| author | blanchet | 
| Wed, 16 Oct 2013 19:55:23 +0200 | |
| changeset 54119 | 2c13cb4a057d | 
| parent 52903 | 6c89225ddeba | 
| child 54489 | 03ff4d1e6784 | 
| permissions | -rw-r--r-- | 
| 35372 | 1 | (* Title: HOL/Library/Binomial.thy | 
| 29694 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 2 | Author: Lawrence C Paulson, Amine Chaieb | 
| 21256 | 3 | Copyright 1997 University of Cambridge | 
| 4 | *) | |
| 5 | ||
| 21263 | 6 | header {* Binomial Coefficients *}
 | 
| 21256 | 7 | |
| 8 | theory Binomial | |
| 35372 | 9 | imports Complex_Main | 
| 21256 | 10 | begin | 
| 11 | ||
| 21263 | 12 | text {* This development is based on the work of Andy Gordon and
 | 
| 13 | Florian Kammueller. *} | |
| 21256 | 14 | |
| 52903 | 15 | primrec binomial :: "nat \<Rightarrow> nat \<Rightarrow> nat" (infixl "choose" 65) | 
| 16 | where | |
| 17 | "0 choose k = (if k = 0 then 1 else 0)" | |
| 18 | | "Suc n choose k = (if k = 0 then 1 else (n choose (k - 1)) + (n choose k))" | |
| 21256 | 19 | |
| 20 | lemma binomial_n_0 [simp]: "(n choose 0) = 1" | |
| 48830 | 21 | by (cases n) simp_all | 
| 21256 | 22 | |
| 23 | lemma binomial_0_Suc [simp]: "(0 choose Suc k) = 0" | |
| 48830 | 24 | by simp | 
| 21256 | 25 | |
| 52903 | 26 | lemma binomial_Suc_Suc [simp]: "(Suc n choose Suc k) = (n choose k) + (n choose Suc k)" | 
| 48830 | 27 | by simp | 
| 21256 | 28 | |
| 52903 | 29 | lemma binomial_eq_0: "n < k \<Longrightarrow> n choose k = 0" | 
| 30 | by (induct n arbitrary: k) auto | |
| 21256 | 31 | |
| 52903 | 32 | declare binomial.simps [simp del] | 
| 21256 | 33 | |
| 52903 | 34 | lemma binomial_n_n [simp]: "n choose n = 1" | 
| 48830 | 35 | by (induct n) (simp_all add: binomial_eq_0) | 
| 21256 | 36 | |
| 52903 | 37 | lemma binomial_Suc_n [simp]: "Suc n choose n = Suc n" | 
| 48830 | 38 | by (induct n) simp_all | 
| 21256 | 39 | |
| 52903 | 40 | lemma binomial_1 [simp]: "n choose Suc 0 = n" | 
| 48830 | 41 | by (induct n) simp_all | 
| 21256 | 42 | |
| 52903 | 43 | lemma zero_less_binomial: "k \<le> n \<Longrightarrow> n choose k > 0" | 
| 48830 | 44 | by (induct n k rule: diff_induct) simp_all | 
| 21256 | 45 | |
| 52903 | 46 | lemma binomial_eq_0_iff: "n choose k = 0 \<longleftrightarrow> n < k" | 
| 48830 | 47 | apply (safe intro!: binomial_eq_0) | 
| 48 | apply (erule contrapos_pp) | |
| 49 | apply (simp add: zero_less_binomial) | |
| 50 | done | |
| 21256 | 51 | |
| 52903 | 52 | lemma zero_less_binomial_iff: "n choose k > 0 \<longleftrightarrow> k \<le> n" | 
| 48830 | 53 | by (simp add: linorder_not_less binomial_eq_0_iff neq0_conv[symmetric] del: neq0_conv) | 
| 21256 | 54 | |
| 55 | (*Might be more useful if re-oriented*) | |
| 21263 | 56 | lemma Suc_times_binomial_eq: | 
| 52903 | 57 | "k \<le> n \<Longrightarrow> Suc n * (n choose k) = (Suc n choose Suc k) * Suc k" | 
| 58 | apply (induct n arbitrary: k) | |
| 59 | apply (simp add: binomial.simps) | |
| 48830 | 60 | apply (case_tac k) | 
| 61 | apply (auto simp add: add_mult_distrib add_mult_distrib2 le_Suc_eq binomial_eq_0) | |
| 62 | done | |
| 21256 | 63 | |
| 64 | text{*This is the well-known version, but it's harder to use because of the
 | |
| 65 | need to reason about division.*} | |
| 66 | lemma binomial_Suc_Suc_eq_times: | |
| 52903 | 67 | "k \<le> n \<Longrightarrow> (Suc n choose Suc k) = (Suc n * (n choose k)) div Suc k" | 
| 46507 | 68 | by (simp add: Suc_times_binomial_eq del: mult_Suc mult_Suc_right) | 
| 21256 | 69 | |
| 70 | text{*Another version, with -1 instead of Suc.*}
 | |
| 71 | lemma times_binomial_minus1_eq: | |
| 52903 | 72 | "k \<le> n \<Longrightarrow> 0 < k \<Longrightarrow> (n choose k) * k = n * ((n - 1) choose (k - 1))" | 
| 73 | using Suc_times_binomial_eq [where n = "n - 1" and k = "k - 1"] | |
| 74 | by (auto split add: nat_diff_split) | |
| 21263 | 75 | |
| 21256 | 76 | |
| 25378 | 77 | subsection {* Theorems about @{text "choose"} *}
 | 
| 21256 | 78 | |
| 79 | text {*
 | |
| 80 |   \medskip Basic theorem about @{text "choose"}.  By Florian
 | |
| 81 | Kamm\"uller, tidied by LCP. | |
| 82 | *} | |
| 83 | ||
| 52903 | 84 | lemma card_s_0_eq_empty: "finite A \<Longrightarrow> card {B. B \<subseteq> A & card B = 0} = 1"
 | 
| 48830 | 85 | by (simp cong add: conj_cong add: finite_subset [THEN card_0_eq]) | 
| 21256 | 86 | |
| 52903 | 87 | lemma choose_deconstruct: "finite M \<Longrightarrow> x \<notin> M \<Longrightarrow> | 
| 88 |     {s. s \<subseteq> insert x M \<and> card s = Suc k} =
 | |
| 89 |     {s. s \<subseteq> M \<and> card s = Suc k} \<union> {s. \<exists>t. t \<subseteq> M \<and> card t = k \<and> s = insert x t}"
 | |
| 21256 | 90 | apply safe | 
| 48830 | 91 | apply (auto intro: finite_subset [THEN card_insert_disjoint]) | 
| 21256 | 92 |   apply (drule_tac x = "xa - {x}" in spec)
