| author | haftmann | 
| Fri, 27 Mar 2009 10:05:13 +0100 | |
| changeset 30740 | 2d3ae5a7edb2 | 
| parent 30302 | 5ffa9d4dbea7 | 
| child 30729 | 461ee3e49ad3 | 
| permissions | -rw-r--r-- | 
| 21249 | 1 | (* Title: HOL/Lattices.thy | 
| 2 | Author: Tobias Nipkow | |
| 3 | *) | |
| 4 | ||
| 22454 | 5 | header {* Abstract lattices *}
 | 
| 21249 | 6 | |
| 7 | theory Lattices | |
| 30302 | 8 | imports Orderings | 
| 21249 | 9 | begin | 
| 10 | ||
| 28562 | 11 | subsection {* Lattices *}
 | 
| 21249 | 12 | |
| 25206 | 13 | notation | 
| 25382 | 14 | less_eq (infix "\<sqsubseteq>" 50) and | 
| 15 | less (infix "\<sqsubset>" 50) | |
| 25206 | 16 | |
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 17 | class lower_semilattice = order + | 
| 21249 | 18 | fixes inf :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "\<sqinter>" 70) | 
| 22737 | 19 | assumes inf_le1 [simp]: "x \<sqinter> y \<sqsubseteq> x" | 
| 20 | and inf_le2 [simp]: "x \<sqinter> y \<sqsubseteq> y" | |
| 21733 | 21 | and inf_greatest: "x \<sqsubseteq> y \<Longrightarrow> x \<sqsubseteq> z \<Longrightarrow> x \<sqsubseteq> y \<sqinter> z" | 
| 21249 | 22 | |
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 23 | class upper_semilattice = order + | 
| 21249 | 24 | fixes sup :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "\<squnion>" 65) | 
| 22737 | 25 | assumes sup_ge1 [simp]: "x \<sqsubseteq> x \<squnion> y" | 
| 26 | and sup_ge2 [simp]: "y \<sqsubseteq> x \<squnion> y" | |
| 21733 | 27 | and sup_least: "y \<sqsubseteq> x \<Longrightarrow> z \<sqsubseteq> x \<Longrightarrow> y \<squnion> z \<sqsubseteq> x" | 
| 26014 | 28 | begin | 
| 29 | ||
| 30 | text {* Dual lattice *}
 | |
| 31 | ||
| 32 | lemma dual_lattice: | |
| 33 | "lower_semilattice (op \<ge>) (op >) sup" | |
| 27682 | 34 | by (rule lower_semilattice.intro, rule dual_order) | 
| 35 | (unfold_locales, simp_all add: sup_least) | |
| 26014 | 36 | |
| 37 | end | |
| 21249 | 38 | |
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 39 | class lattice = lower_semilattice + upper_semilattice | 
| 21249 | 40 | |
| 25382 | 41 | |
| 28562 | 42 | subsubsection {* Intro and elim rules*}
 | 
| 21733 | 43 | |
| 44 | context lower_semilattice | |
| 45 | begin | |
| 21249 | 46 | |
| 25062 | 47 | lemma le_infI1[intro]: | 
| 48 | assumes "a \<sqsubseteq> x" | |
| 49 | shows "a \<sqinter> b \<sqsubseteq> x" | |
| 50 | proof (rule order_trans) | |
| 25482 | 51 | from assms show "a \<sqsubseteq> x" . | 
| 52 | show "a \<sqinter> b \<sqsubseteq> a" by simp | |
| 25062 | 53 | qed | 
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 54 | lemmas (in -) [rule del] = le_infI1 | 
| 21249 | 55 | |
| 25062 | 56 | lemma le_infI2[intro]: | 
| 57 | assumes "b \<sqsubseteq> x" | |
| 58 | shows "a \<sqinter> b \<sqsubseteq> x" | |
| 59 | proof (rule order_trans) | |
| 25482 | 60 | from assms show "b \<sqsubseteq> x" . | 
| 61 | show "a \<sqinter> b \<sqsubseteq> b" by simp | |
| 25062 | 62 | qed | 
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 63 | lemmas (in -) [rule del] = le_infI2 | 
| 21733 | 64 | |
| 21734 | 65 | lemma le_infI[intro!]: "x \<sqsubseteq> a \<Longrightarrow> x \<sqsubseteq> b \<Longrightarrow> x \<sqsubseteq> a \<sqinter> b" | 
| 21733 | 66 | by(blast intro: inf_greatest) | 
