doc-src/TutorialI/CTL/document/PDL.tex
author paulson
Thu, 19 Dec 2002 10:48:13 +0100
changeset 13760 2188f247605c
parent 12815 1f073030b97a
child 13791 3b6ff7ceaf27
permissions -rw-r--r--
auto-update
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
10123
9469c039ff57 *** empty log message ***
nipkow
parents:
diff changeset
     1
%
9469c039ff57 *** empty log message ***
nipkow
parents:
diff changeset
     2
\begin{isabellebody}%
9469c039ff57 *** empty log message ***
nipkow
parents:
diff changeset
     3
\def\isabellecontext{PDL}%
11866
fbd097aec213 updated;
wenzelm
parents: 11458
diff changeset
     4
\isamarkupfalse%
10123
9469c039ff57 *** empty log message ***
nipkow
parents:
diff changeset
     5
%
10971
6852682eaf16 *** empty log message ***
nipkow
parents: 10950
diff changeset
     6
\isamarkupsubsection{Propositional Dynamic Logic --- PDL%
10395
7ef380745743 updated;
wenzelm
parents: 10369
diff changeset
     7
}
11866
fbd097aec213 updated;
wenzelm
parents: 11458
diff changeset
     8
\isamarkuptrue%
10133
e187dacd248f *** empty log message ***
nipkow
parents: 10123
diff changeset
     9
%
e187dacd248f *** empty log message ***
nipkow
parents: 10123
diff changeset
    10
\begin{isamarkuptext}%
10178
aecb5bf6f76f *** empty log message ***
nipkow
parents: 10171
diff changeset
    11
\index{PDL|(}
11458
09a6c44a48ea numerous stylistic changes and indexing
paulson
parents: 11231
diff changeset
    12
The formulae of PDL are built up from atomic propositions via
09a6c44a48ea numerous stylistic changes and indexing
paulson
parents: 11231
diff changeset
    13
negation and conjunction and the two temporal
09a6c44a48ea numerous stylistic changes and indexing
paulson
parents: 11231
diff changeset
    14
connectives \isa{AX} and \isa{EF}\@. Since formulae are essentially
09a6c44a48ea numerous stylistic changes and indexing
paulson
parents: 11231
diff changeset
    15
syntax trees, they are naturally modelled as a datatype:%
09a6c44a48ea numerous stylistic changes and indexing
paulson
parents: 11231
diff changeset
    16
\footnote{The customary definition of PDL
11207
08188224c24e *** empty log message ***
nipkow
parents: 10983
diff changeset
    17
\cite{HarelKT-DL} looks quite different from ours, but the two are easily
11458
09a6c44a48ea numerous stylistic changes and indexing
paulson
parents: 11231
diff changeset
    18
shown to be equivalent.}%
10133
e187dacd248f *** empty log message ***
nipkow
parents: 10123
diff changeset
    19
\end{isamarkuptext}%
11866
fbd097aec213 updated;
wenzelm
parents: 11458
diff changeset
    20
\isamarkuptrue%
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    21
\isacommand{datatype}\ formula\ {\isacharequal}\ Atom\ atom\isanewline
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    22
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {\isacharbar}\ Neg\ formula\isanewline
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    23
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {\isacharbar}\ And\ formula\ formula\isanewline
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    24
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {\isacharbar}\ AX\ formula\isanewline
11866
fbd097aec213 updated;
wenzelm
parents: 11458
diff changeset
    25
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {\isacharbar}\ EF\ formula\isamarkupfalse%
fbd097aec213 updated;
wenzelm
parents: 11458
diff changeset
    26
%
10133
e187dacd248f *** empty log message ***
nipkow
parents: 10123
diff changeset
    27
\begin{isamarkuptext}%
e187dacd248f *** empty log message ***
nipkow
parents: 10123
diff changeset
    28
\noindent
11458
09a6c44a48ea numerous stylistic changes and indexing
paulson
parents: 11231
diff changeset
    29
This resembles the boolean expression case study in
10867
bda1701848cd lcp's suggestions for CTL
paulson
parents: 10839
diff changeset
    30
\S\ref{sec:boolex}.
