author | blanchet |
Tue, 06 Oct 2015 11:50:23 +0200 | |
changeset 61333 | 24b5e7579fdd |
parent 61076 | bdc1e2f0a86a |
child 61337 | 4645502c3c64 |
permissions | -rw-r--r-- |
7700 | 1 |
(* Title: HOL/Inductive.thy |
10402 | 2 |
Author: Markus Wenzel, TU Muenchen |
11688 | 3 |
*) |
10727 | 4 |
|
60758 | 5 |
section \<open>Knaster-Tarski Fixpoint Theorem and inductive definitions\<close> |
1187 | 6 |
|
54398
100c0eaf63d5
moved 'Ctr_Sugar' further up the theory hierarchy, so that 'Datatype' can use it
blanchet
parents:
52143
diff
changeset
|
7 |
theory Inductive |
100c0eaf63d5
moved 'Ctr_Sugar' further up the theory hierarchy, so that 'Datatype' can use it
blanchet
parents:
52143
diff
changeset
|
8 |
imports Complete_Lattices Ctr_Sugar |
46950
d0181abdbdac
declare command keywords via theory header, including strict checking outside Pure;
wenzelm
parents:
46947
diff
changeset
|
9 |
keywords |
56146
8453d35e4684
discontinued somewhat pointless "thy_script" keyword kind;
wenzelm
parents:
55604
diff
changeset
|
10 |
"inductive" "coinductive" "inductive_cases" "inductive_simps" :: thy_decl and |
8453d35e4684
discontinued somewhat pointless "thy_script" keyword kind;
wenzelm
parents:
55604
diff
changeset
|
11 |
"monos" and |
54398
100c0eaf63d5
moved 'Ctr_Sugar' further up the theory hierarchy, so that 'Datatype' can use it
blanchet
parents:
52143
diff
changeset
|
12 |
"print_inductives" :: diag and |
58306
117ba6cbe414
renamed 'rep_datatype' to 'old_rep_datatype' (HOL)
blanchet
parents:
58187
diff
changeset
|
13 |
"old_rep_datatype" :: thy_goal and |
55575
a5e33e18fb5c
moved 'primrec' up (for real this time) and removed temporary 'old_primrec'
blanchet
parents:
55534
diff
changeset
|
14 |
"primrec" :: thy_decl |
15131 | 15 |
begin |
10727 | 16 |
|
60758 | 17 |
subsection \<open>Least and greatest fixed points\<close> |
24915 | 18 |
|
26013
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
haftmann
parents:
25557
diff
changeset
|
19 |
context complete_lattice |
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
haftmann
parents:
25557
diff
changeset
|
20 |
begin |
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
haftmann
parents:
25557
diff
changeset
|
21 |
|
24915 | 22 |
definition |
26013
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
haftmann
parents:
25557
diff
changeset
|
23 |
lfp :: "('a \<Rightarrow> 'a) \<Rightarrow> 'a" where |
60758 | 24 |
"lfp f = Inf {u. f u \<le> u}" --\<open>least fixed point\<close> |
24915 | 25 |
|
26 |
definition |
|
26013
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
haftmann
parents:
25557
diff
changeset
|
27 |
gfp :: "('a \<Rightarrow> 'a) \<Rightarrow> 'a" where |
60758 | 28 |
"gfp f = Sup {u. u \<le> f u}" --\<open>greatest fixed point\<close> |
24915 | 29 |
|
30 |
||
60758 | 31 |
subsection\<open>Proof of Knaster-Tarski Theorem using @{term lfp}\<close> |
24915 | 32 |
|
60758 | 33 |
text\<open>@{term "lfp f"} is the least upper bound of |
34 |
the set @{term "{u. f(u) \<le> u}"}\<close> |
|
24915 | 35 |
|
36 |
lemma lfp_lowerbound: "f A \<le> A ==> lfp f \<le> A" |
|
37 |
by (auto simp add: lfp_def intro: Inf_lower) |
|
38 |
||
39 |
lemma lfp_greatest: "(!!u. f u \<le> u ==> A \<le> u) ==> A \<le> lfp f" |
|
40 |
by (auto simp add: lfp_def intro: Inf_greatest) |
|
41 |
||
26013
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
haftmann
parents:
25557
diff
changeset
|
42 |
end |
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
haftmann
parents:
25557
diff
changeset
