic structures, to avoid clashes with concrete syntax in corresponding type classes
 haftmann parents: 
63172diff
changeset | 22 | and antisym: "a \<^bold>\<le> b \<Longrightarrow> b \<^bold>\<le> a \<Longrightarrow> a = b" | 
| 
9ac558ab0906
boldify syntax in abstract algebraic structures, to avoid clashes with concrete syntax in corresponding type classes
 haftmann parents: 
63172diff
changeset | 23 | and trans: "a \<^bold>\<le> b \<Longrightarrow> b \<^bold>\<le> c \<Longrightarrow> a \<^bold>\<le> c" | 
| 51487 | 24 | begin | 
| 25 | ||
| 26 | lemma strict_implies_order: | |
| 63290 
9ac558ab0906
boldify syntax in abstract algebraic structures, to avoid clashes with concrete syntax in corresponding type classes
 haftmann parents: 
63172diff
changeset | 27 | "a \<^bold>< b \<Longrightarrow> a \<^bold>\<le> b" | 
| 51487 | 28 | by (simp add: strict_iff_order) | 
| 29 | ||
| 30 | lemma strict_implies_not_eq: | |
| 63290 
9ac558ab0906
boldify syntax in abstract algebraic structures, to avoid clashes with concrete syntax in corresponding type classes
 haftmann parents: 
63172diff
changeset | 31 | "a \<^bold>< b \<Longrightarrow> a \<noteq> b" | 
| 51487 | 32 | by (simp add: strict_iff_order) | 
| 33 | ||
| 34 | lemma not_eq_order_implies_strict: | |
| 63290 
9ac558ab0906
boldify syntax in abstract algebraic structures, to avoid clashes with concrete syntax in corresponding type classes
 haftmann parents: 
63172diff
changeset | 35 | "a \<noteq> b \<Longrightarrow> a \<^bold>\<le> b \<Longrightarrow> a \<^bold>< b" | 
| 51487 | 36 | by (simp add: strict_iff_order) | 
| 37 | ||
| 38 | lemma order_iff_strict: | |
| 63290 
9ac558ab0906
boldify syntax in abstract algebraic structures, to avoid clashes with concrete syntax in corresponding type classes
 haftmann parents: 
63172diff
changeset | 39 | "a \<^bold>\<le> b \<longleftrightarrow> a \<^bold>< b \<or> a = b" | 
| 51487 | 40 | by (auto simp add: strict_iff_order refl) | 
| 41 | ||
| 61799 | 42 | lemma irrefl: \<comment> \<open>not \<open>iff\<close>: makes problems due to multiple (dual) interpretations\<close> | 
| 63290 
9ac558ab0906
boldify syntax in abstract algebraic structures, to avoid clashes with concrete syntax in corresponding type classes
 haftmann parents: 
63172diff
changeset | 43 | "\<not> a \<^bold>< a" | 
| 51487 | 44 | by (simp add: strict_iff_order) | 
| 45 | ||
| 46 | lemma asym: | |
| 63290 
9ac558ab0906
boldify syntax in abstract algebraic structures, to avoid clashes with concrete syntax in corresponding type classes
 haftmann parents: 
63172diff
changeset | 47 | "a \<^bold>< b \<Longrightarrow> b \<^bold>< a \<Longrightarrow> False" | 
| 51487 | 48 | by (auto simp add: strict_iff_order intro: antisym) | 
| 49 | ||
| 50 | lemma strict_trans1: | |
| 63290 
9ac558ab0906
boldify syntax in abstract algebraic structures, to avoid clashes with concrete syntax in corresponding type classes
 haftmann parents: 
63172diff
changeset | 51 | "a \<^bold>\<le> b \<Longrightarrow> b \<^bold>< c \<Longrightarrow> a \<^bold>< c" | 
| 51487 | 52 | by (auto simp add: strict_iff_order intro: trans antisym) | 
| 53 | ||
| 54 | lemma strict_trans2: | |
| 63290 
9ac558ab0906
boldify syntax in abstract algebraic structures, to avoid clashes with concrete syntax in corresponding type classes
 haftmann parents: 
63172diff
changeset | 55 | "a \<^bold>< b \<Longrightarrow> b \<^bold>\<le> c \<Longrightarrow> a \<^bold>< c" | 
| 51487 | 56 | by (auto simp add: strict_iff_order intro: trans antisym) | 
| 57 | ||
| 58 | lemma strict_trans: | |
| 63290 
9ac558ab0906
boldify syntax in abstract algebraic structures, to avoid clashes with concrete syntax in corresponding type classes
 haftmann parents: 
63172diff
changeset | 59 | "a \<^bold>< b \<Longrightarrow> b \<^bold>< c \<Longrightarrow> a \<^bold>< c" | 
| 51487 | 60 | by (auto intro: strict_trans1 strict_implies_order) | 
| 61 | ||
| 62 | end | |
| 63 | ||
| 63819 | 64 | text \<open>Alternative introduction rule with bias towards strict order\<close> | 
| 65 | ||
| 66 | lemma ordering_strictI: | |
| 67 | fixes less_eq (infix "\<^bold>\<le>" 50) | |
| 68 | and less (infix "\<^bold><" 50) | |
| 69 | assumes less_eq_less: "\<And>a b. a \<^bold>\<le> b \<longleftrightarrow> a \<^bold>< b \<or> a = b" | |
| 70 | assumes asym: "\<And>a b. a \<^bold>< b \<Longrightarrow> \<not> b \<^bold>< a" | |
| 71 | assumes irrefl: "\<And>a. \<not> a \<^bold>< a" | |
| 72 | assumes trans: "\<And>a b c. a \<^bold>< b \<Longrightarrow> b \<^bold>< c \<Longrightarrow> a \<^bold>< c" | |
| 73 | shows "ordering less_eq less" | |
| 74 | proof | |
| 75 | fix a b | |
| 76 | show "a \<^bold>< b \<longleftrightarrow> a \<^bold>\<le> b \<and> a \<noteq> b" | |
| 77 | by (auto simp add: less_eq_less asym irrefl) | |
| 78 | next | |
| 79 | fix a | |
| 80 | show "a \<^bold>\<le> a" | |
| 81 | by (auto simp add: less_eq_less) | |
| 82 | next | |
| 83 | fix a b c | |
| 84 | assume "a \<^bold>\<le> b" and "b \<^bold>\<le> c" then show "a \<^bold>\<le> c" | |
| 85 | by (auto simp add: less_eq_less intro: trans) | |
| 86 | next | |
| 87 | fix a b | |
| 88 | assume "a \<^bold>\<le> b" and "b \<^bold>\<le> a" then show "a = b" | |
| 89 | by (auto simp add: less_eq_less asym) | |
| 90 | qed | |
| 91 | ||
| 92 | lemma ordering_dualI: | |
| 93 | fixes less_eq (infix "\<^bold>\<le>" 50) | |
| 94 | and less (infix "\<^bold><" 50) | |
| 95 | assumes "ordering (\<lambda>a b. b \<^bold>\<le> a) (\<lambda>a b. b \<^bold>< a)" | |
| 96 | shows "ordering less_eq less" | |
| 97 | proof - | |
| 98 | from assms interpret ordering "\<lambda>a b. b \<^bold>\<le> a" "\<lambda>a b. b \<^bold>< a" . | |
| 99 | show ?thesis | |
| 100 | by standard (auto simp: strict_iff_order refl intro: antisym trans) | |
| 101 | qed | |
| 102 | ||
| 51487 | 103 | locale ordering_top = ordering + | 
| 63290 
9ac558ab0906
boldify syntax in abstract algebraic structures, to avoid clashes with concrete syntax in corresponding type classes
 haftmann parents: 
63172diff
changeset | 104 |   fixes top :: "'a"  ("\<^bold>\<top>")
 | 
| 
9ac558ab0906
boldify syntax in abstract algebraic structures, to avoid clashes with concrete syntax in corresponding type classes
 haftmann parents: 
63172diff
changeset | 105 | assumes extremum [simp]: "a \<^bold>\<le> \<^bold>\<top>" | 
| 51487 | 106 | begin | 
| 107 | ||
| 108 | lemma extremum_uniqueI: | |
| 63290 
9ac558ab0906
boldify syntax in abstract algebraic structures, to avoid clashes with concrete syntax in corresponding type classes
 haftmann parents: 
63172diff
changeset | 109 | "\<^bold>\<top> \<^bold>\<le> a \<Longrightarrow> a = \<^bold>\<top>" | 
| 51487 | 110 | by (rule antisym) auto | 
| 111 | ||
| 112 | lemma extremum_unique: | |
| 63290 
9ac558ab0906
boldify syntax in abstract algebraic structures, to avoid clashes with concrete syntax in corresponding type classes
 haftmann parents: 
63172diff
changeset | 113 | "\<^bold>\<top> \<^bold>\<le> a \<longleftrightarrow> a = \<^bold>\<top>" | 
| 51487 | 114 | by (auto intro: antisym) | 
| 115 | ||
| 116 | lemma extremum_strict [simp]: | |
| 63290 
9ac558ab0906
boldify syntax in abstract algebraic structures, to avoid clashes with concrete syntax in corresponding type classes
 haftmann parents: 
63172diff
changeset | 117 | "\<not> (\<^bold>\<top> \<^bold>< a)" | 
| 51487 | 118 | using extremum [of a] by (auto simp add: order_iff_strict intro: asym irrefl) | 
| 119 | ||
| 120 | lemma not_eq_extremum: | |
| 63290 
9ac558ab0906
boldify syntax in abstract algebraic structures, to avoid clashes with concrete syntax in corresponding type classes
 haftmann parents: 
63172diff
changeset | 121 | "a \<noteq> \<^bold>\<top> \<longleftrightarrow> a \<^bold>< \<^bold>\<top>" | 
| 51487 | 122 | by (auto simp add: order_iff_strict intro: not_eq_order_implies_strict extremum) | 
| 123 | ||
| 61824 
dcbe9f756ae0
not_leE -> not_le_imp_less and other tidying
 paulson <lp15@cam.ac.uk> parents: 
61799diff
changeset | 124 | end | 
| 51487 | 125 | |
| 126 | ||
| 60758 | 127 | subsection \<open>Syntactic orders\<close> | 
| 35092 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 128 | |
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 129 | class ord = | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 130 | fixes less_eq :: "'a \<Rightarrow> 'a \<Rightarrow> bool" | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 131 | and less :: "'a \<Rightarrow> 'a \<Rightarrow> bool" | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 132 | begin | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 133 | |
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 134 | notation | 
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61824diff
changeset | 135 |   less_eq  ("op \<le>") and
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61824diff
changeset | 136 |   less_eq  ("(_/ \<le> _)"  [51, 51] 50) and
 | 
| 35092 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 137 |   less  ("op <") and
 | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 138 |   less  ("(_/ < _)"  [51, 51] 50)
 | 
| 61824 
dcbe9f756ae0
not_leE -> not_le_imp_less and other tidying
 paulson <lp15@cam.ac.uk> parents: 
61799diff
changeset | 139 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61824diff
changeset | 140 | abbreviation (input) | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61824diff
changeset | 141 | greater_eq (infix "\<ge>" 50) | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61824diff
changeset | 142 | where "x \<ge> y \<equiv> y \<le> x" | 
| 35092 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 143 | |
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 144 | abbreviation (input) | 
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61824diff
changeset | 145 | greater (infix ">" 50) | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61824diff
changeset | 146 | where "x > y \<equiv> y < x" | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61824diff
changeset | 147 | |
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61824diff
changeset | 148 | notation (ASCII) | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61824diff
changeset | 149 |   less_eq  ("op <=") and
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61824diff
changeset | 150 |   less_eq  ("(_/ <= _)" [51, 51] 50)
 | 
| 35092 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 151 | |
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 152 | notation (input) | 
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61824diff
changeset | 153 | greater_eq (infix ">=" 50) | 
| 35092 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 154 | |
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 155 | end | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 156 | |
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 157 | |
| 60758 | 158 | subsection \<open>Quasi orders\<close> | 
| 15524 | 159 | |
| 27682 | 160 | class preorder = ord + | 
| 161 | assumes less_le_not_le: "x < y \<longleftrightarrow> x \<le> y \<and> \<not> (y \<le> x)" | |
| 25062 | 162 | and order_refl [iff]: "x \<le> x" | 
| 163 | and order_trans: "x \<le> y \<Longrightarrow> y \<le> z \<Longrightarrow> x \<le> z" | |
| 21248 | 164 | begin | 
| 165 | ||
| 60758 | 166 | text \<open>Reflexivity.\<close> | 
| 15524 | 167 | |
| 25062 | 168 | lemma eq_refl: "x = y \<Longrightarrow> x \<le> y" | 
| 61799 | 169 | \<comment> \<open>This form is useful with the classical reasoner.\<close> | 
| 23212 | 170 | by (erule ssubst) (rule order_refl) | 
