| author | wenzelm | 
| Sat, 17 Mar 2012 10:55:08 +0100 | |
| changeset 46978 | 23a59a495934 | 
| parent 45231 | d85a2fdc586c | 
| child 49834 | b27bbb021df1 | 
| permissions | -rw-r--r-- | 
| 31459 | 1 | (* Author: Florian Haftmann, TU Muenchen *) | 
| 29708 | 2 | |
| 3 | header {* An abstract view on maps for code generation. *}
 | |
| 4 | ||
| 5 | theory Mapping | |
| 35157 | 6 | imports Main | 
| 29708 | 7 | begin | 
| 8 | ||
| 9 | subsection {* Type definition and primitive operations *}
 | |
| 10 | ||
| 37700 
bd90378b8171
refrain from using datatype declaration -- opens chance for quickcheck later on
 haftmann parents: 
37299diff
changeset | 11 | typedef (open) ('a, 'b) mapping = "UNIV :: ('a \<rightharpoonup> 'b) set"
 | 
| 
bd90378b8171
refrain from using datatype declaration -- opens chance for quickcheck later on
 haftmann parents: 
37299diff
changeset | 12 | morphisms lookup Mapping .. | 
| 
bd90378b8171
refrain from using datatype declaration -- opens chance for quickcheck later on
 haftmann parents: 
37299diff
changeset | 13 | |
| 
bd90378b8171
refrain from using datatype declaration -- opens chance for quickcheck later on
 haftmann parents: 
37299diff
changeset | 14 | lemma lookup_Mapping [simp]: | 
| 
bd90378b8171
refrain from using datatype declaration -- opens chance for quickcheck later on
 haftmann parents: 
37299diff
changeset | 15 | "lookup (Mapping f) = f" | 
| 
bd90378b8171
refrain from using datatype declaration -- opens chance for quickcheck later on
 haftmann parents: 
37299diff
changeset | 16 | by (rule Mapping_inverse) rule | 
| 
bd90378b8171
refrain from using datatype declaration -- opens chance for quickcheck later on
 haftmann parents: 
37299diff
changeset | 17 | |
| 
bd90378b8171
refrain from using datatype declaration -- opens chance for quickcheck later on
 haftmann parents: 
37299diff
changeset | 18 | lemma Mapping_lookup [simp]: | 
| 
bd90378b8171
refrain from using datatype declaration -- opens chance for quickcheck later on
 haftmann parents: 
37299diff
changeset | 19 | "Mapping (lookup m) = m" | 
| 
bd90378b8171
refrain from using datatype declaration -- opens chance for quickcheck later on
 haftmann parents: 
37299diff
changeset | 20 | by (fact lookup_inverse) | 
| 
bd90378b8171
refrain from using datatype declaration -- opens chance for quickcheck later on
 haftmann parents: 
37299diff
changeset | 21 | |
| 
bd90378b8171
refrain from using datatype declaration -- opens chance for quickcheck later on
 haftmann parents: 
37299diff
changeset | 22 | lemma Mapping_inject [simp]: | 
| 
bd90378b8171
refrain from using datatype declaration -- opens chance for quickcheck later on
 haftmann parents: 
37299diff
changeset | 23 | "Mapping f = Mapping g \<longleftrightarrow> f = g" | 
| 
bd90378b8171
refrain from using datatype declaration -- opens chance for quickcheck later on
 haftmann parents: 
37299diff
changeset | 24 | by (simp add: Mapping_inject) | 
| 
bd90378b8171
refrain from using datatype declaration -- opens chance for quickcheck later on
 haftmann parents: 
37299diff
changeset | 25 | |
| 39380 
5a2662c1e44a
established emerging canonical names *_eqI and *_eq_iff
 haftmann parents: 
39302diff