 | 
| 52903 | 93 | apply (subgoal_tac "x \<notin> xa") | 
| 94 | apply auto | |
| 21256 | 95 | apply (erule rev_mp, subst card_Diff_singleton) | 
| 48830 | 96 | apply (auto intro: finite_subset) | 
| 21256 | 97 | done | 
| 29918 | 98 | (* | 
| 99 | lemma "finite(UN y. {x. P x y})"
 | |
| 100 | apply simp | |
| 101 | lemma Collect_ex_eq | |
| 102 | ||
| 52903 | 103 | lemma "{x. \<exists>y. P x y} = (UN y. {x. P x y})"
 | 
| 29918 | 104 | apply blast | 
| 105 | *) | |
| 106 | ||
| 52903 | 107 | lemma finite_bex_subset [simp]: | 
| 108 | assumes "finite B" | |
| 109 |     and "\<And>A. A \<subseteq> B \<Longrightarrow> finite {x. P x A}"
 | |
| 110 |   shows "finite {x. \<exists>A \<subseteq> B. P x A}"
 | |
| 111 | proof - | |
| 112 |   have "{x. \<exists>A\<subseteq>B. P x A} = (\<Union>A \<in> Pow B. {x. P x A})" by blast
 | |
| 113 | with assms show ?thesis by simp | |
| 114 | qed | |
| 21256 | 115 | |
| 116 | text{*There are as many subsets of @{term A} having cardinality @{term k}
 | |
| 117 | as there are sets obtained from the former by inserting a fixed element | |
| 118 |  @{term x} into each.*}
 | |
| 119 | lemma constr_bij: | |
| 52903 | 120 | "finite A \<Longrightarrow> x \<notin> A \<Longrightarrow> | 
| 121 |     card {B. \<exists>C. C \<subseteq> A \<and> card C = k \<and> B = insert x C} =
 | |
| 122 |     card {B. B \<subseteq> A & card(B) = k}"
 | |
| 123 |   apply (rule_tac f = "\<lambda>s. s - {x}" and g = "insert x" in card_bij_eq)
 | |
| 48830 | 124 | apply (auto elim!: equalityE simp add: inj_on_def) | 
| 52903 | 125 | apply (subst Diff_insert0) | 
| 126 | apply auto | |
| 48830 | 127 | done | 
| 21256 | 128 | |
| 129 | text {*
 | |
| 130 | Main theorem: combinatorial statement about number of subsets of a set. | |
| 131 | *} | |
| 132 | ||
| 133 | lemma n_sub_lemma: | |
| 52903 | 134 |     "finite A \<Longrightarrow> card {B. B \<subseteq> A \<and> card B = k} = (card A choose k)"
 | 
| 135 | apply (induct k arbitrary: A) | |
| 136 | apply (simp add: card_s_0_eq_empty) | |
| 137 | apply atomize | |
| 138 | apply (rotate_tac -1) | |
| 139 | apply (erule finite_induct) | |
| 21256 | 140 | apply (simp_all (no_asm_simp) cong add: conj_cong | 
| 141 | add: card_s_0_eq_empty choose_deconstruct) | |
| 142 | apply (subst card_Un_disjoint) | |
| 143 | prefer 4 apply (force simp add: constr_bij) | |
| 144 | prefer 3 apply force | |
| 145 | prefer 2 apply (blast intro: finite_Pow_iff [THEN iffD2] | |
| 146 | finite_subset [of _ "Pow (insert x F)", standard]) | |
| 147 | apply (blast intro: finite_Pow_iff [THEN iffD2, THEN [2] finite_subset]) | |
| 148 | done | |
| 149 | ||
| 52903 | 150 | theorem n_subsets: "finite A \<Longrightarrow> card {B. B \<subseteq> A \<and> card B = k} = (card A choose k)"
 | 
| 21256 | 151 | by (simp add: n_sub_lemma) | 
| 152 | ||
| 153 | ||
| 154 | text{* The binomial theorem (courtesy of Tobias Nipkow): *}
 | |
| 155 | ||
| 52903 | 156 | theorem binomial: "(a + b::nat)^n = (\<Sum>k=0..n. (n choose k) * a^k * b^(n - k))" | 
| 21256 | 157 | proof (induct n) | 
| 52903 | 158 | case 0 | 
| 159 | then show ?case by simp | |
| 21256 | 160 | next | 
| 161 | case (Suc n) | |
| 162 |   have decomp: "{0..n+1} = {0} \<union> {n+1} \<union> {1..n}"
 | |
| 163 | by (auto simp add:atLeastAtMost_def atLeast_def atMost_def) | |
| 164 |   have decomp2: "{0..n} = {0} \<union> {1..n}"
 | |
| 165 | by (auto simp add:atLeastAtMost_def atLeast_def atMost_def) | |
| 52903 | 166 | have "(a + b)^(n + 1) = (a + b) * (\<Sum>k=0..n. (n choose k) * a^k * b^(n - k))" | 
| 21256 | 167 | using Suc by simp | 
| 168 | also have "\<dots> = a*(\<Sum>k=0..n. (n choose k) * a^k * b^(n-k)) + | |
| 169 | b*(\<Sum>k=0..n. (n choose k) * a^k * b^(n-k))" | |
| 21263 | 170 | by (rule nat_distrib) | 
| 21256 | 171 | also have "\<dots> = (\<Sum>k=0..n. (n choose k) * a^(k+1) * b^(n-k)) + | 
| 172 | (\<Sum>k=0..n. (n choose k) * a^k * b^(n-k+1))" | |
| 21263 | 173 | by (simp add: setsum_right_distrib mult_ac) | 
| 21256 | 174 | also have "\<dots> = (\<Sum>k=0..n. (n choose k) * a^k * b^(n+1-k)) + | 
| 175 | (\<Sum>k=1..n+1. (n choose (k - 1)) * a^k * b^(n+1-k))" | |
| 176 | by (simp add:setsum_shift_bounds_cl_Suc_ivl Suc_diff_le | |
| 177 | del:setsum_cl_ivl_Suc) | |
| 178 | also have "\<dots> = a^(n+1) + b^(n+1) + | |
| 179 | (\<Sum>k=1..n. (n choose (k - 1)) * a^k * b^(n+1-k)) + | |
| 180 | (\<Sum>k=1..n. (n choose k) * a^k * b^(n+1-k))" | |
| 21263 | 181 | by (simp add: decomp2) | 
| 21256 | 182 | also have | 
| 21263 | 183 | "\<dots> = a^(n+1) + b^(n+1) + (\<Sum>k=1..n. (n+1 choose k) * a^k * b^(n+1-k))" | 
| 184 | by (simp add: nat_distrib setsum_addf binomial.simps) | |
| 21256 | 185 | also have "\<dots> = (\<Sum>k=0..n+1. (n+1 choose k) * a^k * b^(n+1-k))" | 