| 15524 | 171 | |
| 25062 | 172 | lemma less_irrefl [iff]: "\<not> x < x" | 
| 27682 | 173 | by (simp add: less_le_not_le) | 
| 174 | ||
| 175 | lemma less_imp_le: "x < y \<Longrightarrow> x \<le> y" | |
| 63172 | 176 | by (simp add: less_le_not_le) | 
| 27682 | 177 | |
| 178 | ||
| 60758 | 179 | text \<open>Asymmetry.\<close> | 
| 27682 | 180 | |
| 181 | lemma less_not_sym: "x < y \<Longrightarrow> \<not> (y < x)" | |
| 182 | by (simp add: less_le_not_le) | |
| 183 | ||
| 184 | lemma less_asym: "x < y \<Longrightarrow> (\<not> P \<Longrightarrow> y < x) \<Longrightarrow> P" | |
| 185 | by (drule less_not_sym, erule contrapos_np) simp | |
| 186 | ||
| 187 | ||
| 60758 | 188 | text \<open>Transitivity.\<close> | 
| 27682 | 189 | |
| 190 | lemma less_trans: "x < y \<Longrightarrow> y < z \<Longrightarrow> x < z" | |
| 61824 
dcbe9f756ae0
not_leE -> not_le_imp_less and other tidying
 paulson <lp15@cam.ac.uk> parents: 
61799diff
changeset | 191 | by (auto simp add: less_le_not_le intro: order_trans) | 
| 27682 | 192 | |
| 193 | lemma le_less_trans: "x \<le> y \<Longrightarrow> y < z \<Longrightarrow> x < z" | |
| 61824 
dcbe9f756ae0
not_leE -> not_le_imp_less and other tidying
 paulson <lp15@cam.ac.uk> parents: 
61799diff
changeset | 194 | by (auto simp add: less_le_not_le intro: order_trans) | 
| 27682 | 195 | |
| 196 | lemma less_le_trans: "x < y \<Longrightarrow> y \<le> z \<Longrightarrow> x < z" | |
| 61824 
dcbe9f756ae0
not_leE -> not_le_imp_less and other tidying
 paulson <lp15@cam.ac.uk> parents: 
61799diff
changeset | 197 | by (auto simp add: less_le_not_le intro: order_trans) | 
| 27682 | 198 | |
| 199 | ||
| 60758 | 200 | text \<open>Useful for simplification, but too risky to include by default.\<close> | 
| 27682 | 201 | |
| 202 | lemma less_imp_not_less: "x < y \<Longrightarrow> (\<not> y < x) \<longleftrightarrow> True" | |
| 203 | by (blast elim: less_asym) | |
| 204 | ||
| 205 | lemma less_imp_triv: "x < y \<Longrightarrow> (y < x \<longrightarrow> P) \<longleftrightarrow> True" | |
| 206 | by (blast elim: less_asym) | |
| 207 | ||
| 208 | ||
| 60758 | 209 | text \<open>Transitivity rules for calculational reasoning\<close> | 
| 27682 | 210 | |
| 211 | lemma less_asym': "a < b \<Longrightarrow> b < a \<Longrightarrow> P" | |
| 212 | by (rule less_asym) | |
| 213 | ||
| 214 | ||
| 60758 | 215 | text \<open>Dual order\<close> | 
| 27682 | 216 | |
| 217 | lemma dual_preorder: | |
| 36635 
080b755377c0
locale predicates of classes carry a mandatory "class" prefix
 haftmann parents: 
35828diff
changeset | 218 | "class.preorder (op \<ge>) (op >)" | 
| 63819 | 219 | by standard (auto simp add: less_le_not_le intro: order_trans) | 
| 27682 | 220 | |
| 221 | end | |
| 222 | ||
| 223 | ||
| 60758 | 224 | subsection \<open>Partial orders\<close> | 
| 27682 | 225 | |
| 226 | class order = preorder + | |
| 227 | assumes antisym: "x \<le> y \<Longrightarrow> y \<le> x \<Longrightarrow> x = y" | |
| 228 | begin | |
| 229 | ||
| 51487 | 230 | lemma less_le: "x < y \<longleftrightarrow> x \<le> y \<and> x \<noteq> y" | 
| 231 | by (auto simp add: less_le_not_le intro: antisym) | |
| 232 | ||
| 63819 | 233 | sublocale order: ordering less_eq less + dual_order: ordering greater_eq greater | 
| 234 | proof - | |
| 235 | interpret ordering less_eq less | |
| 236 | by standard (auto intro: antisym order_trans simp add: less_le) | |
| 237 | show "ordering less_eq less" | |
| 238 | by (fact ordering_axioms) | |
| 239 | then show "ordering greater_eq greater" | |
| 240 | by (rule ordering_dualI) | |
| 241 | qed | |
| 51487 | 242 | |
| 60758 | 243 | text \<open>Reflexivity.\<close> | 
| 15524 | 244 | |
| 25062 | 245 | lemma le_less: "x \<le> y \<longleftrightarrow> x < y \<or> x = y" | 
| 61799 | 246 | \<comment> \<open>NOT suitable for iff, since it can cause PROOF FAILED.\<close> | 
| 51546 
2e26df807dc7
more uniform style for interpretation and sublocale declarations
 haftmann parents: 
51487diff
changeset | 247 | by (fact order.order_iff_strict) | 
| 15524 | 248 | |
| 25062 | 249 | lemma le_imp_less_or_eq: "x \<le> y \<Longrightarrow> x < y \<or> x = y" | 
| 63172 | 250 | by (simp add: less_le) | 
| 15524 | 251 | |
| 21329 | 252 | |
| 60758 | 253 | text \<open>Useful for simplification, but too risky to include by default.\<close> | 
| 21329 | 254 | |
| 25062 | 255 | lemma less_imp_not_eq: "x < y \<Longrightarrow> (x = y) \<longleftrightarrow> False" | 
| 23212 | 256 | by auto | 
| 21329 | 257 | |
| 25062 | 258 | lemma less_imp_not_eq2: "x < y \<Longrightarrow> (y = x) \<longleftrightarrow> False" | 
| 23212 | 259 | by auto | 
| 21329 | 260 | |
| 261 | ||
| 60758 | 262 | text \<open>Transitivity rules for calculational reasoning\<close> | 
| 21329 | 263 | |
| 25062 | 264 | lemma neq_le_trans: "a \<noteq> b \<Longrightarrow> a \<le> b \<Longrightarrow> a < b" | 
| 51546 
2e26df807dc7
more uniform style for interpretation and sublocale declarations
 haftmann parents: 
51487diff
changeset | 265 | by (fact order.not_eq_order_implies_strict) | 
| 21329 | 266 | |
| 25062 | 267 | lemma le_neq_trans: "a \<le> b \<Longrightarrow> a \<noteq> b \<Longrightarrow> a < b" | 
| 51546 
2e26df807dc7
more uniform style for interpretation and sublocale declarations
 haftmann parents: 
51487diff
changeset | 268 | by (rule order.not_eq_order_implies_strict) | 
| 21329 | 269 | |
| 15524 | 270 | |
| 60758 | 271 | text \<open>Asymmetry.\<close> | 
| 15524 | 272 | |
| 25062 | 273 | lemma eq_iff: "x = y \<longleftrightarrow> x \<le> y \<and> y \<le> x" | 
| 23212 | 274 | by (blast intro: antisym) | 
| 15524 | 275 | |
| 25062 | 276 | lemma antisym_conv: "y \<le> x \<Longrightarrow> x \<le> y \<longleftrightarrow> x = y" | 
| 23212 | 277 | by (blast intro: antisym) | 
| 15524 | 278 | |
| 25062 | 279 | lemma less_imp_neq: "x < y \<Longrightarrow> x \<noteq> y" | 
| 51546 
2e26df807dc7
more uniform style for interpretation and sublocale declarations
 haftmann parents: 
51487diff
changeset | 280 | by (fact order.strict_implies_not_eq) | 
| 21248 | 281 | |
| 21083 | 282 | |
| 60758 | 283 | text \<open>Least value operator\<close> | 
| 27107 | 284 | |
| 27299 | 285 | definition (in ord) | 
| 27107 | 286 |   Least :: "('a \<Rightarrow> bool) \<Rightarrow> 'a" (binder "LEAST " 10) where
 | 
| 287 | "Least P = (THE x. P x \<and> (\<forall>y. P y \<longrightarrow> x \<le> y))" | |
| 288 | ||
| 289 | lemma Least_equality: | |
| 290 | assumes "P x" | |
| 291 | and "\<And>y. P y \<Longrightarrow> x \<le> y" | |
| 292 | shows "Least P = x" | |
| 293 | unfolding Least_def by (rule the_equality) | |
| 294 | (blast intro: assms antisym)+ | |
| 295 | ||
| 296 | lemma LeastI2_order: | |
| 297 | assumes "P x" | |
| 298 | and "\<And>y. P y \<Longrightarrow> x \<le> y" | |
| 299 | and "\<And>x. P x \<Longrightarrow> \<forall>y. P y \<longrightarrow> x \<le> y \<Longrightarrow> Q x" | |
| 300 | shows "Q (Least P)" | |
| 301 | unfolding Least_def by (rule theI2) | |
| 302 | (blast intro: assms antisym)+ | |
| 303 | ||
| 65963 | 304 | text \<open>Greatest value operator\<close> | 
| 305 | ||
| 306 | definition Greatest :: "('a \<Rightarrow> bool) \<Rightarrow> 'a" (binder "GREATEST " 10) where
 | |
| 307 | "Greatest P = (THE x. P x \<and> (\<forall>y. P y \<longrightarrow> x \<ge> y))" | |
| 308 | ||
| 309 | lemma GreatestI2_order: | |
| 310 | "\<lbrakk> P x; | |
| 311 | \<And>y. P y \<Longrightarrow> x \<ge> y; | |
| 312 | \<And>x. \<lbrakk> P x; \<forall>y. P y \<longrightarrow> x \<ge> y \<rbrakk> \<Longrightarrow> Q x \<rbrakk> | |
| 313 | \<Longrightarrow> Q (Greatest P)" | |
| 314 | unfolding Greatest_def | |
| 315 | by (rule theI2) (blast intro: antisym)+ | |
| 316 | ||
| 317 | lemma Greatest_equality: | |
| 318 | "\<lbrakk> P x; \<And>y. P y \<Longrightarrow> x \<ge> y \<rbrakk> \<Longrightarrow> Greatest P = x" | |
| 319 | unfolding Greatest_def | |
| 320 | by (rule the_equality) (blast intro: antisym)+ | |
| 321 | ||
| 21248 | 322 | end | 
| 15524 | 323 | |
| 63819 | 324 | lemma ordering_orderI: | 
| 325 | fixes less_eq (infix "\<^bold>\<le>" 50) | |
| 326 | and less (infix "\<^bold><" 50) | |
| 327 | assumes "ordering less_eq less" | |
| 328 | shows "class.order less_eq less" | |
| 329 | proof - | |
| 330 | from assms interpret ordering less_eq less . | |
| 331 | show ?thesis | |
| 332 | by standard (auto intro: antisym trans simp add: refl strict_iff_order) | |
| 333 | qed | |
| 56545 | 334 | |
| 335 | lemma order_strictI: | |
| 336 | fixes less (infix "\<sqsubset>" 50) | |
| 337 | and less_eq (infix "\<sqsubseteq>" 50) | |
| 63819 | 338 | assumes "\<And>a b. a \<sqsubseteq> b \<longleftrightarrow> a \<sqsubset> b \<or> a = b" | 
| 339 | assumes "\<And>a b. a \<sqsubset> b \<Longrightarrow> \<not> b \<sqsubset> a" | |
| 340 | assumes "\<And>a. \<not> a \<sqsubset> a" | |
| 341 | assumes "\<And>a b c. a \<sqsubset> b \<Longrightarrow> b \<sqsubset> c \<Longrightarrow> a \<sqsubset> c" | |
| 56545 | 342 | shows "class.order less_eq less" | 
| 63819 | 343 | by (rule ordering_orderI) (rule ordering_strictI, (fact assms)+) | 
| 344 | ||
| 345 | context order | |
| 346 | begin | |
| 347 | ||
| 348 | text \<open>Dual order\<close> | |
| 349 | ||
| 350 | lemma dual_order: | |
| 351 | "class.order (op \<ge>) (op >)" | |
| 352 | using dual_order.ordering_axioms by (rule ordering_orderI) | |
| 353 | ||
| 354 | end | |
| 56545 | 355 | |
| 356 | ||
| 60758 | 357 | subsection \<open>Linear (total) orders\<close> | 
| 21329 | 358 | |
| 22316 | 359 | class linorder = order + | 
| 25207 | 360 | assumes linear: "x \<le> y \<or> y \<le> x" | 
| 21248 | 361 | begin | 
| 362 | ||
| 25062 | 363 | lemma less_linear: "x < y \<or> x = y \<or> y < x" | 
| 23212 | 364 | unfolding less_le using less_le linear by blast | 
| 21248 | 365 | |
| 25062 | 366 | lemma le_less_linear: "x \<le> y \<or> y < x" | 
| 23212 | 367 | by (simp add: le_less less_linear) | 
| 21248 | 368 | |
| 369 | lemma le_cases [case_names le ge]: | |
| 25062 | 370 | "(x \<le> y \<Longrightarrow> P) \<Longrightarrow> (y \<le> x \<Longrightarrow> P) \<Longrightarrow> P" | 
| 23212 | 371 | using linear by blast | 
| 21248 | 372 | |
| 61762 
d50b993b4fb9
Removal of redundant lemmas (diff_less_iff, diff_le_iff) and of the abbreviation Exp. Addition of some new material.
 paulson <lp15@cam.ac.uk> parents: 
61699diff
changeset | 373 | lemma (in linorder) le_cases3: | 
| 
d50b993b4fb9
Removal of redundant lemmas (diff_less_iff, diff_le_iff) and of the abbreviation Exp. Addition of some new material.
 paulson <lp15@cam.ac.uk> parents: 
61699diff
changeset | 374 | "\<lbrakk>\<lbrakk>x \<le> y; y \<le> z\<rbrakk> \<Longrightarrow> P; \<lbrakk>y \<le> x; x \<le> z\<rbrakk> \<Longrightarrow> P; \<lbrakk>x \<le> z; z \<le> y\<rbrakk> \<Longrightarrow> P; | 
| 
d50b993b4fb9
Removal of redundant lemmas (diff_less_iff, diff_le_iff) and of the abbreviation Exp. Addition of some new material.
 paulson <lp15@cam.ac.uk> parents: 
61699diff
changeset | 375 | \<lbrakk>z \<le> y; y \<le> x\<rbrakk> \<Longrightarrow> P; \<lbrakk>y \<le> z; z \<le> x\<rbrakk> \<Longrightarrow> P; \<lbrakk>z \<le> x; x \<le> y\<rbrakk> \<Longrightarrow> P\<rbrakk> \<Longrightarrow> P" | 
| 
d50b993b4fb9
Removal of redundant lemmas (diff_less_iff, diff_le_iff) and of the abbreviation Exp. Addition of some new material.
 paulson <lp15@cam.ac.uk> parents: 
61699diff
changeset | 376 | by (blast intro: le_cases) | 
| 
d50b993b4fb9
Removal of redundant lemmas (diff_less_iff, diff_le_iff) and of the abbreviation Exp. Addition of some new material.
