| author | wenzelm | 
| Wed, 07 Aug 2024 14:44:51 +0200 | |
| changeset 80661 | 231d58c412b5 | 
| parent 80612 | e65eed943bee | 
| child 80932 | 261cd8722677 | 
| permissions | -rw-r--r-- | 
| 41959 | 1 | (* Title: HOL/Int.thy | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 2 | Author: Lawrence C Paulson, Cambridge University Computer Laboratory | 
| 41959 | 3 | Author: Tobias Nipkow, Florian Haftmann, TU Muenchen | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 4 | *) | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 5 | |
| 60758 | 6 | section \<open>The Integers as Equivalence Classes over Pairs of Natural Numbers\<close> | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 7 | |
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 8 | theory Int | 
| 74979 | 9 | imports Quotient Groups_Big Fun_Def | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 10 | begin | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 11 | |
| 60758 | 12 | subsection \<open>Definition of integers as a quotient type\<close> | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 13 | |
| 63652 | 14 | definition intrel :: "(nat \<times> nat) \<Rightarrow> (nat \<times> nat) \<Rightarrow> bool" | 
| 15 | where "intrel = (\<lambda>(x, y) (u, v). x + v = u + y)" | |
| 48045 | 16 | |
| 17 | lemma intrel_iff [simp]: "intrel (x, y) (u, v) \<longleftrightarrow> x + v = u + y" | |
| 18 | by (simp add: intrel_def) | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 19 | |
| 48045 | 20 | quotient_type int = "nat \<times> nat" / "intrel" | 
| 45694 
4a8743618257
prefer typedef without extra definition and alternative name;
 wenzelm parents: 
45607diff
changeset | 21 | morphisms Rep_Integ Abs_Integ | 
| 48045 | 22 | proof (rule equivpI) | 
| 63652 | 23 | show "reflp intrel" by (auto simp: reflp_def) | 
| 24 | show "symp intrel" by (auto simp: symp_def) | |
| 25 | show "transp intrel" by (auto simp: transp_def) | |
| 48045 | 26 | qed | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 27 | |
| 48045 | 28 | |
| 60758 | 29 | subsection \<open>Integers form a commutative ring\<close> | 
| 48045 | 30 | |
| 31 | instantiation int :: comm_ring_1 | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 32 | begin | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 33 | |
| 51994 | 34 | lift_definition zero_int :: "int" is "(0, 0)" . | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 35 | |
| 51994 | 36 | lift_definition one_int :: "int" is "(1, 0)" . | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 37 | |
| 48045 | 38 | lift_definition plus_int :: "int \<Rightarrow> int \<Rightarrow> int" | 
| 39 | is "\<lambda>(x, y) (u, v). (x + u, y + v)" | |
| 40 | by clarsimp | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 41 | |
| 48045 | 42 | lift_definition uminus_int :: "int \<Rightarrow> int" | 
| 43 | is "\<lambda>(x, y). (y, x)" | |
| 44 | by clarsimp | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 45 | |
| 48045 | 46 | lift_definition minus_int :: "int \<Rightarrow> int \<Rightarrow> int" | 
| 47 | is "\<lambda>(x, y) (u, v). (x + v, y + u)" | |
| 48 | by clarsimp | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 49 | |
| 48045 | 50 | lift_definition times_int :: "int \<Rightarrow> int \<Rightarrow> int" | 
| 51 | is "\<lambda>(x, y) (u, v). (x*u + y*v, x*v + y*u)" | |
| 75669 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
74979diff
changeset | 52 | proof (unfold intrel_def, clarify) | 
| 48045 | 53 | fix s t u v w x y z :: nat | 
| 54 | assume "s + v = u + t" and "w + z = y + x" | |
| 63652 | 55 | then have "(s + v) * w + (u + t) * x + u * (w + z) + v * (y + x) = | 
| 56 | (u + t) * w + (s + v) * x + u * (y + x) + v * (w + z)" | |
| 48045 | 57 | by simp | 
| 63652 | 58 | then show "(s * w + t * x) + (u * z + v * y) = (u * y + v * z) + (s * x + t * w)" | 
| 48045 | 59 | by (simp add: algebra_simps) | 
| 60 | qed | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 61 | |
| 48045 | 62 | instance | 
| 63652 | 63 | by standard (transfer; clarsimp simp: algebra_simps)+ | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 64 | |
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 65 | end | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 66 | |
| 63652 | 67 | abbreviation int :: "nat \<Rightarrow> int" | 
| 68 | where "int \<equiv> of_nat" | |
| 44709 | 69 | |
| 48045 | 70 | lemma int_def: "int n = Abs_Integ (n, 0)" | 
| 63652 | 71 | by (induct n) (simp add: zero_int.abs_eq, simp add: one_int.abs_eq plus_int.abs_eq) | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 72 | |
| 70927 | 73 | lemma int_transfer [transfer_rule]: | 
| 74 | includes lifting_syntax | |
| 75 | shows "rel_fun (=) pcr_int (\<lambda>n. (n, 0)) int" | |
| 63652 | 76 | by (simp add: rel_fun_def int.pcr_cr_eq cr_int_def int_def) | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 77 | |
| 63652 | 78 | lemma int_diff_cases: obtains (diff) m n where "z = int m - int n" | 
| 48045 | 79 | by transfer clarsimp | 
| 80 | ||
| 63652 | 81 | |
| 60758 | 82 | subsection \<open>Integers are totally ordered\<close> | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 83 | |
| 48045 | 84 | instantiation int :: linorder | 
| 85 | begin | |
| 86 | ||
| 87 | lift_definition less_eq_int :: "int \<Rightarrow> int \<Rightarrow> bool" | |
| 88 | is "\<lambda>(x, y) (u, v). x + v \<le> u + y" | |
| 89 | by auto | |
| 90 | ||
| 91 | lift_definition less_int :: "int \<Rightarrow> int \<Rightarrow> bool" | |
| 92 | is "\<lambda>(x, y) (u, v). x + v < u + y" | |
| 93 | by auto | |
| 94 | ||
| 95 | instance | |
| 61169 | 96 | by standard (transfer, force)+ | 
| 48045 | 97 | |
| 98 | end | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 99 | |
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 100 | instantiation int :: distrib_lattice | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 101 | begin | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 102 | |
| 63652 | 103 | definition "(inf :: int \<Rightarrow> int \<Rightarrow> int) = min" | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 104 | |
| 63652 | 105 | definition "(sup :: int \<Rightarrow> int \<Rightarrow> int) = max" | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 106 | |
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 107 | instance | 
| 63652 | 108 | by standard (auto simp add: inf_int_def sup_int_def max_min_distrib2) | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 109 | |
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 110 | end | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 111 | |
| 60758 | 112 | subsection \<open>Ordering properties of arithmetic operations\<close> | 
| 48045 | 113 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34055diff
changeset | 114 | instance int :: ordered_cancel_ab_semigroup_add | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 115 | proof | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 116 | fix i j k :: int | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 117 | show "i \<le> j \<Longrightarrow> k + i \<le> k + j" | 
| 48045 | 118 | by transfer clarsimp | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 119 | qed | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 120 | |
| 63652 | 121 | text \<open>Strict Monotonicity of Multiplication.\<close> | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 122 | |
| 63652 | 123 | text \<open>Strict, in 1st argument; proof is by induction on \<open>k > 0\<close>.\<close> | 
| 124 | lemma zmult_zless_mono2_lemma: "i < j \<Longrightarrow> 0 < k \<Longrightarrow> int k * i < int k * j" | |
| 125 | for i j :: int | |
| 126 | proof (induct k) | |
| 127 | case 0 | |
| 128 | then show ?case by simp | |
| 129 | next | |
| 130 | case (Suc k) | |
| 131 | then show ?case | |
| 132 | by (cases "k = 0") (simp_all add: distrib_right add_strict_mono) | |
| 133 | qed | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 134 | |
| 71616 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 135 | lemma zero_le_imp_eq_int: | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 136 | assumes "k \<ge> (0::int)" shows "\<exists>n. k = int n" | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 137 | proof - | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 138 | have "b \<le> a \<Longrightarrow> \<exists>n::nat. a = n + b" for a b | 
| 75669 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
74979diff
changeset | 139 | using exI[of _ "a - b"] by simp | 
| 71616 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 140 | with assms show ?thesis | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 141 | by transfer auto | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 142 | qed | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 143 | |
| 71616 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 144 | lemma zero_less_imp_eq_int: | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 145 | assumes "k > (0::int)" shows "\<exists>n>0. k = int n" | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 146 | proof - | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 147 | have "b < a \<Longrightarrow> \<exists>n::nat. n>0 \<and> a = n + b" for a b | 
| 75669 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
74979diff
changeset | 148 | using exI[of _ "a - b"] by simp | 
| 71616 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 149 | with assms show ?thesis | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 150 | by transfer auto | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 151 | qed | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 152 | |
| 63652 | 153 | lemma zmult_zless_mono2: "i < j \<Longrightarrow> 0 < k \<Longrightarrow> k * i < k * j" | 
| 154 | for i j k :: int | |
| 155 | by (drule zero_less_imp_eq_int) (auto simp add: zmult_zless_mono2_lemma) | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 156 | |
| 63652 | 157 | |
| 158 | text \<open>The integers form an ordered integral domain.\<close> | |
| 159 | ||
| 48045 | 160 | instantiation int :: linordered_idom | 
| 161 | begin | |
| 162 | ||
| 63652 | 163 | definition zabs_def: "\<bar>i::int\<bar> = (if i < 0 then - i else i)" | 
| 48045 | 164 | |
| 63652 | 165 | definition zsgn_def: "sgn (i::int) = (if i = 0 then 0 else if 0 < i then 1 else - 1)" | 
| 48045 | 166 | |
| 63652 | 167 | instance | 
| 168 | proof | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 169 | fix i j k :: int | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 170 | show "i < j \<Longrightarrow> 0 < k \<Longrightarrow> k * i < k * j" | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 171 | by (rule zmult_zless_mono2) | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 172 | show "\<bar>i\<bar> = (if i < 0 then -i else i)" | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 173 | by (simp only: zabs_def) | 
| 61076 | 174 | show "sgn (i::int) = (if i=0 then 0 else if 0<i then 1 else - 1)" | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 175 | by (simp only: zsgn_def) | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 176 | qed | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 177 | |
| 48045 | 178 | end | 
| 179 | ||
| 78935 
5e788ff7a489
explicit type class for discrete linordered semidoms
 haftmann parents: 
78698diff
changeset | 180 | instance int :: discrete_linordered_semidom | 
| 
5e788ff7a489
explicit type class for discrete linordered semidoms
 haftmann parents: 
78698diff
changeset | 181 | proof | 
| 
5e788ff7a489
explicit type class for discrete linordered semidoms
 haftmann parents: 
78698diff
changeset | 182 | fix k l :: int | 
| 
5e788ff7a489
explicit type class for discrete linordered semidoms
 haftmann parents: 
78698diff
changeset | 183 | show \<open>k < l \<longleftrightarrow> k + 1 \<le> l\<close> (is \<open>?P \<longleftrightarrow> ?Q\<close>) | 
| 
5e788ff7a489
explicit type class for discrete linordered semidoms
 haftmann parents: 
78698diff
changeset | 184 | proof | 
| 
5e788ff7a489
explicit type class for discrete linordered semidoms
 haftmann parents: 
78698diff
changeset | 185 | assume ?Q | 
| 
5e788ff7a489
explicit type class for discrete linordered semidoms
 haftmann parents: 
78698diff
changeset | 186 | then show ?P | 
| 
5e788ff7a489
explicit type class for discrete linordered semidoms
 haftmann parents: 
78698diff
changeset | 187 | by simp | 
| 
5e788ff7a489
explicit type class for discrete linordered semidoms
 haftmann parents: 
78698diff
changeset | 188 | next | 
| 
5e788ff7a489
explicit type class for discrete linordered semidoms
 haftmann parents: 
78698diff
changeset | 189 | assume ?P | 
| 
5e788ff7a489
explicit type class for discrete linordered semidoms
 haftmann parents: 
78698diff
changeset | 190 | then have \<open>l - k > 0\<close> | 
| 
5e788ff7a489
explicit type class for discrete linordered semidoms
 haftmann parents: 
78698diff
changeset | 191 | by simp | 
| 
5e788ff7a489
explicit type class for discrete linordered semidoms
 haftmann parents: 
78698diff
changeset | 192 | with zero_less_imp_eq_int obtain n where \<open>l - k = int n\<close> | 
| 
5e788ff7a489
explicit type class for discrete linordered semidoms
 haftmann parents: 
78698diff
changeset | 193 | by blast | 
| 
5e788ff7a489
explicit type class for discrete linordered semidoms
 haftmann parents: 
78698diff
changeset | 194 | then have \<open>n > 0\<close> | 
| 
5e788ff7a489
explicit type class for discrete linordered semidoms
 haftmann parents: 
78698diff
changeset | 195 | using \<open>l - k > 0\<close> by simp | 
| 
5e788ff7a489
explicit type class for discrete linordered semidoms
 haftmann parents: 
78698diff
changeset | 196 | then have \<open>n \<ge> 1\<close> | 
| 
5e788ff7a489
explicit type class for discrete linordered semidoms
 haftmann parents: 
78698diff
changeset | 197 | by simp | 
| 
5e788ff7a489
explicit type class for discrete linordered semidoms
 haftmann parents: 
78698diff
changeset | 198 | then have \<open>int n \<ge> int 1\<close> | 
| 
5e788ff7a489
explicit type class for discrete linordered semidoms
 haftmann parents: 
78698diff
changeset | 199 | by (rule of_nat_mono) | 
| 
5e788ff7a489
explicit type class for discrete linordered semidoms
 haftmann parents: 
78698diff
changeset | 200 | with \<open>l - k = int n\<close> show ?Q | 
| 80612 
e65eed943bee
A lot of new material from the Ramsey development, including a couple of new simprules.
 paulson <lp15@cam.ac.uk> parents: 
79296diff
changeset | 201 | by (simp add: algebra_simps) | 
| 78935 
5e788ff7a489
explicit type class for discrete linordered semidoms
 haftmann parents: 
78698diff
changeset | 202 | qed | 
| 
5e788ff7a489
explicit type class for discrete linordered semidoms
 haftmann parents: 
78698diff
changeset | 203 | qed | 
| 
5e788ff7a489
explicit type class for discrete linordered semidoms
 haftmann parents: 
78698diff
changeset | 204 | |
| 63652 | 205 | lemma zless_imp_add1_zle: "w < z \<Longrightarrow> w + 1 \<le> z" | 
| 206 | for w z :: int | |
| 48045 | 207 | by transfer clarsimp | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 208 | |
| 63652 | 209 | lemma zless_iff_Suc_zadd: "w < z \<longleftrightarrow> (\<exists>n. z = w + int (Suc n))" | 
| 210 | for w z :: int | |
| 71616 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 211 | proof - | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 212 | have "\<And>a b c d. a + d < c + b \<Longrightarrow> \<exists>n. c + b = Suc (a + n + d)" | 
| 75669 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
74979diff
changeset | 213 | proof - | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
74979diff
changeset | 214 | fix a b c d :: nat | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
74979diff
changeset | 215 | assume "a + d < c + b" | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
74979diff
changeset | 216 | then have "c + b = Suc (a + (c + b - Suc (a + d)) + d) " | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
74979diff
changeset | 217 | by arith | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
74979diff
changeset | 218 | then show "\<exists>n. c + b = Suc (a + n + d)" | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
74979diff
changeset | 219 | by (rule exI) | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
74979diff
changeset | 220 | qed | 
| 71616 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 221 | then show ?thesis | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 222 | by transfer auto | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 223 | qed | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 224 | |
| 63652 | 225 | lemma zabs_less_one_iff [simp]: "\<bar>z\<bar> < 1 \<longleftrightarrow> z = 0" (is "?lhs \<longleftrightarrow> ?rhs") | 
| 226 | for z :: int | |
| 62347 | 227 | proof | 
| 63652 | 228 | assume ?rhs | 
| 229 | then show ?lhs by simp | |
| 62347 | 230 | next | 
| 63652 | 231 | assume ?lhs | 
| 232 | with zless_imp_add1_zle [of "\<bar>z\<bar>" 1] have "\<bar>z\<bar> + 1 \<le> 1" by simp | |
| 233 | then have "\<bar>z\<bar> \<le> 0" by simp | |
| 234 | then show ?rhs by simp | |
| 62347 | 235 | qed | 
| 236 | ||
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 237 | |
| 61799 | 238 | subsection \<open>Embedding of the Integers into any \<open>ring_1\<close>: \<open>of_int\<close>\<close> | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 239 | |
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 240 | context ring_1 | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 241 | begin | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 242 | |
| 63652 | 243 | lift_definition of_int :: "int \<Rightarrow> 'a" | 
| 244 | is "\<lambda>(i, j). of_nat i - of_nat j" | |
| 48045 | 245 | by (clarsimp simp add: diff_eq_eq eq_diff_eq diff_add_eq | 
| 63652 | 246 | of_nat_add [symmetric] simp del: of_nat_add) | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 247 | |
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 248 | lemma of_int_0 [simp]: "of_int 0 = 0" | 
| 48066 
c6783c9b87bf
transfer method now handles transfer rules for compound terms, e.g. locale-defined constants with hidden parameters
 huffman parents: 
48045diff
changeset | 249 | by transfer simp | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 250 | |
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 251 | lemma of_int_1 [simp]: "of_int 1 = 1" | 
| 48066 
c6783c9b87bf
transfer method now handles transfer rules for compound terms, e.g. locale-defined constants with hidden parameters
 huffman parents: 
48045diff
changeset | 252 | by transfer simp | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 253 | |
| 63652 | 254 | lemma of_int_add [simp]: "of_int (w + z) = of_int w + of_int z" | 
| 48066 
c6783c9b87bf
transfer method now handles transfer rules for compound terms, e.g. locale-defined constants with hidden parameters
 huffman parents: 
48045diff
changeset | 255 | by transfer (clarsimp simp add: algebra_simps) | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 256 | |
| 63652 | 257 | lemma of_int_minus [simp]: "of_int (- z) = - (of_int z)" | 
| 48066 
c6783c9b87bf
transfer method now handles transfer rules for compound terms, e.g. locale-defined constants with hidden parameters
 huffman parents: 
48045diff
changeset | 258 | by (transfer fixing: uminus) clarsimp | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 259 | |
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 260 | lemma of_int_diff [simp]: "of_int (w - z) = of_int w - of_int z" | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54223diff
changeset | 261 | using of_int_add [of w "- z"] by simp | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 262 | |
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 263 | lemma of_int_mult [simp]: "of_int (w*z) = of_int w * of_int z" | 
| 63652 | 264 | by (transfer fixing: times) (clarsimp simp add: algebra_simps) | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 265 | |
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61524diff
changeset | 266 | lemma mult_of_int_commute: "of_int x * y = y * of_int x" | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61524diff
changeset | 267 | by (transfer fixing: times) (auto simp: algebra_simps mult_of_nat_commute) | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61524diff
changeset | 268 | |
| 63652 | 269 | text \<open>Collapse nested embeddings.\<close> | 
| 44709 | 270 | lemma of_int_of_nat_eq [simp]: "of_int (int n) = of_nat n" | 
| 63652 | 271 | by (induct n) auto | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 272 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 273 | lemma of_int_numeral [simp, code_post]: "of_int (numeral k) = numeral k" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 274 | by (simp add: of_nat_numeral [symmetric] of_int_of_nat_eq [symmetric]) | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 275 | |
| 54489 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54249diff
changeset | 276 | lemma of_int_neg_numeral [code_post]: "of_int (- numeral k) = - numeral k" | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54249diff
changeset | 277 | by simp | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 278 | |
| 63652 | 279 | lemma of_int_power [simp]: "of_int (z ^ n) = of_int z ^ n" | 
| 31015 | 280 | by (induct n) simp_all | 
| 281 | ||
| 66816 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66035diff
changeset | 282 | lemma of_int_of_bool [simp]: | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66035diff
changeset | 283 | "of_int (of_bool P) = of_bool P" | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66035diff
changeset | 284 | by auto | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66035diff
changeset | 285 | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 286 | end | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 287 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 288 | context ring_char_0 | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 289 | begin | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 290 | |
| 63652 | 291 | lemma of_int_eq_iff [simp]: "of_int w = of_int z \<longleftrightarrow> w = z" | 
| 292 | by transfer (clarsimp simp add: algebra_simps of_nat_add [symmetric] simp del: of_nat_add) | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 293 | |
| 63652 | 294 | text \<open>Special cases where either operand is zero.\<close> | 