11458
09a6c44a48ea numerous stylistic changes and indexing
paulson
parents: 11231
diff changeset
    31
A validity relation between
09a6c44a48ea numerous stylistic changes and indexing
paulson
parents: 11231
diff changeset
    32
states and formulae specifies the semantics:%
10133
e187dacd248f *** empty log message ***
nipkow
parents: 10123
diff changeset
    33
\end{isamarkuptext}%
11866
fbd097aec213 updated;
wenzelm
parents: 11458
diff changeset
    34
\isamarkuptrue%
fbd097aec213 updated;
wenzelm
parents: 11458
diff changeset
    35
\isacommand{consts}\ valid\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}state\ {\isasymRightarrow}\ formula\ {\isasymRightarrow}\ bool{\isachardoublequote}\ \ \ {\isacharparenleft}{\isachardoublequote}{\isacharparenleft}{\isacharunderscore}\ {\isasymTurnstile}\ {\isacharunderscore}{\isacharparenright}{\isachardoublequote}\ {\isacharbrackleft}{\isadigit{8}}{\isadigit{0}}{\isacharcomma}{\isadigit{8}}{\isadigit{0}}{\isacharbrackright}\ {\isadigit{8}}{\isadigit{0}}{\isacharparenright}\isamarkupfalse%
fbd097aec213 updated;
wenzelm
parents: 11458
diff changeset
    36
%
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    37
\begin{isamarkuptext}%
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    38
\noindent
10867
bda1701848cd lcp's suggestions for CTL
paulson
parents: 10839
diff changeset
    39
The syntax annotation allows us to write \isa{s\ {\isasymTurnstile}\ f} instead of
bda1701848cd lcp's suggestions for CTL
paulson
parents: 10839
diff changeset
    40
\hbox{\isa{valid\ s\ f}}.
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    41
The definition of \isa{{\isasymTurnstile}} is by recursion over the syntax:%
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    42
\end{isamarkuptext}%
11866
fbd097aec213 updated;
wenzelm
parents: 11458
diff changeset
    43
\isamarkuptrue%
10123
9469c039ff57 *** empty log message ***
nipkow
parents:
diff changeset
    44
\isacommand{primrec}\isanewline
10133
e187dacd248f *** empty log message ***
nipkow
parents: 10123
diff changeset
    45
{\isachardoublequote}s\ {\isasymTurnstile}\ Atom\ a\ \ {\isacharequal}\ {\isacharparenleft}a\ {\isasymin}\ L\ s{\isacharparenright}{\isachardoublequote}\isanewline
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    46
{\isachardoublequote}s\ {\isasymTurnstile}\ Neg\ f\ \ \ {\isacharequal}\ {\isacharparenleft}{\isasymnot}{\isacharparenleft}s\ {\isasymTurnstile}\ f{\isacharparenright}{\isacharparenright}{\isachardoublequote}\isanewline
10123
9469c039ff57 *** empty log message ***
nipkow
parents:
diff changeset
    47
{\isachardoublequote}s\ {\isasymTurnstile}\ And\ f\ g\ {\isacharequal}\ {\isacharparenleft}s\ {\isasymTurnstile}\ f\ {\isasymand}\ s\ {\isasymTurnstile}\ g{\isacharparenright}{\isachardoublequote}\isanewline
9469c039ff57 *** empty log message ***
nipkow
parents:
diff changeset
    48
{\isachardoublequote}s\ {\isasymTurnstile}\ AX\ f\ \ \ \ {\isacharequal}\ {\isacharparenleft}{\isasymforall}t{\isachardot}\ {\isacharparenleft}s{\isacharcomma}t{\isacharparenright}\ {\isasymin}\ M\ {\isasymlongrightarrow}\ t\ {\isasymTurnstile}\ f{\isacharparenright}{\isachardoublequote}\isanewline
11866
fbd097aec213 updated;
wenzelm
parents: 11458
diff changeset
    49
{\isachardoublequote}s\ {\isasymTurnstile}\ EF\ f\ \ \ \ {\isacharequal}\ {\isacharparenleft}{\isasymexists}t{\isachardot}\ {\isacharparenleft}s{\isacharcomma}t{\isacharparenright}\ {\isasymin}\ M\isactrlsup {\isacharasterisk}\ {\isasymand}\ t\ {\isasymTurnstile}\ f{\isacharparenright}{\isachardoublequote}\isamarkupfalse%
fbd097aec213 updated;
wenzelm
parents: 11458
diff changeset
    50
%
10133
e187dacd248f *** empty log message ***
nipkow
parents: 10123
diff changeset
    51
\begin{isamarkuptext}%
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    52
\noindent
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    53
The first three equations should be self-explanatory. The temporal formula
10983
59961d32b1ae *** empty log message ***
nipkow
parents: 10971
diff changeset
    54
\isa{AX\ f} means that \isa{f} is true in \emph{A}ll ne\emph{X}t states whereas
59961d32b1ae *** empty log message ***
nipkow
parents: 10971
diff changeset
    55
\isa{EF\ f} means that there \emph{E}xists some \emph{F}uture state in which \isa{f} is
10867
bda1701848cd lcp's suggestions for CTL
paulson
parents: 10839
diff changeset
    56
true. The future is expressed via \isa{\isactrlsup {\isacharasterisk}}, the reflexive transitive
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    57
closure. Because of reflexivity, the future includes the present.