|
43 |
|
24915 | 44 |
lemma lfp_lemma2: "mono f ==> f (lfp f) \<le> lfp f" |
45 |
by (iprover intro: lfp_greatest order_trans monoD lfp_lowerbound) |
|
46 |
||
47 |
lemma lfp_lemma3: "mono f ==> lfp f \<le> f (lfp f)" |
|
48 |
by (iprover intro: lfp_lemma2 monoD lfp_lowerbound) |
|
49 |
||
50 |
lemma lfp_unfold: "mono f ==> lfp f = f (lfp f)" |
|
51 |
by (iprover intro: order_antisym lfp_lemma2 lfp_lemma3) |
|
52 |
||
53 |
lemma lfp_const: "lfp (\<lambda>x. t) = t" |
|
54 |
by (rule lfp_unfold) (simp add:mono_def) |
|
55 |
||
56 |
||
60758 | 57 |
subsection \<open>General induction rules for least fixed points\<close> |
24915 | 58 |
|
60174
70d8f7abde8f
strengthened lfp_ordinal_induct; added dual gfp variant
hoelzl
parents:
60173
diff
changeset
|
59 |
lemma lfp_ordinal_induct[case_names mono step union]: |
61076 | 60 |
fixes f :: "'a::complete_lattice \<Rightarrow> 'a" |
26013
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
haftmann
parents:
25557
diff
changeset
|
61 |
assumes mono: "mono f" |
60174
70d8f7abde8f
strengthened lfp_ordinal_induct; added dual gfp variant
hoelzl
parents:
60173
diff
changeset
|
62 |
and P_f: "\<And>S. P S \<Longrightarrow> S \<le> lfp f \<Longrightarrow> P (f S)" |
26013
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
haftmann
parents:
25557
diff
changeset
|
63 |
and P_Union: "\<And>M. \<forall>S\<in>M. P S \<Longrightarrow> P (Sup M)" |
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
haftmann
parents:
25557
diff
changeset
|
64 |
shows "P (lfp f)" |
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
haftmann
parents:
25557
diff
changeset
|
65 |
proof - |
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
haftmann
parents:
25557
diff
changeset
|
66 |
let ?M = "{S. S \<le> lfp f \<and> P S}" |
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
haftmann
parents:
25557
diff
changeset
|
67 |
have "P (Sup ?M)" using P_Union by simp |
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
haftmann
parents:
25557
diff
changeset
|
68 |
also have "Sup ?M = lfp f" |
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
haftmann
parents:
25557
diff
changeset
|
69 |
proof (rule antisym) |
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
haftmann
parents:
25557
diff
changeset
|
70 |
show "Sup ?M \<le> lfp f" by (blast intro: Sup_least) |
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
haftmann
parents:
25557
diff
changeset
|
71 |
hence "f (Sup ?M) \<le> f (lfp f)" by (rule mono [THEN monoD]) |
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
haftmann
parents:
25557
diff
changeset
|
72 |
hence "f (Sup ?M) \<le> lfp f" using mono [THEN lfp_unfold] by simp |
60174
70d8f7abde8f
strengthened lfp_ordinal_induct; added dual gfp variant
hoelzl
parents:
60173
diff
changeset
|
73 |
hence "f (Sup ?M) \<in> ?M" using P_Union by simp (intro P_f Sup_least, auto) |
26013
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
haftmann
parents:
25557
diff
changeset
|
74 |
hence "f (Sup ?M) \<le> Sup ?M" by (rule Sup_upper) |
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
haftmann
parents:
25557
diff
changeset
|
75 |
thus "lfp f \<le> Sup ?M" by (rule lfp_lowerbound) |
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
haftmann
parents:
25557
diff
changeset
|
76 |
qed |
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
haftmann
parents:
25557
diff
changeset
|
77 |
finally show ?thesis . |
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
haftmann
parents:
25557
diff
changeset