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 67 | lemmas (in -) [rule del] = le_infI | 
| 21249 | 68 | |
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 69 | lemma le_infE [elim!]: "x \<sqsubseteq> a \<sqinter> b \<Longrightarrow> (x \<sqsubseteq> a \<Longrightarrow> x \<sqsubseteq> b \<Longrightarrow> P) \<Longrightarrow> P" | 
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 70 | by (blast intro: order_trans) | 
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 71 | lemmas (in -) [rule del] = le_infE | 
| 21249 | 72 | |
| 21734 | 73 | lemma le_inf_iff [simp]: | 
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 74 | "x \<sqsubseteq> y \<sqinter> z = (x \<sqsubseteq> y \<and> x \<sqsubseteq> z)" | 
| 21733 | 75 | by blast | 
| 76 | ||
| 21734 | 77 | lemma le_iff_inf: "(x \<sqsubseteq> y) = (x \<sqinter> y = x)" | 
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 78 | by (blast intro: antisym dest: eq_iff [THEN iffD1]) | 
| 21249 | 79 | |
| 25206 | 80 | lemma mono_inf: | 
| 81 | fixes f :: "'a \<Rightarrow> 'b\<Colon>lower_semilattice" | |
| 82 | shows "mono f \<Longrightarrow> f (A \<sqinter> B) \<le> f A \<sqinter> f B" | |
| 83 | by (auto simp add: mono_def intro: Lattices.inf_greatest) | |
| 21733 | 84 | |
| 25206 | 85 | end | 
| 21733 | 86 | |
| 87 | context upper_semilattice | |
| 88 | begin | |
| 21249 | 89 | |
| 21734 | 90 | lemma le_supI1[intro]: "x \<sqsubseteq> a \<Longrightarrow> x \<sqsubseteq> a \<squnion> b" | 
| 25062 | 91 | by (rule order_trans) auto | 
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 92 | lemmas (in -) [rule del] = le_supI1 | 
| 21249 | 93 | |
| 21734 | 94 | lemma le_supI2[intro]: "x \<sqsubseteq> b \<Longrightarrow> x \<sqsubseteq> a \<squnion> b" | 
| 25062 | 95 | by (rule order_trans) auto | 
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 96 | lemmas (in -) [rule del] = le_supI2 | 
| 21733 | 97 | |
| 21734 | 98 | lemma le_supI[intro!]: "a \<sqsubseteq> x \<Longrightarrow> b \<sqsubseteq> x \<Longrightarrow> a \<squnion> b \<sqsubseteq> x" | 
| 26014 | 99 | by (blast intro: sup_least) | 
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 100 | lemmas (in -) [rule del] = le_supI | 
| 21249 | 101 | |
| 21734 | 102 | lemma le_supE[elim!]: "a \<squnion> b \<sqsubseteq> x \<Longrightarrow> (a \<sqsubseteq> x \<Longrightarrow> b \<sqsubseteq> x \<Longrightarrow> P) \<Longrightarrow> P" | 
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 103 | by (blast intro: order_trans) | 
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 104 | lemmas (in -) [rule del] = le_supE | 
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 105 | |
| 21734 | 106 | lemma ge_sup_conv[simp]: | 
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 107 | "x \<squnion> y \<sqsubseteq> z = (x \<sqsubseteq> z \<and> y \<sqsubseteq> z)" | 
| 21733 | 108 | by blast | 
| 109 | ||
| 21734 | 110 | lemma le_iff_sup: "(x \<sqsubseteq> y) = (x \<squnion> y = y)" | 
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 111 | by (blast intro: antisym dest: eq_iff [THEN iffD1]) | 
| 21734 | 112 | |
| 25206 | 113 | lemma mono_sup: | 
| 114 | fixes f :: "'a \<Rightarrow> 'b\<Colon>upper_semilattice" | |
| 115 | shows "mono f \<Longrightarrow> f A \<squnion> f B \<le> f (A \<squnion> B)" | |
| 116 | by (auto simp add: mono_def intro: Lattices.sup_least) | |
