33175
|
1 |
(* Title: Library/Euclidean_Space
|
|
2 |
Author: Amine Chaieb, University of Cambridge
|
|
3 |
*)
|
|
4 |
|
|
5 |
header {* (Real) Vectors in Euclidean space, and elementary linear algebra.*}
|
|
6 |
|
|
7 |
theory Euclidean_Space
|
|
8 |
imports
|
|
9 |
Complex_Main "~~/src/HOL/Decision_Procs/Dense_Linear_Order"
|
|
10 |
Finite_Cartesian_Product Glbs Infinite_Set Numeral_Type
|
|
11 |
Inner_Product
|
|
12 |
uses "positivstellensatz.ML" ("normarith.ML")
|
|
13 |
begin
|
|
14 |
|
|
15 |
text{* Some common special cases.*}
|
|
16 |
|
|
17 |
lemma forall_1: "(\<forall>i::1. P i) \<longleftrightarrow> P 1"
|
|
18 |
by (metis num1_eq_iff)
|
|
19 |
|
|
20 |
lemma exhaust_2:
|
|
21 |
fixes x :: 2 shows "x = 1 \<or> x = 2"
|
|
22 |
proof (induct x)
|
|
23 |
case (of_int z)
|
|
24 |
then have "0 <= z" and "z < 2" by simp_all
|
|
25 |
then have "z = 0 | z = 1" by arith
|
|
26 |
then show ?case by auto
|
|
27 |
qed
|
|
28 |
|
|
29 |
lemma forall_2: "(\<forall>i::2. P i) \<longleftrightarrow> P 1 \<and> P 2"
|
|
30 |
by (metis exhaust_2)
|
|
31 |
|
|
32 |
lemma exhaust_3:
|
|
33 |
fixes x :: 3 shows "x = 1 \<or> x = 2 \<or> x = 3"
|
|
34 |
proof (induct x)
|
|
35 |
case (of_int z)
|
|
36 |
then have "0 <= z" and "z < 3" by simp_all
|
|
37 |
then have "z = 0 \<or> z = 1 \<or> z = 2" by arith
|
|
38 |
then show ?case by auto
|
|
39 |
qed
|
|
40 |
|
|
41 |
lemma forall_3: "(\<forall>i::3. P i) \<longleftrightarrow> P 1 \<and> P 2 \<and> P 3"
|
|
42 |
by (metis exhaust_3)
|
|
43 |
|
|
44 |
lemma UNIV_1: "UNIV = {1::1}"
|
|
45 |
by (auto simp add: num1_eq_iff)
|
|
46 |
|
|
47 |
lemma UNIV_2: "UNIV = {1::2, 2::2}"
|
|
48 |
using exhaust_2 by auto
|
|
49 |
|
|
50 |
lemma UNIV_3: "UNIV = {1::3, 2::3, 3::3}"
|
|
51 |
using exhaust_3 by auto
|
|
52 |
|
|
53 |
lemma setsum_1: "setsum f (UNIV::1 set) = f 1"
|
|
54 |
unfolding UNIV_1 by simp
|
|
55 |
|
|
56 |
lemma setsum_2: "setsum f (UNIV::2 set) = f 1 + f 2"
|
|
57 |
unfolding UNIV_2 by simp
|
|
58 |
|
|
59 |
lemma setsum_3: "setsum f (UNIV::3 set) = f 1 + f 2 + f 3"
|
|
60 |
unfolding UNIV_3 by (simp add: add_ac)
|
|
61 |
|
|
62 |
subsection{* Basic componentwise operations on vectors. *}
|
|
63 |
|
|
64 |
instantiation "^" :: (plus,type) plus
|
|
65 |
begin
|
|
66 |
definition vector_add_def : "op + \<equiv> (\<lambda> x y. (\<chi> i. (x$i) + (y$i)))"
|
|
67 |
instance ..
|
|
68 |
end
|
|
69 |
|
|
70 |
instantiation "^" :: (times,type) times
|
|
71 |
begin
|
|
72 |
definition vector_mult_def : "op * \<equiv> (\<lambda> x y. (\<chi> i. (x$i) * (y$i)))"
|
|
73 |
instance ..
