src/HOL/Divides.thy
author haftmann
Thu, 22 Dec 2016 10:42:08 +0100
changeset 64635 255741c5f862
parent 64630 96015aecfeba
child 64715 33d5fa0ce6e5
permissions -rw-r--r--
more uniform div/mod relations
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
3366
2402c6ab1561 Moving div and mod from Arith to Divides
paulson
parents:
diff changeset
     1
(*  Title:      HOL/Divides.thy
2402c6ab1561 Moving div and mod from Arith to Divides
paulson
parents:
diff changeset
     2
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
6865
5577ffe4c2f1 now div and mod are overloaded; dvd is polymorphic
paulson
parents: 3366
diff changeset
     3
    Copyright   1999  University of Cambridge
18154
0c05abaf6244 add header
huffman
parents: 17609
diff changeset
     4
*)
3366
2402c6ab1561 Moving div and mod from Arith to Divides
paulson
parents:
diff changeset
     5
64592
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
     6
section \<open>Quotient and remainder\<close>
3366
2402c6ab1561 Moving div and mod from Arith to Divides
paulson
parents:
diff changeset
     7
15131
c69542757a4d New theory header syntax.
nipkow
parents: 14640
diff changeset
     8
theory Divides
58778
e29cae8eab1f even further downshift of theory Parity in the hierarchy
haftmann
parents: 58710
diff changeset
     9
imports Parity
15131
c69542757a4d New theory header syntax.
nipkow
parents: 14640
diff changeset
    10
begin
3366
2402c6ab1561 Moving div and mod from Arith to Divides
paulson
parents:
diff changeset
    11
64592
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
    12
subsection \<open>Quotient and remainder in integral domains\<close>
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
    13
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
    14
class semidom_modulo = algebraic_semidom + semiring_modulo
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
    15
begin
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
    16
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
    17
lemma mod_0 [simp]: "0 mod a = 0"
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
    18
  using div_mult_mod_eq [of 0 a] by simp
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
    19
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
    20
lemma mod_by_0 [simp]: "a mod 0 = a"
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
    21
  using div_mult_mod_eq [of a 0] by simp
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
    22
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
    23
lemma mod_by_1 [simp]:
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
    24
  "a mod 1 = 0"
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
    25
proof -
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
    26
  from div_mult_mod_eq [of a one] div_by_1 have "a + a mod 1 = a" by simp
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
    27
  then have "a + a mod 1 = a + 0" by simp
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
    28
  then show ?thesis by (rule add_left_imp_eq)
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
    29
qed
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
    30
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
    31
lemma mod_self [simp]:
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
    32
  "a mod a = 0"
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
    33
  using div_mult_mod_eq [of a a] by simp
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
    34
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
    35
lemma dvd_imp_mod_0 [simp]:
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
    36
  assumes "a dvd b"
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
    37
  shows "b mod a = 0"
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
    38
  using assms minus_div_mult_eq_mod [of b a] by simp
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
    39
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
    40
lemma mod_0_imp_dvd: 
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
    41
  assumes "a mod b = 0"
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
    42
  shows   "b dvd a"
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
    43
proof -
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
    44
  have "b dvd ((a div b) * b)" by simp
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
    45
  also have "(a div b) * b = a"
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
    46
    using div_mult_mod_eq [of a b] by (simp add: assms)
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
    47
  finally show ?thesis .
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
    48
qed
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
    49
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
    50
lemma mod_eq_0_iff_dvd:
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
    51
  "a mod b = 0 \<longleftrightarrow> b dvd a"
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
    52
  by (auto intro: mod_0_imp_dvd)
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
    53
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
    54
lemma dvd_eq_mod_eq_0 [nitpick_unfold, code]:
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
    55
  "a dvd b \<longleftrightarrow> b mod a = 0"
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
    56
  by (simp add: mod_eq_0_iff_dvd)
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
    57
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
    58
lemma dvd_mod_iff: 
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
    59
  assumes "c dvd b"
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
    60
  shows "c dvd a mod b \<longleftrightarrow> c dvd a"
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
    61
proof -
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
    62
  from assms have "(c dvd a mod b) \<longleftrightarrow> (c dvd ((a div b) * b + a mod b))" 
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
    63
    by (simp add: dvd_add_right_iff)
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
    64
  also have "(a div b) * b + a mod b = a"
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
    65
    using div_mult_mod_eq [of a b] by simp
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
    66
  finally show ?thesis .
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
    67
qed
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
    68
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
    69
lemma dvd_mod_imp_dvd:
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
    70
  assumes "c dvd a mod b" and "c dvd b"
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
    71
  shows "c dvd a"
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
    72
  using assms dvd_mod_iff [of c b a] by simp
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
    73
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
    74
end
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
    75
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
    76
class idom_modulo = idom + semidom_modulo
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
    77
begin
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
    78
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
    79
subclass idom_divide ..
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
    80
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
    81
lemma div_diff [simp]:
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
    82
  "c dvd a \<Longrightarrow> c dvd b \<Longrightarrow> (a - b) div c = a div c - b div c"
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
    83
  using div_add [of _  _ "- b"] by (simp add: dvd_neg_div)
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
    84
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
    85
end
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
    86
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
    87
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
    88
subsection \<open>Quotient and remainder in integral domains with additional properties\<close>
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
    89
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
    90
class semiring_div = semidom_modulo +
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
    91
  assumes div_mult_self1 [simp]: "b \<noteq> 0 \<Longrightarrow> (a + c * b) div b = c + a div b"
30930
11010e5f18f0 tightended specification of class semiring_div
haftmann
parents: 30923
diff changeset
    92
    and div_mult_mult1 [simp]: "c \<noteq> 0 \<Longrightarrow> (c * a) div (c * b) = a div b"
25942
a52309ac4a4d added class semiring_div
haftmann
parents: 25571
diff changeset
    93
begin
a52309ac4a4d added class semiring_div
haftmann
parents: 25571
diff changeset
    94
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
    95
lemma div_mult_self2 [simp]:
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
    96
  assumes "b \<noteq> 0"
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
    97
  shows "(a + b * c) div b = c + a div b"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
    98
  using assms div_mult_self1 [of b a c] by (simp add: mult.commute)
26100
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
    99
54221
56587960e444 more lemmas on division
haftmann
parents: 53374
diff changeset
   100
lemma div_mult_self3 [simp]:
56587960e444 more lemmas on division
haftmann
parents: 53374
diff changeset
   101
  assumes "b \<noteq> 0"
56587960e444 more lemmas on division
haftmann
parents: 53374
diff changeset
   102
  shows "(c * b + a) div b = c + a div b"
56587960e444 more lemmas on division
haftmann
parents: 53374
diff changeset
   103
  using assms by (simp add: add.commute)
56587960e444 more lemmas on division
haftmann
parents: 53374
diff changeset
   104
56587960e444 more lemmas on division
haftmann
parents: 53374
diff changeset
   105
lemma div_mult_self4 [simp]:
56587960e444 more lemmas on division
haftmann
parents: 53374
diff changeset
   106
  assumes "b \<noteq> 0"
56587960e444 more lemmas on division
haftmann
parents: 53374
diff changeset
   107
  shows "(b * c + a) div b = c + a div b"
56587960e444 more lemmas on division
haftmann
parents: 53374
diff changeset
   108
  using assms by (simp add: add.commute)
56587960e444 more lemmas on division
haftmann
parents: 53374
diff changeset
   109
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
   110
lemma mod_mult_self1 [simp]: "(a + c * b) mod b = a mod b"
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
   111
proof (cases "b = 0")
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
   112
  case True then show ?thesis by simp
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
   113
next
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
   114
  case False
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
   115
  have "a + c * b = (a + c * b) div b * b + (a + c * b) mod b"
64242
93c6f0da5c70 more standardized theorem names for facts involving the div and mod identity
haftmann
parents: 64240
diff changeset
   116
    by (simp add: div_mult_mod_eq)
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
   117
  also from False div_mult_self1 [of b a c] have
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
   118
    "\<dots> = (c + a div b) * b + (a + c * b) mod b"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29509
diff changeset
   119
      by (simp add: algebra_simps)
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
   120
  finally have "a = a div b * b + (a + c * b) mod b"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
   121
    by (simp add: add.commute [of a] add.assoc distrib_right)
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
   122
  then have "a div b * b + (a + c * b) mod b = a div b * b + a mod b"
64242
93c6f0da5c70 more standardized theorem names for facts involving the div and mod identity
haftmann
parents: 64240
diff changeset
   123
    by (simp add: div_mult_mod_eq)
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
   124
  then show ?thesis by simp
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
   125
qed
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
   126
60562
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60517
diff changeset
   127
lemma mod_mult_self2 [simp]:
54221
56587960e444 more lemmas on division
haftmann
parents: 53374
diff changeset
   128
  "(a + b * c) mod b = a mod b"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
   129
  by (simp add: mult.commute [of b])
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
   130
54221
56587960e444 more lemmas on division
haftmann
parents: 53374
diff changeset
   131
lemma mod_mult_self3 [simp]:
56587960e444 more lemmas on division
haftmann
parents: 53374
diff changeset
   132
  "(c * b + a) mod b = a mod b"
56587960e444 more lemmas on division
haftmann
parents: 53374
diff changeset
   133
  by (simp add: add.commute)
56587960e444 more lemmas on division
haftmann
parents: 53374
diff changeset
   134
56587960e444 more lemmas on division
haftmann
parents: 53374
diff changeset
   135
lemma mod_mult_self4 [simp]:
56587960e444 more lemmas on division
haftmann
parents: 53374
diff changeset
   136
  "(b * c + a) mod b = a mod b"
56587960e444 more lemmas on division
haftmann
parents: 53374
diff changeset
   137
  by (simp add: add.commute)
56587960e444 more lemmas on division
haftmann
parents: 53374
diff changeset
   138
60867
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   139
lemma mod_mult_self1_is_0 [simp]:
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   140
  "b * a mod b = 0"
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
   141
  using mod_mult_self2 [of 0 b a] by simp
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
   142
60867
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   143
lemma mod_mult_self2_is_0 [simp]:
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   144
  "a * b mod b = 0"
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
   145
  using mod_mult_self1 [of 0 a b] by simp
26062
16f334d7156a more abstract lemmas
haftmann
parents: 25947
diff changeset
   146
63499
9c9a59949887 Tuned looping simp rules in semiring_div
eberlm <eberlm@in.tum.de>
parents: 63417
diff changeset
   147
lemma div_add_self1:
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
   148
  assumes "b \<noteq> 0"
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
   149
  shows "(b + a) div b = a div b + 1"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
   150
  using assms div_mult_self1 [of b a 1] by (simp add: add.commute)
26062
16f334d7156a more abstract lemmas
haftmann
parents: 25947
diff changeset
   151
63499
9c9a59949887 Tuned looping simp rules in semiring_div
eberlm <eberlm@in.tum.de>
parents: 63417
diff changeset
   152
lemma div_add_self2:
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
   153
  assumes "b \<noteq> 0"
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
   154
  shows "(a + b) div b = a div b + 1"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
   155
  using assms div_add_self1 [of b a] by (simp add: add.commute)
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
   156
27676
55676111ed69 (re-)added simp rules for (_ + _) div/mod _
haftmann
parents: 27651
diff changeset
   157
lemma mod_add_self1 [simp]:
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
   158
  "(b + a) mod b = a mod b"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
   159
  using mod_mult_self1 [of a 1 b] by (simp add: add.commute)
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
   160
27676
55676111ed69 (re-)added simp rules for (_ + _) div/mod _
haftmann
parents: 27651
diff changeset
   161
lemma mod_add_self2 [simp]:
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
   162
  "(a + b) mod b = a mod b"
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
   163
  using mod_mult_self1 [of a 1 b] by simp
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
   164
58911
2cf595ee508b proper oriented equivalence of dvd predicate and mod
haftmann
parents: 58889
diff changeset
   165
lemma mod_div_trivial [simp]:
2cf595ee508b proper oriented equivalence of dvd predicate and mod
haftmann
parents: 58889
diff changeset
   166
  "a mod b div b = 0"
29403
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   167
proof (cases "b = 0")
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   168
  assume "b = 0"
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   169
  thus ?thesis by simp
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   170
next
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   171
  assume "b \<noteq> 0"
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   172
  hence "a div b + a mod b div b = (a mod b + a div b * b) div b"
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   173
    by (rule div_mult_self1 [symmetric])
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   174
  also have "\<dots> = a div b"
64242
93c6f0da5c70 more standardized theorem names for facts involving the div and mod identity
haftmann
parents: 64240
diff changeset
   175
    by (simp only: mod_div_mult_eq)
29403
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   176
  also have "\<dots> = a div b + 0"
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   177
    by simp
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   178
  finally show ?thesis
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   179
    by (rule add_left_imp_eq)
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   180
qed
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   181
58911
2cf595ee508b proper oriented equivalence of dvd predicate and mod
haftmann
parents: 58889
diff changeset
   182
lemma mod_mod_trivial [simp]:
2cf595ee508b proper oriented equivalence of dvd predicate and mod
haftmann
parents: 58889
diff changeset
   183
  "a mod b mod b = a mod b"
29403
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   184
proof -
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   185
  have "a mod b mod b = (a mod b + a div b * b) mod b"
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   186
    by (simp only: mod_mult_self1)
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   187
  also have "\<dots> = a mod b"
64242
93c6f0da5c70 more standardized theorem names for facts involving the div and mod identity
haftmann
parents: 64240
diff changeset
   188
    by (simp only: mod_div_mult_eq)
29403
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   189
  finally show ?thesis .
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   190
qed
fe17df4e4ab3 generalize some div/mod lemmas; remove type-specific proofs
huffman
parents: 29252
diff changeset
   191
29404
ee15ccdeaa72 generalize zmod_zmod_cancel -> mod_mod_cancel
huffman
parents: 29403
diff changeset
   192
lemma mod_mod_cancel:
ee15ccdeaa72 generalize zmod_zmod_cancel -> mod_mod_cancel
huffman
parents: 29403
diff changeset
   193
  assumes "c dvd b"
ee15ccdeaa72 generalize zmod_zmod_cancel -> mod_mod_cancel
huffman
parents: 29403
diff changeset
   194
  shows "a mod b mod c = a mod c"
ee15ccdeaa72 generalize zmod_zmod_cancel -> mod_mod_cancel
huffman
parents: 29403
diff changeset
   195
proof -
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
   196
  from \<open>c dvd b\<close> obtain k where "b = c * k"
29404
ee15ccdeaa72 generalize zmod_zmod_cancel -> mod_mod_cancel
huffman
parents: 29403
diff changeset
   197
    by (rule dvdE)
ee15ccdeaa72 generalize zmod_zmod_cancel -> mod_mod_cancel
huffman
parents: 29403
diff changeset
   198
  have "a mod b mod c = a mod (c * k) mod c"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
   199
    by (simp only: \<open>b = c * k\<close>)
29404
ee15ccdeaa72 generalize zmod_zmod_cancel -> mod_mod_cancel
huffman
parents: 29403
diff changeset
   200
  also have "\<dots> = (a mod (c * k) + a div (c * k) * k * c) mod c"
ee15ccdeaa72 generalize zmod_zmod_cancel -> mod_mod_cancel
huffman
parents: 29403
diff changeset
   201
    by (simp only: mod_mult_self1)
ee15ccdeaa72 generalize zmod_zmod_cancel -> mod_mod_cancel
huffman
parents: 29403
diff changeset
   202
  also have "\<dots> = (a div (c * k) * (c * k) + a mod (c * k)) mod c"
58786
fa5b67fb70ad more simp rules;
haftmann
parents: 58778
diff changeset
   203
    by (simp only: ac_simps)
29404
ee15ccdeaa72 generalize zmod_zmod_cancel -> mod_mod_cancel
huffman
parents: 29403
diff changeset
   204
  also have "\<dots> = a mod c"
64242
93c6f0da5c70 more standardized theorem names for facts involving the div and mod identity
haftmann
parents: 64240
diff changeset
   205
    by (simp only: div_mult_mod_eq)
29404
ee15ccdeaa72 generalize zmod_zmod_cancel -> mod_mod_cancel
huffman
parents: 29403
diff changeset
   206
  finally show ?thesis .
ee15ccdeaa72 generalize zmod_zmod_cancel -> mod_mod_cancel
huffman
parents: 29403
diff changeset
   207
qed
ee15ccdeaa72 generalize zmod_zmod_cancel -> mod_mod_cancel
huffman
parents: 29403
diff changeset
   208
30930
11010e5f18f0 tightended specification of class semiring_div
haftmann
parents: 30923
diff changeset
   209
lemma div_mult_mult2 [simp]:
11010e5f18f0 tightended specification of class semiring_div
haftmann
parents: 30923
diff changeset
   210
  "c \<noteq> 0 \<Longrightarrow> (a * c) div (b * c) = a div b"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
   211
  by (drule div_mult_mult1) (simp add: mult.commute)
30930
11010e5f18f0 tightended specification of class semiring_div
haftmann
parents: 30923
diff changeset
   212
11010e5f18f0 tightended specification of class semiring_div
haftmann
parents: 30923
diff changeset
   213
lemma div_mult_mult1_if [simp]:
11010e5f18f0 tightended specification of class semiring_div
haftmann
parents: 30923
diff changeset
   214
  "(c * a) div (c * b) = (if c = 0 then 0 else a div b)"
11010e5f18f0 tightended specification of class semiring_div
haftmann
parents: 30923
diff changeset
   215
  by simp_all
30476
0a41b0662264 added div lemmas
nipkow
parents: 30242
diff changeset
   216
30930
11010e5f18f0 tightended specification of class semiring_div
haftmann
parents: 30923
diff changeset
   217
lemma mod_mult_mult1:
11010e5f18f0 tightended specification of class semiring_div
haftmann
parents: 30923
diff changeset
   218
  "(c * a) mod (c * b) = c * (a mod b)"
11010e5f18f0 tightended specification of class semiring_div
haftmann
parents: 30923
diff changeset
   219
proof (cases "c = 0")
11010e5f18f0 tightended specification of class semiring_div
haftmann
parents: 30923
diff changeset
   220
  case True then show ?thesis by simp
11010e5f18f0 tightended specification of class semiring_div
haftmann
parents: 30923
diff changeset
   221
next
11010e5f18f0 tightended specification of class semiring_div
haftmann
parents: 30923
diff changeset
   222
  case False
64242
93c6f0da5c70 more standardized theorem names for facts involving the div and mod identity
haftmann
parents: 64240
diff changeset
   223
  from div_mult_mod_eq
30930
11010e5f18f0 tightended specification of class semiring_div
haftmann
parents: 30923
diff changeset
   224
  have "((c * a) div (c * b)) * (c * b) + (c * a) mod (c * b) = c * a" .
11010e5f18f0 tightended specification of class semiring_div
haftmann
parents: 30923
diff changeset
   225
  with False have "c * ((a div b) * b + a mod b) + (c * a) mod (c * b)
11010e5f18f0 tightended specification of class semiring_div
haftmann
parents: 30923
diff changeset
   226
    = c * a + c * (a mod b)" by (simp add: algebra_simps)
64242
93c6f0da5c70 more standardized theorem names for facts involving the div and mod identity
haftmann
parents: 64240
diff changeset
   227
  with div_mult_mod_eq show ?thesis by simp
30930
11010e5f18f0 tightended specification of class semiring_div
haftmann
parents: 30923
diff changeset
   228
qed
60562
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60517
diff changeset
   229
30930
11010e5f18f0 tightended specification of class semiring_div
haftmann
parents: 30923
diff changeset
   230
lemma mod_mult_mult2:
11010e5f18f0 tightended specification of class semiring_div
haftmann
parents: 30923
diff changeset
   231
  "(a * c) mod (b * c) = (a mod b) * c"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
   232
  using mod_mult_mult1 [of c a b] by (simp add: mult.commute)
30930
11010e5f18f0 tightended specification of class semiring_div
haftmann
parents: 30923
diff changeset
   233
47159
978c00c20a59 generalize some theorems about div/mod
huffman
parents: 47142
diff changeset
   234
lemma mult_mod_left: "(a mod b) * c = (a * c) mod (b * c)"
978c00c20a59 generalize some theorems about div/mod
huffman
parents: 47142
diff changeset
   235
  by (fact mod_mult_mult2 [symmetric])
978c00c20a59 generalize some theorems about div/mod
huffman
parents: 47142
diff changeset
   236
978c00c20a59 generalize some theorems about div/mod
huffman
parents: 47142
diff changeset
   237
lemma mult_mod_right: "c * (a mod b) = (c * a) mod (c * b)"
978c00c20a59 generalize some theorems about div/mod
huffman
parents: 47142
diff changeset
   238
  by (fact mod_mult_mult1 [symmetric])
978c00c20a59 generalize some theorems about div/mod
huffman
parents: 47142
diff changeset
   239
31662
57f7ef0dba8e generalize lemmas dvd_mod and dvd_mod_iff to class semiring_div
huffman
parents: 31661
diff changeset
   240
lemma dvd_mod: "k dvd m \<Longrightarrow> k dvd n \<Longrightarrow> k dvd (m mod n)"
57f7ef0dba8e generalize lemmas dvd_mod and dvd_mod_iff to class semiring_div
huffman
parents: 31661
diff changeset
   241
  unfolding dvd_def by (auto simp add: mod_mult_mult1)
57f7ef0dba8e generalize lemmas dvd_mod and dvd_mod_iff to class semiring_div
huffman
parents: 31661
diff changeset
   242
64593
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   243
named_theorems mod_simps
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   244
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   245
text \<open>Addition respects modular equivalence.\<close>
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   246
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   247
lemma mod_add_left_eq [mod_simps]:
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   248
  "(a mod c + b) mod c = (a + b) mod c"
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   249
proof -
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   250
  have "(a + b) mod c = (a div c * c + a mod c + b) mod c"
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   251
    by (simp only: div_mult_mod_eq)
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   252
  also have "\<dots> = (a mod c + b + a div c * c) mod c"
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   253
    by (simp only: ac_simps)
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   254
  also have "\<dots> = (a mod c + b) mod c"
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   255
    by (rule mod_mult_self1)
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   256
  finally show ?thesis
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   257
    by (rule sym)
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   258
qed
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   259
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   260
lemma mod_add_right_eq [mod_simps]:
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   261
  "(a + b mod c) mod c = (a + b) mod c"
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   262
  using mod_add_left_eq [of b c a] by (simp add: ac_simps)
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   263
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   264
lemma mod_add_eq:
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   265
  "(a mod c + b mod c) mod c = (a + b) mod c"
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   266
  by (simp add: mod_add_left_eq mod_add_right_eq)
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   267
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   268
lemma mod_sum_eq [mod_simps]:
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   269
  "(\<Sum>i\<in>A. f i mod a) mod a = sum f A mod a"
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   270
proof (induct A rule: infinite_finite_induct)
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   271
  case (insert i A)
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   272
  then have "(\<Sum>i\<in>insert i A. f i mod a) mod a
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   273
    = (f i mod a + (\<Sum>i\<in>A. f i mod a)) mod a"
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   274
    by simp
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   275
  also have "\<dots> = (f i + (\<Sum>i\<in>A. f i mod a) mod a) mod a"
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   276
    by (simp add: mod_simps)
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   277
  also have "\<dots> = (f i + (\<Sum>i\<in>A. f i) mod a) mod a"
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   278
    by (simp add: insert.hyps)
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   279
  finally show ?case
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   280
    by (simp add: insert.hyps mod_simps)
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   281
qed simp_all
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   282
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   283
lemma mod_add_cong:
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   284
  assumes "a mod c = a' mod c"
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   285
  assumes "b mod c = b' mod c"
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   286
  shows "(a + b) mod c = (a' + b') mod c"
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   287
proof -
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   288
  have "(a mod c + b mod c) mod c = (a' mod c + b' mod c) mod c"
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   289
    unfolding assms ..
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   290
  then show ?thesis
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   291
    by (simp add: mod_add_eq)
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   292
qed
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   293
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   294
text \<open>Multiplication respects modular equivalence.\<close>
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   295
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   296
lemma mod_mult_left_eq [mod_simps]:
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   297
  "((a mod c) * b) mod c = (a * b) mod c"
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   298
proof -
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   299
  have "(a * b) mod c = ((a div c * c + a mod c) * b) mod c"
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   300
    by (simp only: div_mult_mod_eq)
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   301
  also have "\<dots> = (a mod c * b + a div c * b * c) mod c"
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   302
    by (simp only: algebra_simps)
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   303
  also have "\<dots> = (a mod c * b) mod c"
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   304
    by (rule mod_mult_self1)
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   305
  finally show ?thesis
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   306
    by (rule sym)
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   307
qed
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   308
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   309
lemma mod_mult_right_eq [mod_simps]:
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   310
  "(a * (b mod c)) mod c = (a * b) mod c"
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   311
  using mod_mult_left_eq [of b c a] by (simp add: ac_simps)
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   312
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   313
lemma mod_mult_eq:
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   314
  "((a mod c) * (b mod c)) mod c = (a * b) mod c"
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   315
  by (simp add: mod_mult_left_eq mod_mult_right_eq)
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   316
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   317
lemma mod_prod_eq [mod_simps]:
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   318
  "(\<Prod>i\<in>A. f i mod a) mod a = prod f A mod a"
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   319
proof (induct A rule: infinite_finite_induct)
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   320
  case (insert i A)
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   321
  then have "(\<Prod>i\<in>insert i A. f i mod a) mod a
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   322
    = (f i mod a * (\<Prod>i\<in>A. f i mod a)) mod a"
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   323
    by simp
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   324
  also have "\<dots> = (f i * ((\<Prod>i\<in>A. f i mod a) mod a)) mod a"
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   325
    by (simp add: mod_simps)
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   326
  also have "\<dots> = (f i * ((\<Prod>i\<in>A. f i) mod a)) mod a"
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   327
    by (simp add: insert.hyps)
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   328
  finally show ?case
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   329
    by (simp add: insert.hyps mod_simps)
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   330
qed simp_all
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   331
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   332
lemma mod_mult_cong:
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   333
  assumes "a mod c = a' mod c"
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   334
  assumes "b mod c = b' mod c"
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   335
  shows "(a * b) mod c = (a' * b') mod c"
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   336
proof -
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   337
  have "(a mod c * (b mod c)) mod c = (a' mod c * (b' mod c)) mod c"
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   338
    unfolding assms ..
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   339
  then show ?thesis
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   340
    by (simp add: mod_mult_eq)
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   341
qed
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   342
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   343
text \<open>Exponentiation respects modular equivalence.\<close>
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   344
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   345
lemma power_mod [mod_simps]: 
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   346
  "((a mod b) ^ n) mod b = (a ^ n) mod b"
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   347
proof (induct n)
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   348
  case 0
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   349
  then show ?case by simp
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   350
next
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   351
  case (Suc n)
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   352
  have "(a mod b) ^ Suc n mod b = (a mod b) * ((a mod b) ^ n mod b) mod b"
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   353
    by (simp add: mod_mult_right_eq)
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   354
  with Suc show ?case
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   355
    by (simp add: mod_mult_left_eq mod_mult_right_eq)
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   356
qed
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   357
31661
1e252b8b2334 move lemma div_power into semiring_div context; class ring_div inherits from idom
huffman
parents: 31009
diff changeset
   358
end
1e252b8b2334 move lemma div_power into semiring_div context; class ring_div inherits from idom
huffman
parents: 31009
diff changeset
   359
59833
ab828c2c5d67 clarified no_zero_devisors: makes only sense in a semiring;
haftmann
parents: 59816
diff changeset
   360
class ring_div = comm_ring_1 + semiring_div
29405
98ab21b14f09 add class ring_div; generalize mod/diff/minus proofs for class ring_div
huffman
parents: 29404
diff changeset
   361
begin
98ab21b14f09 add class ring_div; generalize mod/diff/minus proofs for class ring_div
huffman
parents: 29404
diff changeset
   362
60353
838025c6e278 implicit partial divison operation in integral domains
haftmann
parents: 60352
diff changeset
   363
subclass idom_divide ..
