| author | haftmann | 
| Sat, 17 Sep 2011 00:37:21 +0200 | |
| changeset 44945 | 2625de88c994 | 
| parent 44890 | 22f665a2e91c | 
| child 46008 | c296c75f4cf4 | 
| permissions | -rw-r--r-- | 
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
30663 
diff
changeset
 | 
1  | 
(* Title: HOL/Library/Zorn.thy  | 
| 
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
30663 
diff
changeset
 | 
2  | 
Author: Jacques D. Fleuriot, Tobias Nipkow  | 
| 
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
30663 
diff
changeset
 | 
3  | 
|
| 
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
30663 
diff
changeset
 | 
4  | 
Zorn's Lemma (ported from Larry Paulson's Zorn.thy in ZF).  | 
| 
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
30663 
diff
changeset
 | 
5  | 
The well-ordering theorem.  | 
| 14706 | 6  | 
*)  | 
| 
13551
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
7  | 
|
| 14706 | 8  | 
header {* Zorn's Lemma *}
 | 
| 
13551
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
9  | 
|
| 15131 | 10  | 
theory Zorn  | 
| 
30663
 
0b6aff7451b2
Main is (Complex_Main) base entry point in library theories
 
haftmann 
parents: 
30198 
diff
changeset
 | 
11  | 
imports Order_Relation Main  | 
| 15131 | 12  | 
begin  | 
| 
13551
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
13  | 
|
| 26272 | 14  | 
(* Define globally? In Set.thy? *)  | 
15  | 
definition chain_subset :: "'a set set \<Rightarrow> bool" ("chain\<^bsub>\<subseteq>\<^esub>") where
 | 
|
16  | 
"chain\<^bsub>\<subseteq>\<^esub> C \<equiv> \<forall>A\<in>C.\<forall>B\<in>C. A \<subseteq> B \<or> B \<subseteq> A"  | 
|
17  | 
||
| 14706 | 18  | 
text{*
 | 
19  | 
The lemma and section numbers refer to an unpublished article  | 
|
20  | 
  \cite{Abrial-Laffitte}.
 | 
|
21  | 
*}  | 
|
| 
13551
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
22  | 
|
| 19736 | 23  | 
definition  | 
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
19736 
diff
changeset
 | 
24  | 
chain :: "'a set set => 'a set set set" where  | 
| 26272 | 25  | 
  "chain S  = {F. F \<subseteq> S & chain\<^bsub>\<subseteq>\<^esub> F}"
 | 
| 
13551
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
26  | 
|
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
19736 
diff
changeset
 | 
27  | 
definition  | 
| 
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
19736 
diff
changeset
 | 
28  | 
super :: "['a set set,'a set set] => 'a set set set" where  | 
| 19736 | 29  | 
  "super S c = {d. d \<in> chain S & c \<subset> d}"
 | 
| 
13551
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
30  | 
|
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
19736 
diff
changeset
 | 
31  | 
definition  | 
| 
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
19736 
diff
changeset
 | 
32  | 
maxchain :: "'a set set => 'a set set set" where  | 
| 19736 | 33  | 
  "maxchain S = {c. c \<in> chain S & super S c = {}}"
 | 
| 
13551
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
34  | 
|
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
19736 
diff
changeset
 | 
35  | 
definition  | 
| 
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
19736 
diff
changeset
 | 
36  | 
succ :: "['a set set,'a set set] => 'a set set" where  | 
| 19736 | 37  | 
"succ S c =  | 
38  | 
(if c \<notin> chain S | c \<in> maxchain S  | 
|
39  | 
then c else SOME c'. c' \<in> super S c)"  | 
|
| 
13551
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
40  | 
|
| 23755 | 41  | 
inductive_set  | 
| 14706 | 42  | 
TFin :: "'a set set => 'a set set set"  | 
| 23755 | 43  | 
for S :: "'a set set"  | 
44  | 
where  | 
|
| 
13551
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
45  | 
succI: "x \<in> TFin S ==> succ S x \<in> TFin S"  | 
| 23755 | 46  | 
| Pow_UnionI: "Y \<in> Pow(TFin S) ==> Union(Y) \<in> TFin S"  | 
| 
13551
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
47  | 
|
| 
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
48  | 
|
| 
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
49  | 
subsection{*Mathematical Preamble*}
 | 
| 
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
50  | 
|
| 17200 | 51  | 
lemma Union_lemma0:  | 
| 18143 | 52  | 
"(\<forall>x \<in> C. x \<subseteq> A | B \<subseteq> x) ==> Union(C) \<subseteq> A | B \<subseteq> Union(C)"  | 
| 17200 | 53  | 
by blast  | 
| 
13551
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
54  | 
|
| 