|
|
74 |
end
|
|
75 |
|
|
76 |
instantiation "^" :: (minus,type) minus begin
|
|
77 |
definition vector_minus_def : "op - \<equiv> (\<lambda> x y. (\<chi> i. (x$i) - (y$i)))"
|
|
78 |
instance ..
|
|
79 |
end
|
|
80 |
|
|
81 |
instantiation "^" :: (uminus,type) uminus begin
|
|
82 |
definition vector_uminus_def : "uminus \<equiv> (\<lambda> x. (\<chi> i. - (x$i)))"
|
|
83 |
instance ..
|
|
84 |
end
|
|
85 |
instantiation "^" :: (zero,type) zero begin
|
|
86 |
definition vector_zero_def : "0 \<equiv> (\<chi> i. 0)"
|
|
87 |
instance ..
|
|
88 |
end
|
|
89 |
|
|
90 |
instantiation "^" :: (one,type) one begin
|
|
91 |
definition vector_one_def : "1 \<equiv> (\<chi> i. 1)"
|
|
92 |
instance ..
|
|
93 |
end
|
|
94 |
|
|
95 |
instantiation "^" :: (ord,type) ord
|
|
96 |
begin
|
|
97 |
definition vector_less_eq_def:
|
|
98 |
"less_eq (x :: 'a ^'b) y = (ALL i. x$i <= y$i)"
|
|
99 |
definition vector_less_def: "less (x :: 'a ^'b) y = (ALL i. x$i < y$i)"
|
|
100 |
|
|
101 |
instance by (intro_classes)
|
|
102 |
end
|
|
103 |
|
|
104 |
instantiation "^" :: (scaleR, type) scaleR
|
|
105 |
begin
|
|
106 |
definition vector_scaleR_def: "scaleR = (\<lambda> r x. (\<chi> i. scaleR r (x$i)))"
|
|
107 |
instance ..
|
|
108 |
end
|
|
109 |
|
|
110 |
text{* Also the scalar-vector multiplication. *}
|
|
111 |
|
|
112 |
definition vector_scalar_mult:: "'a::times \<Rightarrow> 'a ^'n \<Rightarrow> 'a ^ 'n" (infixl "*s" 70)
|
|
113 |
where "c *s x = (\<chi> i. c * (x$i))"
|
|
114 |
|
|
115 |
text{* Constant Vectors *}
|
|
116 |
|
|
117 |
definition "vec x = (\<chi> i. x)"
|
|
118 |
|
|
119 |
text{* Dot products. *}
|
|
120 |
|
|
121 |
definition dot :: "'a::{comm_monoid_add, times} ^ 'n \<Rightarrow> 'a ^ 'n \<Rightarrow> 'a" (infix "\<bullet>" 70) where
|
|
122 |
"x \<bullet> y = setsum (\<lambda>i. x$i * y$i) UNIV"
|
|
123 |
|
|
124 |
lemma dot_1[simp]: "(x::'a::{comm_monoid_add, times}^1) \<bullet> y = (x$1) * (y$1)"
|
|
125 |
by (simp add: dot_def setsum_1)
|
|
126 |
|
|
127 |
lemma dot_2[simp]: "(x::'a::{comm_monoid_add, times}^2) \<bullet> y = (x$1) * (y$1) + (x$2) * (y$2)"
|
|
128 |
by (simp add: dot_def setsum_2)
|
|
129 |
|
|
130 |
lemma dot_3[simp]: "(x::'a::{comm_monoid_add, times}^3) \<bullet> y = (x$1) * (y$1) + (x$2) * (y$2) + (x$3) * (y$3)"
|
|
131 |
by (simp add: dot_def setsum_3)
|
|
132 |
|
|
133 |
subsection {* A naive proof procedure to lift really trivial arithmetic stuff from the basis of the vector space. *}
|
|
134 |
|
|
135 |
method_setup vector = {*
|
|
136 |
let
|
|
137 |
val ss1 = HOL_basic_ss addsimps [@{thm dot_def}, @{thm setsum_addf} RS sym,
|
|
138 |
@{thm setsum_subtractf} RS sym, @{thm setsum_right_distrib},
|
|
139 |
@{thm setsum_left_distrib}, @{thm setsum_negf} RS sym]
|
|
140 |
val ss2 = @{simpset} addsimps
|
|
141 |
[@{thm vector_add_def}, @{thm vector_mult_def},
|
|
142 |
@{thm vector_minus_def}, @{thm vector_uminus_def},
|
|
143 |