36634
f9b43d197d16 a ring_div is a ring_1_no_zero_divisors
haftmann
parents: 35815
diff changeset
   364
64593
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   365
lemma div_minus_minus [simp]: "(- a) div (- b) = a div b"
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   366
  using div_mult_mult1 [of "- 1" a b] by simp
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   367
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   368
lemma mod_minus_minus [simp]: "(- a) mod (- b) = - (a mod b)"
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   369
  using mod_mult_mult1 [of "- 1" a b] by simp
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   370
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   371
lemma div_minus_right: "a div (- b) = (- a) div b"
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   372
  using div_minus_minus [of "- a" b] by simp
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   373
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   374
lemma mod_minus_right: "a mod (- b) = - ((- a) mod b)"
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   375
  using mod_minus_minus [of "- a" b] by simp
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   376
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   377
lemma div_minus1_right [simp]: "a div (- 1) = - a"
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   378
  using div_minus_right [of a 1] by simp
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   379
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   380
lemma mod_minus1_right [simp]: "a mod (- 1) = 0"
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   381
  using mod_minus_right [of a 1] by simp
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   382
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
   383
text \<open>Negation respects modular equivalence.\<close>
29405
98ab21b14f09 add class ring_div; generalize mod/diff/minus proofs for class ring_div
huffman
parents: 29404
diff changeset
   384
64593
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   385
lemma mod_minus_eq [mod_simps]:
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   386
  "(- (a mod b)) mod b = (- a) mod b"
29405
98ab21b14f09 add class ring_div; generalize mod/diff/minus proofs for class ring_div
huffman
parents: 29404
diff changeset
   387
proof -
98ab21b14f09 add class ring_div; generalize mod/diff/minus proofs for class ring_div
huffman
parents: 29404
diff changeset
   388
  have "(- a) mod b = (- (a div b * b + a mod b)) mod b"
64242
93c6f0da5c70 more standardized theorem names for facts involving the div and mod identity
haftmann
parents: 64240
diff changeset
   389
    by (simp only: div_mult_mod_eq)
29405
98ab21b14f09 add class ring_div; generalize mod/diff/minus proofs for class ring_div
huffman
parents: 29404
diff changeset
   390
  also have "\<dots> = (- (a mod b) + - (a div b) * b) mod b"
57514
bdc2c6b40bf2 prefer ac_simps collections over separate name bindings for add and mult
haftmann
parents: 57512
diff changeset
   391
    by (simp add: ac_simps)
29405
98ab21b14f09 add class ring_div; generalize mod/diff/minus proofs for class ring_div
huffman
parents: 29404
diff changeset
   392
  also have "\<dots> = (- (a mod b)) mod b"
98ab21b14f09 add class ring_div; generalize mod/diff/minus proofs for class ring_div
huffman
parents: 29404
diff changeset
   393
    by (rule mod_mult_self1)
64593
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   394
  finally show ?thesis
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   395
    by (rule sym)
29405
98ab21b14f09 add class ring_div; generalize mod/diff/minus proofs for class ring_div
huffman
parents: 29404
diff changeset
   396
qed
98ab21b14f09 add class ring_div; generalize mod/diff/minus proofs for class ring_div
huffman
parents: 29404
diff changeset
   397
98ab21b14f09 add class ring_div; generalize mod/diff/minus proofs for class ring_div
huffman
parents: 29404
diff changeset
   398
lemma mod_minus_cong:
98ab21b14f09 add class ring_div; generalize mod/diff/minus proofs for class ring_div
huffman
parents: 29404
diff changeset
   399
  assumes "a mod b = a' mod b"
98ab21b14f09 add class ring_div; generalize mod/diff/minus proofs for class ring_div
huffman
parents: 29404
diff changeset
   400
  shows "(- a) mod b = (- a') mod b"
98ab21b14f09 add class ring_div; generalize mod/diff/minus proofs for class ring_div
huffman
parents: 29404
diff changeset
   401
proof -
98ab21b14f09 add class ring_div; generalize mod/diff/minus proofs for class ring_div
huffman
parents: 29404
diff changeset
   402
  have "(- (a mod b)) mod b = (- (a' mod b)) mod b"
98ab21b14f09 add class ring_div; generalize mod/diff/minus proofs for class ring_div
huffman
parents: 29404
diff changeset
   403
    unfolding assms ..
64593
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   404
  then show ?thesis
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   405
    by (simp add: mod_minus_eq)
29405
98ab21b14f09 add class ring_div; generalize mod/diff/minus proofs for class ring_div
huffman
parents: 29404
diff changeset
   406
qed
98ab21b14f09 add class ring_div; generalize mod/diff/minus proofs for class ring_div
huffman
parents: 29404
diff changeset
   407
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
   408
text \<open>Subtraction respects modular equivalence.\<close>
29405
98ab21b14f09 add class ring_div; generalize mod/diff/minus proofs for class ring_div
huffman
parents: 29404
diff changeset
   409
64593
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   410
lemma mod_diff_left_eq [mod_simps]:
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   411
  "(a mod c - b) mod c = (a - b) mod c"
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   412
  using mod_add_cong [of a c "a mod c" "- b" "- b"]
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   413
  by simp
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   414
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   415
lemma mod_diff_right_eq [mod_simps]:
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   416
  "(a - b mod c) mod c = (a - b) mod c"
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   417
  using mod_add_cong [of a c a "- b" "- (b mod c)"] mod_minus_cong [of "b mod c" c b]
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   418
  by simp
54230
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 54227
diff changeset
   419
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 54227
diff changeset
   420
lemma mod_diff_eq:
64593
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   421
  "(a mod c - b mod c) mod c = (a - b) mod c"
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   422
  using mod_add_cong [of a c "a mod c" "- b" "- (b mod c)"] mod_minus_cong [of "b mod c" c b]
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   423
  by simp
29405
98ab21b14f09 add class ring_div; generalize mod/diff/minus proofs for class ring_div
huffman
parents: 29404
diff changeset
   424
98ab21b14f09 add class ring_div; generalize mod/diff/minus proofs for class ring_div
huffman
parents: 29404
diff changeset
   425
lemma mod_diff_cong:
98ab21b14f09 add class ring_div; generalize mod/diff/minus proofs for class ring_div
huffman
parents: 29404
diff changeset
   426
  assumes "a mod c = a' mod c"
98ab21b14f09 add class ring_div; generalize mod/diff/minus proofs for class ring_div
huffman
parents: 29404
diff changeset
   427
  assumes "b mod c = b' mod c"
98ab21b14f09 add class ring_div; generalize mod/diff/minus proofs for class ring_div
huffman
parents: 29404
diff changeset
   428
  shows "(a - b) mod c = (a' - b') mod c"
64593
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   429
  using assms mod_add_cong [of a c a' "- b" "- b'"] mod_minus_cong [of b c "b'"]
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   430
  by simp
47160
8ada79014cb2 generalize more div/mod lemmas
huffman
parents: 47159
diff changeset
   431
60562
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60517
diff changeset
   432
lemma minus_mod_self2 [simp]:
54221
56587960e444 more lemmas on division
haftmann
parents: 53374
diff changeset
   433
  "(a - b) mod b = a mod b"
64593
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   434
  using mod_diff_right_eq [of a b b]
54221
56587960e444 more lemmas on division
haftmann
parents: 53374
diff changeset
   435
  by (simp add: mod_diff_right_eq)
56587960e444 more lemmas on division
haftmann
parents: 53374
diff changeset
   436
60562
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60517
diff changeset
   437
lemma minus_mod_self1 [simp]:
54221
56587960e444 more lemmas on division
haftmann
parents: 53374
diff changeset
   438
  "(b - a) mod b = - a mod b"
54230
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 54227
diff changeset
   439
  using mod_add_self2 [of "- a" b] by simp
54221
56587960e444 more lemmas on division
haftmann
parents: 53374
diff changeset
   440
29405
98ab21b14f09 add class ring_div; generalize mod/diff/minus proofs for class ring_div
huffman
parents: 29404
diff changeset
   441
end
98ab21b14f09 add class ring_div; generalize mod/diff/minus proofs for class ring_div
huffman
parents: 29404
diff changeset
   442
58778
e29cae8eab1f even further downshift of theory Parity in the hierarchy
haftmann
parents: 58710
diff changeset
   443
64592
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
   444
subsection \<open>Parity\<close>
58778
e29cae8eab1f even further downshift of theory Parity in the hierarchy
haftmann
parents: 58710
diff changeset
   445
60562
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60517
diff changeset
   446
class semiring_div_parity = semiring_div + comm_semiring_1_cancel + numeral +
54226
e3df2a4e02fc explicit type class for modelling even/odd parity
haftmann
parents: 54221
diff changeset
   447
  assumes parity: "a mod 2 = 0 \<or> a mod 2 = 1"
58786
fa5b67fb70ad more simp rules;
haftmann
parents: 58778
diff changeset
   448
  assumes one_mod_two_eq_one [simp]: "1 mod 2 = 1"
58710
7216a10d69ba augmented and tuned facts on even/odd and division
haftmann
parents: 58646
diff changeset
   449
  assumes zero_not_eq_two: "0 \<noteq> 2"
54226
e3df2a4e02fc explicit type class for modelling even/odd parity
haftmann
parents: 54221
diff changeset
   450
begin
e3df2a4e02fc explicit type class for modelling even/odd parity
haftmann
parents: 54221
diff changeset
   451
e3df2a4e02fc explicit type class for modelling even/odd parity
haftmann
parents: 54221
diff changeset
   452
lemma parity_cases [case_names even odd]:
e3df2a4e02fc explicit type class for modelling even/odd parity
haftmann
parents: 54221
diff changeset
   453
  assumes "a mod 2 = 0 \<Longrightarrow> P"
e3df2a4e02fc explicit type class for modelling even/odd parity
haftmann
parents: 54221
diff changeset
   454
  assumes "a mod 2 = 1 \<Longrightarrow> P"
e3df2a4e02fc explicit type class for modelling even/odd parity
haftmann
parents: 54221
diff changeset
   455
  shows P
e3df2a4e02fc explicit type class for modelling even/odd parity
haftmann
parents: 54221
diff changeset
   456
  using assms parity by blast
e3df2a4e02fc explicit type class for modelling even/odd parity
haftmann
parents: 54221
diff changeset
   457
58786
fa5b67fb70ad more simp rules;
haftmann
parents: 58778
diff changeset
   458
lemma one_div_two_eq_zero [simp]:
58778
e29cae8eab1f even further downshift of theory Parity in the hierarchy
haftmann
parents: 58710
diff changeset
   459
  "1 div 2 = 0"
e29cae8eab1f even further downshift of theory Parity in the hierarchy
haftmann
parents: 58710
diff changeset
   460
proof (cases "2 = 0")
e29cae8eab1f even further downshift of theory Parity in the hierarchy
haftmann
parents: 58710
diff changeset
   461
  case True then show ?thesis by simp
e29cae8eab1f even further downshift of theory Parity in the hierarchy
haftmann
parents: 58710
diff changeset
   462
next
e29cae8eab1f even further downshift of theory Parity in the hierarchy
haftmann
parents: 58710
diff changeset
   463
  case False
64242
93c6f0da5c70 more standardized theorem names for facts involving the div and mod identity
haftmann
parents: 64240
diff changeset
   464
  from div_mult_mod_eq have "1 div 2 * 2 + 1 mod 2 = 1" .
58778
e29cae8eab1f even further downshift of theory Parity in the hierarchy
haftmann
parents: 58710
diff changeset
   465
  with one_mod_two_eq_one have "1 div 2 * 2 + 1 = 1" by simp
58953
2e19b392d9e3 self-contained simp rules for dvd on numerals
haftmann
parents: 58911
diff changeset
   466
  then have "1 div 2 * 2 = 0" by (simp add: ac_simps add_left_imp_eq del: mult_eq_0_iff)
2e19b392d9e3 self-contained simp rules for dvd on numerals
haftmann
parents: 58911
diff changeset
   467
  then have "1 div 2 = 0 \<or> 2 = 0" by simp
58778
e29cae8eab1f even further downshift of theory Parity in the hierarchy
haftmann
parents: 58710
diff changeset
   468
  with False show ?thesis by auto
e29cae8eab1f even further downshift of theory Parity in the hierarchy
haftmann
parents: 58710
diff changeset
   469
qed
e29cae8eab1f even further downshift of theory Parity in the hierarchy
haftmann
parents: 58710
diff changeset
   470
58786
fa5b67fb70ad more simp rules;
haftmann
parents: 58778
diff changeset
   471
lemma not_mod_2_eq_0_eq_1 [simp]:
fa5b67fb70ad more simp rules;
haftmann
parents: 58778
diff changeset
   472
  "a mod 2 \<noteq> 0 \<longleftrightarrow> a mod 2 = 1"
fa5b67fb70ad more simp rules;
haftmann
parents: 58778
diff changeset
   473
  by (cases a rule: parity_cases) simp_all
fa5b67fb70ad more simp rules;
haftmann
parents: 58778
diff changeset
   474
fa5b67fb70ad more simp rules;
haftmann
parents: 58778
diff changeset
   475
lemma not_mod_2_eq_1_eq_0 [simp]:
fa5b67fb70ad more simp rules;
haftmann
parents: 58778
diff changeset
   476
  "a mod 2 \<noteq> 1 \<longleftrightarrow> a mod 2 = 0"
fa5b67fb70ad more simp rules;
haftmann
parents: 58778
diff changeset
   477
  by (cases a rule: parity_cases) simp_all
fa5b67fb70ad more simp rules;
haftmann
parents: 58778
diff changeset
   478
58778
e29cae8eab1f even further downshift of theory Parity in the hierarchy
haftmann
parents: 58710
diff changeset
   479
subclass semiring_parity
e29cae8eab1f even further downshift of theory Parity in the hierarchy
haftmann
parents: 58710
diff changeset
   480
proof (unfold_locales, unfold dvd_eq_mod_eq_0 not_mod_2_eq_0_eq_1)
e29cae8eab1f even further downshift of theory Parity in the hierarchy
haftmann
parents: 58710
diff changeset
   481
  show "1 mod 2 = 1"
e29cae8eab1f even further downshift of theory Parity in the hierarchy
haftmann
parents: 58710
diff changeset
   482
    by (fact one_mod_two_eq_one)
e29cae8eab1f even further downshift of theory Parity in the hierarchy
haftmann
parents: 58710
diff changeset
   483
next
e29cae8eab1f even further downshift of theory Parity in the hierarchy
haftmann
parents: 58710
diff changeset
   484
  fix a b
e29cae8eab1f even further downshift of theory Parity in the hierarchy
haftmann
parents: 58710
diff changeset
   485
  assume "a mod 2 = 1"
e29cae8eab1f even further downshift of theory Parity in the hierarchy
haftmann
parents: 58710
diff changeset
   486
  moreover assume "b mod 2 = 1"
e29cae8eab1f even further downshift of theory Parity in the hierarchy
haftmann
parents: 58710
diff changeset
   487
  ultimately show "(a + b) mod 2 = 0"
64593
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   488
    using mod_add_eq [of a 2 b] by simp
58778
e29cae8eab1f even further downshift of theory Parity in the hierarchy
haftmann
parents: 58710
diff changeset
   489
next
e29cae8eab1f even further downshift of theory Parity in the hierarchy
haftmann
parents: 58710
diff changeset
   490
  fix a b
e29cae8eab1f even further downshift of theory Parity in the hierarchy
haftmann
parents: 58710
diff changeset
   491
  assume "(a * b) mod 2 = 0"
64593
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   492
  then have "(a mod 2) * (b mod 2) mod 2 = 0"
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   493
    by (simp add: mod_mult_eq)
58778
e29cae8eab1f even further downshift of theory Parity in the hierarchy
haftmann
parents: 58710
diff changeset
   494
  then have "(a mod 2) * (b mod 2) = 0"
64593
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   495
    by (cases "a mod 2 = 0") simp_all
58778
e29cae8eab1f even further downshift of theory Parity in the hierarchy
haftmann
parents: 58710
diff changeset
   496
  then show "a mod 2 = 0 \<or> b mod 2 = 0"
e29cae8eab1f even further downshift of theory Parity in the hierarchy
haftmann
parents: 58710
diff changeset
   497
    by (rule divisors_zero)
e29cae8eab1f even further downshift of theory Parity in the hierarchy
haftmann
parents: 58710
diff changeset
   498
next
e29cae8eab1f even further downshift of theory Parity in the hierarchy
haftmann
parents: 58710
diff changeset
   499
  fix a
e29cae8eab1f even further downshift of theory Parity in the hierarchy
haftmann
parents: 58710
diff changeset
   500
  assume "a mod 2 = 1"
64593
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   501
  then have "a = a div 2 * 2 + 1"
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
   502
    using div_mult_mod_eq [of a 2] by simp
58778
e29cae8eab1f even further downshift of theory Parity in the hierarchy
haftmann
parents: 58710
diff changeset
   503
  then show "\<exists>b. a = b + 1" ..
e29cae8eab1f even further downshift of theory Parity in the hierarchy
haftmann
parents: 58710
diff changeset
   504
qed
e29cae8eab1f even further downshift of theory Parity in the hierarchy
haftmann
parents: 58710
diff changeset
   505
e29cae8eab1f even further downshift of theory Parity in the hierarchy
haftmann
parents: 58710
diff changeset
   506
lemma even_iff_mod_2_eq_zero:
e29cae8eab1f even further downshift of theory Parity in the hierarchy
haftmann
parents: 58710
diff changeset
   507
  "even a \<longleftrightarrow> a mod 2 = 0"
e29cae8eab1f even further downshift of theory Parity in the hierarchy
haftmann
parents: 58710
diff changeset
   508
  by (fact dvd_eq_mod_eq_0)
e29cae8eab1f even further downshift of theory Parity in the hierarchy
haftmann
parents: 58710
diff changeset
   509
64014
ca1239a3277b more lemmas
haftmann
parents: 63950
diff changeset
   510
lemma odd_iff_mod_2_eq_one:
ca1239a3277b more lemmas
haftmann
parents: 63950
diff changeset
   511
  "odd a \<longleftrightarrow> a mod 2 = 1"
ca1239a3277b more lemmas
haftmann
parents: 63950
diff changeset
   512
  by (auto simp add: even_iff_mod_2_eq_zero)
ca1239a3277b more lemmas
haftmann
parents: 63950
diff changeset
   513
58778
e29cae8eab1f even further downshift of theory Parity in the hierarchy
haftmann
parents: 58710
diff changeset
   514
lemma even_succ_div_two [simp]:
e29cae8eab1f even further downshift of theory Parity in the hierarchy
haftmann
parents: 58710
diff changeset
   515
  "even a \<Longrightarrow> (a + 1) div 2 = a div 2"
e29cae8eab1f even further downshift of theory Parity in the hierarchy
haftmann
parents: 58710
diff changeset
   516
  by (cases "a = 0") (auto elim!: evenE dest: mult_not_zero)
e29cae8eab1f even further downshift of theory Parity in the hierarchy
haftmann
parents: 58710
diff changeset
   517
e29cae8eab1f even further downshift of theory Parity in the hierarchy
haftmann
parents: 58710
diff changeset
   518
lemma odd_succ_div_two [simp]:
e29cae8eab1f even further downshift of theory Parity in the hierarchy
haftmann
parents: 58710
diff changeset
   519
  "odd a \<Longrightarrow> (a + 1) div 2 = a div 2 + 1"
e29cae8eab1f even further downshift of theory Parity in the hierarchy
haftmann
parents: 58710
diff changeset
   520
  by (auto elim!: oddE simp add: zero_not_eq_two [symmetric] add.assoc)
e29cae8eab1f even further downshift of theory Parity in the hierarchy
haftmann
parents: 58710
diff changeset
   521
e29cae8eab1f even further downshift of theory Parity in the hierarchy
haftmann
parents: 58710
diff changeset
   522
lemma even_two_times_div_two:
e29cae8eab1f even further downshift of theory Parity in the hierarchy
haftmann
parents: 58710
diff changeset
   523
  "even a \<Longrightarrow> 2 * (a div 2) = a"
e29cae8eab1f even further downshift of theory Parity in the hierarchy
haftmann
parents: 58710
diff changeset
   524
  by (fact dvd_mult_div_cancel)
e29cae8eab1f even further downshift of theory Parity in the hierarchy
haftmann
parents: 58710
diff changeset
   525
58834
773b378d9313 more simp rules concerning dvd and even/odd
haftmann
parents: 58786
diff changeset
   526
lemma odd_two_times_div_two_succ [simp]:
58778
e29cae8eab1f even further downshift of theory Parity in the hierarchy
haftmann
parents: 58710
diff changeset
   527
  "odd a \<Longrightarrow> 2 * (a div 2) + 1 = a"
64242
93c6f0da5c70 more standardized theorem names for facts involving the div and mod identity
haftmann
parents: 64240
diff changeset
   528
  using mult_div_mod_eq [of 2 a] by (simp add: even_iff_mod_2_eq_zero)
60868
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
   529
 
54226
e3df2a4e02fc explicit type class for modelling even/odd parity
haftmann
parents: 54221
diff changeset
   530
end
e3df2a4e02fc explicit type class for modelling even/odd parity
haftmann
parents: 54221
diff changeset
   531
25942
a52309ac4a4d added class semiring_div
haftmann
parents: 25571
diff changeset
   532
64592
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
   533
subsection \<open>Numeral division with a pragmatic type class\<close>
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
   534
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
   535
text \<open>
53067
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   536
  The following type class contains everything necessary to formulate
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   537
  a division algorithm in ring structures with numerals, restricted
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   538
  to its positive segments.  This is its primary motiviation, and it
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   539
  could surely be formulated using a more fine-grained, more algebraic
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   540
  and less technical class hierarchy.
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
   541
\<close>
53067
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   542
60562
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60517
diff changeset
   543
class semiring_numeral_div = semiring_div + comm_semiring_1_cancel + linordered_semidom +
59816
034b13f4efae distributivity of partial minus establishes desired properties of dvd in semirings
haftmann
parents: 59807
diff changeset
   544
  assumes div_less: "0 \<le> a \<Longrightarrow> a < b \<Longrightarrow> a div b = 0"
53067
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   545
    and mod_less: " 0 \<le> a \<Longrightarrow> a < b \<Longrightarrow> a mod b = a"
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   546
    and div_positive: "0 < b \<Longrightarrow> b \<le> a \<Longrightarrow> a div b > 0"
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   547
    and mod_less_eq_dividend: "0 \<le> a \<Longrightarrow> a mod b \<le> a"
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   548
    and pos_mod_bound: "0 < b \<Longrightarrow> a mod b < b"
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   549
    and pos_mod_sign: "0 < b \<Longrightarrow> 0 \<le> a mod b"
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   550
    and mod_mult2_eq: "0 \<le> c \<Longrightarrow> a mod (b * c) = b * (a div b mod c) + a mod b"
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   551
    and div_mult2_eq: "0 \<le> c \<Longrightarrow> a div (b * c) = a div b div c"
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   552
  assumes discrete: "a < b \<longleftrightarrow> a + 1 \<le> b"
61275
053ec04ea866 monomorphization of divmod wrt. code generation avoids costly dictionary unpacking at runtime
haftmann
parents: 61201
diff changeset
   553
  fixes divmod :: "num \<Rightarrow> num \<Rightarrow> 'a \<times> 'a"
053ec04ea866 monomorphization of divmod wrt. code generation avoids costly dictionary unpacking at runtime
haftmann
parents: 61201
diff changeset
   554
    and divmod_step :: "num \<Rightarrow> 'a \<times> 'a \<Rightarrow> 'a \<times> 'a"
053ec04ea866 monomorphization of divmod wrt. code generation avoids costly dictionary unpacking at runtime
haftmann
parents: 61201
diff changeset
   555
  assumes divmod_def: "divmod m n = (numeral m div numeral n, numeral m mod numeral n)"
053ec04ea866 monomorphization of divmod wrt. code generation avoids costly dictionary unpacking at runtime
haftmann
parents: 61201
diff changeset
   556
    and divmod_step_def: "divmod_step l qr = (let (q, r) = qr
053ec04ea866 monomorphization of divmod wrt. code generation avoids costly dictionary unpacking at runtime
haftmann
parents: 61201
diff changeset
   557
    in if r \<ge> numeral l then (2 * q + 1, r - numeral l)
053ec04ea866 monomorphization of divmod wrt. code generation avoids costly dictionary unpacking at runtime
haftmann
parents: 61201
diff changeset
   558
    else (2 * q, r))"
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61649
diff changeset
   559
    \<comment> \<open>These are conceptually definitions but force generated code
61275
053ec04ea866 monomorphization of divmod wrt. code generation avoids costly dictionary unpacking at runtime
haftmann
parents: 61201
diff changeset
   560
    to be monomorphic wrt. particular instances of this class which
053ec04ea866 monomorphization of divmod wrt. code generation avoids costly dictionary unpacking at runtime
haftmann
parents: 61201
diff changeset
   561
    yields a significant speedup.\<close>
053ec04ea866 monomorphization of divmod wrt. code generation avoids costly dictionary unpacking at runtime
haftmann
parents: 61201
diff changeset
   562
53067
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   563
begin
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   564
54226
e3df2a4e02fc explicit type class for modelling even/odd parity
haftmann
parents: 54221
diff changeset
   565
subclass semiring_div_parity
e3df2a4e02fc explicit type class for modelling even/odd parity
haftmann
parents: 54221
diff changeset
   566
proof
e3df2a4e02fc explicit type class for modelling even/odd parity
haftmann
parents: 54221
diff changeset
   567
  fix a
e3df2a4e02fc explicit type class for modelling even/odd parity
haftmann
parents: 54221
diff changeset
   568
  show "a mod 2 = 0 \<or> a mod 2 = 1"
e3df2a4e02fc explicit type class for modelling even/odd parity
haftmann
parents: 54221
diff changeset
   569
  proof (rule ccontr)
e3df2a4e02fc explicit type class for modelling even/odd parity
haftmann
parents: 54221
diff changeset
   570
    assume "\<not> (a mod 2 = 0 \<or> a mod 2 = 1)"
e3df2a4e02fc explicit type class for modelling even/odd parity
haftmann
parents: 54221
diff changeset
   571
    then have "a mod 2 \<noteq> 0" and "a mod 2 \<noteq> 1" by simp_all
e3df2a4e02fc explicit type class for modelling even/odd parity
haftmann
parents: 54221
diff changeset
   572
    have "0 < 2" by simp
e3df2a4e02fc explicit type class for modelling even/odd parity
haftmann
parents: 54221
diff changeset
   573
    with pos_mod_bound pos_mod_sign have "0 \<le> a mod 2" "a mod 2 < 2" by simp_all
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
   574
    with \<open>a mod 2 \<noteq> 0\<close> have "0 < a mod 2" by simp
54226
e3df2a4e02fc explicit type class for modelling even/odd parity
haftmann
parents: 54221
diff changeset
   575
    with discrete have "1 \<le> a mod 2" by simp
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
   576
    with \<open>a mod 2 \<noteq> 1\<close> have "1 < a mod 2" by simp
54226
e3df2a4e02fc explicit type class for modelling even/odd parity
haftmann
parents: 54221
diff changeset
   577
    with discrete have "2 \<le> a mod 2" by simp
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
   578
    with \<open>a mod 2 < 2\<close> show False by simp
54226
e3df2a4e02fc explicit type class for modelling even/odd parity
haftmann
parents: 54221
diff changeset
   579
  qed
58646
cd63a4b12a33 specialized specification: avoid trivial instances
haftmann
parents: 58511
diff changeset
   580
next
cd63a4b12a33 specialized specification: avoid trivial instances
haftmann
parents: 58511
diff changeset
   581
  show "1 mod 2 = 1"
cd63a4b12a33 specialized specification: avoid trivial instances
haftmann
parents: 58511
diff changeset
   582
    by (rule mod_less) simp_all
58710
7216a10d69ba augmented and tuned facts on even/odd and division
haftmann
parents: 58646
diff changeset
   583
next
7216a10d69ba augmented and tuned facts on even/odd and division
haftmann
parents: 58646
diff changeset
   584
  show "0 \<noteq> 2"
7216a10d69ba augmented and tuned facts on even/odd and division
haftmann
parents: 58646
diff changeset
   585
    by simp
53067
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   586
qed
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   587
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   588
lemma divmod_digit_1:
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   589
  assumes "0 \<le> a" "0 < b" and "b \<le> a mod (2 * b)"
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   590
  shows "2 * (a div (2 * b)) + 1 = a div b" (is "?P")
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   591
    and "a mod (2 * b) - b = a mod b" (is "?Q")
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   592
proof -
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   593
  from assms mod_less_eq_dividend [of a "2 * b"] have "b \<le> a"
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   594
    by (auto intro: trans)
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
   595
  with \<open>0 < b\<close> have "0 < a div b" by (auto intro: div_positive)
53067
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   596
  then have [simp]: "1 \<le> a div b" by (simp add: discrete)
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
   597
  with \<open>0 < b\<close> have mod_less: "a mod b < b" by (simp add: pos_mod_bound)
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62597
diff changeset
   598
  define w where "w = a div b mod 2"
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62597
diff changeset
   599
  with parity have w_exhaust: "w = 0 \<or> w = 1" by auto
53067
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   600
  have mod_w: "a mod (2 * b) = a mod b + b * w"
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   601
    by (simp add: w_def mod_mult2_eq ac_simps)
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   602
  from assms w_exhaust have "w = 1"
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   603
    by (auto simp add: mod_w) (insert mod_less, auto)
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   604
  with mod_w have mod: "a mod (2 * b) = a mod b + b" by simp
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   605
  have "2 * (a div (2 * b)) = a div b - w"
64246
15d1ee6e847b eliminated irregular aliasses
haftmann
parents: 64244
diff changeset
   606
    by (simp add: w_def div_mult2_eq minus_mod_eq_mult_div ac_simps)
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
   607
  with \<open>w = 1\<close> have div: "2 * (a div (2 * b)) = a div b - 1" by simp
53067
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   608
  then show ?P and ?Q
60867
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   609
    by (simp_all add: div mod add_implies_diff [symmetric])
53067
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   610
qed
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   611
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   612
lemma divmod_digit_0:
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   613
  assumes "0 < b" and "a mod (2 * b) < b"
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   614
  shows "2 * (a div (2 * b)) = a div b" (is "?P")
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   615
    and "a mod (2 * b) = a mod b" (is "?Q")
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   616
proof -
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62597
diff changeset
   617
  define w where "w = a div b mod 2"
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62597
diff changeset
   618
  with parity have w_exhaust: "w = 0 \<or> w = 1" by auto
53067
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   619
  have mod_w: "a mod (2 * b) = a mod b + b * w"
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   620
    by (simp add: w_def mod_mult2_eq ac_simps)
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   621
  moreover have "b \<le> a mod b + b"
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   622
  proof -
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
   623
    from \<open>0 < b\<close> pos_mod_sign have "0 \<le> a mod b" by blast
53067
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   624
    then have "0 + b \<le> a mod b + b" by (rule add_right_mono)
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   625
    then show ?thesis by simp
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   626
  qed
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   627
  moreover note assms w_exhaust
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   628
  ultimately have "w = 0" by auto
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   629
  with mod_w have mod: "a mod (2 * b) = a mod b" by simp
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   630
  have "2 * (a div (2 * b)) = a div b - w"
64246
15d1ee6e847b eliminated irregular aliasses
haftmann
parents: 64244
diff changeset
   631
    by (simp add: w_def div_mult2_eq minus_mod_eq_mult_div ac_simps)
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
   632
  with \<open>w = 0\<close> have div: "2 * (a div (2 * b)) = a div b" by simp
53067
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   633
  then show ?P and ?Q
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   634
    by (simp_all add: div mod)
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   635
qed
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   636
60867
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   637
lemma fst_divmod:
53067
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   638
  "fst (divmod m n) = numeral m div numeral n"
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   639
  by (simp add: divmod_def)
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   640
60867
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   641
lemma snd_divmod:
53067
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   642
  "snd (divmod m n) = numeral m mod numeral n"
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   643
  by (simp add: divmod_def)
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   644
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
   645
text \<open>
53067
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   646
  This is a formulation of one step (referring to one digit position)
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   647
  in school-method division: compare the dividend at the current
53070
6a3410845bb2 spelling and typos
haftmann
parents: 53069
diff changeset
   648
  digit position with the remainder from previous division steps
53067
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   649
  and evaluate accordingly.