| 21733 | 117 | |
| 25206 | 118 | end | 
| 23878 | 119 | |
| 21733 | 120 | |
| 121 | subsubsection{* Equational laws *}
 | |
| 21249 | 122 | |
| 21733 | 123 | context lower_semilattice | 
| 124 | begin | |
| 125 | ||
| 126 | lemma inf_commute: "(x \<sqinter> y) = (y \<sqinter> x)" | |
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 127 | by (blast intro: antisym) | 
| 21733 | 128 | |
| 129 | lemma inf_assoc: "(x \<sqinter> y) \<sqinter> z = x \<sqinter> (y \<sqinter> z)" | |
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 130 | by (blast intro: antisym) | 
| 21733 | 131 | |
| 132 | lemma inf_idem[simp]: "x \<sqinter> x = x" | |
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 133 | by (blast intro: antisym) | 
| 21733 | 134 | |
| 135 | lemma inf_left_idem[simp]: "x \<sqinter> (x \<sqinter> y) = x \<sqinter> y" | |
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 136 | by (blast intro: antisym) | 
| 21733 | 137 | |
| 138 | lemma inf_absorb1: "x \<sqsubseteq> y \<Longrightarrow> x \<sqinter> y = x" | |
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 139 | by (blast intro: antisym) | 
| 21733 | 140 | |
| 141 | lemma inf_absorb2: "y \<sqsubseteq> x \<Longrightarrow> x \<sqinter> y = y" | |
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 142 | by (blast intro: antisym) | 
| 21733 | 143 | |
| 144 | lemma inf_left_commute: "x \<sqinter> (y \<sqinter> z) = y \<sqinter> (x \<sqinter> z)" | |
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 145 | by (blast intro: antisym) | 
| 21733 | 146 | |
| 147 | lemmas inf_ACI = inf_commute inf_assoc inf_left_commute inf_left_idem | |
| 148 | ||
| 149 | end | |
| 150 | ||
| 151 | ||
| 152 | context upper_semilattice | |
| 153 | begin | |
| 21249 | 154 | |
| 21733 | 155 | lemma sup_commute: "(x \<squnion> y) = (y \<squnion> x)" | 
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 156 | by (blast intro: antisym) | 
| 21733 | 157 | |
| 158 | lemma sup_assoc: "(x \<squnion> y) \<squnion> z = x \<squnion> (y \<squnion> z)" | |
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 159 | by (blast intro: antisym) | 
| 21733 | 160 | |
| 161 | lemma sup_idem[simp]: "x \<squnion> x = x" | |
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 162 | by (blast intro: antisym) | 
| 21733 | 163 | |
| 164 | lemma sup_left_idem[simp]: "x \<squnion> (x \<squnion> y) = x \<squnion> y" | |
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 165 | by (blast intro: antisym) | 
| 21733 | 166 | |
| 167 | lemma sup_absorb1: "y \<sqsubseteq> x \<Longrightarrow> x \<squnion> y = x" | |
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 168 | by (blast intro: antisym) | 
| 21733 | 169 | |
| 170 | lemma sup_absorb2: "x \<sqsubseteq> y \<Longrightarrow> x \<squnion> y = y" | |
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 171 | by (blast intro: antisym) | 
| 21249 | 172 | |
| 21733 | 173 | lemma sup_left_commute: "x \<squnion> (y \<squnion> z) = y \<squnion> (x \<squnion> z)" | 
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 174 | by (blast intro: antisym) | 
| 21733 | 175 | |
| 176 | lemmas sup_ACI = sup_commute sup_assoc sup_left_commute sup_left_idem | |
| 177 | ||
| 178 | end | |
| 21249 | 179 | |
| 21733 | 180 | context lattice | 
| 181 | begin | |
| 182 | ||