@{thm vector_one_def}, @{thm vector_zero_def}, @{thm vec_def},
|
|
144 |
@{thm vector_scaleR_def},
|
|
145 |
@{thm Cart_lambda_beta}, @{thm vector_scalar_mult_def}]
|
|
146 |
fun vector_arith_tac ths =
|
|
147 |
simp_tac ss1
|
|
148 |
THEN' (fn i => rtac @{thm setsum_cong2} i
|
|
149 |
ORELSE rtac @{thm setsum_0'} i
|
|
150 |
ORELSE simp_tac (HOL_basic_ss addsimps [@{thm "Cart_eq"}]) i)
|
|
151 |
(* THEN' TRY o clarify_tac HOL_cs THEN' (TRY o rtac @{thm iffI}) *)
|
|
152 |
THEN' asm_full_simp_tac (ss2 addsimps ths)
|
|
153 |
in
|
|
154 |
Attrib.thms >> (fn ths => K (SIMPLE_METHOD' (vector_arith_tac ths)))
|
|
155 |
end
|
|
156 |
*} "Lifts trivial vector statements to real arith statements"
|
|
157 |
|
|
158 |
lemma vec_0[simp]: "vec 0 = 0" by (vector vector_zero_def)
|
|
159 |
lemma vec_1[simp]: "vec 1 = 1" by (vector vector_one_def)
|
|
160 |
|
|
161 |
|
|
162 |
|
|
163 |
text{* Obvious "component-pushing". *}
|
|
164 |
|
|
165 |
lemma vec_component [simp]: "(vec x :: 'a ^ 'n)$i = x"
|
|
166 |
by (vector vec_def)
|
|
167 |
|
|
168 |
lemma vector_add_component [simp]:
|
|
169 |
fixes x y :: "'a::{plus} ^ 'n"
|
|
170 |
shows "(x + y)$i = x$i + y$i"
|
|
171 |
by vector
|
|
172 |
|
|
173 |
lemma vector_minus_component [simp]:
|
|
174 |
fixes x y :: "'a::{minus} ^ 'n"
|
|
175 |
shows "(x - y)$i = x$i - y$i"
|
|
176 |
by vector
|
|
177 |
|
|
178 |
lemma vector_mult_component [simp]:
|
|
179 |
fixes x y :: "'a::{times} ^ 'n"
|
|
180 |
shows "(x * y)$i = x$i * y$i"
|
|
181 |
by vector
|
|
182 |
|
|
183 |
lemma vector_smult_component [simp]:
|
|
184 |
fixes y :: "'a::{times} ^ 'n"
|
|
185 |
shows "(c *s y)$i = c * (y$i)"
|
|
186 |
by vector
|
|
187 |
|
|
188 |
lemma vector_uminus_component [simp]:
|
|
189 |
fixes x :: "'a::{uminus} ^ 'n"
|
|
190 |
shows "(- x)$i = - (x$i)"
|
|
191 |
by vector
|
|
192 |
|
|
193 |
lemma vector_scaleR_component [simp]:
|
|
194 |
fixes x :: "'a::scaleR ^ 'n"
|
|
195 |
shows "(scaleR r x)$i = scaleR r (x$i)"
|
|
196 |
by vector
|
|
197 |
|
|
198 |
lemma cond_component: "(if b then x else y)$i = (if b then x$i else y$i)" by vector
|
|
199 |
|
|
200 |
lemmas vector_component =
|
|
201 |
vec_component vector_add_component vector_mult_component
|
|
202 |
vector_smult_component vector_minus_component vector_uminus_component
|
|
203 |
vector_scaleR_component cond_component
|
|
204 |
|
|
205 |
subsection {* Some frequently useful arithmetic lemmas over vectors. *}
|
|
206 |
|
|
207 |
instance "^" :: (semigroup_add,type) semigroup_add
|
|
208 |
apply (intro_classes) by (vector add_assoc)
|
|
209 |
|
|
210 |
|
|
211 |
instance "^" :: (monoid_add,type) monoid_add
|
|
212 |
apply (intro_classes) by vector+
|
|
213 |
|
|
214 |
instance "^" :: (group_add,type) group_add
|
|
215 |
apply (intro_classes) by (vector algebra_simps)+
|
|
216 |
|
|
217 |
instance "^" :: (ab_semigroup_add,type) ab_semigroup_add
|
|
218 |
apply (intro_classes) by (vector add_commute)
|