|
78 |
qed |
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
haftmann
parents:
25557
diff
changeset
|
79 |
|
60174
70d8f7abde8f
strengthened lfp_ordinal_induct; added dual gfp variant
hoelzl
parents:
60173
diff
changeset
|
80 |
theorem lfp_induct: |
70d8f7abde8f
strengthened lfp_ordinal_induct; added dual gfp variant
hoelzl
parents:
60173
diff
changeset
|
81 |
assumes mono: "mono f" and ind: "f (inf (lfp f) P) \<le> P" |
70d8f7abde8f
strengthened lfp_ordinal_induct; added dual gfp variant
hoelzl
parents:
60173
diff
changeset
|
82 |
shows "lfp f \<le> P" |
70d8f7abde8f
strengthened lfp_ordinal_induct; added dual gfp variant
hoelzl
parents:
60173
diff
changeset
|
83 |
proof (induction rule: lfp_ordinal_induct) |
70d8f7abde8f
strengthened lfp_ordinal_induct; added dual gfp variant
hoelzl
parents:
60173
diff
changeset
|
84 |
case (step S) then show ?case |
70d8f7abde8f
strengthened lfp_ordinal_induct; added dual gfp variant
hoelzl
parents:
60173
diff
changeset
|
85 |
by (intro order_trans[OF _ ind] monoD[OF mono]) auto |
70d8f7abde8f
strengthened lfp_ordinal_induct; added dual gfp variant
hoelzl
parents:
60173
diff
changeset
|
86 |
qed (auto intro: mono Sup_least) |
70d8f7abde8f
strengthened lfp_ordinal_induct; added dual gfp variant
hoelzl
parents:
60173
diff
changeset
|
87 |
|
70d8f7abde8f
strengthened lfp_ordinal_induct; added dual gfp variant
hoelzl
parents:
60173
diff
changeset
|
88 |
lemma lfp_induct_set: |
70d8f7abde8f
strengthened lfp_ordinal_induct; added dual gfp variant
hoelzl
parents:
60173
diff
changeset
|
89 |
assumes lfp: "a: lfp(f)" |
70d8f7abde8f
strengthened lfp_ordinal_induct; added dual gfp variant
hoelzl
parents:
60173
diff
changeset
|
90 |
and mono: "mono(f)" |
70d8f7abde8f
strengthened lfp_ordinal_induct; added dual gfp variant
hoelzl
parents:
60173
diff
changeset
|
91 |
and indhyp: "!!x. [| x: f(lfp(f) Int {x. P(x)}) |] ==> P(x)" |
70d8f7abde8f
strengthened lfp_ordinal_induct; added dual gfp variant
hoelzl
parents:
60173
diff
changeset
|
92 |
shows "P(a)" |
70d8f7abde8f
strengthened lfp_ordinal_induct; added dual gfp variant
hoelzl
parents:
60173
diff
changeset
|
93 |
by (rule lfp_induct [THEN subsetD, THEN CollectD, OF mono _ lfp]) |
70d8f7abde8f
strengthened lfp_ordinal_induct; added dual gfp variant
hoelzl
parents:
60173
diff
changeset
|
94 |
(auto simp: intro: indhyp) |
70d8f7abde8f
strengthened lfp_ordinal_induct; added dual gfp variant
hoelzl
parents:
60173
diff
changeset
|
95 |
|
26013
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
haftmann
parents:
25557
diff
changeset
|
96 |
lemma lfp_ordinal_induct_set: |
24915 | 97 |
assumes mono: "mono f" |
98 |
and P_f: "!!S. P S ==> P(f S)" |
|
99 |
and P_Union: "!!M. !S:M. P S ==> P(Union M)" |
|
100 |
shows "P(lfp f)" |
|
46008
c296c75f4cf4
reverted some changes for set->predicate transition, according to "hg log -u berghofe -r Isabelle2007:Isabelle2008";
wenzelm
parents:
45907
diff
changeset
|
101 |
using assms by (rule lfp_ordinal_induct) |
24915 | 102 |
|
103 |
||
60758 | 104 |
text\<open>Definition forms of @{text lfp_unfold} and @{text lfp_induct}, |
105 |
to control unfolding\<close> |
|
24915 | 106 |
|
107 |
lemma def_lfp_unfold: "[| h==lfp(f); mono(f) |] ==> h = f(h)" |
|
45899 | 108 |
by (auto intro!: lfp_unfold) |
24915 | 109 |
|
110 |
lemma def_lfp_induct: |
|
111 |
"[| A == lfp(f); mono(f); |
|
112 |
f (inf A P) \<le> P |
|
113 |
|] ==> A \<le> P" |
|
114 |
by (blast intro: lfp_induct) |
|
115 |
||
116 |
lemma def_lfp_induct_set: |
|