| 295 | lemma of_int_eq_0_iff [simp]: "of_int z = 0 \<longleftrightarrow> z = 0" | |
| 36424 | 296 | using of_int_eq_iff [of z 0] by simp | 
| 297 | ||
| 63652 | 298 | lemma of_int_0_eq_iff [simp]: "0 = of_int z \<longleftrightarrow> z = 0" | 
| 36424 | 299 | using of_int_eq_iff [of 0 z] by simp | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 300 | |
| 63652 | 301 | lemma of_int_eq_1_iff [iff]: "of_int z = 1 \<longleftrightarrow> z = 1" | 
| 61234 | 302 | using of_int_eq_iff [of z 1] by simp | 
| 303 | ||
| 66912 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 304 | lemma numeral_power_eq_of_int_cancel_iff [simp]: | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 305 | "numeral x ^ n = of_int y \<longleftrightarrow> numeral x ^ n = y" | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 306 | using of_int_eq_iff[of "numeral x ^ n" y, unfolded of_int_numeral of_int_power] . | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 307 | |
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 308 | lemma of_int_eq_numeral_power_cancel_iff [simp]: | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 309 | "of_int y = numeral x ^ n \<longleftrightarrow> y = numeral x ^ n" | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 310 | using numeral_power_eq_of_int_cancel_iff [of x n y] by (metis (mono_tags)) | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 311 | |
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 312 | lemma neg_numeral_power_eq_of_int_cancel_iff [simp]: | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 313 | "(- numeral x) ^ n = of_int y \<longleftrightarrow> (- numeral x) ^ n = y" | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 314 | using of_int_eq_iff[of "(- numeral x) ^ n" y] | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 315 | by simp | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 316 | |
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 317 | lemma of_int_eq_neg_numeral_power_cancel_iff [simp]: | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 318 | "of_int y = (- numeral x) ^ n \<longleftrightarrow> y = (- numeral x) ^ n" | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 319 | using neg_numeral_power_eq_of_int_cancel_iff[of x n y] by (metis (mono_tags)) | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 320 | |
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 321 | lemma of_int_eq_of_int_power_cancel_iff[simp]: "(of_int b) ^ w = of_int x \<longleftrightarrow> b ^ w = x" | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 322 | by (metis of_int_power of_int_eq_iff) | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 323 | |
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 324 | lemma of_int_power_eq_of_int_cancel_iff[simp]: "of_int x = (of_int b) ^ w \<longleftrightarrow> x = b ^ w" | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 325 | by (metis of_int_eq_of_int_power_cancel_iff) | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 326 | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 327 | end | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 328 | |
| 36424 | 329 | context linordered_idom | 
| 330 | begin | |
| 331 | ||
| 63652 | 332 | text \<open>Every \<open>linordered_idom\<close> has characteristic zero.\<close> | 
| 36424 | 333 | subclass ring_char_0 .. | 
| 334 | ||
| 63652 | 335 | lemma of_int_le_iff [simp]: "of_int w \<le> of_int z \<longleftrightarrow> w \<le> z" | 
| 336 | by (transfer fixing: less_eq) | |
| 337 | (clarsimp simp add: algebra_simps of_nat_add [symmetric] simp del: of_nat_add) | |
| 36424 | 338 | |
| 63652 | 339 | lemma of_int_less_iff [simp]: "of_int w < of_int z \<longleftrightarrow> w < z" | 
| 36424 | 340 | by (simp add: less_le order_less_le) | 
| 341 | ||
| 63652 | 342 | lemma of_int_0_le_iff [simp]: "0 \<le> of_int z \<longleftrightarrow> 0 \<le> z" | 
| 36424 | 343 | using of_int_le_iff [of 0 z] by simp | 
| 344 | ||
| 63652 | 345 | lemma of_int_le_0_iff [simp]: "of_int z \<le> 0 \<longleftrightarrow> z \<le> 0" | 
| 36424 | 346 | using of_int_le_iff [of z 0] by simp | 
| 347 | ||
| 63652 | 348 | lemma of_int_0_less_iff [simp]: "0 < of_int z \<longleftrightarrow> 0 < z" | 
| 36424 | 349 | using of_int_less_iff [of 0 z] by simp | 
| 350 | ||
| 63652 | 351 | lemma of_int_less_0_iff [simp]: "of_int z < 0 \<longleftrightarrow> z < 0" | 
| 36424 | 352 | using of_int_less_iff [of z 0] by simp | 
| 353 | ||
| 63652 | 354 | lemma of_int_1_le_iff [simp]: "1 \<le> of_int z \<longleftrightarrow> 1 \<le> z" | 
| 61234 | 355 | using of_int_le_iff [of 1 z] by simp | 
| 356 | ||
| 63652 | 357 | lemma of_int_le_1_iff [simp]: "of_int z \<le> 1 \<longleftrightarrow> z \<le> 1" | 
| 61234 | 358 | using of_int_le_iff [of z 1] by simp | 
| 359 | ||
| 63652 | 360 | lemma of_int_1_less_iff [simp]: "1 < of_int z \<longleftrightarrow> 1 < z" | 
| 61234 | 361 | using of_int_less_iff [of 1 z] by simp | 
| 362 | ||
| 63652 | 363 | lemma of_int_less_1_iff [simp]: "of_int z < 1 \<longleftrightarrow> z < 1" | 
| 61234 | 364 | using of_int_less_iff [of z 1] by simp | 
| 365 | ||
| 62128 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61944diff
changeset | 366 | lemma of_int_pos: "z > 0 \<Longrightarrow> of_int z > 0" | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61944diff
changeset | 367 | by simp | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61944diff
changeset | 368 | |
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61944diff
changeset | 369 | lemma of_int_nonneg: "z \<ge> 0 \<Longrightarrow> of_int z \<ge> 0" | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61944diff
changeset | 370 | by simp | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61944diff
changeset | 371 | |
| 63652 | 372 | lemma of_int_abs [simp]: "of_int \<bar>x\<bar> = \<bar>of_int x\<bar>" | 
| 62347 | 373 | by (auto simp add: abs_if) | 
| 374 | ||
| 375 | lemma of_int_lessD: | |
| 376 | assumes "\<bar>of_int n\<bar> < x" | |
| 377 | shows "n = 0 \<or> x > 1" | |
| 378 | proof (cases "n = 0") | |
| 63652 | 379 | case True | 
| 380 | then show ?thesis by simp | |
| 62347 | 381 | next | 
| 382 | case False | |
| 383 | then have "\<bar>n\<bar> \<noteq> 0" by simp | |
| 384 | then have "\<bar>n\<bar> > 0" by simp | |
| 385 | then have "\<bar>n\<bar> \<ge> 1" | |
| 386 | using zless_imp_add1_zle [of 0 "\<bar>n\<bar>"] by simp | |
| 387 | then have "\<bar>of_int n\<bar> \<ge> 1" | |
| 388 | unfolding of_int_1_le_iff [of "\<bar>n\<bar>", symmetric] by simp | |
| 389 | then have "1 < x" using assms by (rule le_less_trans) | |
| 390 | then show ?thesis .. | |
| 391 | qed | |
| 392 | ||
| 393 | lemma of_int_leD: | |
| 394 | assumes "\<bar>of_int n\<bar> \<le> x" | |
| 395 | shows "n = 0 \<or> 1 \<le> x" | |
| 396 | proof (cases "n = 0") | |
| 63652 | 397 | case True | 
| 398 | then show ?thesis by simp | |
| 62347 | 399 | next | 
| 400 | case False | |
| 401 | then have "\<bar>n\<bar> \<noteq> 0" by simp | |
| 402 | then have "\<bar>n\<bar> > 0" by simp | |
| 403 | then have "\<bar>n\<bar> \<ge> 1" | |
| 404 | using zless_imp_add1_zle [of 0 "\<bar>n\<bar>"] by simp | |
| 405 | then have "\<bar>of_int n\<bar> \<ge> 1" | |
| 406 | unfolding of_int_1_le_iff [of "\<bar>n\<bar>", symmetric] by simp | |
| 407 | then have "1 \<le> x" using assms by (rule order_trans) | |
| 408 | then show ?thesis .. | |
| 409 | qed | |
| 410 | ||
| 66912 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 411 | lemma numeral_power_le_of_int_cancel_iff [simp]: | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 412 | "numeral x ^ n \<le> of_int a \<longleftrightarrow> numeral x ^ n \<le> a" | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 413 | by (metis (mono_tags) local.of_int_eq_numeral_power_cancel_iff of_int_le_iff) | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 414 | |
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 415 | lemma of_int_le_numeral_power_cancel_iff [simp]: | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 416 | "of_int a \<le> numeral x ^ n \<longleftrightarrow> a \<le> numeral x ^ n" | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 417 | by (metis (mono_tags) local.numeral_power_eq_of_int_cancel_iff of_int_le_iff) | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 418 | |
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 419 | lemma numeral_power_less_of_int_cancel_iff [simp]: | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 420 | "numeral x ^ n < of_int a \<longleftrightarrow> numeral x ^ n < a" | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 421 | by (metis (mono_tags) local.of_int_eq_numeral_power_cancel_iff of_int_less_iff) | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 422 | |
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 423 | lemma of_int_less_numeral_power_cancel_iff [simp]: | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 424 | "of_int a < numeral x ^ n \<longleftrightarrow> a < numeral x ^ n" | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 425 | by (metis (mono_tags) local.of_int_eq_numeral_power_cancel_iff of_int_less_iff) | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 426 | |
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 427 | lemma neg_numeral_power_le_of_int_cancel_iff [simp]: | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 428 | "(- numeral x) ^ n \<le> of_int a \<longleftrightarrow> (- numeral x) ^ n \<le> a" | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 429 | by (metis (mono_tags) of_int_le_iff of_int_neg_numeral of_int_power) | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 430 | |
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 431 | lemma of_int_le_neg_numeral_power_cancel_iff [simp]: | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 432 | "of_int a \<le> (- numeral x) ^ n \<longleftrightarrow> a \<le> (- numeral x) ^ n" | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 433 | by (metis (mono_tags) of_int_le_iff of_int_neg_numeral of_int_power) | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 434 | |
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 435 | lemma neg_numeral_power_less_of_int_cancel_iff [simp]: | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 436 | "(- numeral x) ^ n < of_int a \<longleftrightarrow> (- numeral x) ^ n < a" | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 437 | using of_int_less_iff[of "(- numeral x) ^ n" a] | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 438 | by simp | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 439 | |
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 440 | lemma of_int_less_neg_numeral_power_cancel_iff [simp]: | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 441 | "of_int a < (- numeral x) ^ n \<longleftrightarrow> a < (- numeral x::int) ^ n" | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 442 | using of_int_less_iff[of a "(- numeral x) ^ n"] | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 443 | by simp | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 444 | |
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 445 | lemma of_int_le_of_int_power_cancel_iff[simp]: "(of_int b) ^ w \<le> of_int x \<longleftrightarrow> b ^ w \<le> x" | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 446 | by (metis (mono_tags) of_int_le_iff of_int_power) | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 447 | |
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 448 | lemma of_int_power_le_of_int_cancel_iff[simp]: "of_int x \<le> (of_int b) ^ w\<longleftrightarrow> x \<le> b ^ w" | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 449 | by (metis (mono_tags) of_int_le_iff of_int_power) | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 450 | |
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 451 | lemma of_int_less_of_int_power_cancel_iff[simp]: "(of_int b) ^ w < of_int x \<longleftrightarrow> b ^ w < x" | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 452 | by (metis (mono_tags) of_int_less_iff of_int_power) | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 453 | |
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 454 | lemma of_int_power_less_of_int_cancel_iff[simp]: "of_int x < (of_int b) ^ w\<longleftrightarrow> x < b ^ w" | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 455 | by (metis (mono_tags) of_int_less_iff of_int_power) | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 456 | |
| 67969 
83c8cafdebe8
Syntax for the special cases Min(A`I) and Max (A`I)
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 457 | lemma of_int_max: "of_int (max x y) = max (of_int x) (of_int y)" | 
| 
83c8cafdebe8
Syntax for the special cases Min(A`I) and Max (A`I)
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 458 | by (auto simp: max_def) | 
| 
83c8cafdebe8
Syntax for the special cases Min(A`I) and Max (A`I)
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 459 | |
| 
83c8cafdebe8
Syntax for the special cases Min(A`I) and Max (A`I)
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 460 | lemma of_int_min: "of_int (min x y) = min (of_int x) (of_int y)" | 
| 
83c8cafdebe8
Syntax for the special cases Min(A`I) and Max (A`I)
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 461 | by (auto simp: min_def) | 
| 
83c8cafdebe8
Syntax for the special cases Min(A`I) and Max (A`I)
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 462 | |
| 36424 | 463 | end | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 464 | |
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69700diff
changeset | 465 | context division_ring | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69700diff
changeset | 466 | begin | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69700diff
changeset | 467 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69700diff
changeset | 468 | lemmas mult_inverse_of_int_commute = | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69700diff
changeset | 469 | mult_commute_imp_mult_inverse_commute[OF mult_of_int_commute] | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69700diff
changeset | 470 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69700diff
changeset | 471 | end | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69700diff
changeset | 472 | |
| 69593 | 473 | text \<open>Comparisons involving \<^term>\<open>of_int\<close>.\<close> | 
| 61234 | 474 | |
| 63652 | 475 | lemma of_int_eq_numeral_iff [iff]: "of_int z = (numeral n :: 'a::ring_char_0) \<longleftrightarrow> z = numeral n" | 
| 61234 | 476 | using of_int_eq_iff by fastforce | 
| 477 | ||
| 61649 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61609diff
changeset | 478 | lemma of_int_le_numeral_iff [simp]: | 
| 63652 | 479 | "of_int z \<le> (numeral n :: 'a::linordered_idom) \<longleftrightarrow> z \<le> numeral n" | 
| 61234 | 480 | using of_int_le_iff [of z "numeral n"] by simp | 
| 481 | ||
| 61649 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61609diff
changeset | 482 | lemma of_int_numeral_le_iff [simp]: | 
| 63652 | 483 | "(numeral n :: 'a::linordered_idom) \<le> of_int z \<longleftrightarrow> numeral n \<le> z" | 
| 61234 | 484 | using of_int_le_iff [of "numeral n"] by simp | 
| 485 | ||
| 61649 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61609diff
changeset | 486 | lemma of_int_less_numeral_iff [simp]: | 
| 63652 | 487 | "of_int z < (numeral n :: 'a::linordered_idom) \<longleftrightarrow> z < numeral n" | 
| 61234 | 488 | using of_int_less_iff [of z "numeral n"] by simp | 
| 489 | ||
| 61649 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61609diff
changeset | 490 | lemma of_int_numeral_less_iff [simp]: | 
| 63652 | 491 | "(numeral n :: 'a::linordered_idom) < of_int z \<longleftrightarrow> numeral n < z" | 
| 61234 | 492 | using of_int_less_iff [of "numeral n" z] by simp | 
| 493 | ||
| 63652 | 494 | lemma of_nat_less_of_int_iff: "(of_nat n::'a::linordered_idom) < of_int x \<longleftrightarrow> int n < x" | 
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56525diff
changeset | 495 | by (metis of_int_of_nat_eq of_int_less_iff) | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56525diff
changeset | 496 | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 497 | lemma of_int_eq_id [simp]: "of_int = id" | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 498 | proof | 
| 63652 | 499 | show "of_int z = id z" for z | 
| 500 | by (cases z rule: int_diff_cases) simp | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 501 | qed | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 502 | |
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51185diff
changeset | 503 | instance int :: no_top | 
| 71616 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 504 | proof | 
| 75669 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
74979diff
changeset | 505 | fix x::int | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
74979diff
changeset | 506 | have "x < x + 1" | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
74979diff
changeset | 507 | by simp | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
74979diff
changeset | 508 | then show "\<exists>y. x < y" | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
74979diff
changeset | 509 | by (rule exI) | 
| 71616 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 510 | qed | 
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51185diff
changeset | 511 | |
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51185diff
changeset | 512 | instance int :: no_bot | 
| 71616 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 513 | proof | 
| 75669 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
74979diff
changeset | 514 | fix x::int | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
74979diff
changeset | 515 | have "x - 1< x" | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
74979diff
changeset | 516 | by simp | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
74979diff
changeset | 517 | then show "\<exists>y. y < x" | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
74979diff
changeset | 518 | by (rule exI) | 
| 71616 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 519 | qed | 
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51185diff
changeset | 520 | |
| 63652 | 521 | |
| 61799 | 522 | subsection \<open>Magnitude of an Integer, as a Natural Number: \<open>nat\<close>\<close> | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 523 | |
| 48045 | 524 | lift_definition nat :: "int \<Rightarrow> nat" is "\<lambda>(x, y). x - y" | 
| 525 | by auto | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 526 | |
| 44709 | 527 | lemma nat_int [simp]: "nat (int n) = n" | 
| 48045 | 528 | by transfer simp | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 529 | |
| 44709 | 530 | lemma int_nat_eq [simp]: "int (nat z) = (if 0 \<le> z then z else 0)" | 
| 48045 | 531 | by transfer clarsimp | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 532 | |
| 63652 | 533 | lemma nat_0_le: "0 \<le> z \<Longrightarrow> int (nat z) = z" | 
| 534 | by simp | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 535 | |
| 63652 | 536 | lemma nat_le_0 [simp]: "z \<le> 0 \<Longrightarrow> nat z = 0" | 
| 48045 | 537 | by transfer clarsimp | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 538 | |
| 63652 | 539 | lemma nat_le_eq_zle: "0 < w \<or> 0 \<le> z \<Longrightarrow> nat w \<le> nat z \<longleftrightarrow> w \<le> z" | 
| 48045 | 540 | by transfer (clarsimp, arith) | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 541 | |
| 69593 | 542 | text \<open>An alternative condition is \<^term>\<open>0 \<le> w\<close>.\<close> | 
| 63652 | 543 | lemma nat_mono_iff: "0 < z \<Longrightarrow> nat w < nat z \<longleftrightarrow> w < z" | 
| 544 | by (simp add: nat_le_eq_zle linorder_not_le [symmetric]) | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 545 | |
| 63652 | 546 | lemma nat_less_eq_zless: "0 \<le> w \<Longrightarrow> nat w < nat z \<longleftrightarrow> w < z" | 
| 547 | by (simp add: nat_le_eq_zle linorder_not_le [symmetric]) | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 548 | |
| 63652 | 549 | lemma zless_nat_conj [simp]: "nat w < nat z \<longleftrightarrow> 0 < z \<and> w < z" | 
| 48045 | 550 | by transfer (clarsimp, arith) | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 551 | |
| 64714 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 552 | lemma nonneg_int_cases: | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 553 | assumes "0 \<le> k" | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 554 | obtains n where "k = int n" | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 555 | proof - | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 556 | from assms have "k = int (nat k)" | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 557 | by simp | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 558 | then show thesis | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 559 | by (rule that) | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 560 | qed | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 561 | |
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 562 | lemma pos_int_cases: | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 563 | assumes "0 < k" | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 564 | obtains n where "k = int n" and "n > 0" | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 565 | proof - | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 566 | from assms have "0 \<le> k" | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 567 | by simp | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 568 | then obtain n where "k = int n" | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 569 | by (rule nonneg_int_cases) | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 570 | moreover have "n > 0" | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 571 | using \<open>k = int n\<close> assms by simp | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 572 | ultimately show thesis | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 573 | by (rule that) | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 574 | qed | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 575 | |