changeset | 26 | lemma mapping_eq_iff: | 
| 
5a2662c1e44a
established emerging canonical names *_eqI and *_eq_iff
 haftmann parents: 
39302diff
changeset | 27 | "m = n \<longleftrightarrow> lookup m = lookup n" | 
| 
5a2662c1e44a
established emerging canonical names *_eqI and *_eq_iff
 haftmann parents: 
39302diff
changeset | 28 | by (simp add: lookup_inject) | 
| 
5a2662c1e44a
established emerging canonical names *_eqI and *_eq_iff
 haftmann parents: 
39302diff
changeset | 29 | |
| 37700 
bd90378b8171
refrain from using datatype declaration -- opens chance for quickcheck later on
 haftmann parents: 
37299diff
changeset | 30 | lemma mapping_eqI: | 
| 39380 
5a2662c1e44a
established emerging canonical names *_eqI and *_eq_iff
 haftmann parents: 
39302diff
changeset | 31 | "lookup m = lookup n \<Longrightarrow> m = n" | 
| 
5a2662c1e44a
established emerging canonical names *_eqI and *_eq_iff
 haftmann parents: 
39302diff
changeset | 32 | by (simp add: mapping_eq_iff) | 
| 29708 | 33 | |
| 35157 | 34 | definition empty :: "('a, 'b) mapping" where
 | 
| 35 | "empty = Mapping (\<lambda>_. None)" | |
| 29708 | 36 | |
| 37700 
bd90378b8171
refrain from using datatype declaration -- opens chance for quickcheck later on
 haftmann parents: 
37299diff
changeset | 37 | definition update :: "'a \<Rightarrow> 'b \<Rightarrow> ('a, 'b) mapping \<Rightarrow> ('a, 'b) mapping" where
 | 
| 
bd90378b8171
refrain from using datatype declaration -- opens chance for quickcheck later on
 haftmann parents: 
37299diff
changeset | 38 | "update k v m = Mapping ((lookup m)(k \<mapsto> v))" | 
| 29708 | 39 | |
| 37700 
bd90378b8171
refrain from using datatype declaration -- opens chance for quickcheck later on
 haftmann parents: 
37299diff
changeset | 40 | definition delete :: "'a \<Rightarrow> ('a, 'b) mapping \<Rightarrow> ('a, 'b) mapping" where
 | 
| 
bd90378b8171
refrain from using datatype declaration -- opens chance for quickcheck later on
 haftmann parents: 
37299diff
changeset | 41 | "delete k m = Mapping ((lookup m)(k := None))" | 
| 29708 | 42 | |
| 43 | ||
| 40605 | 44 | subsection {* Functorial structure *}
 | 
| 45 | ||
| 46 | definition map :: "('c \<Rightarrow> 'a) \<Rightarrow> ('b \<Rightarrow> 'd) \<Rightarrow> ('a, 'b) mapping \<Rightarrow> ('c, 'd) mapping" where
 | |
| 47 | "map f g m = Mapping (Option.map g \<circ> lookup m \<circ> f)" | |
| 48 | ||
| 49 | lemma lookup_map [simp]: | |
| 50 | "lookup (map f g m) = Option.map g \<circ> lookup m \<circ> f" | |
| 51 | by (simp add: map_def) | |
| 52 | ||
| 41505 
6d19301074cf
"enriched_type" replaces less specific "type_lifting"
 haftmann parents: 
41372diff
changeset | 53 | enriched_type map: map | 
| 41372 | 54 | by (simp_all add: mapping_eq_iff fun_eq_iff Option.map.compositionality Option.map.id) | 
| 40605 | 55 | |
| 56 | ||
| 29708 | 57 | subsection {* Derived operations *}
 | 
| 58 | ||
| 35157 | 59 | definition keys :: "('a, 'b) mapping \<Rightarrow> 'a set" where
 | 
| 60 | "keys m = dom (lookup m)" | |
| 29708 | 61 | |
| 35194 | 62 | definition ordered_keys :: "('a\<Colon>linorder, 'b) mapping \<Rightarrow> 'a list" where
 | 
| 37052 | 63 | "ordered_keys m = (if finite (keys m) then sorted_list_of_set (keys m) else [])" | 