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    58
10133
e187dacd248f *** empty log message ***
nipkow
parents: 10123
diff changeset
    59
Now we come to the model checker itself. It maps a formula into the set of
11458
09a6c44a48ea numerous stylistic changes and indexing
paulson
parents: 11231
diff changeset
    60
states where the formula is true.  It too is defined by recursion over the syntax:%
10133
e187dacd248f *** empty log message ***
nipkow
parents: 10123
diff changeset
    61
\end{isamarkuptext}%
11866
fbd097aec213 updated;
wenzelm
parents: 11458
diff changeset
    62
\isamarkuptrue%
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    63
\isacommand{consts}\ mc\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}formula\ {\isasymRightarrow}\ state\ set{\isachardoublequote}\isanewline
11866
fbd097aec213 updated;
wenzelm
parents: 11458
diff changeset
    64
\isamarkupfalse%
10123
9469c039ff57 *** empty log message ***
nipkow
parents:
diff changeset
    65
\isacommand{primrec}\isanewline
10133
e187dacd248f *** empty log message ***
nipkow
parents: 10123
diff changeset
    66
{\isachardoublequote}mc{\isacharparenleft}Atom\ a{\isacharparenright}\ \ {\isacharequal}\ {\isacharbraceleft}s{\isachardot}\ a\ {\isasymin}\ L\ s{\isacharbraceright}{\isachardoublequote}\isanewline
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    67
{\isachardoublequote}mc{\isacharparenleft}Neg\ f{\isacharparenright}\ \ \ {\isacharequal}\ {\isacharminus}mc\ f{\isachardoublequote}\isanewline
10133
e187dacd248f *** empty log message ***
nipkow
parents: 10123
diff changeset
    68
{\isachardoublequote}mc{\isacharparenleft}And\ f\ g{\isacharparenright}\ {\isacharequal}\ mc\ f\ {\isasyminter}\ mc\ g{\isachardoublequote}\isanewline
10123
9469c039ff57 *** empty log message ***
nipkow
parents:
diff changeset
    69
{\isachardoublequote}mc{\isacharparenleft}AX\ f{\isacharparenright}\ \ \ \ {\isacharequal}\ {\isacharbraceleft}s{\isachardot}\ {\isasymforall}t{\isachardot}\ {\isacharparenleft}s{\isacharcomma}t{\isacharparenright}\ {\isasymin}\ M\ \ {\isasymlongrightarrow}\ t\ {\isasymin}\ mc\ f{\isacharbraceright}{\isachardoublequote}\isanewline
11866
fbd097aec213 updated;
wenzelm
parents: 11458
diff changeset
    70
{\isachardoublequote}mc{\isacharparenleft}EF\ f{\isacharparenright}\ \ \ \ {\isacharequal}\ lfp{\isacharparenleft}{\isasymlambda}T{\isachardot}\ mc\ f\ {\isasymunion}\ {\isacharparenleft}M{\isasyminverse}\ {\isacharbackquote}{\isacharbackquote}\ T{\isacharparenright}{\isacharparenright}{\isachardoublequote}\isamarkupfalse%
fbd097aec213 updated;
wenzelm
parents: 11458
diff changeset
    71
%
10133
e187dacd248f *** empty log message ***
nipkow
parents: 10123
diff changeset
    72
\begin{isamarkuptext}%
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    73
\noindent
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    74
Only the equation for \isa{EF} deserves some comments. Remember that the
10839
1f93f5a27de6 *** empty log message ***
nipkow
parents: 10801
diff changeset
    75
postfix \isa{{\isasyminverse}} and the infix \isa{{\isacharbackquote}{\isacharbackquote}} are predefined and denote the
10867
bda1701848cd lcp's suggestions for CTL
paulson
parents: 10839
diff changeset
    76
converse of a relation and the image of a set under a relation.  Thus
10839
1f93f5a27de6 *** empty log message ***
nipkow
parents: 10801
diff changeset
    77
\isa{M{\isasyminverse}\ {\isacharbackquote}{\isacharbackquote}\ T} is the set of all predecessors of \isa{T} and the least
1f93f5a27de6 *** empty log message ***
nipkow
parents: 10801
diff changeset
    78
fixed point (\isa{lfp}) of \isa{{\isasymlambda}T{\isachardot}\ mc\ f\ {\isasymunion}\ M{\isasyminverse}\ {\isacharbackquote}{\isacharbackquote}\ T} is the least set
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    79
\isa{T} containing \isa{mc\ f} and all predecessors of \isa{T}. If you
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    80
find it hard to see that \isa{mc\ {\isacharparenleft}EF\ f{\isacharparenright}} contains exactly those states from
10983
59961d32b1ae *** empty log message ***
nipkow
parents: 10971
diff changeset
    81
which there is a path to a state where \isa{f} is true, do not worry --- this
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    82
will be proved in a moment.
