| author | immler | 
| Fri, 20 May 2016 22:01:39 +0200 | |
| changeset 63103 | 2394b0db133f | 
| parent 62521 | 6383440f41a8 | 
| child 63172 | d4f459eb7ed0 | 
| permissions | -rw-r--r-- | 
| 28685 | 1 | (* Title: HOL/Orderings.thy | 
| 15524 | 2 | Author: Tobias Nipkow, Markus Wenzel, and Larry Paulson | 
| 3 | *) | |
| 4 | ||
| 60758 | 5 | section \<open>Abstract orderings\<close> | 
| 15524 | 6 | |
| 7 | theory Orderings | |
| 35301 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35115diff
changeset | 8 | imports HOL | 
| 46950 
d0181abdbdac
declare command keywords via theory header, including strict checking outside Pure;
 wenzelm parents: 
46884diff
changeset | 9 | keywords "print_orders" :: diag | 
| 15524 | 10 | begin | 
| 11 | ||
| 48891 | 12 | ML_file "~~/src/Provers/order.ML" | 
| 13 | ML_file "~~/src/Provers/quasi.ML" (* FIXME unused? *) | |
| 14 | ||
| 60758 | 15 | subsection \<open>Abstract ordering\<close> | 
| 51487 | 16 | |
| 17 | locale ordering = | |
| 18 | fixes less_eq :: "'a \<Rightarrow> 'a \<Rightarrow> bool" (infix "\<preceq>" 50) | |
| 19 | and less :: "'a \<Rightarrow> 'a \<Rightarrow> bool" (infix "\<prec>" 50) | |
| 20 | assumes strict_iff_order: "a \<prec> b \<longleftrightarrow> a \<preceq> b \<and> a \<noteq> b" | |
| 61799 | 21 | assumes refl: "a \<preceq> a" \<comment> \<open>not \<open>iff\<close>: makes problems due to multiple (dual) interpretations\<close> | 
| 51487 | 22 | and antisym: "a \<preceq> b \<Longrightarrow> b \<preceq> a \<Longrightarrow> a = b" | 
| 23 | and trans: "a \<preceq> b \<Longrightarrow> b \<preceq> c \<Longrightarrow> a \<preceq> c" | |
| 24 | begin | |
| 25 | ||
| 26 | lemma strict_implies_order: | |
| 27 | "a \<prec> b \<Longrightarrow> a \<preceq> b" | |
| 28 | by (simp add: strict_iff_order) | |
| 29 | ||
| 30 | lemma strict_implies_not_eq: | |
| 31 | "a \<prec> b \<Longrightarrow> a \<noteq> b" | |
| 32 | by (simp add: strict_iff_order) | |
| 33 | ||
| 34 | lemma not_eq_order_implies_strict: | |
| 35 | "a \<noteq> b \<Longrightarrow> a \<preceq> b \<Longrightarrow> a \<prec> b" | |
| 36 | by (simp add: strict_iff_order) | |
| 37 | ||
| 38 | lemma order_iff_strict: | |
| 39 | "a \<preceq> b \<longleftrightarrow> a \<prec> b \<or> a = b" | |
| 40 | by (auto simp add: strict_iff_order refl) | |
| 41 | ||
| 61799 | 42 | lemma irrefl: \<comment> \<open>not \<open>iff\<close>: makes problems due to multiple (dual) interpretations\<close> | 
| 51487 | 43 | "\<not> a \<prec> a" | 
| 44 | by (simp add: strict_iff_order) | |
| 45 | ||
| 46 | lemma asym: | |
| 47 | "a \<prec> b \<Longrightarrow> b \<prec> a \<Longrightarrow> False" | |
| 48 | by (auto simp add: strict_iff_order intro: antisym) | |
| 49 | ||
| 50 | lemma strict_trans1: | |
| 51 | "a \<preceq> b \<Longrightarrow> b \<prec> c \<Longrightarrow> a \<prec> c" | |
| 52 | by (auto simp add: strict_iff_order intro: trans antisym) | |
| 53 | ||
| 54 | lemma strict_trans2: | |
| 55 | "a \<prec> b \<Longrightarrow> b \<preceq> c \<Longrightarrow> a \<prec> c" | |
| 56 | by (auto simp add: strict_iff_order intro: trans antisym) | |
| 57 | ||
| 58 | lemma strict_trans: | |
| 59 | "a \<prec> b \<Longrightarrow> b \<prec> c \<Longrightarrow> a \<prec> c" | |
| 60 | by (auto intro: strict_trans1 strict_implies_order) | |
| 61 | ||
| 62 | end | |
| 63 | ||
| 64 | locale ordering_top = ordering + | |
| 65 | fixes top :: "'a" | |
| 66 | assumes extremum [simp]: "a \<preceq> top" | |
| 67 | begin | |
| 68 | ||
| 69 | lemma extremum_uniqueI: | |
| 70 | "top \<preceq> a \<Longrightarrow> a = top" | |
| 71 | by (rule antisym) auto | |
| 72 | ||
| 73 | lemma extremum_unique: | |
| 74 | "top \<preceq> a \<longleftrightarrow> a = top" | |
| 75 | by (auto intro: antisym) | |
| 76 | ||
| 77 | lemma extremum_strict [simp]: | |
| 78 | "\<not> (top \<prec> a)" | |
| 79 | using extremum [of a] by (auto simp add: order_iff_strict intro: asym irrefl) | |
| 80 | ||
| 81 | lemma not_eq_extremum: | |
| 82 | "a \<noteq> top \<longleftrightarrow> a \<prec> top" | |
| 83 | by (auto simp add: order_iff_strict intro: not_eq_order_implies_strict extremum) | |
| 84 | ||
| 61824 
dcbe9f756ae0
not_leE -> not_le_imp_less and other tidying
 paulson <lp15@cam.ac.uk> parents: 
61799diff
changeset | 85 | end | 
| 51487 | 86 | |
| 87 | ||
| 60758 | 88 | subsection \<open>Syntactic orders\<close> | 
| 35092 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 89 | |
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 90 | class ord = | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 91 | fixes less_eq :: "'a \<Rightarrow> 'a \<Rightarrow> bool" | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 92 | and less :: "'a \<Rightarrow> 'a \<Rightarrow> bool" | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 93 | begin | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 94 | |
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 95 | notation | 
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61824diff
changeset | 96 |   less_eq  ("op \<le>") and
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61824diff
changeset | 97 |   less_eq  ("(_/ \<le> _)"  [51, 51] 50) and
 | 
| 35092 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 98 |   less  ("op <") and
 | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 99 |   less  ("(_/ < _)"  [51, 51] 50)
 | 
| 61824 
dcbe9f756ae0
not_leE -> not_le_imp_less and other tidying
 paulson <lp15@cam.ac.uk> parents: 
61799diff
changeset | 100 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61824diff
changeset | 101 | abbreviation (input) | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61824diff
changeset | 102 | greater_eq (infix "\<ge>" 50) | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61824diff
changeset | 103 | where "x \<ge> y \<equiv> y \<le> x" | 
| 35092 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 104 | |
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 105 | abbreviation (input) | 
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61824diff
changeset | 106 | greater (infix ">" 50) | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61824diff
changeset | 107 | where "x > y \<equiv> y < x" | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61824diff
changeset | 108 | |
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61824diff
changeset | 109 | notation (ASCII) | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61824diff
changeset | 110 |   less_eq  ("op <=") and
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61824diff
changeset | 111 |   less_eq  ("(_/ <= _)" [51, 51] 50)
 | 
| 35092 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 112 | |
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 113 | notation (input) | 
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61824diff
changeset | 114 | greater_eq (infix ">=" 50) | 
| 35092 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 115 | |
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 116 | end | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 117 | |
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 118 | |
| 60758 | 119 | subsection \<open>Quasi orders\<close> | 
| 15524 | 120 | |
| 27682 | 121 | class preorder = ord + | 
| 122 | assumes less_le_not_le: "x < y \<longleftrightarrow> x \<le> y \<and> \<not> (y \<le> x)" | |
| 25062 | 123 | and order_refl [iff]: "x \<le> x" | 
| 124 | and order_trans: "x \<le> y \<Longrightarrow> y \<le> z \<Longrightarrow> x \<le> z" | |
| 21248 | 125 | begin | 
| 126 | ||
| 60758 | 127 | text \<open>Reflexivity.\<close> | 
| 15524 | 128 | |
| 25062 | 129 | lemma eq_refl: "x = y \<Longrightarrow> x \<le> y" | 
| 61799 | 130 | \<comment> \<open>This form is useful with the classical reasoner.\<close> | 
| 23212 | 131 | by (erule ssubst) (rule order_refl) | 
| 15524 | 132 | |
| 25062 | 133 | lemma less_irrefl [iff]: "\<not> x < x" | 
| 27682 | 134 | by (simp add: less_le_not_le) | 
| 135 | ||
| 136 | lemma less_imp_le: "x < y \<Longrightarrow> x \<le> y" | |
| 137 | unfolding less_le_not_le by blast | |
| 138 | ||
| 139 | ||
| 60758 | 140 | text \<open>Asymmetry.\<close> | 
| 27682 | 141 | |
| 142 | lemma less_not_sym: "x < y \<Longrightarrow> \<not> (y < x)" | |
| 143 | by (simp add: less_le_not_le) | |
| 144 | ||
| 145 | lemma less_asym: "x < y \<Longrightarrow> (\<not> P \<Longrightarrow> y < x) \<Longrightarrow> P" | |
| 146 | by (drule less_not_sym, erule contrapos_np) simp | |
| 147 | ||
| 148 | ||
| 60758 | 149 | text \<open>Transitivity.\<close> | 
| 27682 | 150 | |
| 151 | lemma less_trans: "x < y \<Longrightarrow> y < z \<Longrightarrow> x < z" | |
| 61824 
dcbe9f756ae0
not_leE -> not_le_imp_less and other tidying
 paulson <lp15@cam.ac.uk> parents: 
61799diff
changeset | 152 | by (auto simp add: less_le_not_le intro: order_trans) | 
| 27682 | 153 | |
| 154 | lemma le_less_trans: "x \<le> y \<Longrightarrow> y < z \<Longrightarrow> x < z" | |
| 61824 
dcbe9f756ae0
not_leE -> not_le_imp_less and other tidying
 paulson <lp15@cam.ac.uk> parents: 
61799diff
changeset | 155 | by (auto simp add: less_le_not_le intro: order_trans) | 
| 27682 | 156 | |
| 157 | lemma less_le_trans: "x < y \<Longrightarrow> y \<le> z \<Longrightarrow> x < z" | |
| 61824 
dcbe9f756ae0
not_leE -> not_le_imp_less and other tidying