| 35194 | 64 | |
| 35157 | 65 | definition is_empty :: "('a, 'b) mapping \<Rightarrow> bool" where
 | 
| 37052 | 66 |   "is_empty m \<longleftrightarrow> keys m = {}"
 | 
| 35157 | 67 | |
| 68 | definition size :: "('a, 'b) mapping \<Rightarrow> nat" where
 | |
| 37052 | 69 | "size m = (if finite (keys m) then card (keys m) else 0)" | 
| 35157 | 70 | |
| 71 | definition replace :: "'a \<Rightarrow> 'b \<Rightarrow> ('a, 'b) mapping \<Rightarrow> ('a, 'b) mapping" where
 | |
| 37052 | 72 | "replace k v m = (if k \<in> keys m then update k v m else m)" | 
| 29814 | 73 | |
| 37026 
7e8979a155ae
operations default, map_entry, map_default; more lemmas
 haftmann parents: 
36176diff
changeset | 74 | definition default :: "'a \<Rightarrow> 'b \<Rightarrow> ('a, 'b) mapping \<Rightarrow> ('a, 'b) mapping" where
 | 
| 37052 | 75 | "default k v m = (if k \<in> keys m then m else update k v m)" | 
| 37026 
7e8979a155ae
operations default, map_entry, map_default; more lemmas
 haftmann parents: 
36176diff
changeset | 76 | |
| 
7e8979a155ae
operations default, map_entry, map_default; more lemmas
 haftmann parents: 
36176diff
changeset | 77 | definition map_entry :: "'a \<Rightarrow> ('b \<Rightarrow> 'b) \<Rightarrow> ('a, 'b) mapping \<Rightarrow> ('a, 'b) mapping" where
 | 
| 
7e8979a155ae
operations default, map_entry, map_default; more lemmas
 haftmann parents: 
36176diff
changeset | 78 | "map_entry k f m = (case lookup m k of None \<Rightarrow> m | 
| 
7e8979a155ae
operations default, map_entry, map_default; more lemmas
 haftmann parents: 
36176diff
changeset | 79 | | Some v \<Rightarrow> update k (f v) m)" | 
| 
7e8979a155ae
operations default, map_entry, map_default; more lemmas
 haftmann parents: 
36176diff
changeset | 80 | |
| 
7e8979a155ae
operations default, map_entry, map_default; more lemmas
 haftmann parents: 
36176diff
changeset | 81 | definition map_default :: "'a \<Rightarrow> 'b \<Rightarrow> ('b \<Rightarrow> 'b) \<Rightarrow> ('a, 'b) mapping \<Rightarrow> ('a, 'b) mapping" where
 | 
| 
7e8979a155ae
operations default, map_entry, map_default; more lemmas
 haftmann parents: 
36176diff
changeset | 82 | "map_default k v f m = map_entry k f (default k v m)" | 
| 
7e8979a155ae
operations default, map_entry, map_default; more lemmas
 haftmann parents: 
36176diff
changeset | 83 | |
| 35157 | 84 | definition tabulate :: "'a list \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('a, 'b) mapping" where
 | 
| 40605 | 85 | "tabulate ks f = Mapping (map_of (List.map (\<lambda>k. (k, f k)) ks))" | 
| 29708 | 86 | |
| 35157 | 87 | definition bulkload :: "'a list \<Rightarrow> (nat, 'a) mapping" where | 
| 88 | "bulkload xs = Mapping (\<lambda>k. if k < length xs then Some (xs ! k) else None)" | |
| 29826 | 89 | |
| 29708 | 90 | |
| 91 | subsection {* Properties *}
 | |
| 92 | ||
| 45231 
d85a2fdc586c
replacing code_inline by code_unfold, removing obsolete code_unfold, code_inline del now that the ancient code generator is removed
 bulwahn parents: 
41505diff
changeset | 93 | lemma keys_is_none_lookup [code_unfold]: | 
| 37052 | 94 | "k \<in> keys m \<longleftrightarrow> \<not> (Option.is_none (lookup m k))" | 