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    83
10867
bda1701848cd lcp's suggestions for CTL
paulson
parents: 10839
diff changeset
    84
First we prove monotonicity of the function inside \isa{lfp}
bda1701848cd lcp's suggestions for CTL
paulson
parents: 10839
diff changeset
    85
in order to make sure it really has a least fixed point.%
10133
e187dacd248f *** empty log message ***
nipkow
parents: 10123
diff changeset
    86
\end{isamarkuptext}%
11866
fbd097aec213 updated;
wenzelm
parents: 11458
diff changeset
    87
\isamarkuptrue%
10867
bda1701848cd lcp's suggestions for CTL
paulson
parents: 10839
diff changeset
    88
\isacommand{lemma}\ mono{\isacharunderscore}ef{\isacharcolon}\ {\isachardoublequote}mono{\isacharparenleft}{\isasymlambda}T{\isachardot}\ A\ {\isasymunion}\ {\isacharparenleft}M{\isasyminverse}\ {\isacharbackquote}{\isacharbackquote}\ T{\isacharparenright}{\isacharparenright}{\isachardoublequote}\isanewline
11866
fbd097aec213 updated;
wenzelm
parents: 11458
diff changeset
    89
\isamarkupfalse%
10123
9469c039ff57 *** empty log message ***
nipkow
parents:
diff changeset
    90
\isacommand{apply}{\isacharparenleft}rule\ monoI{\isacharparenright}\isanewline
11866
fbd097aec213 updated;
wenzelm
parents: 11458
diff changeset
    91
\isamarkupfalse%
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    92
\isacommand{apply}\ blast\isanewline
11866
fbd097aec213 updated;
wenzelm
parents: 11458
diff changeset
    93
\isamarkupfalse%
fbd097aec213 updated;
wenzelm
parents: 11458
diff changeset
    94
\isacommand{done}\isamarkupfalse%
fbd097aec213 updated;
wenzelm
parents: 11458
diff changeset
    95
%
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    96
\begin{isamarkuptext}%
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    97
\noindent
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    98
Now we can relate model checking and semantics. For the \isa{EF} case we need
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    99
a separate lemma:%
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   100
\end{isamarkuptext}%
11866
fbd097aec213 updated;
wenzelm
parents: 11458
diff changeset
   101
\isamarkuptrue%
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   102
\isacommand{lemma}\ EF{\isacharunderscore}lemma{\isacharcolon}\isanewline
11866
fbd097aec213 updated;
wenzelm
parents: 11458
diff changeset
   103
\ \ {\isachardoublequote}lfp{\isacharparenleft}{\isasymlambda}T{\isachardot}\ A\ {\isasymunion}\ {\isacharparenleft}M{\isasyminverse}\ {\isacharbackquote}{\isacharbackquote}\ T{\isacharparenright}{\isacharparenright}\ {\isacharequal}\ {\isacharbraceleft}s{\isachardot}\ {\isasymexists}t{\isachardot}\ {\isacharparenleft}s{\isacharcomma}t{\isacharparenright}\ {\isasymin}\ M\isactrlsup {\isacharasterisk}\ {\isasymand}\ t\ {\isasymin}\ A{\isacharbraceright}{\isachardoublequote}\isamarkupfalse%
fbd097aec213 updated;
wenzelm
parents: 11458
diff changeset
   104
%
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   105
\begin{isamarkuptxt}%
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   106
\noindent
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   107
The equality is proved in the canonical fashion by proving that each set
10867
bda1701848cd lcp's suggestions for CTL
paulson
parents: 10839
diff changeset
   108
includes the other; the inclusion is shown pointwise:%
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   109
\end{isamarkuptxt}%
11866
fbd097aec213 updated;
wenzelm
parents: 11458
diff changeset
   110
\isamarkuptrue%
10123
9469c039ff57 *** empty log message ***
nipkow
parents:
diff changeset
   111
\isacommand{apply}{\isacharparenleft}rule\ equalityI{\isacharparenright}\isanewline
11866
fbd097aec213 updated;
wenzelm
parents: 11458
diff changeset
   112
\ \isamarkupfalse%
fbd097aec213 updated;
wenzelm
parents: 11458
diff changeset
   113
\isacommand{apply}{\isacharparenleft}rule\ subsetI{\isacharparenright}\isanewline
fbd097aec213 updated;
wenzelm
parents: 11458
diff changeset
   114
\ \isamarkupfalse%
fbd097aec213 updated;
wenzelm
parents: 11458
diff changeset
   115
\isacommand{apply}{\isacharparenleft}simp{\isacharparenright}\isamarkupfalse%
fbd097aec213 updated;
wenzelm
parents: 11458
diff changeset
   116
\isamarkupfalse%
fbd097aec213 updated;
wenzelm
parents: 11458
diff changeset
   117
%
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   118
\begin{isamarkuptxt}%
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   119
\noindent
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   120