 paulson <lp15@cam.ac.uk> parents: 
61799diff
changeset | 158 | by (auto simp add: less_le_not_le intro: order_trans) | 
| 27682 | 159 | |
| 160 | ||
| 60758 | 161 | text \<open>Useful for simplification, but too risky to include by default.\<close> | 
| 27682 | 162 | |
| 163 | lemma less_imp_not_less: "x < y \<Longrightarrow> (\<not> y < x) \<longleftrightarrow> True" | |
| 164 | by (blast elim: less_asym) | |
| 165 | ||
| 166 | lemma less_imp_triv: "x < y \<Longrightarrow> (y < x \<longrightarrow> P) \<longleftrightarrow> True" | |
| 167 | by (blast elim: less_asym) | |
| 168 | ||
| 169 | ||
| 60758 | 170 | text \<open>Transitivity rules for calculational reasoning\<close> | 
| 27682 | 171 | |
| 172 | lemma less_asym': "a < b \<Longrightarrow> b < a \<Longrightarrow> P" | |
| 173 | by (rule less_asym) | |
| 174 | ||
| 175 | ||
| 60758 | 176 | text \<open>Dual order\<close> | 
| 27682 | 177 | |
| 178 | lemma dual_preorder: | |
| 36635 
080b755377c0
locale predicates of classes carry a mandatory "class" prefix
 haftmann parents: 
35828diff
changeset | 179 | "class.preorder (op \<ge>) (op >)" | 
| 28823 | 180 | proof qed (auto simp add: less_le_not_le intro: order_trans) | 
| 27682 | 181 | |
| 182 | end | |
| 183 | ||
| 184 | ||
| 60758 | 185 | subsection \<open>Partial orders\<close> | 
| 27682 | 186 | |
| 187 | class order = preorder + | |
| 188 | assumes antisym: "x \<le> y \<Longrightarrow> y \<le> x \<Longrightarrow> x = y" | |
| 189 | begin | |
| 190 | ||
| 51487 | 191 | lemma less_le: "x < y \<longleftrightarrow> x \<le> y \<and> x \<noteq> y" | 
| 192 | by (auto simp add: less_le_not_le intro: antisym) | |
| 193 | ||
| 61605 | 194 | sublocale order: ordering less_eq less + dual_order: ordering greater_eq greater | 
| 61169 | 195 | by standard (auto intro: antisym order_trans simp add: less_le) | 
| 51487 | 196 | |
| 197 | ||
| 60758 | 198 | text \<open>Reflexivity.\<close> | 
| 15524 | 199 | |
| 25062 | 200 | lemma le_less: "x \<le> y \<longleftrightarrow> x < y \<or> x = y" | 
| 61799 | 201 | \<comment> \<open>NOT suitable for iff, since it can cause PROOF FAILED.\<close> | 
| 51546 
2e26df807dc7
more uniform style for interpretation and sublocale declarations
 haftmann parents: 
51487diff
changeset | 202 | by (fact order.order_iff_strict) | 
| 15524 | 203 | |
| 25062 | 204 | lemma le_imp_less_or_eq: "x \<le> y \<Longrightarrow> x < y \<or> x = y" | 
| 23212 | 205 | unfolding less_le by blast | 
| 15524 | 206 | |
| 21329 | 207 | |
| 60758 | 208 | text \<open>Useful for simplification, but too risky to include by default.\<close> | 
| 21329 | 209 | |
| 25062 | 210 | lemma less_imp_not_eq: "x < y \<Longrightarrow> (x = y) \<longleftrightarrow> False" | 
| 23212 | 211 | by auto | 
| 21329 | 212 | |
| 25062 | 213 | lemma less_imp_not_eq2: "x < y \<Longrightarrow> (y = x) \<longleftrightarrow> False" | 
| 23212 | 214 | by auto | 
| 21329 | 215 | |
| 216 | ||
| 60758 | 217 | text \<open>Transitivity rules for calculational reasoning\<close> | 
| 21329 | 218 | |
| 25062 | 219 | lemma neq_le_trans: "a \<noteq> b \<Longrightarrow> a \<le> b \<Longrightarrow> a < b" | 
| 51546 
2e26df807dc7
more uniform style for interpretation and sublocale declarations
 haftmann parents: 
51487diff
changeset | 220 | by (fact order.not_eq_order_implies_strict) | 
| 21329 | 221 | |
| 25062 | 222 | lemma le_neq_trans: "a \<le> b \<Longrightarrow> a \<noteq> b \<Longrightarrow> a < b" | 
| 51546 
2e26df807dc7
more uniform style for interpretation and sublocale declarations
 haftmann parents: 
51487diff
changeset | 223 | by (rule order.not_eq_order_implies_strict) | 
| 21329 | 224 | |
| 15524 | 225 | |
| 60758 | 226 | text \<open>Asymmetry.\<close> | 
| 15524 | 227 | |
| 25062 | 228 | lemma eq_iff: "x = y \<longleftrightarrow> x \<le> y \<and> y \<le> x" | 
| 23212 | 229 | by (blast intro: antisym) | 
| 15524 | 230 | |
| 25062 | 231 | lemma antisym_conv: "y \<le> x \<Longrightarrow> x \<le> y \<longleftrightarrow> x = y" | 
| 23212 | 232 | by (blast intro: antisym) | 
| 15524 | 233 | |
| 25062 | 234 | lemma less_imp_neq: "x < y \<Longrightarrow> x \<noteq> y" | 
| 51546 
2e26df807dc7
more uniform style for interpretation and sublocale declarations
 haftmann parents: 
51487diff
changeset | 235 | by (fact order.strict_implies_not_eq) | 
| 21248 | 236 | |
| 21083 | 237 | |
| 60758 | 238 | text \<open>Least value operator\<close> | 
| 27107 | 239 | |
| 27299 | 240 | definition (in ord) | 
| 27107 | 241 |   Least :: "('a \<Rightarrow> bool) \<Rightarrow> 'a" (binder "LEAST " 10) where
 | 
| 242 | "Least P = (THE x. P x \<and> (\<forall>y. P y \<longrightarrow> x \<le> y))" | |
| 243 | ||
| 244 | lemma Least_equality: | |
| 245 | assumes "P x" | |
| 246 | and "\<And>y. P y \<Longrightarrow> x \<le> y" | |
| 247 | shows "Least P = x" | |
| 248 | unfolding Least_def by (rule the_equality) | |
| 249 | (blast intro: assms antisym)+ | |
| 250 | ||
| 251 | lemma LeastI2_order: | |
| 252 | assumes "P x" | |
| 253 | and "\<And>y. P y \<Longrightarrow> x \<le> y" | |
| 254 | and "\<And>x. P x \<Longrightarrow> \<forall>y. P y \<longrightarrow> x \<le> y \<Longrightarrow> Q x" | |
| 255 | shows "Q (Least P)" | |
| 256 | unfolding Least_def by (rule theI2) | |
| 257 | (blast intro: assms antisym)+ | |
| 258 | ||
| 60758 | 259 | text \<open>Dual order\<close> | 
| 22916 | 260 | |
| 26014 | 261 | lemma dual_order: | 
| 36635 
080b755377c0
locale predicates of classes carry a mandatory "class" prefix
 haftmann parents: 
35828diff
changeset | 262 | "class.order (op \<ge>) (op >)" | 
| 27682 | 263 | by (intro_locales, rule dual_preorder) (unfold_locales, rule antisym) | 
| 22916 | 264 | |
| 21248 | 265 | end | 
| 15524 | 266 | |
| 21329 | 267 | |
| 60758 | 268 | text \<open>Alternative introduction rule with bias towards strict order\<close> | 
| 56545 | 269 | |
| 270 | lemma order_strictI: | |
| 271 | fixes less (infix "\<sqsubset>" 50) | |
| 272 | and less_eq (infix "\<sqsubseteq>" 50) | |
| 273 | assumes less_eq_less: "\<And>a b. a \<sqsubseteq> b \<longleftrightarrow> a \<sqsubset> b \<or> a = b" | |
| 274 | assumes asym: "\<And>a b. a \<sqsubset> b \<Longrightarrow> \<not> b \<sqsubset> a" | |
| 275 | assumes irrefl: "\<And>a. \<not> a \<sqsubset> a" | |
| 276 | assumes trans: "\<And>a b c. a \<sqsubset> b \<Longrightarrow> b \<sqsubset> c \<Longrightarrow> a \<sqsubset> c" | |
| 277 | shows "class.order less_eq less" | |
| 278 | proof | |
| 279 | fix a b | |
| 280 | show "a \<sqsubset> b \<longleftrightarrow> a \<sqsubseteq> b \<and> \<not> b \<sqsubseteq> a" | |
| 281 | by (auto simp add: less_eq_less asym irrefl) | |
| 282 | next | |
| 283 | fix a | |
| 284 | show "a \<sqsubseteq> a" | |
| 285 | by (auto simp add: less_eq_less) | |
| 286 | next | |
| 287 | fix a b c | |
| 288 | assume "a \<sqsubseteq> b" and "b \<sqsubseteq> c" then show "a \<sqsubseteq> c" | |
| 289 | by (auto simp add: less_eq_less intro: trans) | |
| 290 | next | |
| 291 | fix a b | |
| 292 | assume "a \<sqsubseteq> b" and "b \<sqsubseteq> a" then show "a = b" | |
| 293 | by (auto simp add: less_eq_less asym) | |
| 294 | qed | |
| 295 | ||
| 296 | ||
| 60758 | 297 | subsection \<open>Linear (total) orders\<close> | 
| 21329 | 298 | |
| 22316 | 299 | class linorder = order + | 
| 25207 | 300 | assumes linear: "x \<le> y \<or> y \<le> x" | 
| 21248 | 301 | begin | 
| 302 | ||
| 25062 | 303 | lemma less_linear: "x < y \<or> x = y \<or> y < x" | 
| 23212 | 304 | unfolding less_le using less_le linear by blast | 
| 21248 | 305 | |
| 25062 | 306 | lemma le_less_linear: "x \<le> y \<or> y < x" | 
| 23212 | 307 | by (simp add: le_less less_linear) | 
| 21248 | 308 | |
| 309 | lemma le_cases [case_names le ge]: | |
| 25062 | 310 | "(x \<le> y \<Longrightarrow> P) \<Longrightarrow> (y \<le> x \<Longrightarrow> P) \<Longrightarrow> P" | 
| 23212 | 311 | using linear by blast | 
| 21248 | 312 | |
| 61762 
d50b993b4fb9
Removal of redundant lemmas (diff_less_iff, diff_le_iff) and of the abbreviation Exp. Addition of some new material.
 paulson <lp15@cam.ac.uk> parents: 
61699diff
changeset | 313 | lemma (in linorder) le_cases3: | 
| 
d50b993b4fb9
Removal of redundant lemmas (diff_less_iff, diff_le_iff) and of the abbreviation Exp. Addition of some new material.
 paulson <lp15@cam.ac.uk> parents: 
61699diff
changeset | 314 | "\<lbrakk>\<lbrakk>x \<le> y; y \<le> z\<rbrakk> \<Longrightarrow> P; \<lbrakk>y \<le> x; x \<le> z\<rbrakk> \<Longrightarrow> P; \<lbrakk>x \<le> z; z \<le> y\<rbrakk> \<Longrightarrow> P; | 
| 
d50b993b4fb9
Removal of redundant lemmas (diff_less_iff, diff_le_iff) and of the abbreviation Exp. Addition of some new material.
 paulson <lp15@cam.ac.uk> parents: 
61699diff
changeset | 315 | \<lbrakk>z \<le> y; y \<le> x\<rbrakk> \<Longrightarrow> P; \<lbrakk>y \<le> z; z \<le> x\<rbrakk> \<Longrightarrow> P; \<lbrakk>z \<le> x; x \<le> y\<rbrakk> \<Longrightarrow> P\<rbrakk> \<Longrightarrow> P" | 
| 
d50b993b4fb9
Removal of redundant lemmas (diff_less_iff, diff_le_iff) and of the abbreviation Exp. Addition of some new material.
 paulson <lp15@cam.ac.uk> parents: 
61699diff
changeset | 316 | by (blast intro: le_cases) | 
| 
d50b993b4fb9
Removal of redundant lemmas (diff_less_iff, diff_le_iff) and of the abbreviation Exp. Addition of some new material.