117 |
"[| A == lfp(f); mono(f); a:A; |
|
118 |
!!x. [| x: f(A Int {x. P(x)}) |] ==> P(x) |
|
119 |
|] ==> P(a)" |
|
120 |
by (blast intro: lfp_induct_set) |
|
121 |
||
122 |
(*Monotonicity of lfp!*) |
|
123 |
lemma lfp_mono: "(!!Z. f Z \<le> g Z) ==> lfp f \<le> lfp g" |
|
124 |
by (rule lfp_lowerbound [THEN lfp_greatest], blast intro: order_trans) |
|
125 |
||
126 |
||
60758 | 127 |
subsection \<open>Proof of Knaster-Tarski Theorem using @{term gfp}\<close> |
24915 | 128 |
|
60758 | 129 |
text\<open>@{term "gfp f"} is the greatest lower bound of |
130 |
the set @{term "{u. u \<le> f(u)}"}\<close> |
|
24915 | 131 |
|
132 |
lemma gfp_upperbound: "X \<le> f X ==> X \<le> gfp f" |
|
133 |
by (auto simp add: gfp_def intro: Sup_upper) |
|
134 |
||
135 |
lemma gfp_least: "(!!u. u \<le> f u ==> u \<le> X) ==> gfp f \<le> X" |
|
136 |
by (auto simp add: gfp_def intro: Sup_least) |
|
137 |
||
138 |
lemma gfp_lemma2: "mono f ==> gfp f \<le> f (gfp f)" |
|
139 |
by (iprover intro: gfp_least order_trans monoD gfp_upperbound) |
|
140 |
||
141 |
lemma gfp_lemma3: "mono f ==> f (gfp f) \<le> gfp f" |
|
142 |
by (iprover intro: gfp_lemma2 monoD gfp_upperbound) |
|
143 |
||
144 |
lemma gfp_unfold: "mono f ==> gfp f = f (gfp f)" |
|
145 |
by (iprover intro: order_antisym gfp_lemma2 gfp_lemma3) |
|
146 |
||
147 |
||
60758 | 148 |
subsection \<open>Coinduction rules for greatest fixed points\<close> |
24915 | 149 |
|
60758 | 150 |
text\<open>weak version\<close> |
24915 | 151 |
lemma weak_coinduct: "[| a: X; X \<subseteq> f(X) |] ==> a : gfp(f)" |
45899 | 152 |
by (rule gfp_upperbound [THEN subsetD]) auto |
24915 | 153 |
|
154 |
lemma weak_coinduct_image: "!!X. [| a : X; g`X \<subseteq> f (g`X) |] ==> g a : gfp f" |
|
45899 | 155 |
apply (erule gfp_upperbound [THEN subsetD]) |
156 |
apply (erule imageI) |
|
157 |
done |
|
24915 | 158 |
|
159 |
lemma coinduct_lemma: |
|
160 |
"[| X \<le> f (sup X (gfp f)); mono f |] ==> sup X (gfp f) \<le> f (sup X (gfp f))" |
|
161 |
apply (frule gfp_lemma2) |
|
162 |
apply (drule mono_sup) |
|
163 |
apply (rule le_supI) |
|
164 |
apply assumption |
|
165 |
apply (rule order_trans) |
|
166 |
apply (rule order_trans) |
|
167 |
apply assumption |
|
168 |
apply (rule sup_ge2) |
|
169 |
apply assumption |
|
170 |
done |
|
171 |
||
60758 | 172 |
text\<open>strong version, thanks to Coen and Frost\<close> |
24915 | 173 |
lemma coinduct_set: "[| mono(f); a: X; X \<subseteq> f(X Un gfp(f)) |] ==> a : gfp(f)" |
55604 | 174 |
by (rule weak_coinduct[rotated], rule coinduct_lemma) blast+ |
24915 | 175 |
|
176 |
lemma gfp_fun_UnI2: "[| mono(f); a: gfp(f) |] ==> a: f(X Un gfp(f))" |
|
45899 | 177 |
by (blast dest: gfp_lemma2 mono_Un) |
24915 | 178 |
|
60174
70d8f7abde8f
strengthened lfp_ordinal_induct; added dual gfp variant
hoelzl
parents:
60173
diff
changeset
|
179 |
lemma gfp_ordinal_induct[case_names mono step union]: |
61076 | 180 |
fixes f :: "'a::complete_lattice \<Rightarrow> 'a" |
60174
70d8f7abde8f
strengthened lfp_ordinal_induct; added dual gfp variant
hoelzl
parents:
60173
diff
changeset
|
181 |
assumes mono: "mono f" |
70d8f7abde8f
strengthened lfp_ordinal_induct; added dual gfp variant
hoelzl
parents:
60173
diff
changeset
|
182 |
and P_f: "\<And>S. P S \<Longrightarrow> gfp f \<le> S \<Longrightarrow> P (f S)" |
70d8f7abde8f
strengthened lfp_ordinal_induct; added dual gfp variant
hoelzl
parents:
60173
diff
changeset
|
183 |
and P_Union: "\<And>M. \<forall>S\<in>M. P S \<Longrightarrow> P (Inf M)" |
70d8f7abde8f