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 576 | lemma nonpos_int_cases: | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 577 | assumes "k \<le> 0" | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 578 | obtains n where "k = - int n" | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 579 | proof - | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 580 | from assms have "- k \<ge> 0" | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 581 | by simp | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 582 | then obtain n where "- k = int n" | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 583 | by (rule nonneg_int_cases) | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 584 | then have "k = - int n" | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 585 | by simp | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 586 | then show thesis | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 587 | by (rule that) | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 588 | qed | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 589 | |
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 590 | lemma neg_int_cases: | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 591 | assumes "k < 0" | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 592 | obtains n where "k = - int n" and "n > 0" | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 593 | proof - | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 594 | from assms have "- k > 0" | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 595 | by simp | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 596 | then obtain n where "- k = int n" and "- k > 0" | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 597 | by (blast elim: pos_int_cases) | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 598 | then have "k = - int n" and "n > 0" | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 599 | by simp_all | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 600 | then show thesis | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 601 | by (rule that) | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 602 | qed | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 603 | |
| 63652 | 604 | lemma nat_eq_iff: "nat w = m \<longleftrightarrow> (if 0 \<le> w then w = int m else m = 0)" | 
| 48045 | 605 | by transfer (clarsimp simp add: le_imp_diff_is_add) | 
| 60162 | 606 | |
| 63652 | 607 | lemma nat_eq_iff2: "m = nat w \<longleftrightarrow> (if 0 \<le> w then w = int m else m = 0)" | 
| 54223 | 608 | using nat_eq_iff [of w m] by auto | 
| 609 | ||
| 63652 | 610 | lemma nat_0 [simp]: "nat 0 = 0" | 
| 54223 | 611 | by (simp add: nat_eq_iff) | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 612 | |
| 63652 | 613 | lemma nat_1 [simp]: "nat 1 = Suc 0" | 
| 54223 | 614 | by (simp add: nat_eq_iff) | 
| 615 | ||
| 63652 | 616 | lemma nat_numeral [simp]: "nat (numeral k) = numeral k" | 
| 54223 | 617 | by (simp add: nat_eq_iff) | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 618 | |
| 63652 | 619 | lemma nat_neg_numeral [simp]: "nat (- numeral k) = 0" | 
| 54223 | 620 | by simp | 
| 621 | ||
| 622 | lemma nat_2: "nat 2 = Suc (Suc 0)" | |
| 623 | by simp | |
| 60162 | 624 | |
| 63652 | 625 | lemma nat_less_iff: "0 \<le> w \<Longrightarrow> nat w < m \<longleftrightarrow> w < of_nat m" | 
| 48045 | 626 | by transfer (clarsimp, arith) | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 627 | |
| 44709 | 628 | lemma nat_le_iff: "nat x \<le> n \<longleftrightarrow> x \<le> int n" | 
| 48045 | 629 | by transfer (clarsimp simp add: le_diff_conv) | 
| 44707 | 630 | |
| 631 | lemma nat_mono: "x \<le> y \<Longrightarrow> nat x \<le> nat y" | |
| 48045 | 632 | by transfer auto | 
| 44707 | 633 | |
| 63652 | 634 | lemma nat_0_iff[simp]: "nat i = 0 \<longleftrightarrow> i \<le> 0" | 
| 635 | for i :: int | |
| 48045 | 636 | by transfer clarsimp | 
| 29700 | 637 | |
| 63652 | 638 | lemma int_eq_iff: "of_nat m = z \<longleftrightarrow> m = nat z \<and> 0 \<le> z" | 
| 639 | by (auto simp add: nat_eq_iff2) | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 640 | |
| 63652 | 641 | lemma zero_less_nat_eq [simp]: "0 < nat z \<longleftrightarrow> 0 < z" | 
| 642 | using zless_nat_conj [of 0] by auto | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 643 | |
| 63652 | 644 | lemma nat_add_distrib: "0 \<le> z \<Longrightarrow> 0 \<le> z' \<Longrightarrow> nat (z + z') = nat z + nat z'" | 
| 48045 | 645 | by transfer clarsimp | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 646 | |
| 63652 | 647 | lemma nat_diff_distrib': "0 \<le> x \<Longrightarrow> 0 \<le> y \<Longrightarrow> nat (x - y) = nat x - nat y" | 
| 54223 | 648 | by transfer clarsimp | 
| 60162 | 649 | |
| 63652 | 650 | lemma nat_diff_distrib: "0 \<le> z' \<Longrightarrow> z' \<le> z \<Longrightarrow> nat (z - z') = nat z - nat z'" | 
| 54223 | 651 | by (rule nat_diff_distrib') auto | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 652 | |
| 44709 | 653 | lemma nat_zminus_int [simp]: "nat (- int n) = 0" | 
| 48045 | 654 | by transfer simp | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 655 | |
| 63652 | 656 | lemma le_nat_iff: "k \<ge> 0 \<Longrightarrow> n \<le> nat k \<longleftrightarrow> int n \<le> k" | 
| 53065 | 657 | by transfer auto | 
| 60162 | 658 | |
| 63652 | 659 | lemma zless_nat_eq_int_zless: "m < nat z \<longleftrightarrow> int m < z" | 
| 48045 | 660 | by transfer (clarsimp simp add: less_diff_conv) | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 661 | |
| 63652 | 662 | lemma (in ring_1) of_nat_nat [simp]: "0 \<le> z \<Longrightarrow> of_nat (nat z) = of_int z" | 
| 48066 
c6783c9b87bf
transfer method now handles transfer rules for compound terms, e.g. locale-defined constants with hidden parameters
 huffman parents: 
48045diff
changeset | 663 | by transfer (clarsimp simp add: of_nat_diff) | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 664 | |
| 63652 | 665 | lemma diff_nat_numeral [simp]: "(numeral v :: nat) - numeral v' = nat (numeral v - numeral v')" | 
| 54249 | 666 | by (simp only: nat_diff_distrib' zero_le_numeral nat_numeral) | 
| 667 | ||
| 66886 | 668 | lemma nat_abs_triangle_ineq: | 
| 669 | "nat \<bar>k + l\<bar> \<le> nat \<bar>k\<bar> + nat \<bar>l\<bar>" | |
| 670 | by (simp add: nat_add_distrib [symmetric] nat_le_eq_zle abs_triangle_ineq) | |
| 671 | ||
| 66816 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66035diff
changeset | 672 | lemma nat_of_bool [simp]: | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66035diff
changeset | 673 | "nat (of_bool P) = of_bool P" | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66035diff
changeset | 674 | by auto | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66035diff
changeset | 675 | |
| 75878 | 676 | lemma split_nat [linarith_split]: "P (nat i) \<longleftrightarrow> ((\<forall>n. i = int n \<longrightarrow> P n) \<and> (i < 0 \<longrightarrow> P 0))" | 
| 66836 | 677 | (is "?P = (?L \<and> ?R)") | 
| 678 | for i :: int | |
| 679 | proof (cases "i < 0") | |
| 680 | case True | |
| 681 | then show ?thesis | |
| 682 | by auto | |
| 683 | next | |
| 684 | case False | |
| 685 | have "?P = ?L" | |
| 686 | proof | |
| 687 | assume ?P | |
| 688 | then show ?L using False by auto | |
| 689 | next | |
| 690 | assume ?L | |
| 691 | moreover from False have "int (nat i) = i" | |
| 692 | by (simp add: not_less) | |
| 693 | ultimately show ?P | |
| 694 | by simp | |
| 695 | qed | |
| 696 | with False show ?thesis by simp | |
| 697 | qed | |
| 698 | ||
| 699 | lemma all_nat: "(\<forall>x. P x) \<longleftrightarrow> (\<forall>x\<ge>0. P (nat x))" | |
| 700 | by (auto split: split_nat) | |
| 701 | ||
| 702 | lemma ex_nat: "(\<exists>x. P x) \<longleftrightarrow> (\<exists>x. 0 \<le> x \<and> P (nat x))" | |
| 703 | proof | |
| 704 | assume "\<exists>x. P x" | |
| 705 | then obtain x where "P x" .. | |
| 706 | then have "int x \<ge> 0 \<and> P (nat (int x))" by simp | |
| 707 | then show "\<exists>x\<ge>0. P (nat x)" .. | |
| 708 | next | |
| 709 | assume "\<exists>x\<ge>0. P (nat x)" | |
| 710 | then show "\<exists>x. P x" by auto | |
| 711 | qed | |
| 712 | ||
| 54249 | 713 | |
| 60758 | 714 | text \<open>For termination proofs:\<close> | 
| 63652 | 715 | lemma measure_function_int[measure_function]: "is_measure (nat \<circ> abs)" .. | 
| 29779 | 716 | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 717 | |
| 69593 | 718 | subsection \<open>Lemmas about the Function \<^term>\<open>of_nat\<close> and Orderings\<close> | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 719 | |
| 61076 | 720 | lemma negative_zless_0: "- (int (Suc n)) < (0 :: int)" | 
| 63652 | 721 | by (simp add: order_less_le del: of_nat_Suc) | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 722 | |
| 44709 | 723 | lemma negative_zless [iff]: "- (int (Suc n)) < int m" | 
| 63652 | 724 | by (rule negative_zless_0 [THEN order_less_le_trans], simp) | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 725 | |
| 44709 | 726 | lemma negative_zle_0: "- int n \<le> 0" | 
| 63652 | 727 | by (simp add: minus_le_iff) | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 728 | |
| 44709 | 729 | lemma negative_zle [iff]: "- int n \<le> int m" | 
| 63652 | 730 | by (rule order_trans [OF negative_zle_0 of_nat_0_le_iff]) | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 731 | |
| 63652 | 732 | lemma not_zle_0_negative [simp]: "\<not> 0 \<le> - int (Suc n)" | 
| 733 | by (subst le_minus_iff) (simp del: of_nat_Suc) | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 734 | |
| 63652 | 735 | lemma int_zle_neg: "int n \<le> - int m \<longleftrightarrow> n = 0 \<and> m = 0" | 
| 48045 | 736 | by transfer simp | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 737 | |
| 63652 | 738 | lemma not_int_zless_negative [simp]: "\<not> int n < - int m" | 
| 739 | by (simp add: linorder_not_less) | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 740 | |
| 63652 | 741 | lemma negative_eq_positive [simp]: "- int n = of_nat m \<longleftrightarrow> n = 0 \<and> m = 0" | 
| 742 | by (force simp add: order_eq_iff [of "- of_nat n"] int_zle_neg) | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 743 | |
| 63652 | 744 | lemma zle_iff_zadd: "w \<le> z \<longleftrightarrow> (\<exists>n. z = w + int n)" | 
| 745 | (is "?lhs \<longleftrightarrow> ?rhs") | |
| 62348 | 746 | proof | 
| 63652 | 747 | assume ?rhs | 
| 748 | then show ?lhs by auto | |
| 62348 | 749 | next | 
| 63652 | 750 | assume ?lhs | 
| 62348 | 751 | then have "0 \<le> z - w" by simp | 
| 752 | then obtain n where "z - w = int n" | |
| 753 | using zero_le_imp_eq_int [of "z - w"] by blast | |
| 63652 | 754 | then have "z = w + int n" by simp | 
| 755 | then show ?rhs .. | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 756 | qed | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 757 | |
| 44709 | 758 | lemma zadd_int_left: "int m + (int n + z) = int (m + n) + z" | 
| 63652 | 759 | by simp | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 760 | |
| 71616 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 761 | lemma negD: | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 762 | assumes "x < 0" shows "\<exists>n. x = - (int (Suc n))" | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 763 | proof - | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 764 | have "\<And>a b. a < b \<Longrightarrow> \<exists>n. Suc (a + n) = b" | 
| 75669 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
74979diff
changeset | 765 | proof - | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
74979diff
changeset | 766 | fix a b:: nat | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
74979diff
changeset | 767 | assume "a < b" | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
74979diff
changeset | 768 | then have "Suc (a + (b - Suc a)) = b" | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
74979diff
changeset | 769 | by arith | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
74979diff
changeset | 770 | then show "\<exists>n. Suc (a + n) = b" | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
74979diff
changeset | 771 | by (rule exI) | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
74979diff
changeset | 772 | qed | 
| 71616 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 773 | with assms show ?thesis | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 774 | by transfer auto | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 775 | qed | 
| 63652 | 776 | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 777 | |
| 60758 | 778 | subsection \<open>Cases and induction\<close> | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 779 | |
| 63652 | 780 | text \<open> | 
| 781 | Now we replace the case analysis rule by a more conventional one: | |
| 782 | whether an integer is negative or not. | |
| 783 | \<close> | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 784 | |
| 63652 | 785 | text \<open>This version is symmetric in the two subgoals.\<close> | 
| 786 | lemma int_cases2 [case_names nonneg nonpos, cases type: int]: | |
| 787 | "(\<And>n. z = int n \<Longrightarrow> P) \<Longrightarrow> (\<And>n. z = - (int n) \<Longrightarrow> P) \<Longrightarrow> P" | |
| 788 | by (cases "z < 0") (auto simp add: linorder_not_less dest!: negD nat_0_le [THEN sym]) | |
| 59613 
7103019278f0
The function frac. Various lemmas about limits, series, the exp function, etc.
 paulson <lp15@cam.ac.uk> parents: 
59582diff
changeset | 789 | |
| 63652 | 790 | text \<open>This is the default, with a negative case.\<close> | 
| 791 | lemma int_cases [case_names nonneg neg, cases type: int]: | |
| 71616 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 792 | assumes pos: "\<And>n. z = int n \<Longrightarrow> P" and neg: "\<And>n. z = - (int (Suc n)) \<Longrightarrow> P" | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 793 | shows P | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 794 | proof (cases "z < 0") | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 795 | case True | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 796 | with neg show ?thesis | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 797 | by (blast dest!: negD) | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 798 | next | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 799 | case False | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 800 | with pos show ?thesis | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 801 | by (force simp add: linorder_not_less dest: nat_0_le [THEN sym]) | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 802 | qed | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 803 | |
| 60868 
dd18c33c001e
direct bootstrap of integer division from natural division
 haftmann parents: 
60758diff
changeset | 804 | lemma int_cases3 [case_names zero pos neg]: | 
| 
dd18c33c001e
direct bootstrap of integer division from natural division
 haftmann parents: 
60758diff
changeset | 805 | fixes k :: int | 
| 
dd18c33c001e
direct bootstrap of integer division from natural division
 haftmann parents: 
60758diff
changeset | 806 | assumes "k = 0 \<Longrightarrow> P" and "\<And>n. k = int n \<Longrightarrow> n > 0 \<Longrightarrow> P" | 
| 61204 | 807 | and "\<And>n. k = - int n \<Longrightarrow> n > 0 \<Longrightarrow> P" | 
| 60868 
dd18c33c001e
direct bootstrap of integer division from natural division
 haftmann parents: 
60758diff
changeset | 808 | shows "P" | 
| 
dd18c33c001e
direct bootstrap of integer division from natural division
 haftmann parents: 
60758diff
changeset | 809 | proof (cases k "0::int" rule: linorder_cases) | 
| 63652 | 810 | case equal | 
| 811 | with assms(1) show P by simp | |
| 60868 
dd18c33c001e
direct bootstrap of integer division from natural division
 haftmann parents: 
60758diff
changeset | 812 | next | 
| 
dd18c33c001e
direct bootstrap of integer division from natural division
 haftmann parents: 
60758diff
changeset | 813 | case greater | 
| 63539 | 814 | then have *: "nat k > 0" by simp | 
| 815 | moreover from * have "k = int (nat k)" by auto | |
| 60868 
dd18c33c001e
direct bootstrap of integer division from natural division
 haftmann parents: 
60758diff
changeset | 816 | ultimately show P using assms(2) by blast | 
| 
dd18c33c001e
direct bootstrap of integer division from natural division
 haftmann parents: 
60758diff
changeset | 817 | next | 
| 
dd18c33c001e
direct bootstrap of integer division from natural division
 haftmann parents: 
60758diff
changeset | 818 | case less | 
| 63539 | 819 | then have *: "nat (- k) > 0" by simp | 
| 820 | moreover from * have "k = - int (nat (- k))" by auto | |
| 60868 
dd18c33c001e
direct bootstrap of integer division from natural division
 haftmann parents: 
60758diff
changeset | 821 | ultimately show P using assms(3) by blast | 
| 
dd18c33c001e
direct bootstrap of integer division from natural division
 haftmann parents: 
60758diff
changeset | 822 | qed | 
| 
dd18c33c001e
direct bootstrap of integer division from natural division
 haftmann parents: 
60758diff
changeset | 823 | |
| 63652 | 824 | lemma int_of_nat_induct [case_names nonneg neg, induct type: int]: | 
| 825 | "(\<And>n. P (int n)) \<Longrightarrow> (\<And>n. P (- (int (Suc n)))) \<Longrightarrow> P z" | |
| 42676 
8724f20bf69c
proper case_names for int_cases, int_of_nat_induct;
 wenzelm parents: 
42411diff
changeset | 826 | by (cases z) auto | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 827 | |
| 66816 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66035diff
changeset | 828 | lemma sgn_mult_dvd_iff [simp]: | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66035diff
changeset | 829 | "sgn r * l dvd k \<longleftrightarrow> l dvd k \<and> (r = 0 \<longrightarrow> k = 0)" for k l r :: int | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66035diff
changeset | 830 | by (cases r rule: int_cases3) auto | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66035diff
changeset | 831 | |
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66035diff
changeset | 832 | lemma mult_sgn_dvd_iff [simp]: | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66035diff
changeset | 833 | "l * sgn r dvd k \<longleftrightarrow> l dvd k \<and> (r = 0 \<longrightarrow> k = 0)" for k l r :: int | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66035diff
changeset | 834 | using sgn_mult_dvd_iff [of r l k] by (simp add: ac_simps) | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66035diff
changeset | 835 | |
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66035diff
changeset | 836 | lemma dvd_sgn_mult_iff [simp]: | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66035diff
changeset | 837 | "l dvd sgn r * k \<longleftrightarrow> l dvd k \<or> r = 0" for k l r :: int | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66035diff
changeset | 838 | by (cases r rule: int_cases3) simp_all | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66035diff
changeset | 839 | |
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66035diff
changeset | 840 | lemma dvd_mult_sgn_iff [simp]: | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66035diff
changeset | 841 | "l dvd k * sgn r \<longleftrightarrow> l dvd k \<or> r = 0" for k l r :: int | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66035diff
changeset | 842 | using dvd_sgn_mult_iff [of l r k] by (simp add: ac_simps) | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66035diff
changeset | 843 | |
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66035diff
changeset | 844 | lemma int_sgnE: | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66035diff
changeset | 845 | fixes k :: int | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66035diff
changeset | 846 | obtains n and l where "k = sgn l * int n" | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66035diff
changeset | 847 | proof - | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66035diff
changeset | 848 | have "k = sgn k * int (nat \<bar>k\<bar>)" | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66035diff
changeset | 849 | by (simp add: sgn_mult_abs) | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66035diff
changeset | 850 | then show ?thesis .. | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66035diff
changeset | 851 | qed | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66035diff
changeset | 852 | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 853 | |
| 60758 | 854 | subsubsection \<open>Binary comparisons\<close> | 
| 28958 | 855 | |
| 60758 | 856 | text \<open>Preliminaries\<close> | 
| 28958 | 857 | |
| 60162 | 858 | lemma le_imp_0_less: | 
| 63652 | 859 | fixes z :: int | 
| 28958 | 860 | assumes le: "0 \<le> z" | 
| 63652 | 861 | shows "0 < 1 + z" | 
| 28958 | 862 | proof - | 
| 863 | have "0 \<le> z" by fact | |
| 63652 | 864 | also have "\<dots> < z + 1" by (rule less_add_one) | 
| 865 | also have "\<dots> = 1 + z" by (simp add: ac_simps) | |
| 28958 | 866 | finally show "0 < 1 + z" . | 
| 867 | qed | |
| 868 | ||
| 63652 | 869 | lemma odd_less_0_iff: "1 + z + z < 0 \<longleftrightarrow> z < 0" | 
| 870 | for z :: int | |
| 42676 
8724f20bf69c
proper case_names for int_cases, int_of_nat_induct;
 wenzelm parents: 
42411diff
changeset | 871 | proof (cases z) | 
| 28958 | 872 | case (nonneg n) | 
| 63652 | 873 | then show ?thesis | 
| 874 | by (simp add: linorder_not_less add.assoc add_increasing le_imp_0_less [THEN order_less_imp_le]) | |
| 28958 | 875 | next | 
| 876 | case (neg n) | |
| 63652 | 877 | then show ?thesis | 
| 878 | by (simp del: of_nat_Suc of_nat_add of_nat_1 | |
| 879 | add: algebra_simps of_nat_1 [where 'a=int, symmetric] of_nat_add [symmetric]) | |
| 28958 | 880 | qed | 
| 881 | ||
| 63652 | 882 | |
| 60758 | 883 | subsubsection \<open>Comparisons, for Ordered Rings\<close> | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 884 | |
| 63652 | 885 | lemma odd_nonzero: "1 + z + z \<noteq> 0" | 
| 886 | for z :: int | |
| 42676 
8724f20bf69c
proper case_names for int_cases, int_of_nat_induct;
 wenzelm parents: 
42411diff
changeset | 887 | proof (cases z) | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 888 | case (nonneg n) | 
| 63652 | 889 | have le: "0 \<le> z + z" | 
| 890 | by (simp add: nonneg add_increasing) | |
| 891 | then show ?thesis | |