 paulson <lp15@cam.ac.uk> parents: 
61699diff
changeset | 317 | |
| 22384 
33a46e6c7f04
prefix of class interpretation not mandatory any longer
 haftmann parents: 
22377diff
changeset | 318 | lemma linorder_cases [case_names less equal greater]: | 
| 25062 | 319 | "(x < y \<Longrightarrow> P) \<Longrightarrow> (x = y \<Longrightarrow> P) \<Longrightarrow> (y < x \<Longrightarrow> P) \<Longrightarrow> P" | 
| 23212 | 320 | using less_linear by blast | 
| 21248 | 321 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
56545diff
changeset | 322 | lemma linorder_wlog[case_names le sym]: | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
56545diff
changeset | 323 | "(\<And>a b. a \<le> b \<Longrightarrow> P a b) \<Longrightarrow> (\<And>a b. P b a \<Longrightarrow> P a b) \<Longrightarrow> P a b" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
56545diff
changeset | 324 | by (cases rule: le_cases[of a b]) blast+ | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
56545diff
changeset | 325 | |
| 25062 | 326 | lemma not_less: "\<not> x < y \<longleftrightarrow> y \<le> x" | 
| 23212 | 327 | apply (simp add: less_le) | 
| 328 | using linear apply (blast intro: antisym) | |
| 329 | done | |
| 330 | ||
| 331 | lemma not_less_iff_gr_or_eq: | |
| 25062 | 332 | "\<not>(x < y) \<longleftrightarrow> (x > y | x = y)" | 
| 23212 | 333 | apply(simp add:not_less le_less) | 
| 334 | apply blast | |
| 335 | done | |
| 15524 | 336 | |
| 25062 | 337 | lemma not_le: "\<not> x \<le> y \<longleftrightarrow> y < x" | 
| 23212 | 338 | apply (simp add: less_le) | 
| 339 | using linear apply (blast intro: antisym) | |
| 340 | done | |
| 15524 | 341 | |
| 25062 | 342 | lemma neq_iff: "x \<noteq> y \<longleftrightarrow> x < y \<or> y < x" | 
| 23212 | 343 | by (cut_tac x = x and y = y in less_linear, auto) | 
| 15524 | 344 | |
| 25062 | 345 | lemma neqE: "x \<noteq> y \<Longrightarrow> (x < y \<Longrightarrow> R) \<Longrightarrow> (y < x \<Longrightarrow> R) \<Longrightarrow> R" | 
| 23212 | 346 | by (simp add: neq_iff) blast | 
| 15524 | 347 | |
| 25062 | 348 | lemma antisym_conv1: "\<not> x < y \<Longrightarrow> x \<le> y \<longleftrightarrow> x = y" | 
| 23212 | 349 | by (blast intro: antisym dest: not_less [THEN iffD1]) | 
| 15524 | 350 | |
| 25062 | 351 | lemma antisym_conv2: "x \<le> y \<Longrightarrow> \<not> x < y \<longleftrightarrow> x = y" | 
| 23212 | 352 | by (blast intro: antisym dest: not_less [THEN iffD1]) | 
| 15524 | 353 | |
| 25062 | 354 | lemma antisym_conv3: "\<not> y < x \<Longrightarrow> \<not> x < y \<longleftrightarrow> x = y" | 
| 23212 | 355 | by (blast intro: antisym dest: not_less [THEN iffD1]) | 
| 15524 | 356 | |
| 25062 | 357 | lemma leI: "\<not> x < y \<Longrightarrow> y \<le> x" | 
| 23212 | 358 | unfolding not_less . | 
| 16796 | 359 | |
| 25062 | 360 | lemma leD: "y \<le> x \<Longrightarrow> \<not> x < y" | 
| 23212 | 361 | unfolding not_less . | 
| 16796 | 362 | |
| 61824 
dcbe9f756ae0
not_leE -> not_le_imp_less and other tidying
 paulson <lp15@cam.ac.uk> parents: 
61799diff
changeset | 363 | lemma not_le_imp_less: "\<not> y \<le> x \<Longrightarrow> x < y" | 
| 23212 | 364 | unfolding not_le . | 
| 21248 | 365 | |
| 60758 | 366 | text \<open>Dual order\<close> | 
| 22916 | 367 | |
| 26014 | 368 | lemma dual_linorder: | 
| 36635 
080b755377c0
locale predicates of classes carry a mandatory "class" prefix
 haftmann parents: 
35828diff
changeset | 369 | "class.linorder (op \<ge>) (op >)" | 
| 
080b755377c0
locale predicates of classes carry a mandatory "class" prefix
 haftmann parents: 
35828diff
changeset | 370 | by (rule class.linorder.intro, rule dual_order) (unfold_locales, rule linear) | 
| 22916 | 371 | |
| 21248 | 372 | end | 
| 373 | ||
| 23948 | 374 | |
| 60758 | 375 | text \<open>Alternative introduction rule with bias towards strict order\<close> | 
| 56545 | 376 | |
| 377 | lemma linorder_strictI: | |
| 378 | fixes less (infix "\<sqsubset>" 50) | |
| 379 | and less_eq (infix "\<sqsubseteq>" 50) | |
| 380 | assumes "class.order less_eq less" | |
| 381 | assumes trichotomy: "\<And>a b. a \<sqsubset> b \<or> a = b \<or> b \<sqsubset> a" | |
| 382 | shows "class.linorder less_eq less" | |
| 383 | proof - | |
| 384 | interpret order less_eq less | |
| 60758 | 385 | by (fact \<open>class.order less_eq less\<close>) | 
| 56545 | 386 | show ?thesis | 
| 387 | proof | |
| 388 | fix a b | |
| 389 | show "a \<sqsubseteq> b \<or> b \<sqsubseteq> a" | |
| 390 | using trichotomy by (auto simp add: le_less) | |
| 391 | qed | |
| 392 | qed | |
| 393 | ||
| 394 | ||
| 60758 | 395 | subsection \<open>Reasoning tools setup\<close> | 
| 21083 | 396 | |
| 60758 | 397 | ML \<open> | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 398 | signature ORDERS = | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 399 | sig | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 400 | val print_structures: Proof.context -> unit | 
| 32215 | 401 | val order_tac: Proof.context -> thm list -> int -> tactic | 
| 58826 | 402 | val add_struct: string * term list -> string -> attribute | 
| 403 | val del_struct: string * term list -> attribute | |
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 404 | end; | 
| 21091 | 405 | |
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 406 | structure Orders: ORDERS = | 
| 21248 | 407 | struct | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 408 | |
| 56508 | 409 | (* context data *) | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 410 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 411 | fun struct_eq ((s1: string, ts1), (s2, ts2)) = | 
| 56508 | 412 | s1 = s2 andalso eq_list (op aconv) (ts1, ts2); | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 413 | |
| 33519 | 414 | structure Data = Generic_Data | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 415 | ( | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 416 | type T = ((string * term list) * Order_Tac.less_arith) list; | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 417 | (* Order structures: | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 418 | identifier of the structure, list of operations and record of theorems | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 419 | needed to set up the transitivity reasoner, | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 420 | identifier and operations identify the structure uniquely. *) | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 421 | val empty = []; | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 422 | val extend = I; | 
| 33519 | 423 | fun merge data = AList.join struct_eq (K fst) data; | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 424 | ); | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 425 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 426 | fun print_structures ctxt = | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 427 | let | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 428 | val structs = Data.get (Context.Proof ctxt); | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 429 | fun pretty_term t = Pretty.block | 
| 24920 | 430 | [Pretty.quote (Syntax.pretty_term ctxt t), Pretty.brk 1, | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 431 | Pretty.str "::", Pretty.brk 1, | 
| 24920 | 432 | Pretty.quote (Syntax.pretty_typ ctxt (type_of t))]; | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 433 | fun pretty_struct ((s, ts), _) = Pretty.block | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 434 | [Pretty.str s, Pretty.str ":", Pretty.brk 1, | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 435 |        Pretty.enclose "(" ")" (Pretty.breaks (map pretty_term ts))];
 | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 436 | in | 
| 51579 | 437 | Pretty.writeln (Pretty.big_list "order structures:" (map pretty_struct structs)) | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 438 | end; | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 439 | |
| 56508 | 440 | val _ = | 
| 59936 
b8ffc3dc9e24
@{command_spec} is superseded by @{command_keyword};
 wenzelm parents: 
59582diff
changeset | 441 |   Outer_Syntax.command @{command_keyword print_orders}
 | 
| 56508 | 442 | "print order structures available to transitivity reasoner" | 
| 60097 
d20ca79d50e4
discontinued pointless warnings: commands are only defined inside a theory context;
 wenzelm parents: 
59936diff
changeset | 443 | (Scan.succeed (Toplevel.keep (print_structures o Toplevel.context_of))); | 
| 21091 | 444 | |
| 56508 | 445 | |
| 446 | (* tactics *) | |
| 447 | ||
| 448 | fun struct_tac ((s, ops), thms) ctxt facts = | |
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 449 | let | 
| 56508 | 450 | val [eq, le, less] = ops; | 
| 30107 
f3b3b0e3d184
Fixed nonexhaustive match problem in decomp, to make it fail more gracefully
 berghofe parents: 
29823diff
changeset | 451 |     fun decomp thy (@{const Trueprop} $ t) =
 | 
| 56508 | 452 | let | 
| 453 | fun excluded t = | |
| 454 | (* exclude numeric types: linear arithmetic subsumes transitivity *) | |
| 455 | let val T = type_of t | |
| 456 | in | |
| 457 | T = HOLogic.natT orelse T = HOLogic.intT orelse T = HOLogic.realT | |
| 458 | end; | |
| 459 | fun rel (bin_op $ t1 $ t2) = | |
| 460 | if excluded t1 then NONE | |
| 461 | else if Pattern.matches thy (eq, bin_op) then SOME (t1, "=", t2) | |
| 462 | else if Pattern.matches thy (le, bin_op) then SOME (t1, "<=", t2) | |
| 463 | else if Pattern.matches thy (less, bin_op) then SOME (t1, "<", t2) | |
| 464 | else NONE | |
| 465 | | rel _ = NONE; | |
| 466 |             fun dec (Const (@{const_name Not}, _) $ t) =
 | |
| 467 | (case rel t of NONE => | |
| 468 | NONE | |
| 469 | | SOME (t1, rel, t2) => SOME (t1, "~" ^ rel, t2)) | |
| 470 | | dec x = rel x; | |
| 471 | in dec t end | |
| 472 | | decomp _ _ = NONE; | |
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 473 | in | 
| 56508 | 474 | (case s of | 
| 475 | "order" => Order_Tac.partial_tac decomp thms ctxt facts | |
| 476 | | "linorder" => Order_Tac.linear_tac decomp thms ctxt facts | |
| 477 |     | _ => error ("Unknown order kind " ^ quote s ^ " encountered in transitivity reasoner"))
 | |
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 478 | end | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 479 | |
| 56508 | 480 | fun order_tac ctxt facts = | 
| 481 | FIRST' (map (fn s => CHANGED o struct_tac s ctxt facts) (Data.get (Context.Proof ctxt))); | |
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 482 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 483 | |
| 56508 | 484 | (* attributes *) | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 485 | |
| 58826 | 486 | fun add_struct s tag = | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 487 | Thm.declaration_attribute | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 488 | (fn thm => Data.map (AList.map_default struct_eq (s, Order_Tac.empty TrueI) (Order_Tac.update tag thm))); | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 489 | fun del_struct s = | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 490 | Thm.declaration_attribute | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 491 | (fn _ => Data.map (AList.delete struct_eq s)); | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 492 | |
| 21091 | 493 | end; | 
| 60758 | 494 | \<close> | 
| 21091 | 495 | |
| 60758 | 496 | attribute_setup order = \<open> | 
| 58826 | 497 | Scan.lift ((Args.add -- Args.name >> (fn (_, s) => SOME s) || Args.del >> K NONE) --| | 
| 498 | Args.colon (* FIXME || Scan.succeed true *) ) -- Scan.lift Args.name -- | |
| 499 | Scan.repeat Args.term | |
| 500 | >> (fn ((SOME tag, n), ts) => Orders.add_struct (n, ts) tag | |
| 501 | | ((NONE, n), ts) => Orders.del_struct (n, ts)) | |
| 60758 | 502 | \<close> "theorems controlling transitivity reasoner" | 
| 58826 | 503 | |
| 60758 | 504 | method_setup order = \<open> | 
| 47432 | 505 | Scan.succeed (fn ctxt => SIMPLE_METHOD' (Orders.order_tac ctxt [])) | 
| 60758 | 506 | \<close> "transitivity reasoner" | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 507 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 508 | |
| 60758 | 509 | text \<open>Declarations to set up transitivity reasoner of partial and linear orders.\<close> | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 510 | |
| 25076 | 511 | context order | 
| 512 | begin | |
| 513 | ||
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 514 | (* The type constraint on @{term op =} below is necessary since the operation
 | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 515 | is not a parameter of the locale. *) | 
| 25076 | 516 | |
| 27689 | 517 | declare less_irrefl [THEN notE, order add less_reflE: order "op = :: 'a \<Rightarrow> 'a \<Rightarrow> bool" "op <=" "op <"] | 
| 61824 
dcbe9f756ae0
not_leE -> not_le_imp_less and other tidying
 paulson <lp15@cam.ac.uk> parents: 
61799diff
changeset | 518 | |
| 27689 | 519 | declare order_refl [order add le_refl: order "op = :: 'a => 'a => bool" "op <=" "op <"] | 
| 61824 
dcbe9f756ae0
not_leE -> not_le_imp_less and other tidying
 paulson <lp15@cam.ac.uk> parents: 
61799diff
changeset | 520 | |
| 27689 | 521 | declare less_imp_le [order add less_imp_le: order "op = :: 'a => 'a => bool" "op <=" "op <"] | 
| 61824 
dcbe9f756ae0
not_leE -> not_le_imp_less and other tidying
 paulson <lp15@cam.ac.uk> parents: 
61799diff
changeset | 522 | |
| 27689 | 523 | declare antisym [order add eqI: order "op = :: 'a => 'a => bool" "op <=" "op <"] | 
| 524 | ||
| 525 | declare eq_refl [order add eqD1: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 526 | ||
| 527 | declare sym [THEN eq_refl, order add eqD2: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 528 | ||
| 529 | declare less_trans [order add less_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 61824 
dcbe9f756ae0
not_leE -> not_le_imp_less and other tidying
 paulson <lp15@cam.ac.uk> parents: 
61799diff
changeset | 530 | |
| 27689 | 531 | declare less_le_trans [order add less_le_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"] | 
| 61824 
dcbe9f756ae0
not_leE -> not_le_imp_less and other tidying
 paulson <lp15@cam.ac.uk> parents: 
61799diff
changeset | 532 | |
| 27689 | 533 | declare le_less_trans [order add le_less_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"] | 