 paulson <lp15@cam.ac.uk> parents: 
61699diff
changeset | 377 | |
| 22384 
33a46e6c7f04
prefix of class interpretation not mandatory any longer
 haftmann parents: 
22377diff
changeset | 378 | lemma linorder_cases [case_names less equal greater]: | 
| 25062 | 379 | "(x < y \<Longrightarrow> P) \<Longrightarrow> (x = y \<Longrightarrow> P) \<Longrightarrow> (y < x \<Longrightarrow> P) \<Longrightarrow> P" | 
| 23212 | 380 | using less_linear by blast | 
| 21248 | 381 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
56545diff
changeset | 382 | lemma linorder_wlog[case_names le sym]: | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
56545diff
changeset | 383 | "(\<And>a b. a \<le> b \<Longrightarrow> P a b) \<Longrightarrow> (\<And>a b. P b a \<Longrightarrow> P a b) \<Longrightarrow> P a b" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
56545diff
changeset | 384 | by (cases rule: le_cases[of a b]) blast+ | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
56545diff
changeset | 385 | |
| 25062 | 386 | lemma not_less: "\<not> x < y \<longleftrightarrow> y \<le> x" | 
| 23212 | 387 | apply (simp add: less_le) | 
| 388 | using linear apply (blast intro: antisym) | |
| 389 | done | |
| 390 | ||
| 391 | lemma not_less_iff_gr_or_eq: | |
| 67091 | 392 | "\<not>(x < y) \<longleftrightarrow> (x > y \<or> x = y)" | 
| 23212 | 393 | apply(simp add:not_less le_less) | 
| 394 | apply blast | |
| 395 | done | |
| 15524 | 396 | |
| 25062 | 397 | lemma not_le: "\<not> x \<le> y \<longleftrightarrow> y < x" | 
| 23212 | 398 | apply (simp add: less_le) | 
| 399 | using linear apply (blast intro: antisym) | |
| 400 | done | |
| 15524 | 401 | |
| 25062 | 402 | lemma neq_iff: "x \<noteq> y \<longleftrightarrow> x < y \<or> y < x" | 
| 23212 | 403 | by (cut_tac x = x and y = y in less_linear, auto) | 
| 15524 | 404 | |
| 25062 | 405 | lemma neqE: "x \<noteq> y \<Longrightarrow> (x < y \<Longrightarrow> R) \<Longrightarrow> (y < x \<Longrightarrow> R) \<Longrightarrow> R" | 
| 23212 | 406 | by (simp add: neq_iff) blast | 
| 15524 | 407 | |
| 25062 | 408 | lemma antisym_conv1: "\<not> x < y \<Longrightarrow> x \<le> y \<longleftrightarrow> x = y" | 
| 23212 | 409 | by (blast intro: antisym dest: not_less [THEN iffD1]) | 
| 15524 | 410 | |
| 25062 | 411 | lemma antisym_conv2: "x \<le> y \<Longrightarrow> \<not> x < y \<longleftrightarrow> x = y" | 
| 23212 | 412 | by (blast intro: antisym dest: not_less [THEN iffD1]) | 
| 15524 | 413 | |
| 25062 | 414 | lemma antisym_conv3: "\<not> y < x \<Longrightarrow> \<not> x < y \<longleftrightarrow> x = y" | 
| 23212 | 415 | by (blast intro: antisym dest: not_less [THEN iffD1]) | 
| 15524 | 416 | |
| 25062 | 417 | lemma leI: "\<not> x < y \<Longrightarrow> y \<le> x" | 
| 23212 | 418 | unfolding not_less . | 
| 16796 | 419 | |
| 25062 | 420 | lemma leD: "y \<le> x \<Longrightarrow> \<not> x < y" | 
| 23212 | 421 | unfolding not_less . | 
| 16796 | 422 | |
| 61824 
dcbe9f756ae0
not_leE -> not_le_imp_less and other tidying
 paulson <lp15@cam.ac.uk> parents: 
61799diff
changeset | 423 | lemma not_le_imp_less: "\<not> y \<le> x \<Longrightarrow> x < y" | 
| 23212 | 424 | unfolding not_le . | 
| 21248 | 425 | |
| 64758 
3b33d2fc5fc0
A few new lemmas and needed adaptations
 paulson <lp15@cam.ac.uk> parents: 
64287diff
changeset | 426 | lemma linorder_less_wlog[case_names less refl sym]: | 
| 
3b33d2fc5fc0
A few new lemmas and needed adaptations
 paulson <lp15@cam.ac.uk> parents: 
64287diff
changeset | 427 | "\<lbrakk>\<And>a b. a < b \<Longrightarrow> P a b; \<And>a. P a a; \<And>a b. P b a \<Longrightarrow> P a b\<rbrakk> \<Longrightarrow> P a b" | 
| 
3b33d2fc5fc0
A few new lemmas and needed adaptations
 paulson <lp15@cam.ac.uk> parents: 
64287diff
changeset | 428 | using antisym_conv3 by blast | 
| 
3b33d2fc5fc0
A few new lemmas and needed adaptations
 paulson <lp15@cam.ac.uk> parents: 
64287diff
changeset | 429 | |
| 60758 | 430 | text \<open>Dual order\<close> | 
| 22916 | 431 | |
| 26014 | 432 | lemma dual_linorder: | 
| 36635 
080b755377c0
locale predicates of classes carry a mandatory "class" prefix
 haftmann parents: 
35828diff
changeset | 433 | "class.linorder (op \<ge>) (op >)" | 
| 
080b755377c0
locale predicates of classes carry a mandatory "class" prefix
 haftmann parents: 
35828diff
changeset | 434 | by (rule class.linorder.intro, rule dual_order) (unfold_locales, rule linear) | 
| 22916 | 435 | |
| 21248 | 436 | end | 
| 437 | ||
| 23948 | 438 | |
| 60758 | 439 | text \<open>Alternative introduction rule with bias towards strict order\<close> | 
| 56545 | 440 | |
| 441 | lemma linorder_strictI: | |
| 63819 | 442 | fixes less_eq (infix "\<^bold>\<le>" 50) | 
| 443 | and less (infix "\<^bold><" 50) | |
| 56545 | 444 | assumes "class.order less_eq less" | 
| 63819 | 445 | assumes trichotomy: "\<And>a b. a \<^bold>< b \<or> a = b \<or> b \<^bold>< a" | 
| 56545 | 446 | shows "class.linorder less_eq less" | 
| 447 | proof - | |
| 448 | interpret order less_eq less | |
| 60758 | 449 | by (fact \<open>class.order less_eq less\<close>) | 
| 56545 | 450 | show ?thesis | 
| 451 | proof | |
| 452 | fix a b | |
| 63819 | 453 | show "a \<^bold>\<le> b \<or> b \<^bold>\<le> a" | 
| 56545 | 454 | using trichotomy by (auto simp add: le_less) | 
| 455 | qed | |
| 456 | qed | |
| 457 | ||
| 458 | ||
| 60758 | 459 | subsection \<open>Reasoning tools setup\<close> | 
| 21083 | 460 | |
| 60758 | 461 | ML \<open> | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 462 | signature ORDERS = | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 463 | sig | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 464 | val print_structures: Proof.context -> unit | 
| 32215 | 465 | val order_tac: Proof.context -> thm list -> int -> tactic | 
| 58826 | 466 | val add_struct: string * term list -> string -> attribute | 
| 467 | val del_struct: string * term list -> attribute | |
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 468 | end; | 
| 21091 | 469 | |
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 470 | structure Orders: ORDERS = | 
| 21248 | 471 | struct | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 472 | |
| 56508 | 473 | (* context data *) | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 474 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 475 | fun struct_eq ((s1: string, ts1), (s2, ts2)) = | 
| 56508 | 476 | s1 = s2 andalso eq_list (op aconv) (ts1, ts2); | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 477 | |
| 33519 | 478 | structure Data = Generic_Data | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 479 | ( | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 480 | type T = ((string * term list) * Order_Tac.less_arith) list; | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 481 | (* Order structures: | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 482 | identifier of the structure, list of operations and record of theorems | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 483 | needed to set up the transitivity reasoner, | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 484 | identifier and operations identify the structure uniquely. *) | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 485 | val empty = []; | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 486 | val extend = I; | 
| 33519 | 487 | fun merge data = AList.join struct_eq (K fst) data; | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 488 | ); | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 489 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 490 | fun print_structures ctxt = | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 491 | let | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 492 | val structs = Data.get (Context.Proof ctxt); | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 493 | fun pretty_term t = Pretty.block | 
| 24920 | 494 | [Pretty.quote (Syntax.pretty_term ctxt t), Pretty.brk 1, | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 495 | Pretty.str "::", Pretty.brk 1, | 
| 24920 | 496 | Pretty.quote (Syntax.pretty_typ ctxt (type_of t))]; | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 497 | fun pretty_struct ((s, ts), _) = Pretty.block | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 498 | [Pretty.str s, Pretty.str ":", Pretty.brk 1, | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 499 |        Pretty.enclose "(" ")" (Pretty.breaks (map pretty_term ts))];
 | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 500 | in | 
| 51579 | 501 | Pretty.writeln (Pretty.big_list "order structures:" (map pretty_struct structs)) | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 502 | end; | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 503 | |
| 56508 | 504 | val _ = | 
| 59936 
b8ffc3dc9e24
@{command_spec} is superseded by @{command_keyword};
 wenzelm parents: 
59582diff
changeset | 505 |   Outer_Syntax.command @{command_keyword print_orders}
 | 
| 56508 | 506 | "print order structures available to transitivity reasoner" | 
| 60097 
d20ca79d50e4
discontinued pointless warnings: commands are only defined inside a theory context;
 wenzelm parents: 
59936diff
changeset | 507 | (Scan.succeed (Toplevel.keep (print_structures o Toplevel.context_of))); | 
| 21091 | 508 | |
| 56508 | 509 | |
| 510 | (* tactics *) | |
| 511 | ||
| 512 | fun struct_tac ((s, ops), thms) ctxt facts = | |
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 513 | let | 
| 56508 | 514 | val [eq, le, less] = ops; | 
| 30107 
f3b3b0e3d184
Fixed nonexhaustive match problem in decomp, to make it fail more gracefully
 berghofe parents: 
29823diff
changeset | 515 |     fun decomp thy (@{const Trueprop} $ t) =
 | 
| 56508 | 516 | let | 
| 517 | fun excluded t = | |
| 518 | (* exclude numeric types: linear arithmetic subsumes transitivity *) | |
| 519 | let val T = type_of t | |
| 520 | in | |
| 521 | T = HOLogic.natT orelse T = HOLogic.intT orelse T = HOLogic.realT | |
| 522 | end; | |
| 523 | fun rel (bin_op $ t1 $ t2) = | |
| 524 | if excluded t1 then NONE | |
| 525 | else if Pattern.matches thy (eq, bin_op) then SOME (t1, "=", t2) | |
| 526 | else if Pattern.matches thy (le, bin_op) then SOME (t1, "<=", t2) | |
| 527 | else if Pattern.matches thy (less, bin_op) then SOME (t1, "<", t2) | |
| 528 | else NONE | |
| 529 | | rel _ = NONE; | |
| 530 |             fun dec (Const (@{const_name Not}, _) $ t) =
 | |
| 531 | (case rel t of NONE => | |
| 532 | NONE | |
| 533 | | SOME (t1, rel, t2) => SOME (t1, "~" ^ rel, t2)) | |
| 534 | | dec x = rel x; | |
| 535 | in dec t end | |
| 536 | | decomp _ _ = NONE; | |
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 537 | in | 
| 56508 | 538 | (case s of | 
| 539 | "order" => Order_Tac.partial_tac decomp thms ctxt facts | |
| 540 | | "linorder" => Order_Tac.linear_tac decomp thms ctxt facts | |
| 541 |     | _ => error ("Unknown order kind " ^ quote s ^ " encountered in transitivity reasoner"))
 | |
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 542 | end | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 543 | |
| 56508 | 544 | fun order_tac ctxt facts = | 
| 545 | FIRST' (map (fn s => CHANGED o struct_tac s ctxt facts) (Data.get (Context.Proof ctxt))); | |
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 546 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 547 | |
| 56508 | 548 | (* attributes *) | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 549 | |
| 58826 | 550 | fun add_struct s tag = | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 551 | Thm.declaration_attribute | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 552 | (fn thm => Data.map (AList.map_default struct_eq (s, Order_Tac.empty TrueI) (Order_Tac.update tag thm))); | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 553 | fun del_struct s = | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 554 | Thm.declaration_attribute | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 555 | (fn _ => Data.map (AList.delete struct_eq s)); | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 556 | |
| 21091 | 557 | end; | 
| 60758 | 558 | \<close> | 
| 21091 | 559 | |
| 60758 | 560 | attribute_setup order = \<open> | 
| 58826 | 561 | Scan.lift ((Args.add -- Args.name >> (fn (_, s) => SOME s) || Args.del >> K NONE) --| | 
| 562 | Args.colon (* FIXME || Scan.succeed true *) ) -- Scan.lift Args.name -- | |
| 563 | Scan.repeat Args.term | |
| 564 | >> (fn ((SOME tag, n), ts) => Orders.add_struct (n, ts) tag | |
| 565 | | ((NONE, n), ts) => Orders.del_struct (n, ts)) | |
| 60758 | 566 | \<close> "theorems controlling transitivity reasoner" | 
| 58826 | 567 | |
| 60758 | 568 | method_setup order = \<open> | 
| 47432 | 569 | Scan.succeed (fn ctxt => SIMPLE_METHOD' (Orders.order_tac ctxt [])) | 
| 60758 | 570 | \<close> "transitivity reasoner" | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 571 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 572 | |
| 60758 | 573 | text \<open>Declarations to set up transitivity reasoner of partial and linear orders.\<close> | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 574 | |
| 25076 | 575 | context order | 
| 576 | begin | |
| 577 | ||
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 578 | (* The type constraint on @{term op =} below is necessary since the operation
 | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 579 | is not a parameter of the locale. *) | 
| 25076 | 580 | |
| 27689 | 581 | declare less_irrefl [THEN notE, order add less_reflE: order "op = :: 'a \<Rightarrow> 'a \<Rightarrow> bool" "op <=" "op <"] | 
| 61824 
dcbe9f756ae0
not_leE -> not_le_imp_less and other tidying
 paulson <lp15@cam.ac.uk> parents: 
61799diff
changeset | 582 | |
| 27689 | 583 | declare order_refl [order add le_refl: order "op = :: 'a => 'a => bool" "op <=" "op <"] | 
| 61824 
dcbe9f756ae0
not_leE -> not_le_imp_less and other tidying
 paulson <lp15@cam.ac.uk> parents: 
61799diff
changeset | 584 | |
| 27689 | 585 | declare less_imp_le [order add less_imp_le: order "op = :: 'a => 'a => bool" "op <=" "op <"] | 
| 61824 
dcbe9f756ae0
not_leE -> not_le_imp_less and other tidying
 paulson <lp15@cam.ac.uk> parents: 
61799diff
changeset | 586 | |
| 27689 | 587 | declare antisym [order add eqI: order "op = :: 'a => 'a => bool" "op <=" "op <"] | 
| 588 | ||
| 589 | declare eq_refl [order add eqD1: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 590 | ||
| 591 | declare sym [THEN eq_refl, order add eqD2: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 592 | ||
| 593 | declare less_trans [order add less_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 61824 
dcbe9f756ae0
not_leE -> not_le_imp_less and other tidying
 paulson <lp15@cam.ac.uk> parents: 
61799diff
changeset | 594 | |