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
   650
\<close>
53067
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   651
61275
053ec04ea866 monomorphization of divmod wrt. code generation avoids costly dictionary unpacking at runtime
haftmann
parents: 61201
diff changeset
   652
lemma divmod_step_eq [simp]:
53067
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   653
  "divmod_step l (q, r) = (if numeral l \<le> r
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   654
    then (2 * q + 1, r - numeral l) else (2 * q, r))"
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   655
  by (simp add: divmod_step_def)
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   656
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
   657
text \<open>
53067
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   658
  This is a formulation of school-method division.
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   659
  If the divisor is smaller than the dividend, terminate.
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   660
  If not, shift the dividend to the right until termination
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   661
  occurs and then reiterate single division steps in the
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   662
  opposite direction.
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
   663
\<close>
53067
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   664
60867
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   665
lemma divmod_divmod_step:
53067
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   666
  "divmod m n = (if m < n then (0, numeral m)
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   667
    else divmod_step n (divmod m (Num.Bit0 n)))"
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   668
proof (cases "m < n")
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   669
  case True then have "numeral m < numeral n" by simp
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   670
  then show ?thesis
60867
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   671
    by (simp add: prod_eq_iff div_less mod_less fst_divmod snd_divmod)
53067
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   672
next
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   673
  case False
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   674
  have "divmod m n =
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   675
    divmod_step n (numeral m div (2 * numeral n),
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   676
      numeral m mod (2 * numeral n))"
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   677
  proof (cases "numeral n \<le> numeral m mod (2 * numeral n)")
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   678
    case True
60867
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   679
    with divmod_step_eq
53067
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   680
      have "divmod_step n (numeral m div (2 * numeral n), numeral m mod (2 * numeral n)) =
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   681
        (2 * (numeral m div (2 * numeral n)) + 1, numeral m mod (2 * numeral n) - numeral n)"
60867
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   682
        by simp
53067
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   683
    moreover from True divmod_digit_1 [of "numeral m" "numeral n"]
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   684
      have "2 * (numeral m div (2 * numeral n)) + 1 = numeral m div numeral n"
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   685
      and "numeral m mod (2 * numeral n) - numeral n = numeral m mod numeral n"
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   686
      by simp_all
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   687
    ultimately show ?thesis by (simp only: divmod_def)
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   688
  next
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   689
    case False then have *: "numeral m mod (2 * numeral n) < numeral n"
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   690
      by (simp add: not_le)
60867
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   691
    with divmod_step_eq
53067
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   692
      have "divmod_step n (numeral m div (2 * numeral n), numeral m mod (2 * numeral n)) =
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   693
        (2 * (numeral m div (2 * numeral n)), numeral m mod (2 * numeral n))"
60867
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   694
        by auto
53067
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   695
    moreover from * divmod_digit_0 [of "numeral n" "numeral m"]
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   696
      have "2 * (numeral m div (2 * numeral n)) = numeral m div numeral n"
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   697
      and "numeral m mod (2 * numeral n) = numeral m mod numeral n"
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   698
      by (simp_all only: zero_less_numeral)
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   699
    ultimately show ?thesis by (simp only: divmod_def)
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   700
  qed
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   701
  then have "divmod m n =
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   702
    divmod_step n (numeral m div numeral (Num.Bit0 n),
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   703
      numeral m mod numeral (Num.Bit0 n))"
60562
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60517
diff changeset
   704
    by (simp only: numeral.simps distrib mult_1)
53067
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   705
  then have "divmod m n = divmod_step n (divmod m (Num.Bit0 n))"
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   706
    by (simp add: divmod_def)
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   707
  with False show ?thesis by simp
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   708
qed
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   709
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61649
diff changeset
   710
text \<open>The division rewrite proper -- first, trivial results involving \<open>1\<close>\<close>
60867
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   711
61275
053ec04ea866 monomorphization of divmod wrt. code generation avoids costly dictionary unpacking at runtime
haftmann
parents: 61201
diff changeset
   712
lemma divmod_trivial [simp]:
60867
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   713
  "divmod Num.One Num.One = (numeral Num.One, 0)"
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   714
  "divmod (Num.Bit0 m) Num.One = (numeral (Num.Bit0 m), 0)"
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   715
  "divmod (Num.Bit1 m) Num.One = (numeral (Num.Bit1 m), 0)"
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   716
  "divmod num.One (num.Bit0 n) = (0, Numeral1)"
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   717
  "divmod num.One (num.Bit1 n) = (0, Numeral1)"
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   718
  using divmod_divmod_step [of "Num.One"] by (simp_all add: divmod_def)
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   719
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   720
text \<open>Division by an even number is a right-shift\<close>
58953
2e19b392d9e3 self-contained simp rules for dvd on numerals
haftmann
parents: 58911
diff changeset
   721
61275
053ec04ea866 monomorphization of divmod wrt. code generation avoids costly dictionary unpacking at runtime
haftmann
parents: 61201
diff changeset
   722
lemma divmod_cancel [simp]:
53069
d165213e3924 execution of int division by class semiring_numeral_div, replacing pdivmod by divmod_abs
haftmann
parents: 53068
diff changeset
   723
  "divmod (Num.Bit0 m) (Num.Bit0 n) = (case divmod m n of (q, r) \<Rightarrow> (q, 2 * r))" (is ?P)
d165213e3924 execution of int division by class semiring_numeral_div, replacing pdivmod by divmod_abs
haftmann
parents: 53068
diff changeset
   724
  "divmod (Num.Bit1 m) (Num.Bit0 n) = (case divmod m n of (q, r) \<Rightarrow> (q, 2 * r + 1))" (is ?Q)
d165213e3924 execution of int division by class semiring_numeral_div, replacing pdivmod by divmod_abs
haftmann
parents: 53068
diff changeset
   725
proof -
d165213e3924 execution of int division by class semiring_numeral_div, replacing pdivmod by divmod_abs
haftmann
parents: 53068
diff changeset
   726
  have *: "\<And>q. numeral (Num.Bit0 q) = 2 * numeral q"
d165213e3924 execution of int division by class semiring_numeral_div, replacing pdivmod by divmod_abs
haftmann
parents: 53068
diff changeset
   727
    "\<And>q. numeral (Num.Bit1 q) = 2 * numeral q + 1"
d165213e3924 execution of int division by class semiring_numeral_div, replacing pdivmod by divmod_abs
haftmann
parents: 53068
diff changeset
   728
    by (simp_all only: numeral_mult numeral.simps distrib) simp_all
d165213e3924 execution of int division by class semiring_numeral_div, replacing pdivmod by divmod_abs
haftmann
parents: 53068
diff changeset
   729
  have "1 div 2 = 0" "1 mod 2 = 1" by (auto intro: div_less mod_less)
d165213e3924 execution of int division by class semiring_numeral_div, replacing pdivmod by divmod_abs
haftmann
parents: 53068
diff changeset
   730
  then show ?P and ?Q
60867
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   731
    by (simp_all add: fst_divmod snd_divmod prod_eq_iff split_def * [of m] * [of n] mod_mult_mult1
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   732
      div_mult2_eq [of _ _ 2] mod_mult2_eq [of _ _ 2]
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   733
      add.commute del: numeral_times_numeral)
58953
2e19b392d9e3 self-contained simp rules for dvd on numerals
haftmann
parents: 58911
diff changeset
   734
qed
2e19b392d9e3 self-contained simp rules for dvd on numerals
haftmann
parents: 58911
diff changeset
   735
60867
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   736
text \<open>The really hard work\<close>
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   737
61275
053ec04ea866 monomorphization of divmod wrt. code generation avoids costly dictionary unpacking at runtime
haftmann
parents: 61201
diff changeset
   738
lemma divmod_steps [simp]:
60867
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   739
  "divmod (num.Bit0 m) (num.Bit1 n) =
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   740
      (if m \<le> n then (0, numeral (num.Bit0 m))
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   741
       else divmod_step (num.Bit1 n)
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   742
             (divmod (num.Bit0 m)
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   743
               (num.Bit0 (num.Bit1 n))))"
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   744
  "divmod (num.Bit1 m) (num.Bit1 n) =
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   745
      (if m < n then (0, numeral (num.Bit1 m))
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   746
       else divmod_step (num.Bit1 n)
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   747
             (divmod (num.Bit1 m)
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   748
               (num.Bit0 (num.Bit1 n))))"
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   749
  by (simp_all add: divmod_divmod_step)
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   750
61275
053ec04ea866 monomorphization of divmod wrt. code generation avoids costly dictionary unpacking at runtime
haftmann
parents: 61201
diff changeset
   751
lemmas divmod_algorithm_code = divmod_step_eq divmod_trivial divmod_cancel divmod_steps  
053ec04ea866 monomorphization of divmod wrt. code generation avoids costly dictionary unpacking at runtime
haftmann
parents: 61201
diff changeset
   752
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
   753
text \<open>Special case: divisibility\<close>
58953
2e19b392d9e3 self-contained simp rules for dvd on numerals
haftmann
parents: 58911
diff changeset
   754
2e19b392d9e3 self-contained simp rules for dvd on numerals
haftmann
parents: 58911
diff changeset
   755
definition divides_aux :: "'a \<times> 'a \<Rightarrow> bool"
2e19b392d9e3 self-contained simp rules for dvd on numerals
haftmann
parents: 58911
diff changeset
   756
where
2e19b392d9e3 self-contained simp rules for dvd on numerals
haftmann
parents: 58911
diff changeset
   757
  "divides_aux qr \<longleftrightarrow> snd qr = 0"
2e19b392d9e3 self-contained simp rules for dvd on numerals
haftmann
parents: 58911
diff changeset
   758
2e19b392d9e3 self-contained simp rules for dvd on numerals
haftmann
parents: 58911
diff changeset
   759
lemma divides_aux_eq [simp]:
2e19b392d9e3 self-contained simp rules for dvd on numerals
haftmann
parents: 58911
diff changeset
   760
  "divides_aux (q, r) \<longleftrightarrow> r = 0"
2e19b392d9e3 self-contained simp rules for dvd on numerals
haftmann
parents: 58911
diff changeset
   761
  by (simp add: divides_aux_def)
2e19b392d9e3 self-contained simp rules for dvd on numerals
haftmann
parents: 58911
diff changeset
   762
2e19b392d9e3 self-contained simp rules for dvd on numerals
haftmann
parents: 58911
diff changeset
   763
lemma dvd_numeral_simp [simp]:
2e19b392d9e3 self-contained simp rules for dvd on numerals
haftmann
parents: 58911
diff changeset
   764
  "numeral m dvd numeral n \<longleftrightarrow> divides_aux (divmod n m)"
2e19b392d9e3 self-contained simp rules for dvd on numerals
haftmann
parents: 58911
diff changeset
   765
  by (simp add: divmod_def mod_eq_0_iff_dvd)
53069
d165213e3924 execution of int division by class semiring_numeral_div, replacing pdivmod by divmod_abs
haftmann
parents: 53068
diff changeset
   766
60867
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   767
text \<open>Generic computation of quotient and remainder\<close>  
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   768
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   769
lemma numeral_div_numeral [simp]: 
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   770
  "numeral k div numeral l = fst (divmod k l)"
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   771
  by (simp add: fst_divmod)
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   772
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   773
lemma numeral_mod_numeral [simp]: 
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   774
  "numeral k mod numeral l = snd (divmod k l)"
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   775
  by (simp add: snd_divmod)
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   776
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   777
lemma one_div_numeral [simp]:
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   778
  "1 div numeral n = fst (divmod num.One n)"
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   779
  by (simp add: fst_divmod)
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   780
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   781
lemma one_mod_numeral [simp]:
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   782
  "1 mod numeral n = snd (divmod num.One n)"
86e7560e07d0 slight cleanup of lemmas
haftmann
parents: 60758
diff changeset
   783
  by (simp add: snd_divmod)
64630
96015aecfeba emphasize dedicated rewrite rules for congruences
haftmann
parents: 64593
diff changeset
   784
96015aecfeba emphasize dedicated rewrite rules for congruences
haftmann
parents: 64593
diff changeset
   785
text \<open>Computing congruences modulo \<open>2 ^ q\<close>\<close>
96015aecfeba emphasize dedicated rewrite rules for congruences
haftmann
parents: 64593
diff changeset
   786
96015aecfeba emphasize dedicated rewrite rules for congruences
haftmann
parents: 64593
diff changeset
   787
lemma cong_exp_iff_simps:
96015aecfeba emphasize dedicated rewrite rules for congruences
haftmann
parents: 64593
diff changeset
   788
  "numeral n mod numeral Num.One = 0
96015aecfeba emphasize dedicated rewrite rules for congruences
haftmann
parents: 64593
diff changeset
   789
    \<longleftrightarrow> True"
96015aecfeba emphasize dedicated rewrite rules for congruences
haftmann
parents: 64593
diff changeset
   790
  "numeral (Num.Bit0 n) mod numeral (Num.Bit0 q) = 0
96015aecfeba emphasize dedicated rewrite rules for congruences
haftmann
parents: 64593
diff changeset
   791
    \<longleftrightarrow> numeral n mod numeral q = 0"
96015aecfeba emphasize dedicated rewrite rules for congruences
haftmann
parents: 64593
diff changeset
   792
  "numeral (Num.Bit1 n) mod numeral (Num.Bit0 q) = 0
96015aecfeba emphasize dedicated rewrite rules for congruences
haftmann
parents: 64593
diff changeset
   793
    \<longleftrightarrow> False"
96015aecfeba emphasize dedicated rewrite rules for congruences
haftmann
parents: 64593
diff changeset
   794
  "numeral m mod numeral Num.One = (numeral n mod numeral Num.One)
96015aecfeba emphasize dedicated rewrite rules for congruences
haftmann
parents: 64593
diff changeset
   795
    \<longleftrightarrow> True"
96015aecfeba emphasize dedicated rewrite rules for congruences
haftmann
parents: 64593
diff changeset
   796
  "numeral Num.One mod numeral (Num.Bit0 q) = (numeral Num.One mod numeral (Num.Bit0 q))
96015aecfeba emphasize dedicated rewrite rules for congruences
haftmann
parents: 64593
diff changeset
   797
    \<longleftrightarrow> True"
96015aecfeba emphasize dedicated rewrite rules for congruences
haftmann
parents: 64593
diff changeset
   798
  "numeral Num.One mod numeral (Num.Bit0 q) = (numeral (Num.Bit0 n) mod numeral (Num.Bit0 q))
96015aecfeba emphasize dedicated rewrite rules for congruences
haftmann
parents: 64593
diff changeset
   799
    \<longleftrightarrow> False"
96015aecfeba emphasize dedicated rewrite rules for congruences
haftmann
parents: 64593
diff changeset
   800
  "numeral Num.One mod numeral (Num.Bit0 q) = (numeral (Num.Bit1 n) mod numeral (Num.Bit0 q))
96015aecfeba emphasize dedicated rewrite rules for congruences
haftmann
parents: 64593
diff changeset
   801
    \<longleftrightarrow> (numeral n mod numeral q) = 0"
96015aecfeba emphasize dedicated rewrite rules for congruences
haftmann
parents: 64593
diff changeset
   802
  "numeral (Num.Bit0 m) mod numeral (Num.Bit0 q) = (numeral Num.One mod numeral (Num.Bit0 q))
96015aecfeba emphasize dedicated rewrite rules for congruences
haftmann
parents: 64593
diff changeset
   803
    \<longleftrightarrow> False"
96015aecfeba emphasize dedicated rewrite rules for congruences
haftmann
parents: 64593
diff changeset
   804
  "numeral (Num.Bit0 m) mod numeral (Num.Bit0 q) = (numeral (Num.Bit0 n) mod numeral (Num.Bit0 q))
96015aecfeba emphasize dedicated rewrite rules for congruences
haftmann
parents: 64593
diff changeset
   805
    \<longleftrightarrow> numeral m mod numeral q = (numeral n mod numeral q)"
96015aecfeba emphasize dedicated rewrite rules for congruences
haftmann
parents: 64593
diff changeset
   806
  "numeral (Num.Bit0 m) mod numeral (Num.Bit0 q) = (numeral (Num.Bit1 n) mod numeral (Num.Bit0 q))
96015aecfeba emphasize dedicated rewrite rules for congruences
haftmann
parents: 64593
diff changeset
   807
    \<longleftrightarrow> False"
96015aecfeba emphasize dedicated rewrite rules for congruences
haftmann
parents: 64593
diff changeset
   808
  "numeral (Num.Bit1 m) mod numeral (Num.Bit0 q) = (numeral Num.One mod numeral (Num.Bit0 q))
96015aecfeba emphasize dedicated rewrite rules for congruences
haftmann
parents: 64593
diff changeset
   809
    \<longleftrightarrow> (numeral m mod numeral q) = 0"
96015aecfeba emphasize dedicated rewrite rules for congruences
haftmann
parents: 64593
diff changeset
   810
  "numeral (Num.Bit1 m) mod numeral (Num.Bit0 q) = (numeral (Num.Bit0 n) mod numeral (Num.Bit0 q))
96015aecfeba emphasize dedicated rewrite rules for congruences
haftmann
parents: 64593
diff changeset
   811
    \<longleftrightarrow> False"
96015aecfeba emphasize dedicated rewrite rules for congruences
haftmann
parents: 64593
diff changeset
   812
  "numeral (Num.Bit1 m) mod numeral (Num.Bit0 q) = (numeral (Num.Bit1 n) mod numeral (Num.Bit0 q))
96015aecfeba emphasize dedicated rewrite rules for congruences
haftmann
parents: 64593
diff changeset
   813
    \<longleftrightarrow> numeral m mod numeral q = (numeral n mod numeral q)"
96015aecfeba emphasize dedicated rewrite rules for congruences
haftmann
parents: 64593
diff changeset
   814
  by (auto simp add: case_prod_beta dest: arg_cong [of _ _ even])
96015aecfeba emphasize dedicated rewrite rules for congruences
haftmann
parents: 64593
diff changeset
   815
53067
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   816
end
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
   817
60562
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60517
diff changeset
   818
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
   819
subsection \<open>Division on @{typ nat}\<close>
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
   820
61433
a4c0de1df3d8 qualify some names stemming from internal bootstrap constructions
haftmann
parents: 61275
diff changeset
   821
context
a4c0de1df3d8 qualify some names stemming from internal bootstrap constructions
haftmann
parents: 61275
diff changeset
   822
begin
a4c0de1df3d8 qualify some names stemming from internal bootstrap constructions
haftmann
parents: 61275
diff changeset
   823
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
   824
text \<open>
63950
cdc1e59aa513 syntactic type class for operation mod named after mod;
haftmann
parents: 63947
diff changeset
   825
  We define @{const divide} and @{const modulo} on @{typ nat} by means
26100
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   826
  of a characteristic relation with two input arguments
61076
bdc1e2f0a86a eliminated \<Colon>;
wenzelm
parents: 60930
diff changeset
   827
  @{term "m::nat"}, @{term "n::nat"} and two output arguments
bdc1e2f0a86a eliminated \<Colon>;
wenzelm
parents: 60930
diff changeset
   828
  @{term "q::nat"}(uotient) and @{term "r::nat"}(emainder).
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
   829
\<close>
26100
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   830
64635
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
   831
inductive eucl_rel_nat :: "nat \<Rightarrow> nat \<Rightarrow> nat \<times> nat \<Rightarrow> bool"
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
   832
  where eucl_rel_nat_by0: "eucl_rel_nat m 0 (0, m)"
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
   833
  | eucl_rel_natI: "r < n \<Longrightarrow> m = q * n + r \<Longrightarrow> eucl_rel_nat m n (q, r)"
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
   834
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
   835
text \<open>@{const eucl_rel_nat} is total:\<close>
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
   836
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
   837
qualified lemma eucl_rel_nat_ex:
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
   838
  obtains q r where "eucl_rel_nat m n (q, r)"
26100
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   839
proof (cases "n = 0")
64635
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
   840
  case True
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
   841
  with that eucl_rel_nat_by0 show thesis
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
   842
    by blast
26100
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   843
next
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   844
  case False
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   845
  have "\<exists>q r. m = q * n + r \<and> r < n"
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   846
  proof (induct m)
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
   847
    case 0 with \<open>n \<noteq> 0\<close>
61076
bdc1e2f0a86a eliminated \<Colon>;
wenzelm
parents: 60930
diff changeset
   848
    have "(0::nat) = 0 * n + 0 \<and> 0 < n" by simp
26100
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   849
    then show ?case by blast
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   850
  next
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   851
    case (Suc m) then obtain q' r'
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   852
      where m: "m = q' * n + r'" and n: "r' < n" by auto
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   853
    then show ?case proof (cases "Suc r' < n")
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   854
      case True
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   855
      from m n have "Suc m = q' * n + Suc r'" by simp
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   856
      with True show ?thesis by blast
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   857
    next
64592
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
   858
      case False then have "n \<le> Suc r'"
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
   859
        by (simp add: not_less)
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
   860
      moreover from n have "Suc r' \<le> n"
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
   861
        by (simp add: Suc_le_eq)
26100
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   862
      ultimately have "n = Suc r'" by auto
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   863
      with m have "Suc m = Suc q' * n + 0" by simp
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
   864
      with \<open>n \<noteq> 0\<close> show ?thesis by blast
26100
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   865
    qed
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   866
  qed
64635
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
   867
  with that \<open>n \<noteq> 0\<close> eucl_rel_natI show thesis
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
   868
    by blast
26100
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   869
qed
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   870
64635
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
   871
text \<open>@{const eucl_rel_nat} is injective:\<close>
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
   872
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
   873
qualified lemma eucl_rel_nat_unique_div:
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
   874
  assumes "eucl_rel_nat m n (q, r)"
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
   875
    and "eucl_rel_nat m n (q', r')"
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
   876
  shows "q = q'"
26100
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   877
proof (cases "n = 0")
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   878
  case True with assms show ?thesis
64635
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
   879
    by (auto elim: eucl_rel_nat.cases)
26100
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   880
next
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   881
  case False
64635
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
   882
  have *: "q' \<le> q" if "q' * n + r' = q * n + r" "r < n" for q r q' r' :: nat
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
   883
  proof (rule ccontr)
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
   884
    assume "\<not> q' \<le> q"
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
   885
    then have "q < q'"
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
   886
      by (simp add: not_le)
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
   887
    with that show False
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
   888
      by (auto simp add: less_iff_Suc_add algebra_simps)
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
   889
  qed
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
   890
  from \<open>n \<noteq> 0\<close> assms show ?thesis
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
   891
    by (auto intro: order_antisym elim: eucl_rel_nat.cases dest: * sym split: if_splits)
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
   892
qed
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
   893
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
   894
qualified lemma eucl_rel_nat_unique_mod:
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
   895
  assumes "eucl_rel_nat m n (q, r)"
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
   896
    and "eucl_rel_nat m n (q', r')"
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
   897
  shows "r = r'"
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
   898
proof -
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
   899
  from assms have "q' = q"
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
   900
    by (auto intro: eucl_rel_nat_unique_div)
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
   901
  with assms show ?thesis
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
   902
    by (auto elim!: eucl_rel_nat.cases)
26100
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   903
qed
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   904
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
   905
text \<open>
26100
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   906
  We instantiate divisibility on the natural numbers by
64635
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
   907
  means of @{const eucl_rel_nat}:
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
   908
\<close>
25942
a52309ac4a4d added class semiring_div
haftmann
parents: 25571
diff changeset
   909
61433
a4c0de1df3d8 qualify some names stemming from internal bootstrap constructions
haftmann
parents: 61275
diff changeset
   910
qualified definition divmod_nat :: "nat \<Rightarrow> nat \<Rightarrow> nat \<times> nat" where
64635
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
   911
  "divmod_nat m n = (THE qr. eucl_rel_nat m n qr)"
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
   912
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
   913
qualified lemma eucl_rel_nat_divmod_nat:
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
   914
  "eucl_rel_nat m n (divmod_nat m n)"
30923
2697a1d1d34a more coherent developement in Divides.thy and IntDiv.thy
haftmann
parents: 30840
diff changeset
   915
proof -
64635
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
   916
  from eucl_rel_nat_ex
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
   917
    obtain q r where rel: "eucl_rel_nat m n (q, r)" .