| 95 | by (auto simp add: keys_def is_none_def) | |
| 96 | ||
| 29708 | 97 | lemma lookup_empty [simp]: | 
| 98 | "lookup empty = Map.empty" | |
| 99 | by (simp add: empty_def) | |
| 100 | ||
| 101 | lemma lookup_update [simp]: | |
| 102 | "lookup (update k v m) = (lookup m) (k \<mapsto> v)" | |
| 37700 
bd90378b8171
refrain from using datatype declaration -- opens chance for quickcheck later on
 haftmann parents: 
37299diff
changeset | 103 | by (simp add: update_def) | 
| 29708 | 104 | |
| 35157 | 105 | lemma lookup_delete [simp]: | 
| 106 | "lookup (delete k m) = (lookup m) (k := None)" | |
| 37700 
bd90378b8171
refrain from using datatype declaration -- opens chance for quickcheck later on
 haftmann parents: 
37299diff
changeset | 107 | by (simp add: delete_def) | 
| 29708 | 108 | |
| 37026 
7e8979a155ae
operations default, map_entry, map_default; more lemmas
 haftmann parents: 
36176diff
changeset | 109 | lemma lookup_map_entry [simp]: | 
| 
7e8979a155ae
operations default, map_entry, map_default; more lemmas
 haftmann parents: 
36176diff
changeset | 110 | "lookup (map_entry k f m) = (lookup m) (k := Option.map f (lookup m k))" | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 111 | by (cases "lookup m k") (simp_all add: map_entry_def fun_eq_iff) | 
| 37026 
7e8979a155ae
operations default, map_entry, map_default; more lemmas
 haftmann parents: 
36176diff
changeset | 112 | |
| 35157 | 113 | lemma lookup_tabulate [simp]: | 
| 29708 | 114 | "lookup (tabulate ks f) = (Some o f) |` set ks" | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 115 | by (induct ks) (auto simp add: tabulate_def restrict_map_def fun_eq_iff) | 
| 29708 | 116 | |
| 35157 | 117 | lemma lookup_bulkload [simp]: | 
| 29826 | 118 | "lookup (bulkload xs) = (\<lambda>k. if k < length xs then Some (xs ! k) else None)" | 
| 35157 | 119 | by (simp add: bulkload_def) | 
| 29826 | 120 | |
| 29708 | 121 | lemma update_update: | 
| 122 | "update k v (update k w m) = update k v m" | |
| 123 | "k \<noteq> l \<Longrightarrow> update k v (update l w m) = update l w (update k v m)" | |
| 35157 | 124 | by (rule mapping_eqI, simp add: fun_upd_twist)+ | 
| 29708 | 125 | |
| 35157 | 126 | lemma update_delete [simp]: | 
| 127 | "update k v (delete k m) = update k v m" | |
| 128 | by (rule mapping_eqI) simp | |
| 29708 | 129 | |
| 130 | lemma delete_update: | |
| 131 | "delete k (update k v m) = delete k m" | |
| 132 | "k \<noteq> l \<Longrightarrow> delete k (update l v m) = update l v (delete k m)" | |
| 35157 | 133 | by (rule mapping_eqI, simp add: fun_upd_twist)+ | 
| 29708 | 134 | |
| 35157 | 135 | lemma delete_empty [simp]: | 
| 136 | "delete k empty = empty" | |
| 137 | by (rule mapping_eqI) simp | |
| 29708 | 138 | |
| 35157 | 139 | lemma replace_update: | 
| 37052 | 140 | "k \<notin> keys m \<Longrightarrow> replace k v m = m" | 
| 141 | "k \<in> keys m \<Longrightarrow> replace k v m = update k v m" | |
| 142 | by (rule mapping_eqI) (auto simp add: replace_def fun_upd_twist)+ | |
| 29708 | 143 | |
| 144 | lemma size_empty [simp]: | |
| 145 | "size empty = 0" | |
| 37052 | 146 | by (simp add: size_def keys_def) | 
| 29708 | 147 | |
| 148 | lemma size_update: | |