| 186 | using decomp by simp | |
| 187 | finally show ?case by simp | |
| 188 | qed | |
| 189 | ||
| 29906 | 190 | subsection{* Pochhammer's symbol : generalized raising factorial*}
 | 
| 29694 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 191 | |
| 52903 | 192 | definition "pochhammer (a::'a::comm_semiring_1) n = | 
| 193 |   (if n = 0 then 1 else setprod (\<lambda>n. a + of_nat n) {0 .. n - 1})"
 | |
| 29694 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 194 | |
| 52903 | 195 | lemma pochhammer_0 [simp]: "pochhammer a 0 = 1" | 
| 29694 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 196 | by (simp add: pochhammer_def) | 
| 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 197 | |
| 52903 | 198 | lemma pochhammer_1 [simp]: "pochhammer a 1 = a" | 
| 199 | by (simp add: pochhammer_def) | |
| 200 | ||
| 201 | lemma pochhammer_Suc0 [simp]: "pochhammer a (Suc 0) = a" | |
| 29694 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 202 | by (simp add: pochhammer_def) | 
| 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 203 | |
| 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 204 | lemma pochhammer_Suc_setprod: "pochhammer a (Suc n) = setprod (\<lambda>n. a + of_nat n) {0 .. n}"
 | 
| 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 205 | by (simp add: pochhammer_def) | 
| 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 206 | |
| 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 207 | lemma setprod_nat_ivl_Suc: "setprod f {0 .. Suc n} = setprod f {0..n} * f (Suc n)"
 | 
| 52903 | 208 | proof - | 
| 209 |   have "{0..Suc n} = {0..n} \<union> {Suc n}" by auto
 | |
| 210 | then show ?thesis by (simp add: field_simps) | |
| 29694 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 211 | qed | 
| 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 212 | |
| 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 213 | lemma setprod_nat_ivl_1_Suc: "setprod f {0 .. Suc n} = f 0 * setprod f {1.. Suc n}"
 | 
| 52903 | 214 | proof - | 
| 215 |   have "{0..Suc n} = {0} \<union> {1 .. Suc n}" by auto
 | |
| 216 | then show ?thesis by simp | |
| 29694 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 217 | qed | 
| 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 218 | |
| 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 219 | |
| 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 220 | lemma pochhammer_Suc: "pochhammer a (Suc n) = pochhammer a n * (a + of_nat n)" | 
| 52903 | 221 | proof (cases n) | 
| 222 | case 0 | |
| 223 | then show ?thesis by simp | |
| 224 | next | |
| 225 | case (Suc n) | |
| 226 | show ?thesis unfolding Suc pochhammer_Suc_setprod setprod_nat_ivl_Suc .. | |
| 48830 | 227 | qed | 
| 29694 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 228 | |
| 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 229 | lemma pochhammer_rec: "pochhammer a (Suc n) = a * pochhammer (a + 1) n" | 
| 52903 | 230 | proof (cases "n = 0") | 
| 231 | case True | |
| 232 | then show ?thesis by (simp add: pochhammer_Suc_setprod) | |
| 233 | next | |
| 234 | case False | |
| 235 |   have *: "finite {1 .. n}" "0 \<notin> {1 .. n}" by auto
 | |
| 236 |   have eq: "insert 0 {1 .. n} = {0..n}" by auto
 | |
| 237 |   have **: "(\<Prod>n\<in>{1\<Colon>nat..n}. a + of_nat n) = (\<Prod>n\<in>{0\<Colon>nat..n - 1}. a + 1 + of_nat n)"
 | |
| 238 | apply (rule setprod_reindex_cong [where f = Suc]) | |
| 239 | using False | |
| 240 | apply (auto simp add: fun_eq_iff field_simps) | |
| 241 | done | |
| 242 | show ?thesis | |
| 243 | apply (simp add: pochhammer_def) | |
| 244 | unfolding setprod_insert [OF *, unfolded eq] | |
| 245 | using ** apply (simp add: field_simps) | |
| 246 | done | |
| 29694 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 247 | qed | 
| 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 248 | |
| 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 249 | lemma pochhammer_fact: "of_nat (fact n) = pochhammer 1 n" | 
| 32042 | 250 | unfolding fact_altdef_nat | 
| 48830 | 251 | apply (cases n) | 
| 252 | apply (simp_all add: of_nat_setprod pochhammer_Suc_setprod) | |
| 29694 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 253 | apply (rule setprod_reindex_cong[where f=Suc]) | 
| 48830 | 254 | apply (auto simp add: fun_eq_iff) | 
| 255 | done | |
| 29694 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 256 | |
| 48830 | 257 | lemma pochhammer_of_nat_eq_0_lemma: | 
| 52903 | 258 | assumes "k > n" | 
| 29694 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 259 | shows "pochhammer (- (of_nat n :: 'a:: idom)) k = 0" | 
| 52903 | 260 | proof (cases "n = 0") | 
| 261 | case True | |
| 262 | then show ?thesis | |
| 263 | using assms by (cases k) (simp_all add: pochhammer_rec) | |
| 264 | next | |
| 265 | case False | |