| 534 | ||
| 535 | declare order_trans [order add le_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 536 | ||
| 537 | declare le_neq_trans [order add le_neq_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 538 | ||
| 539 | declare neq_le_trans [order add neq_le_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 540 | ||
| 541 | declare less_imp_neq [order add less_imp_neq: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 542 | ||
| 543 | declare eq_neq_eq_imp_neq [order add eq_neq_eq_imp_neq: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 544 | ||
| 545 | declare not_sym [order add not_sym: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 546 | |
| 25076 | 547 | end | 
| 548 | ||
| 549 | context linorder | |
| 550 | begin | |
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 551 | |
| 27689 | 552 | declare [[order del: order "op = :: 'a => 'a => bool" "op <=" "op <"]] | 
| 553 | ||
| 554 | declare less_irrefl [THEN notE, order add less_reflE: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 555 | ||
| 556 | declare order_refl [order add le_refl: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 557 | ||
| 558 | declare less_imp_le [order add less_imp_le: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 559 | ||
| 560 | declare not_less [THEN iffD2, order add not_lessI: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 561 | ||
| 562 | declare not_le [THEN iffD2, order add not_leI: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 563 | ||
| 564 | declare not_less [THEN iffD1, order add not_lessD: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 565 | ||
| 566 | declare not_le [THEN iffD1, order add not_leD: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 567 | ||
| 568 | declare antisym [order add eqI: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 569 | ||
| 570 | declare eq_refl [order add eqD1: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 25076 | 571 | |
| 27689 | 572 | declare sym [THEN eq_refl, order add eqD2: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | 
| 573 | ||
| 574 | declare less_trans [order add less_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 575 | ||
| 576 | declare less_le_trans [order add less_le_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 577 | ||
| 578 | declare le_less_trans [order add le_less_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 579 | ||
| 580 | declare order_trans [order add le_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 581 | ||
| 582 | declare le_neq_trans [order add le_neq_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 583 | ||
| 584 | declare neq_le_trans [order add neq_le_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 585 | ||
| 586 | declare less_imp_neq [order add less_imp_neq: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 587 | ||
| 588 | declare eq_neq_eq_imp_neq [order add eq_neq_eq_imp_neq: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 589 | ||
| 590 | declare not_sym [order add not_sym: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 591 | |
| 25076 | 592 | end | 
| 593 | ||
| 60758 | 594 | setup \<open> | 
| 56509 | 595 | map_theory_simpset (fn ctxt0 => ctxt0 addSolver | 
| 596 | mk_solver "Transitivity" (fn ctxt => Orders.order_tac ctxt (Simplifier.prems_of ctxt))) | |
| 597 | (*Adding the transitivity reasoners also as safe solvers showed a slight | |
| 598 | speed up, but the reasoning strength appears to be not higher (at least | |
| 599 | no breaking of additional proofs in the entire HOL distribution, as | |
| 600 | of 5 March 2004, was observed).*) | |
| 60758 | 601 | \<close> | 
| 15524 | 602 | |
| 60758 | 603 | ML \<open> | 
| 56509 | 604 | local | 
| 605 | fun prp t thm = Thm.prop_of thm = t; (* FIXME proper aconv!? *) | |
| 606 | in | |
| 15524 | 607 | |
| 56509 | 608 | fun antisym_le_simproc ctxt ct = | 
| 59582 | 609 | (case Thm.term_of ct of | 
| 56509 | 610 | (le as Const (_, T)) $ r $ s => | 
| 611 | (let | |
| 612 | val prems = Simplifier.prems_of ctxt; | |
| 613 |         val less = Const (@{const_name less}, T);
 | |
| 614 | val t = HOLogic.mk_Trueprop(le $ s $ r); | |
| 615 | in | |
| 616 | (case find_first (prp t) prems of | |
| 617 | NONE => | |
| 618 | let val t = HOLogic.mk_Trueprop(HOLogic.Not $ (less $ r $ s)) in | |
| 619 | (case find_first (prp t) prems of | |
| 620 | NONE => NONE | |
| 621 |               | SOME thm => SOME(mk_meta_eq(thm RS @{thm linorder_class.antisym_conv1})))
 | |
| 622 | end | |
| 623 |          | SOME thm => SOME (mk_meta_eq (thm RS @{thm order_class.antisym_conv})))
 | |
| 624 | end handle THM _ => NONE) | |
| 625 | | _ => NONE); | |
| 15524 | 626 | |
| 56509 | 627 | fun antisym_less_simproc ctxt ct = | 
| 59582 | 628 | (case Thm.term_of ct of | 
| 56509 | 629 | NotC $ ((less as Const(_,T)) $ r $ s) => | 
| 630 | (let | |
| 631 | val prems = Simplifier.prems_of ctxt; | |
| 632 |        val le = Const (@{const_name less_eq}, T);
 | |
| 633 | val t = HOLogic.mk_Trueprop(le $ r $ s); | |
| 634 | in | |
| 635 | (case find_first (prp t) prems of | |
| 636 | NONE => | |
| 637 | let val t = HOLogic.mk_Trueprop (NotC $ (less $ s $ r)) in | |
| 638 | (case find_first (prp t) prems of | |
| 639 | NONE => NONE | |
| 640 |               | SOME thm => SOME (mk_meta_eq(thm RS @{thm linorder_class.antisym_conv3})))
 | |
| 641 | end | |
| 642 |         | SOME thm => SOME (mk_meta_eq (thm RS @{thm linorder_class.antisym_conv2})))
 | |
| 643 | end handle THM _ => NONE) | |
| 644 | | _ => NONE); | |
| 21083 | 645 | |
| 56509 | 646 | end; | 
| 60758 | 647 | \<close> | 
| 15524 | 648 | |
| 56509 | 649 | simproc_setup antisym_le ("(x::'a::order) \<le> y") = "K antisym_le_simproc"
 | 
| 650 | simproc_setup antisym_less ("\<not> (x::'a::linorder) < y") = "K antisym_less_simproc"
 | |
| 651 | ||
| 15524 | 652 | |
| 60758 | 653 | subsection \<open>Bounded quantifiers\<close> | 
| 21083 | 654 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61824diff
changeset | 655 | syntax (ASCII) | 
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 656 |   "_All_less" :: "[idt, 'a, bool] => bool"    ("(3ALL _<_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 657 |   "_Ex_less" :: "[idt, 'a, bool] => bool"    ("(3EX _<_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 658 |   "_All_less_eq" :: "[idt, 'a, bool] => bool"    ("(3ALL _<=_./ _)" [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 659 |   "_Ex_less_eq" :: "[idt, 'a, bool] => bool"    ("(3EX _<=_./ _)" [0, 0, 10] 10)
 | 
| 21083 | 660 | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 661 |   "_All_greater" :: "[idt, 'a, bool] => bool"    ("(3ALL _>_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 662 |   "_Ex_greater" :: "[idt, 'a, bool] => bool"    ("(3EX _>_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 663 |   "_All_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3ALL _>=_./ _)" [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 664 |   "_Ex_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3EX _>=_./ _)" [0, 0, 10] 10)
 | 
| 21083 | 665 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61824diff
changeset | 666 | syntax | 
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 667 |   "_All_less" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_<_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 668 |   "_Ex_less" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_<_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 669 |   "_All_less_eq" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_\<le>_./ _)" [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 670 |   "_Ex_less_eq" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_\<le>_./ _)" [0, 0, 10] 10)
 | 
| 21083 | 671 | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 672 |   "_All_greater" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_>_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 673 |   "_Ex_greater" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_>_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 674 |   "_All_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_\<ge>_./ _)" [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 675 |   "_Ex_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_\<ge>_./ _)" [0, 0, 10] 10)
 | 
| 21083 | 676 | |
| 62521 | 677 | syntax (input) | 
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 678 |   "_All_less" :: "[idt, 'a, bool] => bool"    ("(3! _<_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 679 |   "_Ex_less" :: "[idt, 'a, bool] => bool"    ("(3? _<_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 680 |   "_All_less_eq" :: "[idt, 'a, bool] => bool"    ("(3! _<=_./ _)" [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 681 |   "_Ex_less_eq" :: "[idt, 'a, bool] => bool"    ("(3? _<=_./ _)" [0, 0, 10] 10)
 | 
| 21083 | 682 | |
| 683 | translations | |
| 684 | "ALL x<y. P" => "ALL x. x < y \<longrightarrow> P" | |
| 685 | "EX x<y. P" => "EX x. x < y \<and> P" | |
| 686 | "ALL x<=y. P" => "ALL x. x <= y \<longrightarrow> P" | |
| 687 | "EX x<=y. P" => "EX x. x <= y \<and> P" | |
| 688 | "ALL x>y. P" => "ALL x. x > y \<longrightarrow> P" | |
| 689 | "EX x>y. P" => "EX x. x > y \<and> P" | |
| 690 | "ALL x>=y. P" => "ALL x. x >= y \<longrightarrow> P" | |
| 691 | "EX x>=y. P" => "EX x. x >= y \<and> P" | |
| 692 | ||
| 60758 | 693 | print_translation \<open> | 
| 21083 | 694 | let | 
| 42287 
d98eb048a2e4
discontinued special treatment of structure Mixfix;
 wenzelm parents: 
42284diff
changeset | 695 |   val All_binder = Mixfix.binder_name @{const_syntax All};
 | 
| 
d98eb048a2e4
discontinued special treatment of structure Mixfix;
 wenzelm parents: 
42284diff
changeset | 696 |   val Ex_binder = Mixfix.binder_name @{const_syntax Ex};
 | 
| 38786 
e46e7a9cb622
formerly unnamed infix impliciation now named HOL.implies
 haftmann parents: 
38715diff
changeset | 697 |   val impl = @{const_syntax HOL.implies};
 | 
| 38795 
848be46708dc
formerly unnamed infix conjunction and disjunction now named HOL.conj and HOL.disj
 haftmann parents: 
38786diff
changeset | 698 |   val conj = @{const_syntax HOL.conj};
 | 
| 22916 | 699 |   val less = @{const_syntax less};
 | 
| 700 |   val less_eq = @{const_syntax less_eq};
 | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 701 | |
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 702 | val trans = | 
| 35115 | 703 | [((All_binder, impl, less), | 
| 704 |     (@{syntax_const "_All_less"}, @{syntax_const "_All_greater"})),
 | |
| 705 | ((All_binder, impl, less_eq), | |
| 706 |     (@{syntax_const "_All_less_eq"}, @{syntax_const "_All_greater_eq"})),
 | |
| 707 | ((Ex_binder, conj, less), | |
| 708 |     (@{syntax_const "_Ex_less"}, @{syntax_const "_Ex_greater"})),
 | |
| 709 | ((Ex_binder, conj, less_eq), | |
| 710 |     (@{syntax_const "_Ex_less_eq"}, @{syntax_const "_Ex_greater_eq"}))];
 | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 711 | |
| 35115 | 712 | fun matches_bound v t = | 
| 713 | (case t of | |
| 35364 | 714 |       Const (@{syntax_const "_bound"}, _) $ Free (v', _) => v = v'
 | 
| 35115 | 715 | | _ => false); | 
| 716 | fun contains_var v = Term.exists_subterm (fn Free (x, _) => x = v | _ => false); | |
| 49660 
de49d9b4d7bc
more explicit Syntax_Trans.mark_bound_abs/mark_bound_body: preserve type information for show_markup;
 wenzelm parents: 
48891diff
changeset | 717 | fun mk x c n P = Syntax.const c $ Syntax_Trans.mark_bound_body x $ n $ P; | 
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 718 | |
| 52143 | 719 | fun tr' q = (q, fn _ => | 
| 720 |     (fn [Const (@{syntax_const "_bound"}, _) $ Free (v, T),
 | |
| 35364 | 721 | Const (c, _) $ (Const (d, _) $ t $ u) $ P] => | 
| 35115 | 722 | (case AList.lookup (op =) trans (q, c, d) of | 
| 723 | NONE => raise Match | |
| 724 | | SOME (l, g) => | |
| 49660 
de49d9b4d7bc
more explicit Syntax_Trans.mark_bound_abs/mark_bound_body: preserve type information for show_markup;
 wenzelm parents: 
48891diff
changeset | 725 | if matches_bound v t andalso not (contains_var v u) then mk (v, T) l u P | 
| 
de49d9b4d7bc
more explicit Syntax_Trans.mark_bound_abs/mark_bound_body: preserve type information for show_markup;
 wenzelm parents: 
48891diff
changeset | 726 | else if matches_bound v u andalso not (contains_var v t) then mk (v, T) g t P | 
| 35115 | 727 | else raise Match) | 
| 52143 | 728 | | _ => raise Match)); | 
| 21524 | 729 | in [tr' All_binder, tr' Ex_binder] end | 
| 60758 | 730 | \<close> | 
| 21083 | 731 | |
| 732 | ||
| 60758 | 733 | subsection \<open>Transitivity reasoning\<close> | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 734 | |
| 25193 | 735 | context ord | 
| 736 | begin | |
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 737 | |
| 25193 | 738 | lemma ord_le_eq_trans: "a \<le> b \<Longrightarrow> b = c \<Longrightarrow> a \<le> c" | 
| 739 | by (rule subst) | |
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 740 | |
| 25193 | 741 | lemma ord_eq_le_trans: "a = b \<Longrightarrow> b \<le> c \<Longrightarrow> a \<le> c" | 
| 742 | by (rule ssubst) | |
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 743 | |
| 25193 | 744 | lemma ord_less_eq_trans: "a < b \<Longrightarrow> b = c \<Longrightarrow> a < c" | 
| 745 | by (rule subst) | |
| 746 | ||
| 747 | lemma ord_eq_less_trans: "a = b \<Longrightarrow> b < c \<Longrightarrow> a < c" | |
| 748 | by (rule ssubst) | |
| 749 | ||
| 750 | end | |
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 751 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 752 | lemma order_less_subst2: "(a::'a::order) < b ==> f b < (c::'c::order) ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 753 | (!!x y. x < y ==> f x < f y) ==> f a < c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 754 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 755 | assume r: "!!x y. x < y ==> f x < f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 756 | assume "a < b" hence "f a < f b" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 757 | also assume "f b < c" | 
| 34250 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 758 | finally (less_trans) show ?thesis . | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 759 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 760 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 761 | lemma order_less_subst1: "(a::'a::order) < f b ==> (b::'b::order) < c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 762 | (!!x y. x < y ==> f x < f y) ==> a < f c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 763 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 764 | assume r: "!!x y. x < y ==> f x < f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 765 | assume "a < f b" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 766 | also assume "b < c" hence "f b < f c" by (rule r) | 
| 34250 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 767 | finally (less_trans) show ?thesis . | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 768 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 769 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 770 | lemma order_le_less_subst2: "(a::'a::order) <= b ==> f b < (c::'c::order) ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 771 | (!!x y. x <= y ==> f x <= f y) ==> f a < c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 772 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 773 | assume r: "!!x y. x <= y ==> f x <= f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 774 | assume "a <= b" hence "f a <= f b" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 775 | also assume "f b < c" | 
| 34250 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 776 | finally (le_less_trans) show ?thesis . | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 777 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 778 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 779 | lemma order_le_less_subst1: "(a::'a::order) <= f b ==> (b::'b::order) < c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 780 | (!!x y. x < y ==> f x < f y) ==> a < f c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 781 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 782 | assume r: "!!x y. x < y ==> f x < f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 783 | assume "a <= f b" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 784 | also assume "b < c" hence "f b < f c" by (rule r) | 
| 34250 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 785 | finally (le_less_trans) show ?thesis . | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 786 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 787 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 788 | lemma order_less_le_subst2: "(a::'a::order) < b ==> f b <= (c::'c::order) ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 789 | (!!x y. x < y ==> f x < f y) ==> f a < c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 790 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 791 | assume r: "!!x y. x < y ==> f x < f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 792 | assume "a < b" hence "f a < f b" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 793 | also assume "f b <= c" | 
| 34250 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 794 | finally (less_le_trans) show ?thesis . | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 795 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 796 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 797 | lemma order_less_le_subst1: "(a::'a::order) < f b ==> (b::'b::order) <= c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 798 | (!!x y. x <= y ==> f x <= f y) ==> a < f c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 799 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 800 | assume r: "!!x y. x <= y ==> f x <= f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 801 | assume "a < f b" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 802 | also assume "b <= c" hence "f b <= f c" by (rule r) | 
| 34250 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 803 | finally (less_le_trans) show ?thesis . | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 804 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 805 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 806 | lemma order_subst1: "(a::'a::order) <= f b ==> (b::'b::order) <= c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 807 | (!!x y. x <= y ==> f x <= f y) ==> a <= f c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 808 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 809 | assume r: "!!x y. x <= y ==> f x <= f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 810 | assume "a <= f b" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 811 | also assume "b <= c" hence "f b <= f c" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 812 | finally (order_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 813 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 814 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 815 | lemma order_subst2: "(a::'a::order) <= b ==> f b <= (c::'c::order) ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 816 | (!!x y. x <= y ==> f x <= f y) ==> f a <= c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 817 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 818 | assume r: "!!x y. x <= y ==> f x <= f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 819 | assume "a <= b" hence "f a <= f b" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 820 | also assume "f b <= c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 821 | finally (order_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 822 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 823 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 824 | lemma ord_le_eq_subst: "a <= b ==> f b = c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 825 | (!!x y. x <= y ==> f x <= f y) ==> f a <= c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 826 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 827 | assume r: "!!x y. x <= y ==> f x <= f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 828 | assume "a <= b" hence "f a <= f b" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 829 | also assume "f b = c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 830 | finally (ord_le_eq_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 831 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 832 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 833 | lemma ord_eq_le_subst: "a = f b ==> b <= c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 834 | (!!x y. x <= y ==> f x <= f y) ==> a <= f c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 835 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 836 | assume r: "!!x y. x <= y ==> f x <= f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 837 | assume "a = f b" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 838 | also assume "b <= c" hence "f b <= f c" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 839 | finally (ord_eq_le_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 840 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 841 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 842 | lemma ord_less_eq_subst: "a < b ==> f b = c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 843 | (!!x y. x < y ==> f x < f y) ==> f a < c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 844 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 845 | assume r: "!!x y. x < y ==> f x < f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 846 | assume "a < b" hence "f a < f b" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 847 | also assume "f b = c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 848 | finally (ord_less_eq_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 849 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 850 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 851 | lemma ord_eq_less_subst: "a = f b ==> b < c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 852 | (!!x y. x < y ==> f x < f y) ==> a < f c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 853 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 854 | assume r: "!!x y. x < y ==> f x < f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 855 | assume "a = f b" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 856 | also assume "b < c" hence "f b < f c" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 857 | finally (ord_eq_less_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 858 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 859 | |
| 60758 | 860 | text \<open> | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 861 | Note that this list of rules is in reverse order of priorities. | 
| 60758 | 862 | \<close> | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 863 | |
| 27682 | 864 | lemmas [trans] = | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 865 | order_less_subst2 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 866 | order_less_subst1 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 867 | order_le_less_subst2 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 868 | order_le_less_subst1 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 869 | order_less_le_subst2 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 870 | order_less_le_subst1 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 871 | order_subst2 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 872 | order_subst1 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 873 | ord_le_eq_subst | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 874 | ord_eq_le_subst | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 875 | ord_less_eq_subst | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 876 | ord_eq_less_subst | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 877 | forw_subst | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 878 | back_subst | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 879 | rev_mp | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 880 | mp | 
| 27682 | 881 | |
| 882 | lemmas (in order) [trans] = | |
| 883 | neq_le_trans | |
| 884 | le_neq_trans | |
| 885 | ||
| 886 | lemmas (in preorder) [trans] = | |
| 887 | less_trans | |
| 888 | less_asym' | |
| 889 | le_less_trans | |
| 890 | less_le_trans | |
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 891 | order_trans | 
| 27682 | 892 | |
| 893 | lemmas (in order) [trans] = | |
| 894 | antisym | |
| 895 | ||
| 896 | lemmas (in ord) [trans] = | |
| 897 | ord_le_eq_trans | |
| 898 | ord_eq_le_trans | |
| 899 | ord_less_eq_trans | |
| 900 | ord_eq_less_trans | |
| 901 | ||
| 902 | lemmas [trans] = | |
| 903 | trans | |
| 904 | ||
| 905 | lemmas order_trans_rules = | |
| 906 | order_less_subst2 | |
| 907 | order_less_subst1 | |
| 908 | order_le_less_subst2 | |
| 909 | order_le_less_subst1 | |
| 910 | order_less_le_subst2 | |
| 911 | order_less_le_subst1 | |
| 912 | order_subst2 | |
| 913 | order_subst1 | |
| 914 | ord_le_eq_subst | |
| 915 | ord_eq_le_subst | |
| 916 | ord_less_eq_subst | |
| 917 | ord_eq_less_subst | |
| 918 | forw_subst | |
| 919 | back_subst | |
| 920 | rev_mp | |
| 921 | mp | |
| 922 | neq_le_trans | |
| 923 | le_neq_trans | |
| 924 | less_trans | |
| 925 | less_asym' | |
| 926 | le_less_trans | |
| 927 | less_le_trans | |
| 928 | order_trans | |
| 929 | antisym | |
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 930 | ord_le_eq_trans | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 931 | ord_eq_le_trans | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 932 | ord_less_eq_trans | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 933 | ord_eq_less_trans | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 934 | trans | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 935 | |
| 60758 | 936 | text \<open>These support proving chains of decreasing inequalities | 
| 937 | a >= b >= c ... in Isar proofs.\<close> | |
| 21083 | 938 | |
| 45221 
3eadb9b6a055
mark "xt..." rules as "no_atp", since they are easy consequences of other better named properties
 blanchet parents: 
44921diff
changeset | 939 | lemma xt1 [no_atp]: | 
| 21083 | 940 | "a = b ==> b > c ==> a > c" | 
| 941 | "a > b ==> b = c ==> a > c" | |
| 942 | "a = b ==> b >= c ==> a >= c" | |
| 943 | "a >= b ==> b = c ==> a >= c" | |
| 944 | "(x::'a::order) >= y ==> y >= x ==> x = y" | |
| 945 | "(x::'a::order) >= y ==> y >= z ==> x >= z" | |
| 946 | "(x::'a::order) > y ==> y >= z ==> x > z" | |
| 947 | "(x::'a::order) >= y ==> y > z ==> x > z" | |
| 23417 | 948 | "(a::'a::order) > b ==> b > a ==> P" | 
| 21083 | 949 | "(x::'a::order) > y ==> y > z ==> x > z" | 
| 950 | "(a::'a::order) >= b ==> a ~= b ==> a > b" | |
| 951 | "(a::'a::order) ~= b ==> a >= b ==> a > b" | |
| 61824 
dcbe9f756ae0
not_leE -> not_le_imp_less and other tidying
 paulson <lp15@cam.ac.uk> parents: 
61799diff
changeset | 952 | "a = f b ==> b > c ==> (!!x y. x > y ==> f x > f y) ==> a > f c" | 
| 21083 | 953 | "a > b ==> f b = c ==> (!!x y. x > y ==> f x > f y) ==> f a > c" | 
| 954 | "a = f b ==> b >= c ==> (!!x y. x >= y ==> f x >= f y) ==> a >= f c" | |
| 955 | "a >= b ==> f b = c ==> (!! x y. x >= y ==> f x >= f y) ==> f a >= c" | |
| 25076 | 956 | by auto | 
| 21083 | 957 | |
| 45221 
3eadb9b6a055
mark "xt..." rules as "no_atp", since they are easy consequences of other better named properties
 blanchet parents: 
44921diff
changeset | 958 | lemma xt2 [no_atp]: | 
| 21083 | 959 | "(a::'a::order) >= f b ==> b >= c ==> (!!x y. x >= y ==> f x >= f y) ==> a >= f c" | 
| 960 | by (subgoal_tac "f b >= f c", force, force) | |
| 961 | ||
| 45221 
3eadb9b6a055
mark "xt..." rules as "no_atp", since they are easy consequences of other better named properties
 blanchet parents: 
44921diff
changeset | 962 | lemma xt3 [no_atp]: "(a::'a::order) >= b ==> (f b::'b::order) >= c ==> | 
| 21083 | 963 | (!!x y. x >= y ==> f x >= f y) ==> f a >= c" | 
| 964 | by (subgoal_tac "f a >= f b", force, force) | |
| 965 | ||
| 45221 
3eadb9b6a055
mark "xt..." rules as "no_atp", since they are easy consequences of other better named properties
 blanchet parents: 
44921diff
changeset | 966 | lemma xt4 [no_atp]: "(a::'a::order) > f b ==> (b::'b::order) >= c ==> | 
| 21083 | 967 | (!!x y. x >= y ==> f x >= f y) ==> a > f c" | 
| 968 | by (subgoal_tac "f b >= f c", force, force) | |
| 969 | ||
| 45221 
3eadb9b6a055
mark "xt..." rules as "no_atp", since they are easy consequences of other better named properties
 blanchet parents: 
44921diff
changeset | 970 | lemma xt5 [no_atp]: "(a::'a::order) > b ==> (f b::'b::order) >= c==> | 
| 21083 | 971 | (!!x y. x > y ==> f x > f y) ==> f a > c" | 
| 972 | by (subgoal_tac "f a > f b", force, force) | |
| 973 | ||
| 45221 
3eadb9b6a055
mark "xt..." rules as "no_atp", since they are easy consequences of other better named properties
 blanchet parents: 
44921diff
changeset | 974 | lemma xt6 [no_atp]: "(a::'a::order) >= f b ==> b > c ==> | 
| 21083 | 975 | (!!x y. x > y ==> f x > f y) ==> a > f c" | 
| 976 | by (subgoal_tac "f b > f c", force, force) | |
| 977 | ||
| 45221 
3eadb9b6a055
mark "xt..." rules as "no_atp", since they are easy consequences of other better named properties
 blanchet parents: 
44921diff
changeset | 978 | lemma xt7 [no_atp]: "(a::'a::order) >= b ==> (f b::'b::order) > c ==> | 
| 21083 | 979 | (!!x y. x >= y ==> f x >= f y) ==> f a > c" | 
| 980 | by (subgoal_tac "f a >= f b", force, force) | |
| 981 | ||
| 45221 
3eadb9b6a055
mark "xt..." rules as "no_atp", since they are easy consequences of other better named properties
 blanchet parents: 
44921diff
changeset | 982 | lemma xt8 [no_atp]: "(a::'a::order) > f b ==> (b::'b::order) > c ==> | 
| 21083 | 983 | (!!x y. x > y ==> f x > f y) ==> a > f c" | 
| 984 | by (subgoal_tac "f b > f c", force, force) | |
| 985 | ||
| 45221 
3eadb9b6a055
mark "xt..." rules as "no_atp", since they are easy consequences of other better named properties
 blanchet parents: 
44921diff
changeset | 986 | lemma xt9 [no_atp]: "(a::'a::order) > b ==> (f b::'b::order) > c ==> | 
| 21083 | 987 | (!!x y. x > y ==> f x > f y) ==> f a > c" | 
| 988 | by (subgoal_tac "f a > f b", force, force) | |
| 989 | ||
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
53216diff
changeset | 990 | lemmas xtrans = xt1 xt2 xt3 xt4 xt5 xt6 xt7 xt8 xt9 | 
| 21083 | 991 | |
| 61824 
dcbe9f756ae0
not_leE -> not_le_imp_less and other tidying
 paulson <lp15@cam.ac.uk> parents: 
61799diff
changeset | 992 | (* | 
| 21083 | 993 | Since "a >= b" abbreviates "b <= a", the abbreviation "..." stands | 
| 994 | for the wrong thing in an Isar proof. | |
| 995 | ||
| 61824 
dcbe9f756ae0
not_leE -> not_le_imp_less and other tidying
 paulson <lp15@cam.ac.uk> parents: 
61799diff
changeset | 996 | The extra transitivity rules can be used as follows: | 
| 21083 | 997 | |
| 998 | lemma "(a::'a::order) > z" | |
| 999 | proof - | |
| 1000 | have "a >= b" (is "_ >= ?rhs") | |
| 1001 | sorry | |
| 1002 | also have "?rhs >= c" (is "_ >= ?rhs") | |
| 1003 | sorry | |
| 1004 | also (xtrans) have "?rhs = d" (is "_ = ?rhs") | |
| 1005 | sorry | |
| 1006 | also (xtrans) have "?rhs >= e" (is "_ >= ?rhs") | |
| 1007 | sorry | |
| 1008 | also (xtrans) have "?rhs > f" (is "_ > ?rhs") | |
| 1009 | sorry | |
| 1010 | also (xtrans) have "?rhs > z" | |
| 1011 | sorry | |
| 1012 | finally (xtrans) show ?thesis . | |
| 1013 | qed | |
| 1014 | ||
| 1015 | Alternatively, one can use "declare xtrans [trans]" and then | |
| 1016 | leave out the "(xtrans)" above. | |
| 1017 | *) | |
| 1018 | ||
| 23881 | 1019 | |
| 60758 | 1020 | subsection \<open>Monotonicity\<close> | 
| 21083 | 1021 | |
| 25076 | 1022 | context order | 
| 1023 | begin | |
| 1024 | ||
| 61076 | 1025 | definition mono :: "('a \<Rightarrow> 'b::order) \<Rightarrow> bool" where
 | 
| 25076 | 1026 | "mono f \<longleftrightarrow> (\<forall>x y. x \<le> y \<longrightarrow> f x \<le> f y)" | 
| 1027 | ||
| 1028 | lemma monoI [intro?]: | |
| 61076 | 1029 | fixes f :: "'a \<Rightarrow> 'b::order" | 
| 25076 | 1030 | shows "(\<And>x y. x \<le> y \<Longrightarrow> f x \<le> f y) \<Longrightarrow> mono f" | 
| 1031 | unfolding mono_def by iprover | |
| 21216 
1c8580913738
made locale partial_order compatible with axclass order; changed import order; consecutive changes
 haftmann parents: 
21204diff
changeset | 1032 | |
| 25076 | 1033 | lemma monoD [dest?]: | 
| 61076 | 1034 | fixes f :: "'a \<Rightarrow> 'b::order" | 
| 25076 | 1035 | shows "mono f \<Longrightarrow> x \<le> y \<Longrightarrow> f x \<le> f y" | 
| 1036 | unfolding mono_def by iprover | |
| 1037 | ||
| 51263 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1038 | lemma monoE: | 
| 61076 | 1039 | fixes f :: "'a \<Rightarrow> 'b::order" | 
| 51263 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1040 | assumes "mono f" | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1041 | assumes "x \<le> y" | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1042 | obtains "f x \<le> f y" | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1043 | proof | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1044 | from assms show "f x \<le> f y" by (simp add: mono_def) | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1045 | qed | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1046 | |
| 61076 | 1047 | definition antimono :: "('a \<Rightarrow> 'b::order) \<Rightarrow> bool" where
 | 
| 56020 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
54868diff
changeset | 1048 | "antimono f \<longleftrightarrow> (\<forall>x y. x \<le> y \<longrightarrow> f x \<ge> f y)" | 
| 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
54868diff
changeset | 1049 | |
| 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
54868diff
changeset | 1050 | lemma antimonoI [intro?]: | 
| 61076 | 1051 | fixes f :: "'a \<Rightarrow> 'b::order" | 
| 56020 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
54868diff
changeset | 1052 | shows "(\<And>x y. x \<le> y \<Longrightarrow> f x \<ge> f y) \<Longrightarrow> antimono f" | 
| 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
54868diff
changeset | 1053 | unfolding antimono_def by iprover | 
| 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
54868diff
changeset | 1054 | |
| 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
54868diff
changeset | 1055 | lemma antimonoD [dest?]: | 
| 61076 | 1056 | fixes f :: "'a \<Rightarrow> 'b::order" | 
| 56020 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
54868diff
changeset | 1057 | shows "antimono f \<Longrightarrow> x \<le> y \<Longrightarrow> f x \<ge> f y" | 
| 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
54868diff
changeset | 1058 | unfolding antimono_def by iprover | 
| 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
54868diff
changeset | 1059 | |
| 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
54868diff
changeset | 1060 | lemma antimonoE: | 
| 61076 | 1061 | fixes f :: "'a \<Rightarrow> 'b::order" | 
| 56020 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
54868diff
changeset | 1062 | assumes "antimono f" | 
| 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
54868diff
changeset | 1063 | assumes "x \<le> y" | 
| 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
54868diff
changeset | 1064 | obtains "f x \<ge> f y" | 
| 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
54868diff
changeset | 1065 | proof | 
| 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
54868diff
changeset | 1066 | from assms show "f x \<ge> f y" by (simp add: antimono_def) | 
| 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
54868diff
changeset | 1067 | qed | 
| 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
54868diff
changeset | 1068 | |
| 61076 | 1069 | definition strict_mono :: "('a \<Rightarrow> 'b::order) \<Rightarrow> bool" where
 | 
| 30298 | 1070 | "strict_mono f \<longleftrightarrow> (\<forall>x y. x < y \<longrightarrow> f x < f y)" | 
| 1071 | ||
| 1072 | lemma strict_monoI [intro?]: | |
| 1073 | assumes "\<And>x y. x < y \<Longrightarrow> f x < f y" | |
| 1074 | shows "strict_mono f" | |
| 1075 | using assms unfolding strict_mono_def by auto | |
| 1076 | ||
| 1077 | lemma strict_monoD [dest?]: | |
| 1078 | "strict_mono f \<Longrightarrow> x < y \<Longrightarrow> f x < f y" | |
| 1079 | unfolding strict_mono_def by auto | |
| 1080 | ||
| 1081 | lemma strict_mono_mono [dest?]: | |
| 1082 | assumes "strict_mono f" | |
| 1083 | shows "mono f" | |
| 1084 | proof (rule monoI) | |
| 1085 | fix x y | |
| 1086 | assume "x \<le> y" | |
| 1087 | show "f x \<le> f y" | |
| 1088 | proof (cases "x = y") | |
| 1089 | case True then show ?thesis by simp | |
| 1090 | next | |
| 60758 | 1091 | case False with \<open>x \<le> y\<close> have "x < y" by simp | 
| 30298 | 1092 | with assms strict_monoD have "f x < f y" by auto | 
| 1093 | then show ?thesis by simp | |
| 1094 | qed | |
| 1095 | qed | |
| 1096 | ||
| 25076 | 1097 | end | 
| 1098 | ||
| 1099 | context linorder | |
| 1100 | begin | |
| 1101 | ||
| 51263 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1102 | lemma mono_invE: | 
| 61076 | 1103 | fixes f :: "'a \<Rightarrow> 'b::order" | 
| 51263 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1104 | assumes "mono f" | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1105 | assumes "f x < f y" | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1106 | obtains "x \<le> y" | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1107 | proof | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1108 | show "x \<le> y" | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1109 | proof (rule ccontr) | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1110 | assume "\<not> x \<le> y" | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1111 | then have "y \<le> x" by simp | 
| 60758 | 1112 | with \<open>mono f\<close> obtain "f y \<le> f x" by (rule monoE) | 
| 1113 | with \<open>f x < f y\<close> show False by simp | |
| 51263 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1114 | qed | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1115 | qed | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1116 | |
| 30298 | 1117 | lemma strict_mono_eq: | 
| 1118 | assumes "strict_mono f" | |
| 1119 | shows "f x = f y \<longleftrightarrow> x = y" | |
| 1120 | proof | |
| 1121 | assume "f x = f y" | |
| 1122 | show "x = y" proof (cases x y rule: linorder_cases) | |
| 1123 | case less with assms strict_monoD have "f x < f y" by auto | |
| 60758 | 1124 | with \<open>f x = f y\<close> show ?thesis by simp | 
| 30298 | 1125 | next | 
| 1126 | case equal then show ?thesis . | |
| 1127 | next | |
| 1128 | case greater with assms strict_monoD have "f y < f x" by auto | |
| 60758 | 1129 | with \<open>f x = f y\<close> show ?thesis by simp | 
| 30298 | 1130 | qed | 
| 1131 | qed simp | |
| 1132 | ||
| 1133 | lemma strict_mono_less_eq: | |
| 1134 | assumes "strict_mono f" | |
| 1135 | shows "f x \<le> f y \<longleftrightarrow> x \<le> y" | |
| 1136 | proof | |
| 1137 | assume "x \<le> y" | |
| 1138 | with assms strict_mono_mono monoD show "f x \<le> f y" by auto | |
| 1139 | next | |
| 1140 | assume "f x \<le> f y" | |
| 1141 | show "x \<le> y" proof (rule ccontr) | |
| 1142 | assume "\<not> x \<le> y" then have "y < x" by simp | |
| 1143 | with assms strict_monoD have "f y < f x" by auto | |
| 60758 | 1144 | with \<open>f x \<le> f y\<close> show False by simp | 
| 30298 | 1145 | qed | 
| 1146 | qed | |
| 61824 
dcbe9f756ae0
not_leE -> not_le_imp_less and other tidying
 paulson <lp15@cam.ac.uk> parents: 
61799diff
changeset | 1147 | |
| 30298 | 1148 | lemma strict_mono_less: | 
| 1149 | assumes "strict_mono f" | |
| 1150 | shows "f x < f y \<longleftrightarrow> x < y" | |
| 1151 | using assms | |
| 1152 | by (auto simp add: less_le Orderings.less_le strict_mono_eq strict_mono_less_eq) | |
| 1153 | ||
| 54860 | 1154 | end | 
| 1155 | ||
| 1156 | ||
| 60758 | 1157 | subsection \<open>min and max -- fundamental\<close> | 
| 54860 | 1158 | |
| 1159 | definition (in ord) min :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" where | |
| 1160 | "min a b = (if a \<le> b then a else b)" | |
| 1161 | ||
| 1162 | definition (in ord) max :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" where | |
| 1163 | "max a b = (if a \<le> b then b else a)" | |
| 1164 | ||
| 45931 | 1165 | lemma min_absorb1: "x \<le> y \<Longrightarrow> min x y = x" | 
| 54861 
00d551179872
postponed min/max lemmas until abstract lattice is available
 haftmann parents: 
54860diff
changeset | 1166 | by (simp add: min_def) | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 1167 | |
| 54857 | 1168 | lemma max_absorb2: "x \<le> y \<Longrightarrow> max x y = y" | 
| 54861 
00d551179872
postponed min/max lemmas until abstract lattice is available
 haftmann parents: 
54860diff
changeset | 1169 | by (simp add: max_def) | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 1170 | |
| 61076 | 1171 | lemma min_absorb2: "(y::'a::order) \<le> x \<Longrightarrow> min x y = y" | 
| 54861 
00d551179872
postponed min/max lemmas until abstract lattice is available
 haftmann parents: 
54860diff
changeset | 1172 | by (simp add:min_def) | 
| 45893 | 1173 | |
| 61076 | 1174 | lemma max_absorb1: "(y::'a::order) \<le> x \<Longrightarrow> max x y = x" | 
| 54861 
00d551179872
postponed min/max lemmas until abstract lattice is available
 haftmann parents: 
54860diff
changeset | 1175 | by (simp add: max_def) | 
| 45893 | 1176 | |
| 61630 | 1177 | lemma max_min_same [simp]: | 
| 1178 | fixes x y :: "'a :: linorder" | |
| 1179 | shows "max x (min x y) = x" "max (min x y) x = x" "max (min x y) y = y" "max y (min x y) = y" | |
| 1180 | by(auto simp add: max_def min_def) | |
| 45893 | 1181 | |
| 60758 | 1182 | subsection \<open>(Unique) top and bottom elements\<close> | 
| 28685 | 1183 | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1184 | class bot = | 
| 43853 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1185 |   fixes bot :: 'a ("\<bottom>")
 | 
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1186 | |
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1187 | class order_bot = order + bot + | 
| 51487 | 1188 | assumes bot_least: "\<bottom> \<le> a" | 
| 54868 | 1189 | begin | 
| 51487 | 1190 | |
| 61605 | 1191 | sublocale bot: ordering_top greater_eq greater bot | 
| 61169 | 1192 | by standard (fact bot_least) | 
| 51487 | 1193 | |
| 43853 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1194 | lemma le_bot: | 
| 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1195 | "a \<le> \<bottom> \<Longrightarrow> a = \<bottom>" | 
| 51487 | 1196 | by (fact bot.extremum_uniqueI) | 
| 43853 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1197 | |
| 43816 | 1198 | lemma bot_unique: | 