|
219 |
|
|
220 |
instance "^" :: (comm_monoid_add,type) comm_monoid_add
|
|
221 |
apply (intro_classes) by vector
|
|
222 |
|
|
223 |
instance "^" :: (ab_group_add,type) ab_group_add
|
|
224 |
apply (intro_classes) by vector+
|
|
225 |
|
|
226 |
instance "^" :: (cancel_semigroup_add,type) cancel_semigroup_add
|
|
227 |
apply (intro_classes)
|
|
228 |
by (vector Cart_eq)+
|
|
229 |
|
|
230 |
instance "^" :: (cancel_ab_semigroup_add,type) cancel_ab_semigroup_add
|
|
231 |
apply (intro_classes)
|
|
232 |
by (vector Cart_eq)
|
|
233 |
|
|
234 |
instance "^" :: (real_vector, type) real_vector
|
|
235 |
by default (vector scaleR_left_distrib scaleR_right_distrib)+
|
|
236 |
|
|
237 |
instance "^" :: (semigroup_mult,type) semigroup_mult
|
|
238 |
apply (intro_classes) by (vector mult_assoc)
|
|
239 |
|
|
240 |
instance "^" :: (monoid_mult,type) monoid_mult
|
|
241 |
apply (intro_classes) by vector+
|
|
242 |
|
|
243 |
instance "^" :: (ab_semigroup_mult,type) ab_semigroup_mult
|
|
244 |
apply (intro_classes) by (vector mult_commute)
|
|
245 |
|
|
246 |
instance "^" :: (ab_semigroup_idem_mult,type) ab_semigroup_idem_mult
|
|
247 |
apply (intro_classes) by (vector mult_idem)
|
|
248 |
|
|
249 |
instance "^" :: (comm_monoid_mult,type) comm_monoid_mult
|
|
250 |
apply (intro_classes) by vector
|
|
251 |
|
|
252 |
fun vector_power :: "('a::{one,times} ^'n) \<Rightarrow> nat \<Rightarrow> 'a^'n" where
|
|
253 |
"vector_power x 0 = 1"
|
|
254 |
| "vector_power x (Suc n) = x * vector_power x n"
|
|
255 |
|
|
256 |
instance "^" :: (semiring,type) semiring
|
|
257 |
apply (intro_classes) by (vector ring_simps)+
|
|
258 |
|
|
259 |
instance "^" :: (semiring_0,type) semiring_0
|
|
260 |
apply (intro_classes) by (vector ring_simps)+
|
|
261 |
instance "^" :: (semiring_1,type) semiring_1
|
|
262 |
apply (intro_classes) by vector
|
|
263 |
instance "^" :: (comm_semiring,type) comm_semiring
|
|
264 |
apply (intro_classes) by (vector ring_simps)+
|
|
265 |
|
|
266 |
instance "^" :: (comm_semiring_0,type) comm_semiring_0 by (intro_classes)
|
|
267 |
instance "^" :: (cancel_comm_monoid_add, type) cancel_comm_monoid_add ..
|
|
268 |
instance "^" :: (semiring_0_cancel,type) semiring_0_cancel by (intro_classes)
|
|
269 |
instance "^" :: (comm_semiring_0_cancel,type) comm_semiring_0_cancel by (intro_classes)
|
|
270 |
instance "^" :: (ring,type) ring by (intro_classes)
|
|
271 |
instance "^" :: (semiring_1_cancel,type) semiring_1_cancel by (intro_classes)
|
|
272 |
instance "^" :: (comm_semiring_1,type) comm_semiring_1 by (intro_classes)
|
|
273 |
|
|
274 |
instance "^" :: (ring_1,type) ring_1 ..
|
|
275 |
|
|
276 |
instance "^" :: (real_algebra,type) real_algebra
|
|
277 |
apply intro_classes
|
|
278 |
apply (simp_all add: vector_scaleR_def ring_simps)
|
|
279 |
apply vector
|
|
280 |
apply vector
|
|
281 |
done
|
|
282 |
|
|
283 |
instance "^" :: (real_algebra_1,type) real_algebra_1 ..