strengthened lfp_ordinal_induct; added dual gfp variant
hoelzl
parents:
60173
diff
changeset
|
184 |
shows "P (gfp f)" |
70d8f7abde8f
strengthened lfp_ordinal_induct; added dual gfp variant
hoelzl
parents:
60173
diff
changeset
|
185 |
proof - |
70d8f7abde8f
strengthened lfp_ordinal_induct; added dual gfp variant
hoelzl
parents:
60173
diff
changeset
|
186 |
let ?M = "{S. gfp f \<le> S \<and> P S}" |
70d8f7abde8f
strengthened lfp_ordinal_induct; added dual gfp variant
hoelzl
parents:
60173
diff
changeset
|
187 |
have "P (Inf ?M)" using P_Union by simp |
70d8f7abde8f
strengthened lfp_ordinal_induct; added dual gfp variant
hoelzl
parents:
60173
diff
changeset
|
188 |
also have "Inf ?M = gfp f" |
70d8f7abde8f
strengthened lfp_ordinal_induct; added dual gfp variant
hoelzl
parents:
60173
diff
changeset
|
189 |
proof (rule antisym) |
70d8f7abde8f
strengthened lfp_ordinal_induct; added dual gfp variant
hoelzl
parents:
60173
diff
changeset
|
190 |
show "gfp f \<le> Inf ?M" by (blast intro: Inf_greatest) |
70d8f7abde8f
strengthened lfp_ordinal_induct; added dual gfp variant
hoelzl
parents:
60173
diff
changeset
|
191 |
hence "f (gfp f) \<le> f (Inf ?M)" by (rule mono [THEN monoD]) |
70d8f7abde8f
strengthened lfp_ordinal_induct; added dual gfp variant
hoelzl
parents:
60173
diff
changeset
|
192 |
hence "gfp f \<le> f (Inf ?M)" using mono [THEN gfp_unfold] by simp |
70d8f7abde8f
strengthened lfp_ordinal_induct; added dual gfp variant
hoelzl
parents:
60173
diff
changeset
|
193 |
hence "f (Inf ?M) \<in> ?M" using P_Union by simp (intro P_f Inf_greatest, auto) |
70d8f7abde8f
strengthened lfp_ordinal_induct; added dual gfp variant
hoelzl
parents:
60173
diff
changeset
|
194 |
hence "Inf ?M \<le> f (Inf ?M)" by (rule Inf_lower) |
70d8f7abde8f
strengthened lfp_ordinal_induct; added dual gfp variant
hoelzl
parents:
60173
diff
changeset
|
195 |
thus "Inf ?M \<le> gfp f" by (rule gfp_upperbound) |
70d8f7abde8f
strengthened lfp_ordinal_induct; added dual gfp variant
hoelzl
parents:
60173
diff
changeset
|
196 |
qed |
70d8f7abde8f
strengthened lfp_ordinal_induct; added dual gfp variant
hoelzl
parents:
60173
diff
changeset
|
197 |
finally show ?thesis . |
70d8f7abde8f
strengthened lfp_ordinal_induct; added dual gfp variant
hoelzl
parents:
60173
diff
changeset
|
198 |
qed |
70d8f7abde8f
strengthened lfp_ordinal_induct; added dual gfp variant
hoelzl
parents:
60173
diff
changeset
|
199 |
|
70d8f7abde8f
strengthened lfp_ordinal_induct; added dual gfp variant
hoelzl
parents:
60173
diff
changeset
|
200 |
lemma coinduct: assumes mono: "mono f" and ind: "X \<le> f (sup X (gfp f))" shows "X \<le> gfp f" |
70d8f7abde8f
strengthened lfp_ordinal_induct; added dual gfp variant
hoelzl
parents:
60173
diff
changeset
|
201 |
proof (induction rule: gfp_ordinal_induct) |
70d8f7abde8f
strengthened lfp_ordinal_induct; added dual gfp variant
hoelzl
parents:
60173
diff
changeset
|
202 |
case (step S) then show ?case |
70d8f7abde8f
strengthened lfp_ordinal_induct; added dual gfp variant
hoelzl
parents:
60173
diff
changeset
|
203 |
by (intro order_trans[OF ind _] monoD[OF mono]) auto |
70d8f7abde8f
strengthened lfp_ordinal_induct; added dual gfp variant
hoelzl
parents:
60173
diff
changeset
|
204 |
qed (auto intro: mono Inf_greatest) |
24915 | 205 |
|
60758 | 206 |
subsection \<open>Even Stronger Coinduction Rule, by Martin Coen\<close> |
24915 | 207 |
|
60758 | 208 |
text\<open>Weakens the condition @{term "X \<subseteq> f(X)"} to one expressed using both |
209 |
@{term lfp} and @{term gfp}\<close> |