| 67116 | 892 | using le_imp_0_less [OF le] by (auto simp: ac_simps) | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 893 | next | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 894 | case (neg n) | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 895 | show ?thesis | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 896 | proof | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 897 | assume eq: "1 + z + z = 0" | 
| 63652 | 898 | have "0 < 1 + (int n + int n)" | 
| 60162 | 899 | by (simp add: le_imp_0_less add_increasing) | 
| 63652 | 900 | also have "\<dots> = - (1 + z + z)" | 
| 60162 | 901 | by (simp add: neg add.assoc [symmetric]) | 
| 63652 | 902 | also have "\<dots> = 0" by (simp add: eq) | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 903 | finally have "0<0" .. | 
| 63652 | 904 | then show False by blast | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 905 | qed | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 906 | qed | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 907 | |
| 30652 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30496diff
changeset | 908 | |
| 60758 | 909 | subsection \<open>The Set of Integers\<close> | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 910 | |
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 911 | context ring_1 | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 912 | begin | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 913 | |
| 61070 | 914 | definition Ints :: "'a set"  ("\<int>")
 | 
| 915 | where "\<int> = range of_int" | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 916 | |
| 35634 | 917 | lemma Ints_of_int [simp]: "of_int z \<in> \<int>" | 
| 918 | by (simp add: Ints_def) | |
| 919 | ||
| 920 | lemma Ints_of_nat [simp]: "of_nat n \<in> \<int>" | |
| 45533 | 921 | using Ints_of_int [of "of_nat n"] by simp | 
| 35634 | 922 | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 923 | lemma Ints_0 [simp]: "0 \<in> \<int>" | 
| 45533 | 924 | using Ints_of_int [of "0"] by simp | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 925 | |
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 926 | lemma Ints_1 [simp]: "1 \<in> \<int>" | 
| 45533 | 927 | using Ints_of_int [of "1"] by simp | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 928 | |
| 61552 
980dd46a03fb
Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
 eberlm parents: 
61531diff
changeset | 929 | lemma Ints_numeral [simp]: "numeral n \<in> \<int>" | 
| 
980dd46a03fb
Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
 eberlm parents: 
61531diff
changeset | 930 | by (subst of_nat_numeral [symmetric], rule Ints_of_nat) | 
| 
980dd46a03fb
Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
 eberlm parents: 
61531diff
changeset | 931 | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 932 | lemma Ints_add [simp]: "a \<in> \<int> \<Longrightarrow> b \<in> \<int> \<Longrightarrow> a + b \<in> \<int>" | 
| 71616 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 933 | by (force simp add: Ints_def simp flip: of_int_add intro: range_eqI) | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 934 | |
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 935 | lemma Ints_minus [simp]: "a \<in> \<int> \<Longrightarrow> -a \<in> \<int>" | 
| 71616 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 936 | by (force simp add: Ints_def simp flip: of_int_minus intro: range_eqI) | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 937 | |
| 68721 | 938 | lemma minus_in_Ints_iff: "-x \<in> \<int> \<longleftrightarrow> x \<in> \<int>" | 
| 939 | using Ints_minus[of x] Ints_minus[of "-x"] by auto | |
| 940 | ||
| 35634 | 941 | lemma Ints_diff [simp]: "a \<in> \<int> \<Longrightarrow> b \<in> \<int> \<Longrightarrow> a - b \<in> \<int>" | 
| 71616 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 942 | by (force simp add: Ints_def simp flip: of_int_diff intro: range_eqI) | 
| 35634 | 943 | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 944 | lemma Ints_mult [simp]: "a \<in> \<int> \<Longrightarrow> b \<in> \<int> \<Longrightarrow> a * b \<in> \<int>" | 
| 71616 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 945 | by (force simp add: Ints_def simp flip: of_int_mult intro: range_eqI) | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 946 | |
| 35634 | 947 | lemma Ints_power [simp]: "a \<in> \<int> \<Longrightarrow> a ^ n \<in> \<int>" | 
| 63652 | 948 | by (induct n) simp_all | 
| 35634 | 949 | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 950 | lemma Ints_cases [cases set: Ints]: | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 951 | assumes "q \<in> \<int>" | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 952 | obtains (of_int) z where "q = of_int z" | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 953 | unfolding Ints_def | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 954 | proof - | 
| 60758 | 955 | from \<open>q \<in> \<int>\<close> have "q \<in> range of_int" unfolding Ints_def . | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 956 | then obtain z where "q = of_int z" .. | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 957 | then show thesis .. | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 958 | qed | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 959 | |
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 960 | lemma Ints_induct [case_names of_int, induct set: Ints]: | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 961 | "q \<in> \<int> \<Longrightarrow> (\<And>z. P (of_int z)) \<Longrightarrow> P q" | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 962 | by (rule Ints_cases) auto | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 963 | |
| 61524 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61234diff
changeset | 964 | lemma Nats_subset_Ints: "\<nat> \<subseteq> \<int>" | 
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61234diff
changeset | 965 | unfolding Nats_def Ints_def | 
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61234diff
changeset | 966 | by (rule subsetI, elim imageE, hypsubst, subst of_int_of_nat_eq[symmetric], rule imageI) simp_all | 
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61234diff
changeset | 967 | |
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61234diff
changeset | 968 | lemma Nats_altdef1: "\<nat> = {of_int n |n. n \<ge> 0}"
 | 
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61234diff
changeset | 969 | proof (intro subsetI equalityI) | 
| 63652 | 970 | fix x :: 'a | 
| 971 |   assume "x \<in> {of_int n |n. n \<ge> 0}"
 | |
| 972 | then obtain n where "x = of_int n" "n \<ge> 0" | |
| 973 | by (auto elim!: Ints_cases) | |
| 974 | then have "x = of_nat (nat n)" | |
| 975 | by (subst of_nat_nat) simp_all | |
| 976 | then show "x \<in> \<nat>" | |
| 977 | by simp | |
| 61524 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61234diff
changeset | 978 | next | 
| 63652 | 979 | fix x :: 'a | 
| 980 | assume "x \<in> \<nat>" | |
| 981 | then obtain n where "x = of_nat n" | |
| 982 | by (auto elim!: Nats_cases) | |
| 983 | then have "x = of_int (int n)" by simp | |
| 61524 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61234diff
changeset | 984 | also have "int n \<ge> 0" by simp | 
| 63652 | 985 |   then have "of_int (int n) \<in> {of_int n |n. n \<ge> 0}" by blast
 | 
| 61524 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61234diff
changeset | 986 |   finally show "x \<in> {of_int n |n. n \<ge> 0}" .
 | 
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61234diff
changeset | 987 | qed | 
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61234diff
changeset | 988 | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 989 | end | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 990 | |
| 73109 
783406dd051e
some algebra material for HOL: characteristic of a ring, algebraic integers
 Manuel Eberl <eberlm@in.tum.de> parents: 
72512diff
changeset | 991 | lemma Ints_sum [intro]: "(\<And>x. x \<in> A \<Longrightarrow> f x \<in> \<int>) \<Longrightarrow> sum f A \<in> \<int>" | 
| 
783406dd051e
some algebra material for HOL: characteristic of a ring, algebraic integers
 Manuel Eberl <eberlm@in.tum.de> parents: 
72512diff
changeset | 992 | by (induction A rule: infinite_finite_induct) auto | 
| 
783406dd051e
some algebra material for HOL: characteristic of a ring, algebraic integers
 Manuel Eberl <eberlm@in.tum.de> parents: 
72512diff
changeset | 993 | |
| 
783406dd051e
some algebra material for HOL: characteristic of a ring, algebraic integers
 Manuel Eberl <eberlm@in.tum.de> parents: 
72512diff
changeset | 994 | lemma Ints_prod [intro]: "(\<And>x. x \<in> A \<Longrightarrow> f x \<in> \<int>) \<Longrightarrow> prod f A \<in> \<int>" | 
| 
783406dd051e
some algebra material for HOL: characteristic of a ring, algebraic integers
 Manuel Eberl <eberlm@in.tum.de> parents: 
72512diff
changeset | 995 | by (induction A rule: infinite_finite_induct) auto | 
| 
783406dd051e
some algebra material for HOL: characteristic of a ring, algebraic integers
 Manuel Eberl <eberlm@in.tum.de> parents: 
72512diff
changeset | 996 | |
| 64758 
3b33d2fc5fc0
A few new lemmas and needed adaptations
 paulson <lp15@cam.ac.uk> parents: 
64714diff
changeset | 997 | lemma (in linordered_idom) Ints_abs [simp]: | 
| 
3b33d2fc5fc0
A few new lemmas and needed adaptations
 paulson <lp15@cam.ac.uk> parents: 
64714diff
changeset | 998 | shows "a \<in> \<int> \<Longrightarrow> abs a \<in> \<int>" | 
| 
3b33d2fc5fc0
A few new lemmas and needed adaptations
 paulson <lp15@cam.ac.uk> parents: 
64714diff
changeset | 999 | by (auto simp: abs_if) | 
| 
3b33d2fc5fc0
A few new lemmas and needed adaptations
 paulson <lp15@cam.ac.uk> parents: 
64714diff
changeset | 1000 | |
| 61524 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61234diff
changeset | 1001 | lemma (in linordered_idom) Nats_altdef2: "\<nat> = {n \<in> \<int>. n \<ge> 0}"
 | 
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61234diff
changeset | 1002 | proof (intro subsetI equalityI) | 
| 63652 | 1003 | fix x :: 'a | 
| 1004 |   assume "x \<in> {n \<in> \<int>. n \<ge> 0}"
 | |
| 1005 | then obtain n where "x = of_int n" "n \<ge> 0" | |
| 1006 | by (auto elim!: Ints_cases) | |
| 1007 | then have "x = of_nat (nat n)" | |
| 1008 | by (subst of_nat_nat) simp_all | |
| 1009 | then show "x \<in> \<nat>" | |
| 1010 | by simp | |
| 61524 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61234diff
changeset | 1011 | qed (auto elim!: Nats_cases) | 
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61234diff
changeset | 1012 | |
| 64849 | 1013 | lemma (in idom_divide) of_int_divide_in_Ints: | 
| 1014 | "of_int a div of_int b \<in> \<int>" if "b dvd a" | |
| 1015 | proof - | |
| 1016 | from that obtain c where "a = b * c" .. | |
| 1017 | then show ?thesis | |
| 1018 | by (cases "of_int b = 0") simp_all | |
| 1019 | qed | |
| 61524 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61234diff
changeset | 1020 | |
| 69593 | 1021 | text \<open>The premise involving \<^term>\<open>Ints\<close> prevents \<^term>\<open>a = 1/2\<close>.\<close> | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1022 | |
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1023 | lemma Ints_double_eq_0_iff: | 
| 63652 | 1024 | fixes a :: "'a::ring_char_0" | 
| 61070 | 1025 | assumes in_Ints: "a \<in> \<int>" | 
| 63652 | 1026 | shows "a + a = 0 \<longleftrightarrow> a = 0" | 
| 1027 | (is "?lhs \<longleftrightarrow> ?rhs") | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1028 | proof - | 
| 63652 | 1029 | from in_Ints have "a \<in> range of_int" | 
| 1030 | unfolding Ints_def [symmetric] . | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1031 | then obtain z where a: "a = of_int z" .. | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1032 | show ?thesis | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1033 | proof | 
| 63652 | 1034 | assume ?rhs | 
| 1035 | then show ?lhs by simp | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1036 | next | 
| 63652 | 1037 | assume ?lhs | 
| 1038 | with a have "of_int (z + z) = (of_int 0 :: 'a)" by simp | |
| 1039 | then have "z + z = 0" by (simp only: of_int_eq_iff) | |
| 67116 | 1040 | then have "z = 0" by (simp only: double_zero) | 
| 63652 | 1041 | with a show ?rhs by simp | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1042 | qed | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1043 | qed | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1044 | |
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1045 | lemma Ints_odd_nonzero: | 
| 63652 | 1046 | fixes a :: "'a::ring_char_0" | 
| 61070 | 1047 | assumes in_Ints: "a \<in> \<int>" | 
| 63652 | 1048 | shows "1 + a + a \<noteq> 0" | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1049 | proof - | 
| 63652 | 1050 | from in_Ints have "a \<in> range of_int" | 
| 1051 | unfolding Ints_def [symmetric] . | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1052 | then obtain z where a: "a = of_int z" .. | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1053 | show ?thesis | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1054 | proof | 
| 63652 | 1055 | assume "1 + a + a = 0" | 
| 1056 | with a have "of_int (1 + z + z) = (of_int 0 :: 'a)" by simp | |
| 1057 | then have "1 + z + z = 0" by (simp only: of_int_eq_iff) | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1058 | with odd_nonzero show False by blast | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1059 | qed | 
| 60162 | 1060 | qed | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1061 | |
| 61070 | 1062 | lemma Nats_numeral [simp]: "numeral w \<in> \<nat>" | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 1063 | using of_nat_in_Nats [of "numeral w"] by simp | 
| 35634 | 1064 | |
| 60162 | 1065 | lemma Ints_odd_less_0: | 
| 63652 | 1066 | fixes a :: "'a::linordered_idom" | 
| 61070 | 1067 | assumes in_Ints: "a \<in> \<int>" | 
| 63652 | 1068 | shows "1 + a + a < 0 \<longleftrightarrow> a < 0" | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1069 | proof - | 
| 63652 | 1070 | from in_Ints have "a \<in> range of_int" | 
| 1071 | unfolding Ints_def [symmetric] . | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1072 | then obtain z where a: "a = of_int z" .. | 
| 63652 | 1073 | with a have "1 + a + a < 0 \<longleftrightarrow> of_int (1 + z + z) < (of_int 0 :: 'a)" | 
| 1074 | by simp | |
| 1075 | also have "\<dots> \<longleftrightarrow> z < 0" | |
| 1076 | by (simp only: of_int_less_iff odd_less_0_iff) | |
| 1077 | also have "\<dots> \<longleftrightarrow> a < 0" | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1078 | by (simp add: a) | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1079 | finally show ?thesis . | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1080 | qed | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1081 | |
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1082 | |
| 69593 | 1083 | subsection \<open>\<^term>\<open>sum\<close> and \<^term>\<open>prod\<close>\<close> | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1084 | |
| 69182 | 1085 | context semiring_1 | 
| 1086 | begin | |
| 1087 | ||
| 1088 | lemma of_nat_sum [simp]: | |
| 1089 | "of_nat (sum f A) = (\<Sum>x\<in>A. of_nat (f x))" | |
| 1090 | by (induction A rule: infinite_finite_induct) auto | |
| 1091 | ||
| 1092 | end | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1093 | |
| 69182 | 1094 | context ring_1 | 
| 1095 | begin | |
| 1096 | ||
| 1097 | lemma of_int_sum [simp]: | |
| 1098 | "of_int (sum f A) = (\<Sum>x\<in>A. of_int (f x))" | |
| 1099 | by (induction A rule: infinite_finite_induct) auto | |
| 1100 | ||
| 1101 | end | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1102 | |
| 69182 | 1103 | context comm_semiring_1 | 
| 1104 | begin | |
| 1105 | ||
| 1106 | lemma of_nat_prod [simp]: | |
| 1107 | "of_nat (prod f A) = (\<Prod>x\<in>A. of_nat (f x))" | |
| 1108 | by (induction A rule: infinite_finite_induct) auto | |
| 1109 | ||
| 1110 | end | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1111 | |
| 69182 | 1112 | context comm_ring_1 | 
| 1113 | begin | |
| 1114 | ||
| 1115 | lemma of_int_prod [simp]: | |
| 1116 | "of_int (prod f A) = (\<Prod>x\<in>A. of_int (f x))" | |
| 1117 | by (induction A rule: infinite_finite_induct) auto | |
| 1118 | ||
| 1119 | end | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1120 | |
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1121 | |
| 60758 | 1122 | subsection \<open>Setting up simplification procedures\<close> | 
| 30802 | 1123 | |
| 70356 
4a327c061870
streamlined setup for linear algebra, particularly removed redundant rule declarations
 haftmann parents: 
70354diff
changeset | 1124 | ML_file \<open>Tools/int_arith.ML\<close> | 
| 54249 | 1125 | |
| 70356 
4a327c061870
streamlined setup for linear algebra, particularly removed redundant rule declarations
 haftmann parents: 
70354diff
changeset | 1126 | declaration \<open>K ( | 
| 
4a327c061870
streamlined setup for linear algebra, particularly removed redundant rule declarations
 haftmann parents: 
70354diff
changeset | 1127 | Lin_Arith.add_discrete_type \<^type_name>\<open>Int.int\<close> | 
| 
4a327c061870
streamlined setup for linear algebra, particularly removed redundant rule declarations
 haftmann parents: 
70354diff
changeset | 1128 |   #> Lin_Arith.add_lessD @{thm zless_imp_add1_zle}
 | 
| 
4a327c061870
streamlined setup for linear algebra, particularly removed redundant rule declarations
 haftmann parents: 
70354diff
changeset | 1129 |   #> Lin_Arith.add_inj_thms @{thms of_nat_le_iff [THEN iffD2] of_nat_eq_iff [THEN iffD2]}
 | 
| 
4a327c061870
streamlined setup for linear algebra, particularly removed redundant rule declarations
 haftmann parents: 
70354diff
changeset | 1130 | #> Lin_Arith.add_inj_const (\<^const_name>\<open>of_nat\<close>, \<^typ>\<open>nat \<Rightarrow> int\<close>) | 
| 
4a327c061870
streamlined setup for linear algebra, particularly removed redundant rule declarations
 haftmann parents: 
70354diff
changeset | 1131 | #> Lin_Arith.add_simps | 
| 
4a327c061870
streamlined setup for linear algebra, particularly removed redundant rule declarations
 haftmann parents: 
70354diff
changeset | 1132 |       @{thms of_int_0 of_int_1 of_int_add of_int_mult of_int_numeral of_int_neg_numeral nat_0 nat_1 diff_nat_numeral nat_numeral
 | 
| 
4a327c061870
streamlined setup for linear algebra, particularly removed redundant rule declarations
 haftmann parents: 
70354diff
changeset | 1133 | neg_less_iff_less | 
| 
4a327c061870
streamlined setup for linear algebra, particularly removed redundant rule declarations
 haftmann parents: 
70354diff
changeset | 1134 | True_implies_equals | 
| 
4a327c061870
streamlined setup for linear algebra, particularly removed redundant rule declarations
 haftmann parents: 
70354diff
changeset | 1135 | distrib_left [where a = "numeral v" for v] | 
| 
4a327c061870
streamlined setup for linear algebra, particularly removed redundant rule declarations
 haftmann parents: 
70354diff
changeset | 1136 | distrib_left [where a = "- numeral v" for v] | 
| 
4a327c061870
streamlined setup for linear algebra, particularly removed redundant rule declarations
 haftmann parents: 
70354diff
changeset | 1137 | div_by_1 div_0 | 
| 
4a327c061870
streamlined setup for linear algebra, particularly removed redundant rule declarations
 haftmann parents: 
70354diff
changeset | 1138 | times_divide_eq_right times_divide_eq_left | 
| 
4a327c061870
streamlined setup for linear algebra, particularly removed redundant rule declarations
 haftmann parents: 
70354diff
changeset | 1139 | minus_divide_left [THEN sym] minus_divide_right [THEN sym] | 
| 
4a327c061870
streamlined setup for linear algebra, particularly removed redundant rule declarations
 haftmann parents: 
70354diff
changeset | 1140 | add_divide_distrib diff_divide_distrib | 
| 
4a327c061870
streamlined setup for linear algebra, particularly removed redundant rule declarations
 haftmann parents: 
70354diff
changeset | 1141 | of_int_minus of_int_diff | 
| 
4a327c061870
streamlined setup for linear algebra, particularly removed redundant rule declarations
 haftmann parents: 
70354diff
changeset | 1142 | of_int_of_nat_eq} | 
| 
4a327c061870
streamlined setup for linear algebra, particularly removed redundant rule declarations
 haftmann parents: 
70354diff
changeset | 1143 | #> Lin_Arith.add_simprocs [Int_Arith.zero_one_idom_simproc] | 
| 
4a327c061870
streamlined setup for linear algebra, particularly removed redundant rule declarations
 haftmann parents: 
70354diff
changeset | 1144 | )\<close> | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1145 | |
| 63652 | 1146 | simproc_setup fast_arith | 
| 1147 |   ("(m::'a::linordered_idom) < n" |
 | |
| 1148 | "(m::'a::linordered_idom) \<le> n" | | |
| 1149 | "(m::'a::linordered_idom) = n") = | |
| 61144 | 1150 | \<open>K Lin_Arith.simproc\<close> | 
| 43595 | 1151 | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1152 | |
| 60758 | 1153 | subsection\<open>More Inequality Reasoning\<close> | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1154 | |
| 63652 | 1155 | lemma zless_add1_eq: "w < z + 1 \<longleftrightarrow> w < z \<or> w = z" | 
| 1156 | for w z :: int | |
| 1157 | by arith | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1158 | |
| 63652 | 1159 | lemma add1_zle_eq: "w + 1 \<le> z \<longleftrightarrow> w < z" | 
| 1160 | for w z :: int | |
| 1161 | by arith | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1162 | |
| 63652 | 1163 | lemma zle_diff1_eq [simp]: "w \<le> z - 1 \<longleftrightarrow> w < z" | 
| 1164 | for w z :: int | |
| 1165 | by arith | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1166 | |
| 63652 | 1167 | lemma zle_add1_eq_le [simp]: "w < z + 1 \<longleftrightarrow> w \<le> z" | 
| 1168 | for w z :: int | |
| 1169 | by arith | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1170 | |
| 63652 | 1171 | lemma int_one_le_iff_zero_less: "1 \<le> z \<longleftrightarrow> 0 < z" | 
| 1172 | for z :: int | |
| 1173 | by arith | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1174 | |
| 64758 
3b33d2fc5fc0
A few new lemmas and needed adaptations
 paulson <lp15@cam.ac.uk> parents: 
64714diff
changeset | 1175 | lemma Ints_nonzero_abs_ge1: | 
| 
3b33d2fc5fc0
A few new lemmas and needed adaptations
 paulson <lp15@cam.ac.uk> parents: 
64714diff
changeset | 1176 | fixes x:: "'a :: linordered_idom" | 
| 
3b33d2fc5fc0
A few new lemmas and needed adaptations
 paulson <lp15@cam.ac.uk> parents: 
64714diff
changeset | 1177 | assumes "x \<in> Ints" "x \<noteq> 0" | 