Simplification leaves us with the following first subgoal
10363
6e8002c1790e *** empty log message ***
nipkow
parents: 10361
diff changeset
   121
\begin{isabelle}%
10839
1f93f5a27de6 *** empty log message ***
nipkow
parents: 10801
diff changeset
   122
\ {\isadigit{1}}{\isachardot}\ {\isasymAnd}s{\isachardot}\ s\ {\isasymin}\ lfp\ {\isacharparenleft}{\isasymlambda}T{\isachardot}\ A\ {\isasymunion}\ M{\isasyminverse}\ {\isacharbackquote}{\isacharbackquote}\ T{\isacharparenright}\ {\isasymLongrightarrow}\ {\isasymexists}t{\isachardot}\ {\isacharparenleft}s{\isacharcomma}\ t{\isacharparenright}\ {\isasymin}\ M\isactrlsup {\isacharasterisk}\ {\isasymand}\ t\ {\isasymin}\ A%
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   123
\end{isabelle}
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   124
which is proved by \isa{lfp}-induction:%
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   125
\end{isamarkuptxt}%
11866
fbd097aec213 updated;
wenzelm
parents: 11458
diff changeset
   126
\ \isamarkuptrue%
fbd097aec213 updated;
wenzelm
parents: 11458
diff changeset
   127
\isacommand{apply}{\isacharparenleft}erule\ lfp{\isacharunderscore}induct{\isacharparenright}\isanewline
fbd097aec213 updated;
wenzelm
parents: 11458
diff changeset
   128
\ \ \isamarkupfalse%
fbd097aec213 updated;
wenzelm
parents: 11458
diff changeset
   129
\isacommand{apply}{\isacharparenleft}rule\ mono{\isacharunderscore}ef{\isacharparenright}\isanewline
fbd097aec213 updated;
wenzelm
parents: 11458
diff changeset
   130
\ \isamarkupfalse%
fbd097aec213 updated;
wenzelm
parents: 11458
diff changeset
   131
\isacommand{apply}{\isacharparenleft}simp{\isacharparenright}\isamarkupfalse%
fbd097aec213 updated;
wenzelm
parents: 11458
diff changeset
   132
%
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   133
\begin{isamarkuptxt}%
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   134
\noindent
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   135
Having disposed of the monotonicity subgoal,
11458
09a6c44a48ea numerous stylistic changes and indexing
paulson
parents: 11231
diff changeset
   136
simplification leaves us with the following goal:
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   137
\begin{isabelle}
10801
c00ac928fc6f *** empty log message ***
nipkow
parents: 10800
diff changeset
   138
\ {\isadigit{1}}{\isachardot}\ {\isasymAnd}x{\isachardot}\ x\ {\isasymin}\ A\ {\isasymor}\isanewline
10895
79194f07d356 *** empty log message ***
nipkow
parents: 10867
diff changeset
   139
\ \ \ \ \ \ \ \ \ x\ {\isasymin}\ M{\isasyminverse}\ {\isacharbackquote}{\isacharbackquote}\ {\isacharparenleft}lfp\ {\isacharparenleft}\dots{\isacharparenright}\ {\isasyminter}\ {\isacharbraceleft}x{\isachardot}\ {\isasymexists}t{\isachardot}\ {\isacharparenleft}x{\isacharcomma}\ t{\isacharparenright}\ {\isasymin}\ M\isactrlsup {\isacharasterisk}\ {\isasymand}\ t\ {\isasymin}\ A{\isacharbraceright}{\isacharparenright}\isanewline
10801
c00ac928fc6f *** empty log message ***
nipkow
parents: 10800
diff changeset
   140
\ \ \ \ \ \ \ \ {\isasymLongrightarrow}\ {\isasymexists}t{\isachardot}\ {\isacharparenleft}x{\isacharcomma}\ t{\isacharparenright}\ {\isasymin}\ M\isactrlsup {\isacharasterisk}\ {\isasymand}\ t\ {\isasymin}\ A
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   141
\end{isabelle}
11458
09a6c44a48ea numerous stylistic changes and indexing
paulson
parents: 11231
diff changeset
   142
It is proved by \isa{blast}, using the transitivity of 
09a6c44a48ea numerous stylistic changes and indexing
paulson
parents: 11231
diff changeset
   143
\isa{M\isactrlsup {\isacharasterisk}}.%
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   144
\end{isamarkuptxt}%
11866
fbd097aec213 updated;
wenzelm
parents: 11458
diff changeset
   145
\ \isamarkuptrue%
fbd097aec213 updated;
wenzelm
parents: 11458
diff changeset
   146
\isacommand{apply}{\isacharparenleft}blast\ intro{\isacharcolon}\ rtrancl{\isacharunderscore}trans{\isacharparenright}\isamarkupfalse%
fbd097aec213 updated;
wenzelm
parents: 11458
diff changeset
   147
%
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   148
\begin{isamarkuptxt}%
10867
bda1701848cd lcp's suggestions for CTL
paulson
parents: 10839
diff changeset
   149
We now return to the second set inclusion subgoal, which is again proved
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   150
pointwise:%
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   151
\end{isamarkuptxt}%
11866
fbd097aec213 updated;
wenzelm
parents: 11458
diff changeset
   152
\isamarkuptrue%