| 266 | from assms obtain h where "k = Suc h" by (cases k) auto | |
| 267 | then show ?thesis | |
| 268 | apply (simp add: pochhammer_Suc_setprod) | |
| 269 | apply (rule_tac x="n" in bexI) | |
| 270 | using assms | |
| 271 | apply auto | |
| 272 | done | |
| 29694 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 273 | qed | 
| 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 274 | |
| 52903 | 275 | lemma pochhammer_of_nat_eq_0_lemma': | 
| 276 | assumes kn: "k \<le> n" | |
| 277 |   shows "pochhammer (- (of_nat n :: 'a:: {idom,ring_char_0})) k \<noteq> 0"
 | |
| 278 | proof (cases k) | |
| 279 | case 0 | |
| 280 | then show ?thesis by simp | |
| 281 | next | |
| 282 | case (Suc h) | |
| 283 | then show ?thesis | |
| 284 | apply (simp add: pochhammer_Suc_setprod) | |
| 285 | using Suc kn apply (auto simp add: algebra_simps) | |
| 286 | done | |
| 29694 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 287 | qed | 
| 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 288 | |
| 48830 | 289 | lemma pochhammer_of_nat_eq_0_iff: | 
| 52903 | 290 |   shows "pochhammer (- (of_nat n :: 'a:: {idom,ring_char_0})) k = 0 \<longleftrightarrow> k > n"
 | 
| 29694 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 291 | (is "?l = ?r") | 
| 48830 | 292 | using pochhammer_of_nat_eq_0_lemma[of n k, where ?'a='a] | 
| 29694 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 293 | pochhammer_of_nat_eq_0_lemma'[of k n, where ?'a = 'a] | 
| 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 294 | by (auto simp add: not_le[symmetric]) | 
| 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 295 | |
| 32159 | 296 | |
| 52903 | 297 | lemma pochhammer_eq_0_iff: "pochhammer a n = (0::'a::field_char_0) \<longleftrightarrow> (\<exists>k < n. a = - of_nat k)" | 
| 32159 | 298 | apply (auto simp add: pochhammer_of_nat_eq_0_iff) | 
| 48830 | 299 | apply (cases n) | 
| 300 | apply (auto simp add: pochhammer_def algebra_simps group_add_class.eq_neg_iff_add_eq_0) | |
| 32159 | 301 | apply (rule_tac x=x in exI) | 
| 302 | apply auto | |
| 303 | done | |
| 304 | ||
| 305 | ||
| 48830 | 306 | lemma pochhammer_eq_0_mono: | 
| 32159 | 307 | "pochhammer a n = (0::'a::field_char_0) \<Longrightarrow> m \<ge> n \<Longrightarrow> pochhammer a m = 0" | 
| 48830 | 308 | unfolding pochhammer_eq_0_iff by auto | 
| 32159 | 309 | |
| 48830 | 310 | lemma pochhammer_neq_0_mono: | 
| 32159 | 311 | "pochhammer a m \<noteq> (0::'a::field_char_0) \<Longrightarrow> m \<ge> n \<Longrightarrow> pochhammer a n \<noteq> 0" | 
| 48830 | 312 | unfolding pochhammer_eq_0_iff by auto | 
| 32159 | 313 | |
| 314 | lemma pochhammer_minus: | |
| 48830 | 315 | assumes kn: "k \<le> n" | 
| 32159 | 316 | shows "pochhammer (- b) k = ((- 1) ^ k :: 'a::comm_ring_1) * pochhammer (b - of_nat k + 1) k" | 
| 52903 | 317 | proof (cases k) | 
| 318 | case 0 | |
| 319 | then show ?thesis by simp | |
| 320 | next | |
| 321 | case (Suc h) | |
| 322 |   have eq: "((- 1) ^ Suc h :: 'a) = setprod (%i. - 1) {0 .. h}"
 | |
| 323 |     using setprod_constant[where A="{0 .. h}" and y="- 1 :: 'a"]
 | |
| 324 | by auto | |
| 325 | show ?thesis | |
| 326 | unfolding Suc pochhammer_Suc_setprod eq setprod_timesf[symmetric] | |
| 327 | apply (rule strong_setprod_reindex_cong[where f = "%i. h - i"]) | |
| 328 | using Suc | |
| 329 | apply (auto simp add: inj_on_def image_def) | |
| 330 | apply (rule_tac x="h - x" in bexI) | |
| 331 | apply (auto simp add: fun_eq_iff of_nat_diff) | |
| 332 | done | |
| 32159 | 333 | qed | 
| 334 | ||
| 335 | lemma pochhammer_minus': | |
| 48830 | 336 | assumes kn: "k \<le> n" | 
| 32159 | 337 | shows "pochhammer (b - of_nat k + 1) k = ((- 1) ^ k :: 'a::comm_ring_1) * pochhammer (- b) k" | 
| 338 | unfolding pochhammer_minus[OF kn, where b=b] | |
| 339 | unfolding mult_assoc[symmetric] | |
| 340 | unfolding power_add[symmetric] | |
| 52903 | 341 | by simp | 
| 32159 | 342 | |
| 52903 | 343 | lemma pochhammer_same: "pochhammer (- of_nat n) n = | 
| 344 | ((- 1) ^ n :: 'a::comm_ring_1) * of_nat (fact n)" | |
| 32159 | 345 | unfolding pochhammer_minus[OF le_refl[of n]] | 
| 346 | by (simp add: of_nat_diff pochhammer_fact) | |
| 347 | ||
| 52903 | 348 | |
| 29906 | 349 | subsection{* Generalized binomial coefficients *}
 | 
| 29694 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 350 | |
| 31287 | 351 | definition gbinomial :: "'a::field_char_0 \<Rightarrow> nat \<Rightarrow> 'a" (infixl "gchoose" 65) | 
| 48830 | 352 | where "a gchoose n = | 
| 353 |     (if n = 0 then 1 else (setprod (\<lambda>i. a - of_nat i) {0 .. n - 1}) / of_nat (fact n))"
 | |
| 29694 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 354 | |
| 52903 | 355 | lemma gbinomial_0 [simp]: "a gchoose 0 = 1" "0 gchoose (Suc n) = 0" | 