| 27689 | 595 | declare less_le_trans [order add less_le_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"] | 
| 61824 
dcbe9f756ae0
not_leE -> not_le_imp_less and other tidying
 paulson <lp15@cam.ac.uk> parents: 
61799diff
changeset | 596 | |
| 27689 | 597 | declare le_less_trans [order add le_less_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"] | 
| 598 | ||
| 599 | declare order_trans [order add le_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 600 | ||
| 601 | declare le_neq_trans [order add le_neq_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 602 | ||
| 603 | declare neq_le_trans [order add neq_le_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 604 | ||
| 605 | declare less_imp_neq [order add less_imp_neq: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 606 | ||
| 607 | declare eq_neq_eq_imp_neq [order add eq_neq_eq_imp_neq: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 608 | ||
| 609 | declare not_sym [order add not_sym: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 610 | |
| 25076 | 611 | end | 
| 612 | ||
| 613 | context linorder | |
| 614 | begin | |
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 615 | |
| 27689 | 616 | declare [[order del: order "op = :: 'a => 'a => bool" "op <=" "op <"]] | 
| 617 | ||
| 618 | declare less_irrefl [THEN notE, order add less_reflE: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 619 | ||
| 620 | declare order_refl [order add le_refl: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 621 | ||
| 622 | declare less_imp_le [order add less_imp_le: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 623 | ||
| 624 | declare not_less [THEN iffD2, order add not_lessI: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 625 | ||
| 626 | declare not_le [THEN iffD2, order add not_leI: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 627 | ||
| 628 | declare not_less [THEN iffD1, order add not_lessD: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 629 | ||
| 630 | declare not_le [THEN iffD1, order add not_leD: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 631 | ||
| 632 | declare antisym [order add eqI: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 633 | ||
| 634 | declare eq_refl [order add eqD1: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 25076 | 635 | |
| 27689 | 636 | declare sym [THEN eq_refl, order add eqD2: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | 
| 637 | ||
| 638 | declare less_trans [order add less_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 639 | ||
| 640 | declare less_le_trans [order add less_le_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 641 | ||
| 642 | declare le_less_trans [order add le_less_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 643 | ||
| 644 | declare order_trans [order add le_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 645 | ||
| 646 | declare le_neq_trans [order add le_neq_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 647 | ||
| 648 | declare neq_le_trans [order add neq_le_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 649 | ||
| 650 | declare less_imp_neq [order add less_imp_neq: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 651 | ||
| 652 | declare eq_neq_eq_imp_neq [order add eq_neq_eq_imp_neq: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 653 | ||
| 654 | declare not_sym [order add not_sym: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 655 | |
| 25076 | 656 | end | 
| 657 | ||
| 60758 | 658 | setup \<open> | 
| 56509 | 659 | map_theory_simpset (fn ctxt0 => ctxt0 addSolver | 
| 660 | mk_solver "Transitivity" (fn ctxt => Orders.order_tac ctxt (Simplifier.prems_of ctxt))) | |
| 661 | (*Adding the transitivity reasoners also as safe solvers showed a slight | |
| 662 | speed up, but the reasoning strength appears to be not higher (at least | |
| 663 | no breaking of additional proofs in the entire HOL distribution, as | |
| 664 | of 5 March 2004, was observed).*) | |
| 60758 | 665 | \<close> | 
| 15524 | 666 | |
| 60758 | 667 | ML \<open> | 
| 56509 | 668 | local | 
| 669 | fun prp t thm = Thm.prop_of thm = t; (* FIXME proper aconv!? *) | |
| 670 | in | |
| 15524 | 671 | |
| 56509 | 672 | fun antisym_le_simproc ctxt ct = | 
| 59582 | 673 | (case Thm.term_of ct of | 
| 56509 | 674 | (le as Const (_, T)) $ r $ s => | 
| 675 | (let | |
| 676 | val prems = Simplifier.prems_of ctxt; | |
| 677 |         val less = Const (@{const_name less}, T);
 | |
| 678 | val t = HOLogic.mk_Trueprop(le $ s $ r); | |
| 679 | in | |
| 680 | (case find_first (prp t) prems of | |
| 681 | NONE => | |
| 682 | let val t = HOLogic.mk_Trueprop(HOLogic.Not $ (less $ r $ s)) in | |
| 683 | (case find_first (prp t) prems of | |
| 684 | NONE => NONE | |
| 685 |               | SOME thm => SOME(mk_meta_eq(thm RS @{thm linorder_class.antisym_conv1})))
 | |
| 686 | end | |
| 687 |          | SOME thm => SOME (mk_meta_eq (thm RS @{thm order_class.antisym_conv})))
 | |
| 688 | end handle THM _ => NONE) | |
| 689 | | _ => NONE); | |
| 15524 | 690 | |
| 56509 | 691 | fun antisym_less_simproc ctxt ct = | 
| 59582 | 692 | (case Thm.term_of ct of | 
| 56509 | 693 | NotC $ ((less as Const(_,T)) $ r $ s) => | 
| 694 | (let | |
| 695 | val prems = Simplifier.prems_of ctxt; | |
| 696 |        val le = Const (@{const_name less_eq}, T);
 | |
| 697 | val t = HOLogic.mk_Trueprop(le $ r $ s); | |
| 698 | in | |
| 699 | (case find_first (prp t) prems of | |
| 700 | NONE => | |
| 701 | let val t = HOLogic.mk_Trueprop (NotC $ (less $ s $ r)) in | |
| 702 | (case find_first (prp t) prems of | |
| 703 | NONE => NONE | |
| 704 |               | SOME thm => SOME (mk_meta_eq(thm RS @{thm linorder_class.antisym_conv3})))
 | |
| 705 | end | |
| 706 |         | SOME thm => SOME (mk_meta_eq (thm RS @{thm linorder_class.antisym_conv2})))
 | |
| 707 | end handle THM _ => NONE) | |
| 708 | | _ => NONE); | |
| 21083 | 709 | |
| 56509 | 710 | end; | 
| 60758 | 711 | \<close> | 
| 15524 | 712 | |
| 56509 | 713 | simproc_setup antisym_le ("(x::'a::order) \<le> y") = "K antisym_le_simproc"
 | 
| 714 | simproc_setup antisym_less ("\<not> (x::'a::linorder) < y") = "K antisym_less_simproc"
 | |
| 715 | ||
| 15524 | 716 | |
| 60758 | 717 | subsection \<open>Bounded quantifiers\<close> | 
| 21083 | 718 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61824diff
changeset | 719 | syntax (ASCII) | 
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 720 |   "_All_less" :: "[idt, 'a, bool] => bool"    ("(3ALL _<_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 721 |   "_Ex_less" :: "[idt, 'a, bool] => bool"    ("(3EX _<_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 722 |   "_All_less_eq" :: "[idt, 'a, bool] => bool"    ("(3ALL _<=_./ _)" [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 723 |   "_Ex_less_eq" :: "[idt, 'a, bool] => bool"    ("(3EX _<=_./ _)" [0, 0, 10] 10)
 | 
| 21083 | 724 | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 725 |   "_All_greater" :: "[idt, 'a, bool] => bool"    ("(3ALL _>_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 726 |   "_Ex_greater" :: "[idt, 'a, bool] => bool"    ("(3EX _>_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 727 |   "_All_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3ALL _>=_./ _)" [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 728 |   "_Ex_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3EX _>=_./ _)" [0, 0, 10] 10)
 | 
| 21083 | 729 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61824diff
changeset | 730 | syntax | 
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 731 |   "_All_less" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_<_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 732 |   "_Ex_less" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_<_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 733 |   "_All_less_eq" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_\<le>_./ _)" [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 734 |   "_Ex_less_eq" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_\<le>_./ _)" [0, 0, 10] 10)
 | 
| 21083 | 735 | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 736 |   "_All_greater" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_>_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 737 |   "_Ex_greater" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_>_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 738 |   "_All_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_\<ge>_./ _)" [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 739 |   "_Ex_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_\<ge>_./ _)" [0, 0, 10] 10)
 | 
| 21083 | 740 | |
| 62521 | 741 | syntax (input) | 
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 742 |   "_All_less" :: "[idt, 'a, bool] => bool"    ("(3! _<_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 743 |   "_Ex_less" :: "[idt, 'a, bool] => bool"    ("(3? _<_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 744 |   "_All_less_eq" :: "[idt, 'a, bool] => bool"    ("(3! _<=_./ _)" [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 745 |   "_Ex_less_eq" :: "[idt, 'a, bool] => bool"    ("(3? _<=_./ _)" [0, 0, 10] 10)
 | 
| 21083 | 746 | |
| 747 | translations | |
| 67091 | 748 | "\<forall>x<y. P" \<rightharpoonup> "\<forall>x. x < y \<longrightarrow> P" | 
| 749 | "\<exists>x<y. P" \<rightharpoonup> "\<exists>x. x < y \<and> P" | |
| 750 | "\<forall>x\<le>y. P" \<rightharpoonup> "\<forall>x. x \<le> y \<longrightarrow> P" | |
| 751 | "\<exists>x\<le>y. P" \<rightharpoonup> "\<exists>x. x \<le> y \<and> P" | |
| 752 | "\<forall>x>y. P" \<rightharpoonup> "\<forall>x. x > y \<longrightarrow> P" | |
| 753 | "\<exists>x>y. P" \<rightharpoonup> "\<exists>x. x > y \<and> P" | |
| 754 | "\<forall>x\<ge>y. P" \<rightharpoonup> "\<forall>x. x \<ge> y \<longrightarrow> P" | |
| 755 | "\<exists>x\<ge>y. P" \<rightharpoonup> "\<exists>x. x \<ge> y \<and> P" | |
| 21083 | 756 | |
| 60758 | 757 | print_translation \<open> | 
| 21083 | 758 | let | 
| 42287 
d98eb048a2e4
discontinued special treatment of structure Mixfix;
 wenzelm parents: 
42284diff
changeset | 759 |   val All_binder = Mixfix.binder_name @{const_syntax All};
 | 
| 
d98eb048a2e4
discontinued special treatment of structure Mixfix;
 wenzelm parents: 
42284diff
changeset | 760 |   val Ex_binder = Mixfix.binder_name @{const_syntax Ex};
 | 
| 38786 
e46e7a9cb622
formerly unnamed infix impliciation now named HOL.implies
 haftmann parents: 
38715diff
changeset | 761 |   val impl = @{const_syntax HOL.implies};
 | 
| 38795 
848be46708dc
formerly unnamed infix conjunction and disjunction now named HOL.conj and HOL.disj
 haftmann parents: 
38786diff
changeset | 762 |   val conj = @{const_syntax HOL.conj};
 | 
| 22916 | 763 |   val less = @{const_syntax less};
 | 
| 764 |   val less_eq = @{const_syntax less_eq};
 | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 765 | |
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 766 | val trans = | 
| 35115 | 767 | [((All_binder, impl, less), | 
| 768 |     (@{syntax_const "_All_less"}, @{syntax_const "_All_greater"})),
 | |
| 769 | ((All_binder, impl, less_eq), | |
| 770 |     (@{syntax_const "_All_less_eq"}, @{syntax_const "_All_greater_eq"})),
 | |
| 771 | ((Ex_binder, conj, less), | |
| 772 |     (@{syntax_const "_Ex_less"}, @{syntax_const "_Ex_greater"})),
 | |
| 773 | ((Ex_binder, conj, less_eq), | |
| 774 |     (@{syntax_const "_Ex_less_eq"}, @{syntax_const "_Ex_greater_eq"}))];
 | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 775 | |
| 35115 | 776 | fun matches_bound v t = | 
| 777 | (case t of | |
| 35364 | 778 |       Const (@{syntax_const "_bound"}, _) $ Free (v', _) => v = v'
 | 
| 35115 | 779 | | _ => false); | 
| 780 | fun contains_var v = Term.exists_subterm (fn Free (x, _) => x = v | _ => false); | |
| 49660 
de49d9b4d7bc
more explicit Syntax_Trans.mark_bound_abs/mark_bound_body: preserve type information for show_markup;
 wenzelm parents: 
48891diff
changeset | 781 | fun mk x c n P = Syntax.const c $ Syntax_Trans.mark_bound_body x $ n $ P; | 
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 782 | |
| 52143 | 783 | fun tr' q = (q, fn _ => | 
| 784 |     (fn [Const (@{syntax_const "_bound"}, _) $ Free (v, T),
 | |
| 35364 | 785 | Const (c, _) $ (Const (d, _) $ t $ u) $ P] => | 
| 35115 | 786 | (case AList.lookup (op =) trans (q, c, d) of | 
| 787 | NONE => raise Match | |
| 788 | | SOME (l, g) => | |
| 49660 
de49d9b4d7bc
more explicit Syntax_Trans.mark_bound_abs/mark_bound_body: preserve type information for show_markup;
 wenzelm parents: 
48891diff
changeset | 789 | if matches_bound v t andalso not (contains_var v u) then mk (v, T) l u P | 
| 
de49d9b4d7bc
more explicit Syntax_Trans.mark_bound_abs/mark_bound_body: preserve type information for show_markup;
 wenzelm parents: 
48891diff
changeset | 790 | else if matches_bound v u andalso not (contains_var v t) then mk (v, T) g t P | 
| 35115 | 791 | else raise Match) | 
| 52143 | 792 | | _ => raise Match)); | 
| 21524 | 793 | in [tr' All_binder, tr' Ex_binder] end | 
| 60758 | 794 | \<close> | 
| 21083 | 795 | |
| 796 | ||
| 60758 | 797 | subsection \<open>Transitivity reasoning\<close> | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 798 | |
| 25193 | 799 | context ord | 
| 800 | begin | |
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 801 | |
| 25193 | 802 | lemma ord_le_eq_trans: "a \<le> b \<Longrightarrow> b = c \<Longrightarrow> a \<le> c" | 
| 803 | by (rule subst) | |
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 804 | |
| 25193 | 805 | lemma ord_eq_le_trans: "a = b \<Longrightarrow> b \<le> c \<Longrightarrow> a \<le> c" | 
| 806 | by (rule ssubst) | |
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 807 | |
| 25193 | 808 | lemma ord_less_eq_trans: "a < b \<Longrightarrow> b = c \<Longrightarrow> a < c" | 
| 809 | by (rule subst) | |
| 810 | ||
| 811 | lemma ord_eq_less_trans: "a = b \<Longrightarrow> b < c \<Longrightarrow> a < c" | |
| 812 | by (rule ssubst) | |
| 813 | ||
| 814 | end | |
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 815 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 816 | lemma order_less_subst2: "(a::'a::order) < b ==> f b < (c::'c::order) ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 817 | (!!x y. x < y ==> f x < f y) ==> f a < c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 818 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 819 | assume r: "!!x y. x < y ==> f x < f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 820 | assume "a < b" hence "f a < f b" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 821 | also assume "f b < c" | 