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
55  | 
|
| 
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
56  | 
text{*This is theorem @{text increasingD2} of ZF/Zorn.thy*}
 | 
| 17200 | 57  | 
|
| 
13551
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
58  | 
lemma Abrial_axiom1: "x \<subseteq> succ S x"  | 
| 26806 | 59  | 
apply (auto simp add: succ_def super_def maxchain_def)  | 
| 18585 | 60  | 
apply (rule contrapos_np, assumption)  | 
| 26806 | 61  | 
apply (rule_tac Q="\<lambda>S. xa \<in> S" in someI2, blast+)  | 
| 17200 | 62  | 
done  | 
| 
13551
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
63  | 
|
| 
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
64  | 
lemmas TFin_UnionI = TFin.Pow_UnionI [OF PowI]  | 
| 
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
65  | 
|
| 14706 | 66  | 
lemma TFin_induct:  | 
| 26806 | 67  | 
assumes H: "n \<in> TFin S"  | 
68  | 
and I: "!!x. x \<in> TFin S ==> P x ==> P (succ S x)"  | 
|
69  | 
"!!Y. Y \<subseteq> TFin S ==> Ball Y P ==> P(Union Y)"  | 
|
70  | 
shows "P n" using H  | 
|
71  | 
apply (induct rule: TFin.induct [where P=P])  | 
|
72  | 
apply (blast intro: I)+  | 
|
| 17200 | 73  | 
done  | 
| 
13551
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
74  | 
|
| 
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
75  | 
lemma succ_trans: "x \<subseteq> y ==> x \<subseteq> succ S y"  | 
| 17200 | 76  | 
apply (erule subset_trans)  | 
77  | 
apply (rule Abrial_axiom1)  | 
|
78  | 
done  | 
|
| 
13551
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
79  | 
|
| 
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
80  | 
text{*Lemma 1 of section 3.1*}
 | 
| 
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
81  | 
lemma TFin_linear_lemma1:  | 
| 14706 | 82  | 
"[| n \<in> TFin S; m \<in> TFin S;  | 
83  | 
\<forall>x \<in> TFin S. x \<subseteq> m --> x = m | succ S x \<subseteq> m  | 
|
| 
13551
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
84  | 
|] ==> n \<subseteq> m | succ S m \<subseteq> n"  | 
| 17200 | 85  | 
apply (erule TFin_induct)  | 
86  | 
apply (erule_tac [2] Union_lemma0)  | 
|
87  | 
apply (blast del: subsetI intro: succ_trans)  | 
|
88  | 
done  | 
|
| 
13551
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
89  | 
|
| 
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
90  | 
text{* Lemma 2 of section 3.2 *}
 | 
| 
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
91  | 
lemma TFin_linear_lemma2:  | 
| 
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
92  | 
"m \<in> TFin S ==> \<forall>n \<in> TFin S. n \<subseteq> m --> n=m | succ S n \<subseteq> m"  | 
| 17200 | 93  | 
apply (erule TFin_induct)  | 
94  | 
apply (rule impI [THEN ballI])  | 
|
95  | 
   txt{*case split using @{text TFin_linear_lemma1}*}
 | 
|
96  | 
apply (rule_tac n1 = n and m1 = x in TFin_linear_lemma1 [THEN disjE],  | 
|
97  | 
assumption+)  | 
|
98  | 
apply (drule_tac x = n in bspec, assumption)  | 
|
99  | 
apply (blast del: subsetI intro: succ_trans, blast)  | 
|
100  | 
  txt{*second induction step*}
 | 
|
101  | 
apply (rule impI [THEN ballI])  | 
|
102  | 
apply (rule Union_lemma0 [THEN disjE])  | 
|
103  | 
apply (rule_tac [3] disjI2)  | 
|
104  | 
prefer 2 apply blast  | 
|
105  | 
apply (rule ballI)  | 
|
106  | 
apply (rule_tac n1 = n and m1 = x in TFin_linear_lemma1 [THEN disjE],  | 
|
107  | 
assumption+, auto)  | 
|
108  | 
apply (blast intro!: Abrial_axiom1 [THEN subsetD])  | 
|
109  | 
done  | 
|
| 
13551
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
110  | 
|
| 
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
111  | 
text{*Re-ordering the premises of Lemma 2*}
 | 
| 
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
112  | 
lemma TFin_subsetD:  | 
| 
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
113  | 
"[| n \<subseteq> m; m \<in> TFin S; n \<in> TFin S |] ==> n=m | succ S n \<subseteq> m"  | 
| 17200 | 114  | 
by (rule TFin_linear_lemma2 [rule_format])  | 
| 
13551
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
115  | 
|
| 
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
116  | 
text{*Consequences from section 3.3 -- Property 3.2, the ordering is total*}
 | 
| 
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
117  | 
lemma TFin_subset_linear: "[| m \<in> TFin S; n \<in> TFin S|] ==> n \<subseteq> m | m \<subseteq> n"  | 
| 17200 | 118  | 
apply (rule disjE)  | 
119  | 