| 48830 | 356 | apply (simp_all add: gbinomial_def) | 
| 357 |   apply (subgoal_tac "(\<Prod>i\<Colon>nat\<in>{0\<Colon>nat..n}. - of_nat i) = (0::'b)")
 | |
| 358 | apply (simp del:setprod_zero_iff) | |
| 359 | apply simp | |
| 360 | done | |
| 29694 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 361 | |
| 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 362 | lemma gbinomial_pochhammer: "a gchoose n = (- 1) ^ n * pochhammer (- a) n / of_nat (fact n)" | 
| 52903 | 363 | proof (cases "n = 0") | 
| 364 | case True | |
| 365 | then show ?thesis by simp | |
| 366 | next | |
| 367 | case False | |
| 368 |   from this setprod_constant[of "{0 .. n - 1}" "- (1:: 'a)"]
 | |
| 369 |   have eq: "(- (1\<Colon>'a)) ^ n = setprod (\<lambda>i. - 1) {0 .. n - 1}"
 | |
| 370 | by auto | |
| 371 | from False show ?thesis | |
| 372 | by (simp add: pochhammer_def gbinomial_def field_simps | |
| 373 | eq setprod_timesf[symmetric] del: minus_one) | |
| 29694 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 374 | qed | 
| 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 375 | |
| 48830 | 376 | lemma binomial_fact_lemma: "k \<le> n \<Longrightarrow> fact k * fact (n - k) * (n choose k) = fact n" | 
| 377 | proof (induct n arbitrary: k rule: nat_less_induct) | |
| 29694 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 378 | fix n k assume H: "\<forall>m<n. \<forall>x\<le>m. fact x * fact (m - x) * (m choose x) = | 
| 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 379 | fact m" and kn: "k \<le> n" | 
| 48830 | 380 | let ?ths = "fact k * fact (n - k) * (n choose k) = fact n" | 
| 381 |   { assume "n=0" then have ?ths using kn by simp }
 | |
| 29694 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 382 | moreover | 
| 48830 | 383 |   { assume "k=0" then have ?ths using kn by simp }
 | 
| 29694 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 384 | moreover | 
| 48830 | 385 |   { assume nk: "n=k" then have ?ths by simp }
 | 
| 29694 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 386 | moreover | 
| 48830 | 387 |   { fix m h assume n: "n = Suc m" and h: "k = Suc h" and hm: "h < m"
 | 
| 29694 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 388 | from n have mn: "m < n" by arith | 
| 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 389 | from hm have hm': "h \<le> m" by arith | 
| 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 390 | from hm h n kn have km: "k \<le> m" by arith | 
| 48830 | 391 | have "m - h = Suc (m - Suc h)" using h km hm by arith | 
| 29694 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 392 | with km h have th0: "fact (m - h) = (m - h) * fact (m - k)" | 
| 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 393 | by simp | 
| 48830 | 394 | from n h th0 | 
| 395 | have "fact k * fact (n - k) * (n choose k) = | |
| 52903 | 396 | k * (fact h * fact (m - h) * (m choose h)) + | 
| 397 | (m - h) * (fact k * fact (m - k) * (m choose k))" | |
| 36350 | 398 | by (simp add: field_simps) | 
| 29694 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 399 | also have "\<dots> = (k + (m - h)) * fact m" | 
| 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 400 | using H[rule_format, OF mn hm'] H[rule_format, OF mn km] | 
| 36350 | 401 | by (simp add: field_simps) | 
| 48830 | 402 | finally have ?ths using h n km by simp } | 
| 52903 | 403 | moreover have "n=0 \<or> k = 0 \<or> k = n \<or> (\<exists>m h. n = Suc m \<and> k = Suc h \<and> h < m)" | 
| 48830 | 404 | using kn by presburger | 
| 29694 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 405 | ultimately show ?ths by blast | 
| 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 406 | qed | 
| 48830 | 407 | |
| 408 | lemma binomial_fact: | |
| 409 | assumes kn: "k \<le> n" | |
| 410 | shows "(of_nat (n choose k) :: 'a::field_char_0) = | |
| 411 | of_nat (fact n) / (of_nat (fact k) * of_nat (fact (n - k)))" | |
| 29694 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 412 | using binomial_fact_lemma[OF kn] | 
| 36350 | 413 | by (simp add: field_simps of_nat_mult [symmetric]) | 
| 29694 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 414 | |
| 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 415 | lemma binomial_gbinomial: "of_nat (n choose k) = of_nat n gchoose k" | 
| 48830 | 416 | proof - | 
| 417 |   { assume kn: "k > n"
 | |
| 418 | from kn binomial_eq_0[OF kn] have ?thesis | |
| 419 | by (simp add: gbinomial_pochhammer field_simps pochhammer_of_nat_eq_0_iff) } | |
| 29694 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 420 | moreover | 
| 48830 | 421 |   { assume "k=0" then have ?thesis by simp }
 | 
| 29694 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 422 | moreover | 
| 48830 | 423 |   { assume kn: "k \<le> n" and k0: "k\<noteq> 0"