| 34250 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 822 | finally (less_trans) show ?thesis . | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 823 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 824 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 825 | lemma order_less_subst1: "(a::'a::order) < f b ==> (b::'b::order) < c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 826 | (!!x y. x < y ==> f x < f y) ==> a < f c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 827 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 828 | assume r: "!!x y. x < y ==> f x < f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 829 | assume "a < f b" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 830 | also assume "b < c" hence "f b < f c" by (rule r) | 
| 34250 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 831 | finally (less_trans) show ?thesis . | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 832 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 833 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 834 | lemma order_le_less_subst2: "(a::'a::order) <= b ==> f b < (c::'c::order) ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 835 | (!!x y. x <= y ==> f x <= f y) ==> f a < c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 836 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 837 | assume r: "!!x y. x <= y ==> f x <= f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 838 | assume "a <= b" hence "f a <= f b" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 839 | also assume "f b < c" | 
| 34250 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 840 | finally (le_less_trans) show ?thesis . | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 841 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 842 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 843 | lemma order_le_less_subst1: "(a::'a::order) <= f b ==> (b::'b::order) < c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 844 | (!!x y. x < y ==> f x < f y) ==> a < f c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 845 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 846 | assume r: "!!x y. x < y ==> f x < f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 847 | assume "a <= f b" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 848 | also assume "b < c" hence "f b < f c" by (rule r) | 
| 34250 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 849 | finally (le_less_trans) show ?thesis . | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 850 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 851 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 852 | lemma order_less_le_subst2: "(a::'a::order) < b ==> f b <= (c::'c::order) ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 853 | (!!x y. x < y ==> f x < f y) ==> f a < c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 854 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 855 | assume r: "!!x y. x < y ==> f x < f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 856 | assume "a < b" hence "f a < f b" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 857 | also assume "f b <= c" | 
| 34250 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 858 | finally (less_le_trans) show ?thesis . | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 859 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 860 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 861 | lemma order_less_le_subst1: "(a::'a::order) < f b ==> (b::'b::order) <= c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 862 | (!!x y. x <= y ==> f x <= f y) ==> a < f c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 863 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 864 | assume r: "!!x y. x <= y ==> f x <= f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 865 | assume "a < f b" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 866 | also assume "b <= c" hence "f b <= f c" by (rule r) | 
| 34250 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 867 | finally (less_le_trans) show ?thesis . | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 868 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 869 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 870 | lemma order_subst1: "(a::'a::order) <= f b ==> (b::'b::order) <= c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 871 | (!!x y. x <= y ==> f x <= f y) ==> a <= f c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 872 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 873 | assume r: "!!x y. x <= y ==> f x <= f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 874 | assume "a <= f b" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 875 | also assume "b <= c" hence "f b <= f c" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 876 | finally (order_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 877 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 878 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 879 | lemma order_subst2: "(a::'a::order) <= b ==> f b <= (c::'c::order) ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 880 | (!!x y. x <= y ==> f x <= f y) ==> f a <= c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 881 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 882 | assume r: "!!x y. x <= y ==> f x <= f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 883 | assume "a <= b" hence "f a <= f b" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 884 | also assume "f b <= c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 885 | finally (order_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 886 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 887 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 888 | lemma ord_le_eq_subst: "a <= b ==> f b = c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 889 | (!!x y. x <= y ==> f x <= f y) ==> f a <= c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 890 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 891 | assume r: "!!x y. x <= y ==> f x <= f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 892 | assume "a <= b" hence "f a <= f b" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 893 | also assume "f b = c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 894 | finally (ord_le_eq_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 895 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 896 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 897 | lemma ord_eq_le_subst: "a = f b ==> b <= c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 898 | (!!x y. x <= y ==> f x <= f y) ==> a <= f c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 899 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 900 | assume r: "!!x y. x <= y ==> f x <= f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 901 | assume "a = f b" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 902 | also assume "b <= c" hence "f b <= f c" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 903 | finally (ord_eq_le_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 904 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 905 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 906 | lemma ord_less_eq_subst: "a < b ==> f b = c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 907 | (!!x y. x < y ==> f x < f y) ==> f a < c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 908 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 909 | assume r: "!!x y. x < y ==> f x < f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 910 | assume "a < b" hence "f a < f b" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 911 | also assume "f b = c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 912 | finally (ord_less_eq_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 913 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 914 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 915 | lemma ord_eq_less_subst: "a = f b ==> b < c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 916 | (!!x y. x < y ==> f x < f y) ==> a < f c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 917 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 918 | assume r: "!!x y. x < y ==> f x < f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 919 | assume "a = f b" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 920 | also assume "b < c" hence "f b < f c" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 921 | finally (ord_eq_less_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 922 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 923 | |
| 60758 | 924 | text \<open> | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 925 | Note that this list of rules is in reverse order of priorities. | 
| 60758 | 926 | \<close> | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 927 | |
| 27682 | 928 | lemmas [trans] = | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 929 | order_less_subst2 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 930 | order_less_subst1 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 931 | order_le_less_subst2 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 932 | order_le_less_subst1 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 933 | order_less_le_subst2 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 934 | order_less_le_subst1 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 935 | order_subst2 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 936 | order_subst1 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 937 | ord_le_eq_subst | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 938 | ord_eq_le_subst | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 939 | ord_less_eq_subst | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 940 | ord_eq_less_subst | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 941 | forw_subst | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 942 | back_subst | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 943 | rev_mp | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 944 | mp | 
| 27682 | 945 | |
| 946 | lemmas (in order) [trans] = | |
| 947 | neq_le_trans | |
| 948 | le_neq_trans | |
| 949 | ||
| 950 | lemmas (in preorder) [trans] = | |
| 951 | less_trans | |
| 952 | less_asym' | |
| 953 | le_less_trans | |
| 954 | less_le_trans | |
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 955 | order_trans | 
| 27682 | 956 | |
| 957 | lemmas (in order) [trans] = | |
| 958 | antisym | |
| 959 | ||
| 960 | lemmas (in ord) [trans] = | |
| 961 | ord_le_eq_trans | |
| 962 | ord_eq_le_trans | |
| 963 | ord_less_eq_trans | |
| 964 | ord_eq_less_trans | |
| 965 | ||
| 966 | lemmas [trans] = | |
| 967 | trans | |
| 968 | ||
| 969 | lemmas order_trans_rules = | |
| 970 | order_less_subst2 | |
| 971 | order_less_subst1 | |
| 972 | order_le_less_subst2 | |
| 973 | order_le_less_subst1 | |
| 974 | order_less_le_subst2 | |
| 975 | order_less_le_subst1 | |
| 976 | order_subst2 | |
| 977 | order_subst1 | |
| 978 | ord_le_eq_subst | |
| 979 | ord_eq_le_subst | |
| 980 | ord_less_eq_subst | |
| 981 | ord_eq_less_subst | |
| 982 | forw_subst | |
| 983 | back_subst | |
| 984 | rev_mp | |
| 985 | mp | |
| 986 | neq_le_trans | |
| 987 | le_neq_trans | |
| 988 | less_trans | |
| 989 | less_asym' | |
| 990 | le_less_trans | |
| 991 | less_le_trans | |
| 992 | order_trans | |
| 993 | antisym | |
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 994 | ord_le_eq_trans | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 995 | ord_eq_le_trans | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 996 | ord_less_eq_trans | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 997 | ord_eq_less_trans | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 998 | trans | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 999 | |
| 60758 | 1000 | text \<open>These support proving chains of decreasing inequalities | 
| 1001 | a >= b >= c ... in Isar proofs.\<close> | |
| 21083 | 1002 | |
| 45221 
3eadb9b6a055
mark "xt..." rules as "no_atp", since they are easy consequences of other better named properties
 blanchet parents: 
44921diff
changeset | 1003 | lemma xt1 [no_atp]: | 
| 67091 | 1004 | "a = b \<Longrightarrow> b > c \<Longrightarrow> a > c" | 
| 1005 | "a > b \<Longrightarrow> b = c \<Longrightarrow> a > c" | |
| 1006 | "a = b \<Longrightarrow> b \<ge> c \<Longrightarrow> a \<ge> c" | |
| 1007 | "a \<ge> b \<Longrightarrow> b = c \<Longrightarrow> a \<ge> c" | |
| 1008 | "(x::'a::order) \<ge> y \<Longrightarrow> y \<ge> x \<Longrightarrow> x = y" | |
| 1009 | "(x::'a::order) \<ge> y \<Longrightarrow> y \<ge> z \<Longrightarrow> x \<ge> z" | |
| 1010 | "(x::'a::order) > y \<Longrightarrow> y \<ge> z \<Longrightarrow> x > z" | |
| 1011 | "(x::'a::order) \<ge> y \<Longrightarrow> y > z \<Longrightarrow> x > z" | |
| 1012 | "(a::'a::order) > b \<Longrightarrow> b > a \<Longrightarrow> P" | |
| 1013 | "(x::'a::order) > y \<Longrightarrow> y > z \<Longrightarrow> x > z" | |
| 1014 | "(a::'a::order) \<ge> b \<Longrightarrow> a \<noteq> b \<Longrightarrow> a > b" | |
| 1015 | "(a::'a::order) \<noteq> b \<Longrightarrow> a \<ge> b \<Longrightarrow> a > b" | |
| 1016 | "a = f b \<Longrightarrow> b > c \<Longrightarrow> (\<And>x y. x > y \<Longrightarrow> f x > f y) \<Longrightarrow> a > f c" | |
| 1017 | "a > b \<Longrightarrow> f b = c \<Longrightarrow> (\<And>x y. x > y \<Longrightarrow> f x > f y) \<Longrightarrow> f a > c" | |
| 1018 | "a = f b \<Longrightarrow> b \<ge> c \<Longrightarrow> (\<And>x y. x \<ge> y \<Longrightarrow> f x \<ge> f y) \<Longrightarrow> a \<ge> f c" | |
| 1019 | "a \<ge> b \<Longrightarrow> f b = c \<Longrightarrow> (\<And>x y. x \<ge> y \<Longrightarrow> f x \<ge> f y) \<Longrightarrow> f a \<ge> c" | |
| 25076 | 1020 | by auto | 
| 21083 | 1021 | |
| 45221 
3eadb9b6a055
mark "xt..." rules as "no_atp", since they are easy consequences of other better named properties
 blanchet parents: 
44921diff
changeset | 1022 | lemma xt2 [no_atp]: | 
| 21083 | 1023 | "(a::'a::order) >= f b ==> b >= c ==> (!!x y. x >= y ==> f x >= f y) ==> a >= f c" | 
| 1024 | by (subgoal_tac "f b >= f c", force, force) | |
| 1025 | ||
| 45221 
3eadb9b6a055
mark "xt..." rules as "no_atp", since they are easy consequences of other better named properties
 blanchet parents: 
44921diff
changeset | 1026 | lemma xt3 [no_atp]: "(a::'a::order) >= b ==> (f b::'b::order) >= c ==> | 
| 21083 | 1027 | (!!x y. x >= y ==> f x >= f y) ==> f a >= c" | 
| 1028 | by (subgoal_tac "f a >= f b", force, force) | |
| 1029 | ||
| 45221 
3eadb9b6a055
mark "xt..." rules as "no_atp", since they are easy consequences of other better named properties
 blanchet parents: 
44921diff
changeset | 1030 | lemma xt4 [no_atp]: "(a::'a::order) > f b ==> (b::'b::order) >= c ==> | 