apply (rule TFin_linear_lemma1 [OF _ _TFin_linear_lemma2])  | 
|
120  | 
apply (assumption+, erule disjI2)  | 
|
121  | 
apply (blast del: subsetI  | 
|
122  | 
intro: subsetI Abrial_axiom1 [THEN subset_trans])  | 
|
123  | 
done  | 
|
| 
13551
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
124  | 
|
| 
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
125  | 
text{*Lemma 3 of section 3.3*}
 | 
| 
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
126  | 
lemma eq_succ_upper: "[| n \<in> TFin S; m \<in> TFin S; m = succ S m |] ==> n \<subseteq> m"  | 
| 17200 | 127  | 
apply (erule TFin_induct)  | 
128  | 
apply (drule TFin_subsetD)  | 
|
129  | 
apply (assumption+, force, blast)  | 
|
130  | 
done  | 
|
| 
13551
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
131  | 
|
| 
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
132  | 
text{*Property 3.3 of section 3.3*}
 | 
| 
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
133  | 
lemma equal_succ_Union: "m \<in> TFin S ==> (m = succ S m) = (m = Union(TFin S))"  | 
| 17200 | 134  | 
apply (rule iffI)  | 
135  | 
apply (rule Union_upper [THEN equalityI])  | 
|
| 18143 | 136  | 
apply assumption  | 
137  | 
apply (rule eq_succ_upper [THEN Union_least], assumption+)  | 
|
| 17200 | 138  | 
apply (erule ssubst)  | 
139  | 
apply (rule Abrial_axiom1 [THEN equalityI])  | 
|
140  | 
apply (blast del: subsetI intro: subsetI TFin_UnionI TFin.succI)  | 
|
141  | 
done  | 
|
| 
13551
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
142  | 
|
| 
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
143  | 
subsection{*Hausdorff's Theorem: Every Set Contains a Maximal Chain.*}
 | 
| 
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
144  | 
|
| 14706 | 145  | 
text{*NB: We assume the partial ordering is @{text "\<subseteq>"},
 | 
| 
13551
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
146  | 
the subset relation!*}  | 
| 
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
147  | 
|
| 
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
148  | 
lemma empty_set_mem_chain: "({} :: 'a set set) \<in> chain S"
 | 
| 26272 | 149  | 
by (unfold chain_def chain_subset_def) auto  | 
| 
13551
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
150  | 
|
| 
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
151  | 
lemma super_subset_chain: "super S c \<subseteq> chain S"  | 
| 17200 | 152  | 
by (unfold super_def) blast  | 
| 
13551
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
153  | 
|
| 
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
154  | 
lemma maxchain_subset_chain: "maxchain S \<subseteq> chain S"  | 
| 17200 | 155  | 
by (unfold maxchain_def) blast  | 
| 
13551
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
156  | 
|
| 26191 | 157  | 
lemma mem_super_Ex: "c \<in> chain S - maxchain S ==> EX d. d \<in> super S c"  | 
| 17200 | 158  | 
by (unfold super_def maxchain_def) auto  | 
| 
13551
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
159  | 
|
| 18143 | 160  | 
lemma select_super:  | 
161  | 
"c \<in> chain S - maxchain S ==> (\<some>c'. c': super S c): super S c"  | 
|
| 17200 | 162  | 
apply (erule mem_super_Ex [THEN exE])  | 
| 26806 | 163  | 
apply (rule someI2 [where Q="%X. X : super S c"], auto)  | 
| 17200 | 164  | 
done  | 
| 
13551
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
165  | 
|
| 18143 | 166  | 
lemma select_not_equals:  | 
167  | 
"c \<in> chain S - maxchain S ==> (\<some>c'. c': super S c) \<noteq> c"  | 
|
| 17200 | 168  | 
apply (rule notI)  | 
169  | 
apply (drule select_super)  | 
|
| 26806 | 170  | 
apply (simp add: super_def less_le)  | 
| 17200 | 171  | 
done  | 
| 
13551
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
172  | 
|
| 17200 | 173  | 
lemma succI3: "c \<in> chain S - maxchain S ==> succ S c = (\<some>c'. c': super S c)"  | 
174  | 
by (unfold succ_def) (blast intro!: if_not_P)  | 
|
| 
13551
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
175  | 
|
| 
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
176  | 
lemma succ_not_equals: "c \<in> chain S - maxchain S ==> succ S c \<noteq> c"  | 
| 17200 | 177  | 
apply (frule succI3)  | 
178  | 
apply (simp (no_asm_simp))  | 
|
179  | 
apply (rule select_not_equals, assumption)  | 
|
180  | 
done  | 
|
| 
13551
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
181  | 
|
| 
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
182  | 
lemma TFin_chain_lemma4: "c \<in> TFin S ==> (c :: 'a set set): chain S"  | 
| 17200 | 183  | 
apply (erule TFin_induct)  | 
184  | 
apply (simp add: succ_def select_super [THEN super_subset_chain[THEN subsetD]])  | 
|
| 26272 | 185  | 
apply (unfold chain_def chain_subset_def)  | 
| 17200 | 186  | 
apply (rule CollectI, safe)  | 
187  | 
apply (drule bspec, assumption)  | 
|
188  | 
apply (rule_tac [2] m1 = Xa and n1 = X in TFin_subset_linear [THEN disjE],  | 
|
| 26806 | 189  | 
best+)  | 
| 17200 | 190  | 
done  | 
| 14706 | 191  | 
|
| 
13551
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
192  | 
theorem Hausdorff: "\<exists>c. (c :: 'a set set): maxchain S"  | 
| 18143 | 193  | 
apply (rule_tac x = "Union (TFin S)" in exI)  | 
| 17200 | 194  | 
apply (rule classical)  | 
195  | 
apply (subgoal_tac "succ S (Union (TFin S)) = Union (TFin S) ")  | 
|
196  | 
prefer 2  | 
|
197  | 
apply (blast intro!: TFin_UnionI equal_succ_Union [THEN iffD2, symmetric])  | 
|
198  | 
apply (cut_tac subset_refl [THEN TFin_UnionI, THEN TFin_chain_lemma4])  | 
|
199  | 
apply (drule DiffI [THEN succ_not_equals], blast+)  | 
|
200  | 
done  | 
|
| 
13551
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
201  | 
|
| 
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
202  | 
|
| 14706 | 203  | 
subsection{*Zorn's Lemma: If All Chains Have Upper Bounds Then
 | 
| 
13551
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
204  | 
There Is a Maximal Element*}  | 
| 
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
205  | 
|
| 14706 | 206  | 
lemma chain_extend:  | 
| 26272 | 207  | 
  "[| c \<in> chain S; z \<in> S; \<forall>x \<in> c. x \<subseteq> (z:: 'a set) |] ==> {z} Un c \<in> chain S"
 | 
208  | 
by (unfold chain_def chain_subset_def) blast  | 
|
| 
13551
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
209  | 
|
| 
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
210  | 
lemma chain_Union_upper: "[| c \<in> chain S; x \<in> c |] ==> x \<subseteq> Union(c)"  | 
| 26272 | 211  | 
by auto  | 
| 
13551
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
212  | 
|
| 
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
213  | 
lemma chain_ball_Union_upper: "c \<in> chain S ==> \<forall>x \<in> c. x \<subseteq> Union(c)"  | 
| 26272 | 214  | 
by auto  | 
| 
13551
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
215  | 
|
| 
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
216  | 
lemma maxchain_Zorn:  | 
| 26272 | 217  | 
"[| c \<in> maxchain S; u \<in> S; Union(c) \<subseteq> u |] ==> Union(c) = u"  | 
218  | 
apply (rule ccontr)  | 
|
219  | 
apply (simp add: maxchain_def)  | 
|
220  | 
apply (erule conjE)  | 
|
221  | 
apply (subgoal_tac "({u} Un c) \<in> super S c")
 | 
|
222  | 
apply simp  | 
|
| 26806 | 223  | 
apply (unfold super_def less_le)  | 
| 26272 | 224  | 
apply (blast intro: chain_extend dest: chain_Union_upper)  | 
225  | 
done  | 
|
| 
13551
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
226  | 
|
| 
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
227  | 
theorem Zorn_Lemma:  | 
| 26272 | 228  | 
"\<forall>c \<in> chain S. Union(c): S ==> \<exists>y \<in> S. \<forall>z \<in> S. y \<subseteq> z --> y = z"  | 
229  | 
apply (cut_tac Hausdorff maxchain_subset_chain)  | 
|
230  | 
apply (erule exE)  | 
|
231  | 
apply (drule subsetD, assumption)  | 
|
232  | 
apply (drule bspec, assumption)  | 
|
233  | 
apply (rule_tac x = "Union(c)" in bexI)  | 
|
234  | 
apply (rule ballI, rule impI)  | 
|
235  | 
apply (blast dest!: maxchain_Zorn, assumption)  | 
|
236  | 
done  | 
|
| 
13551
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
237  | 
|
| 
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
238  | 
subsection{*Alternative version of Zorn's Lemma*}
 | 
| 
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
239  | 
|
| 
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
240  | 
lemma Zorn_Lemma2:  | 
| 17200 | 241  | 
"\<forall>c \<in> chain S. \<exists>y \<in> S. \<forall>x \<in> c. x \<subseteq> y  | 
242  | 
==> \<exists>y \<in> S. \<forall>x \<in> S. (y :: 'a set) \<subseteq> x --> y = x"  | 
|
| 26272 | 243  | 
apply (cut_tac Hausdorff maxchain_subset_chain)  | 
244  | 
apply (erule exE)  | 
|
245  | 
apply (drule subsetD, assumption)  | 
|
246  | 
apply (drule bspec, assumption, erule bexE)  | 
|
247  | 
apply (rule_tac x = y in bexI)  | 
|
248  | 
prefer 2 apply assumption  | 
|
249  | 
apply clarify  | 
|
250  | 
apply (rule ccontr)  | 
|
251  | 
apply (frule_tac z = x in chain_extend)  | 
|
252  | 
apply (assumption, blast)  | 
|
| 26806 | 253  | 
apply (unfold maxchain_def super_def less_le)  | 
| 26272 | 254  | 
apply (blast elim!: equalityCE)  | 
255  | 
done  | 
|
| 
13551
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
256  | 
|
| 
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
257  | 
text{*Various other lemmas*}
 | 
| 
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
258  | 
|
| 
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
259  | 
lemma chainD: "[| c \<in> chain S; x \<in> c; y \<in> c |] ==> x \<subseteq> y | y \<subseteq> x"  | 
| 26272 | 260  | 
by (unfold chain_def chain_subset_def) blast  | 
| 
13551
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
261  | 
|
| 
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
262  | 
lemma chainD2: "!!(c :: 'a set set). c \<in> chain S ==> c \<subseteq> S"  | 
| 26272 | 263  | 
by (unfold chain_def) blast  | 
| 26191 | 264  | 
|
265  | 
||
266  | 
(* Define globally? In Relation.thy? *)  | 
|
267  | 
definition Chain :: "('a*'a)set \<Rightarrow> 'a set set" where
 | 
|
268  | 
"Chain r \<equiv> {A. \<forall>a\<in>A.\<forall>b\<in>A. (a,b) : r \<or> (b,a) \<in> r}"
 | 
|
269  | 
||
270  | 
lemma mono_Chain: "r \<subseteq> s \<Longrightarrow> Chain r \<subseteq> Chain s"  | 
|
271  | 
unfolding Chain_def by blast  | 
|
272  | 
||
273  | 
text{* Zorn's lemma for partial orders: *}
 | 
|
274  | 
||
275  | 
lemma Zorns_po_lemma:  | 
|
276  | 
assumes po: "Partial_order r" and u: "\<forall>C\<in>Chain r. \<exists>u\<in>Field r. \<forall>a\<in>C. (a,u):r"  | 
|
277  | 
shows "\<exists>m\<in>Field r. \<forall>a\<in>Field r. (m,a):r \<longrightarrow> a=m"  | 
|
278  | 
proof-  | 
|
| 26295 | 279  | 
have "Preorder r" using po by(simp add:partial_order_on_def)  | 
| 26191 | 280  | 
--{* Mirror r in the set of subsets below (wrt r) elements of A*}
 | 
281  | 
  let ?B = "%x. r^-1 `` {x}" let ?S = "?B ` Field r"
 | 
|
282  | 
have "\<forall>C \<in> chain ?S. EX U:?S. ALL A:C. A\<subseteq>U"  | 
|
| 26272 | 283  | 
proof (auto simp:chain_def chain_subset_def)  | 
| 26191 | 284  | 
fix C assume 1: "C \<subseteq> ?S" and 2: "\<forall>A\<in>C.\<forall>B\<in>C. A\<subseteq>B | B\<subseteq>A"  | 
285  | 
    let ?A = "{x\<in>Field r. \<exists>M\<in>C. M = ?B x}"
 | 
|
286  | 
have "C = ?B ` ?A" using 1 by(auto simp: image_def)  | 
|
287  | 
have "?A\<in>Chain r"  | 
|
288  | 
proof (simp add:Chain_def, intro allI impI, elim conjE)  | 
|
289  | 
fix a b  | 
|
290  | 
assume "a \<in> Field r" "?B a \<in> C" "b \<in> Field r" "?B b \<in> C"  | 
|
291  | 
hence "?B a \<subseteq> ?B b \<or> ?B b \<subseteq> ?B a" using 2 by auto  | 
|
292  | 
thus "(a, b) \<in> r \<or> (b, a) \<in> r" using `Preorder r` `a:Field r` `b:Field r`  | 
|
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
30663 
diff
changeset
 | 
293  | 
by (simp add:subset_Image1_Image1_iff)  | 
| 26191 | 294  | 
qed  | 
295  | 
then obtain u where uA: "u:Field r" "\<forall>a\<in>?A. (a,u) : r" using u by auto  | 
|
296  | 
    have "\<forall>A\<in>C. A \<subseteq> r^-1 `` {u}" (is "?P u")
 | 
|
297  | 
proof auto  | 
|
298  | 
fix a B assume aB: "B:C" "a:B"  | 
|
299  | 
      with 1 obtain x where "x:Field r" "B = r^-1 `` {x}" by auto
 | 
|
300  | 
thus "(a,u) : r" using uA aB `Preorder r`  | 
|
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
30663 
diff
changeset
 | 
301  | 
by (auto simp add: preorder_on_def refl_on_def) (metis transD)  | 
| 26191 | 302  | 
qed  | 
303  | 
thus "EX u:Field r. ?P u" using `u:Field r` by blast  | 
|
304  | 
qed  | 
|
305  | 
from Zorn_Lemma2[OF this]  | 
|
306  | 
  obtain m B where "m:Field r" "B = r^-1 `` {m}"
 | 
|
307  | 
    "\<forall>x\<in>Field r. B \<subseteq> r^-1 `` {x} \<longrightarrow> B = r^-1 `` {x}"
 | 
|
| 27064 | 308  | 
by auto  | 
| 26191 | 309  | 
hence "\<forall>a\<in>Field r. (m, a) \<in> r \<longrightarrow> a = m" using po `Preorder r` `m:Field r`  | 
310  | 
by(auto simp:subset_Image1_Image1_iff Partial_order_eq_Image1_Image1_iff)  | 
|
311  | 
thus ?thesis using `m:Field r` by blast  | 
|
312  | 
qed  | 
|
313  | 
||
314  | 
(* The initial segment of a relation appears generally useful.  | 
|
315  | 
Move to Relation.thy?  | 
|
316  | 
Definition correct/most general?  | 
|
317  | 
Naming?  | 
|
318  | 
*)  | 
|
319  | 
definition init_seg_of :: "(('a*'a)set * ('a*'a)set)set" where
 | 
|
320  | 
"init_seg_of == {(r,s). r \<subseteq> s \<and> (\<forall>a b c. (a,b):s \<and> (b,c):r \<longrightarrow> (a,b):r)}"
 | 
|
321  | 
||
322  | 
abbreviation initialSegmentOf :: "('a*'a)set \<Rightarrow> ('a*'a)set \<Rightarrow> bool"
 | 
|
323  | 
(infix "initial'_segment'_of" 55) where  | 
|
324  | 
"r initial_segment_of s == (r,s):init_seg_of"  | 
|
325  | 
||
| 30198 | 326  | 
lemma refl_on_init_seg_of[simp]: "r initial_segment_of r"  | 
| 26191 | 327  | 
by(simp add:init_seg_of_def)  | 
328  | 
||
329  | 
lemma trans_init_seg_of:  | 
|
330  | 
"r initial_segment_of s \<Longrightarrow> s initial_segment_of t \<Longrightarrow> r initial_segment_of t"  | 
|
331  | 
by(simp (no_asm_use) add: init_seg_of_def)  | 
|
332  | 
(metis Domain_iff UnCI Un_absorb2 subset_trans)  | 
|
333  | 
||
334  | 
lemma antisym_init_seg_of:  | 
|
335  | 
"r initial_segment_of s \<Longrightarrow> s initial_segment_of r \<Longrightarrow> r=s"  | 
|
| 35175 | 336  | 
unfolding init_seg_of_def by safe  | 
| 26191 | 337  | 
|
338  | 
lemma Chain_init_seg_of_Union:  | 
|
339  | 
"R \<in> Chain init_seg_of \<Longrightarrow> r\<in>R \<Longrightarrow> r initial_segment_of \<Union>R"  | 
|
340  | 
by(auto simp add:init_seg_of_def Chain_def Ball_def) blast  | 
|
341  | 
||
| 26272 | 342  | 
lemma chain_subset_trans_Union:  | 
343  | 
"chain\<^bsub>\<subseteq>\<^esub> R \<Longrightarrow> \<forall>r\<in>R. trans r \<Longrightarrow> trans(\<Union>R)"  | 
|
344  | 
apply(auto simp add:chain_subset_def)  | 
|
| 26191 | 345  | 
apply(simp (no_asm_use) add:trans_def)  | 
346  | 
apply (metis subsetD)  | 
|
347  | 
done  | 
|
348  | 
||
| 26272 | 349  | 
lemma chain_subset_antisym_Union:  | 
350  | 
"chain\<^bsub>\<subseteq>\<^esub> R \<Longrightarrow> \<forall>r\<in>R. antisym r \<Longrightarrow> antisym(\<Union>R)"  | 
|
351  | 
apply(auto simp add:chain_subset_def antisym_def)  | 
|
| 26191 | 352  | 
apply (metis subsetD)  | 
353  | 
done  | 
|
354  | 
||
| 26272 | 355  | 
lemma chain_subset_Total_Union:  | 
356  | 
assumes "chain\<^bsub>\<subseteq>\<^esub> R" "\<forall>r\<in>R. Total r"  | 
|
| 26191 | 357  | 
shows "Total (\<Union>R)"  | 
| 26295 | 358  | 
proof (simp add: total_on_def Ball_def, auto del:disjCI)  | 
| 26191 | 359  | 
fix r s a b assume A: "r:R" "s:R" "a:Field r" "b:Field s" "a\<noteq>b"  | 
| 26272 | 360  | 
from `chain\<^bsub>\<subseteq>\<^esub> R` `r:R` `s:R` have "r\<subseteq>s \<or> s\<subseteq>r"  | 
361  | 
by(simp add:chain_subset_def)  | 
|
| 26191 | 362  | 
thus "(\<exists>r\<in>R. (a,b) \<in> r) \<or> (\<exists>r\<in>R. (b,a) \<in> r)"  | 
363  | 
proof  | 
|
364  | 
assume "r\<subseteq>s" hence "(a,b):s \<or> (b,a):s" using assms(2) A  | 
|
| 26295 | 365  | 
by(simp add:total_on_def)(metis mono_Field subsetD)  | 
| 26191 | 366  | 
thus ?thesis using `s:R` by blast  | 
367  | 
next  | 
|
368  | 
assume "s\<subseteq>r" hence "(a,b):r \<or> (b,a):r" using assms(2) A  | 
|
| 26295 | 369  | 
by(simp add:total_on_def)(metis mono_Field subsetD)  | 
| 26191 | 370  | 
thus ?thesis using `r:R` by blast  | 
371  | 
qed  | 
|
372  | 
qed  | 
|
373  | 
||
374  | 
lemma wf_Union_wf_init_segs:  | 
|
375  | 
assumes "R \<in> Chain init_seg_of" and "\<forall>r\<in>R. wf r" shows "wf(\<Union>R)"  | 
|
376  | 
proof(simp add:wf_iff_no_infinite_down_chain, rule ccontr, auto)  | 
|
377  | 
fix f assume 1: "\<forall>i. \<exists>r\<in>R. (f(Suc i), f i) \<in> r"  | 
|
378  | 
then obtain r where "r:R" and "(f(Suc 0), f 0) : r" by auto  | 
|
379  | 
  { fix i have "(f(Suc i), f i) \<in> r"
 | 
|
380  | 
proof(induct i)  | 
|
381  | 
case 0 show ?case by fact  | 
|
382  | 
next  | 
|
383  | 
case (Suc i)  | 
|
384  | 
moreover obtain s where "s\<in>R" and "(f(Suc(Suc i)), f(Suc i)) \<in> s"  | 
|
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
30663 
diff
changeset
 | 
385  | 
using 1 by auto  | 
| 26191 | 386  | 
moreover hence "s initial_segment_of r \<or> r initial_segment_of s"  | 
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
30663 
diff
changeset
 | 
387  | 
using assms(1) `r:R` by(simp add: Chain_def)  | 
| 26191 | 388  | 
ultimately show ?case by(simp add:init_seg_of_def) blast  | 
389  | 
qed  | 
|
390  | 
}  | 
|
391  | 
thus False using assms(2) `r:R`  | 
|
392  | 
by(simp add:wf_iff_no_infinite_down_chain) blast  | 
|
393  | 
qed  | 
|
394  | 
||
| 27476 | 395  | 
lemma initial_segment_of_Diff:  | 
396  | 
"p initial_segment_of q \<Longrightarrow> p - s initial_segment_of q - s"  | 
|
397  | 
unfolding init_seg_of_def by blast  | 
|
398  | 
||
| 26191 | 399  | 
lemma Chain_inits_DiffI:  | 
400  | 
  "R \<in> Chain init_seg_of \<Longrightarrow> {r - s |r. r \<in> R} \<in> Chain init_seg_of"
 | 
|
| 27476 | 401  | 
unfolding Chain_def by (blast intro: initial_segment_of_Diff)  | 
| 26191 | 402  | 
|
| 26272 | 403  | 
theorem well_ordering: "\<exists>r::('a*'a)set. Well_order r \<and> Field r = UNIV"
 | 
| 26191 | 404  | 
proof-  | 
405  | 
-- {*The initial segment relation on well-orders: *}
 | 
|
406  | 
  let ?WO = "{r::('a*'a)set. Well_order r}"
 | 
|
407  | 
def I \<equiv> "init_seg_of \<inter> ?WO \<times> ?WO"  | 
|
408  | 
have I_init: "I \<subseteq> init_seg_of" by(auto simp:I_def)  | 
|
| 26272 | 409  | 
hence subch: "!!R. R : Chain I \<Longrightarrow> chain\<^bsub>\<subseteq>\<^esub> R"  | 
410  | 
by(auto simp:init_seg_of_def chain_subset_def Chain_def)  | 
|
| 26191 | 411  | 
have Chain_wo: "!!R r. R \<in> Chain I \<Longrightarrow> r \<in> R \<Longrightarrow> Well_order r"  | 
412  | 
by(simp add:Chain_def I_def) blast  | 
|
413  | 
have FI: "Field I = ?WO" by(auto simp add:I_def init_seg_of_def Field_def)  | 
|
414  | 
hence 0: "Partial_order I"  | 
|
| 30198 | 415  | 
by(auto simp: partial_order_on_def preorder_on_def antisym_def antisym_init_seg_of refl_on_def trans_def I_def elim!: trans_init_seg_of)  | 
| 26191 | 416  | 
-- {*I-chains have upper bounds in ?WO wrt I: their Union*}
 | 
417  | 
  { fix R assume "R \<in> Chain I"
 | 
|
418  | 
hence Ris: "R \<in> Chain init_seg_of" using mono_Chain[OF I_init] by blast  | 
|
| 26272 | 419  | 
have subch: "chain\<^bsub>\<subseteq>\<^esub> R" using `R : Chain I` I_init  | 
420  | 
by(auto simp:init_seg_of_def chain_subset_def Chain_def)  | 
|
| 26191 | 421  | 
have "\<forall>r\<in>R. Refl r" "\<forall>r\<in>R. trans r" "\<forall>r\<in>R. antisym r" "\<forall>r\<in>R. Total r"  | 
422  | 
"\<forall>r\<in>R. wf(r-Id)"  | 
|
| 26295 | 423  | 
using Chain_wo[OF `R \<in> Chain I`] by(simp_all add:order_on_defs)  | 
| 30198 | 424  | 
have "Refl (\<Union>R)" using `\<forall>r\<in>R. Refl r` by(auto simp:refl_on_def)  | 
| 26191 | 425  | 
moreover have "trans (\<Union>R)"  | 
| 26272 | 426  | 
by(rule chain_subset_trans_Union[OF subch `\<forall>r\<in>R. trans r`])  | 
| 26191 | 427  | 
moreover have "antisym(\<Union>R)"  | 
| 26272 | 428  | 
by(rule chain_subset_antisym_Union[OF subch `\<forall>r\<in>R. antisym r`])  | 
| 26191 | 429  | 
moreover have "Total (\<Union>R)"  | 
| 26272 | 430  | 
by(rule chain_subset_Total_Union[OF subch `\<forall>r\<in>R. Total r`])  | 
| 26191 | 431  | 
moreover have "wf((\<Union>R)-Id)"  | 
432  | 
proof-  | 
|
433  | 
      have "(\<Union>R)-Id = \<Union>{r-Id|r. r \<in> R}" by blast
 | 
|
434  | 
with `\<forall>r\<in>R. wf(r-Id)` wf_Union_wf_init_segs[OF Chain_inits_DiffI[OF Ris]]  | 
|
435  | 
show ?thesis by (simp (no_asm_simp)) blast  | 
|
436  | 
qed  | 
|
| 26295 | 437  | 
ultimately have "Well_order (\<Union>R)" by(simp add:order_on_defs)  | 
| 26191 | 438  | 
moreover have "\<forall>r \<in> R. r initial_segment_of \<Union>R" using Ris  | 
439  | 
by(simp add: Chain_init_seg_of_Union)  | 
|
440  | 
ultimately have "\<Union>R : ?WO \<and> (\<forall>r\<in>R. (r,\<Union>R) : I)"  | 
|
441  | 
using mono_Chain[OF I_init] `R \<in> Chain I`  | 
|
442  | 
by(simp (no_asm) add:I_def del:Field_Union)(metis Chain_wo subsetD)  | 
|
443  | 
}  | 
|
444  | 
hence 1: "\<forall>R \<in> Chain I. \<exists>u\<in>Field I. \<forall>r\<in>R. (r,u) : I" by (subst FI) blast  | 
|
445  | 
--{*Zorn's Lemma yields a maximal well-order m:*}
 | 
|
446  | 
  then obtain m::"('a*'a)set" where "Well_order m" and
 | 
|
447  | 
max: "\<forall>r. Well_order r \<and> (m,r):I \<longrightarrow> r=m"  | 
|
448  | 
using Zorns_po_lemma[OF 0 1] by (auto simp:FI)  | 
|
449  | 
--{*Now show by contradiction that m covers the whole type:*}
 | 
|
450  | 
  { fix x::'a assume "x \<notin> Field m"
 | 
|
451  | 
--{*We assume that x is not covered and extend m at the top with x*}
 | 
|
452  | 
    have "m \<noteq> {}"
 | 
|
453  | 
proof  | 
|
454  | 
      assume "m={}"
 | 
|
455  | 
      moreover have "Well_order {(x,x)}"
 | 
|
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
30663 
diff
changeset
 | 
456  | 