10123
9469c039ff57 *** empty log message ***
nipkow
parents:
diff changeset
   153
\isacommand{apply}{\isacharparenleft}rule\ subsetI{\isacharparenright}\isanewline
11866
fbd097aec213 updated;
wenzelm
parents: 11458
diff changeset
   154
\isamarkupfalse%
fbd097aec213 updated;
wenzelm
parents: 11458
diff changeset
   155
\isacommand{apply}{\isacharparenleft}simp{\isacharcomma}\ clarify{\isacharparenright}\isamarkupfalse%
fbd097aec213 updated;
wenzelm
parents: 11458
diff changeset
   156
%
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   157
\begin{isamarkuptxt}%
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   158
\noindent
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   159
After simplification and clarification we are left with
10363
6e8002c1790e *** empty log message ***
nipkow
parents: 10361
diff changeset
   160
\begin{isabelle}%
10839
1f93f5a27de6 *** empty log message ***
nipkow
parents: 10801
diff changeset
   161
\ {\isadigit{1}}{\isachardot}\ {\isasymAnd}x\ t{\isachardot}\ {\isasymlbrakk}{\isacharparenleft}x{\isacharcomma}\ t{\isacharparenright}\ {\isasymin}\ M\isactrlsup {\isacharasterisk}{\isacharsemicolon}\ t\ {\isasymin}\ A{\isasymrbrakk}\ {\isasymLongrightarrow}\ x\ {\isasymin}\ lfp\ {\isacharparenleft}{\isasymlambda}T{\isachardot}\ A\ {\isasymunion}\ M{\isasyminverse}\ {\isacharbackquote}{\isacharbackquote}\ T{\isacharparenright}%
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   162
\end{isabelle}
10361
c20f78a9606f updated;
wenzelm
parents: 10242
diff changeset
   163
This goal is proved by induction on \isa{{\isacharparenleft}s{\isacharcomma}\ t{\isacharparenright}\ {\isasymin}\ M\isactrlsup {\isacharasterisk}}. But since the model
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   164
checker works backwards (from \isa{t} to \isa{s}), we cannot use the
11458
09a6c44a48ea numerous stylistic changes and indexing
paulson
parents: 11231
diff changeset
   165
induction theorem \isa{rtrancl{\isacharunderscore}induct}: it works in the
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   166
forward direction. Fortunately the converse induction theorem
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   167
\isa{converse{\isacharunderscore}rtrancl{\isacharunderscore}induct} already exists:
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   168
\begin{isabelle}%
10696
76d7f6c9a14c *** empty log message ***
nipkow
parents: 10668
diff changeset
   169
\ \ \ \ \ {\isasymlbrakk}{\isacharparenleft}a{\isacharcomma}\ b{\isacharparenright}\ {\isasymin}\ r\isactrlsup {\isacharasterisk}{\isacharsemicolon}\ P\ b{\isacharsemicolon}\isanewline
10950
aa788fcb75a5 updated;
wenzelm
parents: 10895
diff changeset
   170
\isaindent{\ \ \ \ \ \ \ \ }{\isasymAnd}y\ z{\isachardot}\ {\isasymlbrakk}{\isacharparenleft}y{\isacharcomma}\ z{\isacharparenright}\ {\isasymin}\ r{\isacharsemicolon}\ {\isacharparenleft}z{\isacharcomma}\ b{\isacharparenright}\ {\isasymin}\ r\isactrlsup {\isacharasterisk}{\isacharsemicolon}\ P\ z{\isasymrbrakk}\ {\isasymLongrightarrow}\ P\ y{\isasymrbrakk}\isanewline
aa788fcb75a5 updated;
wenzelm
parents: 10895
diff changeset
   171
\isaindent{\ \ \ \ \ }{\isasymLongrightarrow}\ P\ a%
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   172
\end{isabelle}
10361
c20f78a9606f updated;
wenzelm
parents: 10242
diff changeset
   173
It says that if \isa{{\isacharparenleft}a{\isacharcomma}\ b{\isacharparenright}\ {\isasymin}\ r\isactrlsup {\isacharasterisk}} and we know \isa{P\ b} then we can infer
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   174
\isa{P\ a} provided each step backwards from a predecessor \isa{z} of
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   175
\isa{b} preserves \isa{P}.%
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   176
\end{isamarkuptxt}%
11866
fbd097aec213 updated;
wenzelm
parents: 11458
diff changeset
   177
\isamarkuptrue%
fbd097aec213 updated;
wenzelm
parents: 11458
diff changeset
   178
\isacommand{apply}{\isacharparenleft}erule\ converse{\isacharunderscore}rtrancl{\isacharunderscore}induct{\isacharparenright}\isamarkupfalse%
fbd097aec213 updated;
wenzelm
parents: 11458
diff changeset
   179
%
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   180
\begin{isamarkuptxt}%
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   181
\noindent
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   182
The base case
10363
6e8002c1790e *** empty log message ***
nipkow
parents: 10361
diff changeset
   183
\begin{isabelle}%
10839
1f93f5a27de6 *** empty log message ***