| 37052 | 149 | "finite (keys m) \<Longrightarrow> size (update k v m) = | 
| 150 | (if k \<in> keys m then size m else Suc (size m))" | |
| 151 | by (auto simp add: size_def insert_dom keys_def) | |
| 29708 | 152 | |
| 153 | lemma size_delete: | |
| 37052 | 154 | "size (delete k m) = (if k \<in> keys m then size m - 1 else size m)" | 
| 155 | by (simp add: size_def keys_def) | |
| 29708 | 156 | |
| 37052 | 157 | lemma size_tabulate [simp]: | 
| 29708 | 158 | "size (tabulate ks f) = length (remdups ks)" | 
| 37052 | 159 | by (simp add: size_def distinct_card [of "remdups ks", symmetric] comp_def keys_def) | 
| 29708 | 160 | |
| 29831 | 161 | lemma bulkload_tabulate: | 
| 29826 | 162 | "bulkload xs = tabulate [0..<length xs] (nth xs)" | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 163 | by (rule mapping_eqI) (simp add: fun_eq_iff) | 
| 29826 | 164 | |
| 37052 | 165 | lemma is_empty_empty: (*FIXME*) | 
| 166 | "is_empty m \<longleftrightarrow> m = Mapping Map.empty" | |
| 167 | by (cases m) (simp add: is_empty_def keys_def) | |
| 168 | ||
| 169 | lemma is_empty_empty' [simp]: | |
| 170 | "is_empty empty" | |
| 171 | by (simp add: is_empty_empty empty_def) | |
| 172 | ||
| 173 | lemma is_empty_update [simp]: | |
| 174 | "\<not> is_empty (update k v m)" | |
| 37700 
bd90378b8171
refrain from using datatype declaration -- opens chance for quickcheck later on
 haftmann parents: 
37299diff
changeset | 175 | by (simp add: is_empty_empty update_def) | 
| 37052 | 176 | |
| 177 | lemma is_empty_delete: | |
| 178 |   "is_empty (delete k m) \<longleftrightarrow> is_empty m \<or> keys m = {k}"
 | |
| 37700 
bd90378b8171
refrain from using datatype declaration -- opens chance for quickcheck later on
 haftmann parents: 
37299diff
changeset | 179 | by (auto simp add: delete_def is_empty_def keys_def simp del: dom_eq_empty_conv) | 
| 37052 | 180 | |
| 181 | lemma is_empty_replace [simp]: | |
| 182 | "is_empty (replace k v m) \<longleftrightarrow> is_empty m" | |
| 183 | by (auto simp add: replace_def) (simp add: is_empty_def) | |
| 184 | ||
| 185 | lemma is_empty_default [simp]: | |
| 186 | "\<not> is_empty (default k v m)" | |
| 187 | by (auto simp add: default_def) (simp add: is_empty_def) | |
| 188 | ||
| 189 | lemma is_empty_map_entry [simp]: | |
| 190 | "is_empty (map_entry k f m) \<longleftrightarrow> is_empty m" | |
| 191 | by (cases "lookup m k") | |
| 192 | (auto simp add: map_entry_def, simp add: is_empty_empty) | |
| 193 | ||
| 194 | lemma is_empty_map_default [simp]: | |
| 195 | "\<not> is_empty (map_default k v f m)" | |
| 196 | by (simp add: map_default_def) | |
| 197 | ||
| 198 | lemma keys_empty [simp]: | |
| 199 |   "keys empty = {}"
 | |
| 200 | by (simp add: keys_def) | |
| 201 | ||
| 202 | lemma keys_update [simp]: | |
| 203 | "keys (update k v m) = insert k (keys m)" | |
| 204 | by (simp add: keys_def) | |
| 205 | ||
| 206 | lemma keys_delete [simp]: | |
| 207 |   "keys (delete k m) = keys m - {k}"
 | |
| 208 | by (simp add: keys_def) | |
| 209 | ||
| 210 | lemma keys_replace [simp]: | |
| 211 | "keys (replace k v m) = keys m" | |
| 212 | by (auto simp add: keys_def replace_def) | |
| 213 | ||
| 214 | lemma keys_default [simp]: | |