 | 
| 424 | from k0 obtain h where h: "k = Suc h" by (cases k) auto | |
| 29694 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 425 | from h | 
| 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 426 |     have eq:"(- 1 :: 'a) ^ k = setprod (\<lambda>i. - 1) {0..h}"
 | 
| 52903 | 427 | by (subst setprod_constant) auto | 
| 29694 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 428 |     have eq': "(\<Prod>i\<in>{0..h}. of_nat n + - (of_nat i :: 'a)) = (\<Prod>i\<in>{n - h..n}. of_nat i)"
 | 
| 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 429 | apply (rule strong_setprod_reindex_cong[where f="op - n"]) | 
| 48830 | 430 | using h kn | 
| 431 | apply (simp_all add: inj_on_def image_iff Bex_def set_eq_iff) | |
| 432 | apply clarsimp | |
| 433 | apply presburger | |
| 434 | apply presburger | |
| 435 | apply (simp add: fun_eq_iff field_simps of_nat_add[symmetric] del: of_nat_add) | |
| 436 | done | |
| 437 |     have th0: "finite {1..n - Suc h}" "finite {n - h .. n}"
 | |
| 438 |         "{1..n - Suc h} \<inter> {n - h .. n} = {}" and
 | |
| 439 |         eq3: "{1..n - Suc h} \<union> {n - h .. n} = {1..n}"
 | |
| 440 | using h kn by auto | |
| 29694 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 441 | from eq[symmetric] | 
| 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 442 | have ?thesis using kn | 
| 48830 | 443 | apply (simp add: binomial_fact[OF kn, where ?'a = 'a] | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46757diff
changeset | 444 | gbinomial_pochhammer field_simps pochhammer_Suc_setprod del: minus_one) | 
| 48830 | 445 | apply (simp add: pochhammer_Suc_setprod fact_altdef_nat h | 
| 446 | of_nat_setprod setprod_timesf[symmetric] eq' del: One_nat_def power_Suc del: minus_one) | |
| 29694 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 447 | unfolding setprod_Un_disjoint[OF th0, unfolded eq3, of "of_nat:: nat \<Rightarrow> 'a"] eq[unfolded h] | 
| 48830 | 448 | unfolding mult_assoc[symmetric] | 
| 29694 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 449 | unfolding setprod_timesf[symmetric] | 
| 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 450 | apply simp | 
| 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 451 | apply (rule strong_setprod_reindex_cong[where f= "op - n"]) | 
| 48830 | 452 | apply (auto simp add: inj_on_def image_iff Bex_def) | 
| 453 | apply presburger | |
| 29694 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 454 | apply (subgoal_tac "(of_nat (n - x) :: 'a) = of_nat n - of_nat x") | 
| 48830 | 455 | apply simp | 
| 456 | apply (rule of_nat_diff) | |
| 29694 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 457 | apply simp | 
| 48830 | 458 | done | 
| 29694 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 459 | } | 
| 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 460 | moreover | 
| 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 461 | have "k > n \<or> k = 0 \<or> (k \<le> n \<and> k \<noteq> 0)" by arith | 
| 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 462 | ultimately show ?thesis by blast | 
| 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 463 | qed | 
| 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 464 | |
| 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 465 | lemma gbinomial_1[simp]: "a gchoose 1 = a" | 
| 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 466 | by (simp add: gbinomial_def) | 
| 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 467 | |
| 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 468 | lemma gbinomial_Suc0[simp]: "a gchoose (Suc 0) = a" | 
| 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 469 | by (simp add: gbinomial_def) | 
| 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 470 | |
| 48830 | 471 | lemma gbinomial_mult_1: | 
| 472 | "a * (a gchoose n) = | |
| 473 | of_nat n * (a gchoose n) + of_nat (Suc n) * (a gchoose (Suc n))" (is "?l = ?r") | |
| 474 | proof - | |
| 29694 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 475 | have "?r = ((- 1) ^n * pochhammer (- a) n / of_nat (fact n)) * (of_nat n - (- a + of_nat n))" | 
| 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 476 | unfolding gbinomial_pochhammer | 
| 48830 | 477 | pochhammer_Suc fact_Suc of_nat_mult right_diff_distrib power_Suc | 
| 36350 | 478 | by (simp add: field_simps del: of_nat_Suc) | 
| 29694 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 479 | also have "\<dots> = ?l" unfolding gbinomial_pochhammer | 
| 36350 | 480 | by (simp add: field_simps) | 
| 29694 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 481 | finally show ?thesis .. | 
| 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 482 | qed | 
| 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 483 | |