| 21083 | 1031 | (!!x y. x >= y ==> f x >= f y) ==> a > f c" | 
| 1032 | by (subgoal_tac "f b >= f c", force, force) | |
| 1033 | ||
| 45221 
3eadb9b6a055
mark "xt..." rules as "no_atp", since they are easy consequences of other better named properties
 blanchet parents: 
44921diff
changeset | 1034 | lemma xt5 [no_atp]: "(a::'a::order) > b ==> (f b::'b::order) >= c==> | 
| 21083 | 1035 | (!!x y. x > y ==> f x > f y) ==> f a > c" | 
| 1036 | by (subgoal_tac "f a > f b", force, force) | |
| 1037 | ||
| 45221 
3eadb9b6a055
mark "xt..." rules as "no_atp", since they are easy consequences of other better named properties
 blanchet parents: 
44921diff
changeset | 1038 | lemma xt6 [no_atp]: "(a::'a::order) >= f b ==> b > c ==> | 
| 21083 | 1039 | (!!x y. x > y ==> f x > f y) ==> a > f c" | 
| 1040 | by (subgoal_tac "f b > f c", force, force) | |
| 1041 | ||
| 45221 
3eadb9b6a055
mark "xt..." rules as "no_atp", since they are easy consequences of other better named properties
 blanchet parents: 
44921diff
changeset | 1042 | lemma xt7 [no_atp]: "(a::'a::order) >= b ==> (f b::'b::order) > c ==> | 
| 21083 | 1043 | (!!x y. x >= y ==> f x >= f y) ==> f a > c" | 
| 1044 | by (subgoal_tac "f a >= f b", force, force) | |
| 1045 | ||
| 45221 
3eadb9b6a055
mark "xt..." rules as "no_atp", since they are easy consequences of other better named properties
 blanchet parents: 
44921diff
changeset | 1046 | lemma xt8 [no_atp]: "(a::'a::order) > f b ==> (b::'b::order) > c ==> | 
| 21083 | 1047 | (!!x y. x > y ==> f x > f y) ==> a > f c" | 
| 1048 | by (subgoal_tac "f b > f c", force, force) | |
| 1049 | ||
| 45221 
3eadb9b6a055
mark "xt..." rules as "no_atp", since they are easy consequences of other better named properties
 blanchet parents: 
44921diff
changeset | 1050 | lemma xt9 [no_atp]: "(a::'a::order) > b ==> (f b::'b::order) > c ==> | 
| 21083 | 1051 | (!!x y. x > y ==> f x > f y) ==> f a > c" | 
| 1052 | by (subgoal_tac "f a > f b", force, force) | |
| 1053 | ||
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
53216diff
changeset | 1054 | lemmas xtrans = xt1 xt2 xt3 xt4 xt5 xt6 xt7 xt8 xt9 | 
| 21083 | 1055 | |
| 61824 
dcbe9f756ae0
not_leE -> not_le_imp_less and other tidying
 paulson <lp15@cam.ac.uk> parents: 
61799diff
changeset | 1056 | (* | 
| 21083 | 1057 | Since "a >= b" abbreviates "b <= a", the abbreviation "..." stands | 
| 1058 | for the wrong thing in an Isar proof. | |
| 1059 | ||
| 61824 
dcbe9f756ae0
not_leE -> not_le_imp_less and other tidying
 paulson <lp15@cam.ac.uk> parents: 
61799diff
changeset | 1060 | The extra transitivity rules can be used as follows: | 
| 21083 | 1061 | |
| 1062 | lemma "(a::'a::order) > z" | |
| 1063 | proof - | |
| 1064 | have "a >= b" (is "_ >= ?rhs") | |
| 1065 | sorry | |
| 1066 | also have "?rhs >= c" (is "_ >= ?rhs") | |
| 1067 | sorry | |
| 1068 | also (xtrans) have "?rhs = d" (is "_ = ?rhs") | |
| 1069 | sorry | |
| 1070 | also (xtrans) have "?rhs >= e" (is "_ >= ?rhs") | |
| 1071 | sorry | |
| 1072 | also (xtrans) have "?rhs > f" (is "_ > ?rhs") | |
| 1073 | sorry | |
| 1074 | also (xtrans) have "?rhs > z" | |
| 1075 | sorry | |
| 1076 | finally (xtrans) show ?thesis . | |
| 1077 | qed | |
| 1078 | ||
| 1079 | Alternatively, one can use "declare xtrans [trans]" and then | |
| 1080 | leave out the "(xtrans)" above. | |
| 1081 | *) | |
| 1082 | ||
| 23881 | 1083 | |
| 60758 | 1084 | subsection \<open>Monotonicity\<close> | 
| 21083 | 1085 | |
| 25076 | 1086 | context order | 
| 1087 | begin | |
| 1088 | ||
| 61076 | 1089 | definition mono :: "('a \<Rightarrow> 'b::order) \<Rightarrow> bool" where
 | 
| 25076 | 1090 | "mono f \<longleftrightarrow> (\<forall>x y. x \<le> y \<longrightarrow> f x \<le> f y)" | 
| 1091 | ||
| 1092 | lemma monoI [intro?]: | |
| 61076 | 1093 | fixes f :: "'a \<Rightarrow> 'b::order" | 
| 25076 | 1094 | shows "(\<And>x y. x \<le> y \<Longrightarrow> f x \<le> f y) \<Longrightarrow> mono f" | 
| 1095 | unfolding mono_def by iprover | |
| 21216 
1c8580913738
made locale partial_order compatible with axclass order; changed import order; consecutive changes
 haftmann parents: 
21204diff
changeset | 1096 | |
| 25076 | 1097 | lemma monoD [dest?]: | 
| 61076 | 1098 | fixes f :: "'a \<Rightarrow> 'b::order" | 
| 25076 | 1099 | shows "mono f \<Longrightarrow> x \<le> y \<Longrightarrow> f x \<le> f y" | 
| 1100 | unfolding mono_def by iprover | |
| 1101 | ||
| 51263 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1102 | lemma monoE: | 
| 61076 | 1103 | fixes f :: "'a \<Rightarrow> 'b::order" | 
| 51263 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1104 | assumes "mono f" | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1105 | assumes "x \<le> y" | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1106 | obtains "f x \<le> f y" | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1107 | proof | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1108 | from assms show "f x \<le> f y" by (simp add: mono_def) | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1109 | qed | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1110 | |
| 61076 | 1111 | definition antimono :: "('a \<Rightarrow> 'b::order) \<Rightarrow> bool" where
 | 
| 56020 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
54868diff
changeset | 1112 | "antimono f \<longleftrightarrow> (\<forall>x y. x \<le> y \<longrightarrow> f x \<ge> f y)" | 
| 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
54868diff
changeset | 1113 | |
| 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
54868diff
changeset | 1114 | lemma antimonoI [intro?]: | 
| 61076 | 1115 | fixes f :: "'a \<Rightarrow> 'b::order" | 
| 56020 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
54868diff
changeset | 1116 | shows "(\<And>x y. x \<le> y \<Longrightarrow> f x \<ge> f y) \<Longrightarrow> antimono f" | 
| 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
54868diff
changeset | 1117 | unfolding antimono_def by iprover | 
| 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
54868diff
changeset | 1118 | |
| 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
54868diff
changeset | 1119 | lemma antimonoD [dest?]: | 
| 61076 | 1120 | fixes f :: "'a \<Rightarrow> 'b::order" | 
| 56020 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
54868diff
changeset | 1121 | shows "antimono f \<Longrightarrow> x \<le> y \<Longrightarrow> f x \<ge> f y" | 
| 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
54868diff
changeset | 1122 | unfolding antimono_def by iprover | 
| 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
54868diff
changeset | 1123 | |
| 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
54868diff
changeset | 1124 | lemma antimonoE: | 
| 61076 | 1125 | fixes f :: "'a \<Rightarrow> 'b::order" | 
| 56020 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
54868diff
changeset | 1126 | assumes "antimono f" | 
| 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
54868diff
changeset | 1127 | assumes "x \<le> y" | 
| 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
54868diff
changeset | 1128 | obtains "f x \<ge> f y" | 
| 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
54868diff
changeset | 1129 | proof | 
| 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
54868diff
changeset | 1130 | from assms show "f x \<ge> f y" by (simp add: antimono_def) | 
| 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
54868diff
changeset | 1131 | qed | 
| 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
54868diff
changeset | 1132 | |
| 61076 | 1133 | definition strict_mono :: "('a \<Rightarrow> 'b::order) \<Rightarrow> bool" where
 | 
| 30298 | 1134 | "strict_mono f \<longleftrightarrow> (\<forall>x y. x < y \<longrightarrow> f x < f y)" | 
| 1135 | ||
| 1136 | lemma strict_monoI [intro?]: | |
| 1137 | assumes "\<And>x y. x < y \<Longrightarrow> f x < f y" | |
| 1138 | shows "strict_mono f" | |
| 1139 | using assms unfolding strict_mono_def by auto | |
| 1140 | ||
| 1141 | lemma strict_monoD [dest?]: | |
| 1142 | "strict_mono f \<Longrightarrow> x < y \<Longrightarrow> f x < f y" | |
| 1143 | unfolding strict_mono_def by auto | |
| 1144 | ||
| 1145 | lemma strict_mono_mono [dest?]: | |
| 1146 | assumes "strict_mono f" | |
| 1147 | shows "mono f" | |
| 1148 | proof (rule monoI) | |
| 1149 | fix x y | |
| 1150 | assume "x \<le> y" | |
| 1151 | show "f x \<le> f y" | |
| 1152 | proof (cases "x = y") | |
| 1153 | case True then show ?thesis by simp | |
| 1154 | next | |
| 60758 | 1155 | case False with \<open>x \<le> y\<close> have "x < y" by simp | 
| 30298 | 1156 | with assms strict_monoD have "f x < f y" by auto | 
| 1157 | then show ?thesis by simp | |
| 1158 | qed | |
| 1159 | qed | |
| 1160 | ||
| 25076 | 1161 | end | 
| 1162 | ||
| 1163 | context linorder | |
| 1164 | begin | |
| 1165 | ||
| 51263 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1166 | lemma mono_invE: | 
| 61076 | 1167 | fixes f :: "'a \<Rightarrow> 'b::order" | 
| 51263 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1168 | assumes "mono f" | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1169 | assumes "f x < f y" | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1170 | obtains "x \<le> y" | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1171 | proof | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1172 | show "x \<le> y" | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1173 | proof (rule ccontr) | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1174 | assume "\<not> x \<le> y" | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1175 | then have "y \<le> x" by simp | 
| 60758 | 1176 | with \<open>mono f\<close> obtain "f y \<le> f x" by (rule monoE) | 
| 1177 | with \<open>f x < f y\<close> show False by simp | |
| 51263 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1178 | qed | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1179 | qed | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1180 | |
| 66936 | 1181 | lemma mono_strict_invE: | 
| 1182 | fixes f :: "'a \<Rightarrow> 'b::order" | |
| 1183 | assumes "mono f" | |
| 1184 | assumes "f x < f y" | |
| 1185 | obtains "x < y" | |
| 1186 | proof | |
| 1187 | show "x < y" | |
| 1188 | proof (rule ccontr) | |
| 1189 | assume "\<not> x < y" | |
| 1190 | then have "y \<le> x" by simp | |
| 1191 | with \<open>mono f\<close> obtain "f y \<le> f x" by (rule monoE) | |
| 1192 | with \<open>f x < f y\<close> show False by simp | |
| 1193 | qed | |
| 1194 | qed | |
| 1195 | ||
| 30298 | 1196 | lemma strict_mono_eq: | 
| 1197 | assumes "strict_mono f" | |
| 1198 | shows "f x = f y \<longleftrightarrow> x = y" | |
| 1199 | proof | |
| 1200 | assume "f x = f y" | |
| 1201 | show "x = y" proof (cases x y rule: linorder_cases) | |
| 1202 | case less with assms strict_monoD have "f x < f y" by auto | |
| 60758 | 1203 | with \<open>f x = f y\<close> show ?thesis by simp | 
| 30298 | 1204 | next | 
| 1205 | case equal then show ?thesis . | |
| 1206 | next | |
| 1207 | case greater with assms strict_monoD have "f y < f x" by auto | |
| 60758 | 1208 | with \<open>f x = f y\<close> show ?thesis by simp | 
| 30298 | 1209 | qed | 
| 1210 | qed simp | |
| 1211 | ||
| 1212 | lemma strict_mono_less_eq: | |
| 1213 | assumes "strict_mono f" | |
| 1214 | shows "f x \<le> f y \<longleftrightarrow> x \<le> y" | |
| 1215 | proof | |
| 1216 | assume "x \<le> y" | |
| 1217 | with assms strict_mono_mono monoD show "f x \<le> f y" by auto | |
| 1218 | next | |
| 1219 | assume "f x \<le> f y" | |
| 1220 | show "x \<le> y" proof (rule ccontr) | |
| 1221 | assume "\<not> x \<le> y" then have "y < x" by simp | |
| 1222 | with assms strict_monoD have "f y < f x" by auto | |
| 60758 | 1223 | with \<open>f x \<le> f y\<close> show False by simp | 
| 30298 | 1224 | qed | 
| 1225 | qed | |
| 61824 
dcbe9f756ae0
not_leE -> not_le_imp_less and other tidying
 paulson <lp15@cam.ac.uk> parents: 
61799diff
changeset | 1226 | |
| 30298 | 1227 | lemma strict_mono_less: | 
| 1228 | assumes "strict_mono f" | |
| 1229 | shows "f x < f y \<longleftrightarrow> x < y" | |
| 1230 | using assms | |
| 1231 | by (auto simp add: less_le Orderings.less_le strict_mono_eq strict_mono_less_eq) | |
| 1232 | ||
| 54860 | 1233 | end | 
| 1234 | ||
| 1235 | ||
| 60758 | 1236 | subsection \<open>min and max -- fundamental\<close> | 
| 54860 | 1237 | |
| 1238 | definition (in ord) min :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" where | |
| 1239 | "min a b = (if a \<le> b then a else b)" | |
| 1240 | ||
| 1241 | definition (in ord) max :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" where | |
| 1242 | "max a b = (if a \<le> b then b else a)" | |
| 1243 | ||
| 45931 | 1244 | lemma min_absorb1: "x \<le> y \<Longrightarrow> min x y = x" | 
| 54861 
00d551179872
postponed min/max lemmas until abstract lattice is available
 haftmann parents: 
54860diff
changeset | 1245 | by (simp add: min_def) | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 1246 | |
| 54857 | 1247 | lemma max_absorb2: "x \<le> y \<Longrightarrow> max x y = y" | 
| 54861 
00d551179872
postponed min/max lemmas until abstract lattice is available
 haftmann parents: 
54860diff
changeset | 1248 | by (simp add: max_def) | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 1249 | |
| 61076 | 1250 | lemma min_absorb2: "(y::'a::order) \<le> x \<Longrightarrow> min x y = y" | 
| 54861 
00d551179872
postponed min/max lemmas until abstract lattice is available
 haftmann parents: 
54860diff
changeset | 1251 | by (simp add:min_def) | 
| 45893 | 1252 | |
| 61076 | 1253 | lemma max_absorb1: "(y::'a::order) \<le> x \<Longrightarrow> max x y = x" | 
| 54861 
00d551179872
postponed min/max lemmas until abstract lattice is available
 haftmann parents: 
54860diff
changeset | 1254 | by (simp add: max_def) | 
| 45893 | 1255 | |
| 61630 | 1256 | lemma max_min_same [simp]: | 
| 1257 | fixes x y :: "'a :: linorder" | |
| 1258 | shows "max x (min x y) = x" "max (min x y) x = x" "max (min x y) y = y" "max y (min x y) = y" | |
| 1259 | by(auto simp add: max_def min_def) | |
| 45893 | 1260 | |
| 66936 | 1261 | |
| 60758 | 1262 | subsection \<open>(Unique) top and bottom elements\<close> | 
| 28685 | 1263 | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1264 | class bot = | 
| 43853 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1265 |   fixes bot :: 'a ("\<bottom>")
 | 
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1266 | |
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1267 | class order_bot = order + bot + | 
| 51487 | 1268 | assumes bot_least: "\<bottom> \<le> a" | 
| 54868 | 1269 | begin | 
| 51487 | 1270 | |
| 61605 | 1271 | sublocale bot: ordering_top greater_eq greater bot | 
| 61169 | 1272 | by standard (fact bot_least) | 
| 51487 | 1273 | |