|
24915 | 210 |
|
211 |
lemma coinduct3_mono_lemma: "mono(f) ==> mono(%x. f(x) Un X Un B)" |
|
212 |
by (iprover intro: subset_refl monoI Un_mono monoD) |
|
213 |
||
214 |
lemma coinduct3_lemma: |
|
215 |
"[| X \<subseteq> f(lfp(%x. f(x) Un X Un gfp(f))); mono(f) |] |
|
216 |
==> lfp(%x. f(x) Un X Un gfp(f)) \<subseteq> f(lfp(%x. f(x) Un X Un gfp(f)))" |
|
217 |
apply (rule subset_trans) |
|
218 |
apply (erule coinduct3_mono_lemma [THEN lfp_lemma3]) |
|
219 |
apply (rule Un_least [THEN Un_least]) |
|
220 |
apply (rule subset_refl, assumption) |
|
221 |
apply (rule gfp_unfold [THEN equalityD1, THEN subset_trans], assumption) |
|
46008
c296c75f4cf4
reverted some changes for set->predicate transition, according to "hg log -u berghofe -r Isabelle2007:Isabelle2008";
wenzelm
parents:
45907
diff
changeset
|
222 |
apply (rule monoD, assumption) |
24915 | 223 |
apply (subst coinduct3_mono_lemma [THEN lfp_unfold], auto) |
224 |
done |
|
225 |
||
226 |
lemma coinduct3: |
|
227 |
"[| mono(f); a:X; X \<subseteq> f(lfp(%x. f(x) Un X Un gfp(f))) |] ==> a : gfp(f)" |
|
228 |
apply (rule coinduct3_lemma [THEN [2] weak_coinduct]) |
|
41081 | 229 |
apply (rule coinduct3_mono_lemma [THEN lfp_unfold, THEN ssubst]) |
230 |
apply (simp_all) |
|
24915 | 231 |
done |
232 |
||
60758 | 233 |
text\<open>Definition forms of @{text gfp_unfold} and @{text coinduct}, |
234 |
to control unfolding\<close> |
|
24915 | 235 |
|
236 |
lemma def_gfp_unfold: "[| A==gfp(f); mono(f) |] ==> A = f(A)" |
|
45899 | 237 |
by (auto intro!: gfp_unfold) |
24915 | 238 |
|
239 |
lemma def_coinduct: |
|
240 |
"[| A==gfp(f); mono(f); X \<le> f(sup X A) |] ==> X \<le> A" |
|
45899 | 241 |
by (iprover intro!: coinduct) |
24915 | 242 |
|
243 |
lemma def_coinduct_set: |
|
244 |
"[| A==gfp(f); mono(f); a:X; X \<subseteq> f(X Un A) |] ==> a: A" |
|
45899 | 245 |
by (auto intro!: coinduct_set) |
24915 | 246 |
|
247 |
(*The version used in the induction/coinduction package*) |
|
248 |
lemma def_Collect_coinduct: |
|
249 |
"[| A == gfp(%w. Collect(P(w))); mono(%w. Collect(P(w))); |
|
250 |
a: X; !!z. z: X ==> P (X Un A) z |] ==> |
|
251 |
a : A" |
|
45899 | 252 |
by (erule def_coinduct_set) auto |
24915 | 253 |
|
254 |
lemma def_coinduct3: |
|
255 |
"[| A==gfp(f); mono(f); a:X; X \<subseteq> f(lfp(%x. f(x) Un X Un A)) |] ==> a: A" |
|
45899 | 256 |
by (auto intro!: coinduct3) |
24915 | 257 |
|
60758 | 258 |
text\<open>Monotonicity of @{term gfp}!\<close> |
24915 | 259 |
lemma gfp_mono: "(!!Z. f Z \<le> g Z) ==> gfp f \<le> gfp g" |
260 |
by (rule gfp_upperbound [THEN gfp_least], blast intro: order_trans) |
|
261 |
||
60758 | 262 |
subsection \<open>Rules for fixed point calculus\<close> |
60173 | 263 |
|
264 |
||
265 |
lemma lfp_rolling: |
|
266 |
assumes "mono g" "mono f" |
|
267 |
shows "g (lfp (\<lambda>x. f (g x))) = lfp (\<lambda>x. g (f x))" |
|
268 |
proof (rule antisym) |
|
269 |
have *: "mono (\<lambda>x. f (g x))" |
|
270 |
using assms by (auto simp: mono_def) |
|
271 |
||
272 |
show "lfp (\<lambda>x. g (f x)) \<le> g (lfp (\<lambda>x. f (g x)))" |
|
273 |
by (rule lfp_lowerbound) (simp add: lfp_unfold[OF *, symmetric]) |
|
274 |
||
275 |
show "g (lfp (\<lambda>x. f (g x))) \<le> lfp (\<lambda>x. g (f x))" |
|
276 |
proof (rule lfp_greatest) |
|
277 |
fix u assume "g (f u) \<le> u" |
|
278 |
moreover then have "g (lfp (\<lambda>x. f (g x))) \<le> g (f u)" |
|
279 |
by (intro assms[THEN monoD] lfp_lowerbound) |
|
280 |
ultimately show "g (lfp (\<lambda>x. f (g x))) \<le> u" |