30923
2697a1d1d34a more coherent developement in Divides.thy and IntDiv.thy
haftmann
parents: 30840
diff changeset
   918
  then show ?thesis
64635
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
   919
    by (auto simp add: divmod_nat_def intro: theI
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
   920
      elim: eucl_rel_nat_unique_div eucl_rel_nat_unique_mod)
30923
2697a1d1d34a more coherent developement in Divides.thy and IntDiv.thy
haftmann
parents: 30840
diff changeset
   921
qed
2697a1d1d34a more coherent developement in Divides.thy and IntDiv.thy
haftmann
parents: 30840
diff changeset
   922
61433
a4c0de1df3d8 qualify some names stemming from internal bootstrap constructions
haftmann
parents: 61275
diff changeset
   923
qualified lemma divmod_nat_unique:
64635
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
   924
  "divmod_nat m n = (q, r)" if "eucl_rel_nat m n (q, r)"
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
   925
  using that
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
   926
  by (auto simp add: divmod_nat_def intro: eucl_rel_nat_divmod_nat elim: eucl_rel_nat_unique_div eucl_rel_nat_unique_mod)
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
   927
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
   928
qualified lemma divmod_nat_zero:
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
   929
  "divmod_nat m 0 = (0, m)"
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
   930
  by (rule divmod_nat_unique) (fact eucl_rel_nat_by0)
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
   931
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
   932
qualified lemma divmod_nat_zero_left:
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
   933
  "divmod_nat 0 n = (0, 0)"
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
   934
  by (rule divmod_nat_unique) 
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
   935
    (cases n, auto intro: eucl_rel_nat_by0 eucl_rel_natI)
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
   936
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
   937
qualified lemma divmod_nat_base:
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
   938
  "m < n \<Longrightarrow> divmod_nat m n = (0, m)"
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
   939
  by (rule divmod_nat_unique) 
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
   940
    (cases n, auto intro: eucl_rel_nat_by0 eucl_rel_natI)
61433
a4c0de1df3d8 qualify some names stemming from internal bootstrap constructions
haftmann
parents: 61275
diff changeset
   941
a4c0de1df3d8 qualify some names stemming from internal bootstrap constructions
haftmann
parents: 61275
diff changeset
   942
qualified lemma divmod_nat_step:
a4c0de1df3d8 qualify some names stemming from internal bootstrap constructions
haftmann
parents: 61275
diff changeset
   943
  assumes "0 < n" and "n \<le> m"
64635
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
   944
  shows "divmod_nat m n =
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
   945
    (Suc (fst (divmod_nat (m - n) n)), snd (divmod_nat (m - n) n))"
61433
a4c0de1df3d8 qualify some names stemming from internal bootstrap constructions
haftmann
parents: 61275
diff changeset
   946
proof (rule divmod_nat_unique)
64635
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
   947
  have "eucl_rel_nat (m - n) n (divmod_nat (m - n) n)"
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
   948
    by (fact eucl_rel_nat_divmod_nat)
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
   949
  then show "eucl_rel_nat m n (Suc
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
   950
    (fst (divmod_nat (m - n) n)), snd (divmod_nat (m - n) n))"
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
   951
    using assms
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
   952
      by (auto split: if_splits intro: eucl_rel_natI elim!: eucl_rel_nat.cases simp add: algebra_simps)
61433
a4c0de1df3d8 qualify some names stemming from internal bootstrap constructions
haftmann
parents: 61275
diff changeset
   953
qed
a4c0de1df3d8 qualify some names stemming from internal bootstrap constructions
haftmann
parents: 61275
diff changeset
   954
a4c0de1df3d8 qualify some names stemming from internal bootstrap constructions
haftmann
parents: 61275
diff changeset
   955
end
64592
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
   956
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
   957
instantiation nat :: "{semidom_modulo, normalization_semidom}"
60352
d46de31a50c4 separate class for division operator, with particular syntax added in more specific classes
haftmann
parents: 59833
diff changeset
   958
begin
d46de31a50c4 separate class for division operator, with particular syntax added in more specific classes
haftmann
parents: 59833
diff changeset
   959
64592
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
   960
definition normalize_nat :: "nat \<Rightarrow> nat"
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
   961
  where [simp]: "normalize = (id :: nat \<Rightarrow> nat)"
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
   962
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
   963
definition unit_factor_nat :: "nat \<Rightarrow> nat"
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
   964
  where "unit_factor n = (if n = 0 then 0 else 1 :: nat)"
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
   965
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
   966
lemma unit_factor_simps [simp]:
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
   967
  "unit_factor 0 = (0::nat)"
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
   968
  "unit_factor (Suc n) = 1"
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
   969
  by (simp_all add: unit_factor_nat_def)
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
   970
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
   971
definition divide_nat :: "nat \<Rightarrow> nat \<Rightarrow> nat"
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
   972
  where div_nat_def: "m div n = fst (Divides.divmod_nat m n)"
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
   973
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
   974
definition modulo_nat :: "nat \<Rightarrow> nat \<Rightarrow> nat"
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
   975
  where mod_nat_def: "m mod n = snd (Divides.divmod_nat m n)"
46551
866bce5442a3 simplify projections on simultaneous computations of div and mod; tuned structure (from Florian Haftmann)
huffman
parents: 46026
diff changeset
   976
866bce5442a3 simplify projections on simultaneous computations of div and mod; tuned structure (from Florian Haftmann)
huffman
parents: 46026
diff changeset
   977
lemma fst_divmod_nat [simp]:
61433
a4c0de1df3d8 qualify some names stemming from internal bootstrap constructions
haftmann
parents: 61275
diff changeset
   978
  "fst (Divides.divmod_nat m n) = m div n"
46551
866bce5442a3 simplify projections on simultaneous computations of div and mod; tuned structure (from Florian Haftmann)
huffman
parents: 46026
diff changeset
   979
  by (simp add: div_nat_def)
866bce5442a3 simplify projections on simultaneous computations of div and mod; tuned structure (from Florian Haftmann)
huffman
parents: 46026
diff changeset
   980
866bce5442a3 simplify projections on simultaneous computations of div and mod; tuned structure (from Florian Haftmann)
huffman
parents: 46026
diff changeset
   981
lemma snd_divmod_nat [simp]:
61433
a4c0de1df3d8 qualify some names stemming from internal bootstrap constructions
haftmann
parents: 61275
diff changeset
   982
  "snd (Divides.divmod_nat m n) = m mod n"
46551
866bce5442a3 simplify projections on simultaneous computations of div and mod; tuned structure (from Florian Haftmann)
huffman
parents: 46026
diff changeset
   983
  by (simp add: mod_nat_def)
866bce5442a3 simplify projections on simultaneous computations of div and mod; tuned structure (from Florian Haftmann)
huffman
parents: 46026
diff changeset
   984
33340
a165b97f3658 moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents: 33318
diff changeset
   985
lemma divmod_nat_div_mod:
61433
a4c0de1df3d8 qualify some names stemming from internal bootstrap constructions
haftmann
parents: 61275
diff changeset
   986
  "Divides.divmod_nat m n = (m div n, m mod n)"
46551
866bce5442a3 simplify projections on simultaneous computations of div and mod; tuned structure (from Florian Haftmann)
huffman
parents: 46026
diff changeset
   987
  by (simp add: prod_eq_iff)
26100
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   988
47135
fb67b596067f rename lemmas {div,mod}_eq -> {div,mod}_nat_unique, for consistency with minus_unique, inverse_unique, etc.
huffman
parents: 47134
diff changeset
   989
lemma div_nat_unique:
64635
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
   990
  assumes "eucl_rel_nat m n (q, r)"
26100
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   991
  shows "m div n = q"
64592
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
   992
  using assms
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
   993
  by (auto dest!: Divides.divmod_nat_unique simp add: prod_eq_iff)
47135
fb67b596067f rename lemmas {div,mod}_eq -> {div,mod}_nat_unique, for consistency with minus_unique, inverse_unique, etc.
huffman
parents: 47134
diff changeset
   994
fb67b596067f rename lemmas {div,mod}_eq -> {div,mod}_nat_unique, for consistency with minus_unique, inverse_unique, etc.
huffman
parents: 47134
diff changeset
   995
lemma mod_nat_unique:
64635
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
   996
  assumes "eucl_rel_nat m n (q, r)"
26100
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
   997
  shows "m mod n = r"
64592
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
   998
  using assms
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
   999
  by (auto dest!: Divides.divmod_nat_unique simp add: prod_eq_iff)
25571
c9e39eafc7a0 instantiation target rather than legacy instance
haftmann
parents: 25162
diff changeset
  1000
64635
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1001
lemma eucl_rel_nat: "eucl_rel_nat m n (m div n, m mod n)"
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1002
  using Divides.eucl_rel_nat_divmod_nat
64592
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1003
  by (simp add: divmod_nat_div_mod)
25942
a52309ac4a4d added class semiring_div
haftmann
parents: 25571
diff changeset
  1004
63950
cdc1e59aa513 syntactic type class for operation mod named after mod;
haftmann
parents: 63947
diff changeset
  1005
text \<open>The ''recursion'' equations for @{const divide} and @{const modulo}\<close>
26100
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
  1006
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
  1007
lemma div_less [simp]:
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
  1008
  fixes m n :: nat
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
  1009
  assumes "m < n"
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
  1010
  shows "m div n = 0"
61433
a4c0de1df3d8 qualify some names stemming from internal bootstrap constructions
haftmann
parents: 61275
diff changeset
  1011
  using assms Divides.divmod_nat_base by (simp add: prod_eq_iff)
25942
a52309ac4a4d added class semiring_div
haftmann
parents: 25571
diff changeset
  1012
26100
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
  1013
lemma le_div_geq:
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
  1014
  fixes m n :: nat
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
  1015
  assumes "0 < n" and "n \<le> m"
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
  1016
  shows "m div n = Suc ((m - n) div n)"
61433
a4c0de1df3d8 qualify some names stemming from internal bootstrap constructions
haftmann
parents: 61275
diff changeset
  1017
  using assms Divides.divmod_nat_step by (simp add: prod_eq_iff)
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
  1018
26100
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
  1019
lemma mod_less [simp]:
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
  1020
  fixes m n :: nat
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
  1021
  assumes "m < n"
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
  1022
  shows "m mod n = m"
61433
a4c0de1df3d8 qualify some names stemming from internal bootstrap constructions
haftmann
parents: 61275
diff changeset
  1023
  using assms Divides.divmod_nat_base by (simp add: prod_eq_iff)
26100
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
  1024
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
  1025
lemma le_mod_geq:
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
  1026
  fixes m n :: nat
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
  1027
  assumes "n \<le> m"
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
  1028
  shows "m mod n = (m - n) mod n"
61433
a4c0de1df3d8 qualify some names stemming from internal bootstrap constructions
haftmann
parents: 61275
diff changeset
  1029
  using assms Divides.divmod_nat_step by (cases "n = 0") (simp_all add: prod_eq_iff)
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
  1030
64592
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1031
lemma mod_less_divisor [simp]:
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1032
  fixes m n :: nat
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1033
  assumes "n > 0"
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1034
  shows "m mod n < n"
64635
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1035
  using assms eucl_rel_nat [of m n]
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1036
    by (auto elim: eucl_rel_nat.cases)
64592
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1037
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1038
lemma mod_le_divisor [simp]:
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1039
  fixes m n :: nat
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1040
  assumes "n > 0"
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1041
  shows "m mod n \<le> n"
64635
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1042
  using assms eucl_rel_nat [of m n]
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1043
    by (auto elim: eucl_rel_nat.cases)
64592
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1044
47136
5b6c5641498a simplify some proofs
huffman
parents: 47135
diff changeset
  1045
instance proof
5b6c5641498a simplify some proofs
huffman
parents: 47135
diff changeset
  1046
  fix m n :: nat
5b6c5641498a simplify some proofs
huffman
parents: 47135
diff changeset
  1047
  show "m div n * n + m mod n = m"
64635
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1048
    using eucl_rel_nat [of m n]
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1049
    by (auto elim: eucl_rel_nat.cases)
47136
5b6c5641498a simplify some proofs
huffman
parents: 47135
diff changeset
  1050
next
64592
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1051
  fix n :: nat show "n div 0 = 0"
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1052
    by (simp add: div_nat_def Divides.divmod_nat_zero)
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1053
next
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1054
  fix m n :: nat
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1055
  assume "n \<noteq> 0"
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1056
  then show "m * n div n = m"
64635
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1057
    by (auto intro!: eucl_rel_natI div_nat_unique [of _ _ _ 0])
64592
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1058
qed (simp_all add: unit_factor_nat_def)
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1059
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1060
end
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1061
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1062
instance nat :: semiring_div
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1063
proof
47136
5b6c5641498a simplify some proofs
huffman
parents: 47135
diff changeset
  1064
  fix m n q :: nat
5b6c5641498a simplify some proofs
huffman
parents: 47135
diff changeset
  1065
  assume "n \<noteq> 0"
5b6c5641498a simplify some proofs
huffman
parents: 47135
diff changeset
  1066
  then show "(q + m * n) div n = m + q div n"
5b6c5641498a simplify some proofs
huffman
parents: 47135
diff changeset
  1067
    by (induct m) (simp_all add: le_div_geq)
5b6c5641498a simplify some proofs
huffman
parents: 47135
diff changeset
  1068
next
5b6c5641498a simplify some proofs
huffman
parents: 47135
diff changeset
  1069
  fix m n q :: nat
5b6c5641498a simplify some proofs
huffman
parents: 47135
diff changeset
  1070
  assume "m \<noteq> 0"
64635
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1071
  show "(m * n) div (m * q) = n div q"
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1072
  proof (cases "q = 0")
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1073
    case True
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1074
    then show ?thesis
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1075
      by simp
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1076
  next
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1077
    case False
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1078
    show ?thesis
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1079
    proof (rule div_nat_unique [of _ _ _ "m * (n mod q)"])
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1080
      show "eucl_rel_nat (m * n) (m * q) (n div q, m * (n mod q))"
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1081
        by (rule eucl_rel_natI)
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1082
          (use \<open>m \<noteq> 0\<close> \<open>q \<noteq> 0\<close> div_mult_mod_eq [of n q] in \<open>auto simp add: algebra_simps distrib_left [symmetric]\<close>)
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1083
    qed          
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1084
  qed
25942
a52309ac4a4d added class semiring_div
haftmann
parents: 25571
diff changeset
  1085
qed
26100
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
  1086
64592
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1087
lemma div_by_Suc_0 [simp]:
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1088
  "m div Suc 0 = m"
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1089
  using div_by_1 [of m] by simp
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1090
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1091
lemma mod_by_Suc_0 [simp]:
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1092
  "m mod Suc 0 = 0"
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1093
  using mod_by_1 [of m] by simp
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1094
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1095
lemma mod_greater_zero_iff_not_dvd:
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1096
  fixes m n :: nat
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1097
  shows "m mod n > 0 \<longleftrightarrow> \<not> n dvd m"
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1098
  by (simp add: dvd_eq_mod_eq_0)
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1099
63950
cdc1e59aa513 syntactic type class for operation mod named after mod;
haftmann
parents: 63947
diff changeset
  1100
text \<open>Simproc for cancelling @{const divide} and @{const modulo}\<close>
25942
a52309ac4a4d added class semiring_div
haftmann
parents: 25571
diff changeset
  1101
64592
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1102
lemma (in semiring_modulo) cancel_div_mod_rules:
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1103
  "((a div b) * b + a mod b) + c = a + c"
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1104
  "(b * (a div b) + a mod b) + c = a + c"
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1105
  by (simp_all add: div_mult_mod_eq mult_div_mod_eq)
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1106
51299
30b014246e21 proper place for cancel_div_mod.ML (see also ee729dbd1b7f and ec7f10155389);
wenzelm
parents: 51173
diff changeset
  1107
ML_file "~~/src/Provers/Arith/cancel_div_mod.ML"
30b014246e21 proper place for cancel_div_mod.ML (see also ee729dbd1b7f and ec7f10155389);
wenzelm
parents: 51173
diff changeset
  1108
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
  1109
ML \<open>
43594
ef1ddc59b825 modernized some simproc setup;
wenzelm
parents: 41792
diff changeset
  1110
structure Cancel_Div_Mod_Nat = Cancel_Div_Mod
41550
efa734d9b221 eliminated global prems;
wenzelm
parents: 39489
diff changeset
  1111
(
60352
d46de31a50c4 separate class for division operator, with particular syntax added in more specific classes
haftmann
parents: 59833
diff changeset
  1112
  val div_name = @{const_name divide};
63950
cdc1e59aa513 syntactic type class for operation mod named after mod;
haftmann
parents: 63947
diff changeset
  1113
  val mod_name = @{const_name modulo};
30934
ed5377c2b0a3 tuned setups of CancelDivMod
haftmann
parents: 30930
diff changeset
  1114
  val mk_binop = HOLogic.mk_binop;
48561
12aa0cb2b447 move ML functions from nat_arith.ML to Divides.thy, which is the only place they are used
huffman
parents: 47268
diff changeset
  1115
  val mk_plus = HOLogic.mk_binop @{const_name Groups.plus};
12aa0cb2b447 move ML functions from nat_arith.ML to Divides.thy, which is the only place they are used
huffman
parents: 47268
diff changeset
  1116
  val dest_plus = HOLogic.dest_bin @{const_name Groups.plus} HOLogic.natT;
12aa0cb2b447 move ML functions from nat_arith.ML to Divides.thy, which is the only place they are used
huffman
parents: 47268
diff changeset
  1117
  fun mk_sum [] = HOLogic.zero
12aa0cb2b447 move ML functions from nat_arith.ML to Divides.thy, which is the only place they are used
huffman
parents: 47268
diff changeset
  1118
    | mk_sum [t] = t
12aa0cb2b447 move ML functions from nat_arith.ML to Divides.thy, which is the only place they are used
huffman
parents: 47268
diff changeset
  1119
    | mk_sum (t :: ts) = mk_plus (t, mk_sum ts);
12aa0cb2b447 move ML functions from nat_arith.ML to Divides.thy, which is the only place they are used
huffman
parents: 47268
diff changeset
  1120
  fun dest_sum tm =
12aa0cb2b447 move ML functions from nat_arith.ML to Divides.thy, which is the only place they are used
huffman
parents: 47268
diff changeset
  1121
    if HOLogic.is_zero tm then []
12aa0cb2b447 move ML functions from nat_arith.ML to Divides.thy, which is the only place they are used
huffman
parents: 47268
diff changeset
  1122
    else
12aa0cb2b447 move ML functions from nat_arith.ML to Divides.thy, which is the only place they are used
huffman
parents: 47268
diff changeset
  1123
      (case try HOLogic.dest_Suc tm of
12aa0cb2b447 move ML functions from nat_arith.ML to Divides.thy, which is the only place they are used
huffman
parents: 47268
diff changeset
  1124
        SOME t => HOLogic.Suc_zero :: dest_sum t
12aa0cb2b447 move ML functions from nat_arith.ML to Divides.thy, which is the only place they are used
huffman
parents: 47268
diff changeset
  1125
      | NONE =>
12aa0cb2b447 move ML functions from nat_arith.ML to Divides.thy, which is the only place they are used
huffman
parents: 47268
diff changeset
  1126
          (case try dest_plus tm of
12aa0cb2b447 move ML functions from nat_arith.ML to Divides.thy, which is the only place they are used
huffman
parents: 47268
diff changeset
  1127
            SOME (t, u) => dest_sum t @ dest_sum u
12aa0cb2b447 move ML functions from nat_arith.ML to Divides.thy, which is the only place they are used
huffman
parents: 47268
diff changeset
  1128
          | NONE => [tm]));
25942
a52309ac4a4d added class semiring_div
haftmann
parents: 25571
diff changeset
  1129
64250
0cde0b4d4cb5 clarified prover-specific rules
haftmann
parents: 64246
diff changeset
  1130
  val div_mod_eqs = map mk_meta_eq @{thms cancel_div_mod_rules};
0cde0b4d4cb5 clarified prover-specific rules
haftmann
parents: 64246
diff changeset
  1131
0cde0b4d4cb5 clarified prover-specific rules
haftmann
parents: 64246
diff changeset
  1132
  val prove_eq_sums = Arith_Data.prove_conv2 all_tac
0cde0b4d4cb5 clarified prover-specific rules
haftmann
parents: 64246
diff changeset
  1133
    (Arith_Data.simp_all_tac @{thms add_0_left add_0_right ac_simps})
41550
efa734d9b221 eliminated global prems;
wenzelm
parents: 39489
diff changeset
  1134
)
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
  1135
\<close>
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
  1136
64592
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1137
simproc_setup cancel_div_mod_nat ("(m::nat) + n") =
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1138
  \<open>K Cancel_Div_Mod_Nat.proc\<close>
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1139
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1140
lemma divmod_nat_if [code]:
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1141
  "Divides.divmod_nat m n = (if n = 0 \<or> m < n then (0, m) else
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1142
    let (q, r) = Divides.divmod_nat (m - n) n in (Suc q, r))"
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1143
  by (simp add: prod_eq_iff case_prod_beta not_less le_div_geq le_mod_geq)
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
  1144
64593
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
  1145
lemma mod_Suc_eq [mod_simps]:
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
  1146
  "Suc (m mod n) mod n = Suc m mod n"
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
  1147
proof -
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
  1148
  have "(m mod n + 1) mod n = (m + 1) mod n"
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
  1149
    by (simp only: mod_simps)
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
  1150
  then show ?thesis
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
  1151
    by simp
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
  1152
qed
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
  1153
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
  1154
lemma mod_Suc_Suc_eq [mod_simps]:
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
  1155
  "Suc (Suc (m mod n)) mod n = Suc (Suc m) mod n"
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
  1156
proof -
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
  1157
  have "(m mod n + 2) mod n = (m + 2) mod n"
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
  1158
    by (simp only: mod_simps)
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
  1159
  then show ?thesis
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
  1160
    by simp
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
  1161
qed
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
  1162
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
  1163
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
  1164
subsubsection \<open>Quotient\<close>
26100
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
  1165
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
  1166
lemma div_geq: "0 < n \<Longrightarrow>  \<not> m < n \<Longrightarrow> m div n = Suc ((m - n) div n)"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29509
diff changeset
  1167
by (simp add: le_div_geq linorder_not_less)
26100
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
  1168
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
  1169
lemma div_if: "0 < n \<Longrightarrow> m div n = (if m < n then 0 else Suc ((m - n) div n))"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29509
diff changeset
  1170
by (simp add: div_geq)
26100
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
  1171
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
  1172
lemma div_mult_self_is_m [simp]: "0<n ==> (m*n) div n = (m::nat)"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29509
diff changeset
  1173
by simp
26100
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
  1174
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
  1175
lemma div_mult_self1_is_m [simp]: "0<n ==> (n*m) div n = (m::nat)"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29509
diff changeset
  1176
by simp
26100
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
  1177
53066
1f61a923c2d6 added lemma
haftmann
parents: 52435
diff changeset
  1178
lemma div_positive:
1f61a923c2d6 added lemma
haftmann
parents: 52435
diff changeset
  1179
  fixes m n :: nat
1f61a923c2d6 added lemma
haftmann
parents: 52435
diff changeset
  1180
  assumes "n > 0"
1f61a923c2d6 added lemma
haftmann
parents: 52435
diff changeset
  1181
  assumes "m \<ge> n"
1f61a923c2d6 added lemma
haftmann
parents: 52435
diff changeset
  1182
  shows "m div n > 0"
1f61a923c2d6 added lemma
haftmann
parents: 52435
diff changeset
  1183
proof -
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
  1184
  from \<open>m \<ge> n\<close> obtain q where "m = n + q"
53066
1f61a923c2d6 added lemma
haftmann
parents: 52435
diff changeset
  1185
    by (auto simp add: le_iff_add)
63499
9c9a59949887 Tuned looping simp rules in semiring_div
eberlm <eberlm@in.tum.de>
parents: 63417
diff changeset
  1186
  with \<open>n > 0\<close> show ?thesis by (simp add: div_add_self1)
53066
1f61a923c2d6 added lemma
haftmann
parents: 52435
diff changeset
  1187
qed
1f61a923c2d6 added lemma
haftmann
parents: 52435
diff changeset
  1188
59000
6eb0725503fc import general theorems from AFP/Markov_Models
hoelzl
parents: 58953
diff changeset
  1189
lemma div_eq_0_iff: "(a div b::nat) = 0 \<longleftrightarrow> a < b \<or> b = 0"
64592
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1190
  by auto (metis div_positive less_numeral_extra(3) not_less)
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1191
25942
a52309ac4a4d added class semiring_div
haftmann
parents: 25571
diff changeset
  1192
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
  1193
subsubsection \<open>Remainder\<close>
25942
a52309ac4a4d added class semiring_div
haftmann
parents: 25571
diff changeset
  1194
51173
3cbb4e95a565 Sieve of Eratosthenes
haftmann
parents: 50422
diff changeset
  1195
lemma mod_Suc_le_divisor [simp]:
3cbb4e95a565 Sieve of Eratosthenes
haftmann
parents: 50422
diff changeset
  1196
  "m mod Suc n \<le> n"
3cbb4e95a565 Sieve of Eratosthenes
haftmann
parents: 50422
diff changeset
  1197
  using mod_less_divisor [of "Suc n" m] by arith
3cbb4e95a565 Sieve of Eratosthenes
haftmann
parents: 50422
diff changeset
  1198
26100
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
  1199
lemma mod_less_eq_dividend [simp]:
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
  1200
  fixes m n :: nat
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
  1201
  shows "m mod n \<le> m"
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
  1202
proof (rule add_leD2)
64242
93c6f0da5c70 more standardized theorem names for facts involving the div and mod identity
haftmann
parents: 64240
diff changeset
  1203
  from div_mult_mod_eq have "m div n * n + m mod n = m" .
26100
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
  1204
  then show "m div n * n + m mod n \<le> m" by auto
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
  1205
qed
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
  1206
61076
bdc1e2f0a86a eliminated \<Colon>;
wenzelm
parents: 60930
diff changeset
  1207
lemma mod_geq: "\<not> m < (n::nat) \<Longrightarrow> m mod n = (m - n) mod n"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29509
diff changeset
  1208
by (simp add: le_mod_geq linorder_not_less)
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
  1209
61076
bdc1e2f0a86a eliminated \<Colon>;
wenzelm
parents: 60930
diff changeset
  1210
lemma mod_if: "m mod (n::nat) = (if m < n then m else (m - n) mod n)"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29509
diff changeset
  1211
by (simp add: le_mod_geq)
26100
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
  1212
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
  1213
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
  1214
subsubsection \<open>Quotient and Remainder\<close>
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
  1215
30923
2697a1d1d34a more coherent developement in Divides.thy and IntDiv.thy
haftmann
parents: 30840
diff changeset
  1216
lemma div_mult1_eq:
2697a1d1d34a more coherent developement in Divides.thy and IntDiv.thy
haftmann
parents: 30840
diff changeset
  1217
  "(a * b) div c = a * (b div c) + a * (b mod c) div (c::nat)"
64635
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1218
  by (cases "c = 0")
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1219
     (auto simp add: algebra_simps distrib_left [symmetric]
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1220
     intro!: div_nat_unique [of _ _ _ "(a * (b mod c)) mod c"] eucl_rel_natI)
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1221
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1222
lemma eucl_rel_nat_add1_eq:
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1223
  "eucl_rel_nat a c (aq, ar) \<Longrightarrow> eucl_rel_nat b c (bq, br)
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1224
   \<Longrightarrow> eucl_rel_nat (a + b) c (aq + bq + (ar + br) div c, (ar + br) mod c)"
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1225
  by (auto simp add: split_ifs algebra_simps elim!: eucl_rel_nat.cases intro: eucl_rel_nat_by0 eucl_rel_natI)
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
  1226
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
  1227
(*NOT suitable for rewriting: the RHS has an instance of the LHS*)
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
  1228
lemma div_add1_eq:
64635
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1229
  "(a + b) div (c::nat) = a div c + b div c + ((a mod c + b mod c) div c)"
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1230
by (blast intro: eucl_rel_nat_add1_eq [THEN div_nat_unique] eucl_rel_nat)
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1231
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1232
lemma eucl_rel_nat_mult2_eq:
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1233
  assumes "eucl_rel_nat a b (q, r)"
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1234
  shows "eucl_rel_nat a (b * c) (q div c, b *(q mod c) + r)"
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1235
proof (cases "c = 0")
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1236
  case True
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1237
  with assms show ?thesis
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1238
    by (auto intro: eucl_rel_nat_by0 elim!: eucl_rel_nat.cases simp add: ac_simps)
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1239
next
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1240
  case False
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1241
  { assume "r < b"
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1242
    with False have "b * (q mod c) + r < b * c"
60352
d46de31a50c4 separate class for division operator, with particular syntax added in more specific classes
haftmann
parents: 59833
diff changeset
  1243
      apply (cut_tac m = q and n = c in mod_less_divisor)
d46de31a50c4 separate class for division operator, with particular syntax added in more specific classes
haftmann
parents: 59833
diff changeset
  1244
      apply (drule_tac [2] m = "q mod c" in less_imp_Suc_add, auto)
d46de31a50c4 separate class for division operator, with particular syntax added in more specific classes
haftmann
parents: 59833
diff changeset
  1245
      apply (erule_tac P = "%x. lhs < rhs x" for lhs rhs in ssubst)
d46de31a50c4 separate class for division operator, with particular syntax added in more specific classes
haftmann
parents: 59833
diff changeset
  1246
      apply (simp add: add_mult_distrib2)
d46de31a50c4 separate class for division operator, with particular syntax added in more specific classes
haftmann
parents: 59833
diff changeset
  1247
      done
d46de31a50c4 separate class for division operator, with particular syntax added in more specific classes
haftmann
parents: 59833
diff changeset
  1248
    then have "r + b * (q mod c) < b * c"
d46de31a50c4 separate class for division operator, with particular syntax added in more specific classes
haftmann
parents: 59833
diff changeset
  1249
      by (simp add: ac_simps)
64635
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1250
  } with assms False show ?thesis
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1251
    by (auto simp add: algebra_simps add_mult_distrib2 [symmetric] elim!: eucl_rel_nat.cases intro: eucl_rel_nat.intros)
60352
d46de31a50c4 separate class for division operator, with particular syntax added in more specific classes
haftmann
parents: 59833
diff changeset
  1252
qed
60562
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60517
diff changeset
  1253
55085
0e8e4dc55866 moved 'fundef_cong' attribute (and other basic 'fun' stuff) up the dependency chain
blanchet
parents: 54489
diff changeset
  1254
lemma div_mult2_eq: "a div (b * c) = (a div b) div (c::nat)"
64635
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1255
by (force simp add: eucl_rel_nat [THEN eucl_rel_nat_mult2_eq, THEN div_nat_unique])
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
  1256
55085
0e8e4dc55866 moved 'fundef_cong' attribute (and other basic 'fun' stuff) up the dependency chain
blanchet
parents: 54489
diff changeset
  1257
lemma mod_mult2_eq: "a mod (b * c) = b * (a div b mod c) + a mod (b::nat)"
64635
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1258
by (auto simp add: mult.commute eucl_rel_nat [THEN eucl_rel_nat_mult2_eq, THEN mod_nat_unique])
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
  1259
61275
053ec04ea866 monomorphization of divmod wrt. code generation avoids costly dictionary unpacking at runtime
haftmann
parents: 61201
diff changeset
  1260
instantiation nat :: semiring_numeral_div
053ec04ea866 monomorphization of divmod wrt. code generation avoids costly dictionary unpacking at runtime
haftmann
parents: 61201
diff changeset
  1261
begin
053ec04ea866 monomorphization of divmod wrt. code generation avoids costly dictionary unpacking at runtime
haftmann
parents: 61201
diff changeset
  1262
053ec04ea866 monomorphization of divmod wrt. code generation avoids costly dictionary unpacking at runtime
haftmann
parents: 61201
diff changeset
  1263
definition divmod_nat :: "num \<Rightarrow> num \<Rightarrow> nat \<times> nat"
053ec04ea866 monomorphization of divmod wrt. code generation avoids costly dictionary unpacking at runtime
haftmann
parents: 61201
diff changeset
  1264
where
053ec04ea866 monomorphization of divmod wrt. code generation avoids costly dictionary unpacking at runtime
haftmann
parents: 61201
diff changeset
  1265
  divmod'_nat_def: "divmod_nat m n = (numeral m div numeral n, numeral m mod numeral n)"
053ec04ea866 monomorphization of divmod wrt. code generation avoids costly dictionary unpacking at runtime
haftmann
parents: 61201
diff changeset
  1266
053ec04ea866 monomorphization of divmod wrt. code generation avoids costly dictionary unpacking at runtime
haftmann
parents: 61201
diff changeset
  1267
definition divmod_step_nat :: "num \<Rightarrow> nat \<times> nat \<Rightarrow> nat \<times> nat"
053ec04ea866 monomorphization of divmod wrt. code generation avoids costly dictionary unpacking at runtime
haftmann
parents: 61201
diff changeset
  1268
where
053ec04ea866 monomorphization of divmod wrt. code generation avoids costly dictionary unpacking at runtime
haftmann
parents: 61201
diff changeset
  1269
  "divmod_step_nat l qr = (let (q, r) = qr
053ec04ea866 monomorphization of divmod wrt. code generation avoids costly dictionary unpacking at runtime
haftmann
parents: 61201
diff changeset
  1270
    in if r \<ge> numeral l then (2 * q + 1, r - numeral l)
053ec04ea866 monomorphization of divmod wrt. code generation avoids costly dictionary unpacking at runtime
haftmann
parents: 61201
diff changeset
  1271
    else (2 * q, r))"
053ec04ea866 monomorphization of divmod wrt. code generation avoids costly dictionary unpacking at runtime
haftmann
parents: 61201
diff changeset
  1272
053ec04ea866 monomorphization of divmod wrt. code generation avoids costly dictionary unpacking at runtime
haftmann
parents: 61201
diff changeset
  1273
instance
053ec04ea866 monomorphization of divmod wrt. code generation avoids costly dictionary unpacking at runtime
haftmann
parents: 61201
diff changeset
  1274
  by standard (auto intro: div_positive simp add: divmod'_nat_def divmod_step_nat_def mod_mult2_eq div_mult2_eq)
053ec04ea866 monomorphization of divmod wrt. code generation avoids costly dictionary unpacking at runtime
haftmann
parents: 61201
diff changeset
  1275
053ec04ea866 monomorphization of divmod wrt. code generation avoids costly dictionary unpacking at runtime
haftmann
parents: 61201
diff changeset
  1276
end
053ec04ea866 monomorphization of divmod wrt. code generation avoids costly dictionary unpacking at runtime
haftmann
parents: 61201
diff changeset
  1277
053ec04ea866 monomorphization of divmod wrt. code generation avoids costly dictionary unpacking at runtime
haftmann
parents: 61201
diff changeset
  1278
declare divmod_algorithm_code [where ?'a = nat, code]
053ec04ea866 monomorphization of divmod wrt. code generation avoids costly dictionary unpacking at runtime
haftmann
parents: 61201
diff changeset
  1279
  
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
  1280
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
  1281
subsubsection \<open>Further Facts about Quotient and Remainder\<close>
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
  1282
64592
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1283
lemma div_le_mono:
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1284
  fixes m n k :: nat
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1285
  assumes "m \<le> n"
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1286
  shows "m div k \<le> n div k"
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1287
proof -
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1288
  from assms obtain q where "n = m + q"
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1289
    by (auto simp add: le_iff_add)
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1290
  then show ?thesis
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1291
    by (simp add: div_add1_eq [of m q k])
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1292
qed
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
  1293
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
  1294
(* Antimonotonicity of div in second argument *)
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
  1295
lemma div_le_mono2: "!!m::nat. [| 0<m; m\<le>n |] ==> (k div n) \<le> (k div m)"
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
  1296
apply (subgoal_tac "0<n")
22718
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
  1297
 prefer 2 apply simp
15251
bb6f072c8d10 converted some induct_tac to induct
paulson
parents: 15140
diff changeset
  1298
apply (induct_tac k rule: nat_less_induct)
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
  1299
apply (rename_tac "k")
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
  1300
apply (case_tac "k<n", simp)
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
  1301
apply (subgoal_tac "~ (k<m) ")
22718
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
  1302
 prefer 2 apply simp
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
  1303
apply (simp add: div_geq)
15251
bb6f072c8d10 converted some induct_tac to induct
paulson
parents: 15140
diff changeset
  1304
apply (subgoal_tac "(k-n) div n \<le> (k-m) div n")
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
  1305
 prefer 2
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
  1306
 apply (blast intro: div_le_mono diff_le_mono2)
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
  1307
apply (rule le_trans, simp)
15439
71c0f98e31f1 made diff_less a simp rule
nipkow
parents: 15251
diff changeset
  1308
apply (simp)
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
  1309
done
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
  1310
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
  1311
lemma div_le_dividend [simp]: "m div n \<le> (m::nat)"
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
  1312
apply (case_tac "n=0", simp)
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
  1313
apply (subgoal_tac "m div n \<le> m div 1", simp)
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
  1314
apply (rule div_le_mono2)
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
  1315
apply (simp_all (no_asm_simp))
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
  1316
done
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
  1317
22718
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
  1318
(* Similar for "less than" *)
47138
f8cf96545eed tuned proofs
huffman
parents: 47137
diff changeset
  1319
lemma div_less_dividend [simp]:
f8cf96545eed tuned proofs
huffman
parents: 47137
diff changeset
  1320
  "\<lbrakk>(1::nat) < n; 0 < m\<rbrakk> \<Longrightarrow> m div n < m"
f8cf96545eed tuned proofs
huffman
parents: 47137
diff changeset
  1321
apply (induct m rule: nat_less_induct)
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
  1322
apply (rename_tac "m")
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
  1323
apply (case_tac "m<n", simp)
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
  1324
apply (subgoal_tac "0<n")
22718
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
  1325
 prefer 2 apply simp
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
  1326
apply (simp add: div_geq)
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
  1327
apply (case_tac "n<m")
15251
bb6f072c8d10 converted some induct_tac to induct
paulson
parents: 15140
diff changeset
  1328
 apply (subgoal_tac "(m-n) div n < (m-n) ")
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
  1329
  apply (rule impI less_trans_Suc)+
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
  1330
apply assumption
15439
71c0f98e31f1 made diff_less a simp rule
nipkow
parents: 15251
diff changeset
  1331
  apply (simp_all)
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
  1332
done
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
  1333
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
  1334
text\<open>A fact for the mutilated chess board\<close>
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
  1335
lemma mod_Suc: "Suc(m) mod n = (if Suc(m mod n) = n then 0 else Suc(m mod n))"
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
  1336
apply (case_tac "n=0", simp)
15251
bb6f072c8d10 converted some induct_tac to induct
paulson
parents: 15140
diff changeset
  1337
apply (induct "m" rule: nat_less_induct)
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
  1338
apply (case_tac "Suc (na) <n")
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
  1339
(* case Suc(na) < n *)
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
  1340
apply (frule lessI [THEN less_trans], simp add: less_not_refl3)
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
  1341
(* case n \<le> Suc(na) *)
16796
140f1e0ea846 generlization of some "nat" theorems
paulson
parents: 16733
diff changeset
  1342
apply (simp add: linorder_not_less le_Suc_eq mod_geq)
15439
71c0f98e31f1 made diff_less a simp rule
nipkow
parents: 15251
diff changeset
  1343
apply (auto simp add: Suc_diff_le le_mod_geq)
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
  1344
done
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
  1345
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
  1346
lemma mod_eq_0_iff: "(m mod d = 0) = (\<exists>q::nat. m = d*q)"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29509
diff changeset
  1347
by (auto simp add: dvd_eq_mod_eq_0 [symmetric] dvd_def)
17084
fb0a80aef0be classical rules must have names for ATP integration
paulson
parents: 16796
diff changeset
  1348
22718
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
  1349
lemmas mod_eq_0D [dest!] = mod_eq_0_iff [THEN iffD1]
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
  1350
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
  1351
(*Loses information, namely we also have r<d provided d is nonzero*)
57514
bdc2c6b40bf2 prefer ac_simps collections over separate name bindings for add and mult
haftmann
parents: 57512
diff changeset
  1352
lemma mod_eqD:
bdc2c6b40bf2 prefer ac_simps collections over separate name bindings for add and mult
haftmann
parents: 57512
diff changeset
  1353
  fixes m d r q :: nat
bdc2c6b40bf2 prefer ac_simps collections over separate name bindings for add and mult
haftmann
parents: 57512
diff changeset
  1354
  assumes "m mod d = r"
bdc2c6b40bf2 prefer ac_simps collections over separate name bindings for add and mult
haftmann
parents: 57512
diff changeset
  1355
  shows "\<exists>q. m = r + q * d"
bdc2c6b40bf2 prefer ac_simps collections over separate name bindings for add and mult
haftmann
parents: 57512
diff changeset
  1356
proof -
64242
93c6f0da5c70 more standardized theorem names for facts involving the div and mod identity
haftmann
parents: 64240
diff changeset
  1357
  from div_mult_mod_eq obtain q where "q * d + m mod d = m" by blast
57514
bdc2c6b40bf2 prefer ac_simps collections over separate name bindings for add and mult
haftmann
parents: 57512
diff changeset
  1358
  with assms have "m = r + q * d" by simp
bdc2c6b40bf2 prefer ac_simps collections over separate name bindings for add and mult
haftmann
parents: 57512
diff changeset
  1359
  then show ?thesis ..