| 
3b33d2fc5fc0
A few new lemmas and needed adaptations
 paulson <lp15@cam.ac.uk> parents: 
64714diff
changeset | 1178 | shows "1 \<le> abs x" | 
| 
3b33d2fc5fc0
A few new lemmas and needed adaptations
 paulson <lp15@cam.ac.uk> parents: 
64714diff
changeset | 1179 | proof (rule Ints_cases [OF \<open>x \<in> Ints\<close>]) | 
| 
3b33d2fc5fc0
A few new lemmas and needed adaptations
 paulson <lp15@cam.ac.uk> parents: 
64714diff
changeset | 1180 | fix z::int | 
| 
3b33d2fc5fc0
A few new lemmas and needed adaptations
 paulson <lp15@cam.ac.uk> parents: 
64714diff
changeset | 1181 | assume "x = of_int z" | 
| 75669 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
74979diff
changeset | 1182 | with \<open>x \<noteq> 0\<close> | 
| 64758 
3b33d2fc5fc0
A few new lemmas and needed adaptations
 paulson <lp15@cam.ac.uk> parents: 
64714diff
changeset | 1183 | show "1 \<le> \<bar>x\<bar>" | 
| 75669 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
74979diff
changeset | 1184 | apply (auto simp: abs_if) | 
| 64758 
3b33d2fc5fc0
A few new lemmas and needed adaptations
 paulson <lp15@cam.ac.uk> parents: 
64714diff
changeset | 1185 | by (metis diff_0 of_int_1 of_int_le_iff of_int_minus zle_diff1_eq) | 
| 
3b33d2fc5fc0
A few new lemmas and needed adaptations
 paulson <lp15@cam.ac.uk> parents: 
64714diff
changeset | 1186 | qed | 
| 
3b33d2fc5fc0
A few new lemmas and needed adaptations
 paulson <lp15@cam.ac.uk> parents: 
64714diff
changeset | 1187 | |
| 
3b33d2fc5fc0
A few new lemmas and needed adaptations
 paulson <lp15@cam.ac.uk> parents: 
64714diff
changeset | 1188 | lemma Ints_nonzero_abs_less1: | 
| 
3b33d2fc5fc0
A few new lemmas and needed adaptations
 paulson <lp15@cam.ac.uk> parents: 
64714diff
changeset | 1189 | fixes x:: "'a :: linordered_idom" | 
| 
3b33d2fc5fc0
A few new lemmas and needed adaptations
 paulson <lp15@cam.ac.uk> parents: 
64714diff
changeset | 1190 | shows "\<lbrakk>x \<in> Ints; abs x < 1\<rbrakk> \<Longrightarrow> x = 0" | 
| 
3b33d2fc5fc0
A few new lemmas and needed adaptations
 paulson <lp15@cam.ac.uk> parents: 
64714diff
changeset | 1191 | using Ints_nonzero_abs_ge1 [of x] by auto | 
| 70365 
4df0628e8545
a few new lemmas and a bit of tidying
 paulson <lp15@cam.ac.uk> parents: 
70356diff
changeset | 1192 | |
| 
4df0628e8545
a few new lemmas and a bit of tidying
 paulson <lp15@cam.ac.uk> parents: 
70356diff
changeset | 1193 | lemma Ints_eq_abs_less1: | 
| 
4df0628e8545
a few new lemmas and a bit of tidying
 paulson <lp15@cam.ac.uk> parents: 
70356diff
changeset | 1194 | fixes x:: "'a :: linordered_idom" | 
| 
4df0628e8545
a few new lemmas and a bit of tidying
 paulson <lp15@cam.ac.uk> parents: 
70356diff
changeset | 1195 | shows "\<lbrakk>x \<in> Ints; y \<in> Ints\<rbrakk> \<Longrightarrow> x = y \<longleftrightarrow> abs (x-y) < 1" | 
| 
4df0628e8545
a few new lemmas and a bit of tidying
 paulson <lp15@cam.ac.uk> parents: 
70356diff
changeset | 1196 | using eq_iff_diff_eq_0 by (fastforce intro: Ints_nonzero_abs_less1) | 
| 
4df0628e8545
a few new lemmas and a bit of tidying
 paulson <lp15@cam.ac.uk> parents: 
70356diff
changeset | 1197 | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1198 | |
| 69593 | 1199 | subsection \<open>The functions \<^term>\<open>nat\<close> and \<^term>\<open>int\<close>\<close> | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1200 | |
| 69593 | 1201 | text \<open>Simplify the term \<^term>\<open>w + - z\<close>.\<close> | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1202 | |
| 63652 | 1203 | lemma one_less_nat_eq [simp]: "Suc 0 < nat z \<longleftrightarrow> 1 < z" | 
| 60162 | 1204 | using zless_nat_conj [of 1 z] by auto | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1205 | |
| 67116 | 1206 | lemma int_eq_iff_numeral [simp]: | 
| 1207 | "int m = numeral v \<longleftrightarrow> m = numeral v" | |
| 1208 | by (simp add: int_eq_iff) | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1209 | |
| 67116 | 1210 | lemma nat_abs_int_diff: | 
| 1211 | "nat \<bar>int a - int b\<bar> = (if a \<le> b then b - a else a - b)" | |
| 59000 | 1212 | by auto | 
| 1213 | ||
| 1214 | lemma nat_int_add: "nat (int a + int b) = a + b" | |
| 1215 | by auto | |
| 1216 | ||
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1217 | context ring_1 | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1218 | begin | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1219 | |
| 33056 
791a4655cae3
renamed "nitpick_const_xxx" attributes to "nitpick_xxx" and "nitpick_ind_intros" to "nitpick_intros"
 blanchet parents: 
32437diff
changeset | 1220 | lemma of_int_of_nat [nitpick_simp]: | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1221 | "of_int k = (if k < 0 then - of_nat (nat (- k)) else of_nat (nat k))" | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1222 | proof (cases "k < 0") | 
| 63652 | 1223 | case True | 
| 1224 | then have "0 \<le> - k" by simp | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1225 | then have "of_nat (nat (- k)) = of_int (- k)" by (rule of_nat_nat) | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1226 | with True show ?thesis by simp | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1227 | next | 
| 63652 | 1228 | case False | 
| 1229 | then show ?thesis by (simp add: not_less) | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1230 | qed | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1231 | |
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1232 | end | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1233 | |
| 64014 | 1234 | lemma transfer_rule_of_int: | 
| 70927 | 1235 | includes lifting_syntax | 
| 64014 | 1236 | fixes R :: "'a::ring_1 \<Rightarrow> 'b::ring_1 \<Rightarrow> bool" | 
| 1237 | assumes [transfer_rule]: "R 0 0" "R 1 1" | |
| 70927 | 1238 | "(R ===> R ===> R) (+) (+)" | 
| 1239 | "(R ===> R) uminus uminus" | |
| 1240 | shows "((=) ===> R) of_int of_int" | |
| 64014 | 1241 | proof - | 
| 70927 | 1242 | note assms | 
| 64014 | 1243 | note transfer_rule_of_nat [transfer_rule] | 
| 70927 | 1244 | have [transfer_rule]: "((=) ===> R) of_nat of_nat" | 
| 64014 | 1245 | by transfer_prover | 
| 1246 | show ?thesis | |
| 1247 | by (unfold of_int_of_nat [abs_def]) transfer_prover | |
| 1248 | qed | |
| 1249 | ||
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1250 | lemma nat_mult_distrib: | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1251 | fixes z z' :: int | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1252 | assumes "0 \<le> z" | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1253 | shows "nat (z * z') = nat z * nat z'" | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1254 | proof (cases "0 \<le> z'") | 
| 63652 | 1255 | case False | 
| 1256 | with assms have "z * z' \<le> 0" | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1257 | by (simp add: not_le mult_le_0_iff) | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1258 | then have "nat (z * z') = 0" by simp | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1259 | moreover from False have "nat z' = 0" by simp | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1260 | ultimately show ?thesis by simp | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1261 | next | 
| 63652 | 1262 | case True | 
| 1263 | with assms have ge_0: "z * z' \<ge> 0" by (simp add: zero_le_mult_iff) | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1264 | show ?thesis | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1265 | by (rule injD [of "of_nat :: nat \<Rightarrow> int", OF inj_of_nat]) | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1266 | (simp only: of_nat_mult of_nat_nat [OF True] | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1267 | of_nat_nat [OF assms] of_nat_nat [OF ge_0], simp) | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1268 | qed | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1269 | |
| 71616 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1270 | lemma nat_mult_distrib_neg: | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1271 | assumes "z \<le> (0::int)" shows "nat (z * z') = nat (- z) * nat (- z')" (is "?L = ?R") | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1272 | proof - | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1273 | have "?L = nat (- z * - z')" | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1274 | using assms by auto | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1275 | also have "... = ?R" | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1276 | by (rule nat_mult_distrib) (use assms in auto) | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1277 | finally show ?thesis . | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1278 | qed | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1279 | |
| 61944 | 1280 | lemma nat_abs_mult_distrib: "nat \<bar>w * z\<bar> = nat \<bar>w\<bar> * nat \<bar>z\<bar>" | 
| 63652 | 1281 | by (cases "z = 0 \<or> w = 0") | 
| 1282 | (auto simp add: abs_if nat_mult_distrib [symmetric] | |
| 1283 | nat_mult_distrib_neg [symmetric] mult_less_0_iff) | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1284 | |
| 63652 | 1285 | lemma int_in_range_abs [simp]: "int n \<in> range abs" | 
| 60570 | 1286 | proof (rule range_eqI) | 
| 63652 | 1287 | show "int n = \<bar>int n\<bar>" by simp | 
| 60570 | 1288 | qed | 
| 1289 | ||
| 63652 | 1290 | lemma range_abs_Nats [simp]: "range abs = (\<nat> :: int set)" | 
| 60570 | 1291 | proof - | 
| 1292 | have "\<bar>k\<bar> \<in> \<nat>" for k :: int | |
| 1293 | by (cases k) simp_all | |
| 1294 | moreover have "k \<in> range abs" if "k \<in> \<nat>" for k :: int | |
| 1295 | using that by induct simp | |
| 1296 | ultimately show ?thesis by blast | |
| 61204 | 1297 | qed | 
| 60570 | 1298 | |
| 63652 | 1299 | lemma Suc_nat_eq_nat_zadd1: "0 \<le> z \<Longrightarrow> Suc (nat z) = nat (1 + z)" | 
| 1300 | for z :: int | |
| 1301 | by (rule sym) (simp add: nat_eq_iff) | |
| 47207 
9368aa814518
move lemmas from Nat_Numeral to Int.thy and Num.thy
 huffman parents: 
47192diff
changeset | 1302 | |
| 
9368aa814518
move lemmas from Nat_Numeral to Int.thy and Num.thy
 huffman parents: 
47192diff
changeset | 1303 | lemma diff_nat_eq_if: | 
| 63652 | 1304 | "nat z - nat z' = | 
| 1305 | (if z' < 0 then nat z | |
| 1306 | else | |
| 1307 | let d = z - z' | |
| 1308 | in if d < 0 then 0 else nat d)" | |
| 1309 | by (simp add: Let_def nat_diff_distrib [symmetric]) | |
| 47207 
9368aa814518
move lemmas from Nat_Numeral to Int.thy and Num.thy
 huffman parents: 
47192diff
changeset | 1310 | |
| 63652 | 1311 | lemma nat_numeral_diff_1 [simp]: "numeral v - (1::nat) = nat (numeral v - 1)" | 
| 47207 
9368aa814518
move lemmas from Nat_Numeral to Int.thy and Num.thy
 huffman parents: 
47192diff
changeset | 1312 | using diff_nat_numeral [of v Num.One] by simp | 
| 
9368aa814518
move lemmas from Nat_Numeral to Int.thy and Num.thy
 huffman parents: 
47192diff
changeset | 1313 | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1314 | |
| 63652 | 1315 | subsection \<open>Induction principles for int\<close> | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1316 | |
| 63652 | 1317 | text \<open>Well-founded segments of the integers.\<close> | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1318 | |
| 63652 | 1319 | definition int_ge_less_than :: "int \<Rightarrow> (int \<times> int) set" | 
| 1320 |   where "int_ge_less_than d = {(z', z). d \<le> z' \<and> z' < z}"
 | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1321 | |
| 63652 | 1322 | lemma wf_int_ge_less_than: "wf (int_ge_less_than d)" | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1323 | proof - | 
| 63652 | 1324 | have "int_ge_less_than d \<subseteq> measure (\<lambda>z. nat (z - d))" | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1325 | by (auto simp add: int_ge_less_than_def) | 
| 63652 | 1326 | then show ?thesis | 
| 60162 | 1327 | by (rule wf_subset [OF wf_measure]) | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1328 | qed | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1329 | |
| 63652 | 1330 | text \<open> | 
| 1331 | This variant looks odd, but is typical of the relations suggested | |
| 1332 | by RankFinder.\<close> | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1333 | |
| 63652 | 1334 | definition int_ge_less_than2 :: "int \<Rightarrow> (int \<times> int) set" | 
| 1335 |   where "int_ge_less_than2 d = {(z',z). d \<le> z \<and> z' < z}"
 | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1336 | |
| 63652 | 1337 | lemma wf_int_ge_less_than2: "wf (int_ge_less_than2 d)" | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1338 | proof - | 
| 63652 | 1339 | have "int_ge_less_than2 d \<subseteq> measure (\<lambda>z. nat (1 + z - d))" | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1340 | by (auto simp add: int_ge_less_than2_def) | 
| 63652 | 1341 | then show ?thesis | 
| 60162 | 1342 | by (rule wf_subset [OF wf_measure]) | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1343 | qed | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1344 | |
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1345 | (* `set:int': dummy construction *) | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1346 | theorem int_ge_induct [case_names base step, induct set: int]: | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1347 | fixes i :: int | 
| 63652 | 1348 | assumes ge: "k \<le> i" | 
| 1349 | and base: "P k" | |
| 1350 | and step: "\<And>i. k \<le> i \<Longrightarrow> P i \<Longrightarrow> P (i + 1)" | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1351 | shows "P i" | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1352 | proof - | 
| 63652 | 1353 | have "\<And>i::int. n = nat (i - k) \<Longrightarrow> k \<le> i \<Longrightarrow> P i" for n | 
| 1354 | proof (induct n) | |
| 1355 | case 0 | |
| 1356 | then have "i = k" by arith | |
| 1357 | with base show "P i" by simp | |
| 1358 | next | |
| 1359 | case (Suc n) | |
| 1360 | then have "n = nat ((i - 1) - k)" by arith | |
| 1361 | moreover have k: "k \<le> i - 1" using Suc.prems by arith | |
| 1362 | ultimately have "P (i - 1)" by (rule Suc.hyps) | |
| 1363 | from step [OF k this] show ?case by simp | |
| 1364 | qed | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1365 | with ge show ?thesis by fast | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1366 | qed | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1367 | |
| 25928 | 1368 | (* `set:int': dummy construction *) | 
| 1369 | theorem int_gr_induct [case_names base step, induct set: int]: | |
| 63652 | 1370 | fixes i k :: int | 
| 71616 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1371 | assumes "k < i" "P (k + 1)" "\<And>i. k < i \<Longrightarrow> P i \<Longrightarrow> P (i + 1)" | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1372 | shows "P i" | 
| 71616 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1373 | proof - | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1374 | have "k+1 \<le> i" | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1375 | using assms by auto | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1376 | then show ?thesis | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1377 | by (induction i rule: int_ge_induct) (auto simp: assms) | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1378 | qed | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1379 | |
| 42676 
8724f20bf69c
proper case_names for int_cases, int_of_nat_induct;
 wenzelm parents: 
42411diff
changeset | 1380 | theorem int_le_induct [consumes 1, case_names base step]: | 
| 63652 | 1381 | fixes i k :: int | 
| 1382 | assumes le: "i \<le> k" | |
| 1383 | and base: "P k" | |
| 1384 | and step: "\<And>i. i \<le> k \<Longrightarrow> P i \<Longrightarrow> P (i - 1)" | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1385 | shows "P i" | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1386 | proof - | 
| 63652 | 1387 | have "\<And>i::int. n = nat(k-i) \<Longrightarrow> i \<le> k \<Longrightarrow> P i" for n | 
| 1388 | proof (induct n) | |
| 1389 | case 0 | |
| 1390 | then have "i = k" by arith | |
| 1391 | with base show "P i" by simp | |
| 1392 | next | |
| 1393 | case (Suc n) | |
| 1394 | then have "n = nat (k - (i + 1))" by arith | |
| 1395 | moreover have k: "i + 1 \<le> k" using Suc.prems by arith | |
| 1396 | ultimately have "P (i + 1)" by (rule Suc.hyps) | |
| 1397 | from step[OF k this] show ?case by simp | |
| 1398 | qed | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1399 | with le show ?thesis by fast | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1400 | qed | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1401 | |
| 42676 
8724f20bf69c
proper case_names for int_cases, int_of_nat_induct;
 wenzelm parents: 
42411diff
changeset | 1402 | theorem int_less_induct [consumes 1, case_names base step]: | 
| 63652 | 1403 | fixes i k :: int | 
| 71616 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1404 | assumes "i < k" "P (k - 1)" "\<And>i. i < k \<Longrightarrow> P i \<Longrightarrow> P (i - 1)" | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1405 | shows "P i" | 
| 71616 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1406 | proof - | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1407 | have "i \<le> k-1" | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1408 | using assms by auto | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1409 | then show ?thesis | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1410 | by (induction i rule: int_le_induct) (auto simp: assms) | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1411 | qed | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1412 | |
| 36811 
4ab4aa5bee1c
renamed former Int.int_induct to Int.int_of_nat_induct, former Presburger.int_induct to Int.int_induct: is more conservative and more natural than the intermediate solution
 haftmann parents: 
36801diff
changeset | 1413 | theorem int_induct [case_names base step1 step2]: | 
| 36801 
3560de0fe851
moved int induction lemma to theory Int as int_bidirectional_induct
 haftmann parents: 
36749diff
changeset | 1414 | fixes k :: int | 
| 
3560de0fe851
moved int induction lemma to theory Int as int_bidirectional_induct
 haftmann parents: 
36749diff
changeset | 1415 | assumes base: "P k" | 
| 
3560de0fe851
moved int induction lemma to theory Int as int_bidirectional_induct
 haftmann parents: 
36749diff
changeset | 1416 | and step1: "\<And>i. k \<le> i \<Longrightarrow> P i \<Longrightarrow> P (i + 1)" | 
| 
3560de0fe851
moved int induction lemma to theory Int as int_bidirectional_induct
 haftmann parents: 
36749diff
changeset | 1417 | and step2: "\<And>i. k \<ge> i \<Longrightarrow> P i \<Longrightarrow> P (i - 1)" | 
| 
3560de0fe851
moved int induction lemma to theory Int as int_bidirectional_induct
 haftmann parents: 
36749diff
changeset | 1418 | shows "P i" | 
| 
3560de0fe851
moved int induction lemma to theory Int as int_bidirectional_induct
 haftmann parents: 
36749diff
changeset | 1419 | proof - | 
| 
3560de0fe851
moved int induction lemma to theory Int as int_bidirectional_induct
 haftmann parents: 
36749diff
changeset | 1420 | have "i \<le> k \<or> i \<ge> k" by arith | 
| 42676 
8724f20bf69c
proper case_names for int_cases, int_of_nat_induct;
 wenzelm parents: 
42411diff
changeset | 1421 | then show ?thesis | 
| 
8724f20bf69c
proper case_names for int_cases, int_of_nat_induct;
 wenzelm parents: 
42411diff
changeset | 1422 | proof | 
| 
8724f20bf69c
proper case_names for int_cases, int_of_nat_induct;
 wenzelm parents: 
42411diff
changeset | 1423 | assume "i \<ge> k" | 
| 63652 | 1424 | then show ?thesis | 
| 1425 | using base by (rule int_ge_induct) (fact step1) | |
| 36801 
3560de0fe851
moved int induction lemma to theory Int as int_bidirectional_induct
 haftmann parents: 
36749diff
changeset | 1426 | next | 
| 42676 
8724f20bf69c
proper case_names for int_cases, int_of_nat_induct;
 wenzelm parents: 
42411diff
changeset | 1427 | assume "i \<le> k" | 
| 63652 | 1428 | then show ?thesis | 
| 1429 | using base by (rule int_le_induct) (fact step2) | |
| 36801 
3560de0fe851
moved int induction lemma to theory Int as int_bidirectional_induct
 haftmann parents: 
36749diff
changeset | 1430 | qed | 
| 
3560de0fe851
moved int induction lemma to theory Int as int_bidirectional_induct
 haftmann parents: 
36749diff
changeset | 1431 | qed | 
| 
3560de0fe851
moved int induction lemma to theory Int as int_bidirectional_induct
 haftmann parents: 
36749diff
changeset | 1432 | |
| 63652 | 1433 | |
| 1434 | subsection \<open>Intermediate value theorems\<close> | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1435 | |
| 71616 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1436 | lemma nat_ivt_aux: | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1437 | "\<lbrakk>\<forall>i<n. \<bar>f (Suc i) - f i\<bar> \<le> 1; f 0 \<le> k; k \<le> f n\<rbrakk> \<Longrightarrow> \<exists>i \<le> n. f i = k" | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1438 | for m n :: nat and k :: int | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1439 | proof (induct n) | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1440 | case (Suc n) | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1441 | show ?case | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1442 | proof (cases "k = f (Suc n)") | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1443 | case False | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1444 | with Suc have "k \<le> f n" | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1445 | by auto | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1446 | with Suc show ?thesis | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1447 | by (auto simp add: abs_if split: if_split_asm intro: le_SucI) | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1448 | qed (use Suc in auto) | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1449 | qed auto | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1450 | |
| 67116 | 1451 | lemma nat_intermed_int_val: | 
| 71616 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1452 | fixes m n :: nat and k :: int | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1453 | assumes "\<forall>i. m \<le> i \<and> i < n \<longrightarrow> \<bar>f (Suc i) - f i\<bar> \<le> 1" "m \<le> n" "f m \<le> k" "k \<le> f n" | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1454 | shows "\<exists>i. m \<le> i \<and> i \<le> n \<and> f i = k" | 