|
281 |
by auto |
|
282 |
qed |
|
283 |
qed |
|
284 |
||
285 |
lemma lfp_lfp: |
|
286 |
assumes f: "\<And>x y w z. x \<le> y \<Longrightarrow> w \<le> z \<Longrightarrow> f x w \<le> f y z" |
|
287 |
shows "lfp (\<lambda>x. lfp (f x)) = lfp (\<lambda>x. f x x)" |
|
288 |
proof (rule antisym) |
|
289 |
have *: "mono (\<lambda>x. f x x)" |
|
290 |
by (blast intro: monoI f) |
|
291 |
show "lfp (\<lambda>x. lfp (f x)) \<le> lfp (\<lambda>x. f x x)" |
|
292 |
by (intro lfp_lowerbound) (simp add: lfp_unfold[OF *, symmetric]) |
|
293 |
show "lfp (\<lambda>x. lfp (f x)) \<ge> lfp (\<lambda>x. f x x)" (is "?F \<ge> _") |
|
294 |
proof (intro lfp_lowerbound) |
|
295 |
have *: "?F = lfp (f ?F)" |
|
296 |
by (rule lfp_unfold) (blast intro: monoI lfp_mono f) |
|
297 |
also have "\<dots> = f ?F (lfp (f ?F))" |
|
298 |
by (rule lfp_unfold) (blast intro: monoI lfp_mono f) |
|
299 |
finally show "f ?F ?F \<le> ?F" |
|
300 |
by (simp add: *[symmetric]) |
|
301 |
qed |
|
302 |
qed |
|
303 |
||
304 |
lemma gfp_rolling: |
|
305 |
assumes "mono g" "mono f" |
|
306 |
shows "g (gfp (\<lambda>x. f (g x))) = gfp (\<lambda>x. g (f x))" |
|
307 |
proof (rule antisym) |
|
308 |
have *: "mono (\<lambda>x. f (g x))" |
|
309 |
using assms by (auto simp: mono_def) |
|
310 |
show "g (gfp (\<lambda>x. f (g x))) \<le> gfp (\<lambda>x. g (f x))" |
|
311 |
by (rule gfp_upperbound) (simp add: gfp_unfold[OF *, symmetric]) |
|
312 |
||
313 |
show "gfp (\<lambda>x. g (f x)) \<le> g (gfp (\<lambda>x. f (g x)))" |
|
314 |
proof (rule gfp_least) |
|
315 |
fix u assume "u \<le> g (f u)" |
|
316 |
moreover then have "g (f u) \<le> g (gfp (\<lambda>x. f (g x)))" |
|
317 |
by (intro assms[THEN monoD] gfp_upperbound) |
|
318 |
ultimately show "u \<le> g (gfp (\<lambda>x. f (g x)))" |
|
319 |
by auto |
|
320 |
qed |
|
321 |
qed |
|
322 |
||
323 |
lemma gfp_gfp: |
|
324 |
assumes f: "\<And>x y w z. x \<le> y \<Longrightarrow> w \<le> z \<Longrightarrow> f x w \<le> f y z" |
|
325 |
shows "gfp (\<lambda>x. gfp (f x)) = gfp (\<lambda>x. f x x)" |
|
326 |
proof (rule antisym) |
|
327 |
have *: "mono (\<lambda>x. f x x)" |
|
328 |
by (blast intro: monoI f) |
|
329 |
show "gfp (\<lambda>x. f x x) \<le> gfp (\<lambda>x. gfp (f x))" |
|
330 |
by (intro gfp_upperbound) (simp add: gfp_unfold[OF *, symmetric]) |
|
331 |
show "gfp (\<lambda>x. gfp (f x)) \<le> gfp (\<lambda>x. f x x)" (is "?F \<le> _") |
|
332 |
proof (intro gfp_upperbound) |
|
333 |
have *: "?F = gfp (f ?F)" |
|
334 |
by (rule gfp_unfold) (blast intro: monoI gfp_mono f) |
|
335 |
also have "\<dots> = f ?F (gfp (f ?F))" |
|
336 |
by (rule gfp_unfold) (blast intro: monoI gfp_mono f) |
|
337 |
finally show "?F \<le> f ?F ?F" |
|
338 |
by (simp add: *[symmetric]) |
|
339 |
qed |
|
340 |
qed |
|
24915 | 341 |
|
60758 | 342 |
subsection \<open>Inductive predicates and sets\<close> |
11688 | 343 |
|
60758 | 344 |
text \<open>Package setup.\<close> |
10402 | 345 |
|
23734 | 346 |
theorems basic_monos = |
22218 | 347 |
subset_refl imp_refl disj_mono conj_mono ex_mono all_mono if_bool_eq_conj |
11688 | 348 |
Collect_mono in_mono vimage_mono |
349 |
||
48891 | 350 |
ML_file "Tools/inductive.ML" |
21018
e6b8d6784792
Added new package for inductive definitions, moved old package
berghofe
parents:
20604
diff
changeset
|
351 |
|
23734 | 352 |
theorems [mono] = |
22218 | 353 |
imp_refl disj_mono conj_mono ex_mono all_mono if_bool_eq_conj |
33934
25d6a8982e37
Streamlined setup for monotonicity rules (no longer requires classical rules).