bdc2c6b40bf2 prefer ac_simps collections over separate name bindings for add and mult
haftmann
parents: 57512
diff changeset
  1360
qed
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
  1361
13152
2a54f99b44b3 Divides.ML -> Divides_lemmas.ML
nipkow
parents: 12338
diff changeset
  1362
lemma split_div:
13189
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
  1363
 "P(n div k :: nat) =
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
  1364
 ((k = 0 \<longrightarrow> P 0) \<and> (k \<noteq> 0 \<longrightarrow> (!i. !j<k. n = k*i + j \<longrightarrow> P i)))"
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
  1365
 (is "?P = ?Q" is "_ = (_ \<and> (_ \<longrightarrow> ?R))")
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
  1366
proof
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
  1367
  assume P: ?P
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
  1368
  show ?Q
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
  1369
  proof (cases)
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
  1370
    assume "k = 0"
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
  1371
    with P show ?Q by simp
13189
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
  1372
  next
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
  1373
    assume not0: "k \<noteq> 0"
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
  1374
    thus ?Q
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
  1375
    proof (simp, intro allI impI)
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
  1376
      fix i j
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
  1377
      assume n: "n = k*i + j" and j: "j < k"
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
  1378
      show "P i"
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
  1379
      proof (cases)
22718
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
  1380
        assume "i = 0"
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
  1381
        with n j P show "P i" by simp
13189
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
  1382
      next
22718
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
  1383
        assume "i \<noteq> 0"
57514
bdc2c6b40bf2 prefer ac_simps collections over separate name bindings for add and mult
haftmann
parents: 57512
diff changeset
  1384
        with not0 n j P show "P i" by(simp add:ac_simps)
13189
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
  1385
      qed
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
  1386
    qed
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
  1387
  qed
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
  1388
next
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
  1389
  assume Q: ?Q
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
  1390
  show ?P
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
  1391
  proof (cases)
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
  1392
    assume "k = 0"
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
  1393
    with Q show ?P by simp
13189
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
  1394
  next
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
  1395
    assume not0: "k \<noteq> 0"
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
  1396
    with Q have R: ?R by simp
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
  1397
    from not0 R[THEN spec,of "n div k",THEN spec, of "n mod k"]
13517
42efec18f5b2 Added div+mod cancelling simproc
nipkow
parents: 13189
diff changeset
  1398
    show ?P by simp
13189
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
  1399
  qed
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
  1400
qed
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
  1401
13882
2266550ab316 New theorems split_div' and mod_div_equality'.
berghofe
parents: 13517
diff changeset
  1402
lemma split_div_lemma:
26100
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
  1403
  assumes "0 < n"
61076
bdc1e2f0a86a eliminated \<Colon>;
wenzelm
parents: 60930
diff changeset
  1404
  shows "n * q \<le> m \<and> m < n * Suc q \<longleftrightarrow> q = ((m::nat) div n)" (is "?lhs \<longleftrightarrow> ?rhs")
26100
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
  1405
proof
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
  1406
  assume ?rhs
64246
15d1ee6e847b eliminated irregular aliasses
haftmann
parents: 64244
diff changeset
  1407
  with minus_mod_eq_mult_div [symmetric] have nq: "n * q = m - (m mod n)" by simp
26100
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
  1408
  then have A: "n * q \<le> m" by simp
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
  1409
  have "n - (m mod n) > 0" using mod_less_divisor assms by auto
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
  1410
  then have "m < m + (n - (m mod n))" by simp
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
  1411
  then have "m < n + (m - (m mod n))" by simp
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
  1412
  with nq have "m < n + n * q" by simp
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
  1413
  then have B: "m < n * Suc q" by simp
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
  1414
  from A B show ?lhs ..
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
  1415
next
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
  1416
  assume P: ?lhs
64635
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1417
  then have "eucl_rel_nat m n (q, m - n * q)"
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1418
    by (auto intro: eucl_rel_natI simp add: ac_simps)
61433
a4c0de1df3d8 qualify some names stemming from internal bootstrap constructions
haftmann
parents: 61275
diff changeset
  1419
  then have "m div n = q"
a4c0de1df3d8 qualify some names stemming from internal bootstrap constructions
haftmann
parents: 61275
diff changeset
  1420
    by (rule div_nat_unique)
30923
2697a1d1d34a more coherent developement in Divides.thy and IntDiv.thy
haftmann
parents: 30840
diff changeset
  1421
  then show ?rhs by simp
26100
fbc60cd02ae2 using only an relation predicate to construct div and mod
haftmann
parents: 26072
diff changeset
  1422
qed
13882
2266550ab316 New theorems split_div' and mod_div_equality'.
berghofe
parents: 13517
diff changeset
  1423
2266550ab316 New theorems split_div' and mod_div_equality'.
berghofe
parents: 13517
diff changeset
  1424
theorem split_div':
2266550ab316 New theorems split_div' and mod_div_equality'.
berghofe
parents: 13517
diff changeset
  1425
  "P ((m::nat) div n) = ((n = 0 \<and> P 0) \<or>
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14208
diff changeset
  1426
   (\<exists>q. (n * q \<le> m \<and> m < n * (Suc q)) \<and> P q))"
61433
a4c0de1df3d8 qualify some names stemming from internal bootstrap constructions
haftmann
parents: 61275
diff changeset
  1427
  apply (cases "0 < n")
13882
2266550ab316 New theorems split_div' and mod_div_equality'.
berghofe
parents: 13517
diff changeset
  1428
  apply (simp only: add: split_div_lemma)
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
  1429
  apply simp_all
13882
2266550ab316 New theorems split_div' and mod_div_equality'.
berghofe
parents: 13517
diff changeset
  1430
  done
2266550ab316 New theorems split_div' and mod_div_equality'.
berghofe
parents: 13517
diff changeset
  1431
13189
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
  1432
lemma split_mod:
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
  1433
 "P(n mod k :: nat) =
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
  1434
 ((k = 0 \<longrightarrow> P n) \<and> (k \<noteq> 0 \<longrightarrow> (!i. !j<k. n = k*i + j \<longrightarrow> P j)))"
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
  1435
 (is "?P = ?Q" is "_ = (_ \<and> (_ \<longrightarrow> ?R))")
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
  1436
proof
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
  1437
  assume P: ?P
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
  1438
  show ?Q
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
  1439
  proof (cases)
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
  1440
    assume "k = 0"
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
  1441
    with P show ?Q by simp
13189
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
  1442
  next
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
  1443
    assume not0: "k \<noteq> 0"
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
  1444
    thus ?Q
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
  1445
    proof (simp, intro allI impI)
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
  1446
      fix i j
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
  1447
      assume "n = k*i + j" "j < k"
58786
fa5b67fb70ad more simp rules;
haftmann
parents: 58778
diff changeset
  1448
      thus "P j" using not0 P by (simp add: ac_simps)
13189
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
  1449
    qed
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
  1450
  qed
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
  1451
next
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
  1452
  assume Q: ?Q
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
  1453
  show ?P
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
  1454
  proof (cases)
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
  1455
    assume "k = 0"
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27540
diff changeset
  1456
    with Q show ?P by simp
13189
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
  1457
  next
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
  1458
    assume not0: "k \<noteq> 0"
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
  1459
    with Q have R: ?R by simp
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
  1460
    from not0 R[THEN spec,of "n div k",THEN spec, of "n mod k"]
13517
42efec18f5b2 Added div+mod cancelling simproc
nipkow
parents: 13189
diff changeset
  1461
    show ?P by simp
13189
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
  1462
  qed
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
  1463
qed
81ed5c6de890 Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents: 13152
diff changeset
  1464
52398
656e5e171f19 added lemma
noschinl
parents: 51717
diff changeset
  1465
lemma div_eq_dividend_iff: "a \<noteq> 0 \<Longrightarrow> (a :: nat) div b = a \<longleftrightarrow> b = 1"
656e5e171f19 added lemma
noschinl
parents: 51717
diff changeset
  1466
  apply rule
656e5e171f19 added lemma
noschinl
parents: 51717
diff changeset
  1467
  apply (cases "b = 0")
656e5e171f19 added lemma
noschinl
parents: 51717
diff changeset
  1468
  apply simp_all
656e5e171f19 added lemma
noschinl
parents: 51717
diff changeset
  1469
  apply (metis (full_types) One_nat_def Suc_lessI div_less_dividend less_not_refl3)
656e5e171f19 added lemma
noschinl
parents: 51717
diff changeset
  1470
  done
656e5e171f19 added lemma
noschinl
parents: 51717
diff changeset
  1471
63417
c184ec919c70 more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
haftmann
parents: 63317
diff changeset
  1472
lemma (in field_char_0) of_nat_div:
c184ec919c70 more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
haftmann
parents: 63317
diff changeset
  1473
  "of_nat (m div n) = ((of_nat m - of_nat (m mod n)) / of_nat n)"
c184ec919c70 more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
haftmann
parents: 63317
diff changeset
  1474
proof -
c184ec919c70 more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
haftmann
parents: 63317
diff changeset
  1475
  have "of_nat (m div n) = ((of_nat (m div n * n + m mod n) - of_nat (m mod n)) / of_nat n :: 'a)"
c184ec919c70 more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
haftmann
parents: 63317
diff changeset
  1476
    unfolding of_nat_add by (cases "n = 0") simp_all
c184ec919c70 more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
haftmann
parents: 63317
diff changeset
  1477
  then show ?thesis
c184ec919c70 more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
haftmann
parents: 63317
diff changeset
  1478
    by simp
c184ec919c70 more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
haftmann
parents: 63317
diff changeset
  1479
qed
c184ec919c70 more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
haftmann
parents: 63317
diff changeset
  1480
22800
eaf5e7ef35d9 added lemmatas
haftmann
parents: 22744
diff changeset
  1481
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
  1482
subsubsection \<open>An ``induction'' law for modulus arithmetic.\<close>
14640
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1483
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1484
lemma mod_induct_0:
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1485
  assumes step: "\<forall>i<p. P i \<longrightarrow> P ((Suc i) mod p)"
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1486
  and base: "P i" and i: "i<p"
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1487
  shows "P 0"
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1488
proof (rule ccontr)
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1489
  assume contra: "\<not>(P 0)"
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1490
  from i have p: "0<p" by simp
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1491
  have "\<forall>k. 0<k \<longrightarrow> \<not> P (p-k)" (is "\<forall>k. ?A k")
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1492
  proof
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1493
    fix k
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1494
    show "?A k"
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1495
    proof (induct k)
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61649
diff changeset
  1496
      show "?A 0" by simp  \<comment> "by contradiction"
14640
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1497
    next
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1498
      fix n
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1499
      assume ih: "?A n"
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1500
      show "?A (Suc n)"
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1501
      proof (clarsimp)
22718
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
  1502
        assume y: "P (p - Suc n)"
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
  1503
        have n: "Suc n < p"
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
  1504
        proof (rule ccontr)
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
  1505
          assume "\<not>(Suc n < p)"
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
  1506
          hence "p - Suc n = 0"
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
  1507
            by simp
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
  1508
          with y contra show "False"
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
  1509
            by simp
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
  1510
        qed
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
  1511
        hence n2: "Suc (p - Suc n) = p-n" by arith
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
  1512
        from p have "p - Suc n < p" by arith
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
  1513
        with y step have z: "P ((Suc (p - Suc n)) mod p)"
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
  1514
          by blast
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
  1515
        show "False"
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
  1516
        proof (cases "n=0")
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
  1517
          case True
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
  1518
          with z n2 contra show ?thesis by simp
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
  1519
        next
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
  1520
          case False
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
  1521
          with p have "p-n < p" by arith
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
  1522
          with z n2 False ih show ?thesis by simp
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
  1523
        qed
14640
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1524
      qed
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1525
    qed
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1526
  qed
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1527
  moreover
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1528
  from i obtain k where "0<k \<and> i+k=p"
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1529
    by (blast dest: less_imp_add_positive)
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1530
  hence "0<k \<and> i=p-k" by auto
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1531
  moreover
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1532
  note base
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1533
  ultimately
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1534
  show "False" by blast
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1535
qed
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1536
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1537
lemma mod_induct:
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1538
  assumes step: "\<forall>i<p. P i \<longrightarrow> P ((Suc i) mod p)"
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1539
  and base: "P i" and i: "i<p" and j: "j<p"
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1540
  shows "P j"
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1541
proof -
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1542
  have "\<forall>j<p. P j"
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1543
  proof
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1544
    fix j
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1545
    show "j<p \<longrightarrow> P j" (is "?A j")
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1546
    proof (induct j)
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1547
      from step base i show "?A 0"
22718
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
  1548
        by (auto elim: mod_induct_0)
14640
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1549
    next
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1550
      fix k
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1551
      assume ih: "?A k"
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1552
      show "?A (Suc k)"
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1553
      proof
22718
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
  1554
        assume suc: "Suc k < p"
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
  1555
        hence k: "k<p" by simp
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
  1556
        with ih have "P k" ..
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
  1557
        with step k have "P (Suc k mod p)"
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
  1558
          by blast
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
  1559
        moreover
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
  1560
        from suc have "Suc k mod p = Suc k"
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
  1561
          by simp
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
  1562
        ultimately
936f7580937d tuned proofs;
wenzelm
parents: 22473
diff changeset
  1563
        show "P (Suc k)" by simp
14640
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1564
      qed
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1565
    qed
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1566
  qed
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1567
  with j show ?thesis by blast
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1568
qed
b31870c50c68 new lemmas
paulson
parents: 14437
diff changeset
  1569
33296
a3924d1069e5 moved theory Divides after theory Nat_Numeral; tuned some proof texts
haftmann
parents: 33274
diff changeset
  1570
lemma div2_Suc_Suc [simp]: "Suc (Suc m) div 2 = Suc (m div 2)"
47138
f8cf96545eed tuned proofs
huffman
parents: 47137
diff changeset
  1571
  by (simp add: numeral_2_eq_2 le_div_geq)
f8cf96545eed tuned proofs
huffman
parents: 47137
diff changeset
  1572
f8cf96545eed tuned proofs
huffman
parents: 47137
diff changeset
  1573
lemma mod2_Suc_Suc [simp]: "Suc (Suc m) mod 2 = m mod 2"
f8cf96545eed tuned proofs
huffman
parents: 47137
diff changeset
  1574
  by (simp add: numeral_2_eq_2 le_mod_geq)
33296
a3924d1069e5 moved theory Divides after theory Nat_Numeral; tuned some proof texts
haftmann
parents: 33274
diff changeset
  1575
a3924d1069e5 moved theory Divides after theory Nat_Numeral; tuned some proof texts
haftmann
parents: 33274
diff changeset
  1576
lemma add_self_div_2 [simp]: "(m + m) div 2 = (m::nat)"
47217
501b9bbd0d6e removed redundant nat-specific copies of theorems
huffman
parents: 47167
diff changeset
  1577
by (simp add: mult_2 [symmetric])
33296
a3924d1069e5 moved theory Divides after theory Nat_Numeral; tuned some proof texts
haftmann
parents: 33274
diff changeset
  1578
61076
bdc1e2f0a86a eliminated \<Colon>;
wenzelm
parents: 60930
diff changeset
  1579
lemma mod2_gr_0 [simp]: "0 < (m::nat) mod 2 \<longleftrightarrow> m mod 2 = 1"
33296
a3924d1069e5 moved theory Divides after theory Nat_Numeral; tuned some proof texts
haftmann
parents: 33274
diff changeset
  1580
proof -
35815
10e723e54076 tuned proofs (to avoid linarith error message caused by bootstrapping of HOL)
boehmes
parents: 35673
diff changeset
  1581
  { fix n :: nat have  "(n::nat) < 2 \<Longrightarrow> n = 0 \<or> n = 1" by (cases n) simp_all }
33296
a3924d1069e5 moved theory Divides after theory Nat_Numeral; tuned some proof texts
haftmann
parents: 33274
diff changeset
  1582
  moreover have "m mod 2 < 2" by simp
a3924d1069e5 moved theory Divides after theory Nat_Numeral; tuned some proof texts
haftmann
parents: 33274
diff changeset
  1583
  ultimately have "m mod 2 = 0 \<or> m mod 2 = 1" .
a3924d1069e5 moved theory Divides after theory Nat_Numeral; tuned some proof texts
haftmann
parents: 33274
diff changeset
  1584
  then show ?thesis by auto
a3924d1069e5 moved theory Divides after theory Nat_Numeral; tuned some proof texts
haftmann
parents: 33274
diff changeset
  1585
qed
a3924d1069e5 moved theory Divides after theory Nat_Numeral; tuned some proof texts
haftmann
parents: 33274
diff changeset
  1586
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
  1587
text\<open>These lemmas collapse some needless occurrences of Suc:
33296
a3924d1069e5 moved theory Divides after theory Nat_Numeral; tuned some proof texts
haftmann
parents: 33274
diff changeset
  1588
    at least three Sucs, since two and fewer are rewritten back to Suc again!
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
  1589
    We already have some rules to simplify operands smaller than 3.\<close>
33296
a3924d1069e5 moved theory Divides after theory Nat_Numeral; tuned some proof texts
haftmann
parents: 33274
diff changeset
  1590
a3924d1069e5 moved theory Divides after theory Nat_Numeral; tuned some proof texts
haftmann
parents: 33274
diff changeset
  1591
lemma div_Suc_eq_div_add3 [simp]: "m div (Suc (Suc (Suc n))) = m div (3+n)"
a3924d1069e5 moved theory Divides after theory Nat_Numeral; tuned some proof texts
haftmann
parents: 33274
diff changeset
  1592
by (simp add: Suc3_eq_add_3)
a3924d1069e5 moved theory Divides after theory Nat_Numeral; tuned some proof texts
haftmann
parents: 33274
diff changeset
  1593
a3924d1069e5 moved theory Divides after theory Nat_Numeral; tuned some proof texts
haftmann
parents: 33274
diff changeset
  1594
lemma mod_Suc_eq_mod_add3 [simp]: "m mod (Suc (Suc (Suc n))) = m mod (3+n)"
a3924d1069e5 moved theory Divides after theory Nat_Numeral; tuned some proof texts
haftmann
parents: 33274
diff changeset
  1595
by (simp add: Suc3_eq_add_3)
a3924d1069e5 moved theory Divides after theory Nat_Numeral; tuned some proof texts
haftmann
parents: 33274
diff changeset
  1596
a3924d1069e5 moved theory Divides after theory Nat_Numeral; tuned some proof texts
haftmann
parents: 33274
diff changeset
  1597
lemma Suc_div_eq_add3_div: "(Suc (Suc (Suc m))) div n = (3+m) div n"
a3924d1069e5 moved theory Divides after theory Nat_Numeral; tuned some proof texts
haftmann
parents: 33274
diff changeset
  1598
by (simp add: Suc3_eq_add_3)
a3924d1069e5 moved theory Divides after theory Nat_Numeral; tuned some proof texts
haftmann
parents: 33274
diff changeset
  1599
a3924d1069e5 moved theory Divides after theory Nat_Numeral; tuned some proof texts
haftmann
parents: 33274
diff changeset
  1600
lemma Suc_mod_eq_add3_mod: "(Suc (Suc (Suc m))) mod n = (3+m) mod n"
a3924d1069e5 moved theory Divides after theory Nat_Numeral; tuned some proof texts
haftmann
parents: 33274
diff changeset
  1601
by (simp add: Suc3_eq_add_3)
a3924d1069e5 moved theory Divides after theory Nat_Numeral; tuned some proof texts
haftmann
parents: 33274
diff changeset
  1602
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46560
diff changeset
  1603
lemmas Suc_div_eq_add3_div_numeral [simp] = Suc_div_eq_add3_div [of _ "numeral v"] for v
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46560
diff changeset
  1604
lemmas Suc_mod_eq_add3_mod_numeral [simp] = Suc_mod_eq_add3_mod [of _ "numeral v"] for v
33296
a3924d1069e5 moved theory Divides after theory Nat_Numeral; tuned some proof texts
haftmann
parents: 33274
diff changeset
  1605
60562
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60517
diff changeset
  1606
lemma Suc_times_mod_eq: "1<k ==> Suc (k * m) mod k = 1"
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1607
apply (induct "m")
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1608
apply (simp_all add: mod_Suc)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1609
done
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1610
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46560
diff changeset
  1611
declare Suc_times_mod_eq [of "numeral w", simp] for w
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1612
47138
f8cf96545eed tuned proofs
huffman
parents: 47137
diff changeset
  1613
lemma Suc_div_le_mono [simp]: "n div k \<le> (Suc n) div k"
f8cf96545eed tuned proofs
huffman
parents: 47137
diff changeset
  1614
by (simp add: div_le_mono)
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1615
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1616
lemma Suc_n_div_2_gt_zero [simp]: "(0::nat) < n ==> 0 < (n + 1) div 2"
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1617
by (cases n) simp_all
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1618
35815
10e723e54076 tuned proofs (to avoid linarith error message caused by bootstrapping of HOL)
boehmes
parents: 35673
diff changeset
  1619
lemma div_2_gt_zero [simp]: assumes A: "(1::nat) < n" shows "0 < n div 2"
10e723e54076 tuned proofs (to avoid linarith error message caused by bootstrapping of HOL)
boehmes
parents: 35673
diff changeset
  1620
proof -
10e723e54076 tuned proofs (to avoid linarith error message caused by bootstrapping of HOL)
boehmes
parents: 35673
diff changeset
  1621
  from A have B: "0 < n - 1" and C: "n - 1 + 1 = n" by simp_all
60562
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60517
diff changeset
  1622
  from Suc_n_div_2_gt_zero [OF B] C show ?thesis by simp
35815
10e723e54076 tuned proofs (to avoid linarith error message caused by bootstrapping of HOL)
boehmes
parents: 35673
diff changeset
  1623
qed
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1624
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1625
lemma mod_mult_self4 [simp]: "Suc (k*n + m) mod n = Suc m mod n"
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1626
proof -
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1627
  have "Suc (k * n + m) mod n = (k * n + Suc m) mod n" by simp
60562
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60517
diff changeset
  1628
  also have "... = Suc m mod n" by (rule mod_mult_self3)
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1629
  finally show ?thesis .