| 183 | lemma inf_sup_absorb: "x \<sqinter> (x \<squnion> y) = x" | |
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 184 | by (blast intro: antisym inf_le1 inf_greatest sup_ge1) | 
| 21733 | 185 | |
| 186 | lemma sup_inf_absorb: "x \<squnion> (x \<sqinter> y) = x" | |
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 187 | by (blast intro: antisym sup_ge1 sup_least inf_le1) | 
| 21733 | 188 | |
| 21734 | 189 | lemmas ACI = inf_ACI sup_ACI | 
| 190 | ||
| 22454 | 191 | lemmas inf_sup_ord = inf_le1 inf_le2 sup_ge1 sup_ge2 | 
| 192 | ||
| 21734 | 193 | text{* Towards distributivity *}
 | 
| 21249 | 194 | |
| 21734 | 195 | lemma distrib_sup_le: "x \<squnion> (y \<sqinter> z) \<sqsubseteq> (x \<squnion> y) \<sqinter> (x \<squnion> z)" | 
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 196 | by blast | 
| 21734 | 197 | |
| 198 | lemma distrib_inf_le: "(x \<sqinter> y) \<squnion> (x \<sqinter> z) \<sqsubseteq> x \<sqinter> (y \<squnion> z)" | |
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 199 | by blast | 
| 21734 | 200 | |
| 201 | ||
| 202 | text{* If you have one of them, you have them all. *}
 | |
| 21249 | 203 | |
| 21733 | 204 | lemma distrib_imp1: | 
| 21249 | 205 | assumes D: "!!x y z. x \<sqinter> (y \<squnion> z) = (x \<sqinter> y) \<squnion> (x \<sqinter> z)" | 
| 206 | shows "x \<squnion> (y \<sqinter> z) = (x \<squnion> y) \<sqinter> (x \<squnion> z)" | |
| 207 | proof- | |
| 208 | have "x \<squnion> (y \<sqinter> z) = (x \<squnion> (x \<sqinter> z)) \<squnion> (y \<sqinter> z)" by(simp add:sup_inf_absorb) | |
| 209 | also have "\<dots> = x \<squnion> (z \<sqinter> (x \<squnion> y))" by(simp add:D inf_commute sup_assoc) | |
| 210 | also have "\<dots> = ((x \<squnion> y) \<sqinter> x) \<squnion> ((x \<squnion> y) \<sqinter> z)" | |
| 211 | by(simp add:inf_sup_absorb inf_commute) | |
| 212 | also have "\<dots> = (x \<squnion> y) \<sqinter> (x \<squnion> z)" by(simp add:D) | |
| 213 | finally show ?thesis . | |
| 214 | qed | |
| 215 | ||
| 21733 | 216 | lemma distrib_imp2: | 
| 21249 | 217 | assumes D: "!!x y z. x \<squnion> (y \<sqinter> z) = (x \<squnion> y) \<sqinter> (x \<squnion> z)" | 
| 218 | shows "x \<sqinter> (y \<squnion> z) = (x \<sqinter> y) \<squnion> (x \<sqinter> z)" | |
| 219 | proof- | |
| 220 | have "x \<sqinter> (y \<squnion> z) = (x \<sqinter> (x \<squnion> z)) \<sqinter> (y \<squnion> z)" by(simp add:inf_sup_absorb) | |
| 221 | also have "\<dots> = x \<sqinter> (z \<squnion> (x \<sqinter> y))" by(simp add:D sup_commute inf_assoc) | |
| 222 | also have "\<dots> = ((x \<sqinter> y) \<squnion> x) \<sqinter> ((x \<sqinter> y) \<squnion> z)" | |
| 223 | by(simp add:sup_inf_absorb sup_commute) | |
| 224 | also have "\<dots> = (x \<sqinter> y) \<squnion> (x \<sqinter> z)" by(simp add:D) | |
| 225 | finally show ?thesis . | |
| 226 | qed | |
| 227 | ||
| 21734 | 228 | (* seems unused *) | 
| 229 | lemma modular_le: "x \<sqsubseteq> z \<Longrightarrow> x \<squnion> (y \<sqinter> z) \<sqsubseteq> (x \<squnion> y) \<sqinter> z" | |
| 230 | by blast | |
| 231 | ||
| 21733 | 232 | end | 
| 21249 | 233 | |
| 234 | ||
| 24164 | 235 | subsection {* Distributive lattices *}
 | 
| 21249 | 236 | |
| 22454 | 237 | class distrib_lattice = lattice + | 
| 21249 | 238 | assumes sup_inf_distrib1: "x \<squnion> (y \<sqinter> z) = (x \<squnion> y) \<sqinter> (x \<squnion> z)" | 