berghofe
parents:
32701
diff
changeset
|
354 |
imp_mono not_mono |
21018
e6b8d6784792
Added new package for inductive definitions, moved old package
berghofe
parents:
20604
diff
changeset
|
355 |
Ball_def Bex_def |
e6b8d6784792
Added new package for inductive definitions, moved old package
berghofe
parents:
20604
diff
changeset
|
356 |
induct_rulify_fallback |
e6b8d6784792
Added new package for inductive definitions, moved old package
berghofe
parents:
20604
diff
changeset
|
357 |
|
11688 | 358 |
|
60758 | 359 |
subsection \<open>Inductive datatypes and primitive recursion\<close> |
11688 | 360 |
|
60758 | 361 |
text \<open>Package setup.\<close> |
11825 | 362 |
|
58112
8081087096ad
renamed modules defining old datatypes, as a step towards having 'datatype_new' take 'datatype's place
blanchet
parents:
56146
diff
changeset
|
363 |
ML_file "Tools/Old_Datatype/old_datatype_aux.ML" |
8081087096ad
renamed modules defining old datatypes, as a step towards having 'datatype_new' take 'datatype's place
blanchet
parents:
56146
diff
changeset
|
364 |
ML_file "Tools/Old_Datatype/old_datatype_prop.ML" |
58187
d2ddd401d74d
fixed infinite loops in 'register' functions + more uniform API
blanchet
parents:
58112
diff
changeset
|
365 |
ML_file "Tools/Old_Datatype/old_datatype_data.ML" |
58112
8081087096ad
renamed modules defining old datatypes, as a step towards having 'datatype_new' take 'datatype's place
blanchet
parents:
56146
diff
changeset
|
366 |
ML_file "Tools/Old_Datatype/old_rep_datatype.ML" |
8081087096ad
renamed modules defining old datatypes, as a step towards having 'datatype_new' take 'datatype's place
blanchet
parents:
56146
diff
changeset
|
367 |
ML_file "Tools/Old_Datatype/old_datatype_codegen.ML" |
8081087096ad
renamed modules defining old datatypes, as a step towards having 'datatype_new' take 'datatype's place
blanchet
parents:
56146
diff
changeset
|
368 |
ML_file "Tools/Old_Datatype/old_primrec.ML" |
12437
6d4e02b6dd43
Moved code generator setup from Recdef to Inductive.
berghofe
parents:
12023
diff
changeset
|
369 |
|
55575
a5e33e18fb5c
moved 'primrec' up (for real this time) and removed temporary 'old_primrec'
blanchet
parents:
55534
diff
changeset
|
370 |
ML_file "Tools/BNF/bnf_fp_rec_sugar_util.ML" |
a5e33e18fb5c
moved 'primrec' up (for real this time) and removed temporary 'old_primrec'
blanchet
parents:
55534
diff
changeset
|
371 |
ML_file "Tools/BNF/bnf_lfp_rec_sugar.ML" |
a5e33e18fb5c
moved 'primrec' up (for real this time) and removed temporary 'old_primrec'
blanchet
parents:
55534
diff
changeset
|
372 |
|
60758 | 373 |
text\<open>Lambda-abstractions with pattern matching:\<close> |
23526 | 374 |
|
375 |
syntax |
|
23529 | 376 |
"_lam_pats_syntax" :: "cases_syn => 'a => 'b" ("(%_)" 10) |
23526 | 377 |
syntax (xsymbols) |
23529 | 378 |
"_lam_pats_syntax" :: "cases_syn => 'a => 'b" ("(\<lambda>_)" 10) |
23526 | 379 |
|
60758 | 380 |
parse_translation \<open> |
52143 | 381 |
let |
382 |
fun fun_tr ctxt [cs] = |
|
383 |
let |
|
384 |
val x = Syntax.free (fst (Name.variant "x" (Term.declare_term_frees cs Name.context))); |
|
385 |
val ft = Case_Translation.case_tr true ctxt [x, cs]; |
|
386 |
in lambda x ft end |
|
387 |
in [(@{syntax_const "_lam_pats_syntax"}, fun_tr)] end |
|
60758 | 388 |
\<close> |
23526 | 389 |
|
390 |
end |