| author | traytel | 
| Fri, 02 Aug 2013 12:08:55 +0200 | |
| changeset 52839 | 2c0e1a84dcc7 | 
| parent 52146 | ceb31e1ded30 | 
| child 53012 | cb82606b8215 | 
| child 53015 | a1119cf551e8 | 
| permissions | -rw-r--r-- | 
| 35372 | 1 | (* Title: HOL/Rat.thy | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: diff
changeset | 2 | Author: Markus Wenzel, TU Muenchen | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: diff
changeset | 3 | *) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: diff
changeset | 4 | |
| 14691 | 5 | header {* Rational numbers *}
 | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: diff
changeset | 6 | |
| 35372 | 7 | theory Rat | 
| 30097 
57df8626c23b
generalize floor/ceiling to work with real and rat; rename floor_mono2 to floor_mono
 huffman parents: 
30095diff
changeset | 8 | imports GCD Archimedean_Field | 
| 15131 | 9 | begin | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: diff
changeset | 10 | |
| 27551 | 11 | subsection {* Rational numbers as quotient *}
 | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: diff
changeset | 12 | |
| 27551 | 13 | subsubsection {* Construction of the type of rational numbers *}
 | 
| 18913 | 14 | |
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
20522diff
changeset | 15 | definition | 
| 47906 | 16 | ratrel :: "(int \<times> int) \<Rightarrow> (int \<times> int) \<Rightarrow> bool" where | 
| 17 | "ratrel = (\<lambda>x y. snd x \<noteq> 0 \<and> snd y \<noteq> 0 \<and> fst x * snd y = fst y * snd x)" | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: diff
changeset | 18 | |
| 18913 | 19 | lemma ratrel_iff [simp]: | 
| 47906 | 20 | "ratrel x y \<longleftrightarrow> snd x \<noteq> 0 \<and> snd y \<noteq> 0 \<and> fst x * snd y = fst y * snd x" | 
| 27551 | 21 | by (simp add: ratrel_def) | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: diff
changeset | 22 | |
| 47906 | 23 | lemma exists_ratrel_refl: "\<exists>x. ratrel x x" | 
| 24 | by (auto intro!: one_neq_zero) | |
| 18913 | 25 | |
| 47906 | 26 | lemma symp_ratrel: "symp ratrel" | 
| 27 | by (simp add: ratrel_def symp_def) | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: diff
changeset | 28 | |
| 47906 | 29 | lemma transp_ratrel: "transp ratrel" | 
| 30 | proof (rule transpI, unfold split_paired_all) | |
| 27551 | 31 | fix a b a' b' a'' b'' :: int | 
| 47906 | 32 | assume A: "ratrel (a, b) (a', b')" | 
| 33 | assume B: "ratrel (a', b') (a'', b'')" | |
| 27551 | 34 | have "b' * (a * b'') = b'' * (a * b')" by simp | 
| 35 | also from A have "a * b' = a' * b" by auto | |
| 36 | also have "b'' * (a' * b) = b * (a' * b'')" by simp | |
| 37 | also from B have "a' * b'' = a'' * b'" by auto | |
| 38 | also have "b * (a'' * b') = b' * (a'' * b)" by simp | |
| 39 | finally have "b' * (a * b'') = b' * (a'' * b)" . | |
| 40 | moreover from B have "b' \<noteq> 0" by auto | |
| 41 | ultimately have "a * b'' = a'' * b" by simp | |
| 47906 | 42 | with A B show "ratrel (a, b) (a'', b'')" by auto | 
| 27551 | 43 | qed | 
| 44 | ||
| 47906 | 45 | lemma part_equivp_ratrel: "part_equivp ratrel" | 
| 46 | by (rule part_equivpI [OF exists_ratrel_refl symp_ratrel transp_ratrel]) | |
| 47 | ||
| 48 | quotient_type rat = "int \<times> int" / partial: "ratrel" | |
| 49 | morphisms Rep_Rat Abs_Rat | |
| 50 | by (rule part_equivp_ratrel) | |
| 27551 | 51 | |
| 51956 
a4d81cdebf8b
better support for domains in Lifting/Transfer = replace Domainp T by the actual invariant in a transferred goal
 kuncar parents: 
51185diff
changeset | 52 | lemma Domainp_cr_rat [transfer_domain_rule]: "Domainp cr_rat = (\<lambda>x. snd x \<noteq> 0)" | 
| 
a4d81cdebf8b
better support for domains in Lifting/Transfer = replace Domainp T by the actual invariant in a transferred goal
 kuncar parents: 
51185diff
changeset | 53 | by (simp add: rat.domain) | 
| 27551 | 54 | |
| 55 | subsubsection {* Representation and basic operations *}
 | |
| 56 | ||
| 47906 | 57 | lift_definition Fract :: "int \<Rightarrow> int \<Rightarrow> rat" | 
| 58 | is "\<lambda>a b. if b = 0 then (0, 1) else (a, b)" | |
| 59 | by simp | |
| 27551 | 60 | |
| 61 | lemma eq_rat: | |
| 62 | shows "\<And>a b c d. b \<noteq> 0 \<Longrightarrow> d \<noteq> 0 \<Longrightarrow> Fract a b = Fract c d \<longleftrightarrow> a * d = c * b" | |
| 27652 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 63 | and "\<And>a. Fract a 0 = Fract 0 1" | 
| 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 64 | and "\<And>a c. Fract 0 a = Fract 0 c" | 
| 47906 | 65 | by (transfer, simp)+ | 
| 27551 | 66 | |
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 67 | lemma Rat_cases [case_names Fract, cases type: rat]: | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 68 | assumes "\<And>a b. q = Fract a b \<Longrightarrow> b > 0 \<Longrightarrow> coprime a b \<Longrightarrow> C" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 69 | shows C | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 70 | proof - | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 71 | obtain a b :: int where "q = Fract a b" and "b \<noteq> 0" | 
| 47906 | 72 | by transfer simp | 
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 73 | let ?a = "a div gcd a b" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 74 | let ?b = "b div gcd a b" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 75 | from `b \<noteq> 0` have "?b * gcd a b = b" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 76 | by (simp add: dvd_div_mult_self) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 77 | with `b \<noteq> 0` have "?b \<noteq> 0" by auto | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 78 | from `q = Fract a b` `b \<noteq> 0` `?b \<noteq> 0` have q: "q = Fract ?a ?b" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 79 | by (simp add: eq_rat dvd_div_mult mult_commute [of a]) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 80 | from `b \<noteq> 0` have coprime: "coprime ?a ?b" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 81 | by (auto intro: div_gcd_coprime_int) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 82 | show C proof (cases "b > 0") | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 83 | case True | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 84 | note assms | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 85 | moreover note q | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 86 | moreover from True have "?b > 0" by (simp add: nonneg1_imp_zdiv_pos_iff) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 87 | moreover note coprime | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 88 | ultimately show C . | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 89 | next | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 90 | case False | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 91 | note assms | 
| 47906 | 92 | moreover have "q = Fract (- ?a) (- ?b)" unfolding q by transfer simp | 
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 93 | moreover from False `b \<noteq> 0` have "- ?b > 0" by (simp add: pos_imp_zdiv_neg_iff) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 94 | moreover from coprime have "coprime (- ?a) (- ?b)" by simp | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 95 | ultimately show C . | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 96 | qed | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 97 | qed | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 98 | |
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 99 | lemma Rat_induct [case_names Fract, induct type: rat]: | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 100 | assumes "\<And>a b. b > 0 \<Longrightarrow> coprime a b \<Longrightarrow> P (Fract a b)" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 101 | shows "P q" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 102 | using assms by (cases q) simp | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 103 | |
| 47906 | 104 | instantiation rat :: field_inverse_zero | 
| 25571 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25502diff
changeset | 105 | begin | 
| 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25502diff
changeset | 106 | |
| 47906 | 107 | lift_definition zero_rat :: "rat" is "(0, 1)" | 
| 108 | by simp | |
| 109 | ||
| 110 | lift_definition one_rat :: "rat" is "(1, 1)" | |
| 111 | by simp | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: diff
changeset | 112 | |
| 47906 | 113 | lemma Zero_rat_def: "0 = Fract 0 1" | 
| 114 | by transfer simp | |
| 18913 | 115 | |
| 47906 | 116 | lemma One_rat_def: "1 = Fract 1 1" | 
| 117 | by transfer simp | |
| 118 | ||
| 119 | lift_definition plus_rat :: "rat \<Rightarrow> rat \<Rightarrow> rat" | |
| 120 | is "\<lambda>x y. (fst x * snd y + fst y * snd x, snd x * snd y)" | |
| 49962 
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
 webertj parents: 
48891diff
changeset | 121 | by (clarsimp, simp add: distrib_right, simp add: mult_ac) | 
| 27551 | 122 | |
| 27652 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 123 | lemma add_rat [simp]: | 
| 27551 | 124 | assumes "b \<noteq> 0" and "d \<noteq> 0" | 
| 125 | shows "Fract a b + Fract c d = Fract (a * d + c * b) (b * d)" | |
| 47906 | 126 | using assms by transfer simp | 
| 18913 | 127 | |
| 47906 | 128 | lift_definition uminus_rat :: "rat \<Rightarrow> rat" is "\<lambda>x. (- fst x, snd x)" | 
| 129 | by simp | |
| 27551 | 130 | |
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 131 | lemma minus_rat [simp]: "- Fract a b = Fract (- a) b" | 
| 47906 | 132 | by transfer simp | 
| 27551 | 133 | |
| 27652 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 134 | lemma minus_rat_cancel [simp]: "Fract (- a) (- b) = Fract a b" | 
| 27551 | 135 | by (cases "b = 0") (simp_all add: eq_rat) | 
| 25571 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25502diff
changeset | 136 | |
| 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25502diff
changeset | 137 | definition | 
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 138 | diff_rat_def: "q - r = q + - (r::rat)" | 
| 18913 | 139 | |
| 27652 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 140 | lemma diff_rat [simp]: | 
| 27551 | 141 | assumes "b \<noteq> 0" and "d \<noteq> 0" | 
| 142 | shows "Fract a b - Fract c d = Fract (a * d - c * b) (b * d)" | |
| 27652 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 143 | using assms by (simp add: diff_rat_def) | 
| 25571 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25502diff
changeset | 144 | |
| 47906 | 145 | lift_definition times_rat :: "rat \<Rightarrow> rat \<Rightarrow> rat" | 
| 146 | is "\<lambda>x y. (fst x * fst y, snd x * snd y)" | |
| 147 | by (simp add: mult_ac) | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: diff
changeset | 148 | |
| 27652 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 149 | lemma mult_rat [simp]: "Fract a b * Fract c d = Fract (a * c) (b * d)" | 
| 47906 | 150 | by transfer simp | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: diff
changeset | 151 | |
| 27652 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 152 | lemma mult_rat_cancel: | 
| 27551 | 153 | assumes "c \<noteq> 0" | 
| 154 | shows "Fract (c * a) (c * b) = Fract a b" | |
| 47906 | 155 | using assms by transfer simp | 
| 156 | ||
| 157 | lift_definition inverse_rat :: "rat \<Rightarrow> rat" | |
| 158 | is "\<lambda>x. if fst x = 0 then (0, 1) else (snd x, fst x)" | |
| 159 | by (auto simp add: mult_commute) | |
| 160 | ||
| 161 | lemma inverse_rat [simp]: "inverse (Fract a b) = Fract b a" | |
| 162 | by transfer simp | |
| 163 | ||
| 164 | definition | |
| 165 | divide_rat_def: "q / r = q * inverse (r::rat)" | |
| 166 | ||
| 167 | lemma divide_rat [simp]: "Fract a b / Fract c d = Fract (a * d) (b * c)" | |
| 168 | by (simp add: divide_rat_def) | |
| 27509 | 169 | |
| 170 | instance proof | |
| 47906 | 171 | fix q r s :: rat | 
| 172 | show "(q * r) * s = q * (r * s)" | |
| 173 | by transfer simp | |
| 174 | show "q * r = r * q" | |
| 175 | by transfer simp | |
| 176 | show "1 * q = q" | |
| 177 | by transfer simp | |
| 178 | show "(q + r) + s = q + (r + s)" | |
| 179 | by transfer (simp add: algebra_simps) | |
| 180 | show "q + r = r + q" | |
| 181 | by transfer simp | |
| 182 | show "0 + q = q" | |
| 183 | by transfer simp | |
| 184 | show "- q + q = 0" | |
| 185 | by transfer simp | |
| 186 | show "q - r = q + - r" | |
| 187 | by (fact diff_rat_def) | |
| 188 | show "(q + r) * s = q * s + r * s" | |