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1630
qed
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1631
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1632
lemma mod_Suc_eq_Suc_mod: "Suc m mod n = Suc (m mod n) mod n"
60562
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60517
diff changeset
  1633
apply (subst mod_Suc [of m])
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60517
diff changeset
  1634
apply (subst mod_Suc [of "m mod n"], simp)
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1635
done
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1636
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46560
diff changeset
  1637
lemma mod_2_not_eq_zero_eq_one_nat:
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46560
diff changeset
  1638
  fixes n :: nat
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46560
diff changeset
  1639
  shows "n mod 2 \<noteq> 0 \<longleftrightarrow> n mod 2 = 1"
58786
fa5b67fb70ad more simp rules;
haftmann
parents: 58778
diff changeset
  1640
  by (fact not_mod_2_eq_0_eq_1)
60562
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60517
diff changeset
  1641
58778
e29cae8eab1f even further downshift of theory Parity in the hierarchy
haftmann
parents: 58710
diff changeset
  1642
lemma even_Suc_div_two [simp]:
e29cae8eab1f even further downshift of theory Parity in the hierarchy
haftmann
parents: 58710
diff changeset
  1643
  "even n \<Longrightarrow> Suc n div 2 = n div 2"
e29cae8eab1f even further downshift of theory Parity in the hierarchy
haftmann
parents: 58710
diff changeset
  1644
  using even_succ_div_two [of n] by simp
60562
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60517
diff changeset
  1645
58778
e29cae8eab1f even further downshift of theory Parity in the hierarchy
haftmann
parents: 58710
diff changeset
  1646
lemma odd_Suc_div_two [simp]:
e29cae8eab1f even further downshift of theory Parity in the hierarchy
haftmann
parents: 58710
diff changeset
  1647
  "odd n \<Longrightarrow> Suc n div 2 = Suc (n div 2)"
e29cae8eab1f even further downshift of theory Parity in the hierarchy
haftmann
parents: 58710
diff changeset
  1648
  using odd_succ_div_two [of n] by simp
e29cae8eab1f even further downshift of theory Parity in the hierarchy
haftmann
parents: 58710
diff changeset
  1649
58834
773b378d9313 more simp rules concerning dvd and even/odd
haftmann
parents: 58786
diff changeset
  1650
lemma odd_two_times_div_two_nat [simp]:
60352
d46de31a50c4 separate class for division operator, with particular syntax added in more specific classes
haftmann
parents: 59833
diff changeset
  1651
  assumes "odd n"
d46de31a50c4 separate class for division operator, with particular syntax added in more specific classes
haftmann
parents: 59833
diff changeset
  1652
  shows "2 * (n div 2) = n - (1 :: nat)"
d46de31a50c4 separate class for division operator, with particular syntax added in more specific classes
haftmann
parents: 59833
diff changeset
  1653
proof -
d46de31a50c4 separate class for division operator, with particular syntax added in more specific classes
haftmann
parents: 59833
diff changeset
  1654
  from assms have "2 * (n div 2) + 1 = n"
d46de31a50c4 separate class for division operator, with particular syntax added in more specific classes
haftmann
parents: 59833
diff changeset
  1655
    by (rule odd_two_times_div_two_succ)
d46de31a50c4 separate class for division operator, with particular syntax added in more specific classes
haftmann
parents: 59833
diff changeset
  1656
  then have "Suc (2 * (n div 2)) - 1 = n - 1"
d46de31a50c4 separate class for division operator, with particular syntax added in more specific classes
haftmann
parents: 59833
diff changeset
  1657
    by simp
d46de31a50c4 separate class for division operator, with particular syntax added in more specific classes
haftmann
parents: 59833
diff changeset
  1658
  then show ?thesis
d46de31a50c4 separate class for division operator, with particular syntax added in more specific classes
haftmann
parents: 59833
diff changeset
  1659
    by simp
d46de31a50c4 separate class for division operator, with particular syntax added in more specific classes
haftmann
parents: 59833
diff changeset
  1660
qed
58778
e29cae8eab1f even further downshift of theory Parity in the hierarchy
haftmann
parents: 58710
diff changeset
  1661
e29cae8eab1f even further downshift of theory Parity in the hierarchy
haftmann
parents: 58710
diff changeset
  1662
lemma parity_induct [case_names zero even odd]:
e29cae8eab1f even further downshift of theory Parity in the hierarchy
haftmann
parents: 58710
diff changeset
  1663
  assumes zero: "P 0"
e29cae8eab1f even further downshift of theory Parity in the hierarchy
haftmann
parents: 58710
diff changeset
  1664
  assumes even: "\<And>n. P n \<Longrightarrow> P (2 * n)"
e29cae8eab1f even further downshift of theory Parity in the hierarchy
haftmann
parents: 58710
diff changeset
  1665
  assumes odd: "\<And>n. P n \<Longrightarrow> P (Suc (2 * n))"
e29cae8eab1f even further downshift of theory Parity in the hierarchy
haftmann
parents: 58710
diff changeset
  1666
  shows "P n"
e29cae8eab1f even further downshift of theory Parity in the hierarchy
haftmann
parents: 58710
diff changeset
  1667
proof (induct n rule: less_induct)
e29cae8eab1f even further downshift of theory Parity in the hierarchy
haftmann
parents: 58710
diff changeset
  1668
  case (less n)
e29cae8eab1f even further downshift of theory Parity in the hierarchy
haftmann
parents: 58710
diff changeset
  1669
  show "P n"
e29cae8eab1f even further downshift of theory Parity in the hierarchy
haftmann
parents: 58710
diff changeset
  1670
  proof (cases "n = 0")
e29cae8eab1f even further downshift of theory Parity in the hierarchy
haftmann
parents: 58710
diff changeset
  1671
    case True with zero show ?thesis by simp
e29cae8eab1f even further downshift of theory Parity in the hierarchy
haftmann
parents: 58710
diff changeset
  1672
  next
e29cae8eab1f even further downshift of theory Parity in the hierarchy
haftmann
parents: 58710
diff changeset
  1673
    case False
e29cae8eab1f even further downshift of theory Parity in the hierarchy
haftmann
parents: 58710
diff changeset
  1674
    with less have hyp: "P (n div 2)" by simp
e29cae8eab1f even further downshift of theory Parity in the hierarchy
haftmann
parents: 58710
diff changeset
  1675
    show ?thesis
e29cae8eab1f even further downshift of theory Parity in the hierarchy
haftmann
parents: 58710
diff changeset
  1676
    proof (cases "even n")
e29cae8eab1f even further downshift of theory Parity in the hierarchy
haftmann
parents: 58710
diff changeset
  1677
      case True
e29cae8eab1f even further downshift of theory Parity in the hierarchy
haftmann
parents: 58710
diff changeset
  1678
      with hyp even [of "n div 2"] show ?thesis
58834
773b378d9313 more simp rules concerning dvd and even/odd
haftmann
parents: 58786
diff changeset
  1679
        by simp
58778
e29cae8eab1f even further downshift of theory Parity in the hierarchy
haftmann
parents: 58710
diff changeset
  1680
    next
e29cae8eab1f even further downshift of theory Parity in the hierarchy
haftmann
parents: 58710
diff changeset
  1681
      case False
60562
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60517
diff changeset
  1682
      with hyp odd [of "n div 2"] show ?thesis
58834
773b378d9313 more simp rules concerning dvd and even/odd
haftmann
parents: 58786
diff changeset
  1683
        by simp
58778
e29cae8eab1f even further downshift of theory Parity in the hierarchy
haftmann
parents: 58710
diff changeset
  1684
    qed
e29cae8eab1f even further downshift of theory Parity in the hierarchy
haftmann
parents: 58710
diff changeset
  1685
  qed
e29cae8eab1f even further downshift of theory Parity in the hierarchy
haftmann
parents: 58710
diff changeset
  1686
qed
e29cae8eab1f even further downshift of theory Parity in the hierarchy
haftmann
parents: 58710
diff changeset
  1687
60868
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  1688
lemma Suc_0_div_numeral [simp]:
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  1689
  fixes k l :: num
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  1690
  shows "Suc 0 div numeral k = fst (divmod Num.One k)"
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  1691
  by (simp_all add: fst_divmod)
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  1692
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  1693
lemma Suc_0_mod_numeral [simp]:
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  1694
  fixes k l :: num
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  1695
  shows "Suc 0 mod numeral k = snd (divmod Num.One k)"
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  1696
  by (simp_all add: snd_divmod)
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  1697
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1698
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
  1699
subsection \<open>Division on @{typ int}\<close>
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1700
64592
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1701
context
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1702
begin
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1703
64635
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1704
inductive eucl_rel_int :: "int \<Rightarrow> int \<Rightarrow> int \<times> int \<Rightarrow> bool"
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1705
  where eucl_rel_int_by0: "eucl_rel_int k 0 (0, k)"
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1706
  | eucl_rel_int_dividesI: "l \<noteq> 0 \<Longrightarrow> k = q * l \<Longrightarrow> eucl_rel_int k l (q, 0)"
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1707
  | eucl_rel_int_remainderI: "sgn r = sgn l \<Longrightarrow> \<bar>r\<bar> < \<bar>l\<bar>
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1708
      \<Longrightarrow> k = q * l + r \<Longrightarrow> eucl_rel_int k l (q, r)"
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1709
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1710
lemma eucl_rel_int_iff:    
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1711
  "eucl_rel_int k l (q, r) \<longleftrightarrow> 
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1712
    k = l * q + r \<and>
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1713
     (if 0 < l then 0 \<le> r \<and> r < l else if l < 0 then l < r \<and> r \<le> 0 else q = 0)"
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1714
  by (cases "r = 0")
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1715
    (auto elim!: eucl_rel_int.cases intro: eucl_rel_int_by0 eucl_rel_int_dividesI eucl_rel_int_remainderI
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1716
    simp add: ac_simps sgn_1_pos sgn_1_neg)
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1717
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1718
lemma unique_quotient_lemma:
60868
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  1719
  "b * q' + r' \<le> b * q + r \<Longrightarrow> 0 \<le> r' \<Longrightarrow> r' < b \<Longrightarrow> r < b \<Longrightarrow> q' \<le> (q::int)"
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1720
apply (subgoal_tac "r' + b * (q'-q) \<le> r")
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1721
 prefer 2 apply (simp add: right_diff_distrib)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1722
apply (subgoal_tac "0 < b * (1 + q - q') ")
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1723
apply (erule_tac [2] order_le_less_trans)
49962
a8cc904a6820 Renamed {left,right}_distrib to distrib_{right,left}.
webertj
parents: 48891
diff changeset
  1724
 prefer 2 apply (simp add: right_diff_distrib distrib_left)
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1725
apply (subgoal_tac "b * q' < b * (1 + q) ")
49962
a8cc904a6820 Renamed {left,right}_distrib to distrib_{right,left}.
webertj
parents: 48891
diff changeset
  1726
 prefer 2 apply (simp add: right_diff_distrib distrib_left)
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1727
apply (simp add: mult_less_cancel_left)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1728
done
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1729
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1730
lemma unique_quotient_lemma_neg:
60868
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  1731
  "b * q' + r' \<le> b*q + r \<Longrightarrow> r \<le> 0 \<Longrightarrow> b < r \<Longrightarrow> b < r' \<Longrightarrow> q \<le> (q'::int)"
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  1732
  by (rule_tac b = "-b" and r = "-r'" and r' = "-r" in unique_quotient_lemma) auto
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1733
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1734
lemma unique_quotient:
64635
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1735
  "eucl_rel_int a b (q, r) \<Longrightarrow> eucl_rel_int a b (q', r') \<Longrightarrow> q = q'"
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1736
  apply (simp add: eucl_rel_int_iff linorder_neq_iff split: if_split_asm)
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1737
  apply (blast intro: order_antisym
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1738
    dest: order_eq_refl [THEN unique_quotient_lemma]
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1739
    order_eq_refl [THEN unique_quotient_lemma_neg] sym)+
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1740
  done
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1741
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1742
lemma unique_remainder:
64635
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1743
  "eucl_rel_int a b (q, r) \<Longrightarrow> eucl_rel_int a b (q', r') \<Longrightarrow> r = r'"
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1744
apply (subgoal_tac "q = q'")
64635
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1745
 apply (simp add: eucl_rel_int_iff)
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1746
apply (blast intro: unique_quotient)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1747
done
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1748
64592
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1749
end
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1750
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1751
instantiation int :: "{idom_modulo, normalization_semidom}"
60868
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  1752
begin
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  1753
64592
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1754
definition normalize_int :: "int \<Rightarrow> int"
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1755
  where [simp]: "normalize = (abs :: int \<Rightarrow> int)"
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1756
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1757
definition unit_factor_int :: "int \<Rightarrow> int"
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1758
  where [simp]: "unit_factor = (sgn :: int \<Rightarrow> int)"
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1759
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1760
definition divide_int :: "int \<Rightarrow> int \<Rightarrow> int"
60868
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  1761
  where "k div l = (if l = 0 \<or> k = 0 then 0
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  1762
    else if k > 0 \<and> l > 0 \<or> k < 0 \<and> l < 0
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  1763
      then int (nat \<bar>k\<bar> div nat \<bar>l\<bar>)
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  1764
      else
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  1765
        if l dvd k then - int (nat \<bar>k\<bar> div nat \<bar>l\<bar>)
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  1766
        else - int (Suc (nat \<bar>k\<bar> div nat \<bar>l\<bar>)))"
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  1767
64592
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1768
definition modulo_int :: "int \<Rightarrow> int \<Rightarrow> int"
60868
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  1769
  where "k mod l = (if l = 0 then k else if l dvd k then 0
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  1770
    else if k > 0 \<and> l > 0 \<or> k < 0 \<and> l < 0
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  1771
      then sgn l * int (nat \<bar>k\<bar> mod nat \<bar>l\<bar>)
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  1772
      else sgn l * (\<bar>l\<bar> - int (nat \<bar>k\<bar> mod nat \<bar>l\<bar>)))"
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  1773
64635
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1774
lemma eucl_rel_int:
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1775
  "eucl_rel_int k l (k div l, k mod l)"
64592
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1776
proof (cases k rule: int_cases3)
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1777
  case zero
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1778
  then show ?thesis
64635
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1779
    by (simp add: eucl_rel_int_iff divide_int_def modulo_int_def)
64592
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1780
next
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1781
  case (pos n)
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1782
  then show ?thesis
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1783
    using div_mult_mod_eq [of n]
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1784
    by (cases l rule: int_cases3)
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1785
      (auto simp del: of_nat_mult of_nat_add
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1786
        simp add: mod_greater_zero_iff_not_dvd of_nat_mult [symmetric] of_nat_add [symmetric] algebra_simps
64635
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1787
        eucl_rel_int_iff divide_int_def modulo_int_def int_dvd_iff)
64592
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1788
next
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1789
  case (neg n)
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1790
  then show ?thesis
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1791
    using div_mult_mod_eq [of n]
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1792
    by (cases l rule: int_cases3)
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1793
      (auto simp del: of_nat_mult of_nat_add
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1794
        simp add: mod_greater_zero_iff_not_dvd of_nat_mult [symmetric] of_nat_add [symmetric] algebra_simps
64635
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1795
        eucl_rel_int_iff divide_int_def modulo_int_def int_dvd_iff)
64592
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1796
qed
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1797
47141
02d6b816e4b3 move int::ring_div instance upward, simplify several proofs
huffman
parents: 47140
diff changeset
  1798
lemma divmod_int_unique:
64635
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1799
  assumes "eucl_rel_int k l (q, r)"
60868
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  1800
  shows div_int_unique: "k div l = q" and mod_int_unique: "k mod l = r"
64635
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1801
  using assms eucl_rel_int [of k l]
60868
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  1802
  using unique_quotient [of k l] unique_remainder [of k l]
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  1803
  by auto
64592
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1804
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1805
instance proof
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1806
  fix k l :: int
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1807
  show "k div l * l + k mod l = k"
64635
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1808
    using eucl_rel_int [of k l]
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1809
    unfolding eucl_rel_int_iff by (simp add: ac_simps)
47141
02d6b816e4b3 move int::ring_div instance upward, simplify several proofs
huffman
parents: 47140
diff changeset
  1810
next
64592
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1811
  fix k :: int show "k div 0 = 0"
64635
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1812
    by (rule div_int_unique, simp add: eucl_rel_int_iff)
47141
02d6b816e4b3 move int::ring_div instance upward, simplify several proofs
huffman
parents: 47140
diff changeset
  1813
next
64592
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1814
  fix k l :: int
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1815
  assume "l \<noteq> 0"
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1816
  then show "k * l div l = k"
64635
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1817
    by (auto simp add: eucl_rel_int_iff ac_simps intro: div_int_unique [of _ _ _ 0])
64592
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1818
qed (simp_all add: sgn_mult mult_sgn_abs abs_sgn_eq)
47141
02d6b816e4b3 move int::ring_div instance upward, simplify several proofs
huffman
parents: 47140
diff changeset
  1819
60429
d3d1e185cd63 uniform _ div _ as infix syntax for ring division
haftmann
parents: 60353
diff changeset
  1820
end
d3d1e185cd63 uniform _ div _ as infix syntax for ring division
haftmann
parents: 60353
diff changeset
  1821
60517
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1822
lemma is_unit_int:
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1823
  "is_unit (k::int) \<longleftrightarrow> k = 1 \<or> k = - 1"
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1824
  by auto
f16e4fb20652 separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
haftmann
parents: 60516
diff changeset
  1825
64592
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1826
instance int :: ring_div
60685
cb21b7022b00 moved normalization and unit_factor into Main HOL corpus
haftmann
parents: 60562
diff changeset
  1827
proof
64592
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1828
  fix k l s :: int
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1829
  assume "l \<noteq> 0"
64635
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1830
  then have "eucl_rel_int (k + s * l) l (s + k div l, k mod l)"
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1831
    using eucl_rel_int [of k l]
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1832
    unfolding eucl_rel_int_iff by (auto simp: algebra_simps)
64592
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1833
  then show "(k + s * l) div l = s + k div l"
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1834
    by (rule div_int_unique)
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1835
next
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1836
  fix k l s :: int
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1837
  assume "s \<noteq> 0"
64635
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1838
  have "\<And>q r. eucl_rel_int k l (q, r)
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1839
    \<Longrightarrow> eucl_rel_int (s * k) (s * l) (q, s * r)"
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1840
    unfolding eucl_rel_int_iff
64592
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1841
    by (rule linorder_cases [of 0 l])
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1842
      (use \<open>s \<noteq> 0\<close> in \<open>auto simp: algebra_simps
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1843
      mult_less_0_iff zero_less_mult_iff mult_strict_right_mono
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1844
      mult_strict_right_mono_neg zero_le_mult_iff mult_le_0_iff\<close>)
64635
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1845
  then have "eucl_rel_int (s * k) (s * l) (k div l, s * (k mod l))"
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1846
    using eucl_rel_int [of k l] .
64592
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1847
  then show "(s * k) div (s * l) = k div l"
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1848
    by (rule div_int_unique)
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1849
qed
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
  1850
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
  1851
ML \<open>
43594
ef1ddc59b825 modernized some simproc setup;
wenzelm
parents: 41792
diff changeset
  1852
structure Cancel_Div_Mod_Int = Cancel_Div_Mod
41550
efa734d9b221 eliminated global prems;
wenzelm
parents: 39489
diff changeset
  1853
(
63950
cdc1e59aa513 syntactic type class for operation mod named after mod;
haftmann
parents: 63947
diff changeset
  1854
  val div_name = @{const_name divide};
cdc1e59aa513 syntactic type class for operation mod named after mod;
haftmann
parents: 63947
diff changeset
  1855
  val mod_name = @{const_name modulo};
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1856
  val mk_binop = HOLogic.mk_binop;
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1857
  val mk_sum = Arith_Data.mk_sum HOLogic.intT;
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1858
  val dest_sum = Arith_Data.dest_sum;
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1859
64250
0cde0b4d4cb5 clarified prover-specific rules
haftmann
parents: 64246
diff changeset
  1860
  val div_mod_eqs = map mk_meta_eq @{thms cancel_div_mod_rules};
0cde0b4d4cb5 clarified prover-specific rules
haftmann
parents: 64246
diff changeset
  1861
64592
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1862
  val prove_eq_sums = Arith_Data.prove_conv2 all_tac (Arith_Data.simp_all_tac
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1863
    @{thms diff_conv_add_uminus add_0_left add_0_right ac_simps})
41550
efa734d9b221 eliminated global prems;
wenzelm
parents: 39489
diff changeset
  1864
)
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
  1865
\<close>
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
  1866
64592
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1867
simproc_setup cancel_div_mod_int ("(k::int) + l") =
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1868
  \<open>K Cancel_Div_Mod_Int.proc\<close>
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1869
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1870
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1871
text\<open>Basic laws about division and remainder\<close>
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1872
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1873
lemma zdiv_int: "int (a div b) = int a div int b"
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1874
  by (simp add: divide_int_def)
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1875
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1876
lemma zmod_int: "int (a mod b) = int a mod int b"
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1877
  by (simp add: modulo_int_def int_dvd_iff)
43594
ef1ddc59b825 modernized some simproc setup;
wenzelm
parents: 41792
diff changeset
  1878
47141
02d6b816e4b3 move int::ring_div instance upward, simplify several proofs
huffman
parents: 47140
diff changeset
  1879
lemma pos_mod_conj: "(0::int) < b \<Longrightarrow> 0 \<le> a mod b \<and> a mod b < b"
64635
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1880
  using eucl_rel_int [of a b]
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1881
  by (auto simp add: eucl_rel_int_iff prod_eq_iff)
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1882
45607
16b4f5774621 eliminated obsolete "standard";
wenzelm
parents: 45530
diff changeset
  1883
lemmas pos_mod_sign [simp] = pos_mod_conj [THEN conjunct1]
16b4f5774621 eliminated obsolete "standard";
wenzelm
parents: 45530
diff changeset
  1884
   and pos_mod_bound [simp] = pos_mod_conj [THEN conjunct2]
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1885
47141
02d6b816e4b3 move int::ring_div instance upward, simplify several proofs
huffman
parents: 47140
diff changeset
  1886
lemma neg_mod_conj: "b < (0::int) \<Longrightarrow> a mod b \<le> 0 \<and> b < a mod b"
64635
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1887
  using eucl_rel_int [of a b]
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1888
  by (auto simp add: eucl_rel_int_iff prod_eq_iff)
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1889
45607
16b4f5774621 eliminated obsolete "standard";
wenzelm
parents: 45530
diff changeset
  1890
lemmas neg_mod_sign [simp] = neg_mod_conj [THEN conjunct1]
16b4f5774621 eliminated obsolete "standard";
wenzelm
parents: 45530
diff changeset
  1891
   and neg_mod_bound [simp] = neg_mod_conj [THEN conjunct2]
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1892
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1893
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
  1894
subsubsection \<open>General Properties of div and mod\<close>
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1895
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1896
lemma div_pos_pos_trivial: "[| (0::int) \<le> a;  a < b |] ==> a div b = 0"
47140
97c3676c5c94 rename lemmas {divmod_int_rel_{div,mod} -> {div,mod}_int_unique, for consistency with nat lemma names
huffman
parents: 47139
diff changeset
  1897
apply (rule div_int_unique)
64635
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1898
apply (auto simp add: eucl_rel_int_iff)
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1899
done
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1900
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1901
lemma div_neg_neg_trivial: "[| a \<le> (0::int);  b < a |] ==> a div b = 0"
47140
97c3676c5c94 rename lemmas {divmod_int_rel_{div,mod} -> {div,mod}_int_unique, for consistency with nat lemma names
huffman
parents: 47139
diff changeset
  1902
apply (rule div_int_unique)
64635
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1903
apply (auto simp add: eucl_rel_int_iff)
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1904
done
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1905
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1906
lemma div_pos_neg_trivial: "[| (0::int) < a;  a+b \<le> 0 |] ==> a div b = -1"
47140
97c3676c5c94 rename lemmas {divmod_int_rel_{div,mod} -> {div,mod}_int_unique, for consistency with nat lemma names
huffman
parents: 47139
diff changeset
  1907
apply (rule div_int_unique)
64635
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1908
apply (auto simp add: eucl_rel_int_iff)
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1909
done
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1910
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1911
(*There is no div_neg_pos_trivial because  0 div b = 0 would supersede it*)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1912
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1913
lemma mod_pos_pos_trivial: "[| (0::int) \<le> a;  a < b |] ==> a mod b = a"
47140
97c3676c5c94 rename lemmas {divmod_int_rel_{div,mod} -> {div,mod}_int_unique, for consistency with nat lemma names
huffman
parents: 47139
diff changeset
  1914
apply (rule_tac q = 0 in mod_int_unique)
64635
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1915
apply (auto simp add: eucl_rel_int_iff)
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1916
done
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1917
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1918
lemma mod_neg_neg_trivial: "[| a \<le> (0::int);  b < a |] ==> a mod b = a"
47140
97c3676c5c94 rename lemmas {divmod_int_rel_{div,mod} -> {div,mod}_int_unique, for consistency with nat lemma names
huffman
parents: 47139
diff changeset
  1919
apply (rule_tac q = 0 in mod_int_unique)
64635
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1920
apply (auto simp add: eucl_rel_int_iff)
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1921
done
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1922
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1923
lemma mod_pos_neg_trivial: "[| (0::int) < a;  a+b \<le> 0 |] ==> a mod b = a+b"
47140
97c3676c5c94 rename lemmas {divmod_int_rel_{div,mod} -> {div,mod}_int_unique, for consistency with nat lemma names
huffman
parents: 47139
diff changeset
  1924
apply (rule_tac q = "-1" in mod_int_unique)
64635
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1925
apply (auto simp add: eucl_rel_int_iff)
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1926
done
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1927
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61649
diff changeset
  1928
text\<open>There is no \<open>mod_neg_pos_trivial\<close>.\<close>
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
  1929
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
  1930
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
  1931
subsubsection \<open>Laws for div and mod with Unary Minus\<close>
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1932
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1933
lemma zminus1_lemma:
64635
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1934
     "eucl_rel_int a b (q, r) ==> b \<noteq> 0
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1935
      ==> eucl_rel_int (-a) b (if r=0 then -q else -q - 1,
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1936
                          if r=0 then 0 else b-r)"
64635
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1937
by (force simp add: split_ifs eucl_rel_int_iff linorder_neq_iff right_diff_distrib)
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1938
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1939
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1940
lemma zdiv_zminus1_eq_if:
60562
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60517
diff changeset
  1941
     "b \<noteq> (0::int)
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60517
diff changeset
  1942
      ==> (-a) div b =
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1943
          (if a mod b = 0 then - (a div b) else  - (a div b) - 1)"
64635
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1944
by (blast intro: eucl_rel_int [THEN zminus1_lemma, THEN div_int_unique])
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1945
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1946
lemma zmod_zminus1_eq_if:
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1947
     "(-a::int) mod b = (if a mod b = 0 then 0 else  b - (a mod b))"
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1948
apply (case_tac "b = 0", simp)
64635
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  1949
apply (blast intro: eucl_rel_int [THEN zminus1_lemma, THEN mod_int_unique])
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1950
done
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1951
64593
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
  1952
lemma zmod_zminus1_not_zero:
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1953
  fixes k l :: int
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1954
  shows "- k mod l \<noteq> 0 \<Longrightarrow> k mod l \<noteq> 0"
64592
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1955
  by (simp add: mod_eq_0_iff_dvd)
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1956
64593
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
  1957
lemma zmod_zminus2_not_zero:
64592
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1958
  fixes k l :: int
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1959
  shows "k mod - l \<noteq> 0 \<Longrightarrow> k mod l \<noteq> 0"
7759f1766189 more fine-grained type class hierarchy for div and mod
haftmann
parents: 64250
diff changeset
  1960
  by (simp add: mod_eq_0_iff_dvd)
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1961
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1962
lemma zdiv_zminus2_eq_if:
60562
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60517
diff changeset
  1963
     "b \<noteq> (0::int)
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60517
diff changeset
  1964
      ==> a div (-b) =
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1965
          (if a mod b = 0 then - (a div b) else  - (a div b) - 1)"
47159
978c00c20a59 generalize some theorems about div/mod
huffman
parents: 47142
diff changeset
  1966
by (simp add: zdiv_zminus1_eq_if div_minus_right)
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1967
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1968
lemma zmod_zminus2_eq_if:
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1969
     "a mod (-b::int) = (if a mod b = 0 then 0 else  (a mod b) - b)"
47159
978c00c20a59 generalize some theorems about div/mod
huffman
parents: 47142
diff changeset
  1970
by (simp add: zmod_zminus1_eq_if mod_minus_right)
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1971
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1972
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
  1973
subsubsection \<open>Monotonicity in the First Argument (Dividend)\<close>
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1974
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1975
lemma zdiv_mono1: "[| a \<le> a';  0 < (b::int) |] ==> a div b \<le> a' div b"
64246
15d1ee6e847b eliminated irregular aliasses
haftmann
parents: 64244
diff changeset
  1976
using mult_div_mod_eq [symmetric, of a b]
15d1ee6e847b eliminated irregular aliasses
haftmann
parents: 64244
diff changeset
  1977
using mult_div_mod_eq [symmetric, of a' b]
15d1ee6e847b eliminated irregular aliasses
haftmann
parents: 64244
diff changeset
  1978
apply -
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1979
apply (rule unique_quotient_lemma)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1980
apply (erule subst)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1981
apply (erule subst, simp_all)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1982
done
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1983
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1984
lemma zdiv_mono1_neg: "[| a \<le> a';  (b::int) < 0 |] ==> a' div b \<le> a div b"
64246
15d1ee6e847b eliminated irregular aliasses
haftmann
parents: 64244
diff changeset
  1985
using mult_div_mod_eq [symmetric, of a b]
15d1ee6e847b eliminated irregular aliasses
haftmann
parents: 64244
diff changeset
  1986
using mult_div_mod_eq [symmetric, of a' b]
15d1ee6e847b eliminated irregular aliasses
haftmann
parents: 64244
diff changeset
  1987
apply -
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1988
apply (rule unique_quotient_lemma_neg)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1989
apply (erule subst)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1990
apply (erule subst, simp_all)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1991
done
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1992
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1993
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
  1994
subsubsection \<open>Monotonicity in the Second Argument (Divisor)\<close>
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1995
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1996
lemma q_pos_lemma:
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1997
     "[| 0 \<le> b'*q' + r'; r' < b';  0 < b' |] ==> 0 \<le> (q'::int)"
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1998
apply (subgoal_tac "0 < b'* (q' + 1) ")
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  1999
 apply (simp add: zero_less_mult_iff)
49962
a8cc904a6820 Renamed {left,right}_distrib to distrib_{right,left}.