| 48830 | 484 | lemma gbinomial_mult_1': | 
| 485 | "(a gchoose n) * a = of_nat n * (a gchoose n) + of_nat (Suc n) * (a gchoose (Suc n))" | |
| 29694 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 486 | by (simp add: mult_commute gbinomial_mult_1) | 
| 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 487 | |
| 48830 | 488 | lemma gbinomial_Suc: | 
| 489 |     "a gchoose (Suc k) = (setprod (\<lambda>i. a - of_nat i) {0 .. k}) / of_nat (fact (Suc k))"
 | |
| 29694 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 490 | by (simp add: gbinomial_def) | 
| 48830 | 491 | |
| 29694 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 492 | lemma gbinomial_mult_fact: | 
| 48830 | 493 | "(of_nat (fact (Suc k)) :: 'a) * ((a::'a::field_char_0) gchoose (Suc k)) = | 
| 494 |     (setprod (\<lambda>i. a - of_nat i) {0 .. k})"
 | |
| 495 | by (simp_all add: gbinomial_Suc field_simps del: fact_Suc) | |
| 29694 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 496 | |
| 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 497 | lemma gbinomial_mult_fact': | 
| 48830 | 498 | "((a::'a::field_char_0) gchoose (Suc k)) * (of_nat (fact (Suc k)) :: 'a) = | 
| 499 |     (setprod (\<lambda>i. a - of_nat i) {0 .. k})"
 | |
| 29694 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 500 | using gbinomial_mult_fact[of k a] | 
| 52903 | 501 | by (subst mult_commute) | 
| 29694 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 502 | |
| 48830 | 503 | |
| 504 | lemma gbinomial_Suc_Suc: | |
| 505 | "((a::'a::field_char_0) + 1) gchoose (Suc k) = a gchoose k + (a gchoose (Suc k))" | |
| 52903 | 506 | proof (cases k) | 
| 507 | case 0 | |
| 508 | then show ?thesis by simp | |
| 509 | next | |
| 510 | case (Suc h) | |
| 511 |   have eq0: "(\<Prod>i\<in>{1..k}. (a + 1) - of_nat i) = (\<Prod>i\<in>{0..h}. a - of_nat i)"
 | |
| 512 | apply (rule strong_setprod_reindex_cong[where f = Suc]) | |
| 513 | using Suc | |
| 514 | apply auto | |
| 515 | done | |
| 29694 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 516 | |
| 52903 | 517 | have "of_nat (fact (Suc k)) * (a gchoose k + (a gchoose (Suc k))) = | 
| 518 |     ((a gchoose Suc h) * of_nat (fact (Suc h)) * of_nat (Suc k)) + (\<Prod>i\<in>{0\<Colon>nat..Suc h}. a - of_nat i)"
 | |
| 519 | apply (simp add: Suc field_simps del: fact_Suc) | |
| 520 | unfolding gbinomial_mult_fact' | |
| 521 | apply (subst fact_Suc) | |
| 522 | unfolding of_nat_mult | |
| 523 | apply (subst mult_commute) | |
| 524 | unfolding mult_assoc | |
| 525 | unfolding gbinomial_mult_fact | |
| 526 | apply (simp add: field_simps) | |
| 527 | done | |
| 528 |   also have "\<dots> = (\<Prod>i\<in>{0..h}. a - of_nat i) * (a + 1)"
 | |
| 529 | unfolding gbinomial_mult_fact' setprod_nat_ivl_Suc | |
| 530 | by (simp add: field_simps Suc) | |
| 531 |   also have "\<dots> = (\<Prod>i\<in>{0..k}. (a + 1) - of_nat i)"
 | |
| 532 | using eq0 | |
| 533 | by (simp add: Suc setprod_nat_ivl_1_Suc) | |
| 534 | also have "\<dots> = of_nat (fact (Suc k)) * ((a + 1) gchoose (Suc k))" | |
| 535 | unfolding gbinomial_mult_fact .. | |
| 536 | finally show ?thesis by (simp del: fact_Suc) | |
| 29694 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 537 | qed | 
| 
2f2558d7bc3e
Added a formalization of generalized raising Factorials (Pochhammer's symbol) and binomial coefficients
 chaieb parents: 
27487diff
changeset | 538 | |
| 32158 
4dc119d4fc8b
Moved theorem binomial_symmetric from Formal_Power_Series to here
 chaieb parents: 
31287diff
changeset | 539 | |
| 48830 | 540 | lemma binomial_symmetric: | 
| 541 | assumes kn: "k \<le> n" | |
| 32158 
4dc119d4fc8b
Moved theorem binomial_symmetric from Formal_Power_Series to here
 chaieb parents: 
31287diff
changeset | 542 | shows "n choose k = n choose (n - k)" | 
| 
4dc119d4fc8b
Moved theorem binomial_symmetric from Formal_Power_Series to here
 chaieb parents: 
31287diff
changeset | 543 | proof- | 
| 
4dc119d4fc8b
Moved theorem binomial_symmetric from Formal_Power_Series to here
 chaieb parents: 
31287diff
changeset | 544 | from kn have kn': "n - k \<le> n" by arith | 
| 
4dc119d4fc8b
Moved theorem binomial_symmetric from Formal_Power_Series to here
 chaieb parents: 
31287diff
changeset | 545 | from binomial_fact_lemma[OF kn] binomial_fact_lemma[OF kn'] | 
| 48830 | 546 | have "fact k * fact (n - k) * (n choose k) = | 
| 547 | fact (n - k) * fact (n - (n - k)) * (n choose (n - k))" by simp | |
| 32158 
4dc119d4fc8b
Moved theorem binomial_symmetric from Formal_Power_Series to here
 chaieb parents: 
31287diff
changeset | 548 | then show ?thesis using kn by simp | 
| 
4dc119d4fc8b
Moved theorem binomial_symmetric from Formal_Power_Series to here
 chaieb parents: 
31287diff
changeset | 549 | qed | 
| 
4dc119d4fc8b
Moved theorem binomial_symmetric from Formal_Power_Series to here