| 43853 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1274 | lemma le_bot: | 
| 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1275 | "a \<le> \<bottom> \<Longrightarrow> a = \<bottom>" | 
| 51487 | 1276 | by (fact bot.extremum_uniqueI) | 
| 43853 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1277 | |
| 43816 | 1278 | lemma bot_unique: | 
| 43853 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1279 | "a \<le> \<bottom> \<longleftrightarrow> a = \<bottom>" | 
| 51487 | 1280 | by (fact bot.extremum_unique) | 
| 43853 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1281 | |
| 51487 | 1282 | lemma not_less_bot: | 
| 1283 | "\<not> a < \<bottom>" | |
| 1284 | by (fact bot.extremum_strict) | |
| 43816 | 1285 | |
| 43814 
58791b75cf1f
moved lemmas bot_less and less_top to classes bot and top respectively
 haftmann parents: 
43813diff
changeset | 1286 | lemma bot_less: | 
| 43853 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1287 | "a \<noteq> \<bottom> \<longleftrightarrow> \<bottom> < a" | 
| 51487 | 1288 | by (fact bot.not_eq_extremum) | 
| 43814 
58791b75cf1f
moved lemmas bot_less and less_top to classes bot and top respectively
 haftmann parents: 
43813diff
changeset | 1289 | |
| 
58791b75cf1f
moved lemmas bot_less and less_top to classes bot and top respectively
 haftmann parents: 
43813diff
changeset | 1290 | end | 
| 41082 | 1291 | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1292 | class top = | 
| 43853 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1293 |   fixes top :: 'a ("\<top>")
 | 
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1294 | |
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1295 | class order_top = order + top + | 
| 51487 | 1296 | assumes top_greatest: "a \<le> \<top>" | 
| 54868 | 1297 | begin | 
| 51487 | 1298 | |
| 61605 | 1299 | sublocale top: ordering_top less_eq less top | 
| 61169 | 1300 | by standard (fact top_greatest) | 
| 51487 | 1301 | |
| 43853 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1302 | lemma top_le: | 
| 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1303 | "\<top> \<le> a \<Longrightarrow> a = \<top>" | 
| 51487 | 1304 | by (fact top.extremum_uniqueI) | 
| 43853 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1305 | |
| 43816 | 1306 | lemma top_unique: | 
| 43853 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1307 | "\<top> \<le> a \<longleftrightarrow> a = \<top>" | 
| 51487 | 1308 | by (fact top.extremum_unique) | 
| 43853 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1309 | |
| 51487 | 1310 | lemma not_top_less: | 
| 1311 | "\<not> \<top> < a" | |
| 1312 | by (fact top.extremum_strict) | |
| 43816 | 1313 | |
| 43814 
58791b75cf1f
moved lemmas bot_less and less_top to classes bot and top respectively
 haftmann parents: 
43813diff
changeset | 1314 | lemma less_top: | 
| 43853 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1315 | "a \<noteq> \<top> \<longleftrightarrow> a < \<top>" | 
| 51487 | 1316 | by (fact top.not_eq_extremum) | 
| 43814 
58791b75cf1f
moved lemmas bot_less and less_top to classes bot and top respectively
 haftmann parents: 
43813diff
changeset | 1317 | |
| 
58791b75cf1f
moved lemmas bot_less and less_top to classes bot and top respectively
 haftmann parents: 
43813diff
changeset | 1318 | end | 
| 28685 | 1319 | |
| 1320 | ||
| 60758 | 1321 | subsection \<open>Dense orders\<close> | 
| 27823 | 1322 | |
| 53216 | 1323 | class dense_order = order + | 
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1324 | assumes dense: "x < y \<Longrightarrow> (\<exists>z. x < z \<and> z < y)" | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1325 | |
| 53216 | 1326 | class dense_linorder = linorder + dense_order | 
| 35579 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1327 | begin | 
| 27823 | 1328 | |
| 35579 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1329 | lemma dense_le: | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1330 | fixes y z :: 'a | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1331 | assumes "\<And>x. x < y \<Longrightarrow> x \<le> z" | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1332 | shows "y \<le> z" | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1333 | proof (rule ccontr) | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1334 | assume "\<not> ?thesis" | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1335 | hence "z < y" by simp | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1336 | from dense[OF this] | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1337 | obtain x where "x < y" and "z < x" by safe | 
| 60758 | 1338 | moreover have "x \<le> z" using assms[OF \<open>x < y\<close>] . | 
| 35579 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1339 | ultimately show False by auto | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1340 | qed | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1341 | |
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1342 | lemma dense_le_bounded: | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1343 | fixes x y z :: 'a | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1344 | assumes "x < y" | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1345 | assumes *: "\<And>w. \<lbrakk> x < w ; w < y \<rbrakk> \<Longrightarrow> w \<le> z" | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1346 | shows "y \<le> z" | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1347 | proof (rule dense_le) | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1348 | fix w assume "w < y" | 
| 60758 | 1349 | from dense[OF \<open>x < y\<close>] obtain u where "x < u" "u < y" by safe | 
| 35579 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1350 | from linear[of u w] | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1351 | show "w \<le> z" | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1352 | proof (rule disjE) | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1353 | assume "u \<le> w" | 
| 60758 | 1354 | from less_le_trans[OF \<open>x < u\<close> \<open>u \<le> w\<close>] \<open>w < y\<close> | 
| 35579 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1355 | show "w \<le> z" by (rule *) | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1356 | next | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1357 | assume "w \<le> u" | 
| 60758 | 1358 | from \<open>w \<le> u\<close> *[OF \<open>x < u\<close> \<open>u < y\<close>] | 
| 35579 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1359 | show "w \<le> z" by (rule order_trans) | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1360 | qed | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1361 | qed | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1362 | |
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1363 | lemma dense_ge: | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1364 | fixes y z :: 'a | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1365 | assumes "\<And>x. z < x \<Longrightarrow> y \<le> x" | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1366 | shows "y \<le> z" | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1367 | proof (rule ccontr) | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1368 | assume "\<not> ?thesis" | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1369 | hence "z < y" by simp | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1370 | from dense[OF this] | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1371 | obtain x where "x < y" and "z < x" by safe | 
| 60758 | 1372 | moreover have "y \<le> x" using assms[OF \<open>z < x\<close>] . | 
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1373 | ultimately show False by auto | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1374 | qed | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1375 | |
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1376 | lemma dense_ge_bounded: | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1377 | fixes x y z :: 'a | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1378 | assumes "z < x" | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1379 | assumes *: "\<And>w. \<lbrakk> z < w ; w < x \<rbrakk> \<Longrightarrow> y \<le> w" | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1380 | shows "y \<le> z" | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1381 | proof (rule dense_ge) | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1382 | fix w assume "z < w" | 
| 60758 | 1383 | from dense[OF \<open>z < x\<close>] obtain u where "z < u" "u < x" by safe | 
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1384 | from linear[of u w] | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1385 | show "y \<le> w" | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1386 | proof (rule disjE) | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1387 | assume "w \<le> u" | 
| 60758 | 1388 | from \<open>z < w\<close> le_less_trans[OF \<open>w \<le> u\<close> \<open>u < x\<close>] | 
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1389 | show "y \<le> w" by (rule *) | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1390 | next | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1391 | assume "u \<le> w" | 
| 60758 | 1392 | from *[OF \<open>z < u\<close> \<open>u < x\<close>] \<open>u \<le> w\<close> | 
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1393 | show "y \<le> w" by (rule order_trans) | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1394 | qed | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1395 | qed | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1396 | |
| 35579 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1397 | end | 
| 27823 | 1398 | |
| 61824 
dcbe9f756ae0
not_leE -> not_le_imp_less and other tidying
 paulson <lp15@cam.ac.uk> parents: 
61799diff
changeset | 1399 | class no_top = order + | 
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1400 | assumes gt_ex: "\<exists>y. x < y" | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1401 | |
| 61824 
dcbe9f756ae0
not_leE -> not_le_imp_less and other tidying
 paulson <lp15@cam.ac.uk> parents: 
61799diff
changeset | 1402 | class no_bot = order + | 
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1403 | assumes lt_ex: "\<exists>y. y < x" | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1404 | |
| 53216 | 1405 | class unbounded_dense_linorder = dense_linorder + no_top + no_bot | 
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1406 | |
| 51546 
2e26df807dc7
more uniform style for interpretation and sublocale declarations
 haftmann parents: 
51487diff
changeset | 1407 | |
| 60758 | 1408 | subsection \<open>Wellorders\<close> | 
| 27823 | 1409 | |
| 1410 | class wellorder = linorder + | |
| 1411 | assumes less_induct [case_names less]: "(\<And>x. (\<And>y. y < x \<Longrightarrow> P y) \<Longrightarrow> P x) \<Longrightarrow> P a" | |
| 1412 | begin | |
| 1413 | ||
| 1414 | lemma wellorder_Least_lemma: | |
| 1415 | fixes k :: 'a | |
| 1416 | assumes "P k" | |
| 34250 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1417 | shows LeastI: "P (LEAST x. P x)" and Least_le: "(LEAST x. P x) \<le> k" | 
| 27823 | 1418 | proof - | 
| 1419 | have "P (LEAST x. P x) \<and> (LEAST x. P x) \<le> k" | |
| 1420 | using assms proof (induct k rule: less_induct) | |
| 1421 | case (less x) then have "P x" by simp | |
| 1422 | show ?case proof (rule classical) | |
| 1423 | assume assm: "\<not> (P (LEAST a. P a) \<and> (LEAST a. P a) \<le> x)" | |
| 1424 | have "\<And>y. P y \<Longrightarrow> x \<le> y" | |
| 1425 | proof (rule classical) | |
| 1426 | fix y | |
| 38705 | 1427 | assume "P y" and "\<not> x \<le> y" | 
| 27823 | 1428 | with less have "P (LEAST a. P a)" and "(LEAST a. P a) \<le> y" | 
| 1429 | by (auto simp add: not_le) | |
| 1430 | with assm have "x < (LEAST a. P a)" and "(LEAST a. P a) \<le> y" | |
| 1431 | by auto | |
| 1432 | then show "x \<le> y" by auto | |
| 1433 | qed | |
| 60758 | 1434 | with \<open>P x\<close> have Least: "(LEAST a. P a) = x" | 
| 27823 | 1435 | by (rule Least_equality) | 
| 60758 | 1436 | with \<open>P x\<close> show ?thesis by simp | 
| 27823 | 1437 | qed | 
| 1438 | qed | |
| 1439 | then show "P (LEAST x. P x)" and "(LEAST x. P x) \<le> k" by auto | |
| 1440 | qed | |
| 1441 | ||
| 61799 | 1442 | \<comment> "The following 3 lemmas are due to Brian Huffman" | 
| 27823 | 1443 | lemma LeastI_ex: "\<exists>x. P x \<Longrightarrow> P (Least P)" | 
| 1444 | by (erule exE) (erule LeastI) | |
| 1445 | ||
| 1446 | lemma LeastI2: | |
| 1447 | "P a \<Longrightarrow> (\<And>x. P x \<Longrightarrow> Q x) \<Longrightarrow> Q (Least P)" | |
| 1448 | by (blast intro: LeastI) | |
| 1449 | ||
| 1450 | lemma LeastI2_ex: | |
| 1451 | "\<exists>a. P a \<Longrightarrow> (\<And>x. P x \<Longrightarrow> Q x) \<Longrightarrow> Q (Least P)" | |
| 1452 | by (blast intro: LeastI_ex) | |
| 1453 | ||
| 38705 | 1454 | lemma LeastI2_wellorder: | 
| 1455 | assumes "P a" | |
| 1456 | and "\<And>a. \<lbrakk> P a; \<forall>b. P b \<longrightarrow> a \<le> b \<rbrakk> \<Longrightarrow> Q a" | |
| 1457 | shows "Q (Least P)" | |
| 1458 | proof (rule LeastI2_order) | |
| 60758 | 1459 | show "P (Least P)" using \<open>P a\<close> by (rule LeastI) | 
| 38705 | 1460 | next | 
| 1461 | fix y assume "P y" thus "Least P \<le> y" by (rule Least_le) | |
| 1462 | next | |
| 1463 | fix x assume "P x" "\<forall>y. P y \<longrightarrow> x \<le> y" thus "Q x" by (rule assms(2)) | |
| 1464 | qed | |
| 1465 | ||
| 61699 
a81dc5c4d6a9
New theorems mostly from Peter Gammie
 paulson <lp15@cam.ac.uk> parents: 
61630diff
changeset | 1466 | lemma LeastI2_wellorder_ex: | 
| 
a81dc5c4d6a9
New theorems mostly from Peter Gammie
 paulson <lp15@cam.ac.uk> parents: 
61630diff
changeset | 1467 | assumes "\<exists>x. P x" | 
| 
a81dc5c4d6a9
New theorems mostly from Peter Gammie
 paulson <lp15@cam.ac.uk> parents: 
61630diff
changeset | 1468 | and "\<And>a. \<lbrakk> P a; \<forall>b. P b \<longrightarrow> a \<le> b \<rbrakk> \<Longrightarrow> Q a" | 
| 
a81dc5c4d6a9
New theorems mostly from Peter Gammie
 paulson <lp15@cam.ac.uk> parents: 
61630diff
changeset | 1469 | shows "Q (Least P)" | 
| 
a81dc5c4d6a9
New theorems mostly from Peter Gammie
 paulson <lp15@cam.ac.uk> parents: 
61630diff
changeset | 1470 | using assms by clarify (blast intro!: LeastI2_wellorder) | 
| 
a81dc5c4d6a9
New theorems mostly from Peter Gammie
 paulson <lp15@cam.ac.uk> parents: 
61630diff
changeset | 1471 | |
| 27823 | 1472 | lemma not_less_Least: "k < (LEAST x. P x) \<Longrightarrow> \<not> P k" | 
| 61699 
a81dc5c4d6a9
New theorems mostly from Peter Gammie
 paulson <lp15@cam.ac.uk> parents: 
61630diff
changeset | 1473 | apply (simp add: not_le [symmetric]) | 
| 27823 | 1474 | apply (erule contrapos_nn) | 
| 1475 | apply (erule Least_le) | |