| 215 | "keys (default k v m) = insert k (keys m)" | |
| 216 | by (auto simp add: keys_def default_def) | |
| 217 | ||
| 218 | lemma keys_map_entry [simp]: | |
| 219 | "keys (map_entry k f m) = keys m" | |
| 220 | by (auto simp add: keys_def) | |
| 221 | ||
| 222 | lemma keys_map_default [simp]: | |
| 223 | "keys (map_default k v f m) = insert k (keys m)" | |
| 224 | by (simp add: map_default_def) | |
| 225 | ||
| 226 | lemma keys_tabulate [simp]: | |
| 37026 
7e8979a155ae
operations default, map_entry, map_default; more lemmas
 haftmann parents: 
36176diff
changeset | 227 | "keys (tabulate ks f) = set ks" | 
| 
7e8979a155ae
operations default, map_entry, map_default; more lemmas
 haftmann parents: 
36176diff
changeset | 228 | by (simp add: tabulate_def keys_def map_of_map_restrict o_def) | 
| 
7e8979a155ae
operations default, map_entry, map_default; more lemmas
 haftmann parents: 
36176diff
changeset | 229 | |
| 37052 | 230 | lemma keys_bulkload [simp]: | 
| 37026 
7e8979a155ae
operations default, map_entry, map_default; more lemmas
 haftmann parents: 
36176diff
changeset | 231 |   "keys (bulkload xs) = {0..<length xs}"
 | 
| 
7e8979a155ae
operations default, map_entry, map_default; more lemmas
 haftmann parents: 
36176diff
changeset | 232 | by (simp add: keys_tabulate bulkload_tabulate) | 
| 
7e8979a155ae
operations default, map_entry, map_default; more lemmas
 haftmann parents: 
36176diff
changeset | 233 | |
| 37052 | 234 | lemma distinct_ordered_keys [simp]: | 
| 235 | "distinct (ordered_keys m)" | |
| 236 | by (simp add: ordered_keys_def) | |
| 237 | ||
| 238 | lemma ordered_keys_infinite [simp]: | |
| 239 | "\<not> finite (keys m) \<Longrightarrow> ordered_keys m = []" | |
| 240 | by (simp add: ordered_keys_def) | |
| 241 | ||
| 242 | lemma ordered_keys_empty [simp]: | |
| 243 | "ordered_keys empty = []" | |
| 244 | by (simp add: ordered_keys_def) | |
| 245 | ||
| 246 | lemma ordered_keys_update [simp]: | |
| 247 | "k \<in> keys m \<Longrightarrow> ordered_keys (update k v m) = ordered_keys m" | |
| 248 | "finite (keys m) \<Longrightarrow> k \<notin> keys m \<Longrightarrow> ordered_keys (update k v m) = insort k (ordered_keys m)" | |
| 249 | by (simp_all add: ordered_keys_def) (auto simp only: sorted_list_of_set_insert [symmetric] insert_absorb) | |
| 250 | ||
| 251 | lemma ordered_keys_delete [simp]: | |
| 252 | "ordered_keys (delete k m) = remove1 k (ordered_keys m)" | |
| 253 | proof (cases "finite (keys m)") | |
| 254 | case False then show ?thesis by simp | |
| 255 | next | |
| 256 | case True note fin = True | |
| 257 | show ?thesis | |
| 258 | proof (cases "k \<in> keys m") | |
| 259 | case False with fin have "k \<notin> set (sorted_list_of_set (keys m))" by simp | |
| 260 | with False show ?thesis by (simp add: ordered_keys_def remove1_idem) | |
| 261 | next | |
| 262 | case True with fin show ?thesis by (simp add: ordered_keys_def sorted_list_of_set_remove) | |
| 263 | qed | |
| 264 | qed | |
| 265 | ||
| 266 | lemma ordered_keys_replace [simp]: | |
| 267 | "ordered_keys (replace k v m) = ordered_keys m" | |
| 268 | by (simp add: replace_def) | |
| 269 | ||
| 270 | lemma ordered_keys_default [simp]: | |