 chaieb parents: 
31287diff
changeset | 550 | |
| 50224 | 551 | (* Contributed by Manuel Eberl *) | 
| 552 | (* Alternative definition of the binomial coefficient as \<Prod>i<k. (n - i) / (k - i) *) | |
| 553 | lemma binomial_altdef_of_nat: | |
| 52903 | 554 | fixes n k :: nat | 
| 555 |     and x :: "'a :: {field_char_0,field_inverse_zero}"
 | |
| 556 | assumes "k \<le> n" | |
| 557 | shows "of_nat (n choose k) = (\<Prod>i<k. of_nat (n - i) / of_nat (k - i) :: 'a)" | |
| 558 | proof (cases "0 < k") | |
| 559 | case True | |
| 50224 | 560 | then have "(of_nat (n choose k) :: 'a) = (\<Prod>i<k. of_nat n - of_nat i) / of_nat (fact k)" | 
| 561 | unfolding binomial_gbinomial gbinomial_def | |
| 562 | by (auto simp: gr0_conv_Suc lessThan_Suc_atMost atLeast0AtMost) | |
| 563 | also have "\<dots> = (\<Prod>i<k. of_nat (n - i) / of_nat (k - i) :: 'a)" | |
| 564 | using `k \<le> n` unfolding fact_eq_rev_setprod_nat of_nat_setprod | |
| 565 | by (auto simp add: setprod_dividef intro!: setprod_cong of_nat_diff[symmetric]) | |
| 566 | finally show ?thesis . | |
| 52903 | 567 | next | 
| 568 | case False | |
| 569 | then show ?thesis by simp | |
| 570 | qed | |
| 50224 | 571 | |
| 572 | lemma binomial_ge_n_over_k_pow_k: | |
| 52903 | 573 | fixes k n :: nat | 
| 574 | and x :: "'a :: linordered_field_inverse_zero" | |
| 575 | assumes "0 < k" | |
| 576 | and "k \<le> n" | |
| 577 | shows "(of_nat n / of_nat k :: 'a) ^ k \<le> of_nat (n choose k)" | |
| 50224 | 578 | proof - | 
| 579 | have "(of_nat n / of_nat k :: 'a) ^ k = (\<Prod>i<k. of_nat n / of_nat k :: 'a)" | |
| 580 | by (simp add: setprod_constant) | |
| 581 | also have "\<dots> \<le> of_nat (n choose k)" | |
| 582 | unfolding binomial_altdef_of_nat[OF `k\<le>n`] | |
| 583 | proof (safe intro!: setprod_mono) | |
| 52903 | 584 | fix i :: nat | 
| 585 | assume "i < k" | |
| 50224 | 586 | from assms have "n * i \<ge> i * k" by simp | 
| 52903 | 587 | then have "n * k - n * i \<le> n * k - i * k" by arith | 
| 588 | then have "n * (k - i) \<le> (n - i) * k" | |
| 50224 | 589 | by (simp add: diff_mult_distrib2 nat_mult_commute) | 
| 52903 | 590 | then have "of_nat n * of_nat (k - i) \<le> of_nat (n - i) * (of_nat k :: 'a)" | 
| 50224 | 591 | unfolding of_nat_mult[symmetric] of_nat_le_iff . | 
| 592 | with assms show "of_nat n / of_nat k \<le> of_nat (n - i) / (of_nat (k - i) :: 'a)" | |
| 593 | using `i < k` by (simp add: field_simps) | |
| 594 | qed (simp add: zero_le_divide_iff) | |
| 595 | finally show ?thesis . | |
| 596 | qed | |
| 597 | ||
| 50240 
019d642d422d
add upper bounds for factorial and binomial; add equation for binomial using nat-division (both from AFP/Girth_Chromatic)
 hoelzl parents: 
50224diff
changeset | 598 | lemma binomial_le_pow: | 
| 52903 | 599 | assumes "r \<le> n" | 
| 600 | shows "n choose r \<le> n ^ r" | |
| 50240 
019d642d422d
add upper bounds for factorial and binomial; add equation for binomial using nat-division (both from AFP/Girth_Chromatic)
 hoelzl parents: 
50224diff
changeset | 601 | proof - | 
| 
019d642d422d
add upper bounds for factorial and binomial; add equation for binomial using nat-division (both from AFP/Girth_Chromatic)
 hoelzl parents: 
50224diff
changeset | 602 | have "n choose r \<le> fact n div fact (n - r)" | 
| 
019d642d422d
add upper bounds for factorial and binomial; add equation for binomial using nat-division (both from AFP/Girth_Chromatic)
 hoelzl parents: 
50224diff
changeset | 603 | using `r \<le> n` by (subst binomial_fact_lemma[symmetric]) auto | 
| 52903 | 604 | with fact_div_fact_le_pow [OF assms] show ?thesis by auto | 
| 50240 
019d642d422d
add upper bounds for factorial and binomial; add equation for binomial using nat-division (both from AFP/Girth_Chromatic)
 hoelzl parents: 
50224diff
changeset | 605 | qed | 
| 
019d642d422d
add upper bounds for factorial and binomial; add equation for binomial using nat-division (both from AFP/Girth_Chromatic)
 hoelzl parents: 
50224diff
changeset | 606 | |
| 
019d642d422d
add upper bounds for factorial and binomial; add equation for binomial using nat-division (both from AFP/Girth_Chromatic)
 hoelzl parents: 
50224diff
changeset | 607 | lemma binomial_altdef_nat: "(k::nat) \<le> n \<Longrightarrow> | 
| 
019d642d422d
add upper bounds for factorial and binomial; add equation for binomial using nat-division (both from AFP/Girth_Chromatic)
 hoelzl parents: 
50224diff
changeset | 608 | n choose k = fact n div (fact k * fact (n - k))" | 
| 52903 | 609 | by (subst binomial_fact_lemma [symmetric]) auto | 
| 50240 
019d642d422d
add upper bounds for factorial and binomial; add equation for binomial using nat-division (both from AFP/Girth_Chromatic)
 hoelzl parents: 
50224diff
changeset | 610 | |
| 21256 | 611 | end |