webertj
parents: 48891
diff changeset
  2000
apply (simp add: distrib_left)
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2001
done
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2002
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2003
lemma zdiv_mono2_lemma:
60562
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60517
diff changeset
  2004
     "[| b*q + r = b'*q' + r';  0 \<le> b'*q' + r';
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60517
diff changeset
  2005
         r' < b';  0 \<le> r;  0 < b';  b' \<le> b |]
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2006
      ==> q \<le> (q'::int)"
60562
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60517
diff changeset
  2007
apply (frule q_pos_lemma, assumption+)
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2008
apply (subgoal_tac "b*q < b* (q' + 1) ")
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2009
 apply (simp add: mult_less_cancel_left)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2010
apply (subgoal_tac "b*q = r' - r + b'*q'")
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2011
 prefer 2 apply simp
49962
a8cc904a6820 Renamed {left,right}_distrib to distrib_{right,left}.
webertj
parents: 48891
diff changeset
  2012
apply (simp (no_asm_simp) add: distrib_left)
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
  2013
apply (subst add.commute, rule add_less_le_mono, arith)
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2014
apply (rule mult_right_mono, auto)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2015
done
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2016
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2017
lemma zdiv_mono2:
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2018
     "[| (0::int) \<le> a;  0 < b';  b' \<le> b |] ==> a div b \<le> a div b'"
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2019
apply (subgoal_tac "b \<noteq> 0")
64246
15d1ee6e847b eliminated irregular aliasses
haftmann
parents: 64244
diff changeset
  2020
  prefer 2 apply arith
15d1ee6e847b eliminated irregular aliasses
haftmann
parents: 64244
diff changeset
  2021
using mult_div_mod_eq [symmetric, of a b]
15d1ee6e847b eliminated irregular aliasses
haftmann
parents: 64244
diff changeset
  2022
using mult_div_mod_eq [symmetric, of a b']
15d1ee6e847b eliminated irregular aliasses
haftmann
parents: 64244
diff changeset
  2023
apply -
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2024
apply (rule zdiv_mono2_lemma)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2025
apply (erule subst)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2026
apply (erule subst, simp_all)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2027
done
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2028
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2029
lemma q_neg_lemma:
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2030
     "[| b'*q' + r' < 0;  0 \<le> r';  0 < b' |] ==> q' \<le> (0::int)"
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2031
apply (subgoal_tac "b'*q' < 0")
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2032
 apply (simp add: mult_less_0_iff, arith)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2033
done
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2034
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2035
lemma zdiv_mono2_neg_lemma:
60562
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60517
diff changeset
  2036
     "[| b*q + r = b'*q' + r';  b'*q' + r' < 0;
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60517
diff changeset
  2037
         r < b;  0 \<le> r';  0 < b';  b' \<le> b |]
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2038
      ==> q' \<le> (q::int)"
60562
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60517
diff changeset
  2039
apply (frule q_neg_lemma, assumption+)
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2040
apply (subgoal_tac "b*q' < b* (q + 1) ")
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2041
 apply (simp add: mult_less_cancel_left)
49962
a8cc904a6820 Renamed {left,right}_distrib to distrib_{right,left}.
webertj
parents: 48891
diff changeset
  2042
apply (simp add: distrib_left)
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2043
apply (subgoal_tac "b*q' \<le> b'*q'")
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2044
 prefer 2 apply (simp add: mult_right_mono_neg, arith)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2045
done
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2046
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2047
lemma zdiv_mono2_neg:
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2048
     "[| a < (0::int);  0 < b';  b' \<le> b |] ==> a div b' \<le> a div b"
64246
15d1ee6e847b eliminated irregular aliasses
haftmann
parents: 64244
diff changeset
  2049
using mult_div_mod_eq [symmetric, of a b]
15d1ee6e847b eliminated irregular aliasses
haftmann
parents: 64244
diff changeset
  2050
using mult_div_mod_eq [symmetric, of a b']
15d1ee6e847b eliminated irregular aliasses
haftmann
parents: 64244
diff changeset
  2051
apply -
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2052
apply (rule zdiv_mono2_neg_lemma)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2053
apply (erule subst)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2054
apply (erule subst, simp_all)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2055
done
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2056
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2057
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
  2058
subsubsection \<open>More Algebraic Laws for div and mod\<close>
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
  2059
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
  2060
text\<open>proving (a*b) div c = a * (b div c) + a * (b mod c)\<close>
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2061
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2062
lemma zmult1_lemma:
64635
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  2063
     "[| eucl_rel_int b c (q, r) |]
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  2064
      ==> eucl_rel_int (a * b) c (a*q + a*r div c, a*r mod c)"
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  2065
by (auto simp add: split_ifs eucl_rel_int_iff linorder_neq_iff distrib_left ac_simps)
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2066
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2067
lemma zdiv_zmult1_eq: "(a*b) div c = a*(b div c) + a*(b mod c) div (c::int)"
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2068
apply (case_tac "c = 0", simp)
64635
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  2069
apply (blast intro: eucl_rel_int [THEN zmult1_lemma, THEN div_int_unique])
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2070
done
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2071
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
  2072
text\<open>proving (a+b) div c = a div c + b div c + ((a mod c + b mod c) div c)\<close>
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2073
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2074
lemma zadd1_lemma:
64635
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  2075
     "[| eucl_rel_int a c (aq, ar);  eucl_rel_int b c (bq, br) |]
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  2076
      ==> eucl_rel_int (a+b) c (aq + bq + (ar+br) div c, (ar+br) mod c)"
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  2077
by (force simp add: split_ifs eucl_rel_int_iff linorder_neq_iff distrib_left)
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2078
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2079
(*NOT suitable for rewriting: the RHS has an instance of the LHS*)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2080
lemma zdiv_zadd1_eq:
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2081
     "(a+b) div (c::int) = a div c + b div c + ((a mod c + b mod c) div c)"
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2082
apply (case_tac "c = 0", simp)
64635
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  2083
apply (blast intro: zadd1_lemma [OF eucl_rel_int eucl_rel_int] div_int_unique)
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2084
done
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2085
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2086
lemma zmod_eq_0_iff: "(m mod d = 0) = (EX q::int. m = d*q)"
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2087
by (simp add: dvd_eq_mod_eq_0 [symmetric] dvd_def)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2088
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2089
(* REVISIT: should this be generalized to all semiring_div types? *)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2090
lemmas zmod_eq_0D [dest!] = zmod_eq_0_iff [THEN iffD1]
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2091
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2092
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
  2093
subsubsection \<open>Proving  @{term "a div (b * c) = (a div b) div c"}\<close>
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2094
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2095
(*The condition c>0 seems necessary.  Consider that 7 div ~6 = ~2 but
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2096
  7 div 2 div ~3 = 3 div ~3 = ~1.  The subcase (a div b) mod c = 0 seems
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2097
  to cause particular problems.*)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2098
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
  2099
text\<open>first, four lemmas to bound the remainder for the cases b<0 and b>0\<close>
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2100
55085
0e8e4dc55866 moved 'fundef_cong' attribute (and other basic 'fun' stuff) up the dependency chain
blanchet
parents: 54489
diff changeset
  2101
lemma zmult2_lemma_aux1: "[| (0::int) < c;  b < r;  r \<le> 0 |] ==> b * c < b * (q mod c) + r"
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2102
apply (subgoal_tac "b * (c - q mod c) < r * 1")
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2103
 apply (simp add: algebra_simps)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2104
apply (rule order_le_less_trans)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2105
 apply (erule_tac [2] mult_strict_right_mono)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2106
 apply (rule mult_left_mono_neg)
35216
7641e8d831d2 get rid of many duplicate simp rule warnings
huffman
parents: 35050
diff changeset
  2107
  using add1_zle_eq[of "q mod c"]apply(simp add: algebra_simps)
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2108
 apply (simp)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2109
apply (simp)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2110
done
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2111
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2112
lemma zmult2_lemma_aux2:
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2113
     "[| (0::int) < c;   b < r;  r \<le> 0 |] ==> b * (q mod c) + r \<le> 0"
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2114
apply (subgoal_tac "b * (q mod c) \<le> 0")
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2115
 apply arith
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2116
apply (simp add: mult_le_0_iff)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2117
done
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2118
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2119
lemma zmult2_lemma_aux3: "[| (0::int) < c;  0 \<le> r;  r < b |] ==> 0 \<le> b * (q mod c) + r"
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2120
apply (subgoal_tac "0 \<le> b * (q mod c) ")
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2121
apply arith
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2122
apply (simp add: zero_le_mult_iff)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2123
done
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2124
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2125
lemma zmult2_lemma_aux4: "[| (0::int) < c; 0 \<le> r; r < b |] ==> b * (q mod c) + r < b * c"
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2126
apply (subgoal_tac "r * 1 < b * (c - q mod c) ")
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2127
 apply (simp add: right_diff_distrib)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2128
apply (rule order_less_le_trans)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2129
 apply (erule mult_strict_right_mono)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2130
 apply (rule_tac [2] mult_left_mono)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2131
  apply simp
35216
7641e8d831d2 get rid of many duplicate simp rule warnings
huffman
parents: 35050
diff changeset
  2132
 using add1_zle_eq[of "q mod c"] apply (simp add: algebra_simps)
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2133
apply simp
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2134
done
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2135
64635
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  2136
lemma zmult2_lemma: "[| eucl_rel_int a b (q, r); 0 < c |]
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  2137
      ==> eucl_rel_int a (b * c) (q div c, b*(q mod c) + r)"
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  2138
by (auto simp add: mult.assoc eucl_rel_int_iff linorder_neq_iff
60562
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60517
diff changeset
  2139
                   zero_less_mult_iff distrib_left [symmetric]
62390
842917225d56 more canonical names
nipkow
parents: 61944
diff changeset
  2140
                   zmult2_lemma_aux1 zmult2_lemma_aux2 zmult2_lemma_aux3 zmult2_lemma_aux4 mult_less_0_iff split: if_split_asm)
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2141
53068
41fc65da66f1 relaxed preconditions
haftmann
parents: 53067
diff changeset
  2142
lemma zdiv_zmult2_eq:
41fc65da66f1 relaxed preconditions
haftmann
parents: 53067
diff changeset
  2143
  fixes a b c :: int
41fc65da66f1 relaxed preconditions
haftmann
parents: 53067
diff changeset
  2144
  shows "0 \<le> c \<Longrightarrow> a div (b * c) = (a div b) div c"
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2145
apply (case_tac "b = 0", simp)
64635
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  2146
apply (force simp add: le_less eucl_rel_int [THEN zmult2_lemma, THEN div_int_unique])
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2147
done
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2148
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2149
lemma zmod_zmult2_eq:
53068
41fc65da66f1 relaxed preconditions
haftmann
parents: 53067
diff changeset
  2150
  fixes a b c :: int
41fc65da66f1 relaxed preconditions
haftmann
parents: 53067
diff changeset
  2151
  shows "0 \<le> c \<Longrightarrow> a mod (b * c) = b * (a div b mod c) + a mod b"
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2152
apply (case_tac "b = 0", simp)
64635
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  2153
apply (force simp add: le_less eucl_rel_int [THEN zmult2_lemma, THEN mod_int_unique])
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2154
done
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2155
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46560
diff changeset
  2156
lemma div_pos_geq:
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46560
diff changeset
  2157
  fixes k l :: int
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46560
diff changeset
  2158
  assumes "0 < l" and "l \<le> k"
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46560
diff changeset
  2159
  shows "k div l = (k - l) div l + 1"
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46560
diff changeset
  2160
proof -
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46560
diff changeset
  2161
  have "k = (k - l) + l" by simp
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46560
diff changeset
  2162
  then obtain j where k: "k = j + l" ..
63499
9c9a59949887 Tuned looping simp rules in semiring_div
eberlm <eberlm@in.tum.de>
parents: 63417
diff changeset
  2163
  with assms show ?thesis by (simp add: div_add_self2)
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46560
diff changeset
  2164
qed
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46560
diff changeset
  2165
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46560
diff changeset
  2166
lemma mod_pos_geq:
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46560
diff changeset
  2167
  fixes k l :: int
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46560
diff changeset
  2168
  assumes "0 < l" and "l \<le> k"
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46560
diff changeset
  2169
  shows "k mod l = (k - l) mod l"
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46560
diff changeset
  2170
proof -
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46560
diff changeset
  2171
  have "k = (k - l) + l" by simp
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46560
diff changeset
  2172
  then obtain j where k: "k = j + l" ..
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46560
diff changeset
  2173
  with assms show ?thesis by simp
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46560
diff changeset
  2174
qed
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46560
diff changeset
  2175
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2176
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
  2177
subsubsection \<open>Splitting Rules for div and mod\<close>
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
  2178
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
  2179
text\<open>The proofs of the two lemmas below are essentially identical\<close>
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2180
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2181
lemma split_pos_lemma:
60562
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60517
diff changeset
  2182
 "0<k ==>
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2183
    P(n div k :: int)(n mod k) = (\<forall>i j. 0\<le>j & j<k & n = k*i + j --> P i j)"
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2184
apply (rule iffI, clarify)
60562
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60517
diff changeset
  2185
 apply (erule_tac P="P x y" for x y in rev_mp)
64593
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
  2186
 apply (subst mod_add_eq [symmetric])
60562
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60517
diff changeset
  2187
 apply (subst zdiv_zadd1_eq)
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60517
diff changeset
  2188
 apply (simp add: div_pos_pos_trivial mod_pos_pos_trivial)
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
  2189
txt\<open>converse direction\<close>
60562
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60517
diff changeset
  2190
apply (drule_tac x = "n div k" in spec)
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2191
apply (drule_tac x = "n mod k" in spec, simp)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2192
done
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2193
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2194
lemma split_neg_lemma:
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2195
 "k<0 ==>
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2196
    P(n div k :: int)(n mod k) = (\<forall>i j. k<j & j\<le>0 & n = k*i + j --> P i j)"
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2197
apply (rule iffI, clarify)
60562
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60517
diff changeset
  2198
 apply (erule_tac P="P x y" for x y in rev_mp)
64593
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
  2199
 apply (subst mod_add_eq [symmetric])
60562
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60517
diff changeset
  2200
 apply (subst zdiv_zadd1_eq)
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60517
diff changeset
  2201
 apply (simp add: div_neg_neg_trivial mod_neg_neg_trivial)
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
  2202
txt\<open>converse direction\<close>
60562
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60517
diff changeset
  2203
apply (drule_tac x = "n div k" in spec)
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2204
apply (drule_tac x = "n mod k" in spec, simp)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2205
done
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2206
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2207
lemma split_zdiv:
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2208
 "P(n div k :: int) =
60562
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60517
diff changeset
  2209
  ((k = 0 --> P 0) &
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60517
diff changeset
  2210
   (0<k --> (\<forall>i j. 0\<le>j & j<k & n = k*i + j --> P i)) &
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2211
   (k<0 --> (\<forall>i j. k<j & j\<le>0 & n = k*i + j --> P i)))"
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2212
apply (case_tac "k=0", simp)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2213
apply (simp only: linorder_neq_iff)
60562
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60517
diff changeset
  2214
apply (erule disjE)
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60517
diff changeset
  2215
 apply (simp_all add: split_pos_lemma [of concl: "%x y. P x"]
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2216
                      split_neg_lemma [of concl: "%x y. P x"])
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2217
done
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2218
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2219
lemma split_zmod:
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2220
 "P(n mod k :: int) =
60562
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60517
diff changeset
  2221
  ((k = 0 --> P n) &
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60517
diff changeset
  2222
   (0<k --> (\<forall>i j. 0\<le>j & j<k & n = k*i + j --> P j)) &
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2223
   (k<0 --> (\<forall>i j. k<j & j\<le>0 & n = k*i + j --> P j)))"
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2224
apply (case_tac "k=0", simp)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2225
apply (simp only: linorder_neq_iff)
60562
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60517
diff changeset
  2226
apply (erule disjE)
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60517
diff changeset
  2227
 apply (simp_all add: split_pos_lemma [of concl: "%x y. P y"]
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2228
                      split_neg_lemma [of concl: "%x y. P y"])
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2229
done
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2230
63950
cdc1e59aa513 syntactic type class for operation mod named after mod;
haftmann
parents: 63947
diff changeset
  2231
text \<open>Enable (lin)arith to deal with @{const divide} and @{const modulo}
33730
1755ca4ec022 Fixed splitting of div and mod on integers (split theorem differed from implementation).
webertj
parents: 33728
diff changeset
  2232
  when these are applied to some constant that is of the form
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
  2233
  @{term "numeral k"}:\<close>
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46560
diff changeset
  2234
declare split_zdiv [of _ _ "numeral k", arith_split] for k
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46560
diff changeset
  2235
declare split_zmod [of _ _ "numeral k", arith_split] for k
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2236
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2237
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61649
diff changeset
  2238
subsubsection \<open>Computing \<open>div\<close> and \<open>mod\<close> with shifting\<close>
47166
108bf76ca00c tuned proofs
huffman
parents: 47165
diff changeset
  2239
64635
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  2240
lemma pos_eucl_rel_int_mult_2:
47166
108bf76ca00c tuned proofs
huffman
parents: 47165
diff changeset
  2241
  assumes "0 \<le> b"
64635
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  2242
  assumes "eucl_rel_int a b (q, r)"
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  2243
  shows "eucl_rel_int (1 + 2*a) (2*b) (q, 1 + 2*r)"
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  2244
  using assms unfolding eucl_rel_int_iff by auto
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  2245
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  2246
lemma neg_eucl_rel_int_mult_2:
47166
108bf76ca00c tuned proofs
huffman
parents: 47165
diff changeset
  2247
  assumes "b \<le> 0"
64635
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  2248
  assumes "eucl_rel_int (a + 1) b (q, r)"
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  2249
  shows "eucl_rel_int (1 + 2*a) (2*b) (q, 2*r - 1)"
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  2250
  using assms unfolding eucl_rel_int_iff by auto
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2251
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
  2252
text\<open>computing div by shifting\<close>
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2253
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2254
lemma pos_zdiv_mult_2: "(0::int) \<le> a ==> (1 + 2*b) div (2*a) = b div a"
64635
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  2255
  using pos_eucl_rel_int_mult_2 [OF _ eucl_rel_int]
47166
108bf76ca00c tuned proofs
huffman
parents: 47165
diff changeset
  2256
  by (rule div_int_unique)
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2257
60562
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60517
diff changeset
  2258
lemma neg_zdiv_mult_2:
35815
10e723e54076 tuned proofs (to avoid linarith error message caused by bootstrapping of HOL)
boehmes
parents: 35673
diff changeset
  2259
  assumes A: "a \<le> (0::int)" shows "(1 + 2*b) div (2*a) = (b+1) div a"
64635
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  2260
  using neg_eucl_rel_int_mult_2 [OF A eucl_rel_int]
47166
108bf76ca00c tuned proofs
huffman
parents: 47165
diff changeset
  2261
  by (rule div_int_unique)
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2262
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46560
diff changeset
  2263
(* FIXME: add rules for negative numerals *)
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46560
diff changeset
  2264
lemma zdiv_numeral_Bit0 [simp]:
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46560
diff changeset
  2265
  "numeral (Num.Bit0 v) div numeral (Num.Bit0 w) =
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46560
diff changeset
  2266
    numeral v div (numeral w :: int)"
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46560
diff changeset
  2267
  unfolding numeral.simps unfolding mult_2 [symmetric]
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46560
diff changeset
  2268
  by (rule div_mult_mult1, simp)
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46560
diff changeset
  2269
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46560
diff changeset
  2270
lemma zdiv_numeral_Bit1 [simp]:
60562
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60517
diff changeset
  2271
  "numeral (Num.Bit1 v) div numeral (Num.Bit0 w) =
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46560
diff changeset
  2272
    (numeral v div (numeral w :: int))"
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46560
diff changeset
  2273
  unfolding numeral.simps
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
  2274
  unfolding mult_2 [symmetric] add.commute [of _ 1]
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46560
diff changeset
  2275
  by (rule pos_zdiv_mult_2, simp)
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2276
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2277
lemma pos_zmod_mult_2:
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2278
  fixes a b :: int
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2279
  assumes "0 \<le> a"
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2280
  shows "(1 + 2 * b) mod (2 * a) = 1 + 2 * (b mod a)"
64635
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  2281
  using pos_eucl_rel_int_mult_2 [OF assms eucl_rel_int]
47166
108bf76ca00c tuned proofs
huffman
parents: 47165
diff changeset
  2282
  by (rule mod_int_unique)
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2283
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2284
lemma neg_zmod_mult_2:
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2285
  fixes a b :: int
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2286
  assumes "a \<le> 0"
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2287
  shows "(1 + 2 * b) mod (2 * a) = 2 * ((b + 1) mod a) - 1"
64635
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  2288
  using neg_eucl_rel_int_mult_2 [OF assms eucl_rel_int]
47166
108bf76ca00c tuned proofs
huffman
parents: 47165
diff changeset
  2289
  by (rule mod_int_unique)
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2290
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46560
diff changeset
  2291
(* FIXME: add rules for negative numerals *)
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46560
diff changeset
  2292
lemma zmod_numeral_Bit0 [simp]:
60562
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60517
diff changeset
  2293
  "numeral (Num.Bit0 v) mod numeral (Num.Bit0 w) =
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46560
diff changeset
  2294
    (2::int) * (numeral v mod numeral w)"
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46560
diff changeset
  2295
  unfolding numeral_Bit0 [of v] numeral_Bit0 [of w]
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46560
diff changeset
  2296
  unfolding mult_2 [symmetric] by (rule mod_mult_mult1)
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46560
diff changeset
  2297
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46560
diff changeset
  2298
lemma zmod_numeral_Bit1 [simp]:
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46560
diff changeset
  2299
  "numeral (Num.Bit1 v) mod numeral (Num.Bit0 w) =
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46560
diff changeset
  2300
    2 * (numeral v mod numeral w) + (1::int)"
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46560
diff changeset
  2301
  unfolding numeral_Bit1 [of v] numeral_Bit0 [of w]
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
  2302
  unfolding mult_2 [symmetric] add.commute [of _ 1]
47108
2a1953f0d20d merged fork with new numeral representation (see NEWS)
huffman
parents: 46560
diff changeset
  2303
  by (rule pos_zmod_mult_2, simp)
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2304
39489
8bb7f32a3a08 added lemmas
nipkow
parents: 38715
diff changeset
  2305
lemma zdiv_eq_0_iff:
8bb7f32a3a08 added lemmas
nipkow
parents: 38715
diff changeset
  2306
 "(i::int) div k = 0 \<longleftrightarrow> k=0 \<or> 0\<le>i \<and> i<k \<or> i\<le>0 \<and> k<i" (is "?L = ?R")
8bb7f32a3a08 added lemmas
nipkow
parents: 38715
diff changeset
  2307
proof
8bb7f32a3a08 added lemmas
nipkow
parents: 38715
diff changeset
  2308
  assume ?L
8bb7f32a3a08 added lemmas
nipkow
parents: 38715
diff changeset
  2309
  have "?L \<longrightarrow> ?R" by (rule split_zdiv[THEN iffD2]) simp
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
  2310
  with \<open>?L\<close> show ?R by blast
39489
8bb7f32a3a08 added lemmas
nipkow
parents: 38715
diff changeset
  2311
next
8bb7f32a3a08 added lemmas
nipkow
parents: 38715
diff changeset
  2312
  assume ?R thus ?L
8bb7f32a3a08 added lemmas
nipkow
parents: 38715
diff changeset
  2313
    by(auto simp: div_pos_pos_trivial div_neg_neg_trivial)
8bb7f32a3a08 added lemmas
nipkow
parents: 38715
diff changeset
  2314
qed
8bb7f32a3a08 added lemmas
nipkow
parents: 38715
diff changeset
  2315
63947
559f0882d6a6 more lemmas
haftmann
parents: 63834
diff changeset
  2316
lemma zmod_trival_iff:
559f0882d6a6 more lemmas
haftmann
parents: 63834
diff changeset
  2317
  fixes i k :: int
559f0882d6a6 more lemmas
haftmann
parents: 63834
diff changeset
  2318
  shows "i mod k = i \<longleftrightarrow> k = 0 \<or> 0 \<le> i \<and> i < k \<or> i \<le> 0 \<and> k < i"
559f0882d6a6 more lemmas
haftmann
parents: 63834
diff changeset
  2319
proof -
559f0882d6a6 more lemmas
haftmann
parents: 63834
diff changeset
  2320
  have "i mod k = i \<longleftrightarrow> i div k = 0"
64242
93c6f0da5c70 more standardized theorem names for facts involving the div and mod identity
haftmann
parents: 64240
diff changeset
  2321
    by safe (insert div_mult_mod_eq [of i k], auto)
63947
559f0882d6a6 more lemmas
haftmann
parents: 63834
diff changeset
  2322
  with zdiv_eq_0_iff
559f0882d6a6 more lemmas
haftmann
parents: 63834
diff changeset
  2323
  show ?thesis
559f0882d6a6 more lemmas
haftmann
parents: 63834
diff changeset
  2324
    by simp
559f0882d6a6 more lemmas
haftmann
parents: 63834
diff changeset
  2325
qed
39489
8bb7f32a3a08 added lemmas
nipkow
parents: 38715
diff changeset
  2326
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
  2327
subsubsection \<open>Quotients of Signs\<close>
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2328
60868
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2329
lemma div_eq_minus1: "(0::int) < b ==> -1 div b = -1"
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2330
by (simp add: divide_int_def)
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2331
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2332
lemma zmod_minus1: "(0::int) < b ==> -1 mod b = b - 1"
63950
cdc1e59aa513 syntactic type class for operation mod named after mod;
haftmann
parents: 63947
diff changeset
  2333
by (simp add: modulo_int_def)
60868
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2334
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2335
lemma div_neg_pos_less0: "[| a < (0::int);  0 < b |] ==> a div b < 0"
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2336
apply (subgoal_tac "a div b \<le> -1", force)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2337
apply (rule order_trans)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2338
apply (rule_tac a' = "-1" in zdiv_mono1)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2339
apply (auto simp add: div_eq_minus1)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2340
done
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2341
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2342
lemma div_nonneg_neg_le0: "[| (0::int) \<le> a; b < 0 |] ==> a div b \<le> 0"
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2343
by (drule zdiv_mono1_neg, auto)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2344
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2345
lemma div_nonpos_pos_le0: "[| (a::int) \<le> 0; b > 0 |] ==> a div b \<le> 0"
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2346
by (drule zdiv_mono1, auto)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2347
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61649
diff changeset
  2348
text\<open>Now for some equivalences of the form \<open>a div b >=< 0 \<longleftrightarrow> \<dots>\<close>
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61649
diff changeset
  2349
conditional upon the sign of \<open>a\<close> or \<open>b\<close>. There are many more.