nipkow
parents: 10801
diff changeset
   184
\ {\isadigit{1}}{\isachardot}\ {\isasymAnd}x\ t{\isachardot}\ t\ {\isasymin}\ A\ {\isasymLongrightarrow}\ t\ {\isasymin}\ lfp\ {\isacharparenleft}{\isasymlambda}T{\isachardot}\ A\ {\isasymunion}\ M{\isasyminverse}\ {\isacharbackquote}{\isacharbackquote}\ T{\isacharparenright}%
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   185
\end{isabelle}
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   186
is solved by unrolling \isa{lfp} once%
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   187
\end{isamarkuptxt}%
11866
fbd097aec213 updated;
wenzelm
parents: 11458
diff changeset
   188
\ \isamarkuptrue%
fbd097aec213 updated;
wenzelm
parents: 11458
diff changeset
   189
\isacommand{apply}{\isacharparenleft}subst\ lfp{\isacharunderscore}unfold{\isacharbrackleft}OF\ mono{\isacharunderscore}ef{\isacharbrackright}{\isacharparenright}\isamarkupfalse%
fbd097aec213 updated;
wenzelm
parents: 11458
diff changeset
   190
%
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   191
\begin{isamarkuptxt}%
10363
6e8002c1790e *** empty log message ***
nipkow
parents: 10361
diff changeset
   192
\begin{isabelle}%
10839
1f93f5a27de6 *** empty log message ***
nipkow
parents: 10801
diff changeset
   193
\ {\isadigit{1}}{\isachardot}\ {\isasymAnd}x\ t{\isachardot}\ t\ {\isasymin}\ A\ {\isasymLongrightarrow}\ t\ {\isasymin}\ A\ {\isasymunion}\ M{\isasyminverse}\ {\isacharbackquote}{\isacharbackquote}\ lfp\ {\isacharparenleft}{\isasymlambda}T{\isachardot}\ A\ {\isasymunion}\ M{\isasyminverse}\ {\isacharbackquote}{\isacharbackquote}\ T{\isacharparenright}%
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   194
\end{isabelle}
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   195
and disposing of the resulting trivial subgoal automatically:%
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   196
\end{isamarkuptxt}%
11866
fbd097aec213 updated;
wenzelm
parents: 11458
diff changeset
   197
\ \isamarkuptrue%
fbd097aec213 updated;
wenzelm
parents: 11458
diff changeset
   198
\isacommand{apply}{\isacharparenleft}blast{\isacharparenright}\isamarkupfalse%
fbd097aec213 updated;
wenzelm
parents: 11458
diff changeset
   199
%
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   200
\begin{isamarkuptxt}%
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   201
\noindent
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   202
The proof of the induction step is identical to the one for the base case:%
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   203
\end{isamarkuptxt}%
11866
fbd097aec213 updated;
wenzelm
parents: 11458
diff changeset
   204
\isamarkuptrue%
11231
30d96882f915 *** empty log message ***
nipkow
parents: 11207
diff changeset
   205
\isacommand{apply}{\isacharparenleft}subst\ lfp{\isacharunderscore}unfold{\isacharbrackleft}OF\ mono{\isacharunderscore}ef{\isacharbrackright}{\isacharparenright}\isanewline
11866
fbd097aec213 updated;
wenzelm
parents: 11458
diff changeset
   206
\isamarkupfalse%
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   207
\isacommand{apply}{\isacharparenleft}blast{\isacharparenright}\isanewline
11866
fbd097aec213 updated;
wenzelm
parents: 11458
diff changeset
   208
\isamarkupfalse%
fbd097aec213 updated;
wenzelm
parents: 11458
diff changeset
   209
\isacommand{done}\isamarkupfalse%
fbd097aec213 updated;
wenzelm
parents: 11458
diff changeset
   210
%
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   211
\begin{isamarkuptext}%
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   212
The main theorem is proved in the familiar manner: induction followed by
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   213
\isa{auto} augmented with the lemma as a simplification rule.%
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   214
\end{isamarkuptext}%
11866
fbd097aec213 updated;
wenzelm
parents: 11458
diff changeset
   215
\isamarkuptrue%
10123
9469c039ff57 *** empty log message ***
nipkow
parents:
diff changeset
   216
\isacommand{theorem}\ {\isachardoublequote}mc\ f\ {\isacharequal}\ {\isacharbraceleft}s{\isachardot}\ s\ {\isasymTurnstile}\ f{\isacharbraceright}{\isachardoublequote}\isanewline
11866
fbd097aec213 updated;
wenzelm
parents: 11458
diff changeset
   217
\isamarkupfalse%
10123
9469c039ff57 *** empty log message ***
nipkow
parents:
diff changeset
   218
\isacommand{apply}{\isacharparenleft}induct{\isacharunderscore}tac\ f{\isacharparenright}\isanewline
11866
fbd097aec213 updated;
wenzelm
parents: 11458
diff changeset
   219
\isamarkupfalse%
12815
wenzelm
parents: 11866