| 239 | ||
| 21733 | 240 | context distrib_lattice | 
| 241 | begin | |
| 242 | ||
| 243 | lemma sup_inf_distrib2: | |
| 21249 | 244 | "(y \<sqinter> z) \<squnion> x = (y \<squnion> x) \<sqinter> (z \<squnion> x)" | 
| 245 | by(simp add:ACI sup_inf_distrib1) | |
| 246 | ||
| 21733 | 247 | lemma inf_sup_distrib1: | 
| 21249 | 248 | "x \<sqinter> (y \<squnion> z) = (x \<sqinter> y) \<squnion> (x \<sqinter> z)" | 
| 249 | by(rule distrib_imp2[OF sup_inf_distrib1]) | |
| 250 | ||
| 21733 | 251 | lemma inf_sup_distrib2: | 
| 21249 | 252 | "(y \<squnion> z) \<sqinter> x = (y \<sqinter> x) \<squnion> (z \<sqinter> x)" | 
| 253 | by(simp add:ACI inf_sup_distrib1) | |
| 254 | ||
| 21733 | 255 | lemmas distrib = | 
| 21249 | 256 | sup_inf_distrib1 sup_inf_distrib2 inf_sup_distrib1 inf_sup_distrib2 | 
| 257 | ||
| 21733 | 258 | end | 
| 259 | ||
| 21249 | 260 | |
| 22454 | 261 | subsection {* Uniqueness of inf and sup *}
 | 
| 262 | ||
| 22737 | 263 | lemma (in lower_semilattice) inf_unique: | 
| 22454 | 264 | fixes f (infixl "\<triangle>" 70) | 
| 25062 | 265 | assumes le1: "\<And>x y. x \<triangle> y \<le> x" and le2: "\<And>x y. x \<triangle> y \<le> y" | 
| 266 | and greatest: "\<And>x y z. x \<le> y \<Longrightarrow> x \<le> z \<Longrightarrow> x \<le> y \<triangle> z" | |
| 22737 | 267 | shows "x \<sqinter> y = x \<triangle> y" | 
| 22454 | 268 | proof (rule antisym) | 
| 25062 | 269 | show "x \<triangle> y \<le> x \<sqinter> y" by (rule le_infI) (rule le1, rule le2) | 
| 22454 | 270 | next | 
| 25062 | 271 | have leI: "\<And>x y z. x \<le> y \<Longrightarrow> x \<le> z \<Longrightarrow> x \<le> y \<triangle> z" by (blast intro: greatest) | 
| 272 | show "x \<sqinter> y \<le> x \<triangle> y" by (rule leI) simp_all | |
| 22454 | 273 | qed | 
| 274 | ||
| 22737 | 275 | lemma (in upper_semilattice) sup_unique: | 
| 22454 | 276 | fixes f (infixl "\<nabla>" 70) | 
| 25062 | 277 | assumes ge1 [simp]: "\<And>x y. x \<le> x \<nabla> y" and ge2: "\<And>x y. y \<le> x \<nabla> y" | 
| 278 | and least: "\<And>x y z. y \<le> x \<Longrightarrow> z \<le> x \<Longrightarrow> y \<nabla> z \<le> x" | |
| 22737 | 279 | shows "x \<squnion> y = x \<nabla> y" | 
| 22454 | 280 | proof (rule antisym) | 
| 25062 | 281 | show "x \<squnion> y \<le> x \<nabla> y" by (rule le_supI) (rule ge1, rule ge2) | 
| 22454 | 282 | next | 
| 25062 | 283 | have leI: "\<And>x y z. x \<le> z \<Longrightarrow> y \<le> z \<Longrightarrow> x \<nabla> y \<le> z" by (blast intro: least) | 
| 284 | show "x \<nabla> y \<le> x \<squnion> y" by (rule leI) simp_all | |
| 22454 | 285 | qed | 
| 286 | ||
| 287 | ||
| 22916 | 288 | subsection {* @{const min}/@{const max} on linear orders as
 | 
| 289 |   special case of @{const inf}/@{const sup} *}
 | |
| 290 | ||
| 291 | lemma (in linorder) distrib_lattice_min_max: | |
| 25062 | 292 | "distrib_lattice (op \<le>) (op <) min max" | 
| 28823 | 293 | proof | 
| 25062 | 294 | have aux: "\<And>x y \<Colon> 'a. x < y \<Longrightarrow> y \<le> x \<Longrightarrow> x = y" | 
| 22916 | 295 | by (auto simp add: less_le antisym) | 
| 296 | fix x y z | |
| 297 | show "max x (min y z) = min (max x y) (max x z)" | |
| 298 | unfolding min_def max_def | |
| 24640 
85a6c200ecd3
Simplified proofs due to transitivity reasoner setup.