| 67116 | 1455 | proof - | 
| 71616 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1456 | obtain i where "i \<le> n - m" "k = f (m + i)" | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1457 | using nat_ivt_aux [of "n - m" "f \<circ> plus m" k] assms by auto | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1458 | with assms show ?thesis | 
| 75669 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
74979diff
changeset | 1459 | using exI[of _ "m + i"] by auto | 
| 67116 | 1460 | qed | 
| 1461 | ||
| 1462 | lemma nat0_intermed_int_val: | |
| 1463 | "\<exists>i\<le>n. f i = k" | |
| 1464 | if "\<forall>i<n. \<bar>f (i + 1) - f i\<bar> \<le> 1" "f 0 \<le> k" "k \<le> f n" | |
| 63652 | 1465 | for n :: nat and k :: int | 
| 67116 | 1466 | using nat_intermed_int_val [of 0 n f k] that by auto | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1467 | |
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1468 | |
| 63652 | 1469 | subsection \<open>Products and 1, by T. M. Rasmussen\<close> | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1470 | |
| 34055 | 1471 | lemma abs_zmult_eq_1: | 
| 63652 | 1472 | fixes m n :: int | 
| 34055 | 1473 | assumes mn: "\<bar>m * n\<bar> = 1" | 
| 63652 | 1474 | shows "\<bar>m\<bar> = 1" | 
| 34055 | 1475 | proof - | 
| 63652 | 1476 | from mn have 0: "m \<noteq> 0" "n \<noteq> 0" by auto | 
| 1477 | have "\<not> 2 \<le> \<bar>m\<bar>" | |
| 34055 | 1478 | proof | 
| 1479 | assume "2 \<le> \<bar>m\<bar>" | |
| 63652 | 1480 | then have "2 * \<bar>n\<bar> \<le> \<bar>m\<bar> * \<bar>n\<bar>" by (simp add: mult_mono 0) | 
| 1481 | also have "\<dots> = \<bar>m * n\<bar>" by (simp add: abs_mult) | |
| 1482 | also from mn have "\<dots> = 1" by simp | |
| 1483 | finally have "2 * \<bar>n\<bar> \<le> 1" . | |
| 1484 | with 0 show "False" by arith | |
| 34055 | 1485 | qed | 
| 63652 | 1486 | with 0 show ?thesis by auto | 
| 34055 | 1487 | qed | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1488 | |
| 63652 | 1489 | lemma pos_zmult_eq_1_iff_lemma: "m * n = 1 \<Longrightarrow> m = 1 \<or> m = - 1" | 
| 1490 | for m n :: int | |
| 1491 | using abs_zmult_eq_1 [of m n] by arith | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1492 | |
| 35815 
10e723e54076
tuned proofs (to avoid linarith error message caused by bootstrapping of HOL)
 boehmes parents: 
35634diff
changeset | 1493 | lemma pos_zmult_eq_1_iff: | 
| 63652 | 1494 | fixes m n :: int | 
| 1495 | assumes "0 < m" | |
| 1496 | shows "m * n = 1 \<longleftrightarrow> m = 1 \<and> n = 1" | |
| 35815 
10e723e54076
tuned proofs (to avoid linarith error message caused by bootstrapping of HOL)
 boehmes parents: 
35634diff
changeset | 1497 | proof - | 
| 63652 | 1498 | from assms have "m * n = 1 \<Longrightarrow> m = 1" | 
| 1499 | by (auto dest: pos_zmult_eq_1_iff_lemma) | |
| 1500 | then show ?thesis | |
| 1501 | by (auto dest: pos_zmult_eq_1_iff_lemma) | |
| 35815 
10e723e54076
tuned proofs (to avoid linarith error message caused by bootstrapping of HOL)
 boehmes parents: 
35634diff
changeset | 1502 | qed | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1503 | |
| 71616 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1504 | lemma zmult_eq_1_iff: "m * n = 1 \<longleftrightarrow> (m = 1 \<and> n = 1) \<or> (m = - 1 \<and> n = - 1)" (is "?L = ?R") | 
| 63652 | 1505 | for m n :: int | 
| 71616 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1506 | proof | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1507 | assume L: ?L show ?R | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1508 | using pos_zmult_eq_1_iff_lemma [OF L] L by force | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1509 | qed auto | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1510 | |
| 78685 | 1511 | lemma zmult_eq_neg1_iff: "a * b = (-1 :: int) \<longleftrightarrow> a = 1 \<and> b = -1 \<or> a = -1 \<and> b = 1" | 
| 1512 | using zmult_eq_1_iff[of a "-b"] by auto | |
| 1513 | ||
| 69700 
7a92cbec7030
new material about summations and powers, along with some tweaks
 paulson <lp15@cam.ac.uk> parents: 
69605diff
changeset | 1514 | lemma infinite_UNIV_int [simp]: "\<not> finite (UNIV::int set)" | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1515 | proof | 
| 33296 
a3924d1069e5
moved theory Divides after theory Nat_Numeral; tuned some proof texts
 haftmann parents: 
33056diff
changeset | 1516 | assume "finite (UNIV::int set)" | 
| 61076 | 1517 | moreover have "inj (\<lambda>i::int. 2 * i)" | 
| 33296 
a3924d1069e5
moved theory Divides after theory Nat_Numeral; tuned some proof texts
 haftmann parents: 
33056diff
changeset | 1518 | by (rule injI) simp | 
| 61076 | 1519 | ultimately have "surj (\<lambda>i::int. 2 * i)" | 
| 33296 
a3924d1069e5
moved theory Divides after theory Nat_Numeral; tuned some proof texts
 haftmann parents: 
33056diff
changeset | 1520 | by (rule finite_UNIV_inj_surj) | 
| 
a3924d1069e5
moved theory Divides after theory Nat_Numeral; tuned some proof texts
 haftmann parents: 
33056diff
changeset | 1521 | then obtain i :: int where "1 = 2 * i" by (rule surjE) | 
| 
a3924d1069e5
moved theory Divides after theory Nat_Numeral; tuned some proof texts
 haftmann parents: 
33056diff
changeset | 1522 | then show False by (simp add: pos_zmult_eq_1_iff) | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1523 | qed | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1524 | |
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1525 | |
| 60758 | 1526 | subsection \<open>The divides relation\<close> | 
| 33320 | 1527 | |
| 63652 | 1528 | lemma zdvd_antisym_nonneg: "0 \<le> m \<Longrightarrow> 0 \<le> n \<Longrightarrow> m dvd n \<Longrightarrow> n dvd m \<Longrightarrow> m = n" | 
| 1529 | for m n :: int | |
| 1530 | by (auto simp add: dvd_def mult.assoc zero_le_mult_iff zmult_eq_1_iff) | |
| 33320 | 1531 | |
| 63652 | 1532 | lemma zdvd_antisym_abs: | 
| 1533 | fixes a b :: int | |
| 1534 | assumes "a dvd b" and "b dvd a" | |
| 33320 | 1535 | shows "\<bar>a\<bar> = \<bar>b\<bar>" | 
| 63652 | 1536 | proof (cases "a = 0") | 
| 1537 | case True | |
| 1538 | with assms show ?thesis by simp | |
| 33657 | 1539 | next | 
| 63652 | 1540 | case False | 
| 1541 | from \<open>a dvd b\<close> obtain k where k: "b = a * k" | |
| 1542 | unfolding dvd_def by blast | |
| 1543 | from \<open>b dvd a\<close> obtain k' where k': "a = b * k'" | |
| 1544 | unfolding dvd_def by blast | |
| 1545 | from k k' have "a = a * k * k'" by simp | |
| 1546 | with mult_cancel_left1[where c="a" and b="k*k'"] have kk': "k * k' = 1" | |
| 1547 | using \<open>a \<noteq> 0\<close> by (simp add: mult.assoc) | |
| 1548 | then have "k = 1 \<and> k' = 1 \<or> k = -1 \<and> k' = -1" | |
| 1549 | by (simp add: zmult_eq_1_iff) | |
| 1550 | with k k' show ?thesis by auto | |
| 33320 | 1551 | qed | 
| 1552 | ||
| 63652 | 1553 | lemma zdvd_zdiffD: "k dvd m - n \<Longrightarrow> k dvd n \<Longrightarrow> k dvd m" | 
| 1554 | for k m n :: int | |
| 60162 | 1555 | using dvd_add_right_iff [of k "- n" m] by simp | 
| 33320 | 1556 | |
| 63652 | 1557 | lemma zdvd_reduce: "k dvd n + k * m \<longleftrightarrow> k dvd n" | 
| 1558 | for k m n :: int | |
| 58649 
a62065b5e1e2
generalized and consolidated some theorems concerning divisibility
 haftmann parents: 
58512diff
changeset | 1559 | using dvd_add_times_triv_right_iff [of k n m] by (simp add: ac_simps) | 
| 33320 | 1560 | |
| 1561 | lemma dvd_imp_le_int: | |
| 1562 | fixes d i :: int | |
| 1563 | assumes "i \<noteq> 0" and "d dvd i" | |
| 1564 | shows "\<bar>d\<bar> \<le> \<bar>i\<bar>" | |
| 1565 | proof - | |
| 60758 | 1566 | from \<open>d dvd i\<close> obtain k where "i = d * k" .. | 
| 1567 | with \<open>i \<noteq> 0\<close> have "k \<noteq> 0" by auto | |
| 33320 | 1568 | then have "1 \<le> \<bar>k\<bar>" and "0 \<le> \<bar>d\<bar>" by auto | 
| 1569 | then have "\<bar>d\<bar> * 1 \<le> \<bar>d\<bar> * \<bar>k\<bar>" by (rule mult_left_mono) | |
| 60758 | 1570 | with \<open>i = d * k\<close> show ?thesis by (simp add: abs_mult) | 
| 33320 | 1571 | qed | 
| 1572 | ||
| 1573 | lemma zdvd_not_zless: | |
| 1574 | fixes m n :: int | |
| 1575 | assumes "0 < m" and "m < n" | |
| 1576 | shows "\<not> n dvd m" | |
| 1577 | proof | |
| 1578 | from assms have "0 < n" by auto | |
| 1579 | assume "n dvd m" then obtain k where k: "m = n * k" .. | |
| 60758 | 1580 | with \<open>0 < m\<close> have "0 < n * k" by auto | 
| 1581 | with \<open>0 < n\<close> have "0 < k" by (simp add: zero_less_mult_iff) | |
| 1582 | with k \<open>0 < n\<close> \<open>m < n\<close> have "n * k < n * 1" by simp | |
| 1583 | with \<open>0 < n\<close> \<open>0 < k\<close> show False unfolding mult_less_cancel_left by auto | |
| 33320 | 1584 | qed | 
| 1585 | ||
| 63652 | 1586 | lemma zdvd_mult_cancel: | 
| 1587 | fixes k m n :: int | |
| 1588 | assumes d: "k * m dvd k * n" | |
| 1589 | and "k \<noteq> 0" | |
| 33320 | 1590 | shows "m dvd n" | 
| 63652 | 1591 | proof - | 
| 1592 | from d obtain h where h: "k * n = k * m * h" | |
| 1593 | unfolding dvd_def by blast | |
| 1594 | have "n = m * h" | |
| 1595 | proof (rule ccontr) | |
| 1596 | assume "\<not> ?thesis" | |
| 1597 | with \<open>k \<noteq> 0\<close> have "k * n \<noteq> k * (m * h)" by simp | |
| 1598 | with h show False | |
| 1599 | by (simp add: mult.assoc) | |
| 1600 | qed | |
| 1601 | then show ?thesis by simp | |
| 33320 | 1602 | qed | 
| 1603 | ||
| 67118 | 1604 | lemma int_dvd_int_iff [simp]: | 
| 1605 | "int m dvd int n \<longleftrightarrow> m dvd n" | |
| 33320 | 1606 | proof - | 
| 67118 | 1607 | have "m dvd n" if "int n = int m * k" for k | 
| 63652 | 1608 | proof (cases k) | 
| 67118 | 1609 | case (nonneg q) | 
| 1610 | with that have "n = m * q" | |
| 63652 | 1611 | by (simp del: of_nat_mult add: of_nat_mult [symmetric]) | 
| 1612 | then show ?thesis .. | |
| 1613 | next | |
| 67118 | 1614 | case (neg q) | 
| 1615 | with that have "int n = int m * (- int (Suc q))" | |
| 63652 | 1616 | by simp | 
| 67118 | 1617 | also have "\<dots> = - (int m * int (Suc q))" | 
| 63652 | 1618 | by (simp only: mult_minus_right) | 
| 67118 | 1619 | also have "\<dots> = - int (m * Suc q)" | 
| 63652 | 1620 | by (simp only: of_nat_mult [symmetric]) | 
| 67118 | 1621 | finally have "- int (m * Suc q) = int n" .. | 
| 63652 | 1622 | then show ?thesis | 
| 1623 | by (simp only: negative_eq_positive) auto | |
| 33320 | 1624 | qed | 
| 67118 | 1625 | then show ?thesis by (auto simp add: dvd_def) | 
| 33320 | 1626 | qed | 
| 1627 | ||
| 67118 | 1628 | lemma dvd_nat_abs_iff [simp]: | 
| 1629 | "n dvd nat \<bar>k\<bar> \<longleftrightarrow> int n dvd k" | |
| 1630 | proof - | |
| 1631 | have "n dvd nat \<bar>k\<bar> \<longleftrightarrow> int n dvd int (nat \<bar>k\<bar>)" | |
| 1632 | by (simp only: int_dvd_int_iff) | |
| 1633 | then show ?thesis | |
| 1634 | by simp | |
| 1635 | qed | |
| 1636 | ||
| 1637 | lemma nat_abs_dvd_iff [simp]: | |
| 1638 | "nat \<bar>k\<bar> dvd n \<longleftrightarrow> k dvd int n" | |
| 1639 | proof - | |
| 1640 | have "nat \<bar>k\<bar> dvd n \<longleftrightarrow> int (nat \<bar>k\<bar>) dvd int n" | |
| 1641 | by (simp only: int_dvd_int_iff) | |
| 1642 | then show ?thesis | |
| 1643 | by simp | |
| 1644 | qed | |
| 1645 | ||
| 1646 | lemma zdvd1_eq [simp]: "x dvd 1 \<longleftrightarrow> \<bar>x\<bar> = 1" (is "?lhs \<longleftrightarrow> ?rhs") | |
| 63652 | 1647 | for x :: int | 
| 33320 | 1648 | proof | 
| 63652 | 1649 | assume ?lhs | 
| 67118 | 1650 | then have "nat \<bar>x\<bar> dvd nat \<bar>1\<bar>" | 
| 1651 | by (simp only: nat_abs_dvd_iff) simp | |
| 1652 | then have "nat \<bar>x\<bar> = 1" | |
| 1653 | by simp | |
| 1654 | then show ?rhs | |
| 1655 | by (cases "x < 0") simp_all | |
| 33320 | 1656 | next | 
| 63652 | 1657 | assume ?rhs | 
| 67118 | 1658 | then have "x = 1 \<or> x = - 1" | 
| 1659 | by auto | |
| 1660 | then show ?lhs | |
| 1661 | by (auto intro: dvdI) | |
| 33320 | 1662 | qed | 
| 1663 | ||
| 60162 | 1664 | lemma zdvd_mult_cancel1: | 
| 63652 | 1665 | fixes m :: int | 
| 1666 | assumes mp: "m \<noteq> 0" | |
| 1667 | shows "m * n dvd m \<longleftrightarrow> \<bar>n\<bar> = 1" | |
| 1668 | (is "?lhs \<longleftrightarrow> ?rhs") | |
| 33320 | 1669 | proof | 
| 63652 | 1670 | assume ?rhs | 
| 1671 | then show ?lhs | |
| 1672 | by (cases "n > 0") (auto simp add: minus_equation_iff) | |
| 33320 | 1673 | next | 
| 63652 | 1674 | assume ?lhs | 
| 1675 | then have "m * n dvd m * 1" by simp | |
| 1676 | from zdvd_mult_cancel[OF this mp] show ?rhs | |
| 1677 | by (simp only: zdvd1_eq) | |
| 33320 | 1678 | qed | 
| 1679 | ||
| 63652 | 1680 | lemma nat_dvd_iff: "nat z dvd m \<longleftrightarrow> (if 0 \<le> z then z dvd int m else m = 0)" | 
| 67118 | 1681 | using nat_abs_dvd_iff [of z m] by (cases "z \<ge> 0") auto | 
| 33320 | 1682 | |
| 63652 | 1683 | lemma eq_nat_nat_iff: "0 \<le> z \<Longrightarrow> 0 \<le> z' \<Longrightarrow> nat z = nat z' \<longleftrightarrow> z = z'" | 
| 67116 | 1684 | by (auto elim: nonneg_int_cases) | 
| 33341 | 1685 | |
| 63652 | 1686 | lemma nat_power_eq: "0 \<le> z \<Longrightarrow> nat (z ^ n) = nat z ^ n" | 
| 33341 | 1687 | by (induct n) (simp_all add: nat_mult_distrib) | 
| 1688 | ||
| 66912 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 1689 | lemma numeral_power_eq_nat_cancel_iff [simp]: | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 1690 | "numeral x ^ n = nat y \<longleftrightarrow> numeral x ^ n = y" | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 1691 | using nat_eq_iff2 by auto | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 1692 | |
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 1693 | lemma nat_eq_numeral_power_cancel_iff [simp]: | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 1694 | "nat y = numeral x ^ n \<longleftrightarrow> y = numeral x ^ n" | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 1695 | using numeral_power_eq_nat_cancel_iff[of x n y] | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 1696 | by (metis (mono_tags)) | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 1697 | |
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 1698 | lemma numeral_power_le_nat_cancel_iff [simp]: | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 1699 | "numeral x ^ n \<le> nat a \<longleftrightarrow> numeral x ^ n \<le> a" | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 1700 | using nat_le_eq_zle[of "numeral x ^ n" a] | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 1701 | by (auto simp: nat_power_eq) | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 1702 | |
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 1703 | lemma nat_le_numeral_power_cancel_iff [simp]: | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 1704 | "nat a \<le> numeral x ^ n \<longleftrightarrow> a \<le> numeral x ^ n" | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 1705 | by (simp add: nat_le_iff) | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 1706 | |
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 1707 | lemma numeral_power_less_nat_cancel_iff [simp]: | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 1708 | "numeral x ^ n < nat a \<longleftrightarrow> numeral x ^ n < a" | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 1709 | using nat_less_eq_zless[of "numeral x ^ n" a] | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 1710 | by (auto simp: nat_power_eq) | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 1711 | |
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 1712 | lemma nat_less_numeral_power_cancel_iff [simp]: | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 1713 | "nat a < numeral x ^ n \<longleftrightarrow> a < numeral x ^ n" | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 1714 | using nat_less_eq_zless[of a "numeral x ^ n"] | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 1715 | by (cases "a < 0") (auto simp: nat_power_eq less_le_trans[where y=0]) | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 1716 | |
| 71616 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1717 | lemma zdvd_imp_le: "z \<le> n" if "z dvd n" "0 < n" for n z :: int | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1718 | proof (cases n) | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1719 | case (nonneg n) | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1720 | show ?thesis | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1721 | by (cases z) (use nonneg dvd_imp_le that in auto) | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1722 | qed (use that in auto) | 
| 33320 | 1723 | |
| 36749 | 1724 | lemma zdvd_period: | 
| 1725 | fixes a d :: int | |
| 1726 | assumes "a dvd d" | |
| 1727 | shows "a dvd (x + t) \<longleftrightarrow> a dvd ((x + c * d) + t)" | |
| 63652 | 1728 | (is "?lhs \<longleftrightarrow> ?rhs") | 
| 36749 | 1729 | proof - | 
| 66816 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66035diff
changeset | 1730 | from assms have "a dvd (x + t) \<longleftrightarrow> a dvd ((x + t) + c * d)" | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66035diff
changeset | 1731 | by (simp add: dvd_add_left_iff) | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66035diff
changeset | 1732 | then show ?thesis | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66035diff
changeset | 1733 | by (simp add: ac_simps) | 
| 36749 | 1734 | qed | 
| 1735 | ||
| 33320 | 1736 | |
| 71837 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1737 | subsection \<open>Powers with integer exponents\<close> | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1738 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1739 | text \<open> | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1740 | The following allows writing powers with an integer exponent. While the type signature | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1741 | is very generic, most theorems will assume that the underlying type is a division ring or | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1742 | a field. | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1743 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1744 | The notation `powi' is inspired by the `powr' notation for real/complex exponentiation. | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1745 | \<close> | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1746 | definition power_int :: "'a :: {inverse, power} \<Rightarrow> int \<Rightarrow> 'a" (infixr "powi" 80) where
 | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1747 | "power_int x n = (if n \<ge> 0 then x ^ nat n else inverse x ^ (nat (-n)))" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1748 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1749 | lemma power_int_0_right [simp]: "power_int x 0 = 1" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1750 | and power_int_1_right [simp]: | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1751 |         "power_int (y :: 'a :: {power, inverse, monoid_mult}) 1 = y"
 | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1752 | and power_int_minus1_right [simp]: | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1753 |         "power_int (y :: 'a :: {power, inverse, monoid_mult}) (-1) = inverse y"
 | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1754 | by (simp_all add: power_int_def) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1755 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1756 | lemma power_int_of_nat [simp]: "power_int x (int n) = x ^ n" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1757 | by (simp add: power_int_def) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1758 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1759 | lemma power_int_numeral [simp]: "power_int x (numeral n) = x ^ numeral n" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1760 | by (simp add: power_int_def) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1761 | |
| 78698 | 1762 | lemma powi_numeral_reduce: "x powi numeral n = x * x powi int (pred_numeral n)" | 
| 1763 | by (simp add: numeral_eq_Suc) | |
| 1764 | ||
| 1765 | lemma powi_minus_numeral_reduce: "x powi - (numeral n) = inverse x * x powi - int(pred_numeral n)" | |
| 1766 | by (simp add: numeral_eq_Suc power_int_def) | |
| 1767 | ||
| 71837 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1768 | lemma int_cases4 [case_names nonneg neg]: | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1769 | fixes m :: int | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1770 | obtains n where "m = int n" | n where "n > 0" "m = -int n" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1771 | proof (cases "m \<ge> 0") | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1772 | case True | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1773 | thus ?thesis using that(1)[of "nat m"] by auto | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1774 | next | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1775 | case False | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1776 | thus ?thesis using that(2)[of "nat (-m)"] by auto | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1777 | qed | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1778 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1779 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1780 | context | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1781 |   assumes "SORT_CONSTRAINT('a::division_ring)"
 | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1782 | begin | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1783 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1784 | lemma power_int_minus: "power_int (x::'a) (-n) = inverse (power_int x n)" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1785 | by (auto simp: power_int_def power_inverse) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1786 | |
| 77351 | 1787 | lemma power_int_minus_divide: "power_int (x::'a) (-n) = 1 / (power_int x n)" | 
| 1788 | by (simp add: divide_inverse power_int_minus) | |
| 1789 | ||