| 189 | by transfer (simp add: algebra_simps) | |
| 190 | show "(0::rat) \<noteq> 1" | |
| 191 | by transfer simp | |
| 192 |   { assume "q \<noteq> 0" thus "inverse q * q = 1"
 | |
| 193 | by transfer simp } | |
| 194 | show "q / r = q * inverse r" | |
| 195 | by (fact divide_rat_def) | |
| 196 | show "inverse 0 = (0::rat)" | |
| 197 | by transfer simp | |
| 27509 | 198 | qed | 
| 199 | ||
| 200 | end | |
| 201 | ||
| 27551 | 202 | lemma of_nat_rat: "of_nat k = Fract (of_nat k) 1" | 
| 27652 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 203 | by (induct k) (simp_all add: Zero_rat_def One_rat_def) | 
| 27551 | 204 | |
| 205 | lemma of_int_rat: "of_int k = Fract k 1" | |
| 27652 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 206 | by (cases k rule: int_diff_cases) (simp add: of_nat_rat) | 
| 27551 | 207 | |
| 208 | lemma Fract_of_nat_eq: "Fract (of_nat k) 1 = of_nat k" | |
| 209 | by (rule of_nat_rat [symmetric]) | |
| 210 | ||
| 211 | lemma Fract_of_int_eq: "Fract k 1 = of_int k" | |
| 212 | by (rule of_int_rat [symmetric]) | |
| 213 | ||
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 214 | lemma rat_number_collapse: | 
| 27551 | 215 | "Fract 0 k = 0" | 
| 216 | "Fract 1 1 = 1" | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 217 | "Fract (numeral w) 1 = numeral w" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 218 | "Fract (neg_numeral w) 1 = neg_numeral w" | 
| 27551 | 219 | "Fract k 0 = 0" | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 220 | using Fract_of_int_eq [of "numeral w"] | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 221 | using Fract_of_int_eq [of "neg_numeral w"] | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 222 | by (simp_all add: Zero_rat_def One_rat_def eq_rat) | 
| 27551 | 223 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 224 | lemma rat_number_expand: | 
| 27551 | 225 | "0 = Fract 0 1" | 
| 226 | "1 = Fract 1 1" | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 227 | "numeral k = Fract (numeral k) 1" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 228 | "neg_numeral k = Fract (neg_numeral k) 1" | 
| 27551 | 229 | by (simp_all add: rat_number_collapse) | 
| 230 | ||
| 231 | lemma Rat_cases_nonzero [case_names Fract 0]: | |
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 232 | assumes Fract: "\<And>a b. q = Fract a b \<Longrightarrow> b > 0 \<Longrightarrow> a \<noteq> 0 \<Longrightarrow> coprime a b \<Longrightarrow> C" | 
| 27551 | 233 | assumes 0: "q = 0 \<Longrightarrow> C" | 
| 234 | shows C | |
| 235 | proof (cases "q = 0") | |
| 236 | case True then show C using 0 by auto | |
| 237 | next | |
| 238 | case False | |
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 239 | then obtain a b where "q = Fract a b" and "b > 0" and "coprime a b" by (cases q) auto | 
| 27551 | 240 | moreover with False have "0 \<noteq> Fract a b" by simp | 
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 241 | with `b > 0` have "a \<noteq> 0" by (simp add: Zero_rat_def eq_rat) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 242 | with Fract `q = Fract a b` `b > 0` `coprime a b` show C by blast | 
| 27551 | 243 | qed | 
| 244 | ||
| 33805 | 245 | subsubsection {* Function @{text normalize} *}
 | 
| 246 | ||
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 247 | lemma Fract_coprime: "Fract (a div gcd a b) (b div gcd a b) = Fract a b" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 248 | proof (cases "b = 0") | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 249 | case True then show ?thesis by (simp add: eq_rat) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 250 | next | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 251 | case False | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 252 | moreover have "b div gcd a b * gcd a b = b" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 253 | by (rule dvd_div_mult_self) simp | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 254 | ultimately have "b div gcd a b \<noteq> 0" by auto | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 255 | with False show ?thesis by (simp add: eq_rat dvd_div_mult mult_commute [of a]) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 256 | qed | 
| 33805 | 257 | |
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 258 | definition normalize :: "int \<times> int \<Rightarrow> int \<times> int" where | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 259 | "normalize p = (if snd p > 0 then (let a = gcd (fst p) (snd p) in (fst p div a, snd p div a)) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 260 | else if snd p = 0 then (0, 1) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 261 | else (let a = - gcd (fst p) (snd p) in (fst p div a, snd p div a)))" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 262 | |
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 263 | lemma normalize_crossproduct: | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 264 | assumes "q \<noteq> 0" "s \<noteq> 0" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 265 | assumes "normalize (p, q) = normalize (r, s)" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 266 | shows "p * s = r * q" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 267 | proof - | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 268 | have aux: "p * gcd r s = sgn (q * s) * r * gcd p q \<Longrightarrow> q * gcd r s = sgn (q * s) * s * gcd p q \<Longrightarrow> p * s = q * r" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 269 | proof - | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 270 | assume "p * gcd r s = sgn (q * s) * r * gcd p q" and "q * gcd r s = sgn (q * s) * s * gcd p q" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 271 | then have "(p * gcd r s) * (sgn (q * s) * s * gcd p q) = (q * gcd r s) * (sgn (q * s) * r * gcd p q)" by simp | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 272 | with assms show "p * s = q * r" by (auto simp add: mult_ac sgn_times sgn_0_0) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 273 | qed | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 274 | from assms show ?thesis | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 275 | by (auto simp add: normalize_def Let_def dvd_div_div_eq_mult mult_commute sgn_times split: if_splits intro: aux) | 
| 33805 | 276 | qed | 
| 277 | ||
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 278 | lemma normalize_eq: "normalize (a, b) = (p, q) \<Longrightarrow> Fract p q = Fract a b" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 279 | by (auto simp add: normalize_def Let_def Fract_coprime dvd_div_neg rat_number_collapse | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 280 | split:split_if_asm) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 281 | |
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 282 | lemma normalize_denom_pos: "normalize r = (p, q) \<Longrightarrow> q > 0" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 283 | by (auto simp add: normalize_def Let_def dvd_div_neg pos_imp_zdiv_neg_iff nonneg1_imp_zdiv_pos_iff | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 284 | split:split_if_asm) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 285 | |
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 286 | lemma normalize_coprime: "normalize r = (p, q) \<Longrightarrow> coprime p q" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 287 | by (auto simp add: normalize_def Let_def dvd_div_neg div_gcd_coprime_int | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 288 | split:split_if_asm) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 289 | |
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 290 | lemma normalize_stable [simp]: | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 291 | "q > 0 \<Longrightarrow> coprime p q \<Longrightarrow> normalize (p, q) = (p, q)" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 292 | by (simp add: normalize_def) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 293 | |
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 294 | lemma normalize_denom_zero [simp]: | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 295 | "normalize (p, 0) = (0, 1)" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 296 | by (simp add: normalize_def) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 297 | |
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 298 | lemma normalize_negative [simp]: | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 299 | "q < 0 \<Longrightarrow> normalize (p, q) = normalize (- p, - q)" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 300 | by (simp add: normalize_def Let_def dvd_div_neg dvd_neg_div) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 301 | |
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 302 | text{*
 | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 303 | Decompose a fraction into normalized, i.e. coprime numerator and denominator: | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 304 | *} | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 305 | |
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 306 | definition quotient_of :: "rat \<Rightarrow> int \<times> int" where | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 307 | "quotient_of x = (THE pair. x = Fract (fst pair) (snd pair) & | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 308 | snd pair > 0 & coprime (fst pair) (snd pair))" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 309 | |
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 310 | lemma quotient_of_unique: | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 311 | "\<exists>!p. r = Fract (fst p) (snd p) \<and> snd p > 0 \<and> coprime (fst p) (snd p)" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 312 | proof (cases r) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 313 | case (Fract a b) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 314 | then have "r = Fract (fst (a, b)) (snd (a, b)) \<and> snd (a, b) > 0 \<and> coprime (fst (a, b)) (snd (a, b))" by auto | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 315 | then show ?thesis proof (rule ex1I) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 316 | fix p | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 317 | obtain c d :: int where p: "p = (c, d)" by (cases p) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 318 | assume "r = Fract (fst p) (snd p) \<and> snd p > 0 \<and> coprime (fst p) (snd p)" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 319 | with p have Fract': "r = Fract c d" "d > 0" "coprime c d" by simp_all | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 320 | have "c = a \<and> d = b" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 321 | proof (cases "a = 0") | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 322 | case True with Fract Fract' show ?thesis by (simp add: eq_rat) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 323 | next | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 324 | case False | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 325 | with Fract Fract' have *: "c * b = a * d" and "c \<noteq> 0" by (auto simp add: eq_rat) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 326 | then have "c * b > 0 \<longleftrightarrow> a * d > 0" by auto | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 327 | with `b > 0` `d > 0` have "a > 0 \<longleftrightarrow> c > 0" by (simp add: zero_less_mult_iff) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 328 | with `a \<noteq> 0` `c \<noteq> 0` have sgn: "sgn a = sgn c" by (auto simp add: not_less) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 329 | from `coprime a b` `coprime c d` have "\<bar>a\<bar> * \<bar>d\<bar> = \<bar>c\<bar> * \<bar>b\<bar> \<longleftrightarrow> \<bar>a\<bar> = \<bar>c\<bar> \<and> \<bar>d\<bar> = \<bar>b\<bar>" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 330 | by (simp add: coprime_crossproduct_int) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 331 | with `b > 0` `d > 0` have "\<bar>a\<bar> * d = \<bar>c\<bar> * b \<longleftrightarrow> \<bar>a\<bar> = \<bar>c\<bar> \<and> d = b" by simp | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 332 | then have "a * sgn a * d = c * sgn c * b \<longleftrightarrow> a * sgn a = c * sgn c \<and> d = b" by (simp add: abs_sgn) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 333 | with sgn * show ?thesis by (auto simp add: sgn_0_0) | 
| 33805 | 334 | qed | 