 ballarin parents: 
24514diff
changeset | 299 | by auto | 
| 22916 | 300 | qed (auto simp add: min_def max_def not_le less_imp_le) | 
| 21249 | 301 | |
| 29509 
1ff0f3f08a7b
migrated class package to new locale implementation
 haftmann parents: 
29223diff
changeset | 302 | interpretation min_max!: distrib_lattice "op \<le> :: 'a::linorder \<Rightarrow> 'a \<Rightarrow> bool" "op <" min max | 
| 23948 | 303 | by (rule distrib_lattice_min_max) | 
| 21249 | 304 | |
| 22454 | 305 | lemma inf_min: "inf = (min \<Colon> 'a\<Colon>{lower_semilattice, linorder} \<Rightarrow> 'a \<Rightarrow> 'a)"
 | 
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 306 | by (rule ext)+ (auto intro: antisym) | 
| 21733 | 307 | |
| 22454 | 308 | lemma sup_max: "sup = (max \<Colon> 'a\<Colon>{upper_semilattice, linorder} \<Rightarrow> 'a \<Rightarrow> 'a)"
 | 
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 309 | by (rule ext)+ (auto intro: antisym) | 
| 21733 | 310 | |
| 21249 | 311 | lemmas le_maxI1 = min_max.sup_ge1 | 
| 312 | lemmas le_maxI2 = min_max.sup_ge2 | |
| 21381 | 313 | |
| 21249 | 314 | lemmas max_ac = min_max.sup_assoc min_max.sup_commute | 
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 315 | mk_left_commute [of max, OF min_max.sup_assoc min_max.sup_commute] | 
| 21249 | 316 | |
| 317 | lemmas min_ac = min_max.inf_assoc min_max.inf_commute | |
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 318 | mk_left_commute [of min, OF min_max.inf_assoc min_max.inf_commute] | 
| 21249 | 319 | |
| 22454 | 320 | text {*
 | 
| 321 | Now we have inherited antisymmetry as an intro-rule on all | |
| 322 | linear orders. This is a problem because it applies to bool, which is | |
| 323 | undesirable. | |
| 324 | *} | |
| 325 | ||
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 326 | lemmas [rule del] = min_max.le_infI min_max.le_supI | 
| 22454 | 327 | min_max.le_supE min_max.le_infE min_max.le_supI1 min_max.le_supI2 | 
| 328 | min_max.le_infI1 min_max.le_infI2 | |
| 329 | ||
| 330 | ||
| 331 | subsection {* Bool as lattice *}
 | |
| 332 | ||
| 25510 | 333 | instantiation bool :: distrib_lattice | 
| 334 | begin | |
| 335 | ||
| 336 | definition | |
| 337 | inf_bool_eq: "P \<sqinter> Q \<longleftrightarrow> P \<and> Q" | |
| 338 | ||
| 339 | definition | |
| 340 | sup_bool_eq: "P \<squnion> Q \<longleftrightarrow> P \<or> Q" | |
| 341 | ||
| 342 | instance | |
| 22454 | 343 | by intro_classes (auto simp add: inf_bool_eq sup_bool_eq le_bool_def) | 
| 344 | ||
| 25510 | 345 | end | 
| 346 | ||
| 23878 | 347 | |
| 348 | subsection {* Fun as lattice *}
 | |
| 349 | ||
| 25510 | 350 | instantiation "fun" :: (type, lattice) lattice | 
| 351 | begin | |
| 352 | ||
| 353 | definition | |
| 28562 | 354 | inf_fun_eq [code del]: "f \<sqinter> g = (\<lambda>x. f x \<sqinter> g x)" | 
| 25510 | 355 | |
| 356 | definition | |
| 28562 | 357 | sup_fun_eq [code del]: "f \<squnion> g = (\<lambda>x. f x \<squnion> g x)" | 
| 25510 | 358 | |
| 359 | instance | |
| 23878 | 360 | apply intro_classes | 
| 361 | unfolding inf_fun_eq sup_fun_eq | |
| 362 | apply (auto intro: le_funI) | |
| 363 | apply (rule le_funI) | |
| 364 | apply (auto dest: le_funD) | |
| 365 | apply (rule le_funI) | |
| 366 | apply (auto dest: le_funD) | |
| 367 | done | |
| 368 | ||
| 25510 | 369 | end | 
| 23878 | 370 | |
| 371 | instance "fun" :: (type, distrib_lattice) distrib_lattice | |
| 372 | by default (auto simp add: inf_fun_eq sup_fun_eq sup_inf_distrib1) | |
| 373 | ||
| 26794 | 374 | |
| 23878 | 375 | text {* redundant bindings *}
 | 
| 22454 | 376 | |
| 377 | lemmas inf_aci = inf_ACI | |
| 378 | lemmas sup_aci = sup_ACI | |
| 379 | ||
| 25062 | 380 | no_notation | 
| 25382 | 381 | less_eq (infix "\<sqsubseteq>" 50) and | 
| 382 | less (infix "\<sqsubset>" 50) and | |
| 383 | inf (infixl "\<sqinter>" 70) and | |
| 30302 | 384 | sup (infixl "\<squnion>" 65) | 
| 25062 | 385 | |
| 21249 | 386 | end |