| 1476 | done | |
| 1477 | ||
| 64287 | 1478 | lemma exists_least_iff: "(\<exists>n. P n) \<longleftrightarrow> (\<exists>n. P n \<and> (\<forall>m < n. \<not> P m))" (is "?lhs \<longleftrightarrow> ?rhs") | 
| 1479 | proof | |
| 1480 | assume ?rhs thus ?lhs by blast | |
| 1481 | next | |
| 1482 | assume H: ?lhs then obtain n where n: "P n" by blast | |
| 1483 | let ?x = "Least P" | |
| 1484 |   { fix m assume m: "m < ?x"
 | |
| 1485 | from not_less_Least[OF m] have "\<not> P m" . } | |
| 1486 | with LeastI_ex[OF H] show ?rhs by blast | |
| 1487 | qed | |
| 1488 | ||
| 38705 | 1489 | end | 
| 27823 | 1490 | |
| 28685 | 1491 | |
| 60758 | 1492 | subsection \<open>Order on @{typ bool}\<close>
 | 
| 28685 | 1493 | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1494 | instantiation bool :: "{order_bot, order_top, linorder}"
 | 
| 28685 | 1495 | begin | 
| 1496 | ||
| 1497 | definition | |
| 41080 | 1498 | le_bool_def [simp]: "P \<le> Q \<longleftrightarrow> P \<longrightarrow> Q" | 
| 28685 | 1499 | |
| 1500 | definition | |
| 61076 | 1501 | [simp]: "(P::bool) < Q \<longleftrightarrow> \<not> P \<and> Q" | 
| 28685 | 1502 | |
| 1503 | definition | |
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1504 | [simp]: "\<bottom> \<longleftrightarrow> False" | 
| 28685 | 1505 | |
| 1506 | definition | |
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1507 | [simp]: "\<top> \<longleftrightarrow> True" | 
| 28685 | 1508 | |
| 1509 | instance proof | |
| 41080 | 1510 | qed auto | 
| 28685 | 1511 | |
| 15524 | 1512 | end | 
| 28685 | 1513 | |
| 1514 | lemma le_boolI: "(P \<Longrightarrow> Q) \<Longrightarrow> P \<le> Q" | |
| 41080 | 1515 | by simp | 
| 28685 | 1516 | |
| 1517 | lemma le_boolI': "P \<longrightarrow> Q \<Longrightarrow> P \<le> Q" | |
| 41080 | 1518 | by simp | 
| 28685 | 1519 | |
| 1520 | lemma le_boolE: "P \<le> Q \<Longrightarrow> P \<Longrightarrow> (Q \<Longrightarrow> R) \<Longrightarrow> R" | |
| 41080 | 1521 | by simp | 
| 28685 | 1522 | |
| 1523 | lemma le_boolD: "P \<le> Q \<Longrightarrow> P \<longrightarrow> Q" | |
| 41080 | 1524 | by simp | 
| 32899 | 1525 | |
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1526 | lemma bot_boolE: "\<bottom> \<Longrightarrow> P" | 
| 41080 | 1527 | by simp | 
| 32899 | 1528 | |
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1529 | lemma top_boolI: \<top> | 
| 41080 | 1530 | by simp | 
| 28685 | 1531 | |
| 1532 | lemma [code]: | |
| 1533 | "False \<le> b \<longleftrightarrow> True" | |
| 1534 | "True \<le> b \<longleftrightarrow> b" | |
| 1535 | "False < b \<longleftrightarrow> b" | |
| 1536 | "True < b \<longleftrightarrow> False" | |
| 41080 | 1537 | by simp_all | 
| 28685 | 1538 | |
| 1539 | ||
| 60758 | 1540 | subsection \<open>Order on @{typ "_ \<Rightarrow> _"}\<close>
 | 
| 28685 | 1541 | |
| 1542 | instantiation "fun" :: (type, ord) ord | |
| 1543 | begin | |
| 1544 | ||
| 1545 | definition | |
| 37767 | 1546 | le_fun_def: "f \<le> g \<longleftrightarrow> (\<forall>x. f x \<le> g x)" | 
| 28685 | 1547 | |
| 1548 | definition | |
| 61076 | 1549 | "(f::'a \<Rightarrow> 'b) < g \<longleftrightarrow> f \<le> g \<and> \<not> (g \<le> f)" | 
| 28685 | 1550 | |
| 1551 | instance .. | |
| 1552 | ||
| 1553 | end | |
| 1554 | ||
| 1555 | instance "fun" :: (type, preorder) preorder proof | |
| 1556 | qed (auto simp add: le_fun_def less_fun_def | |
| 44921 | 1557 | intro: order_trans antisym) | 
| 28685 | 1558 | |
| 1559 | instance "fun" :: (type, order) order proof | |
| 44921 | 1560 | qed (auto simp add: le_fun_def intro: antisym) | 
| 28685 | 1561 | |
| 41082 | 1562 | instantiation "fun" :: (type, bot) bot | 
| 1563 | begin | |
| 1564 | ||
| 1565 | definition | |
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1566 | "\<bottom> = (\<lambda>x. \<bottom>)" | 
| 41082 | 1567 | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1568 | instance .. | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1569 | |
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1570 | end | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1571 | |
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1572 | instantiation "fun" :: (type, order_bot) order_bot | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1573 | begin | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1574 | |
| 49769 | 1575 | lemma bot_apply [simp, code]: | 
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1576 | "\<bottom> x = \<bottom>" | 
| 41082 | 1577 | by (simp add: bot_fun_def) | 
| 1578 | ||
| 1579 | instance proof | |
| 46884 | 1580 | qed (simp add: le_fun_def) | 
| 41082 | 1581 | |
| 1582 | end | |
| 1583 | ||
| 28685 | 1584 | instantiation "fun" :: (type, top) top | 
| 1585 | begin | |
| 1586 | ||
| 1587 | definition | |
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1588 | [no_atp]: "\<top> = (\<lambda>x. \<top>)" | 
| 28685 | 1589 | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1590 | instance .. | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1591 | |
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1592 | end | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1593 | |
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1594 | instantiation "fun" :: (type, order_top) order_top | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1595 | begin | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1596 | |
| 49769 | 1597 | lemma top_apply [simp, code]: | 
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1598 | "\<top> x = \<top>" | 
| 41080 | 1599 | by (simp add: top_fun_def) | 
| 1600 | ||
| 28685 | 1601 | instance proof | 
| 46884 | 1602 | qed (simp add: le_fun_def) | 
| 28685 | 1603 | |
| 1604 | end | |
| 1605 | ||
| 1606 | lemma le_funI: "(\<And>x. f x \<le> g x) \<Longrightarrow> f \<le> g" | |
| 1607 | unfolding le_fun_def by simp | |
| 1608 | ||
| 1609 | lemma le_funE: "f \<le> g \<Longrightarrow> (f x \<le> g x \<Longrightarrow> P) \<Longrightarrow> P" | |
| 1610 | unfolding le_fun_def by simp | |
| 1611 | ||
| 1612 | lemma le_funD: "f \<le> g \<Longrightarrow> f x \<le> g x" | |
| 54860 | 1613 | by (rule le_funE) | 
| 28685 | 1614 | |
| 59000 | 1615 | lemma mono_compose: "mono Q \<Longrightarrow> mono (\<lambda>i x. Q i (f x))" | 
| 1616 | unfolding mono_def le_fun_def by auto | |
| 1617 | ||
| 34250 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1618 | |
| 60758 | 1619 | subsection \<open>Order on unary and binary predicates\<close> | 
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1620 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1621 | lemma predicate1I: | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1622 | assumes PQ: "\<And>x. P x \<Longrightarrow> Q x" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1623 | shows "P \<le> Q" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1624 | apply (rule le_funI) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1625 | apply (rule le_boolI) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1626 | apply (rule PQ) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1627 | apply assumption | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1628 | done | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1629 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1630 | lemma predicate1D: | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1631 | "P \<le> Q \<Longrightarrow> P x \<Longrightarrow> Q x" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1632 | apply (erule le_funE) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1633 | apply (erule le_boolE) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1634 | apply assumption+ | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1635 | done | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1636 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1637 | lemma rev_predicate1D: | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1638 | "P x \<Longrightarrow> P \<le> Q \<Longrightarrow> Q x" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1639 | by (rule predicate1D) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1640 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1641 | lemma predicate2I: | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1642 | assumes PQ: "\<And>x y. P x y \<Longrightarrow> Q x y" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1643 | shows "P \<le> Q" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1644 | apply (rule le_funI)+ | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1645 | apply (rule le_boolI) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1646 | apply (rule PQ) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1647 | apply assumption | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1648 | done | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1649 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1650 | lemma predicate2D: | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1651 | "P \<le> Q \<Longrightarrow> P x y \<Longrightarrow> Q x y" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1652 | apply (erule le_funE)+ | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1653 | apply (erule le_boolE) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1654 | apply assumption+ | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1655 | done | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1656 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1657 | lemma rev_predicate2D: | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1658 | "P x y \<Longrightarrow> P \<le> Q \<Longrightarrow> Q x y" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1659 | by (rule predicate2D) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1660 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1661 | lemma bot1E [no_atp]: "\<bottom> x \<Longrightarrow> P" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1662 | by (simp add: bot_fun_def) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1663 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1664 | lemma bot2E: "\<bottom> x y \<Longrightarrow> P" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1665 | by (simp add: bot_fun_def) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1666 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1667 | lemma top1I: "\<top> x" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1668 | by (simp add: top_fun_def) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1669 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1670 | lemma top2I: "\<top> x y" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1671 | by (simp add: top_fun_def) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1672 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1673 | |
| 60758 | 1674 | subsection \<open>Name duplicates\<close> | 
| 34250 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1675 | |
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1676 | lemmas order_eq_refl = preorder_class.eq_refl | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1677 | lemmas order_less_irrefl = preorder_class.less_irrefl | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1678 | lemmas order_less_imp_le = preorder_class.less_imp_le | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1679 | lemmas order_less_not_sym = preorder_class.less_not_sym | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1680 | lemmas order_less_asym = preorder_class.less_asym | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1681 | lemmas order_less_trans = preorder_class.less_trans | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1682 | lemmas order_le_less_trans = preorder_class.le_less_trans | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1683 | lemmas order_less_le_trans = preorder_class.less_le_trans | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1684 | lemmas order_less_imp_not_less = preorder_class.less_imp_not_less | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1685 | lemmas order_less_imp_triv = preorder_class.less_imp_triv | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1686 | lemmas order_less_asym' = preorder_class.less_asym' | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1687 | |
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1688 | lemmas order_less_le = order_class.less_le | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1689 | lemmas order_le_less = order_class.le_less | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1690 | lemmas order_le_imp_less_or_eq = order_class.le_imp_less_or_eq | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1691 | lemmas order_less_imp_not_eq = order_class.less_imp_not_eq | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1692 | lemmas order_less_imp_not_eq2 = order_class.less_imp_not_eq2 | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1693 | lemmas order_neq_le_trans = order_class.neq_le_trans | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1694 | lemmas order_le_neq_trans = order_class.le_neq_trans | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1695 | lemmas order_antisym = order_class.antisym | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1696 | lemmas order_eq_iff = order_class.eq_iff | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1697 | lemmas order_antisym_conv = order_class.antisym_conv | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1698 | |
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1699 | lemmas linorder_linear = linorder_class.linear | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1700 | lemmas linorder_less_linear = linorder_class.less_linear | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1701 | lemmas linorder_le_less_linear = linorder_class.le_less_linear | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1702 | lemmas linorder_le_cases = linorder_class.le_cases | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1703 | lemmas linorder_not_less = linorder_class.not_less | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1704 | lemmas linorder_not_le = linorder_class.not_le | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1705 | lemmas linorder_neq_iff = linorder_class.neq_iff | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1706 | lemmas linorder_neqE = linorder_class.neqE | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1707 | lemmas linorder_antisym_conv1 = linorder_class.antisym_conv1 | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1708 | lemmas linorder_antisym_conv2 = linorder_class.antisym_conv2 | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1709 | lemmas linorder_antisym_conv3 = linorder_class.antisym_conv3 | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1710 | |
| 28685 | 1711 | end |