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 335 | with p show "p = (a, b)" by simp | 
| 33805 | 336 | qed | 
| 337 | qed | |
| 338 | ||
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 339 | lemma quotient_of_Fract [code]: | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 340 | "quotient_of (Fract a b) = normalize (a, b)" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 341 | proof - | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 342 | have "Fract a b = Fract (fst (normalize (a, b))) (snd (normalize (a, b)))" (is ?Fract) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 343 | by (rule sym) (auto intro: normalize_eq) | 
| 52146 | 344 | moreover have "0 < snd (normalize (a, b))" (is ?denom_pos) | 
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 345 | by (cases "normalize (a, b)") (rule normalize_denom_pos, simp) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 346 | moreover have "coprime (fst (normalize (a, b))) (snd (normalize (a, b)))" (is ?coprime) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 347 | by (rule normalize_coprime) simp | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 348 | ultimately have "?Fract \<and> ?denom_pos \<and> ?coprime" by blast | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 349 | with quotient_of_unique have | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 350 | "(THE p. Fract a b = Fract (fst p) (snd p) \<and> 0 < snd p \<and> coprime (fst p) (snd p)) = normalize (a, b)" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 351 | by (rule the1_equality) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 352 | then show ?thesis by (simp add: quotient_of_def) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 353 | qed | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 354 | |
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 355 | lemma quotient_of_number [simp]: | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 356 | "quotient_of 0 = (0, 1)" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 357 | "quotient_of 1 = (1, 1)" | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 358 | "quotient_of (numeral k) = (numeral k, 1)" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 359 | "quotient_of (neg_numeral k) = (neg_numeral k, 1)" | 
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 360 | by (simp_all add: rat_number_expand quotient_of_Fract) | 
| 33805 | 361 | |
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 362 | lemma quotient_of_eq: "quotient_of (Fract a b) = (p, q) \<Longrightarrow> Fract p q = Fract a b" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 363 | by (simp add: quotient_of_Fract normalize_eq) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 364 | |
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 365 | lemma quotient_of_denom_pos: "quotient_of r = (p, q) \<Longrightarrow> q > 0" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 366 | by (cases r) (simp add: quotient_of_Fract normalize_denom_pos) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 367 | |
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 368 | lemma quotient_of_coprime: "quotient_of r = (p, q) \<Longrightarrow> coprime p q" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 369 | by (cases r) (simp add: quotient_of_Fract normalize_coprime) | 
| 33805 | 370 | |
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 371 | lemma quotient_of_inject: | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 372 | assumes "quotient_of a = quotient_of b" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 373 | shows "a = b" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 374 | proof - | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 375 | obtain p q r s where a: "a = Fract p q" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 376 | and b: "b = Fract r s" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 377 | and "q > 0" and "s > 0" by (cases a, cases b) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 378 | with assms show ?thesis by (simp add: eq_rat quotient_of_Fract normalize_crossproduct) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 379 | qed | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 380 | |
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 381 | lemma quotient_of_inject_eq: | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 382 | "quotient_of a = quotient_of b \<longleftrightarrow> a = b" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 383 | by (auto simp add: quotient_of_inject) | 
| 33805 | 384 | |
| 27551 | 385 | |
| 386 | subsubsection {* Various *}
 | |
| 387 | ||
| 388 | lemma Fract_of_int_quotient: "Fract k l = of_int k / of_int l" | |
| 27652 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 389 | by (simp add: Fract_of_int_eq [symmetric]) | 
| 27551 | 390 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 391 | lemma Fract_add_one: "n \<noteq> 0 ==> Fract (m + n) n = Fract m n + 1" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 392 | by (simp add: rat_number_expand) | 
| 27551 | 393 | |
| 50178 | 394 | lemma quotient_of_div: | 
| 395 | assumes r: "quotient_of r = (n,d)" | |
| 396 | shows "r = of_int n / of_int d" | |
| 397 | proof - | |
| 398 | from theI'[OF quotient_of_unique[of r], unfolded r[unfolded quotient_of_def]] | |
| 399 | have "r = Fract n d" by simp | |
| 400 | thus ?thesis using Fract_of_int_quotient by simp | |
| 401 | qed | |
| 27551 | 402 | |
| 403 | subsubsection {* The ordered field of rational numbers *}
 | |
| 27509 | 404 | |
| 47907 | 405 | lift_definition positive :: "rat \<Rightarrow> bool" | 
| 406 | is "\<lambda>x. 0 < fst x * snd x" | |
| 407 | proof (clarsimp) | |
| 408 | fix a b c d :: int | |
| 409 | assume "b \<noteq> 0" and "d \<noteq> 0" and "a * d = c * b" | |
| 410 | hence "a * d * b * d = c * b * b * d" | |
| 411 | by simp | |
| 412 | hence "a * b * d\<twosuperior> = c * d * b\<twosuperior>" | |
| 413 | unfolding power2_eq_square by (simp add: mult_ac) | |
| 414 | hence "0 < a * b * d\<twosuperior> \<longleftrightarrow> 0 < c * d * b\<twosuperior>" | |
| 415 | by simp | |
| 416 | thus "0 < a * b \<longleftrightarrow> 0 < c * d" | |
| 417 | using `b \<noteq> 0` and `d \<noteq> 0` | |
| 418 | by (simp add: zero_less_mult_iff) | |
| 419 | qed | |
| 420 | ||
| 421 | lemma positive_zero: "\<not> positive 0" | |
| 422 | by transfer simp | |
| 423 | ||
| 424 | lemma positive_add: | |
| 425 | "positive x \<Longrightarrow> positive y \<Longrightarrow> positive (x + y)" | |
| 426 | apply transfer | |
| 427 | apply (simp add: zero_less_mult_iff) | |
| 428 | apply (elim disjE, simp_all add: add_pos_pos add_neg_neg | |
| 429 | mult_pos_pos mult_pos_neg mult_neg_pos mult_neg_neg) | |
| 430 | done | |
| 431 | ||
| 432 | lemma positive_mult: | |
| 433 | "positive x \<Longrightarrow> positive y \<Longrightarrow> positive (x * y)" | |
| 434 | by transfer (drule (1) mult_pos_pos, simp add: mult_ac) | |
| 435 | ||
| 436 | lemma positive_minus: | |
| 437 | "\<not> positive x \<Longrightarrow> x \<noteq> 0 \<Longrightarrow> positive (- x)" | |
| 438 | by transfer (force simp: neq_iff zero_less_mult_iff mult_less_0_iff) | |
| 439 | ||
| 440 | instantiation rat :: linordered_field_inverse_zero | |
| 27509 | 441 | begin | 
| 442 | ||
| 47907 | 443 | definition | 
| 444 | "x < y \<longleftrightarrow> positive (y - x)" | |
| 445 | ||
| 446 | definition | |
| 447 | "x \<le> (y::rat) \<longleftrightarrow> x < y \<or> x = y" | |
| 448 | ||
| 449 | definition | |
| 450 | "abs (a::rat) = (if a < 0 then - a else a)" | |
| 451 | ||
| 452 | definition | |
| 453 | "sgn (a::rat) = (if a = 0 then 0 else if 0 < a then 1 else - 1)" | |
| 47906 | 454 | |
| 47907 | 455 | instance proof | 
| 456 | fix a b c :: rat | |
| 457 | show "\<bar>a\<bar> = (if a < 0 then - a else a)" | |
| 458 | by (rule abs_rat_def) | |
| 459 | show "a < b \<longleftrightarrow> a \<le> b \<and> \<not> b \<le> a" | |
| 460 | unfolding less_eq_rat_def less_rat_def | |
| 461 | by (auto, drule (1) positive_add, simp_all add: positive_zero) | |
| 462 | show "a \<le> a" | |
| 463 | unfolding less_eq_rat_def by simp | |
| 464 | show "a \<le> b \<Longrightarrow> b \<le> c \<Longrightarrow> a \<le> c" | |
| 465 | unfolding less_eq_rat_def less_rat_def | |
| 466 | by (auto, drule (1) positive_add, simp add: algebra_simps) | |
| 467 | show "a \<le> b \<Longrightarrow> b \<le> a \<Longrightarrow> a = b" | |
| 468 | unfolding less_eq_rat_def less_rat_def | |
| 469 | by (auto, drule (1) positive_add, simp add: positive_zero) | |
| 470 | show "a \<le> b \<Longrightarrow> c + a \<le> c + b" | |
| 471 | unfolding less_eq_rat_def less_rat_def by (auto simp: diff_minus) | |
| 472 | show "sgn a = (if a = 0 then 0 else if 0 < a then 1 else - 1)" | |
| 473 | by (rule sgn_rat_def) | |
| 474 | show "a \<le> b \<or> b \<le> a" | |
| 475 | unfolding less_eq_rat_def less_rat_def | |
| 476 | by (auto dest!: positive_minus) | |
| 477 | show "a < b \<Longrightarrow> 0 < c \<Longrightarrow> c * a < c * b" | |
| 478 | unfolding less_rat_def | |
| 479 | by (drule (1) positive_mult, simp add: algebra_simps) | |
| 47906 | 480 | qed | 
| 27551 | 481 | |
| 47907 | 482 | end | 
| 483 | ||
| 484 | instantiation rat :: distrib_lattice | |
| 485 | begin | |
| 486 | ||
| 487 | definition | |
| 488 | "(inf :: rat \<Rightarrow> rat \<Rightarrow> rat) = min" | |
| 27509 | 489 | |
| 490 | definition | |
| 47907 | 491 | "(sup :: rat \<Rightarrow> rat \<Rightarrow> rat) = max" | 
| 492 | ||
| 493 | instance proof | |
| 494 | qed (auto simp add: inf_rat_def sup_rat_def min_max.sup_inf_distrib1) | |
| 495 | ||
| 496 | end | |
| 497 | ||
| 498 | lemma positive_rat: "positive (Fract a b) \<longleftrightarrow> 0 < a * b" | |
| 499 | by transfer simp | |
| 27509 | 500 | |
| 27652 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 501 | lemma less_rat [simp]: | 
| 27551 | 502 | assumes "b \<noteq> 0" and "d \<noteq> 0" | 
| 503 | shows "Fract a b < Fract c d \<longleftrightarrow> (a * d) * (b * d) < (c * b) * (b * d)" | |
| 47907 | 504 | using assms unfolding less_rat_def | 
| 505 | by (simp add: positive_rat algebra_simps) | |
| 27509 | 506 | |
| 47907 | 507 | lemma le_rat [simp]: | 
| 508 | assumes "b \<noteq> 0" and "d \<noteq> 0" | |
| 509 | shows "Fract a b \<le> Fract c d \<longleftrightarrow> (a * d) * (b * d) \<le> (c * b) * (b * d)" | |
| 510 | using assms unfolding le_less by (simp add: eq_rat) | |
| 27551 | 511 | |
| 27652 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 512 | lemma abs_rat [simp, code]: "\<bar>Fract a b\<bar> = Fract \<bar>a\<bar> \<bar>b\<bar>" | 
| 35216 | 513 | by (auto simp add: abs_rat_def zabs_def Zero_rat_def not_less le_less eq_rat zero_less_mult_iff) | 
| 27551 | 514 | |
| 27652 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 515 | lemma sgn_rat [simp, code]: "sgn (Fract a b) = of_int (sgn a * sgn b)" | 
| 27551 | 516 | unfolding Fract_of_int_eq | 
| 27652 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 517 | by (auto simp: zsgn_def sgn_rat_def Zero_rat_def eq_rat) | 
| 27551 | 518 | (auto simp: rat_number_collapse not_less le_less zero_less_mult_iff) | 
| 519 | ||
| 520 | lemma Rat_induct_pos [case_names Fract, induct type: rat]: | |
| 521 | assumes step: "\<And>a b. 0 < b \<Longrightarrow> P (Fract a b)" | |
| 522 | shows "P q" | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: diff
changeset | 523 | proof (cases q) | 
| 27551 | 524 | have step': "\<And>a b. b < 0 \<Longrightarrow> P (Fract a b)" | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: diff
changeset | 525 | proof - | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: diff
changeset | 526 | fix a::int and b::int | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: diff
changeset | 527 | assume b: "b < 0" | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: diff
changeset | 528 | hence "0 < -b" by simp | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: diff
changeset | 529 | hence "P (Fract (-a) (-b))" by (rule step) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: diff
changeset | 530 | thus "P (Fract a b)" by (simp add: order_less_imp_not_eq [OF b]) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: diff
changeset | 531 | qed | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: diff
changeset | 532 | case (Fract a b) | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: diff
changeset | 533 | thus "P q" by (force simp add: linorder_neq_iff step step') | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: diff
changeset | 534 | qed | 
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: diff
changeset | 535 | |
| 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: diff
changeset | 536 | lemma zero_less_Fract_iff: | 
| 30095 
c6e184561159
add lemmas about comparisons of Fract a b with 0 and 1
 huffman parents: 
29940diff
changeset | 537 | "0 < b \<Longrightarrow> 0 < Fract a b \<longleftrightarrow> 0 < a" | 
| 
c6e184561159
add lemmas about comparisons of Fract a b with 0 and 1
 huffman parents: 
29940diff
changeset | 538 | by (simp add: Zero_rat_def zero_less_mult_iff) | 
| 
c6e184561159
add lemmas about comparisons of Fract a b with 0 and 1
 huffman parents: 
29940diff
changeset | 539 | |
| 
c6e184561159
add lemmas about comparisons of Fract a b with 0 and 1
 huffman parents: 
29940diff
changeset | 540 | lemma Fract_less_zero_iff: | 
| 
c6e184561159
add lemmas about comparisons of Fract a b with 0 and 1
 huffman parents: 
29940diff
changeset | 541 | "0 < b \<Longrightarrow> Fract a b < 0 \<longleftrightarrow> a < 0" | 
| 
c6e184561159
add lemmas about comparisons of Fract a b with 0 and 1
 huffman parents: 
29940diff
changeset | 542 | by (simp add: Zero_rat_def mult_less_0_iff) | 
| 
c6e184561159
add lemmas about comparisons of Fract a b with 0 and 1
 huffman parents: 
29940diff
changeset | 543 | |
| 
c6e184561159
add lemmas about comparisons of Fract a b with 0 and 1
 huffman parents: 
29940diff
changeset | 544 | lemma zero_le_Fract_iff: | 
| 
c6e184561159
add lemmas about comparisons of Fract a b with 0 and 1
 huffman parents: 
29940diff
changeset | 545 | "0 < b \<Longrightarrow> 0 \<le> Fract a b \<longleftrightarrow> 0 \<le> a" | 
| 
c6e184561159
add lemmas about comparisons of Fract a b with 0 and 1
 huffman parents: 
29940diff
changeset | 546 | by (simp add: Zero_rat_def zero_le_mult_iff) | 
| 
c6e184561159
add lemmas about comparisons of Fract a b with 0 and 1
 huffman parents: 
29940diff
changeset | 547 | |
| 
c6e184561159
add lemmas about comparisons of Fract a b with 0 and 1
 huffman parents: 
29940diff
changeset | 548 | lemma Fract_le_zero_iff: | 
| 
c6e184561159
add lemmas about comparisons of Fract a b with 0 and 1
 huffman parents: 
29940diff
changeset | 549 | "0 < b \<Longrightarrow> Fract a b \<le> 0 \<longleftrightarrow> a \<le> 0" | 
| 
c6e184561159
add lemmas about comparisons of Fract a b with 0 and 1
 huffman parents: 
29940diff
changeset | 550 | by (simp add: Zero_rat_def mult_le_0_iff) | 
| 
c6e184561159
add lemmas about comparisons of Fract a b with 0 and 1
 huffman parents: 
29940diff
changeset | 551 | |
| 
c6e184561159
add lemmas about comparisons of Fract a b with 0 and 1
 huffman parents: 
29940diff
changeset | 552 | lemma one_less_Fract_iff: | 
| 
c6e184561159
add lemmas about comparisons of Fract a b with 0 and 1
 huffman parents: 
29940diff
changeset | 553 | "0 < b \<Longrightarrow> 1 < Fract a b \<longleftrightarrow> b < a" | 
| 
c6e184561159
add lemmas about comparisons of Fract a b with 0 and 1
 huffman parents: 
29940diff
changeset | 554 | by (simp add: One_rat_def mult_less_cancel_right_disj) | 
| 
c6e184561159
add lemmas about comparisons of Fract a b with 0 and 1
 huffman parents: 
29940diff
changeset | 555 | |
| 
c6e184561159
add lemmas about comparisons of Fract a b with 0 and 1
 huffman parents: 
29940diff
changeset | 556 | lemma Fract_less_one_iff: | 
| 
c6e184561159
add lemmas about comparisons of Fract a b with 0 and 1
 huffman parents: 
29940diff
changeset | 557 | "0 < b \<Longrightarrow> Fract a b < 1 \<longleftrightarrow> a < b" | 
| 
c6e184561159
add lemmas about comparisons of Fract a b with 0 and 1
 huffman parents: 
29940diff
changeset | 558 | by (simp add: One_rat_def mult_less_cancel_right_disj) | 
| 
c6e184561159
add lemmas about comparisons of Fract a b with 0 and 1
 huffman parents: 
29940diff
changeset | 559 | |
| 
c6e184561159
add lemmas about comparisons of Fract a b with 0 and 1
 huffman parents: 
29940diff
changeset | 560 | lemma one_le_Fract_iff: | 
| 
c6e184561159
add lemmas about comparisons of Fract a b with 0 and 1
 huffman parents: 
29940diff
changeset | 561 | "0 < b \<Longrightarrow> 1 \<le> Fract a b \<longleftrightarrow> b \<le> a" | 
| 
c6e184561159
add lemmas about comparisons of Fract a b with 0 and 1
 huffman parents: 
29940diff
changeset | 562 | by (simp add: One_rat_def mult_le_cancel_right) | 
| 
c6e184561159
add lemmas about comparisons of Fract a b with 0 and 1
 huffman parents: 
29940diff
changeset | 563 | |
| 
c6e184561159
add lemmas about comparisons of Fract a b with 0 and 1
 huffman parents: 
29940diff
changeset | 564 | lemma Fract_le_one_iff: | 
| 
c6e184561159
add lemmas about comparisons of Fract a b with 0 and 1
 huffman parents: 
29940diff
changeset | 565 | "0 < b \<Longrightarrow> Fract a b \<le> 1 \<longleftrightarrow> a \<le> b" | 
| 
c6e184561159
add lemmas about comparisons of Fract a b with 0 and 1
 huffman parents: 
29940diff
changeset | 566 | by (simp add: One_rat_def mult_le_cancel_right) | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: diff
changeset | 567 | |
| 14378 
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
 paulson parents: 
14365diff
changeset | 568 | |
| 30097 
57df8626c23b
generalize floor/ceiling to work with real and rat; rename floor_mono2 to floor_mono
 huffman parents: 
30095diff
changeset | 569 | subsubsection {* Rationals are an Archimedean field *}
 | 
| 
57df8626c23b
generalize floor/ceiling to work with real and rat; rename floor_mono2 to floor_mono
 huffman parents: 
30095diff
changeset | 570 | |
| 
57df8626c23b
generalize floor/ceiling to work with real and rat; rename floor_mono2 to floor_mono
 huffman parents: 
30095diff
changeset | 571 | lemma rat_floor_lemma: | 
| 
57df8626c23b
generalize floor/ceiling to work with real and rat; rename floor_mono2 to floor_mono
 huffman parents: 
30095diff
changeset | 572 | shows "of_int (a div b) \<le> Fract a b \<and> Fract a b < of_int (a div b + 1)" | 
| 
57df8626c23b
generalize floor/ceiling to work with real and rat; rename floor_mono2 to floor_mono
 huffman parents: 
30095diff
changeset | 573 | proof - | 
| 
57df8626c23b
generalize floor/ceiling to work with real and rat; rename floor_mono2 to floor_mono
 huffman parents: 
30095diff
changeset | 574 | have "Fract a b = of_int (a div b) + Fract (a mod b) b" | 
| 35293 
06a98796453e
remove unneeded premise from rat_floor_lemma and floor_Fract
 huffman parents: 
35216diff
changeset | 575 | by (cases "b = 0", simp, simp add: of_int_rat) | 
| 30097 
57df8626c23b
generalize floor/ceiling to work with real and rat; rename floor_mono2 to floor_mono
 huffman parents: 
30095diff
changeset | 576 | moreover have "0 \<le> Fract (a mod b) b \<and> Fract (a mod b) b < 1" | 
| 35293 
06a98796453e
remove unneeded premise from rat_floor_lemma and floor_Fract
 huffman parents: 
35216diff
changeset | 577 | unfolding Fract_of_int_quotient | 
| 36409 | 578 | by (rule linorder_cases [of b 0]) (simp add: divide_nonpos_neg, simp, simp add: divide_nonneg_pos) | 
| 30097 
57df8626c23b
generalize floor/ceiling to work with real and rat; rename floor_mono2 to floor_mono
 huffman parents: 
30095diff
changeset | 579 | ultimately show ?thesis by simp | 
| 
57df8626c23b
generalize floor/ceiling to work with real and rat; rename floor_mono2 to floor_mono
 huffman parents: 
30095diff
changeset | 580 | qed | 
| 
57df8626c23b
generalize floor/ceiling to work with real and rat; rename floor_mono2 to floor_mono
 huffman parents: 
30095diff
changeset | 581 | |
| 
57df8626c23b
generalize floor/ceiling to work with real and rat; rename floor_mono2 to floor_mono
 huffman parents: 
30095diff
changeset | 582 | instance rat :: archimedean_field | 
| 
57df8626c23b
generalize floor/ceiling to work with real and rat; rename floor_mono2 to floor_mono
 huffman parents: 
30095diff
changeset | 583 | proof | 
| 
57df8626c23b
generalize floor/ceiling to work with real and rat; rename floor_mono2 to floor_mono
 huffman parents: 
30095diff
changeset | 584 | fix r :: rat | 
| 
57df8626c23b
generalize floor/ceiling to work with real and rat; rename floor_mono2 to floor_mono
 huffman parents: 
30095diff
changeset | 585 | show "\<exists>z. r \<le> of_int z" | 
| 
57df8626c23b
generalize floor/ceiling to work with real and rat; rename floor_mono2 to floor_mono
 huffman parents: 
30095diff
changeset | 586 | proof (induct r) | 
| 
57df8626c23b
generalize floor/ceiling to work with real and rat; rename floor_mono2 to floor_mono
 huffman parents: 
30095diff
changeset | 587 | case (Fract a b) | 
| 35293 
06a98796453e
remove unneeded premise from rat_floor_lemma and floor_Fract
 huffman parents: 
35216diff
changeset | 588 | have "Fract a b \<le> of_int (a div b + 1)" | 
| 
06a98796453e
remove unneeded premise from rat_floor_lemma and floor_Fract
 huffman parents: 
35216diff
changeset | 589 | using rat_floor_lemma [of a b] by simp | 
| 30097 
57df8626c23b
generalize floor/ceiling to work with real and rat; rename floor_mono2 to floor_mono
 huffman parents: 
30095diff
changeset | 590 | then show "\<exists>z. Fract a b \<le> of_int z" .. | 
| 
57df8626c23b
generalize floor/ceiling to work with real and rat; rename floor_mono2 to floor_mono
 huffman parents: 
30095diff
changeset | 591 | qed | 
| 
57df8626c23b
generalize floor/ceiling to work with real and rat; rename floor_mono2 to floor_mono
 huffman parents: 
30095diff
changeset | 592 | qed | 
| 
57df8626c23b
generalize floor/ceiling to work with real and rat; rename floor_mono2 to floor_mono
 huffman parents: 
30095diff
changeset | 593 | |
| 43732 
6b2bdc57155b
adding a floor_ceiling type class for different instantiations of floor (changeset from Brian Huffman)
 bulwahn parents: 
42311diff
changeset | 594 | instantiation rat :: floor_ceiling | 
| 
6b2bdc57155b
adding a floor_ceiling type class for different instantiations of floor (changeset from Brian Huffman)
 bulwahn parents: 
42311diff
changeset | 595 | begin | 
| 
6b2bdc57155b
adding a floor_ceiling type class for different instantiations of floor (changeset from Brian Huffman)
 bulwahn parents: 
42311diff
changeset | 596 | |
| 
6b2bdc57155b
adding a floor_ceiling type class for different instantiations of floor (changeset from Brian Huffman)
 bulwahn parents: 
42311diff
changeset | 597 | definition [code del]: | 
| 
6b2bdc57155b
adding a floor_ceiling type class for different instantiations of floor (changeset from Brian Huffman)
 bulwahn parents: 
42311diff
changeset | 598 | "floor (x::rat) = (THE z. of_int z \<le> x \<and> x < of_int (z + 1))" | 
| 
6b2bdc57155b
adding a floor_ceiling type class for different instantiations of floor (changeset from Brian Huffman)
 bulwahn parents: 
42311diff
changeset | 599 | |
| 
6b2bdc57155b
adding a floor_ceiling type class for different instantiations of floor (changeset from Brian Huffman)
 bulwahn parents: 
42311diff
changeset | 600 | instance proof | 
| 
6b2bdc57155b
adding a floor_ceiling type class for different instantiations of floor (changeset from Brian Huffman)
 bulwahn parents: 
42311diff
changeset | 601 | fix x :: rat | 
| 
6b2bdc57155b
adding a floor_ceiling type class for different instantiations of floor (changeset from Brian Huffman)
 bulwahn parents: 
42311diff
changeset | 602 | show "of_int (floor x) \<le> x \<and> x < of_int (floor x + 1)" | 
| 
6b2bdc57155b
adding a floor_ceiling type class for different instantiations of floor (changeset from Brian Huffman)
 bulwahn parents: 
42311diff
changeset | 603 | unfolding floor_rat_def using floor_exists1 by (rule theI') | 
| 
6b2bdc57155b
adding a floor_ceiling type class for different instantiations of floor (changeset from Brian Huffman)
 bulwahn parents: 
42311diff
changeset | 604 | qed | 
| 
6b2bdc57155b
adding a floor_ceiling type class for different instantiations of floor (changeset from Brian Huffman)
 bulwahn parents: 
42311diff
changeset | 605 | |
| 
6b2bdc57155b
adding a floor_ceiling type class for different instantiations of floor (changeset from Brian Huffman)
 bulwahn parents: 
42311diff
changeset | 606 | end | 
| 
6b2bdc57155b
adding a floor_ceiling type class for different instantiations of floor (changeset from Brian Huffman)
 bulwahn parents: 
42311diff
changeset | 607 | |
| 35293 
06a98796453e
remove unneeded premise from rat_floor_lemma and floor_Fract
 huffman parents: 
35216diff
changeset | 608 | lemma floor_Fract: "floor (Fract a b) = a div b" | 
| 
06a98796453e
remove unneeded premise from rat_floor_lemma and floor_Fract
 huffman parents: 
35216diff
changeset | 609 | using rat_floor_lemma [of a b] | 
| 30097 
57df8626c23b
generalize floor/ceiling to work with real and rat; rename floor_mono2 to floor_mono
 huffman parents: 
30095diff
changeset | 610 | by (simp add: floor_unique) | 
| 
57df8626c23b
generalize floor/ceiling to work with real and rat; rename floor_mono2 to floor_mono
 huffman parents: 
30095diff
changeset | 611 | |
| 
57df8626c23b
generalize floor/ceiling to work with real and rat; rename floor_mono2 to floor_mono
 huffman parents: 
30095diff
changeset | 612 | |
| 31100 | 613 | subsection {* Linear arithmetic setup *}
 | 
| 14387 
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
 paulson parents: 
14378diff
changeset | 614 | |
| 31100 | 615 | declaration {*
 | 
| 616 |   K (Lin_Arith.add_inj_thms [@{thm of_nat_le_iff} RS iffD2, @{thm of_nat_eq_iff} RS iffD2]
 | |
| 617 | (* not needed because x < (y::nat) can be rewritten as Suc x <= y: of_nat_less_iff RS iffD2 *) | |
| 618 |   #> Lin_Arith.add_inj_thms [@{thm of_int_le_iff} RS iffD2, @{thm of_int_eq_iff} RS iffD2]
 | |
| 619 | (* not needed because x < (y::int) can be rewritten as x + 1 <= y: of_int_less_iff RS iffD2 *) | |
| 620 |   #> Lin_Arith.add_simps [@{thm neg_less_iff_less},
 | |
| 621 |       @{thm True_implies_equals},
 | |
| 49962 
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
 webertj parents: 
48891diff
changeset | 622 |       read_instantiate @{context} [(("a", 0), "(numeral ?v)")] @{thm distrib_left},
 | 
| 
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
 webertj parents: 
48891diff
changeset | 623 |       read_instantiate @{context} [(("a", 0), "(neg_numeral ?v)")] @{thm distrib_left},
 | 
| 31100 | 624 |       @{thm divide_1}, @{thm divide_zero_left},
 | 
| 625 |       @{thm times_divide_eq_right}, @{thm times_divide_eq_left},
 | |
| 626 |       @{thm minus_divide_left} RS sym, @{thm minus_divide_right} RS sym,
 | |
| 627 |       @{thm of_int_minus}, @{thm of_int_diff},
 | |
| 628 |       @{thm of_int_of_nat_eq}]
 | |
| 629 | #> Lin_Arith.add_simprocs Numeral_Simprocs.field_cancel_numeral_factors | |
| 630 |   #> Lin_Arith.add_inj_const (@{const_name of_nat}, @{typ "nat => rat"})
 | |
| 631 |   #> Lin_Arith.add_inj_const (@{const_name of_int}, @{typ "int => rat"}))
 | |
| 632 | *} | |
| 14387 
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
 paulson parents: 
14378diff
changeset | 633 | |
| 23342 | 634 | |
| 635 | subsection {* Embedding from Rationals to other Fields *}
 | |
| 636 | ||
| 24198 | 637 | class field_char_0 = field + ring_char_0 | 
| 23342 | 638 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
33814diff
changeset | 639 | subclass (in linordered_field) field_char_0 .. | 
| 23342 | 640 | |
| 27551 | 641 | context field_char_0 | 
| 642 | begin | |
| 643 | ||
| 47906 | 644 | lift_definition of_rat :: "rat \<Rightarrow> 'a" | 
| 645 | is "\<lambda>x. of_int (fst x) / of_int (snd x)" | |
| 23342 | 646 | apply (clarsimp simp add: nonzero_divide_eq_eq nonzero_eq_divide_eq) | 
| 647 | apply (simp only: of_int_mult [symmetric]) | |
| 648 | done | |
| 649 | ||
| 47906 | 650 | end | 
| 651 | ||
| 27551 | 652 | lemma of_rat_rat: "b \<noteq> 0 \<Longrightarrow> of_rat (Fract a b) = of_int a / of_int b" | 
| 47906 | 653 | by transfer simp | 
| 23342 | 654 | |
| 655 | lemma of_rat_0 [simp]: "of_rat 0 = 0" | |
| 47906 | 656 | by transfer simp | 
| 23342 | 657 | |
| 658 | lemma of_rat_1 [simp]: "of_rat 1 = 1" | |
| 47906 | 659 | by transfer simp | 
| 23342 | 660 | |
| 661 | lemma of_rat_add: "of_rat (a + b) = of_rat a + of_rat b" | |
| 47906 | 662 | by transfer (simp add: add_frac_eq) | 
| 23342 | 663 | |
| 23343 | 664 | lemma of_rat_minus: "of_rat (- a) = - of_rat a" | 
| 47906 | 665 | by transfer simp | 
| 23343 | 666 | |
| 667 | lemma of_rat_diff: "of_rat (a - b) = of_rat a - of_rat b" | |
| 668 | by (simp only: diff_minus of_rat_add of_rat_minus) | |
| 669 | ||
| 23342 | 670 | lemma of_rat_mult: "of_rat (a * b) = of_rat a * of_rat b" | 
| 47906 | 671 | apply transfer | 
| 23342 | 672 | apply (simp add: divide_inverse nonzero_inverse_mult_distrib mult_ac) | 
| 673 | done | |
| 674 | ||
| 675 | lemma nonzero_of_rat_inverse: | |
| 676 | "a \<noteq> 0 \<Longrightarrow> of_rat (inverse a) = inverse (of_rat a)" | |
| 23343 | 677 | apply (rule inverse_unique [symmetric]) | 
| 678 | apply (simp add: of_rat_mult [symmetric]) | |
| 23342 | 679 | done | 
| 680 | ||
| 681 | lemma of_rat_inverse: | |
| 36409 | 682 |   "(of_rat (inverse a)::'a::{field_char_0, field_inverse_zero}) =
 | 
| 23342 | 683 | inverse (of_rat a)" | 
| 684 | by (cases "a = 0", simp_all add: nonzero_of_rat_inverse) | |
| 685 | ||
| 686 | lemma nonzero_of_rat_divide: | |
| 687 | "b \<noteq> 0 \<Longrightarrow> of_rat (a / b) = of_rat a / of_rat b" | |
| 688 | by (simp add: divide_inverse of_rat_mult nonzero_of_rat_inverse) | |
| 689 | ||
| 690 | lemma of_rat_divide: | |
| 36409 | 691 |   "(of_rat (a / b)::'a::{field_char_0, field_inverse_zero})
 | 
| 23342 | 692 | = of_rat a / of_rat b" | 
| 27652 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 693 | by (cases "b = 0") (simp_all add: nonzero_of_rat_divide) | 
| 23342 | 694 | |
| 23343 | 695 | lemma of_rat_power: | 
| 31017 | 696 | "(of_rat (a ^ n)::'a::field_char_0) = of_rat a ^ n" | 
| 30273 
ecd6f0ca62ea
declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
 huffman parents: 
30242diff
changeset | 697 | by (induct n) (simp_all add: of_rat_mult) | 
| 23343 | 698 | |
| 699 | lemma of_rat_eq_iff [simp]: "(of_rat a = of_rat b) = (a = b)" | |
| 47906 | 700 | apply transfer | 
| 23343 | 701 | apply (simp add: nonzero_divide_eq_eq nonzero_eq_divide_eq) | 
| 702 | apply (simp only: of_int_mult [symmetric] of_int_eq_iff) | |
| 703 | done | |
| 704 | ||
| 27652 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 705 | lemma of_rat_less: | 
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
33814diff
changeset | 706 | "(of_rat r :: 'a::linordered_field) < of_rat s \<longleftrightarrow> r < s" | 
| 27652 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 707 | proof (induct r, induct s) | 
| 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 708 | fix a b c d :: int | 
| 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 709 | assume not_zero: "b > 0" "d > 0" | 
| 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 710 | then have "b * d > 0" by (rule mult_pos_pos) | 
| 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 711 | have of_int_divide_less_eq: | 
| 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 712 | "(of_int a :: 'a) / of_int b < of_int c / of_int d | 
| 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 713 | \<longleftrightarrow> (of_int a :: 'a) * of_int d < of_int c * of_int b" | 
| 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 714 | using not_zero by (simp add: pos_less_divide_eq pos_divide_less_eq) | 
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
33814diff
changeset | 715 | show "(of_rat (Fract a b) :: 'a::linordered_field) < of_rat (Fract c d) | 
| 27652 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 716 | \<longleftrightarrow> Fract a b < Fract c d" | 
| 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 717 | using not_zero `b * d > 0` | 
| 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 718 | by (simp add: of_rat_rat of_int_divide_less_eq of_int_mult [symmetric] del: of_int_mult) | 
| 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 719 | qed | 
| 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 720 | |
| 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 721 | lemma of_rat_less_eq: | 
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
33814diff
changeset | 722 | "(of_rat r :: 'a::linordered_field) \<le> of_rat s \<longleftrightarrow> r \<le> s" | 
| 27652 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 723 | unfolding le_less by (auto simp add: of_rat_less) | 
| 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 724 | |
| 23343 | 725 | lemmas of_rat_eq_0_iff [simp] = of_rat_eq_iff [of _ 0, simplified] | 
| 726 | ||
| 27652 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 727 | lemma of_rat_eq_id [simp]: "of_rat = id" | 
| 23343 | 728 | proof | 
| 729 | fix a | |
| 730 | show "of_rat a = id a" | |
| 731 | by (induct a) | |
| 27652 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 732 | (simp add: of_rat_rat Fract_of_int_eq [symmetric]) | 
| 23343 | 733 | qed | 
| 734 | ||
| 735 | text{*Collapse nested embeddings*}
 | |
| 736 | lemma of_rat_of_nat_eq [simp]: "of_rat (of_nat n) = of_nat n" | |
| 737 | by (induct n) (simp_all add: of_rat_add) | |
| 738 | ||
| 739 | lemma of_rat_of_int_eq [simp]: "of_rat (of_int z) = of_int z" | |
| 27652 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 740 | by (cases z rule: int_diff_cases) (simp add: of_rat_diff) | 
| 23343 | 741 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 742 | lemma of_rat_numeral_eq [simp]: | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 743 | "of_rat (numeral w) = numeral w" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 744 | using of_rat_of_int_eq [of "numeral w"] by simp | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 745 | |
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 746 | lemma of_rat_neg_numeral_eq [simp]: | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 747 | "of_rat (neg_numeral w) = neg_numeral w" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 748 | using of_rat_of_int_eq [of "neg_numeral w"] by simp | 
| 23343 | 749 | |
| 23879 | 750 | lemmas zero_rat = Zero_rat_def | 
| 751 | lemmas one_rat = One_rat_def | |
| 752 | ||
| 24198 | 753 | abbreviation | 
| 754 | rat_of_nat :: "nat \<Rightarrow> rat" | |
| 755 | where | |
| 756 | "rat_of_nat \<equiv> of_nat" | |
| 757 | ||
| 758 | abbreviation | |
| 759 | rat_of_int :: "int \<Rightarrow> rat" | |
| 760 | where | |
| 761 | "rat_of_int \<equiv> of_int" | |
| 762 | ||
| 28010 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 763 | subsection {* The Set of Rational Numbers *}
 | 
| 24533 
fe1f93f6a15a
Added code generator setup (taken from Library/Executable_Rat.thy,
 berghofe parents: 
24506diff
changeset | 764 | |
| 28001 | 765 | context field_char_0 | 
| 766 | begin | |
| 767 | ||
| 768 | definition | |
| 769 | Rats :: "'a set" where | |
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 770 | "Rats = range of_rat" | 
| 28001 | 771 | |
| 772 | notation (xsymbols) | |
| 773 |   Rats  ("\<rat>")
 | |
| 774 | ||
| 775 | end | |
| 776 | ||
| 28010 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 777 | lemma Rats_of_rat [simp]: "of_rat r \<in> Rats" | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 778 | by (simp add: Rats_def) | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 779 | |
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 780 | lemma Rats_of_int [simp]: "of_int z \<in> Rats" | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 781 | by (subst of_rat_of_int_eq [symmetric], rule Rats_of_rat) | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 782 | |
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 783 | lemma Rats_of_nat [simp]: "of_nat n \<in> Rats" | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 784 | by (subst of_rat_of_nat_eq [symmetric], rule Rats_of_rat) | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 785 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 786 | lemma Rats_number_of [simp]: "numeral w \<in> Rats" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 787 | by (subst of_rat_numeral_eq [symmetric], rule Rats_of_rat) | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 788 | |
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 789 | lemma Rats_neg_number_of [simp]: "neg_numeral w \<in> Rats" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 790 | by (subst of_rat_neg_numeral_eq [symmetric], rule Rats_of_rat) | 
| 28010 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 791 | |
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 792 | lemma Rats_0 [simp]: "0 \<in> Rats" | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 793 | apply (unfold Rats_def) | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 794 | apply (rule range_eqI) | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 795 | apply (rule of_rat_0 [symmetric]) | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 796 | done | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 797 | |
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 798 | lemma Rats_1 [simp]: "1 \<in> Rats" | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 799 | apply (unfold Rats_def) | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 800 | apply (rule range_eqI) | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 801 | apply (rule of_rat_1 [symmetric]) | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 802 | done | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 803 | |
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 804 | lemma Rats_add [simp]: "\<lbrakk>a \<in> Rats; b \<in> Rats\<rbrakk> \<Longrightarrow> a + b \<in> Rats" | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 805 | apply (auto simp add: Rats_def) | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 806 | apply (rule range_eqI) | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 807 | apply (rule of_rat_add [symmetric]) | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 808 | done | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 809 | |
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 810 | lemma Rats_minus [simp]: "a \<in> Rats \<Longrightarrow> - a \<in> Rats" | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 811 | apply (auto simp add: Rats_def) | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 812 | apply (rule range_eqI) | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 813 | apply (rule of_rat_minus [symmetric]) | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 814 | done | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 815 | |
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 816 | lemma Rats_diff [simp]: "\<lbrakk>a \<in> Rats; b \<in> Rats\<rbrakk> \<Longrightarrow> a - b \<in> Rats" | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 817 | apply (auto simp add: Rats_def) | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 818 | apply (rule range_eqI) | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 819 | apply (rule of_rat_diff [symmetric]) | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 820 | done | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 821 | |
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 822 | lemma Rats_mult [simp]: "\<lbrakk>a \<in> Rats; b \<in> Rats\<rbrakk> \<Longrightarrow> a * b \<in> Rats" | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 823 | apply (auto simp add: Rats_def) | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 824 | apply (rule range_eqI) | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 825 | apply (rule of_rat_mult [symmetric]) | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 826 | done | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 827 | |
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 828 | lemma nonzero_Rats_inverse: | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 829 | fixes a :: "'a::field_char_0" | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 830 | shows "\<lbrakk>a \<in> Rats; a \<noteq> 0\<rbrakk> \<Longrightarrow> inverse a \<in> Rats" | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 831 | apply (auto simp add: Rats_def) | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 832 | apply (rule range_eqI) | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 833 | apply (erule nonzero_of_rat_inverse [symmetric]) | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 834 | done | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 835 | |
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 836 | lemma Rats_inverse [simp]: | 
| 36409 | 837 |   fixes a :: "'a::{field_char_0, field_inverse_zero}"
 | 
| 28010 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 838 | shows "a \<in> Rats \<Longrightarrow> inverse a \<in> Rats" | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 839 | apply (auto simp add: Rats_def) | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 840 | apply (rule range_eqI) | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 841 | apply (rule of_rat_inverse [symmetric]) | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 842 | done | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 843 | |
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 844 | lemma nonzero_Rats_divide: | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 845 | fixes a b :: "'a::field_char_0" | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 846 | shows "\<lbrakk>a \<in> Rats; b \<in> Rats; b \<noteq> 0\<rbrakk> \<Longrightarrow> a / b \<in> Rats" | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 847 | apply (auto simp add: Rats_def) | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 848 | apply (rule range_eqI) | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 849 | apply (erule nonzero_of_rat_divide [symmetric]) | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 850 | done | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 851 | |
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 852 | lemma Rats_divide [simp]: | 
| 36409 | 853 |   fixes a b :: "'a::{field_char_0, field_inverse_zero}"
 | 
| 28010 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 854 | shows "\<lbrakk>a \<in> Rats; b \<in> Rats\<rbrakk> \<Longrightarrow> a / b \<in> Rats" | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 855 | apply (auto simp add: Rats_def) | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 856 | apply (rule range_eqI) | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 857 | apply (rule of_rat_divide [symmetric]) | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 858 | done | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 859 | |
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 860 | lemma Rats_power [simp]: | 
| 31017 | 861 | fixes a :: "'a::field_char_0" | 
| 28010 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 862 | shows "a \<in> Rats \<Longrightarrow> a ^ n \<in> Rats" | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 863 | apply (auto simp add: Rats_def) | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 864 | apply (rule range_eqI) | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 865 | apply (rule of_rat_power [symmetric]) | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 866 | done | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 867 | |
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 868 | lemma Rats_cases [cases set: Rats]: | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 869 | assumes "q \<in> \<rat>" | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 870 | obtains (of_rat) r where "q = of_rat r" | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 871 | proof - | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 872 | from `q \<in> \<rat>` have "q \<in> range of_rat" unfolding Rats_def . | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 873 | then obtain r where "q = of_rat r" .. | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 874 | then show thesis .. | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 875 | qed | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 876 | |
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 877 | lemma Rats_induct [case_names of_rat, induct set: Rats]: | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 878 | "q \<in> \<rat> \<Longrightarrow> (\<And>r. P (of_rat r)) \<Longrightarrow> P q" | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 879 | by (rule Rats_cases) auto | 
| 
8312edc51969
add lemmas about Rats similar to those about Reals
 huffman parents: 
28001diff
changeset | 880 | |
| 28001 | 881 | |
| 24533 
fe1f93f6a15a
Added code generator setup (taken from Library/Executable_Rat.thy,
 berghofe parents: 
24506diff
changeset | 882 | subsection {* Implementation of rational numbers as pairs of integers *}
 | 
| 
fe1f93f6a15a
Added code generator setup (taken from Library/Executable_Rat.thy,
 berghofe parents: 
24506diff
changeset | 883 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 884 | text {* Formal constructor *}
 | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 885 | |
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 886 | definition Frct :: "int \<times> int \<Rightarrow> rat" where | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 887 | [simp]: "Frct p = Fract (fst p) (snd p)" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 888 | |
| 36112 
7fa17a225852
user interface for abstract datatypes is an attribute, not a command
 haftmann parents: 
35726diff
changeset | 889 | lemma [code abstype]: | 
| 
7fa17a225852
user interface for abstract datatypes is an attribute, not a command
 haftmann parents: 
35726diff
changeset | 890 | "Frct (quotient_of q) = q" | 
| 
7fa17a225852
user interface for abstract datatypes is an attribute, not a command
 haftmann parents: 
35726diff
changeset | 891 | by (cases q) (auto intro: quotient_of_eq) | 
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 892 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 893 | |
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 894 | text {* Numerals *}
 | 
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 895 | |
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 896 | declare quotient_of_Fract [code abstract] | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 897 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 898 | definition of_int :: "int \<Rightarrow> rat" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 899 | where | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 900 | [code_abbrev]: "of_int = Int.of_int" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 901 | hide_const (open) of_int | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 902 | |
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 903 | lemma quotient_of_int [code abstract]: | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 904 | "quotient_of (Rat.of_int a) = (a, 1)" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 905 | by (simp add: of_int_def of_int_rat quotient_of_Fract) | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 906 | |
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 907 | lemma [code_unfold]: | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 908 | "numeral k = Rat.of_int (numeral k)" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 909 | by (simp add: Rat.of_int_def) | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 910 | |
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 911 | lemma [code_unfold]: | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 912 | "neg_numeral k = Rat.of_int (neg_numeral k)" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 913 | by (simp add: Rat.of_int_def) | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 914 | |
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 915 | lemma Frct_code_post [code_post]: | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 916 | "Frct (0, a) = 0" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 917 | "Frct (a, 0) = 0" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 918 | "Frct (1, 1) = 1" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 919 | "Frct (numeral k, 1) = numeral k" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 920 | "Frct (neg_numeral k, 1) = neg_numeral k" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 921 | "Frct (1, numeral k) = 1 / numeral k" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 922 | "Frct (1, neg_numeral k) = 1 / neg_numeral k" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 923 | "Frct (numeral k, numeral l) = numeral k / numeral l" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 924 | "Frct (numeral k, neg_numeral l) = numeral k / neg_numeral l" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 925 | "Frct (neg_numeral k, numeral l) = neg_numeral k / numeral l" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 926 | "Frct (neg_numeral k, neg_numeral l) = neg_numeral k / neg_numeral l" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 927 | by (simp_all add: Fract_of_int_quotient) | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 928 | |
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 929 | |
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 930 | text {* Operations *}
 | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 931 | |
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 932 | lemma rat_zero_code [code abstract]: | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 933 | "quotient_of 0 = (0, 1)" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 934 | by (simp add: Zero_rat_def quotient_of_Fract normalize_def) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 935 | |
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 936 | lemma rat_one_code [code abstract]: | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 937 | "quotient_of 1 = (1, 1)" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 938 | by (simp add: One_rat_def quotient_of_Fract normalize_def) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 939 | |
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 940 | lemma rat_plus_code [code abstract]: | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 941 | "quotient_of (p + q) = (let (a, c) = quotient_of p; (b, d) = quotient_of q | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 942 | in normalize (a * d + b * c, c * d))" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 943 | by (cases p, cases q) (simp add: quotient_of_Fract) | 
| 27652 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 944 | |
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 945 | lemma rat_uminus_code [code abstract]: | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 946 | "quotient_of (- p) = (let (a, b) = quotient_of p in (- a, b))" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 947 | by (cases p) (simp add: quotient_of_Fract) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 948 | |
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 949 | lemma rat_minus_code [code abstract]: | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 950 | "quotient_of (p - q) = (let (a, c) = quotient_of p; (b, d) = quotient_of q | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 951 | in normalize (a * d - b * c, c * d))" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 952 | by (cases p, cases q) (simp add: quotient_of_Fract) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 953 | |
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 954 | lemma rat_times_code [code abstract]: | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 955 | "quotient_of (p * q) = (let (a, c) = quotient_of p; (b, d) = quotient_of q | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 956 | in normalize (a * b, c * d))" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 957 | by (cases p, cases q) (simp add: quotient_of_Fract) | 
| 24533 
fe1f93f6a15a
Added code generator setup (taken from Library/Executable_Rat.thy,
 berghofe parents: 
24506diff
changeset | 958 | |
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 959 | lemma rat_inverse_code [code abstract]: | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 960 | "quotient_of (inverse p) = (let (a, b) = quotient_of p | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 961 | in if a = 0 then (0, 1) else (sgn a * b, \<bar>a\<bar>))" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 962 | proof (cases p) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 963 | case (Fract a b) then show ?thesis | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 964 | by (cases "0::int" a rule: linorder_cases) (simp_all add: quotient_of_Fract gcd_int.commute) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 965 | qed | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 966 | |
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 967 | lemma rat_divide_code [code abstract]: | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 968 | "quotient_of (p / q) = (let (a, c) = quotient_of p; (b, d) = quotient_of q | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 969 | in normalize (a * d, c * b))" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 970 | by (cases p, cases q) (simp add: quotient_of_Fract) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 971 | |
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 972 | lemma rat_abs_code [code abstract]: | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 973 | "quotient_of \<bar>p\<bar> = (let (a, b) = quotient_of p in (\<bar>a\<bar>, b))" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 974 | by (cases p) (simp add: quotient_of_Fract) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 975 | |
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 976 | lemma rat_sgn_code [code abstract]: | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 977 | "quotient_of (sgn p) = (sgn (fst (quotient_of p)), 1)" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 978 | proof (cases p) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 979 | case (Fract a b) then show ?thesis | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 980 | by (cases "0::int" a rule: linorder_cases) (simp_all add: quotient_of_Fract) | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 981 | qed | 
| 24533 
fe1f93f6a15a
Added code generator setup (taken from Library/Executable_Rat.thy,
 berghofe parents: 
24506diff
changeset | 982 | |
| 43733 
a6ca7b83612f
adding code equations to execute floor and ceiling on rational and real numbers
 bulwahn parents: 
43732diff
changeset | 983 | lemma rat_floor_code [code]: | 
| 
a6ca7b83612f
adding code equations to execute floor and ceiling on rational and real numbers
 bulwahn parents: 
43732diff
changeset | 984 | "floor p = (let (a, b) = quotient_of p in a div b)" | 
| 
a6ca7b83612f
adding code equations to execute floor and ceiling on rational and real numbers
 bulwahn parents: 
43732diff
changeset | 985 | by (cases p) (simp add: quotient_of_Fract floor_Fract) | 
| 
a6ca7b83612f
adding code equations to execute floor and ceiling on rational and real numbers
 bulwahn parents: 
43732diff
changeset | 986 | |
| 38857 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 haftmann parents: 
38287diff
changeset | 987 | instantiation rat :: equal | 
| 26513 | 988 | begin | 
| 989 | ||
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 990 | definition [code]: | 
| 38857 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 haftmann parents: 
38287diff
changeset | 991 | "HOL.equal a b \<longleftrightarrow> quotient_of a = quotient_of b" | 
| 26513 | 992 | |
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 993 | instance proof | 
| 38857 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 haftmann parents: 
38287diff
changeset | 994 | qed (simp add: equal_rat_def quotient_of_inject_eq) | 
| 26513 | 995 | |
| 28351 | 996 | lemma rat_eq_refl [code nbe]: | 
| 38857 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 haftmann parents: 
38287diff
changeset | 997 | "HOL.equal (r::rat) r \<longleftrightarrow> True" | 
| 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 haftmann parents: 
38287diff
changeset | 998 | by (rule equal_refl) | 
| 28351 | 999 | |
| 26513 | 1000 | end | 
| 24533 
fe1f93f6a15a
Added code generator setup (taken from Library/Executable_Rat.thy,
 berghofe parents: 
24506diff
changeset | 1001 | |
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 1002 | lemma rat_less_eq_code [code]: | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 1003 | "p \<le> q \<longleftrightarrow> (let (a, c) = quotient_of p; (b, d) = quotient_of q in a * d \<le> c * b)" | 
| 35726 | 1004 | by (cases p, cases q) (simp add: quotient_of_Fract mult.commute) | 
| 24533 
fe1f93f6a15a
Added code generator setup (taken from Library/Executable_Rat.thy,
 berghofe parents: 
24506diff
changeset | 1005 | |
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 1006 | lemma rat_less_code [code]: | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 1007 | "p < q \<longleftrightarrow> (let (a, c) = quotient_of p; (b, d) = quotient_of q in a * d < c * b)" | 
| 35726 | 1008 | by (cases p, cases q) (simp add: quotient_of_Fract mult.commute) | 
| 24533 
fe1f93f6a15a
Added code generator setup (taken from Library/Executable_Rat.thy,
 berghofe parents: 
24506diff
changeset | 1009 | |
| 35369 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 1010 | lemma [code]: | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 1011 | "of_rat p = (let (a, b) = quotient_of p in of_int a / of_int b)" | 
| 
e4a7947e02b8
more general case and induct rules; normalize and quotient_of; abstract code generation
 haftmann parents: 
35293diff
changeset | 1012 | by (cases p) (simp add: quotient_of_Fract of_rat_rat) | 
| 27652 
818666de6c24
refined code generator setup for rational numbers; more simplification rules for rational numbers
 haftmann parents: 
27551diff
changeset | 1013 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 1014 | |
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 1015 | text {* Quickcheck *}
 | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 1016 | |
| 31203 
5c8fb4fd67e0
moved Code_Index, Random and Quickcheck before Main
 haftmann parents: 
31100diff
changeset | 1017 | definition (in term_syntax) | 
| 32657 | 1018 | valterm_fract :: "int \<times> (unit \<Rightarrow> Code_Evaluation.term) \<Rightarrow> int \<times> (unit \<Rightarrow> Code_Evaluation.term) \<Rightarrow> rat \<times> (unit \<Rightarrow> Code_Evaluation.term)" where | 
| 1019 |   [code_unfold]: "valterm_fract k l = Code_Evaluation.valtermify Fract {\<cdot>} k {\<cdot>} l"
 | |
| 31203 
5c8fb4fd67e0
moved Code_Index, Random and Quickcheck before Main
 haftmann parents: 
31100diff
changeset | 1020 | |
| 37751 | 1021 | notation fcomp (infixl "\<circ>>" 60) | 
| 1022 | notation scomp (infixl "\<circ>\<rightarrow>" 60) | |
| 31203 
5c8fb4fd67e0
moved Code_Index, Random and Quickcheck before Main
 haftmann parents: 
31100diff
changeset | 1023 | |
| 
5c8fb4fd67e0
moved Code_Index, Random and Quickcheck before Main
 haftmann parents: 
31100diff
changeset | 1024 | instantiation rat :: random | 
| 
5c8fb4fd67e0
moved Code_Index, Random and Quickcheck before Main
 haftmann parents: 
31100diff
changeset | 1025 | begin | 
| 
5c8fb4fd67e0
moved Code_Index, Random and Quickcheck before Main
 haftmann parents: 
31100diff
changeset | 1026 | |
| 
5c8fb4fd67e0
moved Code_Index, Random and Quickcheck before Main
 haftmann parents: 
31100diff
changeset | 1027 | definition | 
| 51126 
df86080de4cb
reform of predicate compiler / quickcheck theories:
 haftmann parents: 
50178diff
changeset | 1028 | "Quickcheck_Random.random i = Quickcheck_Random.random i \<circ>\<rightarrow> (\<lambda>num. Random.range i \<circ>\<rightarrow> (\<lambda>denom. Pair ( | 
| 51143 
0a2371e7ced3
two target language numeral types: integer and natural, as replacement for code_numeral;
 haftmann parents: 
51126diff
changeset | 1029 | let j = int_of_integer (integer_of_natural (denom + 1)) | 
| 32657 | 1030 | in valterm_fract num (j, \<lambda>u. Code_Evaluation.term_of j))))" | 
| 31203 
5c8fb4fd67e0
moved Code_Index, Random and Quickcheck before Main
 haftmann parents: 
31100diff
changeset | 1031 | |
| 
5c8fb4fd67e0
moved Code_Index, Random and Quickcheck before Main
 haftmann parents: 
31100diff
changeset | 1032 | instance .. | 
| 
5c8fb4fd67e0
moved Code_Index, Random and Quickcheck before Main
 haftmann parents: 
31100diff
changeset | 1033 | |
| 
5c8fb4fd67e0
moved Code_Index, Random and Quickcheck before Main
 haftmann parents: 
31100diff
changeset | 1034 | end | 
| 
5c8fb4fd67e0
moved Code_Index, Random and Quickcheck before Main
 haftmann parents: 
31100diff
changeset | 1035 | |
| 37751 | 1036 | no_notation fcomp (infixl "\<circ>>" 60) | 
| 1037 | no_notation scomp (infixl "\<circ>\<rightarrow>" 60) | |
| 31203 
5c8fb4fd67e0
moved Code_Index, Random and Quickcheck before Main
 haftmann parents: 
31100diff
changeset | 1038 | |
| 41920 
d4fb7a418152
moving exhaustive_generators.ML to Quickcheck directory
 bulwahn parents: 
41792diff
changeset | 1039 | instantiation rat :: exhaustive | 
| 41231 
2e901158675e
adding exhaustive tester instances for numeric types: code_numeral, nat, rat and real
 bulwahn parents: 
40819diff
changeset | 1040 | begin | 
| 
2e901158675e
adding exhaustive tester instances for numeric types: code_numeral, nat, rat and real
 bulwahn parents: 
40819diff
changeset | 1041 | |
| 
2e901158675e
adding exhaustive tester instances for numeric types: code_numeral, nat, rat and real
 bulwahn parents: 
40819diff
changeset | 1042 | definition | 
| 51143 
0a2371e7ced3
two target language numeral types: integer and natural, as replacement for code_numeral;
 haftmann parents: 
51126diff
changeset | 1043 | "exhaustive_rat f d = Quickcheck_Exhaustive.exhaustive | 
| 
0a2371e7ced3
two target language numeral types: integer and natural, as replacement for code_numeral;
 haftmann parents: 
51126diff
changeset | 1044 | (\<lambda>l. Quickcheck_Exhaustive.exhaustive (\<lambda>k. f (Fract k (int_of_integer (integer_of_natural l) + 1))) d) d" | 
| 42311 
eb32a8474a57
rational and real instances for new compilation scheme for exhaustive quickcheck
 bulwahn parents: 
41920diff
changeset | 1045 | |
| 
eb32a8474a57
rational and real instances for new compilation scheme for exhaustive quickcheck
 bulwahn parents: 
41920diff
changeset | 1046 | instance .. | 
| 
eb32a8474a57
rational and real instances for new compilation scheme for exhaustive quickcheck
 bulwahn parents: 
41920diff
changeset | 1047 | |
| 
eb32a8474a57
rational and real instances for new compilation scheme for exhaustive quickcheck
 bulwahn parents: 
41920diff
changeset | 1048 | end | 
| 
eb32a8474a57
rational and real instances for new compilation scheme for exhaustive quickcheck
 bulwahn parents: 
41920diff
changeset | 1049 | |
| 
eb32a8474a57
rational and real instances for new compilation scheme for exhaustive quickcheck
 bulwahn parents: 
41920diff
changeset | 1050 | instantiation rat :: full_exhaustive | 
| 
eb32a8474a57
rational and real instances for new compilation scheme for exhaustive quickcheck
 bulwahn parents: 
41920diff
changeset | 1051 | begin | 
| 
eb32a8474a57
rational and real instances for new compilation scheme for exhaustive quickcheck
 bulwahn parents: 
41920diff
changeset | 1052 | |
| 
eb32a8474a57
rational and real instances for new compilation scheme for exhaustive quickcheck
 bulwahn parents: 
41920diff
changeset | 1053 | definition | 
| 45818 
53a697f5454a
hiding constants and facts in the Quickcheck_Exhaustive and Quickcheck_Narrowing theory;
 bulwahn parents: 
45694diff
changeset | 1054 | "full_exhaustive_rat f d = Quickcheck_Exhaustive.full_exhaustive (%(l, _). Quickcheck_Exhaustive.full_exhaustive (%k. | 
| 51143 
0a2371e7ced3
two target language numeral types: integer and natural, as replacement for code_numeral;
 haftmann parents: 
51126diff
changeset | 1055 | f (let j = int_of_integer (integer_of_natural l) + 1 | 
| 45507 
6975db7fd6f0
improved generators for rational numbers to generate negative numbers;
 bulwahn parents: 
45478diff
changeset | 1056 | in valterm_fract k (j, %_. Code_Evaluation.term_of j))) d) d" | 
| 41231 
2e901158675e
adding exhaustive tester instances for numeric types: code_numeral, nat, rat and real
 bulwahn parents: 
40819diff
changeset | 1057 | |
| 
2e901158675e
adding exhaustive tester instances for numeric types: code_numeral, nat, rat and real
 bulwahn parents: 
40819diff
changeset | 1058 | instance .. | 
| 
2e901158675e
adding exhaustive tester instances for numeric types: code_numeral, nat, rat and real
 bulwahn parents: 
40819diff
changeset | 1059 | |
| 
2e901158675e
adding exhaustive tester instances for numeric types: code_numeral, nat, rat and real
 bulwahn parents: 
40819diff
changeset | 1060 | end | 
| 
2e901158675e
adding exhaustive tester instances for numeric types: code_numeral, nat, rat and real
 bulwahn parents: 
40819diff
changeset | 1061 | |
| 43889 
90d24cafb05d
adding code equations for partial_term_of for rational numbers
 bulwahn parents: 
43887diff
changeset | 1062 | instantiation rat :: partial_term_of | 
| 
90d24cafb05d
adding code equations for partial_term_of for rational numbers
 bulwahn parents: 
43887diff
changeset | 1063 | begin | 
| 
90d24cafb05d
adding code equations for partial_term_of for rational numbers
 bulwahn parents: 
43887diff
changeset | 1064 | |
| 
90d24cafb05d
adding code equations for partial_term_of for rational numbers
 bulwahn parents: 
43887diff
changeset | 1065 | instance .. | 
| 
90d24cafb05d
adding code equations for partial_term_of for rational numbers
 bulwahn parents: 
43887diff
changeset | 1066 | |
| 
90d24cafb05d
adding code equations for partial_term_of for rational numbers
 bulwahn parents: 
43887diff
changeset | 1067 | end | 
| 
90d24cafb05d
adding code equations for partial_term_of for rational numbers
 bulwahn parents: 
43887diff
changeset | 1068 | |
| 
90d24cafb05d
adding code equations for partial_term_of for rational numbers
 bulwahn parents: 
43887diff
changeset | 1069 | lemma [code]: | 
| 46758 
4106258260b3
choosing longer constant names in Quickcheck_Narrowing to reduce the chances of name clashes in Quickcheck-Narrowing
 bulwahn parents: 
45818diff
changeset | 1070 | "partial_term_of (ty :: rat itself) (Quickcheck_Narrowing.Narrowing_variable p tt) == Code_Evaluation.Free (STR ''_'') (Typerep.Typerep (STR ''Rat.rat'') [])" | 
| 
4106258260b3
choosing longer constant names in Quickcheck_Narrowing to reduce the chances of name clashes in Quickcheck-Narrowing
 bulwahn parents: 
45818diff
changeset | 1071 | "partial_term_of (ty :: rat itself) (Quickcheck_Narrowing.Narrowing_constructor 0 [l, k]) == | 
| 45507 
6975db7fd6f0
improved generators for rational numbers to generate negative numbers;
 bulwahn parents: 
45478diff
changeset | 1072 | Code_Evaluation.App (Code_Evaluation.Const (STR ''Rat.Frct'') | 
| 
6975db7fd6f0
improved generators for rational numbers to generate negative numbers;
 bulwahn parents: 
45478diff
changeset | 1073 | (Typerep.Typerep (STR ''fun'') [Typerep.Typerep (STR ''Product_Type.prod'') [Typerep.Typerep (STR ''Int.int'') [], Typerep.Typerep (STR ''Int.int'') []], | 
| 
6975db7fd6f0
improved generators for rational numbers to generate negative numbers;
 bulwahn parents: 
45478diff
changeset | 1074 | Typerep.Typerep (STR ''Rat.rat'') []])) (Code_Evaluation.App (Code_Evaluation.App (Code_Evaluation.Const (STR ''Product_Type.Pair'') (Typerep.Typerep (STR ''fun'') [Typerep.Typerep (STR ''Int.int'') [], Typerep.Typerep (STR ''fun'') [Typerep.Typerep (STR ''Int.int'') [], Typerep.Typerep (STR ''Product_Type.prod'') [Typerep.Typerep (STR ''Int.int'') [], Typerep.Typerep (STR ''Int.int'') []]]])) (partial_term_of (TYPE(int)) l)) (partial_term_of (TYPE(int)) k))" | 
| 43889 
90d24cafb05d
adding code equations for partial_term_of for rational numbers
 bulwahn parents: 
43887diff
changeset | 1075 | by (rule partial_term_of_anything)+ | 
| 
90d24cafb05d
adding code equations for partial_term_of for rational numbers
 bulwahn parents: 
43887diff
changeset | 1076 | |
| 43887 | 1077 | instantiation rat :: narrowing | 
| 1078 | begin | |
| 1079 | ||
| 1080 | definition | |
| 45507 
6975db7fd6f0
improved generators for rational numbers to generate negative numbers;
 bulwahn parents: 
45478diff
changeset | 1081 | "narrowing = Quickcheck_Narrowing.apply (Quickcheck_Narrowing.apply | 
| 
6975db7fd6f0
improved generators for rational numbers to generate negative numbers;
 bulwahn parents: 
45478diff
changeset | 1082 | (Quickcheck_Narrowing.cons (%nom denom. Fract nom denom)) narrowing) narrowing" | 
| 43887 | 1083 | |
| 1084 | instance .. | |
| 1085 | ||
| 1086 | end | |
| 1087 | ||
| 1088 | ||
| 45183 
2e1ad4a54189
removing old code generator setup for rational numbers; tuned
 bulwahn parents: 
43889diff
changeset | 1089 | subsection {* Setup for Nitpick *}
 | 
| 24533 
fe1f93f6a15a
Added code generator setup (taken from Library/Executable_Rat.thy,
 berghofe parents: 
24506diff
changeset | 1090 | |
| 38287 | 1091 | declaration {*
 | 
| 1092 |   Nitpick_HOL.register_frac_type @{type_name rat}
 | |
| 33209 | 1093 |    [(@{const_name zero_rat_inst.zero_rat}, @{const_name Nitpick.zero_frac}),
 | 
| 1094 |     (@{const_name one_rat_inst.one_rat}, @{const_name Nitpick.one_frac}),
 | |
| 1095 |     (@{const_name plus_rat_inst.plus_rat}, @{const_name Nitpick.plus_frac}),
 | |
| 1096 |     (@{const_name times_rat_inst.times_rat}, @{const_name Nitpick.times_frac}),
 | |
| 1097 |     (@{const_name uminus_rat_inst.uminus_rat}, @{const_name Nitpick.uminus_frac}),
 | |
| 1098 |     (@{const_name inverse_rat_inst.inverse_rat}, @{const_name Nitpick.inverse_frac}),
 | |
| 37397 
18000f9d783e
adjust Nitpick's handling of "<" on "rat"s and "reals"
 blanchet parents: 
37143diff
changeset | 1099 |     (@{const_name ord_rat_inst.less_rat}, @{const_name Nitpick.less_frac}),
 | 
| 33209 | 1100 |     (@{const_name ord_rat_inst.less_eq_rat}, @{const_name Nitpick.less_eq_frac}),
 | 
| 45478 | 1101 |     (@{const_name field_char_0_class.of_rat}, @{const_name Nitpick.of_frac})]
 | 
| 33197 
de6285ebcc05
continuation of Nitpick's integration into Isabelle;
 blanchet parents: 
32657diff
changeset | 1102 | *} | 
| 
de6285ebcc05
continuation of Nitpick's integration into Isabelle;
 blanchet parents: 
32657diff
changeset | 1103 | |
| 41792 
ff3cb0c418b7
renamed "nitpick\_def" to "nitpick_unfold" to reflect its new semantics
 blanchet parents: 
41231diff
changeset | 1104 | lemmas [nitpick_unfold] = inverse_rat_inst.inverse_rat | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46758diff
changeset | 1105 | one_rat_inst.one_rat ord_rat_inst.less_rat | 
| 37397 
18000f9d783e
adjust Nitpick's handling of "<" on "rat"s and "reals"
 blanchet parents: 
37143diff
changeset | 1106 | ord_rat_inst.less_eq_rat plus_rat_inst.plus_rat times_rat_inst.times_rat | 
| 
18000f9d783e
adjust Nitpick's handling of "<" on "rat"s and "reals"
 blanchet parents: 
37143diff
changeset | 1107 | uminus_rat_inst.uminus_rat zero_rat_inst.zero_rat | 
| 33197 
de6285ebcc05
continuation of Nitpick's integration into Isabelle;
 blanchet parents: 
32657diff
changeset | 1108 | |
| 52146 | 1109 | |
| 1110 | subsection {* Float syntax *}
 | |
| 35343 | 1111 | |
| 1112 | syntax "_Float" :: "float_const \<Rightarrow> 'a"    ("_")
 | |
| 1113 | ||
| 52146 | 1114 | parse_translation {*
 | 
| 1115 | let | |
| 1116 | fun mk_number i = | |
| 1117 | let | |
| 1118 |         fun mk 1 = Syntax.const @{const_syntax Num.One}
 | |
| 1119 | | mk i = | |
| 1120 | let val (q, r) = Integer.div_mod i 2 | |
| 1121 | in HOLogic.mk_bit r $ (mk q) end; | |
| 1122 | in | |
| 1123 |         if i = 0 then Syntax.const @{const_syntax Groups.zero}
 | |
| 1124 |         else if i > 0 then Syntax.const @{const_syntax Num.numeral} $ mk i
 | |
| 1125 |         else Syntax.const @{const_syntax Num.neg_numeral} $ mk (~i)
 | |
| 1126 | end; | |
| 1127 | ||
| 1128 | fun mk_frac str = | |
| 1129 | let | |
| 1130 |         val {mant = i, exp = n} = Lexicon.read_float str;
 | |
| 1131 |         val exp = Syntax.const @{const_syntax Power.power};
 | |
| 1132 | val ten = mk_number 10; | |
| 1133 | val exp10 = if n = 1 then ten else exp $ ten $ mk_number n; | |
| 1134 |       in Syntax.const @{const_syntax divide} $ mk_number i $ exp10 end;
 | |
| 1135 | ||
| 1136 |     fun float_tr [(c as Const (@{syntax_const "_constrain"}, _)) $ t $ u] = c $ float_tr [t] $ u
 | |
| 1137 | | float_tr [t as Const (str, _)] = mk_frac str | |
| 1138 |       | float_tr ts = raise TERM ("float_tr", ts);
 | |
| 1139 |   in [(@{syntax_const "_Float"}, K float_tr)] end
 | |
| 1140 | *} | |
| 35343 | 1141 | |
| 1142 | text{* Test: *}
 | |
| 1143 | lemma "123.456 = -111.111 + 200 + 30 + 4 + 5/10 + 6/100 + (7/1000::rat)" | |
| 52146 | 1144 | by simp | 
| 35343 | 1145 | |
| 37143 | 1146 | |
| 47907 | 1147 | hide_const (open) normalize positive | 
| 37143 | 1148 | |
| 47906 | 1149 | lemmas [transfer_rule del] = | 
| 51956 
a4d81cdebf8b
better support for domains in Lifting/Transfer = replace Domainp T by the actual invariant in a transferred goal
 kuncar parents: 
51185diff
changeset | 1150 | rat.rel_eq_transfer | 
| 47906 | 1151 | Fract.transfer zero_rat.transfer one_rat.transfer plus_rat.transfer | 
| 1152 | uminus_rat.transfer times_rat.transfer inverse_rat.transfer | |
| 51185 
145d76c35f8b
delete also predicates on relations when hiding an implementation of an abstract type
 kuncar parents: 
51143diff
changeset | 1153 | positive.transfer of_rat.transfer rat.right_unique rat.right_total | 
| 47906 | 1154 | |
| 51956 
a4d81cdebf8b
better support for domains in Lifting/Transfer = replace Domainp T by the actual invariant in a transferred goal
 kuncar parents: 
51185diff
changeset | 1155 | lemmas [transfer_domain_rule del] = Domainp_cr_rat rat.domain | 
| 
a4d81cdebf8b
better support for domains in Lifting/Transfer = replace Domainp T by the actual invariant in a transferred goal
 kuncar parents: 
51185diff
changeset | 1156 | |
| 47906 | 1157 | text {* De-register @{text "rat"} as a quotient type: *}
 | 
| 1158 | ||
| 47952 | 1159 | declare Quotient_rat[quot_del] | 
| 47906 | 1160 | |
| 29880 
3dee8ff45d3d
move countability proof from Rational to Countable; add instance rat :: countable
 huffman parents: 
29667diff
changeset | 1161 | end | 
| 51143 
0a2371e7ced3
two target language numeral types: integer and natural, as replacement for code_numeral;
 haftmann parents: 
51126diff
changeset | 1162 |