diff changeset
   220
\isacommand{apply}{\isacharparenleft}auto\ simp\ add{\isacharcolon}\ EF{\isacharunderscore}lemma{\isacharparenright}\isanewline
11866
fbd097aec213 updated;
wenzelm
parents: 11458
diff changeset
   221
\isamarkupfalse%
fbd097aec213 updated;
wenzelm
parents: 11458
diff changeset
   222
\isacommand{done}\isamarkupfalse%
fbd097aec213 updated;
wenzelm
parents: 11458
diff changeset
   223
%
10171
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   224
\begin{isamarkuptext}%
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   225
\begin{exercise}
11458
09a6c44a48ea numerous stylistic changes and indexing
paulson
parents: 11231
diff changeset
   226
\isa{AX} has a dual operator \isa{EN} 
09a6c44a48ea numerous stylistic changes and indexing
paulson
parents: 11231
diff changeset
   227
(``there exists a next state such that'')%
09a6c44a48ea numerous stylistic changes and indexing
paulson
parents: 11231
diff changeset
   228
\footnote{We cannot use the customary \isa{EX}: it is reserved
09a6c44a48ea numerous stylistic changes and indexing
paulson
parents: 11231
diff changeset
   229
as the \textsc{ascii}-equivalent of \isa{{\isasymexists}}.}
09a6c44a48ea numerous stylistic changes and indexing
paulson
parents: 11231
diff changeset
   230
with the intended semantics
10171
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   231
\begin{isabelle}%
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   232
\ \ \ \ \ s\ {\isasymTurnstile}\ EN\ f\ {\isacharequal}\ {\isacharparenleft}{\isasymexists}t{\isachardot}\ {\isacharparenleft}s{\isacharcomma}\ t{\isacharparenright}\ {\isasymin}\ M\ {\isasymand}\ t\ {\isasymTurnstile}\ f{\isacharparenright}%
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   233
\end{isabelle}
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   234
Fortunately, \isa{EN\ f} can already be expressed as a PDL formula. How?
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   235
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   236
Show that the semantics for \isa{EF} satisfies the following recursion equation:
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   237
\begin{isabelle}%
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   238
\ \ \ \ \ s\ {\isasymTurnstile}\ EF\ f\ {\isacharequal}\ {\isacharparenleft}s\ {\isasymTurnstile}\ f\ {\isasymor}\ s\ {\isasymTurnstile}\ EN\ {\isacharparenleft}EF\ f{\isacharparenright}{\isacharparenright}%
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   239
\end{isabelle}
10178
aecb5bf6f76f *** empty log message ***
nipkow
parents: 10171
diff changeset
   240
\end{exercise}
aecb5bf6f76f *** empty log message ***
nipkow
parents: 10171
diff changeset
   241
\index{PDL|)}%
10171
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   242
\end{isamarkuptext}%
11866
fbd097aec213 updated;
wenzelm
parents: 11458
diff changeset
   243
\isamarkuptrue%
fbd097aec213 updated;
wenzelm
parents: 11458
diff changeset
   244
\isamarkupfalse%
fbd097aec213 updated;
wenzelm
parents: 11458
diff changeset
   245
\isamarkupfalse%
fbd097aec213 updated;
wenzelm
parents: 11458
diff changeset
   246
\isamarkupfalse%
fbd097aec213 updated;
wenzelm
parents: 11458
diff changeset
   247
\isamarkupfalse%
fbd097aec213 updated;
wenzelm
parents: 11458
diff changeset
   248
\isamarkupfalse%
fbd097aec213 updated;
wenzelm
parents: 11458
diff changeset
   249
\isamarkupfalse%
fbd097aec213 updated;
wenzelm
parents: 11458
diff changeset
   250
\isamarkupfalse%
fbd097aec213 updated;
wenzelm
parents: 11458
diff changeset
   251
\isamarkupfalse%
fbd097aec213 updated;
wenzelm
parents: 11458
diff changeset
   252
\isamarkupfalse%
fbd097aec213 updated;
wenzelm
parents: 11458
diff changeset
   253
\isamarkupfalse%
fbd097aec213 updated;
wenzelm
parents: 11458
diff changeset
   254
\isamarkupfalse%
fbd097aec213 updated;
wenzelm
parents: 11458
diff changeset
   255
\isamarkupfalse%
13760
2188f247605c auto-update
paulson
parents: 12815
diff changeset
   256
\isanewline
11866
fbd097aec213 updated;
wenzelm
parents: 11458
diff changeset
   257
\isamarkupfalse%
10171
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   258
\end{isabellebody}%
10123
9469c039ff57 *** empty log message ***
nipkow
parents:
diff changeset
   259
%%% Local Variables:
9469c039ff57 *** empty log message ***
nipkow
parents:
diff changeset
   260
%%% mode: latex
9469c039ff57 *** empty log message ***
nipkow
parents:
diff changeset
   261
%%% TeX-master: "root"
9469c039ff57 *** empty log message ***
nipkow
parents:
diff changeset
   262
%%% End: