| author | immler | 
| Fri, 20 May 2016 22:01:39 +0200 | |
| changeset 63103 | 2394b0db133f | 
| parent 63040 | eb4ddd18d635 | 
| child 63331 | 247eac9758dd | 
| permissions | -rw-r--r-- | 
| 51523 | 1 | (* Title: HOL/Real.thy | 
| 2 | Author: Jacques D. Fleuriot, University of Edinburgh, 1998 | |
| 3 | Author: Larry Paulson, University of Cambridge | |
| 4 | Author: Jeremy Avigad, Carnegie Mellon University | |
| 5 | Author: Florian Zuleger, Johannes Hoelzl, and Simon Funke, TU Muenchen | |
| 6 | Conversion to Isar and new proofs by Lawrence C Paulson, 2003/4 | |
| 7 | Construction of Cauchy Reals by Brian Huffman, 2010 | |
| 8 | *) | |
| 9 | ||
| 60758 | 10 | section \<open>Development of the Reals using Cauchy Sequences\<close> | 
| 51523 | 11 | |
| 12 | theory Real | |
| 51773 | 13 | imports Rat Conditionally_Complete_Lattices | 
| 51523 | 14 | begin | 
| 15 | ||
| 60758 | 16 | text \<open> | 
| 51523 | 17 | This theory contains a formalization of the real numbers as | 
| 18 | equivalence classes of Cauchy sequences of rationals. See | |
| 19 |   @{file "~~/src/HOL/ex/Dedekind_Real.thy"} for an alternative
 | |
| 20 | construction using Dedekind cuts. | |
| 60758 | 21 | \<close> | 
| 51523 | 22 | |
| 60758 | 23 | subsection \<open>Preliminary lemmas\<close> | 
| 51523 | 24 | |
| 61284 
2314c2f62eb1
real_of_nat_Suc is now a simprule
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 25 | lemma inj_add_left [simp]: | 
| 61204 | 26 | fixes x :: "'a::cancel_semigroup_add" shows "inj (op+ x)" | 
| 27 | by (meson add_left_imp_eq injI) | |
| 28 | ||
| 29 | lemma inj_mult_left [simp]: "inj (op* x) \<longleftrightarrow> x \<noteq> (0::'a::idom)" | |
| 30 | by (metis injI mult_cancel_left the_inv_f_f zero_neq_one) | |
| 31 | ||
| 51523 | 32 | lemma add_diff_add: | 
| 33 | fixes a b c d :: "'a::ab_group_add" | |
| 34 | shows "(a + c) - (b + d) = (a - b) + (c - d)" | |
| 35 | by simp | |
| 36 | ||
| 37 | lemma minus_diff_minus: | |
| 38 | fixes a b :: "'a::ab_group_add" | |
| 39 | shows "- a - - b = - (a - b)" | |
| 40 | by simp | |
| 41 | ||
| 42 | lemma mult_diff_mult: | |
| 43 | fixes x y a b :: "'a::ring" | |
| 44 | shows "(x * y - a * b) = x * (y - b) + (x - a) * b" | |
| 45 | by (simp add: algebra_simps) | |
| 46 | ||
| 47 | lemma inverse_diff_inverse: | |
| 48 | fixes a b :: "'a::division_ring" | |
| 49 | assumes "a \<noteq> 0" and "b \<noteq> 0" | |
| 50 | shows "inverse a - inverse b = - (inverse a * (a - b) * inverse b)" | |
| 51 | using assms by (simp add: algebra_simps) | |
| 52 | ||
| 53 | lemma obtain_pos_sum: | |
| 54 | fixes r :: rat assumes r: "0 < r" | |
| 55 | obtains s t where "0 < s" and "0 < t" and "r = s + t" | |
| 56 | proof | |
| 57 | from r show "0 < r/2" by simp | |
| 58 | from r show "0 < r/2" by simp | |
| 59 | show "r = r/2 + r/2" by simp | |
| 60 | qed | |
| 61 | ||
| 60758 | 62 | subsection \<open>Sequences that converge to zero\<close> | 
| 51523 | 63 | |
| 64 | definition | |
| 65 | vanishes :: "(nat \<Rightarrow> rat) \<Rightarrow> bool" | |
| 66 | where | |
| 67 | "vanishes X = (\<forall>r>0. \<exists>k. \<forall>n\<ge>k. \<bar>X n\<bar> < r)" | |
| 68 | ||
| 69 | lemma vanishesI: "(\<And>r. 0 < r \<Longrightarrow> \<exists>k. \<forall>n\<ge>k. \<bar>X n\<bar> < r) \<Longrightarrow> vanishes X" | |
| 70 | unfolding vanishes_def by simp | |
| 71 | ||
| 72 | lemma vanishesD: "\<lbrakk>vanishes X; 0 < r\<rbrakk> \<Longrightarrow> \<exists>k. \<forall>n\<ge>k. \<bar>X n\<bar> < r" | |
| 73 | unfolding vanishes_def by simp | |
| 74 | ||
| 75 | lemma vanishes_const [simp]: "vanishes (\<lambda>n. c) \<longleftrightarrow> c = 0" | |
| 76 | unfolding vanishes_def | |
| 77 | apply (cases "c = 0", auto) | |
| 78 | apply (rule exI [where x="\<bar>c\<bar>"], auto) | |
| 79 | done | |
| 80 | ||
| 81 | lemma vanishes_minus: "vanishes X \<Longrightarrow> vanishes (\<lambda>n. - X n)" | |
| 82 | unfolding vanishes_def by simp | |
| 83 | ||
| 84 | lemma vanishes_add: | |
| 85 | assumes X: "vanishes X" and Y: "vanishes Y" | |
| 86 | shows "vanishes (\<lambda>n. X n + Y n)" | |
| 87 | proof (rule vanishesI) | |
| 88 | fix r :: rat assume "0 < r" | |
| 89 | then obtain s t where s: "0 < s" and t: "0 < t" and r: "r = s + t" | |
| 90 | by (rule obtain_pos_sum) | |
| 91 | obtain i where i: "\<forall>n\<ge>i. \<bar>X n\<bar> < s" | |
| 92 | using vanishesD [OF X s] .. | |
| 93 | obtain j where j: "\<forall>n\<ge>j. \<bar>Y n\<bar> < t" | |
| 94 | using vanishesD [OF Y t] .. | |
| 95 | have "\<forall>n\<ge>max i j. \<bar>X n + Y n\<bar> < r" | |
| 96 | proof (clarsimp) | |
| 97 | fix n assume n: "i \<le> n" "j \<le> n" | |
| 98 | have "\<bar>X n + Y n\<bar> \<le> \<bar>X n\<bar> + \<bar>Y n\<bar>" by (rule abs_triangle_ineq) | |
| 99 | also have "\<dots> < s + t" by (simp add: add_strict_mono i j n) | |
| 100 | finally show "\<bar>X n + Y n\<bar> < r" unfolding r . | |
| 101 | qed | |
| 102 | thus "\<exists>k. \<forall>n\<ge>k. \<bar>X n + Y n\<bar> < r" .. | |
| 103 | qed | |
| 104 | ||
| 105 | lemma vanishes_diff: | |
| 106 | assumes X: "vanishes X" and Y: "vanishes Y" | |
| 107 | shows "vanishes (\<lambda>n. X n - Y n)" | |
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
53652diff
changeset | 108 | unfolding diff_conv_add_uminus by (intro vanishes_add vanishes_minus X Y) | 
| 51523 | 109 | |
| 110 | lemma vanishes_mult_bounded: | |
| 111 | assumes X: "\<exists>a>0. \<forall>n. \<bar>X n\<bar> < a" | |
| 112 | assumes Y: "vanishes (\<lambda>n. Y n)" | |
| 113 | shows "vanishes (\<lambda>n. X n * Y n)" | |
| 114 | proof (rule vanishesI) | |
| 115 | fix r :: rat assume r: "0 < r" | |
| 116 | obtain a where a: "0 < a" "\<forall>n. \<bar>X n\<bar> < a" | |
| 61649 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61609diff
changeset | 117 | using X by blast | 
| 51523 | 118 | obtain b where b: "0 < b" "r = a * b" | 
| 119 | proof | |
| 56541 | 120 | show "0 < r / a" using r a by simp | 
| 51523 | 121 | show "r = a * (r / a)" using a by simp | 
| 122 | qed | |
| 123 | obtain k where k: "\<forall>n\<ge>k. \<bar>Y n\<bar> < b" | |
| 124 | using vanishesD [OF Y b(1)] .. | |
| 125 | have "\<forall>n\<ge>k. \<bar>X n * Y n\<bar> < r" | |
| 126 | by (simp add: b(2) abs_mult mult_strict_mono' a k) | |
| 127 | thus "\<exists>k. \<forall>n\<ge>k. \<bar>X n * Y n\<bar> < r" .. | |
| 128 | qed | |
| 129 | ||
| 60758 | 130 | subsection \<open>Cauchy sequences\<close> | 
| 51523 | 131 | |
| 132 | definition | |
| 133 | cauchy :: "(nat \<Rightarrow> rat) \<Rightarrow> bool" | |
| 134 | where | |
| 135 | "cauchy X \<longleftrightarrow> (\<forall>r>0. \<exists>k. \<forall>m\<ge>k. \<forall>n\<ge>k. \<bar>X m - X n\<bar> < r)" | |
| 136 | ||
| 137 | lemma cauchyI: | |
| 138 | "(\<And>r. 0 < r \<Longrightarrow> \<exists>k. \<forall>m\<ge>k. \<forall>n\<ge>k. \<bar>X m - X n\<bar> < r) \<Longrightarrow> cauchy X" | |
| 139 | unfolding cauchy_def by simp | |
| 140 | ||
| 141 | lemma cauchyD: | |
| 142 | "\<lbrakk>cauchy X; 0 < r\<rbrakk> \<Longrightarrow> \<exists>k. \<forall>m\<ge>k. \<forall>n\<ge>k. \<bar>X m - X n\<bar> < r" | |
| 143 | unfolding cauchy_def by simp | |
| 144 | ||
| 145 | lemma cauchy_const [simp]: "cauchy (\<lambda>n. x)" | |
| 146 | unfolding cauchy_def by simp | |
| 147 | ||
| 148 | lemma cauchy_add [simp]: | |
| 149 | assumes X: "cauchy X" and Y: "cauchy Y" | |
| 150 | shows "cauchy (\<lambda>n. X n + Y n)" | |
| 151 | proof (rule cauchyI) | |
| 152 | fix r :: rat assume "0 < r" | |
| 153 | then obtain s t where s: "0 < s" and t: "0 < t" and r: "r = s + t" | |
| 154 | by (rule obtain_pos_sum) | |
| 155 | obtain i where i: "\<forall>m\<ge>i. \<forall>n\<ge>i. \<bar>X m - X n\<bar> < s" | |
| 156 | using cauchyD [OF X s] .. | |
| 157 | obtain j where j: "\<forall>m\<ge>j. \<forall>n\<ge>j. \<bar>Y m - Y n\<bar> < t" | |
| 158 | using cauchyD [OF Y t] .. | |
| 159 | have "\<forall>m\<ge>max i j. \<forall>n\<ge>max i j. \<bar>(X m + Y m) - (X n + Y n)\<bar> < r" | |
| 160 | proof (clarsimp) | |
| 161 | fix m n assume *: "i \<le> m" "j \<le> m" "i \<le> n" "j \<le> n" | |
| 162 | have "\<bar>(X m + Y m) - (X n + Y n)\<bar> \<le> \<bar>X m - X n\<bar> + \<bar>Y m - Y n\<bar>" | |
| 163 | unfolding add_diff_add by (rule abs_triangle_ineq) | |
| 164 | also have "\<dots> < s + t" | |
| 165 | by (rule add_strict_mono, simp_all add: i j *) | |
| 166 | finally show "\<bar>(X m + Y m) - (X n + Y n)\<bar> < r" unfolding r . | |
| 167 | qed | |
| 168 | thus "\<exists>k. \<forall>m\<ge>k. \<forall>n\<ge>k. \<bar>(X m + Y m) - (X n + Y n)\<bar> < r" .. | |
| 169 | qed | |
| 170 | ||
| 171 | lemma cauchy_minus [simp]: | |
| 172 | assumes X: "cauchy X" | |
| 173 | shows "cauchy (\<lambda>n. - X n)" | |
| 174 | using assms unfolding cauchy_def | |
| 175 | unfolding minus_diff_minus abs_minus_cancel . | |
| 176 | ||
| 177 | lemma cauchy_diff [simp]: | |
| 178 | assumes X: "cauchy X" and Y: "cauchy Y" | |
| 179 | shows "cauchy (\<lambda>n. X n - Y n)" | |
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
53652diff
changeset | 180 | using assms unfolding diff_conv_add_uminus by (simp del: add_uminus_conv_diff) | 
| 51523 | 181 | |
| 182 | lemma cauchy_imp_bounded: | |
| 183 | assumes "cauchy X" shows "\<exists>b>0. \<forall>n. \<bar>X n\<bar> < b" | |
| 184 | proof - | |
| 185 | obtain k where k: "\<forall>m\<ge>k. \<forall>n\<ge>k. \<bar>X m - X n\<bar> < 1" | |
| 186 | using cauchyD [OF assms zero_less_one] .. | |
| 187 | show "\<exists>b>0. \<forall>n. \<bar>X n\<bar> < b" | |
| 188 | proof (intro exI conjI allI) | |
| 189 | have "0 \<le> \<bar>X 0\<bar>" by simp | |
| 190 |     also have "\<bar>X 0\<bar> \<le> Max (abs ` X ` {..k})" by simp
 | |
| 191 |     finally have "0 \<le> Max (abs ` X ` {..k})" .
 | |
| 192 |     thus "0 < Max (abs ` X ` {..k}) + 1" by simp
 | |
| 193 | next | |
| 194 | fix n :: nat | |
| 195 |     show "\<bar>X n\<bar> < Max (abs ` X ` {..k}) + 1"
 | |
| 196 | proof (rule linorder_le_cases) | |
| 197 | assume "n \<le> k" | |
| 198 |       hence "\<bar>X n\<bar> \<le> Max (abs ` X ` {..k})" by simp
 | |
| 199 |       thus "\<bar>X n\<bar> < Max (abs ` X ` {..k}) + 1" by simp
 | |
| 200 | next | |
| 201 | assume "k \<le> n" | |
| 202 | have "\<bar>X n\<bar> = \<bar>X k + (X n - X k)\<bar>" by simp | |
| 203 | also have "\<bar>X k + (X n - X k)\<bar> \<le> \<bar>X k\<bar> + \<bar>X n - X k\<bar>" | |
| 204 | by (rule abs_triangle_ineq) | |
| 205 |       also have "\<dots> < Max (abs ` X ` {..k}) + 1"
 | |
| 60758 | 206 | by (rule add_le_less_mono, simp, simp add: k \<open>k \<le> n\<close>) | 
| 51523 | 207 |       finally show "\<bar>X n\<bar> < Max (abs ` X ` {..k}) + 1" .
 | 
| 208 | qed | |
| 209 | qed | |
| 210 | qed | |
| 211 | ||
| 212 | lemma cauchy_mult [simp]: | |
| 213 | assumes X: "cauchy X" and Y: "cauchy Y" | |
| 214 | shows "cauchy (\<lambda>n. X n * Y n)" | |
| 215 | proof (rule cauchyI) | |
| 216 | fix r :: rat assume "0 < r" | |
| 217 | then obtain u v where u: "0 < u" and v: "0 < v" and "r = u + v" | |
| 218 | by (rule obtain_pos_sum) | |
| 219 | obtain a where a: "0 < a" "\<forall>n. \<bar>X n\<bar> < a" | |
| 61649 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61609diff
changeset | 220 | using cauchy_imp_bounded [OF X] by blast | 
| 51523 | 221 | obtain b where b: "0 < b" "\<forall>n. \<bar>Y n\<bar> < b" | 
| 61649 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61609diff
changeset | 222 | using cauchy_imp_bounded [OF Y] by blast | 
| 51523 | 223 | obtain s t where s: "0 < s" and t: "0 < t" and r: "r = a * t + s * b" | 
| 224 | proof | |
| 56541 | 225 | show "0 < v/b" using v b(1) by simp | 
| 226 | show "0 < u/a" using u a(1) by simp | |
| 51523 | 227 | show "r = a * (u/a) + (v/b) * b" | 
| 60758 | 228 | using a(1) b(1) \<open>r = u + v\<close> by simp | 
| 51523 | 229 | qed | 
| 230 | obtain i where i: "\<forall>m\<ge>i. \<forall>n\<ge>i. \<bar>X m - X n\<bar> < s" | |
| 231 | using cauchyD [OF X s] .. | |
| 232 | obtain j where j: "\<forall>m\<ge>j. \<forall>n\<ge>j. \<bar>Y m - Y n\<bar> < t" | |
| 233 | using cauchyD [OF Y t] .. | |
| 234 | have "\<forall>m\<ge>max i j. \<forall>n\<ge>max i j. \<bar>X m * Y m - X n * Y n\<bar> < r" | |
| 235 | proof (clarsimp) | |
| 236 | fix m n assume *: "i \<le> m" "j \<le> m" "i \<le> n" "j \<le> n" | |
| 237 | have "\<bar>X m * Y m - X n * Y n\<bar> = \<bar>X m * (Y m - Y n) + (X m - X n) * Y n\<bar>" | |
| 238 | unfolding mult_diff_mult .. | |
| 239 | also have "\<dots> \<le> \<bar>X m * (Y m - Y n)\<bar> + \<bar>(X m - X n) * Y n\<bar>" | |
| 240 | by (rule abs_triangle_ineq) | |
| 241 | also have "\<dots> = \<bar>X m\<bar> * \<bar>Y m - Y n\<bar> + \<bar>X m - X n\<bar> * \<bar>Y n\<bar>" | |
| 242 | unfolding abs_mult .. | |
| 243 | also have "\<dots> < a * t + s * b" | |
| 244 | by (simp_all add: add_strict_mono mult_strict_mono' a b i j *) | |
| 245 | finally show "\<bar>X m * Y m - X n * Y n\<bar> < r" unfolding r . | |
| 246 | qed | |
| 247 | thus "\<exists>k. \<forall>m\<ge>k. \<forall>n\<ge>k. \<bar>X m * Y m - X n * Y n\<bar> < r" .. | |
| 248 | qed | |
| 249 | ||
| 250 | lemma cauchy_not_vanishes_cases: | |
| 251 | assumes X: "cauchy X" | |
| 252 | assumes nz: "\<not> vanishes X" | |
| 253 | shows "\<exists>b>0. \<exists>k. (\<forall>n\<ge>k. b < - X n) \<or> (\<forall>n\<ge>k. b < X n)" | |
| 254 | proof - | |
| 255 | obtain r where "0 < r" and r: "\<forall>k. \<exists>n\<ge>k. r \<le> \<bar>X n\<bar>" | |
| 256 | using nz unfolding vanishes_def by (auto simp add: not_less) | |
| 257 | obtain s t where s: "0 < s" and t: "0 < t" and "r = s + t" | |
| 60758 | 258 | using \<open>0 < r\<close> by (rule obtain_pos_sum) | 
| 51523 | 259 | obtain i where i: "\<forall>m\<ge>i. \<forall>n\<ge>i. \<bar>X m - X n\<bar> < s" | 
| 260 | using cauchyD [OF X s] .. | |
| 261 | obtain k where "i \<le> k" and "r \<le> \<bar>X k\<bar>" | |
| 61649 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61609diff
changeset | 262 | using r by blast | 
| 51523 | 263 | have k: "\<forall>n\<ge>k. \<bar>X n - X k\<bar> < s" | 
| 60758 | 264 | using i \<open>i \<le> k\<close> by auto | 
| 51523 | 265 | have "X k \<le> - r \<or> r \<le> X k" | 
| 60758 | 266 | using \<open>r \<le> \<bar>X k\<bar>\<close> by auto | 
| 51523 | 267 | hence "(\<forall>n\<ge>k. t < - X n) \<or> (\<forall>n\<ge>k. t < X n)" | 
| 60758 | 268 | unfolding \<open>r = s + t\<close> using k by auto | 
| 51523 | 269 | hence "\<exists>k. (\<forall>n\<ge>k. t < - X n) \<or> (\<forall>n\<ge>k. t < X n)" .. | 
| 270 | thus "\<exists>t>0. \<exists>k. (\<forall>n\<ge>k. t < - X n) \<or> (\<forall>n\<ge>k. t < X n)" | |
| 271 | using t by auto | |
| 272 | qed | |
| 273 | ||
| 274 | lemma cauchy_not_vanishes: | |
| 275 | assumes X: "cauchy X" | |
| 276 | assumes nz: "\<not> vanishes X" | |
| 277 | shows "\<exists>b>0. \<exists>k. \<forall>n\<ge>k. b < \<bar>X n\<bar>" | |
| 278 | using cauchy_not_vanishes_cases [OF assms] | |
| 279 | by clarify (rule exI, erule conjI, rule_tac x=k in exI, auto) | |
| 280 | ||
| 281 | lemma cauchy_inverse [simp]: | |
| 282 | assumes X: "cauchy X" | |
| 283 | assumes nz: "\<not> vanishes X" | |
| 284 | shows "cauchy (\<lambda>n. inverse (X n))" | |
| 285 | proof (rule cauchyI) | |
| 286 | fix r :: rat assume "0 < r" | |
| 287 | obtain b i where b: "0 < b" and i: "\<forall>n\<ge>i. b < \<bar>X n\<bar>" | |
| 61649 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61609diff
changeset | 288 | using cauchy_not_vanishes [OF X nz] by blast | 
| 51523 | 289 | from b i have nz: "\<forall>n\<ge>i. X n \<noteq> 0" by auto | 
| 290 | obtain s where s: "0 < s" and r: "r = inverse b * s * inverse b" | |
| 291 | proof | |
| 60758 | 292 | show "0 < b * r * b" by (simp add: \<open>0 < r\<close> b) | 
| 51523 | 293 | show "r = inverse b * (b * r * b) * inverse b" | 
| 294 | using b by simp | |
| 295 | qed | |
| 296 | obtain j where j: "\<forall>m\<ge>j. \<forall>n\<ge>j. \<bar>X m - X n\<bar> < s" | |
| 297 | using cauchyD [OF X s] .. | |
| 298 | have "\<forall>m\<ge>max i j. \<forall>n\<ge>max i j. \<bar>inverse (X m) - inverse (X n)\<bar> < r" | |
| 299 | proof (clarsimp) | |
| 300 | fix m n assume *: "i \<le> m" "j \<le> m" "i \<le> n" "j \<le> n" | |
| 301 | have "\<bar>inverse (X m) - inverse (X n)\<bar> = | |
| 302 | inverse \<bar>X m\<bar> * \<bar>X m - X n\<bar> * inverse \<bar>X n\<bar>" | |
| 303 | by (simp add: inverse_diff_inverse nz * abs_mult) | |
| 304 | also have "\<dots> < inverse b * s * inverse b" | |
| 305 | by (simp add: mult_strict_mono less_imp_inverse_less | |
| 56544 | 306 | i j b * s) | 
| 51523 | 307 | finally show "\<bar>inverse (X m) - inverse (X n)\<bar> < r" unfolding r . | 
| 308 | qed | |
| 309 | thus "\<exists>k. \<forall>m\<ge>k. \<forall>n\<ge>k. \<bar>inverse (X m) - inverse (X n)\<bar> < r" .. | |
| 310 | qed | |
| 311 | ||
| 312 | lemma vanishes_diff_inverse: | |
| 313 | assumes X: "cauchy X" "\<not> vanishes X" | |
| 314 | assumes Y: "cauchy Y" "\<not> vanishes Y" | |
| 315 | assumes XY: "vanishes (\<lambda>n. X n - Y n)" | |
| 316 | shows "vanishes (\<lambda>n. inverse (X n) - inverse (Y n))" | |
| 317 | proof (rule vanishesI) | |
| 318 | fix r :: rat assume r: "0 < r" | |
| 319 | obtain a i where a: "0 < a" and i: "\<forall>n\<ge>i. a < \<bar>X n\<bar>" | |
| 61649 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61609diff
changeset | 320 | using cauchy_not_vanishes [OF X] by blast | 
| 51523 | 321 | obtain b j where b: "0 < b" and j: "\<forall>n\<ge>j. b < \<bar>Y n\<bar>" | 
| 61649 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61609diff
changeset | 322 | using cauchy_not_vanishes [OF Y] by blast | 
| 51523 | 323 | obtain s where s: "0 < s" and "inverse a * s * inverse b = r" | 
| 324 | proof | |
| 325 | show "0 < a * r * b" | |
| 56544 | 326 | using a r b by simp | 
| 51523 | 327 | show "inverse a * (a * r * b) * inverse b = r" | 
| 328 | using a r b by simp | |
| 329 | qed | |
| 330 | obtain k where k: "\<forall>n\<ge>k. \<bar>X n - Y n\<bar> < s" | |
| 331 | using vanishesD [OF XY s] .. | |
| 332 | have "\<forall>n\<ge>max (max i j) k. \<bar>inverse (X n) - inverse (Y n)\<bar> < r" | |
| 333 | proof (clarsimp) | |
| 334 | fix n assume n: "i \<le> n" "j \<le> n" "k \<le> n" | |
| 335 | have "X n \<noteq> 0" and "Y n \<noteq> 0" | |
| 336 | using i j a b n by auto | |
| 337 | hence "\<bar>inverse (X n) - inverse (Y n)\<bar> = | |
| 338 | inverse \<bar>X n\<bar> * \<bar>X n - Y n\<bar> * inverse \<bar>Y n\<bar>" | |
| 339 | by (simp add: inverse_diff_inverse abs_mult) | |
| 340 | also have "\<dots> < inverse a * s * inverse b" | |
| 341 | apply (intro mult_strict_mono' less_imp_inverse_less) | |
| 56536 | 342 | apply (simp_all add: a b i j k n) | 
| 51523 | 343 | done | 
| 60758 | 344 | also note \<open>inverse a * s * inverse b = r\<close> | 
| 51523 | 345 | finally show "\<bar>inverse (X n) - inverse (Y n)\<bar> < r" . | 
| 346 | qed | |
| 347 | thus "\<exists>k. \<forall>n\<ge>k. \<bar>inverse (X n) - inverse (Y n)\<bar> < r" .. | |
| 348 | qed | |
| 349 | ||
| 60758 | 350 | subsection \<open>Equivalence relation on Cauchy sequences\<close> | 
| 51523 | 351 | |
| 352 | definition realrel :: "(nat \<Rightarrow> rat) \<Rightarrow> (nat \<Rightarrow> rat) \<Rightarrow> bool" | |
| 353 | where "realrel = (\<lambda>X Y. cauchy X \<and> cauchy Y \<and> vanishes (\<lambda>n. X n - Y n))" | |
| 354 | ||
| 355 | lemma realrelI [intro?]: | |
| 356 | assumes "cauchy X" and "cauchy Y" and "vanishes (\<lambda>n. X n - Y n)" | |
| 357 | shows "realrel X Y" | |
| 358 | using assms unfolding realrel_def by simp | |
| 359 | ||
| 360 | lemma realrel_refl: "cauchy X \<Longrightarrow> realrel X X" | |
| 361 | unfolding realrel_def by simp | |
| 362 | ||
| 363 | lemma symp_realrel: "symp realrel" | |
| 364 | unfolding realrel_def | |
| 365 | by (rule sympI, clarify, drule vanishes_minus, simp) | |
| 366 | ||
| 367 | lemma transp_realrel: "transp realrel" | |
| 368 | unfolding realrel_def | |
| 369 | apply (rule transpI, clarify) | |
| 370 | apply (drule (1) vanishes_add) | |
| 371 | apply (simp add: algebra_simps) | |
| 372 | done | |
| 373 | ||
| 374 | lemma part_equivp_realrel: "part_equivp realrel" | |
| 61649 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61609diff
changeset | 375 | by (blast intro: part_equivpI symp_realrel transp_realrel | 
| 51523 | 376 | realrel_refl cauchy_const) | 
| 377 | ||
| 60758 | 378 | subsection \<open>The field of real numbers\<close> | 
| 51523 | 379 | |
| 380 | quotient_type real = "nat \<Rightarrow> rat" / partial: realrel | |
| 381 | morphisms rep_real Real | |
| 382 | by (rule part_equivp_realrel) | |
| 383 | ||
| 384 | lemma cr_real_eq: "pcr_real = (\<lambda>x y. cauchy x \<and> Real x = y)" | |
| 385 | unfolding real.pcr_cr_eq cr_real_def realrel_def by auto | |
| 386 | ||
| 387 | lemma Real_induct [induct type: real]: (* TODO: generate automatically *) | |
| 388 | assumes "\<And>X. cauchy X \<Longrightarrow> P (Real X)" shows "P x" | |
| 389 | proof (induct x) | |
| 390 | case (1 X) | |
| 391 | hence "cauchy X" by (simp add: realrel_def) | |
| 392 | thus "P (Real X)" by (rule assms) | |
| 393 | qed | |
| 394 | ||
| 395 | lemma eq_Real: | |
| 396 | "cauchy X \<Longrightarrow> cauchy Y \<Longrightarrow> Real X = Real Y \<longleftrightarrow> vanishes (\<lambda>n. X n - Y n)" | |
| 397 | using real.rel_eq_transfer | |
| 55945 | 398 | unfolding real.pcr_cr_eq cr_real_def rel_fun_def realrel_def by simp | 
| 51523 | 399 | |
| 51956 
a4d81cdebf8b
better support for domains in Lifting/Transfer = replace Domainp T by the actual invariant in a transferred goal
 kuncar parents: 
51775diff
changeset | 400 | lemma Domainp_pcr_real [transfer_domain_rule]: "Domainp pcr_real = cauchy" | 
| 
a4d81cdebf8b
better support for domains in Lifting/Transfer = replace Domainp T by the actual invariant in a transferred goal
 kuncar parents: 
51775diff
changeset | 401 | by (simp add: real.domain_eq realrel_def) | 
| 51523 | 402 | |
| 59867 
58043346ca64
given up separate type classes demanding `inverse 0 = 0`
 haftmann parents: 
59587diff
changeset | 403 | instantiation real :: field | 
| 51523 | 404 | begin | 
| 405 | ||
| 406 | lift_definition zero_real :: "real" is "\<lambda>n. 0" | |
| 407 | by (simp add: realrel_refl) | |
| 408 | ||
| 409 | lift_definition one_real :: "real" is "\<lambda>n. 1" | |
| 410 | by (simp add: realrel_refl) | |
| 411 | ||
| 412 | lift_definition plus_real :: "real \<Rightarrow> real \<Rightarrow> real" is "\<lambda>X Y n. X n + Y n" | |
| 413 | unfolding realrel_def add_diff_add | |
| 414 | by (simp only: cauchy_add vanishes_add simp_thms) | |
| 415 | ||
| 416 | lift_definition uminus_real :: "real \<Rightarrow> real" is "\<lambda>X n. - X n" | |
| 417 | unfolding realrel_def minus_diff_minus | |
| 418 | by (simp only: cauchy_minus vanishes_minus simp_thms) | |
| 419 | ||
| 420 | lift_definition times_real :: "real \<Rightarrow> real \<Rightarrow> real" is "\<lambda>X Y n. X n * Y n" | |
| 421 | unfolding realrel_def mult_diff_mult | |
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
57447diff
changeset | 422 | by (subst (4) mult.commute, simp only: cauchy_mult vanishes_add | 
| 51523 | 423 | vanishes_mult_bounded cauchy_imp_bounded simp_thms) | 
| 424 | ||
| 425 | lift_definition inverse_real :: "real \<Rightarrow> real" | |
| 426 | is "\<lambda>X. if vanishes X then (\<lambda>n. 0) else (\<lambda>n. inverse (X n))" | |
| 427 | proof - | |
| 428 | fix X Y assume "realrel X Y" | |
| 429 | hence X: "cauchy X" and Y: "cauchy Y" and XY: "vanishes (\<lambda>n. X n - Y n)" | |
| 430 | unfolding realrel_def by simp_all | |
| 431 | have "vanishes X \<longleftrightarrow> vanishes Y" | |
| 432 | proof | |
| 433 | assume "vanishes X" | |
| 434 | from vanishes_diff [OF this XY] show "vanishes Y" by simp | |
| 435 | next | |
| 436 | assume "vanishes Y" | |
| 437 | from vanishes_add [OF this XY] show "vanishes X" by simp | |
| 438 | qed | |
| 439 | thus "?thesis X Y" | |
| 440 | unfolding realrel_def | |
| 441 | by (simp add: vanishes_diff_inverse X Y XY) | |
| 442 | qed | |
| 443 | ||
| 444 | definition | |
| 445 | "x - y = (x::real) + - y" | |
| 446 | ||
| 447 | definition | |
| 60429 
d3d1e185cd63
uniform _ div _ as infix syntax for ring division
 haftmann parents: 
60352diff
changeset | 448 | "x div y = (x::real) * inverse y" | 
| 51523 | 449 | |
| 450 | lemma add_Real: | |
| 451 | assumes X: "cauchy X" and Y: "cauchy Y" | |
| 452 | shows "Real X + Real Y = Real (\<lambda>n. X n + Y n)" | |
| 453 | using assms plus_real.transfer | |
| 55945 | 454 | unfolding cr_real_eq rel_fun_def by simp | 
| 51523 | 455 | |
| 456 | lemma minus_Real: | |
| 457 | assumes X: "cauchy X" | |
| 458 | shows "- Real X = Real (\<lambda>n. - X n)" | |
| 459 | using assms uminus_real.transfer | |
| 55945 | 460 | unfolding cr_real_eq rel_fun_def by simp | 
| 51523 | 461 | |
| 462 | lemma diff_Real: | |
| 463 | assumes X: "cauchy X" and Y: "cauchy Y" | |
| 464 | shows "Real X - Real Y = Real (\<lambda>n. X n - Y n)" | |
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
53652diff
changeset | 465 | unfolding minus_real_def | 
| 51523 | 466 | by (simp add: minus_Real add_Real X Y) | 
| 467 | ||
| 468 | lemma mult_Real: | |
| 469 | assumes X: "cauchy X" and Y: "cauchy Y" | |
| 470 | shows "Real X * Real Y = Real (\<lambda>n. X n * Y n)" | |
| 471 | using assms times_real.transfer | |
| 55945 | 472 | unfolding cr_real_eq rel_fun_def by simp | 
| 51523 | 473 | |
| 474 | lemma inverse_Real: | |
| 475 | assumes X: "cauchy X" | |
| 476 | shows "inverse (Real X) = | |
| 477 | (if vanishes X then 0 else Real (\<lambda>n. inverse (X n)))" | |
| 478 | using assms inverse_real.transfer zero_real.transfer | |
| 62390 | 479 | unfolding cr_real_eq rel_fun_def by (simp split: if_split_asm, metis) | 
| 51523 | 480 | |
| 481 | instance proof | |
| 482 | fix a b c :: real | |
| 483 | show "a + b = b + a" | |
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
57512diff
changeset | 484 | by transfer (simp add: ac_simps realrel_def) | 
| 51523 | 485 | show "(a + b) + c = a + (b + c)" | 
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
57512diff
changeset | 486 | by transfer (simp add: ac_simps realrel_def) | 
| 51523 | 487 | show "0 + a = a" | 
| 488 | by transfer (simp add: realrel_def) | |
| 489 | show "- a + a = 0" | |
| 490 | by transfer (simp add: realrel_def) | |
| 491 | show "a - b = a + - b" | |
| 492 | by (rule minus_real_def) | |
| 493 | show "(a * b) * c = a * (b * c)" | |
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
57512diff
changeset | 494 | by transfer (simp add: ac_simps realrel_def) | 
| 51523 | 495 | show "a * b = b * a" | 
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
57512diff
changeset | 496 | by transfer (simp add: ac_simps realrel_def) | 
| 51523 | 497 | show "1 * a = a" | 
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
57512diff
changeset | 498 | by transfer (simp add: ac_simps realrel_def) | 
| 51523 | 499 | show "(a + b) * c = a * c + b * c" | 
| 500 | by transfer (simp add: distrib_right realrel_def) | |
| 61076 | 501 | show "(0::real) \<noteq> (1::real)" | 
| 51523 | 502 | by transfer (simp add: realrel_def) | 
| 503 | show "a \<noteq> 0 \<Longrightarrow> inverse a * a = 1" | |
| 504 | apply transfer | |
| 505 | apply (simp add: realrel_def) | |
| 506 | apply (rule vanishesI) | |
| 507 | apply (frule (1) cauchy_not_vanishes, clarify) | |
| 508 | apply (rule_tac x=k in exI, clarify) | |
| 509 | apply (drule_tac x=n in spec, simp) | |
| 510 | done | |
| 60429 
d3d1e185cd63
uniform _ div _ as infix syntax for ring division
 haftmann parents: 
60352diff
changeset | 511 | show "a div b = a * inverse b" | 
| 51523 | 512 | by (rule divide_real_def) | 
| 513 | show "inverse (0::real) = 0" | |
| 514 | by transfer (simp add: realrel_def) | |
| 515 | qed | |
| 516 | ||
| 517 | end | |
| 518 | ||
| 60758 | 519 | subsection \<open>Positive reals\<close> | 
| 51523 | 520 | |
| 521 | lift_definition positive :: "real \<Rightarrow> bool" | |
| 522 | is "\<lambda>X. \<exists>r>0. \<exists>k. \<forall>n\<ge>k. r < X n" | |
| 523 | proof - | |
| 524 |   { fix X Y
 | |
| 525 | assume "realrel X Y" | |
| 526 | hence XY: "vanishes (\<lambda>n. X n - Y n)" | |
| 527 | unfolding realrel_def by simp_all | |
| 528 | assume "\<exists>r>0. \<exists>k. \<forall>n\<ge>k. r < X n" | |
| 529 | then obtain r i where "0 < r" and i: "\<forall>n\<ge>i. r < X n" | |
| 61649 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61609diff
changeset | 530 | by blast | 
| 51523 | 531 | obtain s t where s: "0 < s" and t: "0 < t" and r: "r = s + t" | 
| 60758 | 532 | using \<open>0 < r\<close> by (rule obtain_pos_sum) | 
| 51523 | 533 | obtain j where j: "\<forall>n\<ge>j. \<bar>X n - Y n\<bar> < s" | 
| 534 | using vanishesD [OF XY s] .. | |
| 535 | have "\<forall>n\<ge>max i j. t < Y n" | |
| 536 | proof (clarsimp) | |
| 537 | fix n assume n: "i \<le> n" "j \<le> n" | |
| 538 | have "\<bar>X n - Y n\<bar> < s" and "r < X n" | |
| 539 | using i j n by simp_all | |
| 540 | thus "t < Y n" unfolding r by simp | |
| 541 | qed | |
| 61649 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61609diff
changeset | 542 | hence "\<exists>r>0. \<exists>k. \<forall>n\<ge>k. r < Y n" using t by blast | 
| 51523 | 543 | } note 1 = this | 
| 544 | fix X Y assume "realrel X Y" | |
| 545 | hence "realrel X Y" and "realrel Y X" | |
| 546 | using symp_realrel unfolding symp_def by auto | |
| 547 | thus "?thesis X Y" | |
| 548 | by (safe elim!: 1) | |
| 549 | qed | |
| 550 | ||
| 551 | lemma positive_Real: | |
| 552 | assumes X: "cauchy X" | |
| 553 | shows "positive (Real X) \<longleftrightarrow> (\<exists>r>0. \<exists>k. \<forall>n\<ge>k. r < X n)" | |
| 554 | using assms positive.transfer | |
| 55945 | 555 | unfolding cr_real_eq rel_fun_def by simp | 
| 51523 | 556 | |
| 557 | lemma positive_zero: "\<not> positive 0" | |
| 558 | by transfer auto | |
| 559 | ||
| 560 | lemma positive_add: | |
| 561 | "positive x \<Longrightarrow> positive y \<Longrightarrow> positive (x + y)" | |
| 562 | apply transfer | |
| 563 | apply (clarify, rename_tac a b i j) | |
| 564 | apply (rule_tac x="a + b" in exI, simp) | |
| 565 | apply (rule_tac x="max i j" in exI, clarsimp) | |
| 566 | apply (simp add: add_strict_mono) | |
| 567 | done | |
| 568 | ||
| 569 | lemma positive_mult: | |
| 570 | "positive x \<Longrightarrow> positive y \<Longrightarrow> positive (x * y)" | |
| 571 | apply transfer | |
| 572 | apply (clarify, rename_tac a b i j) | |
| 56544 | 573 | apply (rule_tac x="a * b" in exI, simp) | 
| 51523 | 574 | apply (rule_tac x="max i j" in exI, clarsimp) | 
| 575 | apply (rule mult_strict_mono, auto) | |
| 576 | done | |
| 577 | ||
| 578 | lemma positive_minus: | |
| 579 | "\<not> positive x \<Longrightarrow> x \<noteq> 0 \<Longrightarrow> positive (- x)" | |
| 580 | apply transfer | |
| 581 | apply (simp add: realrel_def) | |
| 61649 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61609diff
changeset | 582 | apply (drule (1) cauchy_not_vanishes_cases, safe) | 
| 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61609diff
changeset | 583 | apply blast+ | 
| 51523 | 584 | done | 
| 585 | ||
| 59867 
58043346ca64
given up separate type classes demanding `inverse 0 = 0`
 haftmann parents: 
59587diff
changeset | 586 | instantiation real :: linordered_field | 
| 51523 | 587 | begin | 
| 588 | ||
| 589 | definition | |
| 590 | "x < y \<longleftrightarrow> positive (y - x)" | |
| 591 | ||
| 592 | definition | |
| 593 | "x \<le> (y::real) \<longleftrightarrow> x < y \<or> x = y" | |
| 594 | ||
| 595 | definition | |
| 61944 | 596 | "\<bar>a::real\<bar> = (if a < 0 then - a else a)" | 
| 51523 | 597 | |
| 598 | definition | |
| 599 | "sgn (a::real) = (if a = 0 then 0 else if 0 < a then 1 else - 1)" | |
| 600 | ||
| 601 | instance proof | |
| 602 | fix a b c :: real | |
| 603 | show "\<bar>a\<bar> = (if a < 0 then - a else a)" | |
| 604 | by (rule abs_real_def) | |
| 605 | show "a < b \<longleftrightarrow> a \<le> b \<and> \<not> b \<le> a" | |
| 606 | unfolding less_eq_real_def less_real_def | |
| 607 | by (auto, drule (1) positive_add, simp_all add: positive_zero) | |
| 608 | show "a \<le> a" | |
| 609 | unfolding less_eq_real_def by simp | |
| 610 | show "a \<le> b \<Longrightarrow> b \<le> c \<Longrightarrow> a \<le> c" | |
| 611 | unfolding less_eq_real_def less_real_def | |
| 612 | by (auto, drule (1) positive_add, simp add: algebra_simps) | |
| 613 | show "a \<le> b \<Longrightarrow> b \<le> a \<Longrightarrow> a = b" | |
| 614 | unfolding less_eq_real_def less_real_def | |
| 615 | by (auto, drule (1) positive_add, simp add: positive_zero) | |
| 616 | show "a \<le> b \<Longrightarrow> c + a \<le> c + b" | |
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
53652diff
changeset | 617 | unfolding less_eq_real_def less_real_def by auto | 
| 51523 | 618 | (* FIXME: Procedure int_combine_numerals: c + b - (c + a) \<equiv> b + - a *) | 
| 619 | (* Should produce c + b - (c + a) \<equiv> b - a *) | |
| 620 | show "sgn a = (if a = 0 then 0 else if 0 < a then 1 else - 1)" | |
| 621 | by (rule sgn_real_def) | |
| 622 | show "a \<le> b \<or> b \<le> a" | |
| 623 | unfolding less_eq_real_def less_real_def | |
| 624 | by (auto dest!: positive_minus) | |
| 625 | show "a < b \<Longrightarrow> 0 < c \<Longrightarrow> c * a < c * b" | |
| 626 | unfolding less_real_def | |
| 627 | by (drule (1) positive_mult, simp add: algebra_simps) | |
| 628 | qed | |
| 629 | ||
| 630 | end | |
| 631 | ||
| 632 | instantiation real :: distrib_lattice | |
| 633 | begin | |
| 634 | ||
| 635 | definition | |
| 636 | "(inf :: real \<Rightarrow> real \<Rightarrow> real) = min" | |
| 637 | ||
| 638 | definition | |
| 639 | "(sup :: real \<Rightarrow> real \<Rightarrow> real) = max" | |
| 640 | ||
| 641 | instance proof | |
| 54863 
82acc20ded73
prefer more canonical names for lemmas on min/max
 haftmann parents: 
54489diff
changeset | 642 | qed (auto simp add: inf_real_def sup_real_def max_min_distrib2) | 
| 51523 | 643 | |
| 644 | end | |
| 645 | ||
| 646 | lemma of_nat_Real: "of_nat x = Real (\<lambda>n. of_nat x)" | |
| 647 | apply (induct x) | |
| 648 | apply (simp add: zero_real_def) | |
| 649 | apply (simp add: one_real_def add_Real) | |
| 650 | done | |
| 651 | ||
| 652 | lemma of_int_Real: "of_int x = Real (\<lambda>n. of_int x)" | |
| 653 | apply (cases x rule: int_diff_cases) | |
| 654 | apply (simp add: of_nat_Real diff_Real) | |
| 655 | done | |
| 656 | ||
| 657 | lemma of_rat_Real: "of_rat x = Real (\<lambda>n. x)" | |
| 658 | apply (induct x) | |
| 659 | apply (simp add: Fract_of_int_quotient of_rat_divide) | |
| 660 | apply (simp add: of_int_Real divide_inverse) | |
| 661 | apply (simp add: inverse_Real mult_Real) | |
| 662 | done | |
| 663 | ||
| 664 | instance real :: archimedean_field | |
| 665 | proof | |
| 666 | fix x :: real | |
| 667 | show "\<exists>z. x \<le> of_int z" | |
| 668 | apply (induct x) | |
| 669 | apply (frule cauchy_imp_bounded, clarify) | |
| 61942 | 670 | apply (rule_tac x="\<lceil>b\<rceil> + 1" in exI) | 
| 51523 | 671 | apply (rule less_imp_le) | 
| 672 | apply (simp add: of_int_Real less_real_def diff_Real positive_Real) | |
| 673 | apply (rule_tac x=1 in exI, simp add: algebra_simps) | |
| 674 | apply (rule_tac x=0 in exI, clarsimp) | |
| 675 | apply (rule le_less_trans [OF abs_ge_self]) | |
| 676 | apply (rule less_le_trans [OF _ le_of_int_ceiling]) | |
| 677 | apply simp | |
| 678 | done | |
| 679 | qed | |
| 680 | ||
| 681 | instantiation real :: floor_ceiling | |
| 682 | begin | |
| 683 | ||
| 684 | definition [code del]: | |
| 61942 | 685 | "\<lfloor>x::real\<rfloor> = (THE z. of_int z \<le> x \<and> x < of_int (z + 1))" | 
| 51523 | 686 | |
| 61942 | 687 | instance | 
| 688 | proof | |
| 51523 | 689 | fix x :: real | 
| 61942 | 690 | show "of_int \<lfloor>x\<rfloor> \<le> x \<and> x < of_int (\<lfloor>x\<rfloor> + 1)" | 
| 51523 | 691 | unfolding floor_real_def using floor_exists1 by (rule theI') | 
| 692 | qed | |
| 693 | ||
| 694 | end | |
| 695 | ||
| 60758 | 696 | subsection \<open>Completeness\<close> | 
| 51523 | 697 | |
| 698 | lemma not_positive_Real: | |
| 699 | assumes X: "cauchy X" | |
| 700 | shows "\<not> positive (Real X) \<longleftrightarrow> (\<forall>r>0. \<exists>k. \<forall>n\<ge>k. X n \<le> r)" | |
| 701 | unfolding positive_Real [OF X] | |
| 702 | apply (auto, unfold not_less) | |
| 703 | apply (erule obtain_pos_sum) | |
| 704 | apply (drule_tac x=s in spec, simp) | |
| 705 | apply (drule_tac r=t in cauchyD [OF X], clarify) | |
| 706 | apply (drule_tac x=k in spec, clarsimp) | |
| 707 | apply (rule_tac x=n in exI, clarify, rename_tac m) | |
| 708 | apply (drule_tac x=m in spec, simp) | |
| 709 | apply (drule_tac x=n in spec, simp) | |
| 710 | apply (drule spec, drule (1) mp, clarify, rename_tac i) | |
| 711 | apply (rule_tac x="max i k" in exI, simp) | |
| 712 | done | |
| 713 | ||
| 714 | lemma le_Real: | |
| 715 | assumes X: "cauchy X" and Y: "cauchy Y" | |
| 716 | shows "Real X \<le> Real Y = (\<forall>r>0. \<exists>k. \<forall>n\<ge>k. X n \<le> Y n + r)" | |
| 717 | unfolding not_less [symmetric, where 'a=real] less_real_def | |
| 718 | apply (simp add: diff_Real not_positive_Real X Y) | |
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
57512diff
changeset | 719 | apply (simp add: diff_le_eq ac_simps) | 
| 51523 | 720 | done | 
| 721 | ||
| 722 | lemma le_RealI: | |
| 723 | assumes Y: "cauchy Y" | |
| 724 | shows "\<forall>n. x \<le> of_rat (Y n) \<Longrightarrow> x \<le> Real Y" | |
| 725 | proof (induct x) | |
| 726 | fix X assume X: "cauchy X" and "\<forall>n. Real X \<le> of_rat (Y n)" | |
| 727 | hence le: "\<And>m r. 0 < r \<Longrightarrow> \<exists>k. \<forall>n\<ge>k. X n \<le> Y m + r" | |
| 728 | by (simp add: of_rat_Real le_Real) | |
| 729 |   {
 | |
| 730 | fix r :: rat assume "0 < r" | |
| 731 | then obtain s t where s: "0 < s" and t: "0 < t" and r: "r = s + t" | |
| 732 | by (rule obtain_pos_sum) | |
| 733 | obtain i where i: "\<forall>m\<ge>i. \<forall>n\<ge>i. \<bar>Y m - Y n\<bar> < s" | |
| 734 | using cauchyD [OF Y s] .. | |
| 735 | obtain j where j: "\<forall>n\<ge>j. X n \<le> Y i + t" | |
| 736 | using le [OF t] .. | |
| 737 | have "\<forall>n\<ge>max i j. X n \<le> Y n + r" | |
| 738 | proof (clarsimp) | |
| 739 | fix n assume n: "i \<le> n" "j \<le> n" | |
| 740 | have "X n \<le> Y i + t" using n j by simp | |
| 741 | moreover have "\<bar>Y i - Y n\<bar> < s" using n i by simp | |
| 742 | ultimately show "X n \<le> Y n + r" unfolding r by simp | |
| 743 | qed | |
| 744 | hence "\<exists>k. \<forall>n\<ge>k. X n \<le> Y n + r" .. | |
| 745 | } | |
| 746 | thus "Real X \<le> Real Y" | |
| 747 | by (simp add: of_rat_Real le_Real X Y) | |
| 748 | qed | |
| 749 | ||
| 750 | lemma Real_leI: | |
| 751 | assumes X: "cauchy X" | |
| 752 | assumes le: "\<forall>n. of_rat (X n) \<le> y" | |
| 753 | shows "Real X \<le> y" | |
| 754 | proof - | |
| 755 | have "- y \<le> - Real X" | |
| 756 | by (simp add: minus_Real X le_RealI of_rat_minus le) | |
| 757 | thus ?thesis by simp | |
| 758 | qed | |
| 759 | ||
| 760 | lemma less_RealD: | |
| 761 | assumes Y: "cauchy Y" | |
| 762 | shows "x < Real Y \<Longrightarrow> \<exists>n. x < of_rat (Y n)" | |
| 763 | by (erule contrapos_pp, simp add: not_less, erule Real_leI [OF Y]) | |
| 764 | ||
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 765 | lemma of_nat_less_two_power [simp]: | 
| 51523 | 766 | "of_nat n < (2::'a::linordered_idom) ^ n" | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 767 | apply (induct n, simp) | 
| 60162 | 768 | by (metis add_le_less_mono mult_2 of_nat_Suc one_le_numeral one_le_power power_Suc) | 
| 51523 | 769 | |
| 770 | lemma complete_real: | |
| 771 | fixes S :: "real set" | |
| 772 | assumes "\<exists>x. x \<in> S" and "\<exists>z. \<forall>x\<in>S. x \<le> z" | |
| 773 | shows "\<exists>y. (\<forall>x\<in>S. x \<le> y) \<and> (\<forall>z. (\<forall>x\<in>S. x \<le> z) \<longrightarrow> y \<le> z)" | |
| 774 | proof - | |
| 775 | obtain x where x: "x \<in> S" using assms(1) .. | |
| 776 | obtain z where z: "\<forall>x\<in>S. x \<le> z" using assms(2) .. | |
| 777 | ||
| 63040 | 778 | define P where "P x \<longleftrightarrow> (\<forall>y\<in>S. y \<le> of_rat x)" for x | 
| 51523 | 779 | obtain a where a: "\<not> P a" | 
| 780 | proof | |
| 61942 | 781 | have "of_int \<lfloor>x - 1\<rfloor> \<le> x - 1" by (rule of_int_floor_le) | 
| 51523 | 782 | also have "x - 1 < x" by simp | 
| 61942 | 783 | finally have "of_int \<lfloor>x - 1\<rfloor> < x" . | 
| 784 | hence "\<not> x \<le> of_int \<lfloor>x - 1\<rfloor>" by (simp only: not_le) | |
| 785 | then show "\<not> P (of_int \<lfloor>x - 1\<rfloor>)" | |
| 61649 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61609diff
changeset | 786 | unfolding P_def of_rat_of_int_eq using x by blast | 
| 51523 | 787 | qed | 
| 788 | obtain b where b: "P b" | |
| 789 | proof | |
| 61942 | 790 | show "P (of_int \<lceil>z\<rceil>)" | 
| 51523 | 791 | unfolding P_def of_rat_of_int_eq | 
| 792 | proof | |
| 793 | fix y assume "y \<in> S" | |
| 794 | hence "y \<le> z" using z by simp | |
| 61942 | 795 | also have "z \<le> of_int \<lceil>z\<rceil>" by (rule le_of_int_ceiling) | 
| 796 | finally show "y \<le> of_int \<lceil>z\<rceil>" . | |
| 51523 | 797 | qed | 
| 798 | qed | |
| 799 | ||
| 63040 | 800 | define avg where "avg x y = x/2 + y/2" for x y :: rat | 
| 801 | define bisect where "bisect = (\<lambda>(x, y). if P (avg x y) then (x, avg x y) else (avg x y, y))" | |
| 802 | define A where "A n = fst ((bisect ^^ n) (a, b))" for n | |
| 803 | define B where "B n = snd ((bisect ^^ n) (a, b))" for n | |
| 804 | define C where "C n = avg (A n) (B n)" for n | |
| 51523 | 805 | have A_0 [simp]: "A 0 = a" unfolding A_def by simp | 
| 806 | have B_0 [simp]: "B 0 = b" unfolding B_def by simp | |
| 807 | have A_Suc [simp]: "\<And>n. A (Suc n) = (if P (C n) then A n else C n)" | |
| 808 | unfolding A_def B_def C_def bisect_def split_def by simp | |
| 809 | have B_Suc [simp]: "\<And>n. B (Suc n) = (if P (C n) then C n else B n)" | |
| 810 | unfolding A_def B_def C_def bisect_def split_def by simp | |
| 811 | ||
| 812 | have width: "\<And>n. B n - A n = (b - a) / 2^n" | |
| 813 | apply (simp add: eq_divide_eq) | |
| 814 | apply (induct_tac n, simp) | |
| 61649 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61609diff
changeset | 815 | apply (simp add: C_def avg_def algebra_simps) | 
| 51523 | 816 | done | 
| 817 | ||
| 818 | have twos: "\<And>y r :: rat. 0 < r \<Longrightarrow> \<exists>n. y / 2 ^ n < r" | |
| 819 | apply (simp add: divide_less_eq) | |
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
57447diff
changeset | 820 | apply (subst mult.commute) | 
| 51523 | 821 | apply (frule_tac y=y in ex_less_of_nat_mult) | 
| 822 | apply clarify | |
| 823 | apply (rule_tac x=n in exI) | |
| 824 | apply (erule less_trans) | |
| 825 | apply (rule mult_strict_right_mono) | |
| 826 | apply (rule le_less_trans [OF _ of_nat_less_two_power]) | |
| 827 | apply simp | |
| 828 | apply assumption | |
| 829 | done | |
| 830 | ||
| 831 | have PA: "\<And>n. \<not> P (A n)" | |
| 832 | by (induct_tac n, simp_all add: a) | |
| 833 | have PB: "\<And>n. P (B n)" | |
| 834 | by (induct_tac n, simp_all add: b) | |
| 835 | have ab: "a < b" | |
| 836 | using a b unfolding P_def | |
| 837 | apply (clarsimp simp add: not_le) | |
| 838 | apply (drule (1) bspec) | |
| 839 | apply (drule (1) less_le_trans) | |
| 840 | apply (simp add: of_rat_less) | |
| 841 | done | |
| 842 | have AB: "\<And>n. A n < B n" | |
| 843 | by (induct_tac n, simp add: ab, simp add: C_def avg_def) | |
| 844 | have A_mono: "\<And>i j. i \<le> j \<Longrightarrow> A i \<le> A j" | |
| 845 | apply (auto simp add: le_less [where 'a=nat]) | |
| 846 | apply (erule less_Suc_induct) | |
| 847 | apply (clarsimp simp add: C_def avg_def) | |
| 848 | apply (simp add: add_divide_distrib [symmetric]) | |
| 849 | apply (rule AB [THEN less_imp_le]) | |
| 850 | apply simp | |
| 851 | done | |
| 852 | have B_mono: "\<And>i j. i \<le> j \<Longrightarrow> B j \<le> B i" | |
| 853 | apply (auto simp add: le_less [where 'a=nat]) | |
| 854 | apply (erule less_Suc_induct) | |
| 855 | apply (clarsimp simp add: C_def avg_def) | |
| 856 | apply (simp add: add_divide_distrib [symmetric]) | |
| 857 | apply (rule AB [THEN less_imp_le]) | |
| 858 | apply simp | |
| 859 | done | |
| 860 | have cauchy_lemma: | |
| 861 | "\<And>X. \<forall>n. \<forall>i\<ge>n. A n \<le> X i \<and> X i \<le> B n \<Longrightarrow> cauchy X" | |
| 862 | apply (rule cauchyI) | |
| 863 | apply (drule twos [where y="b - a"]) | |
| 864 | apply (erule exE) | |
| 865 | apply (rule_tac x=n in exI, clarify, rename_tac i j) | |
| 866 | apply (rule_tac y="B n - A n" in le_less_trans) defer | |
| 867 | apply (simp add: width) | |
| 868 | apply (drule_tac x=n in spec) | |
| 869 | apply (frule_tac x=i in spec, drule (1) mp) | |
| 870 | apply (frule_tac x=j in spec, drule (1) mp) | |
| 871 | apply (frule A_mono, drule B_mono) | |
| 872 | apply (frule A_mono, drule B_mono) | |
| 873 | apply arith | |
| 874 | done | |
| 875 | have "cauchy A" | |
| 876 | apply (rule cauchy_lemma [rule_format]) | |
| 877 | apply (simp add: A_mono) | |
| 878 | apply (erule order_trans [OF less_imp_le [OF AB] B_mono]) | |
| 879 | done | |
| 880 | have "cauchy B" | |
| 881 | apply (rule cauchy_lemma [rule_format]) | |
| 882 | apply (simp add: B_mono) | |
| 883 | apply (erule order_trans [OF A_mono less_imp_le [OF AB]]) | |
| 884 | done | |
| 885 | have 1: "\<forall>x\<in>S. x \<le> Real B" | |
| 886 | proof | |
| 887 | fix x assume "x \<in> S" | |
| 888 | then show "x \<le> Real B" | |
| 60758 | 889 | using PB [unfolded P_def] \<open>cauchy B\<close> | 
| 51523 | 890 | by (simp add: le_RealI) | 
| 891 | qed | |
| 892 | have 2: "\<forall>z. (\<forall>x\<in>S. x \<le> z) \<longrightarrow> Real A \<le> z" | |
| 893 | apply clarify | |
| 894 | apply (erule contrapos_pp) | |
| 895 | apply (simp add: not_le) | |
| 60758 | 896 | apply (drule less_RealD [OF \<open>cauchy A\<close>], clarify) | 
| 51523 | 897 | apply (subgoal_tac "\<not> P (A n)") | 
| 898 | apply (simp add: P_def not_le, clarify) | |
| 899 | apply (erule rev_bexI) | |
| 900 | apply (erule (1) less_trans) | |
| 901 | apply (simp add: PA) | |
| 902 | done | |
| 903 | have "vanishes (\<lambda>n. (b - a) / 2 ^ n)" | |
| 904 | proof (rule vanishesI) | |
| 905 | fix r :: rat assume "0 < r" | |
| 906 | then obtain k where k: "\<bar>b - a\<bar> / 2 ^ k < r" | |
| 61649 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61609diff
changeset | 907 | using twos by blast | 
| 51523 | 908 | have "\<forall>n\<ge>k. \<bar>(b - a) / 2 ^ n\<bar> < r" | 
| 909 | proof (clarify) | |
| 910 | fix n assume n: "k \<le> n" | |
| 911 | have "\<bar>(b - a) / 2 ^ n\<bar> = \<bar>b - a\<bar> / 2 ^ n" | |
| 912 | by simp | |
| 913 | also have "\<dots> \<le> \<bar>b - a\<bar> / 2 ^ k" | |
| 56544 | 914 | using n by (simp add: divide_left_mono) | 
| 51523 | 915 | also note k | 
| 916 | finally show "\<bar>(b - a) / 2 ^ n\<bar> < r" . | |
| 917 | qed | |
| 918 | thus "\<exists>k. \<forall>n\<ge>k. \<bar>(b - a) / 2 ^ n\<bar> < r" .. | |
| 919 | qed | |
| 920 | hence 3: "Real B = Real A" | |
| 60758 | 921 | by (simp add: eq_Real \<open>cauchy A\<close> \<open>cauchy B\<close> width) | 
| 51523 | 922 | show "\<exists>y. (\<forall>x\<in>S. x \<le> y) \<and> (\<forall>z. (\<forall>x\<in>S. x \<le> z) \<longrightarrow> y \<le> z)" | 
| 923 | using 1 2 3 by (rule_tac x="Real B" in exI, simp) | |
| 924 | qed | |
| 925 | ||
| 51775 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51773diff
changeset | 926 | instantiation real :: linear_continuum | 
| 51523 | 927 | begin | 
| 928 | ||
| 60758 | 929 | subsection\<open>Supremum of a set of reals\<close> | 
| 51523 | 930 | |
| 54281 | 931 | definition "Sup X = (LEAST z::real. \<forall>x\<in>X. x \<le> z)" | 
| 932 | definition "Inf (X::real set) = - Sup (uminus ` X)" | |
| 51523 | 933 | |
| 934 | instance | |
| 935 | proof | |
| 54258 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54230diff
changeset | 936 |   { fix x :: real and X :: "real set"
 | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54230diff
changeset | 937 | assume x: "x \<in> X" "bdd_above X" | 
| 51523 | 938 | then obtain s where s: "\<forall>y\<in>X. y \<le> s" "\<And>z. \<forall>y\<in>X. y \<le> z \<Longrightarrow> s \<le> z" | 
| 54258 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54230diff
changeset | 939 | using complete_real[of X] unfolding bdd_above_def by blast | 
| 51523 | 940 | then show "x \<le> Sup X" | 
| 941 | unfolding Sup_real_def by (rule LeastI2_order) (auto simp: x) } | |
| 942 | note Sup_upper = this | |
| 943 | ||
| 944 |   { fix z :: real and X :: "real set"
 | |
| 945 |     assume x: "X \<noteq> {}" and z: "\<And>x. x \<in> X \<Longrightarrow> x \<le> z"
 | |
| 946 | then obtain s where s: "\<forall>y\<in>X. y \<le> s" "\<And>z. \<forall>y\<in>X. y \<le> z \<Longrightarrow> s \<le> z" | |
| 947 | using complete_real[of X] by blast | |
| 948 | then have "Sup X = s" | |
| 61284 
2314c2f62eb1
real_of_nat_Suc is now a simprule
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 949 | unfolding Sup_real_def by (best intro: Least_equality) | 
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53076diff
changeset | 950 | also from s z have "... \<le> z" | 
| 51523 | 951 | by blast | 
| 952 | finally show "Sup X \<le> z" . } | |
| 953 | note Sup_least = this | |
| 954 | ||
| 54281 | 955 |   { fix x :: real and X :: "real set" assume x: "x \<in> X" "bdd_below X" then show "Inf X \<le> x"
 | 
| 956 | using Sup_upper[of "-x" "uminus ` X"] by (auto simp: Inf_real_def) } | |
| 957 |   { fix z :: real and X :: "real set" assume "X \<noteq> {}" "\<And>x. x \<in> X \<Longrightarrow> z \<le> x" then show "z \<le> Inf X"
 | |
| 958 | using Sup_least[of "uminus ` X" "- z"] by (force simp: Inf_real_def) } | |
| 51775 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51773diff
changeset | 959 | show "\<exists>a b::real. a \<noteq> b" | 
| 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51773diff
changeset | 960 | using zero_neq_one by blast | 
| 51523 | 961 | qed | 
| 962 | end | |
| 963 | ||
| 964 | ||
| 60758 | 965 | subsection \<open>Hiding implementation details\<close> | 
| 51523 | 966 | |
| 967 | hide_const (open) vanishes cauchy positive Real | |
| 968 | ||
| 969 | declare Real_induct [induct del] | |
| 970 | declare Abs_real_induct [induct del] | |
| 971 | declare Abs_real_cases [cases del] | |
| 972 | ||
| 53652 
18fbca265e2e
use lifting_forget for deregistering numeric types as a quotient type
 kuncar parents: 
53374diff
changeset | 973 | lifting_update real.lifting | 
| 
18fbca265e2e
use lifting_forget for deregistering numeric types as a quotient type
 kuncar parents: 
53374diff
changeset | 974 | lifting_forget real.lifting | 
| 61284 
2314c2f62eb1
real_of_nat_Suc is now a simprule
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 975 | |
| 60758 | 976 | subsection\<open>More Lemmas\<close> | 
| 51523 | 977 | |
| 60758 | 978 | text \<open>BH: These lemmas should not be necessary; they should be | 
| 979 | covered by existing simp rules and simplification procedures.\<close> | |
| 51523 | 980 | |
| 981 | lemma real_mult_less_iff1 [simp]: "(0::real) < z ==> (x*z < y*z) = (x < y)" | |
| 982 | by simp (* solved by linordered_ring_less_cancel_factor simproc *) | |
| 983 | ||
| 984 | lemma real_mult_le_cancel_iff1 [simp]: "(0::real) < z ==> (x*z \<le> y*z) = (x\<le>y)" | |
| 985 | by simp (* solved by linordered_ring_le_cancel_factor simproc *) | |
| 986 | ||
| 987 | lemma real_mult_le_cancel_iff2 [simp]: "(0::real) < z ==> (z*x \<le> z*y) = (x\<le>y)" | |
| 988 | by simp (* solved by linordered_ring_le_cancel_factor simproc *) | |
| 989 | ||
| 990 | ||
| 60758 | 991 | subsection \<open>Embedding numbers into the Reals\<close> | 
| 51523 | 992 | |
| 993 | abbreviation | |
| 994 | real_of_nat :: "nat \<Rightarrow> real" | |
| 995 | where | |
| 996 | "real_of_nat \<equiv> of_nat" | |
| 997 | ||
| 998 | abbreviation | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 999 | real :: "nat \<Rightarrow> real" | 
| 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1000 | where | 
| 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1001 | "real \<equiv> of_nat" | 
| 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1002 | |
| 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1003 | abbreviation | 
| 51523 | 1004 | real_of_int :: "int \<Rightarrow> real" | 
| 1005 | where | |
| 1006 | "real_of_int \<equiv> of_int" | |
| 1007 | ||
| 1008 | abbreviation | |
| 1009 | real_of_rat :: "rat \<Rightarrow> real" | |
| 1010 | where | |
| 1011 | "real_of_rat \<equiv> of_rat" | |
| 1012 | ||
| 1013 | declare [[coercion_enabled]] | |
| 59000 | 1014 | |
| 1015 | declare [[coercion "of_nat :: nat \<Rightarrow> int"]] | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1016 | declare [[coercion "of_nat :: nat \<Rightarrow> real"]] | 
| 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1017 | declare [[coercion "of_int :: int \<Rightarrow> real"]] | 
| 59000 | 1018 | |
| 1019 | (* We do not add rat to the coerced types, this has often unpleasant side effects when writing | |
| 1020 | inverse (Suc n) which sometimes gets two coercions: of_rat (inverse (of_nat (Suc n))) *) | |
| 51523 | 1021 | |
| 1022 | declare [[coercion_map map]] | |
| 59000 | 1023 | declare [[coercion_map "\<lambda>f g h x. g (h (f x))"]] | 
| 1024 | declare [[coercion_map "\<lambda>f g (x,y). (f x, g y)"]] | |
| 51523 | 1025 | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1026 | declare of_int_eq_0_iff [algebra, presburger] | 
| 61649 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61609diff
changeset | 1027 | declare of_int_eq_1_iff [algebra, presburger] | 
| 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61609diff
changeset | 1028 | declare of_int_eq_iff [algebra, presburger] | 
| 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61609diff
changeset | 1029 | declare of_int_less_0_iff [algebra, presburger] | 
| 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61609diff
changeset | 1030 | declare of_int_less_1_iff [algebra, presburger] | 
| 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61609diff
changeset | 1031 | declare of_int_less_iff [algebra, presburger] | 
| 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61609diff
changeset | 1032 | declare of_int_le_0_iff [algebra, presburger] | 
| 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61609diff
changeset | 1033 | declare of_int_le_1_iff [algebra, presburger] | 
| 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61609diff
changeset | 1034 | declare of_int_le_iff [algebra, presburger] | 
| 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61609diff
changeset | 1035 | declare of_int_0_less_iff [algebra, presburger] | 
| 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61609diff
changeset | 1036 | declare of_int_0_le_iff [algebra, presburger] | 
| 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61609diff
changeset | 1037 | declare of_int_1_less_iff [algebra, presburger] | 
| 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61609diff
changeset | 1038 | declare of_int_1_le_iff [algebra, presburger] | 
| 51523 | 1039 | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1040 | lemma int_less_real_le: "(n < m) = (real_of_int n + 1 <= real_of_int m)" | 
| 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1041 | proof - | 
| 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1042 | have "(0::real) \<le> 1" | 
| 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1043 | by (metis less_eq_real_def zero_less_one) | 
| 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1044 | thus ?thesis | 
| 61694 
6571c78c9667
Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
 paulson <lp15@cam.ac.uk> parents: 
61649diff
changeset | 1045 | by (metis floor_of_int less_floor_iff) | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1046 | qed | 
| 51523 | 1047 | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1048 | lemma int_le_real_less: "(n \<le> m) = (real_of_int n < real_of_int m + 1)" | 
| 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1049 | by (meson int_less_real_le not_le) | 
| 51523 | 1050 | |
| 1051 | ||
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1052 | lemma real_of_int_div_aux: "(real_of_int x) / (real_of_int d) = | 
| 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1053 | real_of_int (x div d) + (real_of_int (x mod d)) / (real_of_int d)" | 
| 51523 | 1054 | proof - | 
| 1055 | have "x = (x div d) * d + x mod d" | |
| 1056 | by auto | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1057 | then have "real_of_int x = real_of_int (x div d) * real_of_int d + real_of_int(x mod d)" | 
| 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1058 | by (metis of_int_add of_int_mult) | 
| 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1059 | then have "real_of_int x / real_of_int d = ... / real_of_int d" | 
| 51523 | 1060 | by simp | 
| 1061 | then show ?thesis | |
| 1062 | by (auto simp add: add_divide_distrib algebra_simps) | |
| 1063 | qed | |
| 1064 | ||
| 58834 | 1065 | lemma real_of_int_div: | 
| 1066 | fixes d n :: int | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1067 | shows "d dvd n \<Longrightarrow> real_of_int (n div d) = real_of_int n / real_of_int d" | 
| 58834 | 1068 | by (simp add: real_of_int_div_aux) | 
| 51523 | 1069 | |
| 1070 | lemma real_of_int_div2: | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1071 | "0 <= real_of_int n / real_of_int x - real_of_int (n div x)" | 
| 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1072 | apply (case_tac "x = 0", simp) | 
| 51523 | 1073 | apply (case_tac "0 < x") | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1074 | apply (metis add.left_neutral floor_correct floor_divide_of_int_eq le_diff_eq) | 
| 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1075 | apply (metis add.left_neutral floor_correct floor_divide_of_int_eq le_diff_eq) | 
| 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1076 | done | 
| 51523 | 1077 | |
| 1078 | lemma real_of_int_div3: | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1079 | "real_of_int (n::int) / real_of_int (x) - real_of_int (n div x) <= 1" | 
| 51523 | 1080 | apply (simp add: algebra_simps) | 
| 1081 | apply (subst real_of_int_div_aux) | |
| 1082 | apply (auto simp add: divide_le_eq intro: order_less_imp_le) | |
| 1083 | done | |
| 1084 | ||
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1085 | lemma real_of_int_div4: "real_of_int (n div x) <= real_of_int (n::int) / real_of_int x" | 
| 51523 | 1086 | by (insert real_of_int_div2 [of n x], simp) | 
| 1087 | ||
| 1088 | ||
| 60758 | 1089 | subsection\<open>Embedding the Naturals into the Reals\<close> | 
| 51523 | 1090 | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1091 | lemma real_of_card: "real (card A) = setsum (\<lambda>x.1) A" | 
| 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1092 | by simp | 
| 51523 | 1093 | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1094 | lemma nat_less_real_le: "(n < m) = (real n + 1 \<le> real m)" | 
| 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1095 | by (metis discrete of_nat_1 of_nat_add of_nat_le_iff) | 
| 51523 | 1096 | |
| 1097 | lemma nat_le_real_less: "((n::nat) <= m) = (real n < real m + 1)" | |
| 61284 
2314c2f62eb1
real_of_nat_Suc is now a simprule
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1098 | by (meson nat_less_real_le not_le) | 
| 51523 | 1099 | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1100 | lemma real_of_nat_div_aux: "(real x) / (real d) = | 
| 51523 | 1101 | real (x div d) + (real (x mod d)) / (real d)" | 
| 1102 | proof - | |
| 1103 | have "x = (x div d) * d + x mod d" | |
| 1104 | by auto | |
| 1105 | then have "real x = real (x div d) * real d + real(x mod d)" | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1106 | by (metis of_nat_add of_nat_mult) | 
| 51523 | 1107 | then have "real x / real d = \<dots> / real d" | 
| 1108 | by simp | |
| 1109 | then show ?thesis | |
| 1110 | by (auto simp add: add_divide_distrib algebra_simps) | |
| 1111 | qed | |
| 1112 | ||
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1113 | lemma real_of_nat_div: "d dvd n \<Longrightarrow> real(n div d) = real n / real d" | 
| 51523 | 1114 | by (subst real_of_nat_div_aux) | 
| 1115 | (auto simp add: dvd_eq_mod_eq_0 [symmetric]) | |
| 1116 | ||
| 1117 | lemma real_of_nat_div2: | |
| 1118 | "0 <= real (n::nat) / real (x) - real (n div x)" | |
| 1119 | apply (simp add: algebra_simps) | |
| 1120 | apply (subst real_of_nat_div_aux) | |
| 1121 | apply simp | |
| 1122 | done | |
| 1123 | ||
| 1124 | lemma real_of_nat_div3: | |
| 1125 | "real (n::nat) / real (x) - real (n div x) <= 1" | |
| 1126 | apply(case_tac "x = 0") | |
| 1127 | apply (simp) | |
| 1128 | apply (simp add: algebra_simps) | |
| 1129 | apply (subst real_of_nat_div_aux) | |
| 1130 | apply simp | |
| 1131 | done | |
| 1132 | ||
| 61284 
2314c2f62eb1
real_of_nat_Suc is now a simprule
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1133 | lemma real_of_nat_div4: "real (n div x) <= real (n::nat) / real x" | 
| 51523 | 1134 | by (insert real_of_nat_div2 [of n x], simp) | 
| 1135 | ||
| 60758 | 1136 | subsection \<open>The Archimedean Property of the Reals\<close> | 
| 51523 | 1137 | |
| 62623 
dbc62f86a1a9
rationalisation of theorem names esp about "real Archimedian" etc.
 paulson <lp15@cam.ac.uk> parents: 
62398diff
changeset | 1138 | lemma real_arch_inverse: "0 < e \<longleftrightarrow> (\<exists>n::nat. n \<noteq> 0 \<and> 0 < inverse (real n) \<and> inverse (real n) < e)" | 
| 
dbc62f86a1a9
rationalisation of theorem names esp about "real Archimedian" etc.
 paulson <lp15@cam.ac.uk> parents: 
62398diff
changeset | 1139 | using reals_Archimedean[of e] less_trans[of 0 "1 / real n" e for n::nat] | 
| 
dbc62f86a1a9
rationalisation of theorem names esp about "real Archimedian" etc.
 paulson <lp15@cam.ac.uk> parents: 
62398diff
changeset | 1140 | by (auto simp add: field_simps cong: conj_cong simp del: of_nat_Suc) | 
| 51523 | 1141 | |
| 1142 | lemma reals_Archimedean3: | |
| 1143 | assumes x_greater_zero: "0 < x" | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1144 | shows "\<forall>y. \<exists>n. y < real n * x" | 
| 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1145 | using \<open>0 < x\<close> by (auto intro: ex_less_of_nat_mult) | 
| 51523 | 1146 | |
| 62397 
5ae24f33d343
Substantial new material for multivariate analysis. Also removal of some duplicates.
 paulson <lp15@cam.ac.uk> parents: 
62348diff
changeset | 1147 | lemma real_archimedian_rdiv_eq_0: | 
| 
5ae24f33d343
Substantial new material for multivariate analysis. Also removal of some duplicates.
 paulson <lp15@cam.ac.uk> parents: 
62348diff
changeset | 1148 | assumes x0: "x \<ge> 0" | 
| 
5ae24f33d343
Substantial new material for multivariate analysis. Also removal of some duplicates.
 paulson <lp15@cam.ac.uk> parents: 
62348diff
changeset | 1149 | and c: "c \<ge> 0" | 
| 
5ae24f33d343
Substantial new material for multivariate analysis. Also removal of some duplicates.
 paulson <lp15@cam.ac.uk> parents: 
62348diff
changeset | 1150 | and xc: "\<And>m::nat. m > 0 \<Longrightarrow> real m * x \<le> c" | 
| 
5ae24f33d343
Substantial new material for multivariate analysis. Also removal of some duplicates.
 paulson <lp15@cam.ac.uk> parents: 
62348diff
changeset | 1151 | shows "x = 0" | 
| 
5ae24f33d343
Substantial new material for multivariate analysis. Also removal of some duplicates.
 paulson <lp15@cam.ac.uk> parents: 
62348diff
changeset | 1152 | by (metis reals_Archimedean3 dual_order.order_iff_strict le0 le_less_trans not_le x0 xc) | 
| 
5ae24f33d343
Substantial new material for multivariate analysis. Also removal of some duplicates.
 paulson <lp15@cam.ac.uk> parents: 
62348diff
changeset | 1153 | |
| 51523 | 1154 | |
| 60758 | 1155 | subsection\<open>Rationals\<close> | 
| 51523 | 1156 | |
| 1157 | lemma Rats_eq_int_div_int: | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1158 |   "\<rat> = { real_of_int i / real_of_int j |i j. j \<noteq> 0}" (is "_ = ?S")
 | 
| 51523 | 1159 | proof | 
| 1160 | show "\<rat> \<subseteq> ?S" | |
| 1161 | proof | |
| 1162 | fix x::real assume "x : \<rat>" | |
| 1163 | then obtain r where "x = of_rat r" unfolding Rats_def .. | |
| 1164 | have "of_rat r : ?S" | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1165 | by (cases r) (auto simp add:of_rat_rat) | 
| 60758 | 1166 | thus "x : ?S" using \<open>x = of_rat r\<close> by simp | 
| 51523 | 1167 | qed | 
| 1168 | next | |
| 1169 | show "?S \<subseteq> \<rat>" | |
| 1170 | proof(auto simp:Rats_def) | |
| 1171 | fix i j :: int assume "j \<noteq> 0" | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1172 | hence "real_of_int i / real_of_int j = of_rat(Fract i j)" | 
| 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1173 | by (simp add: of_rat_rat) | 
| 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1174 | thus "real_of_int i / real_of_int j \<in> range of_rat" by blast | 
| 51523 | 1175 | qed | 
| 1176 | qed | |
| 1177 | ||
| 1178 | lemma Rats_eq_int_div_nat: | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1179 |   "\<rat> = { real_of_int i / real n |i n. n \<noteq> 0}"
 | 
| 51523 | 1180 | proof(auto simp:Rats_eq_int_div_int) | 
| 1181 | fix i j::int assume "j \<noteq> 0" | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1182 | show "EX (i'::int) (n::nat). real_of_int i / real_of_int j = real_of_int i'/real n \<and> 0<n" | 
| 51523 | 1183 | proof cases | 
| 1184 | assume "j>0" | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1185 | hence "real_of_int i / real_of_int j = real_of_int i/real(nat j) \<and> 0<nat j" | 
| 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1186 | by (simp add: of_nat_nat) | 
| 51523 | 1187 | thus ?thesis by blast | 
| 1188 | next | |
| 1189 | assume "~ j>0" | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1190 | hence "real_of_int i / real_of_int j = real_of_int(-i) / real(nat(-j)) \<and> 0<nat(-j)" using \<open>j\<noteq>0\<close> | 
| 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1191 | by (simp add: of_nat_nat) | 
| 51523 | 1192 | thus ?thesis by blast | 
| 1193 | qed | |
| 1194 | next | |
| 1195 | fix i::int and n::nat assume "0 < n" | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1196 | hence "real_of_int i / real n = real_of_int i / real_of_int(int n) \<and> int n \<noteq> 0" by simp | 
| 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1197 | thus "\<exists>i' j. real_of_int i / real n = real_of_int i' / real_of_int j \<and> j \<noteq> 0" by blast | 
| 51523 | 1198 | qed | 
| 1199 | ||
| 1200 | lemma Rats_abs_nat_div_natE: | |
| 1201 | assumes "x \<in> \<rat>" | |
| 1202 | obtains m n :: nat | |
| 1203 | where "n \<noteq> 0" and "\<bar>x\<bar> = real m / real n" and "gcd m n = 1" | |
| 1204 | proof - | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1205 | from \<open>x \<in> \<rat>\<close> obtain i::int and n::nat where "n \<noteq> 0" and "x = real_of_int i / real n" | 
| 51523 | 1206 | by(auto simp add: Rats_eq_int_div_nat) | 
| 61944 | 1207 | hence "\<bar>x\<bar> = real (nat \<bar>i\<bar>) / real n" by (simp add: of_nat_nat) | 
| 51523 | 1208 | then obtain m :: nat where x_rat: "\<bar>x\<bar> = real m / real n" by blast | 
| 1209 | let ?gcd = "gcd m n" | |
| 60758 | 1210 | from \<open>n\<noteq>0\<close> have gcd: "?gcd \<noteq> 0" by simp | 
| 51523 | 1211 | let ?k = "m div ?gcd" | 
| 1212 | let ?l = "n div ?gcd" | |
| 1213 | let ?gcd' = "gcd ?k ?l" | |
| 1214 | have "?gcd dvd m" .. then have gcd_k: "?gcd * ?k = m" | |
| 1215 | by (rule dvd_mult_div_cancel) | |
| 1216 | have "?gcd dvd n" .. then have gcd_l: "?gcd * ?l = n" | |
| 1217 | by (rule dvd_mult_div_cancel) | |
| 60758 | 1218 | from \<open>n \<noteq> 0\<close> and gcd_l | 
| 58834 | 1219 | have "?gcd * ?l \<noteq> 0" by simp | 
| 61284 
2314c2f62eb1
real_of_nat_Suc is now a simprule
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1220 | then have "?l \<noteq> 0" by (blast dest!: mult_not_zero) | 
| 51523 | 1221 | moreover | 
| 1222 | have "\<bar>x\<bar> = real ?k / real ?l" | |
| 1223 | proof - | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1224 | from gcd have "real ?k / real ?l = real (?gcd * ?k) / real (?gcd * ?l)" | 
| 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1225 | by (simp add: real_of_nat_div) | 
| 51523 | 1226 | also from gcd_k and gcd_l have "\<dots> = real m / real n" by simp | 
| 1227 | also from x_rat have "\<dots> = \<bar>x\<bar>" .. | |
| 1228 | finally show ?thesis .. | |
| 1229 | qed | |
| 1230 | moreover | |
| 1231 | have "?gcd' = 1" | |
| 1232 | proof - | |
| 1233 | have "?gcd * ?gcd' = gcd (?gcd * ?k) (?gcd * ?l)" | |
| 1234 | by (rule gcd_mult_distrib_nat) | |
| 1235 | with gcd_k gcd_l have "?gcd * ?gcd' = ?gcd" by simp | |
| 1236 | with gcd show ?thesis by auto | |
| 1237 | qed | |
| 1238 | ultimately show ?thesis .. | |
| 1239 | qed | |
| 1240 | ||
| 60758 | 1241 | subsection\<open>Density of the Rational Reals in the Reals\<close> | 
| 51523 | 1242 | |
| 60758 | 1243 | text\<open>This density proof is due to Stefan Richter and was ported by TN. The | 
| 51523 | 1244 | original source is \emph{Real Analysis} by H.L. Royden.
 | 
| 60758 | 1245 | It employs the Archimedean property of the reals.\<close> | 
| 51523 | 1246 | |
| 1247 | lemma Rats_dense_in_real: | |
| 1248 | fixes x :: real | |
| 1249 | assumes "x < y" shows "\<exists>r\<in>\<rat>. x < r \<and> r < y" | |
| 1250 | proof - | |
| 60758 | 1251 | from \<open>x<y\<close> have "0 < y-x" by simp | 
| 61284 
2314c2f62eb1
real_of_nat_Suc is now a simprule
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1252 | with reals_Archimedean obtain q::nat | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1253 | where q: "inverse (real q) < y-x" and "0 < q" by blast | 
| 63040 | 1254 | define p where "p = \<lceil>y * real q\<rceil> - 1" | 
| 1255 | define r where "r = of_int p / real q" | |
| 51523 | 1256 | from q have "x < y - inverse (real q)" by simp | 
| 1257 | also have "y - inverse (real q) \<le> r" | |
| 1258 | unfolding r_def p_def | |
| 60758 | 1259 | by (simp add: le_divide_eq left_diff_distrib le_of_int_ceiling \<open>0 < q\<close>) | 
| 51523 | 1260 | finally have "x < r" . | 
| 1261 | moreover have "r < y" | |
| 1262 | unfolding r_def p_def | |
| 60758 | 1263 | by (simp add: divide_less_eq diff_less_eq \<open>0 < q\<close> | 
| 51523 | 1264 | less_ceiling_iff [symmetric]) | 
| 1265 | moreover from r_def have "r \<in> \<rat>" by simp | |
| 61649 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61609diff
changeset | 1266 | ultimately show ?thesis by blast | 
| 51523 | 1267 | qed | 
| 1268 | ||
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 1269 | lemma of_rat_dense: | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 1270 | fixes x y :: real | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 1271 | assumes "x < y" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 1272 | shows "\<exists>q :: rat. x < of_rat q \<and> of_rat q < y" | 
| 60758 | 1273 | using Rats_dense_in_real [OF \<open>x < y\<close>] | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 1274 | by (auto elim: Rats_cases) | 
| 51523 | 1275 | |
| 1276 | ||
| 60758 | 1277 | subsection\<open>Numerals and Arithmetic\<close> | 
| 51523 | 1278 | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1279 | lemma [code_abbrev]: (*FIXME*) | 
| 51523 | 1280 | "real_of_int (numeral k) = numeral k" | 
| 54489 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54281diff
changeset | 1281 | "real_of_int (- numeral k) = - numeral k" | 
| 51523 | 1282 | by simp_all | 
| 1283 | ||
| 60758 | 1284 | declaration \<open> | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1285 |   K (Lin_Arith.add_inj_thms [@{thm of_nat_le_iff} RS iffD2, @{thm of_nat_eq_iff} RS iffD2]
 | 
| 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1286 | (* not needed because x < (y::nat) can be rewritten as Suc x <= y: of_nat_less_iff RS iffD2 *) | 
| 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1287 |   #> Lin_Arith.add_inj_thms [@{thm of_int_le_iff} RS iffD2, @{thm of_nat_eq_iff} RS iffD2]
 | 
| 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1288 | (* not needed because x < (y::int) can be rewritten as x + 1 <= y: of_int_less_iff RS iffD2 *) | 
| 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1289 |   #> Lin_Arith.add_simps [@{thm of_nat_0}, @{thm of_nat_Suc}, @{thm of_nat_add},
 | 
| 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1290 |       @{thm of_nat_mult}, @{thm of_int_0}, @{thm of_int_1},
 | 
| 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1291 |       @{thm of_int_add}, @{thm of_int_minus}, @{thm of_int_diff},
 | 
| 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1292 |       @{thm of_int_mult}, @{thm of_int_of_nat_eq},
 | 
| 62348 | 1293 |       @{thm of_nat_numeral}, @{thm of_nat_numeral}, @{thm of_int_neg_numeral}]
 | 
| 58040 
9a867afaab5a
better linarith support for floor, ceiling, natfloor, and natceiling
 hoelzl parents: 
57514diff
changeset | 1294 |   #> Lin_Arith.add_inj_const (@{const_name of_nat}, @{typ "nat \<Rightarrow> real"})
 | 
| 
9a867afaab5a
better linarith support for floor, ceiling, natfloor, and natceiling
 hoelzl parents: 
57514diff
changeset | 1295 |   #> Lin_Arith.add_inj_const (@{const_name of_int}, @{typ "int \<Rightarrow> real"}))
 | 
| 60758 | 1296 | \<close> | 
| 51523 | 1297 | |
| 60758 | 1298 | subsection\<open>Simprules combining x+y and 0: ARE THEY NEEDED?\<close> | 
| 51523 | 1299 | |
| 61284 
2314c2f62eb1
real_of_nat_Suc is now a simprule
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1300 | lemma real_add_minus_iff [simp]: "(x + - a = (0::real)) = (x=a)" | 
| 51523 | 1301 | by arith | 
| 1302 | ||
| 1303 | lemma real_add_less_0_iff: "(x+y < (0::real)) = (y < -x)" | |
| 1304 | by auto | |
| 1305 | ||
| 1306 | lemma real_0_less_add_iff: "((0::real) < x+y) = (-x < y)" | |
| 1307 | by auto | |
| 1308 | ||
| 1309 | lemma real_add_le_0_iff: "(x+y \<le> (0::real)) = (y \<le> -x)" | |
| 1310 | by auto | |
| 1311 | ||
| 1312 | lemma real_0_le_add_iff: "((0::real) \<le> x+y) = (-x \<le> y)" | |
| 1313 | by auto | |
| 1314 | ||
| 60758 | 1315 | subsection \<open>Lemmas about powers\<close> | 
| 51523 | 1316 | |
| 1317 | lemma two_realpow_ge_one: "(1::real) \<le> 2 ^ n" | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1318 | by simp | 
| 51523 | 1319 | |
| 60758 | 1320 | text \<open>FIXME: declare this [simp] for all types, or not at all\<close> | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1321 | declare sum_squares_eq_zero_iff [simp] sum_power2_eq_zero_iff [simp] | 
| 51523 | 1322 | |
| 1323 | lemma real_minus_mult_self_le [simp]: "-(u * u) \<le> (x * (x::real))" | |
| 1324 | by (rule_tac y = 0 in order_trans, auto) | |
| 1325 | ||
| 53076 | 1326 | lemma realpow_square_minus_le [simp]: "- u\<^sup>2 \<le> (x::real)\<^sup>2" | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1327 | by (auto simp add: power2_eq_square) | 
| 51523 | 1328 | |
| 58983 
9c390032e4eb
cancel real of power of numeral also for equality and strict inequality;
 immler parents: 
58889diff
changeset | 1329 | lemma numeral_power_eq_real_of_int_cancel_iff[simp]: | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1330 | "numeral x ^ n = real_of_int (y::int) \<longleftrightarrow> numeral x ^ n = y" | 
| 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1331 | by (metis of_int_eq_iff of_int_numeral of_int_power) | 
| 58983 
9c390032e4eb
cancel real of power of numeral also for equality and strict inequality;
 immler parents: 
58889diff
changeset | 1332 | |
| 
9c390032e4eb
cancel real of power of numeral also for equality and strict inequality;
 immler parents: 
58889diff
changeset | 1333 | lemma real_of_int_eq_numeral_power_cancel_iff[simp]: | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1334 | "real_of_int (y::int) = numeral x ^ n \<longleftrightarrow> y = numeral x ^ n" | 
| 58983 
9c390032e4eb
cancel real of power of numeral also for equality and strict inequality;
 immler parents: 
58889diff
changeset | 1335 | using numeral_power_eq_real_of_int_cancel_iff[of x n y] | 
| 
9c390032e4eb
cancel real of power of numeral also for equality and strict inequality;
 immler parents: 
58889diff
changeset | 1336 | by metis | 
| 
9c390032e4eb
cancel real of power of numeral also for equality and strict inequality;
 immler parents: 
58889diff
changeset | 1337 | |
| 
9c390032e4eb
cancel real of power of numeral also for equality and strict inequality;
 immler parents: 
58889diff
changeset | 1338 | lemma numeral_power_eq_real_of_nat_cancel_iff[simp]: | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1339 | "numeral x ^ n = real (y::nat) \<longleftrightarrow> numeral x ^ n = y" | 
| 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1340 | using of_nat_eq_iff by fastforce | 
| 58983 
9c390032e4eb
cancel real of power of numeral also for equality and strict inequality;
 immler parents: 
58889diff
changeset | 1341 | |
| 
9c390032e4eb
cancel real of power of numeral also for equality and strict inequality;
 immler parents: 
58889diff
changeset | 1342 | lemma real_of_nat_eq_numeral_power_cancel_iff[simp]: | 
| 
9c390032e4eb
cancel real of power of numeral also for equality and strict inequality;
 immler parents: 
58889diff
changeset | 1343 | "real (y::nat) = numeral x ^ n \<longleftrightarrow> y = numeral x ^ n" | 
| 
9c390032e4eb
cancel real of power of numeral also for equality and strict inequality;
 immler parents: 
58889diff
changeset | 1344 | using numeral_power_eq_real_of_nat_cancel_iff[of x n y] | 
| 
9c390032e4eb
cancel real of power of numeral also for equality and strict inequality;
 immler parents: 
58889diff
changeset | 1345 | by metis | 
| 
9c390032e4eb
cancel real of power of numeral also for equality and strict inequality;
 immler parents: 
58889diff
changeset | 1346 | |
| 51523 | 1347 | lemma numeral_power_le_real_of_nat_cancel_iff[simp]: | 
| 1348 | "(numeral x::real) ^ n \<le> real a \<longleftrightarrow> (numeral x::nat) ^ n \<le> a" | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1349 | by (metis of_nat_le_iff of_nat_numeral of_nat_power) | 
| 51523 | 1350 | |
| 1351 | lemma real_of_nat_le_numeral_power_cancel_iff[simp]: | |
| 1352 | "real a \<le> (numeral x::real) ^ n \<longleftrightarrow> a \<le> (numeral x::nat) ^ n" | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1353 | by (metis of_nat_le_iff of_nat_numeral of_nat_power) | 
| 51523 | 1354 | |
| 1355 | lemma numeral_power_le_real_of_int_cancel_iff[simp]: | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1356 | "(numeral x::real) ^ n \<le> real_of_int a \<longleftrightarrow> (numeral x::int) ^ n \<le> a" | 
| 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1357 | by (metis ceiling_le_iff ceiling_of_int of_int_numeral of_int_power) | 
| 51523 | 1358 | |
| 1359 | lemma real_of_int_le_numeral_power_cancel_iff[simp]: | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1360 | "real_of_int a \<le> (numeral x::real) ^ n \<longleftrightarrow> a \<le> (numeral x::int) ^ n" | 
| 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1361 | by (metis floor_of_int le_floor_iff of_int_numeral of_int_power) | 
| 51523 | 1362 | |
| 58983 
9c390032e4eb
cancel real of power of numeral also for equality and strict inequality;
 immler parents: 
58889diff
changeset | 1363 | lemma numeral_power_less_real_of_nat_cancel_iff[simp]: | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1364 | "(numeral x::real) ^ n < real a \<longleftrightarrow> (numeral x::nat) ^ n < a" | 
| 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1365 | by (metis of_nat_less_iff of_nat_numeral of_nat_power) | 
| 58983 
9c390032e4eb
cancel real of power of numeral also for equality and strict inequality;
 immler parents: 
58889diff
changeset | 1366 | |
| 
9c390032e4eb
cancel real of power of numeral also for equality and strict inequality;
 immler parents: 
58889diff
changeset | 1367 | lemma real_of_nat_less_numeral_power_cancel_iff[simp]: | 
| 
9c390032e4eb
cancel real of power of numeral also for equality and strict inequality;
 immler parents: 
58889diff
changeset | 1368 | "real a < (numeral x::real) ^ n \<longleftrightarrow> a < (numeral x::nat) ^ n" | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1369 | by (metis of_nat_less_iff of_nat_numeral of_nat_power) | 
| 58983 
9c390032e4eb
cancel real of power of numeral also for equality and strict inequality;
 immler parents: 
58889diff
changeset | 1370 | |
| 
9c390032e4eb
cancel real of power of numeral also for equality and strict inequality;
 immler parents: 
58889diff
changeset | 1371 | lemma numeral_power_less_real_of_int_cancel_iff[simp]: | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1372 | "(numeral x::real) ^ n < real_of_int a \<longleftrightarrow> (numeral x::int) ^ n < a" | 
| 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1373 | by (meson not_less real_of_int_le_numeral_power_cancel_iff) | 
| 58983 
9c390032e4eb
cancel real of power of numeral also for equality and strict inequality;
 immler parents: 
58889diff
changeset | 1374 | |
| 
9c390032e4eb
cancel real of power of numeral also for equality and strict inequality;
 immler parents: 
58889diff
changeset | 1375 | lemma real_of_int_less_numeral_power_cancel_iff[simp]: | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1376 | "real_of_int a < (numeral x::real) ^ n \<longleftrightarrow> a < (numeral x::int) ^ n" | 
| 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1377 | by (meson not_less numeral_power_le_real_of_int_cancel_iff) | 
| 58983 
9c390032e4eb
cancel real of power of numeral also for equality and strict inequality;
 immler parents: 
58889diff
changeset | 1378 | |
| 51523 | 1379 | lemma neg_numeral_power_le_real_of_int_cancel_iff[simp]: | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1380 | "(- numeral x::real) ^ n \<le> real_of_int a \<longleftrightarrow> (- numeral x::int) ^ n \<le> a" | 
| 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1381 | by (metis of_int_le_iff of_int_neg_numeral of_int_power) | 
| 51523 | 1382 | |
| 1383 | lemma real_of_int_le_neg_numeral_power_cancel_iff[simp]: | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1384 | "real_of_int a \<le> (- numeral x::real) ^ n \<longleftrightarrow> a \<le> (- numeral x::int) ^ n" | 
| 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1385 | by (metis of_int_le_iff of_int_neg_numeral of_int_power) | 
| 51523 | 1386 | |
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56571diff
changeset | 1387 | |
| 60758 | 1388 | subsection\<open>Density of the Reals\<close> | 
| 51523 | 1389 | |
| 1390 | lemma real_lbound_gt_zero: | |
| 1391 | "[| (0::real) < d1; 0 < d2 |] ==> \<exists>e. 0 < e & e < d1 & e < d2" | |
| 1392 | apply (rule_tac x = " (min d1 d2) /2" in exI) | |
| 1393 | apply (simp add: min_def) | |
| 1394 | done | |
| 1395 | ||
| 1396 | ||
| 61799 | 1397 | text\<open>Similar results are proved in \<open>Fields\<close>\<close> | 
| 51523 | 1398 | lemma real_less_half_sum: "x < y ==> x < (x+y) / (2::real)" | 
| 1399 | by auto | |
| 1400 | ||
| 1401 | lemma real_gt_half_sum: "x < y ==> (x+y)/(2::real) < y" | |
| 1402 | by auto | |
| 1403 | ||
| 1404 | lemma real_sum_of_halves: "x/2 + x/2 = (x::real)" | |
| 1405 | by simp | |
| 1406 | ||
| 60758 | 1407 | subsection\<open>Floor and Ceiling Functions from the Reals to the Integers\<close> | 
| 51523 | 1408 | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1409 | (* FIXME: theorems for negative numerals. Many duplicates, e.g. from Archimedean_Field.thy. *) | 
| 51523 | 1410 | |
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56571diff
changeset | 1411 | lemma real_of_nat_less_numeral_iff [simp]: | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1412 | "real (n::nat) < numeral w \<longleftrightarrow> n < numeral w" | 
| 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1413 | by (metis of_nat_less_iff of_nat_numeral) | 
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56571diff
changeset | 1414 | |
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56571diff
changeset | 1415 | lemma numeral_less_real_of_nat_iff [simp]: | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1416 | "numeral w < real (n::nat) \<longleftrightarrow> numeral w < n" | 
| 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1417 | by (metis of_nat_less_iff of_nat_numeral) | 
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56571diff
changeset | 1418 | |
| 59587 
8ea7b22525cb
Removed the obsolete functions "natfloor" and "natceiling"
 nipkow parents: 
59000diff
changeset | 1419 | lemma numeral_le_real_of_nat_iff[simp]: | 
| 
8ea7b22525cb
Removed the obsolete functions "natfloor" and "natceiling"
 nipkow parents: 
59000diff
changeset | 1420 | "(numeral n \<le> real(m::nat)) = (numeral n \<le> m)" | 
| 
8ea7b22525cb
Removed the obsolete functions "natfloor" and "natceiling"
 nipkow parents: 
59000diff
changeset | 1421 | by (metis not_le real_of_nat_less_numeral_iff) | 
| 
8ea7b22525cb
Removed the obsolete functions "natfloor" and "natceiling"
 nipkow parents: 
59000diff
changeset | 1422 | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1423 | declare of_int_floor_le [simp] (* FIXME*) | 
| 51523 | 1424 | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1425 | lemma of_int_floor_cancel [simp]: | 
| 61942 | 1426 | "(of_int \<lfloor>x\<rfloor> = x) = (\<exists>n::int. x = of_int n)" | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1427 | by (metis floor_of_int) | 
| 51523 | 1428 | |
| 61942 | 1429 | lemma floor_eq: "[| real_of_int n < x; x < real_of_int n + 1 |] ==> \<lfloor>x\<rfloor> = n" | 
| 58040 
9a867afaab5a
better linarith support for floor, ceiling, natfloor, and natceiling
 hoelzl parents: 
57514diff
changeset | 1430 | by linarith | 
| 51523 | 1431 | |
| 61942 | 1432 | lemma floor_eq2: "[| real_of_int n \<le> x; x < real_of_int n + 1 |] ==> \<lfloor>x\<rfloor> = n" | 
| 58040 
9a867afaab5a
better linarith support for floor, ceiling, natfloor, and natceiling
 hoelzl parents: 
57514diff
changeset | 1433 | by linarith | 
| 51523 | 1434 | |
| 61942 | 1435 | lemma floor_eq3: "[| real n < x; x < real (Suc n) |] ==> nat \<lfloor>x\<rfloor> = n" | 
| 58040 
9a867afaab5a
better linarith support for floor, ceiling, natfloor, and natceiling
 hoelzl parents: 
57514diff
changeset | 1436 | by linarith | 
| 51523 | 1437 | |
| 61942 | 1438 | lemma floor_eq4: "[| real n \<le> x; x < real (Suc n) |] ==> nat \<lfloor>x\<rfloor> = n" | 
| 58040 
9a867afaab5a
better linarith support for floor, ceiling, natfloor, and natceiling
 hoelzl parents: 
57514diff
changeset | 1439 | by linarith | 
| 51523 | 1440 | |
| 61942 | 1441 | lemma real_of_int_floor_ge_diff_one [simp]: "r - 1 \<le> real_of_int \<lfloor>r\<rfloor>" | 
| 58040 
9a867afaab5a
better linarith support for floor, ceiling, natfloor, and natceiling
 hoelzl parents: 
57514diff
changeset | 1442 | by linarith | 
| 51523 | 1443 | |
| 61942 | 1444 | lemma real_of_int_floor_gt_diff_one [simp]: "r - 1 < real_of_int \<lfloor>r\<rfloor>" | 
| 58040 
9a867afaab5a
better linarith support for floor, ceiling, natfloor, and natceiling
 hoelzl parents: 
57514diff
changeset | 1445 | by linarith | 
| 51523 | 1446 | |
| 61942 | 1447 | lemma real_of_int_floor_add_one_ge [simp]: "r \<le> real_of_int \<lfloor>r\<rfloor> + 1" | 
| 58040 
9a867afaab5a
better linarith support for floor, ceiling, natfloor, and natceiling
 hoelzl parents: 
57514diff
changeset | 1448 | by linarith | 
| 51523 | 1449 | |
| 61942 | 1450 | lemma real_of_int_floor_add_one_gt [simp]: "r < real_of_int \<lfloor>r\<rfloor> + 1" | 
| 58040 
9a867afaab5a
better linarith support for floor, ceiling, natfloor, and natceiling
 hoelzl parents: 
57514diff
changeset | 1451 | by linarith | 
| 51523 | 1452 | |
| 61942 | 1453 | lemma floor_eq_iff: "\<lfloor>x\<rfloor> = b \<longleftrightarrow> of_int b \<le> x \<and> x < of_int (b + 1)" | 
| 1454 | by (simp add: floor_unique_iff) | |
| 58983 
9c390032e4eb
cancel real of power of numeral also for equality and strict inequality;
 immler parents: 
58889diff
changeset | 1455 | |
| 61942 | 1456 | lemma floor_add2[simp]: "\<lfloor>of_int a + x\<rfloor> = a + \<lfloor>x\<rfloor>" | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1457 | by (simp add: add.commute) | 
| 51523 | 1458 | |
| 61942 | 1459 | lemma floor_divide_real_eq_div: "0 \<le> b \<Longrightarrow> \<lfloor>a / real_of_int b\<rfloor> = \<lfloor>a\<rfloor> div b" | 
| 58788 
d17b3844b726
generalize natfloor_div_nat, add floor variant: floor_divide_real_eq_div
 hoelzl parents: 
58134diff
changeset | 1460 | proof cases | 
| 
d17b3844b726
generalize natfloor_div_nat, add floor variant: floor_divide_real_eq_div
 hoelzl parents: 
58134diff
changeset | 1461 | assume "0 < b" | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1462 |   { fix i j :: int assume "real_of_int i \<le> a" "a < 1 + real_of_int i"
 | 
| 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1463 | "real_of_int j * real_of_int b \<le> a" "a < real_of_int b + real_of_int j * real_of_int b" | 
| 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1464 | then have "i < b + j * b" | 
| 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1465 | by (metis linorder_not_less of_int_add of_int_le_iff of_int_mult order_trans_rules(21)) | 
| 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1466 | moreover have "j * b < 1 + i" | 
| 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1467 | proof - | 
| 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1468 | have "real_of_int (j * b) < real_of_int i + 1" | 
| 61799 | 1469 | using \<open>a < 1 + real_of_int i\<close> \<open>real_of_int j * real_of_int b \<le> a\<close> by force | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1470 | thus "j * b < 1 + i" | 
| 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1471 | by linarith | 
| 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1472 | qed | 
| 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1473 | ultimately have "(j - i div b) * b \<le> i mod b" "i mod b < ((j - i div b) + 1) * b" | 
| 58788 
d17b3844b726
generalize natfloor_div_nat, add floor variant: floor_divide_real_eq_div
 hoelzl parents: 
58134diff
changeset | 1474 | by (auto simp: field_simps) | 
| 
d17b3844b726
generalize natfloor_div_nat, add floor variant: floor_divide_real_eq_div
 hoelzl parents: 
58134diff
changeset | 1475 | then have "(j - i div b) * b < 1 * b" "0 * b < ((j - i div b) + 1) * b" | 
| 60758 | 1476 | using pos_mod_bound[OF \<open>0<b\<close>, of i] pos_mod_sign[OF \<open>0<b\<close>, of i] by linarith+ | 
| 58788 
d17b3844b726
generalize natfloor_div_nat, add floor variant: floor_divide_real_eq_div
 hoelzl parents: 
58134diff
changeset | 1477 | then have "j = i div b" | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1478 | using \<open>0 < b\<close> unfolding mult_less_cancel_right by auto | 
| 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1479 | } | 
| 60758 | 1480 | with \<open>0 < b\<close> show ?thesis | 
| 58788 
d17b3844b726
generalize natfloor_div_nat, add floor variant: floor_divide_real_eq_div
 hoelzl parents: 
58134diff
changeset | 1481 | by (auto split: floor_split simp: field_simps) | 
| 
d17b3844b726
generalize natfloor_div_nat, add floor variant: floor_divide_real_eq_div
 hoelzl parents: 
58134diff
changeset | 1482 | qed auto | 
| 
d17b3844b726
generalize natfloor_div_nat, add floor variant: floor_divide_real_eq_div
 hoelzl parents: 
58134diff
changeset | 1483 | |
| 58097 
cfd3cff9387b
add simp rules for divisions of numerals in floor and ceiling.
 hoelzl parents: 
58061diff
changeset | 1484 | lemma floor_divide_eq_div_numeral[simp]: "\<lfloor>numeral a / numeral b::real\<rfloor> = numeral a div numeral b" | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1485 | by (metis floor_divide_of_int_eq of_int_numeral) | 
| 58097 
cfd3cff9387b
add simp rules for divisions of numerals in floor and ceiling.
 hoelzl parents: 
58061diff
changeset | 1486 | |
| 
cfd3cff9387b
add simp rules for divisions of numerals in floor and ceiling.
 hoelzl parents: 
58061diff
changeset | 1487 | lemma floor_minus_divide_eq_div_numeral[simp]: "\<lfloor>- (numeral a / numeral b)::real\<rfloor> = - numeral a div numeral b" | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1488 | by (metis divide_minus_left floor_divide_of_int_eq of_int_neg_numeral of_int_numeral) | 
| 51523 | 1489 | |
| 61942 | 1490 | lemma of_int_ceiling_cancel [simp]: "(of_int \<lceil>x\<rceil> = x) = (\<exists>n::int. x = of_int n)" | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1491 | using ceiling_of_int by metis | 
| 51523 | 1492 | |
| 61942 | 1493 | lemma ceiling_eq: "[| of_int n < x; x \<le> of_int n + 1 |] ==> \<lceil>x\<rceil> = n + 1" | 
| 61694 
6571c78c9667
Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
 paulson <lp15@cam.ac.uk> parents: 
61649diff
changeset | 1494 | by (simp add: ceiling_unique) | 
| 51523 | 1495 | |
| 61942 | 1496 | lemma of_int_ceiling_diff_one_le [simp]: "of_int \<lceil>r\<rceil> - 1 \<le> r" | 
| 58040 
9a867afaab5a
better linarith support for floor, ceiling, natfloor, and natceiling
 hoelzl parents: 
57514diff
changeset | 1497 | by linarith | 
| 51523 | 1498 | |
| 61942 | 1499 | lemma of_int_ceiling_le_add_one [simp]: "of_int \<lceil>r\<rceil> \<le> r + 1" | 
| 58040 
9a867afaab5a
better linarith support for floor, ceiling, natfloor, and natceiling
 hoelzl parents: 
57514diff
changeset | 1500 | by linarith | 
| 51523 | 1501 | |
| 61942 | 1502 | lemma ceiling_le: "x <= of_int a ==> \<lceil>x\<rceil> <= a" | 
| 61694 
6571c78c9667
Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
 paulson <lp15@cam.ac.uk> parents: 
61649diff
changeset | 1503 | by (simp add: ceiling_le_iff) | 
| 51523 | 1504 | |
| 61694 
6571c78c9667
Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
 paulson <lp15@cam.ac.uk> parents: 
61649diff
changeset | 1505 | lemma ceiling_divide_eq_div: "\<lceil>of_int a / of_int b\<rceil> = - (- a div b)" | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1506 | by (metis ceiling_def floor_divide_of_int_eq minus_divide_left of_int_minus) | 
| 58097 
cfd3cff9387b
add simp rules for divisions of numerals in floor and ceiling.
 hoelzl parents: 
58061diff
changeset | 1507 | |
| 
cfd3cff9387b
add simp rules for divisions of numerals in floor and ceiling.
 hoelzl parents: 
58061diff
changeset | 1508 | lemma ceiling_divide_eq_div_numeral [simp]: | 
| 
cfd3cff9387b
add simp rules for divisions of numerals in floor and ceiling.
 hoelzl parents: 
58061diff
changeset | 1509 | "\<lceil>numeral a / numeral b :: real\<rceil> = - (- numeral a div numeral b)" | 
| 
cfd3cff9387b
add simp rules for divisions of numerals in floor and ceiling.
 hoelzl parents: 
58061diff
changeset | 1510 | using ceiling_divide_eq_div[of "numeral a" "numeral b"] by simp | 
| 
cfd3cff9387b
add simp rules for divisions of numerals in floor and ceiling.
 hoelzl parents: 
58061diff
changeset | 1511 | |
| 
cfd3cff9387b
add simp rules for divisions of numerals in floor and ceiling.
 hoelzl parents: 
58061diff
changeset | 1512 | lemma ceiling_minus_divide_eq_div_numeral [simp]: | 
| 
cfd3cff9387b
add simp rules for divisions of numerals in floor and ceiling.
 hoelzl parents: 
58061diff
changeset | 1513 | "\<lceil>- (numeral a / numeral b :: real)\<rceil> = - (numeral a div numeral b)" | 
| 
cfd3cff9387b
add simp rules for divisions of numerals in floor and ceiling.
 hoelzl parents: 
58061diff
changeset | 1514 | using ceiling_divide_eq_div[of "- numeral a" "numeral b"] by simp | 
| 51523 | 1515 | |
| 60758 | 1516 | text\<open>The following lemmas are remnants of the erstwhile functions natfloor | 
| 1517 | and natceiling.\<close> | |
| 58040 
9a867afaab5a
better linarith support for floor, ceiling, natfloor, and natceiling
 hoelzl parents: 
57514diff
changeset | 1518 | |
| 61942 | 1519 | lemma nat_floor_neg: "(x::real) <= 0 ==> nat \<lfloor>x\<rfloor> = 0" | 
| 58040 
9a867afaab5a
better linarith support for floor, ceiling, natfloor, and natceiling
 hoelzl parents: 
57514diff
changeset | 1520 | by linarith | 
| 51523 | 1521 | |
| 61942 | 1522 | lemma le_nat_floor: "real x <= a ==> x <= nat \<lfloor>a\<rfloor>" | 
| 58040 
9a867afaab5a
better linarith support for floor, ceiling, natfloor, and natceiling
 hoelzl parents: 
57514diff
changeset | 1523 | by linarith | 
| 51523 | 1524 | |
| 61942 | 1525 | lemma le_mult_nat_floor: "nat \<lfloor>a\<rfloor> * nat \<lfloor>b\<rfloor> \<le> nat \<lfloor>a * b\<rfloor>" | 
| 59587 
8ea7b22525cb
Removed the obsolete functions "natfloor" and "natceiling"
 nipkow parents: 
59000diff
changeset | 1526 | by (cases "0 <= a & 0 <= b") | 
| 
8ea7b22525cb
Removed the obsolete functions "natfloor" and "natceiling"
 nipkow parents: 
59000diff
changeset | 1527 | (auto simp add: nat_mult_distrib[symmetric] nat_mono le_mult_floor) | 
| 51523 | 1528 | |
| 61942 | 1529 | lemma nat_ceiling_le_eq [simp]: "(nat \<lceil>x\<rceil> <= a) = (x <= real a)" | 
| 58040 
9a867afaab5a
better linarith support for floor, ceiling, natfloor, and natceiling
 hoelzl parents: 
57514diff
changeset | 1530 | by linarith | 
| 51523 | 1531 | |
| 61942 | 1532 | lemma real_nat_ceiling_ge: "x <= real (nat \<lceil>x\<rceil>)" | 
| 58040 
9a867afaab5a
better linarith support for floor, ceiling, natfloor, and natceiling
 hoelzl parents: 
57514diff
changeset | 1533 | by linarith | 
| 51523 | 1534 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 1535 | lemma Rats_no_top_le: "\<exists> q \<in> \<rat>. (x :: real) \<le> q" | 
| 61942 | 1536 | by (auto intro!: bexI[of _ "of_nat (nat \<lceil>x\<rceil>)"]) linarith | 
| 57275 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56889diff
changeset | 1537 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 1538 | lemma Rats_no_bot_less: "\<exists> q \<in> \<rat>. q < (x :: real)" | 
| 61942 | 1539 | apply (auto intro!: bexI[of _ "of_int (\<lfloor>x\<rfloor> - 1)"]) | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 1540 | apply (rule less_le_trans[OF _ of_int_floor_le]) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 1541 | apply simp | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 1542 | done | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57275diff
changeset | 1543 | |
| 60758 | 1544 | subsection \<open>Exponentiation with floor\<close> | 
| 51523 | 1545 | |
| 1546 | lemma floor_power: | |
| 61942 | 1547 | assumes "x = of_int \<lfloor>x\<rfloor>" | 
| 1548 | shows "\<lfloor>x ^ n\<rfloor> = \<lfloor>x\<rfloor> ^ n" | |
| 51523 | 1549 | proof - | 
| 61942 | 1550 | have "x ^ n = of_int (\<lfloor>x\<rfloor> ^ n)" | 
| 51523 | 1551 | using assms by (induct n arbitrary: x) simp_all | 
| 62626 
de25474ce728
Contractible sets. Also removal of obsolete theorems and refactoring
 paulson <lp15@cam.ac.uk> parents: 
62623diff
changeset | 1552 | then show ?thesis by (metis floor_of_int) | 
| 51523 | 1553 | qed | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61284diff
changeset | 1554 | |
| 58983 
9c390032e4eb
cancel real of power of numeral also for equality and strict inequality;
 immler parents: 
58889diff
changeset | 1555 | lemma floor_numeral_power[simp]: | 
| 
9c390032e4eb
cancel real of power of numeral also for equality and strict inequality;
 immler parents: 
58889diff
changeset | 1556 | "\<lfloor>numeral x ^ n\<rfloor> = numeral x ^ n" | 
| 
9c390032e4eb
cancel real of power of numeral also for equality and strict inequality;
 immler parents: 
58889diff
changeset | 1557 | by (metis floor_of_int of_int_numeral of_int_power) | 
| 
9c390032e4eb
cancel real of power of numeral also for equality and strict inequality;
 immler parents: 
58889diff
changeset | 1558 | |
| 
9c390032e4eb
cancel real of power of numeral also for equality and strict inequality;
 immler parents: 
58889diff
changeset | 1559 | lemma ceiling_numeral_power[simp]: | 
| 
9c390032e4eb
cancel real of power of numeral also for equality and strict inequality;
 immler parents: 
58889diff
changeset | 1560 | "\<lceil>numeral x ^ n\<rceil> = numeral x ^ n" | 
| 
9c390032e4eb
cancel real of power of numeral also for equality and strict inequality;
 immler parents: 
58889diff
changeset | 1561 | by (metis ceiling_of_int of_int_numeral of_int_power) | 
| 
9c390032e4eb
cancel real of power of numeral also for equality and strict inequality;
 immler parents: 
58889diff
changeset | 1562 | |
| 60758 | 1563 | subsection \<open>Implementation of rational real numbers\<close> | 
| 51523 | 1564 | |
| 60758 | 1565 | text \<open>Formal constructor\<close> | 
| 51523 | 1566 | |
| 1567 | definition Ratreal :: "rat \<Rightarrow> real" where | |
| 1568 | [code_abbrev, simp]: "Ratreal = of_rat" | |
| 1569 | ||
| 1570 | code_datatype Ratreal | |
| 1571 | ||
| 1572 | ||
| 60758 | 1573 | text \<open>Numerals\<close> | 
| 51523 | 1574 | |
| 1575 | lemma [code_abbrev]: | |
| 1576 | "(of_rat (of_int a) :: real) = of_int a" | |
| 1577 | by simp | |
| 1578 | ||
| 1579 | lemma [code_abbrev]: | |
| 1580 | "(of_rat 0 :: real) = 0" | |
| 1581 | by simp | |
| 1582 | ||
| 1583 | lemma [code_abbrev]: | |
| 1584 | "(of_rat 1 :: real) = 1" | |
| 1585 | by simp | |
| 1586 | ||
| 1587 | lemma [code_abbrev]: | |
| 58134 
b563ec62d04e
more convenient printing of real numbers after evaluation
 haftmann parents: 
58097diff
changeset | 1588 | "(of_rat (- 1) :: real) = - 1" | 
| 
b563ec62d04e
more convenient printing of real numbers after evaluation
 haftmann parents: 
58097diff
changeset | 1589 | by simp | 
| 
b563ec62d04e
more convenient printing of real numbers after evaluation
 haftmann parents: 
58097diff
changeset | 1590 | |
| 
b563ec62d04e
more convenient printing of real numbers after evaluation
 haftmann parents: 
58097diff
changeset | 1591 | lemma [code_abbrev]: | 
| 51523 | 1592 | "(of_rat (numeral k) :: real) = numeral k" | 
| 1593 | by simp | |
| 1594 | ||
| 1595 | lemma [code_abbrev]: | |
| 54489 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54281diff
changeset | 1596 | "(of_rat (- numeral k) :: real) = - numeral k" | 
| 51523 | 1597 | by simp | 
| 1598 | ||
| 1599 | lemma [code_post]: | |
| 1600 | "(of_rat (1 / numeral k) :: real) = 1 / numeral k" | |
| 58134 
b563ec62d04e
more convenient printing of real numbers after evaluation
 haftmann parents: 
58097diff
changeset | 1601 | "(of_rat (numeral k / numeral l) :: real) = numeral k / numeral l" | 
| 
b563ec62d04e
more convenient printing of real numbers after evaluation
 haftmann parents: 
58097diff
changeset | 1602 | "(of_rat (- (1 / numeral k)) :: real) = - (1 / numeral k)" | 
| 
b563ec62d04e
more convenient printing of real numbers after evaluation
 haftmann parents: 
58097diff
changeset | 1603 | "(of_rat (- (numeral k / numeral l)) :: real) = - (numeral k / numeral l)" | 
| 54489 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54281diff
changeset | 1604 | by (simp_all add: of_rat_divide of_rat_minus) | 
| 51523 | 1605 | |
| 1606 | ||
| 60758 | 1607 | text \<open>Operations\<close> | 
| 51523 | 1608 | |
| 1609 | lemma zero_real_code [code]: | |
| 1610 | "0 = Ratreal 0" | |
| 1611 | by simp | |
| 1612 | ||
| 1613 | lemma one_real_code [code]: | |
| 1614 | "1 = Ratreal 1" | |
| 1615 | by simp | |
| 1616 | ||
| 1617 | instantiation real :: equal | |
| 1618 | begin | |
| 1619 | ||
| 61076 | 1620 | definition "HOL.equal (x::real) y \<longleftrightarrow> x - y = 0" | 
| 51523 | 1621 | |
| 1622 | instance proof | |
| 1623 | qed (simp add: equal_real_def) | |
| 1624 | ||
| 1625 | lemma real_equal_code [code]: | |
| 1626 | "HOL.equal (Ratreal x) (Ratreal y) \<longleftrightarrow> HOL.equal x y" | |
| 1627 | by (simp add: equal_real_def equal) | |
| 1628 | ||
| 1629 | lemma [code nbe]: | |
| 1630 | "HOL.equal (x::real) x \<longleftrightarrow> True" | |
| 1631 | by (rule equal_refl) | |
| 1632 | ||
| 1633 | end | |
| 1634 | ||
| 1635 | lemma real_less_eq_code [code]: "Ratreal x \<le> Ratreal y \<longleftrightarrow> x \<le> y" | |
| 1636 | by (simp add: of_rat_less_eq) | |
| 1637 | ||
| 1638 | lemma real_less_code [code]: "Ratreal x < Ratreal y \<longleftrightarrow> x < y" | |
| 1639 | by (simp add: of_rat_less) | |
| 1640 | ||
| 1641 | lemma real_plus_code [code]: "Ratreal x + Ratreal y = Ratreal (x + y)" | |
| 1642 | by (simp add: of_rat_add) | |
| 1643 | ||
| 1644 | lemma real_times_code [code]: "Ratreal x * Ratreal y = Ratreal (x * y)" | |
| 1645 | by (simp add: of_rat_mult) | |
| 1646 | ||
| 1647 | lemma real_uminus_code [code]: "- Ratreal x = Ratreal (- x)" | |
| 1648 | by (simp add: of_rat_minus) | |
| 1649 | ||
| 1650 | lemma real_minus_code [code]: "Ratreal x - Ratreal y = Ratreal (x - y)" | |
| 1651 | by (simp add: of_rat_diff) | |
| 1652 | ||
| 1653 | lemma real_inverse_code [code]: "inverse (Ratreal x) = Ratreal (inverse x)" | |
| 1654 | by (simp add: of_rat_inverse) | |
| 61284 
2314c2f62eb1
real_of_nat_Suc is now a simprule
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1655 | |
| 51523 | 1656 | lemma real_divide_code [code]: "Ratreal x / Ratreal y = Ratreal (x / y)" | 
| 1657 | by (simp add: of_rat_divide) | |
| 1658 | ||
| 61942 | 1659 | lemma real_floor_code [code]: "\<lfloor>Ratreal x\<rfloor> = \<lfloor>x\<rfloor>" | 
| 51523 | 1660 | by (metis Ratreal_def floor_le_iff floor_unique le_floor_iff of_int_floor_le of_rat_of_int_eq real_less_eq_code) | 
| 1661 | ||
| 1662 | ||
| 60758 | 1663 | text \<open>Quickcheck\<close> | 
| 51523 | 1664 | |
| 1665 | definition (in term_syntax) | |
| 1666 | valterm_ratreal :: "rat \<times> (unit \<Rightarrow> Code_Evaluation.term) \<Rightarrow> real \<times> (unit \<Rightarrow> Code_Evaluation.term)" where | |
| 1667 |   [code_unfold]: "valterm_ratreal k = Code_Evaluation.valtermify Ratreal {\<cdot>} k"
 | |
| 1668 | ||
| 1669 | notation fcomp (infixl "\<circ>>" 60) | |
| 1670 | notation scomp (infixl "\<circ>\<rightarrow>" 60) | |
| 1671 | ||
| 1672 | instantiation real :: random | |
| 1673 | begin | |
| 1674 | ||
| 1675 | definition | |
| 1676 | "Quickcheck_Random.random i = Quickcheck_Random.random i \<circ>\<rightarrow> (\<lambda>r. Pair (valterm_ratreal r))" | |
| 1677 | ||
| 1678 | instance .. | |
| 1679 | ||
| 1680 | end | |
| 1681 | ||
| 1682 | no_notation fcomp (infixl "\<circ>>" 60) | |
| 1683 | no_notation scomp (infixl "\<circ>\<rightarrow>" 60) | |
| 1684 | ||
| 1685 | instantiation real :: exhaustive | |
| 1686 | begin | |
| 1687 | ||
| 1688 | definition | |
| 1689 | "exhaustive_real f d = Quickcheck_Exhaustive.exhaustive (%r. f (Ratreal r)) d" | |
| 1690 | ||
| 1691 | instance .. | |
| 1692 | ||
| 1693 | end | |
| 1694 | ||
| 1695 | instantiation real :: full_exhaustive | |
| 1696 | begin | |
| 1697 | ||
| 1698 | definition | |
| 1699 | "full_exhaustive_real f d = Quickcheck_Exhaustive.full_exhaustive (%r. f (valterm_ratreal r)) d" | |
| 1700 | ||
| 1701 | instance .. | |
| 1702 | ||
| 1703 | end | |
| 1704 | ||
| 1705 | instantiation real :: narrowing | |
| 1706 | begin | |
| 1707 | ||
| 1708 | definition | |
| 1709 | "narrowing = Quickcheck_Narrowing.apply (Quickcheck_Narrowing.cons Ratreal) narrowing" | |
| 1710 | ||
| 1711 | instance .. | |
| 1712 | ||
| 1713 | end | |
| 1714 | ||
| 1715 | ||
| 60758 | 1716 | subsection \<open>Setup for Nitpick\<close> | 
| 51523 | 1717 | |
| 60758 | 1718 | declaration \<open> | 
| 51523 | 1719 |   Nitpick_HOL.register_frac_type @{type_name real}
 | 
| 62079 | 1720 |     [(@{const_name zero_real_inst.zero_real}, @{const_name Nitpick.zero_frac}),
 | 
| 1721 |      (@{const_name one_real_inst.one_real}, @{const_name Nitpick.one_frac}),
 | |
| 1722 |      (@{const_name plus_real_inst.plus_real}, @{const_name Nitpick.plus_frac}),
 | |
| 1723 |      (@{const_name times_real_inst.times_real}, @{const_name Nitpick.times_frac}),
 | |
| 1724 |      (@{const_name uminus_real_inst.uminus_real}, @{const_name Nitpick.uminus_frac}),
 | |
| 1725 |      (@{const_name inverse_real_inst.inverse_real}, @{const_name Nitpick.inverse_frac}),
 | |
| 1726 |      (@{const_name ord_real_inst.less_real}, @{const_name Nitpick.less_frac}),
 | |
| 1727 |      (@{const_name ord_real_inst.less_eq_real}, @{const_name Nitpick.less_eq_frac})]
 | |
| 60758 | 1728 | \<close> | 
| 51523 | 1729 | |
| 1730 | lemmas [nitpick_unfold] = inverse_real_inst.inverse_real one_real_inst.one_real | |
| 1731 | ord_real_inst.less_real ord_real_inst.less_eq_real plus_real_inst.plus_real | |
| 1732 | times_real_inst.times_real uminus_real_inst.uminus_real | |
| 1733 | zero_real_inst.zero_real | |
| 1734 | ||
| 56078 
624faeda77b5
moved 'SMT2' (SMT-LIB-2-based SMT module) into Isabelle
 blanchet parents: 
55945diff
changeset | 1735 | |
| 60758 | 1736 | subsection \<open>Setup for SMT\<close> | 
| 56078 
624faeda77b5
moved 'SMT2' (SMT-LIB-2-based SMT module) into Isabelle
 blanchet parents: 
55945diff
changeset | 1737 | |
| 58061 | 1738 | ML_file "Tools/SMT/smt_real.ML" | 
| 1739 | ML_file "Tools/SMT/z3_real.ML" | |
| 56078 
624faeda77b5
moved 'SMT2' (SMT-LIB-2-based SMT module) into Isabelle
 blanchet parents: 
55945diff
changeset | 1740 | |
| 58061 | 1741 | lemma [z3_rule]: | 
| 56078 
624faeda77b5
moved 'SMT2' (SMT-LIB-2-based SMT module) into Isabelle
 blanchet parents: 
55945diff
changeset | 1742 | "0 + (x::real) = x" | 
| 
624faeda77b5
moved 'SMT2' (SMT-LIB-2-based SMT module) into Isabelle
 blanchet parents: 
55945diff
changeset | 1743 | "x + 0 = x" | 
| 
624faeda77b5
moved 'SMT2' (SMT-LIB-2-based SMT module) into Isabelle
 blanchet parents: 
55945diff
changeset | 1744 | "0 * x = 0" | 
| 
624faeda77b5
moved 'SMT2' (SMT-LIB-2-based SMT module) into Isabelle
 blanchet parents: 
55945diff
changeset | 1745 | "1 * x = x" | 
| 
624faeda77b5
moved 'SMT2' (SMT-LIB-2-based SMT module) into Isabelle
 blanchet parents: 
55945diff
changeset | 1746 | "x + y = y + x" | 
| 
624faeda77b5
moved 'SMT2' (SMT-LIB-2-based SMT module) into Isabelle
 blanchet parents: 
55945diff
changeset | 1747 | by auto | 
| 51523 | 1748 | |
| 1749 | end |