| 71837 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1790 | lemma power_int_eq_0_iff [simp]: "power_int (x::'a) n = 0 \<longleftrightarrow> x = 0 \<and> n \<noteq> 0" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1791 | by (auto simp: power_int_def) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1792 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1793 | lemma power_int_0_left_If: "power_int (0 :: 'a) m = (if m = 0 then 1 else 0)" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1794 | by (auto simp: power_int_def) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1795 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1796 | lemma power_int_0_left [simp]: "m \<noteq> 0 \<Longrightarrow> power_int (0 :: 'a) m = 0" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1797 | by (simp add: power_int_0_left_If) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1798 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1799 | lemma power_int_1_left [simp]: "power_int 1 n = (1 :: 'a :: division_ring)" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1800 | by (auto simp: power_int_def) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1801 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1802 | lemma power_diff_conv_inverse: "x \<noteq> 0 \<Longrightarrow> m \<le> n \<Longrightarrow> (x :: 'a) ^ (n - m) = x ^ n * inverse x ^ m" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1803 | by (simp add: field_simps flip: power_add) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1804 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1805 | lemma power_mult_inverse_distrib: "x ^ m * inverse (x :: 'a) = inverse x * x ^ m" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1806 | proof (cases "x = 0") | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1807 | case [simp]: False | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1808 | show ?thesis | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1809 | proof (cases m) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1810 | case (Suc m') | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1811 | have "x ^ Suc m' * inverse x = x ^ m'" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1812 | by (subst power_Suc2) (auto simp: mult.assoc) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1813 | also have "\<dots> = inverse x * x ^ Suc m'" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1814 | by (subst power_Suc) (auto simp: mult.assoc [symmetric]) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1815 | finally show ?thesis using Suc by simp | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1816 | qed auto | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1817 | qed auto | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1818 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1819 | lemma power_mult_power_inverse_commute: | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1820 | "x ^ m * inverse (x :: 'a) ^ n = inverse x ^ n * x ^ m" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1821 | proof (induction n) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1822 | case (Suc n) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1823 | have "x ^ m * inverse x ^ Suc n = (x ^ m * inverse x ^ n) * inverse x" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1824 | by (simp only: power_Suc2 mult.assoc) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1825 | also have "x ^ m * inverse x ^ n = inverse x ^ n * x ^ m" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1826 | by (rule Suc) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1827 | also have "\<dots> * inverse x = (inverse x ^ n * inverse x) * x ^ m" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1828 | by (simp add: mult.assoc power_mult_inverse_distrib) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1829 | also have "\<dots> = inverse x ^ (Suc n) * x ^ m" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1830 | by (simp only: power_Suc2) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1831 | finally show ?case . | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1832 | qed auto | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1833 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1834 | lemma power_int_add: | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1835 | assumes "x \<noteq> 0 \<or> m + n \<noteq> 0" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1836 | shows "power_int (x::'a) (m + n) = power_int x m * power_int x n" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1837 | proof (cases "x = 0") | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1838 | case True | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1839 | thus ?thesis using assms by (auto simp: power_int_0_left_If) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1840 | next | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1841 | case [simp]: False | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1842 | show ?thesis | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1843 | proof (cases m n rule: int_cases4[case_product int_cases4]) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1844 | case (nonneg_nonneg a b) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1845 | thus ?thesis | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1846 | by (auto simp: power_int_def nat_add_distrib power_add) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1847 | next | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1848 | case (nonneg_neg a b) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1849 | thus ?thesis | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1850 | by (auto simp: power_int_def nat_diff_distrib not_le power_diff_conv_inverse | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1851 | power_mult_power_inverse_commute) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1852 | next | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1853 | case (neg_nonneg a b) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1854 | thus ?thesis | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1855 | by (auto simp: power_int_def nat_diff_distrib not_le power_diff_conv_inverse | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1856 | power_mult_power_inverse_commute) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1857 | next | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1858 | case (neg_neg a b) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1859 | thus ?thesis | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1860 | by (auto simp: power_int_def nat_add_distrib add.commute simp flip: power_add) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1861 | qed | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1862 | qed | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1863 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1864 | lemma power_int_add_1: | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1865 | assumes "x \<noteq> 0 \<or> m \<noteq> -1" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1866 | shows "power_int (x::'a) (m + 1) = power_int x m * x" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1867 | using assms by (subst power_int_add) auto | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1868 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1869 | lemma power_int_add_1': | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1870 | assumes "x \<noteq> 0 \<or> m \<noteq> -1" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1871 | shows "power_int (x::'a) (m + 1) = x * power_int x m" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1872 | using assms by (subst add.commute, subst power_int_add) auto | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1873 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1874 | lemma power_int_commutes: "power_int (x :: 'a) n * x = x * power_int x n" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1875 | by (cases "x = 0") (auto simp flip: power_int_add_1 power_int_add_1') | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1876 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1877 | lemma power_int_inverse [field_simps, field_split_simps, divide_simps]: | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1878 | "power_int (inverse (x :: 'a)) n = inverse (power_int x n)" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1879 | by (auto simp: power_int_def power_inverse) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1880 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1881 | lemma power_int_mult: "power_int (x :: 'a) (m * n) = power_int (power_int x m) n" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1882 | by (auto simp: power_int_def zero_le_mult_iff simp flip: power_mult power_inverse nat_mult_distrib) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1883 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1884 | end | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1885 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1886 | context | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1887 |   assumes "SORT_CONSTRAINT('a::field)"
 | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1888 | begin | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1889 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1890 | lemma power_int_diff: | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1891 | assumes "x \<noteq> 0 \<or> m \<noteq> n" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1892 | shows "power_int (x::'a) (m - n) = power_int x m / power_int x n" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1893 | using power_int_add[of x m "-n"] assms by (auto simp: field_simps power_int_minus) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1894 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1895 | lemma power_int_minus_mult: "x \<noteq> 0 \<or> n \<noteq> 0 \<Longrightarrow> power_int (x :: 'a) (n - 1) * x = power_int x n" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1896 | by (auto simp flip: power_int_add_1) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1897 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1898 | lemma power_int_mult_distrib: "power_int (x * y :: 'a) m = power_int x m * power_int y m" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1899 | by (auto simp: power_int_def power_mult_distrib) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1900 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1901 | lemmas power_int_mult_distrib_numeral1 = power_int_mult_distrib [where x = "numeral w" for w, simp] | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1902 | lemmas power_int_mult_distrib_numeral2 = power_int_mult_distrib [where y = "numeral w" for w, simp] | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1903 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1904 | lemma power_int_divide_distrib: "power_int (x / y :: 'a) m = power_int x m / power_int y m" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1905 | using power_int_mult_distrib[of x "inverse y" m] unfolding power_int_inverse | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1906 | by (simp add: field_simps) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1907 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1908 | end | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1909 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1910 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1911 | lemma power_int_add_numeral [simp]: | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1912 | "power_int x (numeral m) * power_int x (numeral n) = power_int x (numeral (m + n))" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1913 | for x :: "'a :: division_ring" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1914 | by (simp add: power_int_add [symmetric]) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1915 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1916 | lemma power_int_add_numeral2 [simp]: | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1917 | "power_int x (numeral m) * (power_int x (numeral n) * b) = power_int x (numeral (m + n)) * b" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1918 | for x :: "'a :: division_ring" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1919 | by (simp add: mult.assoc [symmetric]) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1920 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1921 | lemma power_int_mult_numeral [simp]: | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1922 | "power_int (power_int x (numeral m)) (numeral n) = power_int x (numeral (m * n))" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1923 | for x :: "'a :: division_ring" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1924 | by (simp only: numeral_mult power_int_mult) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1925 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1926 | lemma power_int_not_zero: "(x :: 'a :: division_ring) \<noteq> 0 \<or> n = 0 \<Longrightarrow> power_int x n \<noteq> 0" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1927 | by (subst power_int_eq_0_iff) auto | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1928 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1929 | lemma power_int_one_over [field_simps, field_split_simps, divide_simps]: | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1930 | "power_int (1 / x :: 'a :: division_ring) n = 1 / power_int x n" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1931 | using power_int_inverse[of x] by (simp add: divide_inverse) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1932 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1933 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1934 | context | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1935 |   assumes "SORT_CONSTRAINT('a :: linordered_field)"
 | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1936 | begin | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1937 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1938 | lemma power_int_numeral_neg_numeral [simp]: | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1939 | "power_int (numeral m) (-numeral n) = (inverse (numeral (Num.pow m n)) :: 'a)" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1940 | by (simp add: power_int_minus) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1941 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1942 | lemma zero_less_power_int [simp]: "0 < (x :: 'a) \<Longrightarrow> 0 < power_int x n" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1943 | by (auto simp: power_int_def) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1944 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1945 | lemma zero_le_power_int [simp]: "0 \<le> (x :: 'a) \<Longrightarrow> 0 \<le> power_int x n" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1946 | by (auto simp: power_int_def) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1947 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1948 | lemma power_int_mono: "(x :: 'a) \<le> y \<Longrightarrow> n \<ge> 0 \<Longrightarrow> 0 \<le> x \<Longrightarrow> power_int x n \<le> power_int y n" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1949 | by (cases n rule: int_cases4) (auto intro: power_mono) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1950 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1951 | lemma one_le_power_int [simp]: "1 \<le> (x :: 'a) \<Longrightarrow> n \<ge> 0 \<Longrightarrow> 1 \<le> power_int x n" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1952 | using power_int_mono [of 1 x n] by simp | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1953 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1954 | lemma power_int_le_one: "0 \<le> (x :: 'a) \<Longrightarrow> n \<ge> 0 \<Longrightarrow> x \<le> 1 \<Longrightarrow> power_int x n \<le> 1" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1955 | using power_int_mono [of x 1 n] by simp | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1956 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1957 | lemma power_int_le_imp_le_exp: | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1958 | assumes gt1: "1 < (x :: 'a :: linordered_field)" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1959 | assumes "power_int x m \<le> power_int x n" "n \<ge> 0" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1960 | shows "m \<le> n" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1961 | proof (cases "m < 0") | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1962 | case True | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1963 | with \<open>n \<ge> 0\<close> show ?thesis by simp | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1964 | next | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1965 | case False | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1966 | with assms have "x ^ nat m \<le> x ^ nat n" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1967 | by (simp add: power_int_def) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1968 | from gt1 and this show ?thesis | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1969 | using False \<open>n \<ge> 0\<close> by auto | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1970 | qed | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1971 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1972 | lemma power_int_le_imp_less_exp: | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1973 | assumes gt1: "1 < (x :: 'a :: linordered_field)" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1974 | assumes "power_int x m < power_int x n" "n \<ge> 0" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1975 | shows "m < n" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1976 | proof (cases "m < 0") | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1977 | case True | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1978 | with \<open>n \<ge> 0\<close> show ?thesis by simp | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1979 | next | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1980 | case False | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1981 | with assms have "x ^ nat m < x ^ nat n" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1982 | by (simp add: power_int_def) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1983 | from gt1 and this show ?thesis | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1984 | using False \<open>n \<ge> 0\<close> by auto | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1985 | qed | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1986 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1987 | lemma power_int_strict_mono: | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1988 | "(a :: 'a :: linordered_field) < b \<Longrightarrow> 0 \<le> a \<Longrightarrow> 0 < n \<Longrightarrow> power_int a n < power_int b n" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1989 | by (auto simp: power_int_def intro!: power_strict_mono) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1990 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1991 | lemma power_int_mono_iff [simp]: | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1992 | fixes a b :: "'a :: linordered_field" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1993 | shows "\<lbrakk>a \<ge> 0; b \<ge> 0; n > 0\<rbrakk> \<Longrightarrow> power_int a n \<le> power_int b n \<longleftrightarrow> a \<le> b" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1994 | by (auto simp: power_int_def intro!: power_strict_mono) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1995 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1996 | lemma power_int_strict_increasing: | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1997 | fixes a :: "'a :: linordered_field" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1998 | assumes "n < N" "1 < a" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1999 | shows "power_int a N > power_int a n" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2000 | proof - | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2001 | have *: "a ^ nat (N - n) > a ^ 0" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2002 | using assms by (intro power_strict_increasing) auto | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2003 | have "power_int a N = power_int a n * power_int a (N - n)" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2004 | using assms by (simp flip: power_int_add) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2005 | also have "\<dots> > power_int a n * 1" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2006 | using assms * | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2007 | by (intro mult_strict_left_mono zero_less_power_int) (auto simp: power_int_def) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2008 | finally show ?thesis by simp | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2009 | qed | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2010 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2011 | lemma power_int_increasing: | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2012 | fixes a :: "'a :: linordered_field" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2013 | assumes "n \<le> N" "a \<ge> 1" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2014 | shows "power_int a N \<ge> power_int a n" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2015 | proof - | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2016 | have *: "a ^ nat (N - n) \<ge> a ^ 0" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2017 | using assms by (intro power_increasing) auto | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2018 | have "power_int a N = power_int a n * power_int a (N - n)" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2019 | using assms by (simp flip: power_int_add) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2020 | also have "\<dots> \<ge> power_int a n * 1" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2021 | using assms * by (intro mult_left_mono) (auto simp: power_int_def) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2022 | finally show ?thesis by simp | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2023 | qed | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2024 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2025 | lemma power_int_strict_decreasing: | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2026 | fixes a :: "'a :: linordered_field" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2027 | assumes "n < N" "0 < a" "a < 1" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2028 | shows "power_int a N < power_int a n" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2029 | proof - | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2030 | have *: "a ^ nat (N - n) < a ^ 0" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2031 | using assms by (intro power_strict_decreasing) auto | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2032 | have "power_int a N = power_int a n * power_int a (N - n)" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2033 | using assms by (simp flip: power_int_add) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2034 | also have "\<dots> < power_int a n * 1" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2035 | using assms * | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2036 | by (intro mult_strict_left_mono zero_less_power_int) (auto simp: power_int_def) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2037 | finally show ?thesis by simp | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2038 | qed | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2039 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2040 | lemma power_int_decreasing: | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2041 | fixes a :: "'a :: linordered_field" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2042 | assumes "n \<le> N" "0 \<le> a" "a \<le> 1" "a \<noteq> 0 \<or> N \<noteq> 0 \<or> n = 0" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2043 | shows "power_int a N \<le> power_int a n" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2044 | proof (cases "a = 0") | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2045 | case False | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2046 | have *: "a ^ nat (N - n) \<le> a ^ 0" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2047 | using assms by (intro power_decreasing) auto | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2048 | have "power_int a N = power_int a n * power_int a (N - n)" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2049 | using assms False by (simp flip: power_int_add) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2050 | also have "\<dots> \<le> power_int a n * 1" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2051 | using assms * by (intro mult_left_mono) (auto simp: power_int_def) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2052 | finally show ?thesis by simp | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2053 | qed (use assms in \<open>auto simp: power_int_0_left_If\<close>) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2054 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2055 | lemma one_less_power_int: "1 < (a :: 'a) \<Longrightarrow> 0 < n \<Longrightarrow> 1 < power_int a n" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2056 | using power_int_strict_increasing[of 0 n a] by simp | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2057 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2058 | lemma power_int_abs: "\<bar>power_int a n :: 'a\<bar> = power_int \<bar>a\<bar> n" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2059 | by (auto simp: power_int_def power_abs) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2060 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2061 | lemma power_int_sgn [simp]: "sgn (power_int a n :: 'a) = power_int (sgn a) n" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2062 | by (auto simp: power_int_def) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2063 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2064 | lemma abs_power_int_minus [simp]: "\<bar>power_int (- a) n :: 'a\<bar> = \<bar>power_int a n\<bar>" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2065 | by (simp add: power_int_abs) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2066 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2067 | lemma power_int_strict_antimono: | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2068 | assumes "(a :: 'a :: linordered_field) < b" "0 < a" "n < 0" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2069 | shows "power_int a n > power_int b n" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2070 | proof - | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2071 | have "inverse (power_int a (-n)) > inverse (power_int b (-n))" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2072 | using assms by (intro less_imp_inverse_less power_int_strict_mono zero_less_power_int) auto | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2073 | thus ?thesis by (simp add: power_int_minus) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2074 | qed | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2075 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2076 | lemma power_int_antimono: | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2077 | assumes "(a :: 'a :: linordered_field) \<le> b" "0 < a" "n < 0" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2078 | shows "power_int a n \<ge> power_int b n" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2079 | using power_int_strict_antimono[of a b n] assms by (cases "a = b") auto | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2080 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2081 | end | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2082 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2083 | |
| 60758 | 2084 | subsection \<open>Finiteness of intervals\<close> | 
| 46756 
faf62905cd53
adding finiteness of intervals on integer sets; adding another finiteness theorem for multisets
 bulwahn parents: 
46027diff
changeset | 2085 | |
| 63652 | 2086 | lemma finite_interval_int1 [iff]: "finite {i :: int. a \<le> i \<and> i \<le> b}"
 | 
| 2087 | proof (cases "a \<le> b") | |
| 46756 
faf62905cd53
adding finiteness of intervals on integer sets; adding another finiteness theorem for multisets
 bulwahn parents: 
46027diff
changeset | 2088 | case True | 
| 63652 | 2089 | then show ?thesis | 
| 46756 
faf62905cd53
adding finiteness of intervals on integer sets; adding another finiteness theorem for multisets
 bulwahn parents: 
46027diff
changeset | 2090 | proof (induct b rule: int_ge_induct) | 
| 
faf62905cd53
adding finiteness of intervals on integer sets; adding another finiteness theorem for multisets
 bulwahn parents: 
46027diff
changeset | 2091 | case base | 
| 63652 | 2092 |     have "{i. a \<le> i \<and> i \<le> a} = {a}" by auto
 | 
| 2093 | then show ?case by simp | |
| 46756 
faf62905cd53
adding finiteness of intervals on integer sets; adding another finiteness theorem for multisets
 bulwahn parents: 
46027diff
changeset | 2094 | next | 
| 
faf62905cd53
adding finiteness of intervals on integer sets; adding another finiteness theorem for multisets
 bulwahn parents: 
46027diff
changeset | 2095 | case (step b) | 
| 63652 | 2096 |     then have "{i. a \<le> i \<and> i \<le> b + 1} = {i. a \<le> i \<and> i \<le> b} \<union> {b + 1}" by auto
 | 
| 2097 | with step show ?case by simp | |
| 46756 
faf62905cd53
adding finiteness of intervals on integer sets; adding another finiteness theorem for multisets
 bulwahn parents: 
46027diff
changeset | 2098 | qed | 
| 
faf62905cd53
adding finiteness of intervals on integer sets; adding another finiteness theorem for multisets
 bulwahn parents: 
46027diff
changeset | 2099 | next | 
| 63652 | 2100 | case False | 
| 2101 | then show ?thesis | |
| 46756 
faf62905cd53
adding finiteness of intervals on integer sets; adding another finiteness theorem for multisets
 bulwahn parents: 
46027diff
changeset | 2102 | by (metis (lifting, no_types) Collect_empty_eq finite.emptyI order_trans) | 
| 
faf62905cd53
adding finiteness of intervals on integer sets; adding another finiteness theorem for multisets
 bulwahn parents: 
46027diff
changeset | 2103 | qed | 
| 
faf62905cd53
adding finiteness of intervals on integer sets; adding another finiteness theorem for multisets
 bulwahn parents: 
46027diff
changeset | 2104 | |
| 63652 | 2105 | lemma finite_interval_int2 [iff]: "finite {i :: int. a \<le> i \<and> i < b}"
 | 
| 2106 | by (rule rev_finite_subset[OF finite_interval_int1[of "a" "b"]]) auto | |
| 46756 
faf62905cd53
adding finiteness of intervals on integer sets; adding another finiteness theorem for multisets
 bulwahn parents: 
46027diff
changeset | 2107 | |
| 63652 | 2108 | lemma finite_interval_int3 [iff]: "finite {i :: int. a < i \<and> i \<le> b}"
 | 
| 2109 | by (rule rev_finite_subset[OF finite_interval_int1[of "a" "b"]]) auto | |
| 46756 
faf62905cd53
adding finiteness of intervals on integer sets; adding another finiteness theorem for multisets
 bulwahn parents: 
46027diff
changeset | 2110 | |
| 63652 | 2111 | lemma finite_interval_int4 [iff]: "finite {i :: int. a < i \<and> i < b}"
 | 
| 2112 | by (rule rev_finite_subset[OF finite_interval_int1[of "a" "b"]]) auto | |
| 46756 
faf62905cd53
adding finiteness of intervals on integer sets; adding another finiteness theorem for multisets
 bulwahn parents: 
46027diff
changeset | 2113 | |
| 
faf62905cd53
adding finiteness of intervals on integer sets; adding another finiteness theorem for multisets
 bulwahn parents: 
46027diff
changeset | 2114 | |
| 60758 | 2115 | subsection \<open>Configuration of the code generator\<close> | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 2116 | |
| 60758 | 2117 | text \<open>Constructors\<close> | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2118 | |
| 63652 | 2119 | definition Pos :: "num \<Rightarrow> int" | 
| 2120 | where [simp, code_abbrev]: "Pos = numeral" | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2121 | |
| 63652 | 2122 | definition Neg :: "num \<Rightarrow> int" | 
| 2123 | where [simp, code_abbrev]: "Neg n = - (Pos n)" | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2124 | |
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2125 | code_datatype "0::int" Pos Neg | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2126 | |
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2127 | |
| 63652 | 2128 | text \<open>Auxiliary operations.\<close> | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2129 | |
| 63652 | 2130 | definition dup :: "int \<Rightarrow> int" | 
| 2131 | where [simp]: "dup k = k + k" | |
| 26507 | 2132 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2133 | lemma dup_code [code]: | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2134 | "dup 0 = 0" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2135 | "dup (Pos n) = Pos (Num.Bit0 n)" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2136 | "dup (Neg n) = Neg (Num.Bit0 n)" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2137 | by (simp_all add: numeral_Bit0) | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2138 | |
| 63652 | 2139 | definition sub :: "num \<Rightarrow> num \<Rightarrow> int" | 
| 2140 | where [simp]: "sub m n = numeral m - numeral n" | |
| 26507 | 2141 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2142 | lemma sub_code [code]: | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2143 | "sub Num.One Num.One = 0" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2144 | "sub (Num.Bit0 m) Num.One = Pos (Num.BitM m)" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2145 | "sub (Num.Bit1 m) Num.One = Pos (Num.Bit0 m)" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2146 | "sub Num.One (Num.Bit0 n) = Neg (Num.BitM n)" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2147 | "sub Num.One (Num.Bit1 n) = Neg (Num.Bit0 n)" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2148 | "sub (Num.Bit0 m) (Num.Bit0 n) = dup (sub m n)" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2149 | "sub (Num.Bit1 m) (Num.Bit1 n) = dup (sub m n)" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2150 | "sub (Num.Bit1 m) (Num.Bit0 n) = dup (sub m n) + 1" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2151 | "sub (Num.Bit0 m) (Num.Bit1 n) = dup (sub m n) - 1" | 
| 66035 
de6cd60b1226
replace non-arithmetic terms by fresh variables before replaying linear-arithmetic proofs: avoid failed proof replays due to an overambitious simpset which may cause proof replay to diverge from the pre-computed proof trace
 boehmes parents: 
64996diff
changeset | 2152 | by (simp_all only: sub_def dup_def numeral.simps Pos_def Neg_def numeral_BitM) | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2153 | |
| 72512 | 2154 | lemma sub_BitM_One_eq: | 
| 2155 | \<open>(Num.sub (Num.BitM n) num.One) = 2 * (Num.sub n Num.One :: int)\<close> | |
| 2156 | by (cases n) simp_all | |
| 2157 | ||
| 63652 | 2158 | text \<open>Implementations.\<close> | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2159 | |
| 64996 | 2160 | lemma one_int_code [code]: "1 = Pos Num.One" | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2161 | by simp | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2162 | |
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2163 | lemma plus_int_code [code]: | 
| 63652 | 2164 | "k + 0 = k" | 
| 2165 | "0 + l = l" | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2166 | "Pos m + Pos n = Pos (m + n)" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2167 | "Pos m + Neg n = sub m n" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2168 | "Neg m + Pos n = sub n m" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2169 | "Neg m + Neg n = Neg (m + n)" | 
| 63652 | 2170 | for k l :: int | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2171 | by simp_all | 
| 26507 | 2172 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2173 | lemma uminus_int_code [code]: | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2174 | "uminus 0 = (0::int)" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2175 | "uminus (Pos m) = Neg m" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2176 | "uminus (Neg m) = Pos m" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2177 | by simp_all | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2178 | |
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2179 | lemma minus_int_code [code]: | 
| 63652 | 2180 | "k - 0 = k" | 
| 2181 | "0 - l = uminus l" | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2182 | "Pos m - Pos n = sub m n" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2183 | "Pos m - Neg n = Pos (m + n)" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2184 | "Neg m - Pos n = Neg (m + n)" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2185 | "Neg m - Neg n = sub n m" | 
| 63652 | 2186 | for k l :: int | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2187 | by simp_all | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2188 | |
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2189 | lemma times_int_code [code]: | 
| 63652 | 2190 | "k * 0 = 0" | 
| 2191 | "0 * l = 0" | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2192 | "Pos m * Pos n = Pos (m * n)" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2193 | "Pos m * Neg n = Neg (m * n)" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2194 | "Neg m * Pos n = Neg (m * n)" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2195 | "Neg m * Neg n = Pos (m * n)" | 
| 63652 | 2196 | for k l :: int | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2197 | by simp_all | 
| 26507 | 2198 | |
| 38857 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 haftmann parents: 
37887diff
changeset | 2199 | instantiation int :: equal | 
| 26507 | 2200 | begin | 
| 2201 | ||
| 63652 | 2202 | definition "HOL.equal k l \<longleftrightarrow> k = (l::int)" | 
| 38857 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 haftmann parents: 
37887diff
changeset | 2203 | |
| 61169 | 2204 | instance | 
| 2205 | by standard (rule equal_int_def) | |
| 26507 | 2206 | |
| 2207 | end | |
| 2208 | ||
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2209 | lemma equal_int_code [code]: | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2210 | "HOL.equal 0 (0::int) \<longleftrightarrow> True" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2211 | "HOL.equal 0 (Pos l) \<longleftrightarrow> False" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2212 | "HOL.equal 0 (Neg l) \<longleftrightarrow> False" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2213 | "HOL.equal (Pos k) 0 \<longleftrightarrow> False" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2214 | "HOL.equal (Pos k) (Pos l) \<longleftrightarrow> HOL.equal k l" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2215 | "HOL.equal (Pos k) (Neg l) \<longleftrightarrow> False" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2216 | "HOL.equal (Neg k) 0 \<longleftrightarrow> False" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2217 | "HOL.equal (Neg k) (Pos l) \<longleftrightarrow> False" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2218 | "HOL.equal (Neg k) (Neg l) \<longleftrightarrow> HOL.equal k l" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2219 | by (auto simp add: equal) | 
| 26507 | 2220 | |
| 63652 | 2221 | lemma equal_int_refl [code nbe]: "HOL.equal k k \<longleftrightarrow> True" | 
| 2222 | for k :: int | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2223 | by (fact equal_refl) | 
| 26507 | 2224 | |
| 28562 | 2225 | lemma less_eq_int_code [code]: | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2226 | "0 \<le> (0::int) \<longleftrightarrow> True" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2227 | "0 \<le> Pos l \<longleftrightarrow> True" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2228 | "0 \<le> Neg l \<longleftrightarrow> False" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2229 | "Pos k \<le> 0 \<longleftrightarrow> False" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2230 | "Pos k \<le> Pos l \<longleftrightarrow> k \<le> l" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2231 | "Pos k \<le> Neg l \<longleftrightarrow> False" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2232 | "Neg k \<le> 0 \<longleftrightarrow> True" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2233 | "Neg k \<le> Pos l \<longleftrightarrow> True" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2234 | "Neg k \<le> Neg l \<longleftrightarrow> l \<le> k" | 
| 28958 | 2235 | by simp_all | 
| 26507 | 2236 | |
| 28562 | 2237 | lemma less_int_code [code]: | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2238 | "0 < (0::int) \<longleftrightarrow> False" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2239 | "0 < Pos l \<longleftrightarrow> True" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2240 | "0 < Neg l \<longleftrightarrow> False" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2241 | "Pos k < 0 \<longleftrightarrow> False" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2242 | "Pos k < Pos l \<longleftrightarrow> k < l" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2243 | "Pos k < Neg l \<longleftrightarrow> False" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2244 | "Neg k < 0 \<longleftrightarrow> True" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2245 | "Neg k < Pos l \<longleftrightarrow> True" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2246 | "Neg k < Neg l \<longleftrightarrow> l < k" | 
| 28958 | 2247 | by simp_all | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 2248 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2249 | lemma nat_code [code]: | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2250 | "nat (Int.Neg k) = 0" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2251 | "nat 0 = 0" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2252 | "nat (Int.Pos k) = nat_of_num k" | 
| 54489 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54249diff
changeset | 2253 | by (simp_all add: nat_of_num_numeral) | 
| 25928 | 2254 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2255 | lemma (in ring_1) of_int_code [code]: | 
| 54489 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54249diff
changeset | 2256 | "of_int (Int.Neg k) = - numeral k" | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2257 | "of_int 0 = 0" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2258 | "of_int (Int.Pos k) = numeral k" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2259 | by simp_all | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 2260 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2261 | |
| 63652 | 2262 | text \<open>Serializer setup.\<close> | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 2263 | |
| 52435 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
51994diff
changeset | 2264 | code_identifier | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
51994diff
changeset | 2265 | code_module Int \<rightharpoonup> (SML) Arith and (OCaml) Arith and (Haskell) Arith | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 2266 | |
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 2267 | quickcheck_params [default_type = int] | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 2268 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2269 | hide_const (open) Pos Neg sub dup | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 2270 | |
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 2271 | |
| 61799 | 2272 | text \<open>De-register \<open>int\<close> as a quotient type:\<close> | 
| 48045 | 2273 | |
| 53652 
18fbca265e2e
use lifting_forget for deregistering numeric types as a quotient type
 kuncar parents: 
53065diff
changeset | 2274 | lifting_update int.lifting | 
| 
18fbca265e2e
use lifting_forget for deregistering numeric types as a quotient type
 kuncar parents: 
53065diff
changeset | 2275 | lifting_forget int.lifting | 
| 48045 | 2276 | |
| 67116 | 2277 | |
| 2278 | subsection \<open>Duplicates\<close> | |
| 2279 | ||
| 2280 | lemmas int_sum = of_nat_sum [where 'a=int] | |
| 2281 | lemmas int_prod = of_nat_prod [where 'a=int] | |
| 2282 | lemmas zle_int = of_nat_le_iff [where 'a=int] | |
| 2283 | lemmas int_int_eq = of_nat_eq_iff [where 'a=int] | |
| 2284 | lemmas nonneg_eq_int = nonneg_int_cases | |
| 2285 | lemmas double_eq_0_iff = double_zero | |
| 2286 | ||
| 2287 | lemmas int_distrib = | |
| 2288 | distrib_right [of z1 z2 w] | |
| 2289 | distrib_left [of w z1 z2] | |
| 2290 | left_diff_distrib [of z1 z2 w] | |
| 2291 | right_diff_distrib [of w z1 z2] | |
| 2292 | for z1 z2 w :: int | |
| 2293 | ||
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 2294 | end | 
| 67116 | 2295 |