| 43853 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1199 | "a \<le> \<bottom> \<longleftrightarrow> a = \<bottom>" | 
| 51487 | 1200 | by (fact bot.extremum_unique) | 
| 43853 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1201 | |
| 51487 | 1202 | lemma not_less_bot: | 
| 1203 | "\<not> a < \<bottom>" | |
| 1204 | by (fact bot.extremum_strict) | |
| 43816 | 1205 | |
| 43814 
58791b75cf1f
moved lemmas bot_less and less_top to classes bot and top respectively
 haftmann parents: 
43813diff
changeset | 1206 | lemma bot_less: | 
| 43853 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1207 | "a \<noteq> \<bottom> \<longleftrightarrow> \<bottom> < a" | 
| 51487 | 1208 | by (fact bot.not_eq_extremum) | 
| 43814 
58791b75cf1f
moved lemmas bot_less and less_top to classes bot and top respectively
 haftmann parents: 
43813diff
changeset | 1209 | |
| 
58791b75cf1f
moved lemmas bot_less and less_top to classes bot and top respectively
 haftmann parents: 
43813diff
changeset | 1210 | end | 
| 41082 | 1211 | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1212 | class top = | 
| 43853 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1213 |   fixes top :: 'a ("\<top>")
 | 
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1214 | |
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1215 | class order_top = order + top + | 
| 51487 | 1216 | assumes top_greatest: "a \<le> \<top>" | 
| 54868 | 1217 | begin | 
| 51487 | 1218 | |
| 61605 | 1219 | sublocale top: ordering_top less_eq less top | 
| 61169 | 1220 | by standard (fact top_greatest) | 
| 51487 | 1221 | |
| 43853 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1222 | lemma top_le: | 
| 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1223 | "\<top> \<le> a \<Longrightarrow> a = \<top>" | 
| 51487 | 1224 | by (fact top.extremum_uniqueI) | 
| 43853 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1225 | |
| 43816 | 1226 | lemma top_unique: | 
| 43853 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1227 | "\<top> \<le> a \<longleftrightarrow> a = \<top>" | 
| 51487 | 1228 | by (fact top.extremum_unique) | 
| 43853 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1229 | |
| 51487 | 1230 | lemma not_top_less: | 
| 1231 | "\<not> \<top> < a" | |
| 1232 | by (fact top.extremum_strict) | |
| 43816 | 1233 | |
| 43814 
58791b75cf1f
moved lemmas bot_less and less_top to classes bot and top respectively
 haftmann parents: 
43813diff
changeset | 1234 | lemma less_top: | 
| 43853 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1235 | "a \<noteq> \<top> \<longleftrightarrow> a < \<top>" | 
| 51487 | 1236 | by (fact top.not_eq_extremum) | 
| 43814 
58791b75cf1f
moved lemmas bot_less and less_top to classes bot and top respectively
 haftmann parents: 
43813diff
changeset | 1237 | |
| 
58791b75cf1f
moved lemmas bot_less and less_top to classes bot and top respectively
 haftmann parents: 
43813diff
changeset | 1238 | end | 
| 28685 | 1239 | |
| 1240 | ||
| 60758 | 1241 | subsection \<open>Dense orders\<close> | 
| 27823 | 1242 | |
| 53216 | 1243 | class dense_order = order + | 
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1244 | assumes dense: "x < y \<Longrightarrow> (\<exists>z. x < z \<and> z < y)" | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1245 | |
| 53216 | 1246 | class dense_linorder = linorder + dense_order | 
| 35579 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1247 | begin | 
| 27823 | 1248 | |
| 35579 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1249 | lemma dense_le: | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1250 | fixes y z :: 'a | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1251 | assumes "\<And>x. x < y \<Longrightarrow> x \<le> z" | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1252 | shows "y \<le> z" | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1253 | proof (rule ccontr) | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1254 | assume "\<not> ?thesis" | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1255 | hence "z < y" by simp | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1256 | from dense[OF this] | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1257 | obtain x where "x < y" and "z < x" by safe | 
| 60758 | 1258 | moreover have "x \<le> z" using assms[OF \<open>x < y\<close>] . | 
| 35579 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1259 | ultimately show False by auto | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1260 | qed | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1261 | |
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1262 | lemma dense_le_bounded: | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1263 | fixes x y z :: 'a | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1264 | assumes "x < y" | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1265 | assumes *: "\<And>w. \<lbrakk> x < w ; w < y \<rbrakk> \<Longrightarrow> w \<le> z" | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1266 | shows "y \<le> z" | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1267 | proof (rule dense_le) | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1268 | fix w assume "w < y" | 
| 60758 | 1269 | from dense[OF \<open>x < y\<close>] obtain u where "x < u" "u < y" by safe | 
| 35579 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1270 | from linear[of u w] | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1271 | show "w \<le> z" | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1272 | proof (rule disjE) | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1273 | assume "u \<le> w" | 
| 60758 | 1274 | from less_le_trans[OF \<open>x < u\<close> \<open>u \<le> w\<close>] \<open>w < y\<close> | 
| 35579 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1275 | show "w \<le> z" by (rule *) | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1276 | next | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1277 | assume "w \<le> u" | 
| 60758 | 1278 | from \<open>w \<le> u\<close> *[OF \<open>x < u\<close> \<open>u < y\<close>] | 
| 35579 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1279 | show "w \<le> z" by (rule order_trans) | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1280 | qed | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1281 | qed | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1282 | |
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1283 | lemma dense_ge: | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1284 | fixes y z :: 'a | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1285 | assumes "\<And>x. z < x \<Longrightarrow> y \<le> x" | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1286 | shows "y \<le> z" | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1287 | proof (rule ccontr) | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1288 | assume "\<not> ?thesis" | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1289 | hence "z < y" by simp | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1290 | from dense[OF this] | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1291 | obtain x where "x < y" and "z < x" by safe | 
| 60758 | 1292 | moreover have "y \<le> x" using assms[OF \<open>z < x\<close>] . | 
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1293 | ultimately show False by auto | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1294 | qed | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1295 | |
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1296 | lemma dense_ge_bounded: | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1297 | fixes x y z :: 'a | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1298 | assumes "z < x" | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1299 | assumes *: "\<And>w. \<lbrakk> z < w ; w < x \<rbrakk> \<Longrightarrow> y \<le> w" | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1300 | shows "y \<le> z" | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1301 | proof (rule dense_ge) | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1302 | fix w assume "z < w" | 
| 60758 | 1303 | from dense[OF \<open>z < x\<close>] obtain u where "z < u" "u < x" by safe | 
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1304 | from linear[of u w] | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1305 | show "y \<le> w" | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1306 | proof (rule disjE) | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1307 | assume "w \<le> u" | 
| 60758 | 1308 | from \<open>z < w\<close> le_less_trans[OF \<open>w \<le> u\<close> \<open>u < x\<close>] | 
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1309 | show "y \<le> w" by (rule *) | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1310 | next | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1311 | assume "u \<le> w" | 
| 60758 | 1312 | from *[OF \<open>z < u\<close> \<open>u < x\<close>] \<open>u \<le> w\<close> | 
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1313 | show "y \<le> w" by (rule order_trans) | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1314 | qed | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1315 | qed | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1316 | |
| 35579 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1317 | end | 
| 27823 | 1318 | |
| 61824 
dcbe9f756ae0
not_leE -> not_le_imp_less and other tidying
 paulson <lp15@cam.ac.uk> parents: 
61799diff
changeset | 1319 | class no_top = order + | 
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1320 | assumes gt_ex: "\<exists>y. x < y" | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1321 | |
| 61824 
dcbe9f756ae0
not_leE -> not_le_imp_less and other tidying
 paulson <lp15@cam.ac.uk> parents: 
61799diff
changeset | 1322 | class no_bot = order + | 
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1323 | assumes lt_ex: "\<exists>y. y < x" | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1324 | |
| 53216 | 1325 | class unbounded_dense_linorder = dense_linorder + no_top + no_bot | 
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1326 | |
| 51546 
2e26df807dc7
more uniform style for interpretation and sublocale declarations
 haftmann parents: 
51487diff
changeset | 1327 | |
| 60758 | 1328 | subsection \<open>Wellorders\<close> | 
| 27823 | 1329 | |
| 1330 | class wellorder = linorder + | |
| 1331 | assumes less_induct [case_names less]: "(\<And>x. (\<And>y. y < x \<Longrightarrow> P y) \<Longrightarrow> P x) \<Longrightarrow> P a" | |
| 1332 | begin | |
| 1333 | ||
| 1334 | lemma wellorder_Least_lemma: | |
| 1335 | fixes k :: 'a | |
| 1336 | assumes "P k" | |
| 34250 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1337 | shows LeastI: "P (LEAST x. P x)" and Least_le: "(LEAST x. P x) \<le> k" | 
| 27823 | 1338 | proof - | 
| 1339 | have "P (LEAST x. P x) \<and> (LEAST x. P x) \<le> k" | |
| 1340 | using assms proof (induct k rule: less_induct) | |
| 1341 | case (less x) then have "P x" by simp | |
| 1342 | show ?case proof (rule classical) | |
| 1343 | assume assm: "\<not> (P (LEAST a. P a) \<and> (LEAST a. P a) \<le> x)" | |
| 1344 | have "\<And>y. P y \<Longrightarrow> x \<le> y" | |
| 1345 | proof (rule classical) | |
| 1346 | fix y | |
| 38705 | 1347 | assume "P y" and "\<not> x \<le> y" | 
| 27823 | 1348 | with less have "P (LEAST a. P a)" and "(LEAST a. P a) \<le> y" | 
| 1349 | by (auto simp add: not_le) | |
| 1350 | with assm have "x < (LEAST a. P a)" and "(LEAST a. P a) \<le> y" | |
| 1351 | by auto | |
| 1352 | then show "x \<le> y" by auto | |
| 1353 | qed | |
| 60758 | 1354 | with \<open>P x\<close> have Least: "(LEAST a. P a) = x" | 
| 27823 | 1355 | by (rule Least_equality) | 
| 60758 | 1356 | with \<open>P x\<close> show ?thesis by simp | 
| 27823 | 1357 | qed | 
| 1358 | qed | |
| 1359 | then show "P (LEAST x. P x)" and "(LEAST x. P x) \<le> k" by auto | |
| 1360 | qed | |
| 1361 | ||
| 61799 | 1362 | \<comment> "The following 3 lemmas are due to Brian Huffman" | 
| 27823 | 1363 | lemma LeastI_ex: "\<exists>x. P x \<Longrightarrow> P (Least P)" | 
| 1364 | by (erule exE) (erule LeastI) | |
| 1365 | ||
| 1366 | lemma LeastI2: | |
| 1367 | "P a \<Longrightarrow> (\<And>x. P x \<Longrightarrow> Q x) \<Longrightarrow> Q (Least P)" | |
| 1368 | by (blast intro: LeastI) | |
| 1369 | ||
| 1370 | lemma LeastI2_ex: | |
| 1371 | "\<exists>a. P a \<Longrightarrow> (\<And>x. P x \<Longrightarrow> Q x) \<Longrightarrow> Q (Least P)" | |
| 1372 | by (blast intro: LeastI_ex) | |
| 1373 | ||
| 38705 | 1374 | lemma LeastI2_wellorder: | 
| 1375 | assumes "P a" | |
| 1376 | and "\<And>a. \<lbrakk> P a; \<forall>b. P b \<longrightarrow> a \<le> b \<rbrakk> \<Longrightarrow> Q a" | |
| 1377 | shows "Q (Least P)" | |
| 1378 | proof (rule LeastI2_order) | |
| 60758 | 1379 | show "P (Least P)" using \<open>P a\<close> by (rule LeastI) | 
| 38705 | 1380 | next | 
| 1381 | fix y assume "P y" thus "Least P \<le> y" by (rule Least_le) | |
| 1382 | next | |
| 1383 | fix x assume "P x" "\<forall>y. P y \<longrightarrow> x \<le> y" thus "Q x" by (rule assms(2)) | |
| 1384 | qed | |
| 1385 | ||
| 61699 
a81dc5c4d6a9
New theorems mostly from Peter Gammie
 paulson <lp15@cam.ac.uk> parents: 
61630diff
changeset | 1386 | lemma LeastI2_wellorder_ex: | 
| 
a81dc5c4d6a9
New theorems mostly from Peter Gammie
 paulson <lp15@cam.ac.uk> parents: 
61630diff
changeset | 1387 | assumes "\<exists>x. P x" | 
| 
a81dc5c4d6a9
New theorems mostly from Peter Gammie
 paulson <lp15@cam.ac.uk> parents: 
61630diff
changeset | 1388 | and "\<And>a. \<lbrakk> P a; \<forall>b. P b \<longrightarrow> a \<le> b \<rbrakk> \<Longrightarrow> Q a" | 
| 
a81dc5c4d6a9
New theorems mostly from Peter Gammie
 paulson <lp15@cam.ac.uk> parents: 
61630diff
changeset | 1389 | shows "Q (Least P)" | 
| 
a81dc5c4d6a9
New theorems mostly from Peter Gammie
 paulson <lp15@cam.ac.uk> parents: 
61630diff
changeset | 1390 | using assms by clarify (blast intro!: LeastI2_wellorder) | 
| 
a81dc5c4d6a9
New theorems mostly from Peter Gammie
 paulson <lp15@cam.ac.uk> parents: 
61630diff
changeset | 1391 | |
| 27823 | 1392 | lemma not_less_Least: "k < (LEAST x. P x) \<Longrightarrow> \<not> P k" | 
| 61699 
a81dc5c4d6a9
New theorems mostly from Peter Gammie
 paulson <lp15@cam.ac.uk> parents: 
61630diff
changeset | 1393 | apply (simp add: not_le [symmetric]) | 