by(simp add:order_on_defs refl_on_def trans_def antisym_def total_on_def Field_def Domain_def Range_def)  | 
| 26191 | 457  | 
ultimately show False using max  | 
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
30663 
diff
changeset
 | 
458  | 
by (auto simp:I_def init_seg_of_def simp del:Field_insert)  | 
| 26191 | 459  | 
qed  | 
460  | 
    hence "Field m \<noteq> {}" by(auto simp:Field_def)
 | 
|
| 26295 | 461  | 
moreover have "wf(m-Id)" using `Well_order m`  | 
462  | 
by(simp add:well_order_on_def)  | 
|
| 26191 | 463  | 
--{*The extension of m by x:*}
 | 
464  | 
    let ?s = "{(a,x)|a. a : Field m}" let ?m = "insert (x,x) m Un ?s"
 | 
|
465  | 
have Fm: "Field ?m = insert x (Field m)"  | 
|
466  | 
apply(simp add:Field_insert Field_Un)  | 
|
467  | 
unfolding Field_def by auto  | 
|
468  | 
have "Refl m" "trans m" "antisym m" "Total m" "wf(m-Id)"  | 
|
| 26295 | 469  | 
using `Well_order m` by(simp_all add:order_on_defs)  | 
| 26191 | 470  | 
--{*We show that the extension is a well-order*}
 | 
| 30198 | 471  | 
have "Refl ?m" using `Refl m` Fm by(auto simp:refl_on_def)  | 
| 26191 | 472  | 
moreover have "trans ?m" using `trans m` `x \<notin> Field m`  | 
473  | 
unfolding trans_def Field_def Domain_def Range_def by blast  | 
|
474  | 
moreover have "antisym ?m" using `antisym m` `x \<notin> Field m`  | 
|
475  | 
unfolding antisym_def Field_def Domain_def Range_def by blast  | 
|
| 26295 | 476  | 
moreover have "Total ?m" using `Total m` Fm by(auto simp: total_on_def)  | 
| 26191 | 477  | 
moreover have "wf(?m-Id)"  | 
478  | 
proof-  | 
|
479  | 
have "wf ?s" using `x \<notin> Field m`  | 
|
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
30663 
diff
changeset
 | 
480  | 
by(auto simp add:wf_eq_minimal Field_def Domain_def Range_def) metis  | 
| 26191 | 481  | 
thus ?thesis using `wf(m-Id)` `x \<notin> Field m`  | 
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
30663 
diff
changeset
 | 
482  | 
wf_subset[OF `wf ?s` Diff_subset]  | 
| 
44890
 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 
nipkow 
parents: 
35175 
diff
changeset
 | 
483  | 
by (fastforce intro!: wf_Un simp add: Un_Diff Field_def)  | 
| 26191 | 484  | 
qed  | 
| 26295 | 485  | 
ultimately have "Well_order ?m" by(simp add:order_on_defs)  | 
| 26191 | 486  | 
--{*We show that the extension is above m*}
 | 
487  | 
moreover hence "(m,?m) : I" using `Well_order m` `x \<notin> Field m`  | 
|
| 
44890
 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 
nipkow 
parents: 
35175 
diff
changeset
 | 
488  | 
by(fastforce simp:I_def init_seg_of_def Field_def Domain_def Range_def)  | 
| 26191 | 489  | 
ultimately  | 
490  | 
--{*This contradicts maximality of m:*}
 | 
|
491  | 
have False using max `x \<notin> Field m` unfolding Field_def by blast  | 
|
492  | 
}  | 
|
493  | 
hence "Field m = UNIV" by auto  | 
|
| 26272 | 494  | 
moreover with `Well_order m` have "Well_order m" by simp  | 
495  | 
ultimately show ?thesis by blast  | 
|
496  | 
qed  | 
|
497  | 
||
| 26295 | 498  | 
corollary well_order_on: "\<exists>r::('a*'a)set. well_order_on A r"
 | 
| 26272 | 499  | 
proof -  | 
500  | 
  obtain r::"('a*'a)set" where wo: "Well_order r" and univ: "Field r = UNIV"
 | 
|
501  | 
using well_ordering[where 'a = "'a"] by blast  | 
|
502  | 
  let ?r = "{(x,y). x:A & y:A & (x,y):r}"
 | 
|
503  | 
have 1: "Field ?r = A" using wo univ  | 
|
| 
44890
 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 
nipkow 
parents: 
35175 
diff
changeset
 | 
504  | 
by(fastforce simp: Field_def Domain_def Range_def order_on_defs refl_on_def)  | 
| 26272 | 505  | 
have "Refl r" "trans r" "antisym r" "Total r" "wf(r-Id)"  | 
| 26295 | 506  | 
using `Well_order r` by(simp_all add:order_on_defs)  | 
| 30198 | 507  | 
have "Refl ?r" using `Refl r` by(auto simp:refl_on_def 1 univ)  | 
| 26272 | 508  | 
moreover have "trans ?r" using `trans r`  | 
509  | 
unfolding trans_def by blast  | 
|
510  | 
moreover have "antisym ?r" using `antisym r`  | 
|
511  | 
unfolding antisym_def by blast  | 
|
| 26295 | 512  | 
moreover have "Total ?r" using `Total r` by(simp add:total_on_def 1 univ)  | 
| 26272 | 513  | 
moreover have "wf(?r - Id)" by(rule wf_subset[OF `wf(r-Id)`]) blast  | 
| 26295 | 514  | 
ultimately have "Well_order ?r" by(simp add:order_on_defs)  | 
515  | 
with 1 show ?thesis by metis  | 
|
| 26191 | 516  | 
qed  | 
517  | 
||
| 
13551
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
518  | 
end  |