| 271 | "k \<in> keys m \<Longrightarrow> ordered_keys (default k v m) = ordered_keys m" | |
| 272 | "finite (keys m) \<Longrightarrow> k \<notin> keys m \<Longrightarrow> ordered_keys (default k v m) = insort k (ordered_keys m)" | |
| 273 | by (simp_all add: default_def) | |
| 274 | ||
| 275 | lemma ordered_keys_map_entry [simp]: | |
| 276 | "ordered_keys (map_entry k f m) = ordered_keys m" | |
| 277 | by (simp add: ordered_keys_def) | |
| 278 | ||
| 279 | lemma ordered_keys_map_default [simp]: | |
| 280 | "k \<in> keys m \<Longrightarrow> ordered_keys (map_default k v f m) = ordered_keys m" | |
| 281 | "finite (keys m) \<Longrightarrow> k \<notin> keys m \<Longrightarrow> ordered_keys (map_default k v f m) = insort k (ordered_keys m)" | |
| 282 | by (simp_all add: map_default_def) | |
| 283 | ||
| 284 | lemma ordered_keys_tabulate [simp]: | |
| 285 | "ordered_keys (tabulate ks f) = sort (remdups ks)" | |
| 286 | by (simp add: ordered_keys_def sorted_list_of_set_sort_remdups) | |
| 287 | ||
| 288 | lemma ordered_keys_bulkload [simp]: | |
| 289 | "ordered_keys (bulkload ks) = [0..<length ks]" | |
| 290 | by (simp add: ordered_keys_def) | |
| 36110 | 291 | |
| 31459 | 292 | |
| 37700 
bd90378b8171
refrain from using datatype declaration -- opens chance for quickcheck later on
 haftmann parents: 
37299diff
changeset | 293 | subsection {* Code generator setup *}
 | 
| 31459 | 294 | |
| 37701 
411717732710
explicit code_datatype declaration prevents multiple instantiations later on
 haftmann parents: 
37700diff
changeset | 295 | code_datatype empty update | 
| 
411717732710
explicit code_datatype declaration prevents multiple instantiations later on
 haftmann parents: 
37700diff
changeset | 296 | |
| 38857 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 haftmann parents: 
37701diff
changeset | 297 | instantiation mapping :: (type, type) equal | 
| 37700 
bd90378b8171
refrain from using datatype declaration -- opens chance for quickcheck later on
 haftmann parents: 
37299diff
changeset | 298 | begin | 
| 31459 | 299 | |
| 37700 
bd90378b8171
refrain from using datatype declaration -- opens chance for quickcheck later on
 haftmann parents: 
37299diff
changeset | 300 | definition [code del]: | 
| 38857 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 haftmann parents: 
37701diff
changeset | 301 | "HOL.equal m n \<longleftrightarrow> lookup m = lookup n" | 
| 31459 | 302 | |
| 37700 
bd90378b8171
refrain from using datatype declaration -- opens chance for quickcheck later on
 haftmann parents: 
37299diff
changeset | 303 | instance proof | 
| 39380 
5a2662c1e44a
established emerging canonical names *_eqI and *_eq_iff
 haftmann parents: 
39302diff
changeset | 304 | qed (simp add: equal_mapping_def mapping_eq_iff) | 
| 31459 | 305 | |
| 37700 
bd90378b8171
refrain from using datatype declaration -- opens chance for quickcheck later on
 haftmann parents: 
37299diff
changeset | 306 | end | 
| 31459 | 307 | |
| 35157 | 308 | |
| 37299 | 309 | hide_const (open) empty is_empty lookup update delete ordered_keys keys size | 
| 40605 | 310 | replace default map_entry map_default tabulate bulkload map | 
| 35157 | 311 | |
| 29708 | 312 | end |