| 27823 | 1394 | apply (erule contrapos_nn) | 
| 1395 | apply (erule Least_le) | |
| 1396 | done | |
| 1397 | ||
| 38705 | 1398 | end | 
| 27823 | 1399 | |
| 28685 | 1400 | |
| 60758 | 1401 | subsection \<open>Order on @{typ bool}\<close>
 | 
| 28685 | 1402 | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1403 | instantiation bool :: "{order_bot, order_top, linorder}"
 | 
| 28685 | 1404 | begin | 
| 1405 | ||
| 1406 | definition | |
| 41080 | 1407 | le_bool_def [simp]: "P \<le> Q \<longleftrightarrow> P \<longrightarrow> Q" | 
| 28685 | 1408 | |
| 1409 | definition | |
| 61076 | 1410 | [simp]: "(P::bool) < Q \<longleftrightarrow> \<not> P \<and> Q" | 
| 28685 | 1411 | |
| 1412 | definition | |
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1413 | [simp]: "\<bottom> \<longleftrightarrow> False" | 
| 28685 | 1414 | |
| 1415 | definition | |
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1416 | [simp]: "\<top> \<longleftrightarrow> True" | 
| 28685 | 1417 | |
| 1418 | instance proof | |
| 41080 | 1419 | qed auto | 
| 28685 | 1420 | |
| 15524 | 1421 | end | 
| 28685 | 1422 | |
| 1423 | lemma le_boolI: "(P \<Longrightarrow> Q) \<Longrightarrow> P \<le> Q" | |
| 41080 | 1424 | by simp | 
| 28685 | 1425 | |
| 1426 | lemma le_boolI': "P \<longrightarrow> Q \<Longrightarrow> P \<le> Q" | |
| 41080 | 1427 | by simp | 
| 28685 | 1428 | |
| 1429 | lemma le_boolE: "P \<le> Q \<Longrightarrow> P \<Longrightarrow> (Q \<Longrightarrow> R) \<Longrightarrow> R" | |
| 41080 | 1430 | by simp | 
| 28685 | 1431 | |
| 1432 | lemma le_boolD: "P \<le> Q \<Longrightarrow> P \<longrightarrow> Q" | |
| 41080 | 1433 | by simp | 
| 32899 | 1434 | |
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1435 | lemma bot_boolE: "\<bottom> \<Longrightarrow> P" | 
| 41080 | 1436 | by simp | 
| 32899 | 1437 | |
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1438 | lemma top_boolI: \<top> | 
| 41080 | 1439 | by simp | 
| 28685 | 1440 | |
| 1441 | lemma [code]: | |
| 1442 | "False \<le> b \<longleftrightarrow> True" | |
| 1443 | "True \<le> b \<longleftrightarrow> b" | |
| 1444 | "False < b \<longleftrightarrow> b" | |
| 1445 | "True < b \<longleftrightarrow> False" | |
| 41080 | 1446 | by simp_all | 
| 28685 | 1447 | |
| 1448 | ||
| 60758 | 1449 | subsection \<open>Order on @{typ "_ \<Rightarrow> _"}\<close>
 | 
| 28685 | 1450 | |
| 1451 | instantiation "fun" :: (type, ord) ord | |
| 1452 | begin | |
| 1453 | ||
| 1454 | definition | |
| 37767 | 1455 | le_fun_def: "f \<le> g \<longleftrightarrow> (\<forall>x. f x \<le> g x)" | 
| 28685 | 1456 | |
| 1457 | definition | |
| 61076 | 1458 | "(f::'a \<Rightarrow> 'b) < g \<longleftrightarrow> f \<le> g \<and> \<not> (g \<le> f)" | 
| 28685 | 1459 | |
| 1460 | instance .. | |
| 1461 | ||
| 1462 | end | |
| 1463 | ||
| 1464 | instance "fun" :: (type, preorder) preorder proof | |
| 1465 | qed (auto simp add: le_fun_def less_fun_def | |
| 44921 | 1466 | intro: order_trans antisym) | 
| 28685 | 1467 | |
| 1468 | instance "fun" :: (type, order) order proof | |
| 44921 | 1469 | qed (auto simp add: le_fun_def intro: antisym) | 
| 28685 | 1470 | |
| 41082 | 1471 | instantiation "fun" :: (type, bot) bot | 
| 1472 | begin | |
| 1473 | ||
| 1474 | definition | |
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1475 | "\<bottom> = (\<lambda>x. \<bottom>)" | 
| 41082 | 1476 | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1477 | instance .. | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1478 | |
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1479 | end | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1480 | |
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1481 | instantiation "fun" :: (type, order_bot) order_bot | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1482 | begin | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1483 | |
| 49769 | 1484 | lemma bot_apply [simp, code]: | 
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1485 | "\<bottom> x = \<bottom>" | 
| 41082 | 1486 | by (simp add: bot_fun_def) | 
| 1487 | ||
| 1488 | instance proof | |
| 46884 | 1489 | qed (simp add: le_fun_def) | 
| 41082 | 1490 | |
| 1491 | end | |
| 1492 | ||
| 28685 | 1493 | instantiation "fun" :: (type, top) top | 
| 1494 | begin | |
| 1495 | ||
| 1496 | definition | |
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1497 | [no_atp]: "\<top> = (\<lambda>x. \<top>)" | 
| 28685 | 1498 | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1499 | instance .. | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1500 | |
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1501 | end | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1502 | |
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1503 | instantiation "fun" :: (type, order_top) order_top | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1504 | begin | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1505 | |
| 49769 | 1506 | lemma top_apply [simp, code]: | 
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1507 | "\<top> x = \<top>" | 
| 41080 | 1508 | by (simp add: top_fun_def) | 
| 1509 | ||
| 28685 | 1510 | instance proof | 
| 46884 | 1511 | qed (simp add: le_fun_def) | 
| 28685 | 1512 | |
| 1513 | end | |
| 1514 | ||
| 1515 | lemma le_funI: "(\<And>x. f x \<le> g x) \<Longrightarrow> f \<le> g" | |
| 1516 | unfolding le_fun_def by simp | |
| 1517 | ||
| 1518 | lemma le_funE: "f \<le> g \<Longrightarrow> (f x \<le> g x \<Longrightarrow> P) \<Longrightarrow> P" | |
| 1519 | unfolding le_fun_def by simp | |
| 1520 | ||
| 1521 | lemma le_funD: "f \<le> g \<Longrightarrow> f x \<le> g x" | |
| 54860 | 1522 | by (rule le_funE) | 
| 28685 | 1523 | |
| 59000 | 1524 | lemma mono_compose: "mono Q \<Longrightarrow> mono (\<lambda>i x. Q i (f x))" | 
| 1525 | unfolding mono_def le_fun_def by auto | |
| 1526 | ||
| 34250 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1527 | |
| 60758 | 1528 | subsection \<open>Order on unary and binary predicates\<close> | 
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1529 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1530 | lemma predicate1I: | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1531 | assumes PQ: "\<And>x. P x \<Longrightarrow> Q x" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1532 | shows "P \<le> Q" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1533 | apply (rule le_funI) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1534 | apply (rule le_boolI) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1535 | apply (rule PQ) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1536 | apply assumption | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1537 | done | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1538 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1539 | lemma predicate1D: | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1540 | "P \<le> Q \<Longrightarrow> P x \<Longrightarrow> Q x" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1541 | apply (erule le_funE) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1542 | apply (erule le_boolE) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1543 | apply assumption+ | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1544 | done | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1545 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1546 | lemma rev_predicate1D: | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1547 | "P x \<Longrightarrow> P \<le> Q \<Longrightarrow> Q x" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1548 | by (rule predicate1D) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1549 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1550 | lemma predicate2I: | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1551 | assumes PQ: "\<And>x y. P x y \<Longrightarrow> Q x y" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1552 | shows "P \<le> Q" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1553 | apply (rule le_funI)+ | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1554 | apply (rule le_boolI) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1555 | apply (rule PQ) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1556 | apply assumption | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1557 | done | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1558 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1559 | lemma predicate2D: | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1560 | "P \<le> Q \<Longrightarrow> P x y \<Longrightarrow> Q x y" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1561 | apply (erule le_funE)+ | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1562 | apply (erule le_boolE) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1563 | apply assumption+ | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1564 | done | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1565 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1566 | lemma rev_predicate2D: | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1567 | "P x y \<Longrightarrow> P \<le> Q \<Longrightarrow> Q x y" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1568 | by (rule predicate2D) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1569 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1570 | lemma bot1E [no_atp]: "\<bottom> x \<Longrightarrow> P" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1571 | by (simp add: bot_fun_def) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1572 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1573 | lemma bot2E: "\<bottom> x y \<Longrightarrow> P" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1574 | by (simp add: bot_fun_def) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1575 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1576 | lemma top1I: "\<top> x" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1577 | by (simp add: top_fun_def) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1578 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1579 | lemma top2I: "\<top> x y" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1580 | by (simp add: top_fun_def) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1581 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1582 | |
| 60758 | 1583 | subsection \<open>Name duplicates\<close> | 
| 34250 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1584 | |
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1585 | lemmas order_eq_refl = preorder_class.eq_refl | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1586 | lemmas order_less_irrefl = preorder_class.less_irrefl | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1587 | lemmas order_less_imp_le = preorder_class.less_imp_le | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1588 | lemmas order_less_not_sym = preorder_class.less_not_sym | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1589 | lemmas order_less_asym = preorder_class.less_asym | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1590 | lemmas order_less_trans = preorder_class.less_trans | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1591 | lemmas order_le_less_trans = preorder_class.le_less_trans | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1592 | lemmas order_less_le_trans = preorder_class.less_le_trans | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1593 | lemmas order_less_imp_not_less = preorder_class.less_imp_not_less | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1594 | lemmas order_less_imp_triv = preorder_class.less_imp_triv | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1595 | lemmas order_less_asym' = preorder_class.less_asym' | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1596 | |
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1597 | lemmas order_less_le = order_class.less_le | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1598 | lemmas order_le_less = order_class.le_less | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1599 | lemmas order_le_imp_less_or_eq = order_class.le_imp_less_or_eq | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1600 | lemmas order_less_imp_not_eq = order_class.less_imp_not_eq | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1601 | lemmas order_less_imp_not_eq2 = order_class.less_imp_not_eq2 | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1602 | lemmas order_neq_le_trans = order_class.neq_le_trans | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1603 | lemmas order_le_neq_trans = order_class.le_neq_trans | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1604 | lemmas order_antisym = order_class.antisym | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1605 | lemmas order_eq_iff = order_class.eq_iff | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1606 | lemmas order_antisym_conv = order_class.antisym_conv | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1607 | |
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1608 | lemmas linorder_linear = linorder_class.linear | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1609 | lemmas linorder_less_linear = linorder_class.less_linear | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1610 | lemmas linorder_le_less_linear = linorder_class.le_less_linear | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1611 | lemmas linorder_le_cases = linorder_class.le_cases | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1612 | lemmas linorder_not_less = linorder_class.not_less | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1613 | lemmas linorder_not_le = linorder_class.not_le | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1614 | lemmas linorder_neq_iff = linorder_class.neq_iff | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1615 | lemmas linorder_neqE = linorder_class.neqE | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1616 | lemmas linorder_antisym_conv1 = linorder_class.antisym_conv1 | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1617 | lemmas linorder_antisym_conv2 = linorder_class.antisym_conv2 | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1618 | lemmas linorder_antisym_conv3 = linorder_class.antisym_conv3 | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1619 | |
| 28685 | 1620 | end |