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
  2350
They should all be simp rules unless that causes too much search.\<close>
33804
39b494e8c055 added lemma
nipkow
parents: 33730
diff changeset
  2351
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2352
lemma pos_imp_zdiv_nonneg_iff: "(0::int) < b ==> (0 \<le> a div b) = (0 \<le> a)"
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2353
apply auto
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2354
apply (drule_tac [2] zdiv_mono1)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2355
apply (auto simp add: linorder_neq_iff)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2356
apply (simp (no_asm_use) add: linorder_not_less [symmetric])
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2357
apply (blast intro: div_neg_pos_less0)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2358
done
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2359
60868
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2360
lemma pos_imp_zdiv_pos_iff:
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2361
  "0<k \<Longrightarrow> 0 < (i::int) div k \<longleftrightarrow> k \<le> i"
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2362
using pos_imp_zdiv_nonneg_iff[of k i] zdiv_eq_0_iff[of i k]
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2363
by arith
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2364
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2365
lemma neg_imp_zdiv_nonneg_iff:
33804
39b494e8c055 added lemma
nipkow
parents: 33730
diff changeset
  2366
  "b < (0::int) ==> (0 \<le> a div b) = (a \<le> (0::int))"
47159
978c00c20a59 generalize some theorems about div/mod
huffman
parents: 47142
diff changeset
  2367
apply (subst div_minus_minus [symmetric])
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2368
apply (subst pos_imp_zdiv_nonneg_iff, auto)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2369
done
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2370
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2371
(*But not (a div b \<le> 0 iff a\<le>0); consider a=1, b=2 when a div b = 0.*)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2372
lemma pos_imp_zdiv_neg_iff: "(0::int) < b ==> (a div b < 0) = (a < 0)"
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2373
by (simp add: linorder_not_le [symmetric] pos_imp_zdiv_nonneg_iff)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2374
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2375
(*Again the law fails for \<le>: consider a = -1, b = -2 when a div b = 0*)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2376
lemma neg_imp_zdiv_neg_iff: "b < (0::int) ==> (a div b < 0) = (0 < a)"
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2377
by (simp add: linorder_not_le [symmetric] neg_imp_zdiv_nonneg_iff)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2378
33804
39b494e8c055 added lemma
nipkow
parents: 33730
diff changeset
  2379
lemma nonneg1_imp_zdiv_pos_iff:
39b494e8c055 added lemma
nipkow
parents: 33730
diff changeset
  2380
  "(0::int) <= a \<Longrightarrow> (a div b > 0) = (a >= b & b>0)"
39b494e8c055 added lemma
nipkow
parents: 33730
diff changeset
  2381
apply rule
39b494e8c055 added lemma
nipkow
parents: 33730
diff changeset
  2382
 apply rule
39b494e8c055 added lemma
nipkow
parents: 33730
diff changeset
  2383
  using div_pos_pos_trivial[of a b]apply arith
39b494e8c055 added lemma
nipkow
parents: 33730
diff changeset
  2384
 apply(cases "b=0")apply simp
39b494e8c055 added lemma
nipkow
parents: 33730
diff changeset
  2385
 using div_nonneg_neg_le0[of a b]apply arith
39b494e8c055 added lemma
nipkow
parents: 33730
diff changeset
  2386
using int_one_le_iff_zero_less[of "a div b"] zdiv_mono1[of b a b]apply simp
39b494e8c055 added lemma
nipkow
parents: 33730
diff changeset
  2387
done
39b494e8c055 added lemma
nipkow
parents: 33730
diff changeset
  2388
39489
8bb7f32a3a08 added lemmas
nipkow
parents: 38715
diff changeset
  2389
lemma zmod_le_nonneg_dividend: "(m::int) \<ge> 0 ==> m mod k \<le> m"
8bb7f32a3a08 added lemmas
nipkow
parents: 38715
diff changeset
  2390
apply (rule split_zmod[THEN iffD2])
44890
22f665a2e91c new fastforce replacing fastsimp - less confusing name
nipkow
parents: 44766
diff changeset
  2391
apply(fastforce dest: q_pos_lemma intro: split_mult_pos_le)
39489
8bb7f32a3a08 added lemmas
nipkow
parents: 38715
diff changeset
  2392
done
8bb7f32a3a08 added lemmas
nipkow
parents: 38715
diff changeset
  2393
60868
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2394
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2395
subsubsection \<open>Computation of Division and Remainder\<close>
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2396
61275
053ec04ea866 monomorphization of divmod wrt. code generation avoids costly dictionary unpacking at runtime
haftmann
parents: 61201
diff changeset
  2397
instantiation int :: semiring_numeral_div
053ec04ea866 monomorphization of divmod wrt. code generation avoids costly dictionary unpacking at runtime
haftmann
parents: 61201
diff changeset
  2398
begin
053ec04ea866 monomorphization of divmod wrt. code generation avoids costly dictionary unpacking at runtime
haftmann
parents: 61201
diff changeset
  2399
053ec04ea866 monomorphization of divmod wrt. code generation avoids costly dictionary unpacking at runtime
haftmann
parents: 61201
diff changeset
  2400
definition divmod_int :: "num \<Rightarrow> num \<Rightarrow> int \<times> int"
053ec04ea866 monomorphization of divmod wrt. code generation avoids costly dictionary unpacking at runtime
haftmann
parents: 61201
diff changeset
  2401
where
053ec04ea866 monomorphization of divmod wrt. code generation avoids costly dictionary unpacking at runtime
haftmann
parents: 61201
diff changeset
  2402
  "divmod_int m n = (numeral m div numeral n, numeral m mod numeral n)"
053ec04ea866 monomorphization of divmod wrt. code generation avoids costly dictionary unpacking at runtime
haftmann
parents: 61201
diff changeset
  2403
053ec04ea866 monomorphization of divmod wrt. code generation avoids costly dictionary unpacking at runtime
haftmann
parents: 61201
diff changeset
  2404
definition divmod_step_int :: "num \<Rightarrow> int \<times> int \<Rightarrow> int \<times> int"
053ec04ea866 monomorphization of divmod wrt. code generation avoids costly dictionary unpacking at runtime
haftmann
parents: 61201
diff changeset
  2405
where
053ec04ea866 monomorphization of divmod wrt. code generation avoids costly dictionary unpacking at runtime
haftmann
parents: 61201
diff changeset
  2406
  "divmod_step_int l qr = (let (q, r) = qr
053ec04ea866 monomorphization of divmod wrt. code generation avoids costly dictionary unpacking at runtime
haftmann
parents: 61201
diff changeset
  2407
    in if r \<ge> numeral l then (2 * q + 1, r - numeral l)
053ec04ea866 monomorphization of divmod wrt. code generation avoids costly dictionary unpacking at runtime
haftmann
parents: 61201
diff changeset
  2408
    else (2 * q, r))"
053ec04ea866 monomorphization of divmod wrt. code generation avoids costly dictionary unpacking at runtime
haftmann
parents: 61201
diff changeset
  2409
053ec04ea866 monomorphization of divmod wrt. code generation avoids costly dictionary unpacking at runtime
haftmann
parents: 61201
diff changeset
  2410
instance
053ec04ea866 monomorphization of divmod wrt. code generation avoids costly dictionary unpacking at runtime
haftmann
parents: 61201
diff changeset
  2411
  by standard (auto intro: zmod_le_nonneg_dividend simp add: divmod_int_def divmod_step_int_def
053ec04ea866 monomorphization of divmod wrt. code generation avoids costly dictionary unpacking at runtime
haftmann
parents: 61201
diff changeset
  2412
    pos_imp_zdiv_pos_iff div_pos_pos_trivial mod_pos_pos_trivial zmod_zmult2_eq zdiv_zmult2_eq)
053ec04ea866 monomorphization of divmod wrt. code generation avoids costly dictionary unpacking at runtime
haftmann
parents: 61201
diff changeset
  2413
053ec04ea866 monomorphization of divmod wrt. code generation avoids costly dictionary unpacking at runtime
haftmann
parents: 61201
diff changeset
  2414
end
053ec04ea866 monomorphization of divmod wrt. code generation avoids costly dictionary unpacking at runtime
haftmann
parents: 61201
diff changeset
  2415
053ec04ea866 monomorphization of divmod wrt. code generation avoids costly dictionary unpacking at runtime
haftmann
parents: 61201
diff changeset
  2416
declare divmod_algorithm_code [where ?'a = int, code]
60562
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60517
diff changeset
  2417
60930
dd8ab7252ba2 qualified adjust_*
haftmann
parents: 60868
diff changeset
  2418
context
dd8ab7252ba2 qualified adjust_*
haftmann
parents: 60868
diff changeset
  2419
begin
dd8ab7252ba2 qualified adjust_*
haftmann
parents: 60868
diff changeset
  2420
  
dd8ab7252ba2 qualified adjust_*
haftmann
parents: 60868
diff changeset
  2421
qualified definition adjust_div :: "int \<times> int \<Rightarrow> int"
60868
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2422
where
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2423
  "adjust_div qr = (let (q, r) = qr in q + of_bool (r \<noteq> 0))"
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2424
60930
dd8ab7252ba2 qualified adjust_*
haftmann
parents: 60868
diff changeset
  2425
qualified lemma adjust_div_eq [simp, code]:
60868
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2426
  "adjust_div (q, r) = q + of_bool (r \<noteq> 0)"
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2427
  by (simp add: adjust_div_def)
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2428
60930
dd8ab7252ba2 qualified adjust_*
haftmann
parents: 60868
diff changeset
  2429
qualified definition adjust_mod :: "int \<Rightarrow> int \<Rightarrow> int"
60868
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2430
where
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2431
  [simp]: "adjust_mod l r = (if r = 0 then 0 else l - r)"
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2432
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2433
lemma minus_numeral_div_numeral [simp]:
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2434
  "- numeral m div numeral n = - (adjust_div (divmod m n) :: int)"
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2435
proof -
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2436
  have "int (fst (divmod m n)) = fst (divmod m n)"
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2437
    by (simp only: fst_divmod divide_int_def) auto
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2438
  then show ?thesis
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2439
    by (auto simp add: split_def Let_def adjust_div_def divides_aux_def divide_int_def)
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2440
qed
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2441
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2442
lemma minus_numeral_mod_numeral [simp]:
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2443
  "- numeral m mod numeral n = adjust_mod (numeral n) (snd (divmod m n) :: int)"
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2444
proof -
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2445
  have "int (snd (divmod m n)) = snd (divmod m n)" if "snd (divmod m n) \<noteq> (0::int)"
63950
cdc1e59aa513 syntactic type class for operation mod named after mod;
haftmann
parents: 63947
diff changeset
  2446
    using that by (simp only: snd_divmod modulo_int_def) auto
60868
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2447
  then show ?thesis
63950
cdc1e59aa513 syntactic type class for operation mod named after mod;
haftmann
parents: 63947
diff changeset
  2448
    by (auto simp add: split_def Let_def adjust_div_def divides_aux_def modulo_int_def)
60868
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2449
qed
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2450
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2451
lemma numeral_div_minus_numeral [simp]:
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2452
  "numeral m div - numeral n = - (adjust_div (divmod m n) :: int)"
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2453
proof -
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2454
  have "int (fst (divmod m n)) = fst (divmod m n)"
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2455
    by (simp only: fst_divmod divide_int_def) auto
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2456
  then show ?thesis
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2457
    by (auto simp add: split_def Let_def adjust_div_def divides_aux_def divide_int_def)
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2458
qed
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2459
  
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2460
lemma numeral_mod_minus_numeral [simp]:
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2461
  "numeral m mod - numeral n = - adjust_mod (numeral n) (snd (divmod m n) :: int)"
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2462
proof -
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2463
  have "int (snd (divmod m n)) = snd (divmod m n)" if "snd (divmod m n) \<noteq> (0::int)"
63950
cdc1e59aa513 syntactic type class for operation mod named after mod;
haftmann
parents: 63947
diff changeset
  2464
    using that by (simp only: snd_divmod modulo_int_def) auto
60868
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2465
  then show ?thesis
63950
cdc1e59aa513 syntactic type class for operation mod named after mod;
haftmann
parents: 63947
diff changeset
  2466
    by (auto simp add: split_def Let_def adjust_div_def divides_aux_def modulo_int_def)
60868
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2467
qed
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2468
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2469
lemma minus_one_div_numeral [simp]:
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2470
  "- 1 div numeral n = - (adjust_div (divmod Num.One n) :: int)"
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2471
  using minus_numeral_div_numeral [of Num.One n] by simp  
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2472
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2473
lemma minus_one_mod_numeral [simp]:
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2474
  "- 1 mod numeral n = adjust_mod (numeral n) (snd (divmod Num.One n) :: int)"
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2475
  using minus_numeral_mod_numeral [of Num.One n] by simp
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2476
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2477
lemma one_div_minus_numeral [simp]:
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2478
  "1 div - numeral n = - (adjust_div (divmod Num.One n) :: int)"
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2479
  using numeral_div_minus_numeral [of Num.One n] by simp
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2480
  
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2481
lemma one_mod_minus_numeral [simp]:
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2482
  "1 mod - numeral n = - adjust_mod (numeral n) (snd (divmod Num.One n) :: int)"
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2483
  using numeral_mod_minus_numeral [of Num.One n] by simp
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2484
60930
dd8ab7252ba2 qualified adjust_*
haftmann
parents: 60868
diff changeset
  2485
end
dd8ab7252ba2 qualified adjust_*
haftmann
parents: 60868
diff changeset
  2486
60868
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2487
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2488
subsubsection \<open>Further properties\<close>
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2489
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2490
text \<open>Simplify expresions in which div and mod combine numerical constants\<close>
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2491
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2492
lemma int_div_pos_eq: "\<lbrakk>(a::int) = b * q + r; 0 \<le> r; r < b\<rbrakk> \<Longrightarrow> a div b = q"
64635
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  2493
  by (rule div_int_unique [of a b q r]) (simp add: eucl_rel_int_iff)
60868
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2494
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2495
lemma int_div_neg_eq: "\<lbrakk>(a::int) = b * q + r; r \<le> 0; b < r\<rbrakk> \<Longrightarrow> a div b = q"
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2496
  by (rule div_int_unique [of a b q r],
64635
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  2497
    simp add: eucl_rel_int_iff)
60868
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2498
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2499
lemma int_mod_pos_eq: "\<lbrakk>(a::int) = b * q + r; 0 \<le> r; r < b\<rbrakk> \<Longrightarrow> a mod b = r"
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2500
  by (rule mod_int_unique [of a b q r],
64635
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  2501
    simp add: eucl_rel_int_iff)
60868
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2502
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2503
lemma int_mod_neg_eq: "\<lbrakk>(a::int) = b * q + r; r \<le> 0; b < r\<rbrakk> \<Longrightarrow> a mod b = r"
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2504
  by (rule mod_int_unique [of a b q r],
64635
255741c5f862 more uniform div/mod relations
haftmann
parents: 64630
diff changeset
  2505
    simp add: eucl_rel_int_iff)
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2506
61944
5d06ecfdb472 prefer symbols for "abs";
wenzelm
parents: 61799
diff changeset
  2507
lemma abs_div: "(y::int) dvd x \<Longrightarrow> \<bar>x div y\<bar> = \<bar>x\<bar> div \<bar>y\<bar>"
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2508
by (unfold dvd_def, cases "y=0", auto simp add: abs_mult)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2509
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
  2510
text\<open>Suggested by Matthias Daum\<close>
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2511
lemma int_power_div_base:
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2512
     "\<lbrakk>0 < m; 0 < k\<rbrakk> \<Longrightarrow> k ^ m div k = (k::int) ^ (m - Suc 0)"
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2513
apply (subgoal_tac "k ^ m = k ^ ((m - Suc 0) + Suc 0)")
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2514
 apply (erule ssubst)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2515
 apply (simp only: power_add)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2516
 apply simp_all
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2517
done
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2518
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61649
diff changeset
  2519
text \<open>Distributive laws for function \<open>nat\<close>.\<close>
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2520
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2521
lemma nat_div_distrib: "0 \<le> x \<Longrightarrow> nat (x div y) = nat x div nat y"
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2522
apply (rule linorder_cases [of y 0])
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2523
apply (simp add: div_nonneg_neg_le0)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2524
apply simp
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2525
apply (simp add: nat_eq_iff pos_imp_zdiv_nonneg_iff zdiv_int)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2526
done
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2527
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2528
(*Fails if y<0: the LHS collapses to (nat z) but the RHS doesn't*)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2529
lemma nat_mod_distrib:
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2530
  "\<lbrakk>0 \<le> x; 0 \<le> y\<rbrakk> \<Longrightarrow> nat (x mod y) = nat x mod nat y"
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2531
apply (case_tac "y = 0", simp)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2532
apply (simp add: nat_eq_iff zmod_int)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2533
done
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2534
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
  2535
text  \<open>transfer setup\<close>
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2536
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2537
lemma transfer_nat_int_functions:
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2538
    "(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> (nat x) div (nat y) = nat (x div y)"
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2539
    "(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> (nat x) mod (nat y) = nat (x mod y)"
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2540
  by (auto simp add: nat_div_distrib nat_mod_distrib)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2541
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2542
lemma transfer_nat_int_function_closures:
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2543
    "(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> x div y >= 0"
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2544
    "(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> x mod y >= 0"
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2545
  apply (cases "y = 0")
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2546
  apply (auto simp add: pos_imp_zdiv_nonneg_iff)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2547
  apply (cases "y = 0")
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2548
  apply auto
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2549
done
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2550
35644
d20cf282342e transfer: avoid camel case
haftmann
parents: 35367
diff changeset
  2551
declare transfer_morphism_nat_int [transfer add return:
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2552
  transfer_nat_int_functions
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2553
  transfer_nat_int_function_closures
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2554
]
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2555
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2556
lemma transfer_int_nat_functions:
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2557
    "(int x) div (int y) = int (x div y)"
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2558
    "(int x) mod (int y) = int (x mod y)"
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2559
  by (auto simp add: zdiv_int zmod_int)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2560
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2561
lemma transfer_int_nat_function_closures:
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2562
    "is_nat x \<Longrightarrow> is_nat y \<Longrightarrow> is_nat (x div y)"
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2563
    "is_nat x \<Longrightarrow> is_nat y \<Longrightarrow> is_nat (x mod y)"
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2564
  by (simp_all only: is_nat_def transfer_nat_int_function_closures)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2565
35644
d20cf282342e transfer: avoid camel case
haftmann
parents: 35367
diff changeset
  2566
declare transfer_morphism_int_nat [transfer add return:
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2567
  transfer_int_nat_functions
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2568
  transfer_int_nat_function_closures
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2569
]
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2570
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
  2571
text\<open>Suggested by Matthias Daum\<close>
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2572
lemma int_div_less_self: "\<lbrakk>0 < x; 1 < k\<rbrakk> \<Longrightarrow> x div k < (x::int)"
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2573
apply (subgoal_tac "nat x div nat k < nat x")
34225
21c5405deb6b removed legacy asm_lr
nipkow
parents: 34126
diff changeset
  2574
 apply (simp add: nat_div_distrib [symmetric])
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2575
apply (rule Divides.div_less_dividend, simp_all)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2576
done
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2577
64593
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
  2578
lemma (in ring_div) mod_eq_dvd_iff:
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
  2579
  "a mod c = b mod c \<longleftrightarrow> c dvd a - b" (is "?P \<longleftrightarrow> ?Q")
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2580
proof
64593
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
  2581
  assume ?P
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
  2582
  then have "(a mod c - b mod c) mod c = 0"
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
  2583
    by simp
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
  2584
  then show ?Q
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
  2585
    by (simp add: dvd_eq_mod_eq_0 mod_simps)
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2586
next
64593
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
  2587
  assume ?Q
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
  2588
  then obtain d where d: "a - b = c * d" ..
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
  2589
  then have "a = c * d + b"
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
  2590
    by (simp add: algebra_simps)
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
  2591
  then show ?P by simp
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2592
qed
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2593
64593
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
  2594
lemma nat_mod_eq_lemma: assumes xyn: "(x::nat) mod n = y mod n" and xy:"y \<le> x"
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2595
  shows "\<exists>q. x = y + n * q"
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2596
proof-
60562
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60517
diff changeset
  2597
  from xy have th: "int x - int y = int (x - y)" by simp
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60517
diff changeset
  2598
  from xyn have "int x mod int n = int y mod int n"
46551
866bce5442a3 simplify projections on simultaneous computations of div and mod; tuned structure (from Florian Haftmann)
huffman
parents: 46026
diff changeset
  2599
    by (simp add: zmod_int [symmetric])
64593
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64592
diff changeset
  2600
  hence "int n dvd int x - int y" by (simp only: mod_eq_dvd_iff [symmetric])
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2601
  hence "n dvd x - y" by (simp add: th zdvd_int)
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2602
  then show ?thesis using xy unfolding dvd_def apply clarsimp apply (rule_tac x="k" in exI) by arith
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2603
qed
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2604
60562
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60517
diff changeset
  2605
lemma nat_mod_eq_iff: "(x::nat) mod n = y mod n \<longleftrightarrow> (\<exists>q1 q2. x + n * q1 = y + n * q2)"
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2606
  (is "?lhs = ?rhs")
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2607
proof
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2608
  assume H: "x mod n = y mod n"
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2609
  {assume xy: "x \<le> y"
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2610
    from H have th: "y mod n = x mod n" by simp
60562
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60517
diff changeset
  2611
    from nat_mod_eq_lemma[OF th xy] have ?rhs
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2612
      apply clarify  apply (rule_tac x="q" in exI) by (rule exI[where x="0"], simp)}
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2613
  moreover
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2614
  {assume xy: "y \<le> x"
60562
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60517
diff changeset
  2615
    from nat_mod_eq_lemma[OF H xy] have ?rhs
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2616
      apply clarify  apply (rule_tac x="0" in exI) by (rule_tac x="q" in exI, simp)}
60562
24af00b010cf Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents: 60517
diff changeset
  2617
  ultimately  show ?rhs using linear[of x y] by blast
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2618
next
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2619
  assume ?rhs then obtain q1 q2 where q12: "x + n * q1 = y + n * q2" by blast
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2620
  hence "(x + n * q1) mod n = (y + n * q2) mod n" by simp
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2621
  thus  ?lhs by simp
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2622
qed
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2623
60868
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2624
subsubsection \<open>Dedicated simproc for calculation\<close>
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2625
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
  2626
text \<open>
60868
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2627
  There is space for improvement here: the calculation itself
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2628
  could be carried outside the logic, and a generic simproc
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2629
  (simplifier setup) for generic calculation would be helpful. 
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
  2630
\<close>
53067
ee0b7c2315d2 type class for generic division algorithm on numerals
haftmann
parents: 53066
diff changeset
  2631
60868
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2632
simproc_setup numeral_divmod
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2633
  ("0 div 0 :: 'a :: semiring_numeral_div" | "0 mod 0 :: 'a :: semiring_numeral_div" |
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2634
   "0 div 1 :: 'a :: semiring_numeral_div" | "0 mod 1 :: 'a :: semiring_numeral_div" |
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2635
   "0 div - 1 :: int" | "0 mod - 1 :: int" |
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2636
   "0 div numeral b :: 'a :: semiring_numeral_div" | "0 mod numeral b :: 'a :: semiring_numeral_div" |
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2637
   "0 div - numeral b :: int" | "0 mod - numeral b :: int" |
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2638
   "1 div 0 :: 'a :: semiring_numeral_div" | "1 mod 0 :: 'a :: semiring_numeral_div" |
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2639
   "1 div 1 :: 'a :: semiring_numeral_div" | "1 mod 1 :: 'a :: semiring_numeral_div" |
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2640
   "1 div - 1 :: int" | "1 mod - 1 :: int" |
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2641
   "1 div numeral b :: 'a :: semiring_numeral_div" | "1 mod numeral b :: 'a :: semiring_numeral_div" |
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2642
   "1 div - numeral b :: int" |"1 mod - numeral b :: int" |
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2643
   "- 1 div 0 :: int" | "- 1 mod 0 :: int" | "- 1 div 1 :: int" | "- 1 mod 1 :: int" |
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2644
   "- 1 div - 1 :: int" | "- 1 mod - 1 :: int" | "- 1 div numeral b :: int" | "- 1 mod numeral b :: int" |
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2645
   "- 1 div - numeral b :: int" | "- 1 mod - numeral b :: int" |
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2646
   "numeral a div 0 :: 'a :: semiring_numeral_div" | "numeral a mod 0 :: 'a :: semiring_numeral_div" |
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2647
   "numeral a div 1 :: 'a :: semiring_numeral_div" | "numeral a mod 1 :: 'a :: semiring_numeral_div" |
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2648
   "numeral a div - 1 :: int" | "numeral a mod - 1 :: int" |
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2649
   "numeral a div numeral b :: 'a :: semiring_numeral_div" | "numeral a mod numeral b :: 'a :: semiring_numeral_div" |
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2650
   "numeral a div - numeral b :: int" | "numeral a mod - numeral b :: int" |
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2651
   "- numeral a div 0 :: int" | "- numeral a mod 0 :: int" |
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2652
   "- numeral a div 1 :: int" | "- numeral a mod 1 :: int" |
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2653
   "- numeral a div - 1 :: int" | "- numeral a mod - 1 :: int" |
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2654
   "- numeral a div numeral b :: int" | "- numeral a mod numeral b :: int" |
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2655
   "- numeral a div - numeral b :: int" | "- numeral a mod - numeral b :: int") =
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2656
\<open> let
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2657
    val if_cong = the (Code.get_case_cong @{theory} @{const_name If});
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2658
    fun successful_rewrite ctxt ct =
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2659
      let
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2660
        val thm = Simplifier.rewrite ctxt ct
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2661
      in if Thm.is_reflexive thm then NONE else SOME thm end;
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2662
  in fn phi =>
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2663
    let
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2664
      val simps = Morphism.fact phi (@{thms div_0 mod_0 div_by_0 mod_by_0 div_by_1 mod_by_1
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2665
        one_div_numeral one_mod_numeral minus_one_div_numeral minus_one_mod_numeral
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2666
        one_div_minus_numeral one_mod_minus_numeral
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2667
        numeral_div_numeral numeral_mod_numeral minus_numeral_div_numeral minus_numeral_mod_numeral
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2668
        numeral_div_minus_numeral numeral_mod_minus_numeral
60930
dd8ab7252ba2 qualified adjust_*
haftmann
parents: 60868
diff changeset
  2669
        div_minus_minus mod_minus_minus Divides.adjust_div_eq of_bool_eq one_neq_zero
60868
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2670
        numeral_neq_zero neg_equal_0_iff_equal arith_simps arith_special divmod_trivial
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2671
        divmod_cancel divmod_steps divmod_step_eq fst_conv snd_conv numeral_One
60930
dd8ab7252ba2 qualified adjust_*
haftmann
parents: 60868
diff changeset
  2672
        case_prod_beta rel_simps Divides.adjust_mod_def div_minus1_right mod_minus1_right
60868
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2673
        minus_minus numeral_times_numeral mult_zero_right mult_1_right}
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2674
        @ [@{lemma "0 = 0 \<longleftrightarrow> True" by simp}]);
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2675
      fun prepare_simpset ctxt = HOL_ss |> Simplifier.simpset_map ctxt
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2676
        (Simplifier.add_cong if_cong #> fold Simplifier.add_simp simps)
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2677
    in fn ctxt => successful_rewrite (Simplifier.put_simpset (prepare_simpset ctxt) ctxt) end
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2678
  end;
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2679
\<close>
34126
8a2c5d7aff51 polished Nitpick's binary integer support etc.;
blanchet
parents: 33804
diff changeset
  2680
35673
178caf872f95 weakend class ring_div; tuned
haftmann
parents: 35644
diff changeset
  2681
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60690
diff changeset
  2682
subsubsection \<open>Code generation\<close>
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2683
60868
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2684
lemma [code]:
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2685
  fixes k :: int
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2686
  shows 
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2687
    "k div 0 = 0"
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2688
    "k mod 0 = k"
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2689
    "0 div k = 0"
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2690
    "0 mod k = 0"
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2691
    "k div Int.Pos Num.One = k"
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2692
    "k mod Int.Pos Num.One = 0"
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2693
    "k div Int.Neg Num.One = - k"
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2694
    "k mod Int.Neg Num.One = 0"
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2695
    "Int.Pos m div Int.Pos n = (fst (divmod m n) :: int)"
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2696
    "Int.Pos m mod Int.Pos n = (snd (divmod m n) :: int)"
60930
dd8ab7252ba2 qualified adjust_*
haftmann
parents: 60868
diff changeset
  2697
    "Int.Neg m div Int.Pos n = - (Divides.adjust_div (divmod m n) :: int)"
dd8ab7252ba2 qualified adjust_*
haftmann
parents: 60868
diff changeset
  2698
    "Int.Neg m mod Int.Pos n = Divides.adjust_mod (Int.Pos n) (snd (divmod m n) :: int)"
dd8ab7252ba2 qualified adjust_*
haftmann
parents: 60868
diff changeset
  2699
    "Int.Pos m div Int.Neg n = - (Divides.adjust_div (divmod m n) :: int)"
dd8ab7252ba2 qualified adjust_*
haftmann
parents: 60868
diff changeset
  2700
    "Int.Pos m mod Int.Neg n = - Divides.adjust_mod (Int.Pos n) (snd (divmod m n) :: int)"
60868
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2701
    "Int.Neg m div Int.Neg n = (fst (divmod m n) :: int)"
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2702
    "Int.Neg m mod Int.Neg n = - (snd (divmod m n) :: int)"
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2703
  by simp_all
53069
d165213e3924 execution of int division by class semiring_numeral_div, replacing pdivmod by divmod_abs
haftmann
parents: 53068
diff changeset
  2704
52435
6646bb548c6b migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents: 52398
diff changeset
  2705
code_identifier
6646bb548c6b migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents: 52398
diff changeset
  2706
  code_module Divides \<rightharpoonup> (SML) Arith and (OCaml) Arith and (Haskell) Arith
33364
2bd12592c5e8 tuned code setup
haftmann
parents: 33361
diff changeset
  2707
60868
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2708
lemma dvd_eq_mod_eq_0_numeral:
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2709
  "numeral x dvd (numeral y :: 'a) \<longleftrightarrow> numeral y mod numeral x = (0 :: 'a::semiring_div)"
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2710
  by (fact dvd_eq_mod_eq_0)
dd18c33c001e direct bootstrap of integer division from natural division
haftmann
parents: 60867
diff changeset
  2711
64246
15d1ee6e847b eliminated irregular aliasses
haftmann
parents: 64244
diff changeset
  2712
declare minus_div_mult_eq_mod [symmetric, nitpick_unfold]
15d1ee6e847b eliminated irregular aliasses
haftmann
parents: 64244
diff changeset
  2713
33361
1f18de40b43f combined former theories Divides and IntDiv to one theory Divides
haftmann
parents: 33340
diff changeset
  2714
end