|
|
284 |
|
|
285 |
lemma of_nat_index:
|
|
286 |
"(of_nat n :: 'a::semiring_1 ^'n)$i = of_nat n"
|
|
287 |
apply (induct n)
|
|
288 |
apply vector
|
|
289 |
apply vector
|
|
290 |
done
|
|
291 |
lemma zero_index[simp]:
|
|
292 |
"(0 :: 'a::zero ^'n)$i = 0" by vector
|
|
293 |
|
|
294 |
lemma one_index[simp]:
|
|
295 |
"(1 :: 'a::one ^'n)$i = 1" by vector
|
|
296 |
|
|
297 |
lemma one_plus_of_nat_neq_0: "(1::'a::semiring_char_0) + of_nat n \<noteq> 0"
|
|
298 |
proof-
|
|
299 |
have "(1::'a) + of_nat n = 0 \<longleftrightarrow> of_nat 1 + of_nat n = (of_nat 0 :: 'a)" by simp
|
|
300 |
also have "\<dots> \<longleftrightarrow> 1 + n = 0" by (simp only: of_nat_add[symmetric] of_nat_eq_iff)
|
|
301 |
finally show ?thesis by simp
|
|
302 |
qed
|
|
303 |
|
|
304 |
instance "^" :: (semiring_char_0,type) semiring_char_0
|
|
305 |
proof (intro_classes)
|
|
306 |
fix m n ::nat
|
|
307 |
show "(of_nat m :: 'a^'b) = of_nat n \<longleftrightarrow> m = n"
|
|
308 |
by (simp add: Cart_eq of_nat_index)
|
|
309 |
qed
|
|
310 |
|
|
311 |
instance "^" :: (comm_ring_1,type) comm_ring_1 by intro_classes
|
|
312 |
instance "^" :: (ring_char_0,type) ring_char_0 by intro_classes
|
|
313 |
|
|
314 |
lemma vector_smult_assoc: "a *s (b *s x) = ((a::'a::semigroup_mult) * b) *s x"
|
|
315 |
by (vector mult_assoc)
|
|
316 |
lemma vector_sadd_rdistrib: "((a::'a::semiring) + b) *s x = a *s x + b *s x"
|
|
317 |
by (vector ring_simps)
|
|
318 |
lemma vector_add_ldistrib: "(c::'a::semiring) *s (x + y) = c *s x + c *s y"
|
|
319 |
by (vector ring_simps)
|
|
320 |
lemma vector_smult_lzero[simp]: "(0::'a::mult_zero) *s x = 0" by vector
|
|
321 |
lemma vector_smult_lid[simp]: "(1::'a::monoid_mult) *s x = x" by vector
|
|
322 |
lemma vector_ssub_ldistrib: "(c::'a::ring) *s (x - y) = c *s x - c *s y"
|
|
323 |
by (vector ring_simps)
|
|
324 |
lemma vector_smult_rneg: "(c::'a::ring) *s -x = -(c *s x)" by vector
|
|
325 |
lemma vector_smult_lneg: "- (c::'a::ring) *s x = -(c *s x)" by vector
|
|
326 |
lemma vector_sneg_minus1: "-x = (- (1::'a::ring_1)) *s x" by vector
|
|
327 |
lemma vector_smult_rzero[simp]: "c *s 0 = (0::'a::mult_zero ^ 'n)" by vector
|
|
328 |
lemma vector_sub_rdistrib: "((a::'a::ring) - b) *s x = a *s x - b *s x"
|
|
329 |
by (vector ring_simps)
|
|
330 |
|
|
331 |
lemma vec_eq[simp]: "(vec m = vec n) \<longleftrightarrow> (m = n)"
|
|
332 |
by (simp add: Cart_eq)
|
|
333 |
|
|
334 |
subsection {* Topological space *}
|
|
335 |
|
|
336 |
instantiation "^" :: (topological_space, finite) topological_space
|
|
337 |
begin
|
|
338 |
|
|
339 |
definition open_vector_def:
|
|
340 |
"open (S :: ('a ^ 'b) set) \<longleftrightarrow>
|
|
341 |
(\<forall>x\<in>S. \<exists>A. (\<forall>i. open (A i) \<and> x$i \<in> A i) \<and>
|
|
342 |
(\<forall>y. (\<forall>i. y$i \<in> A i) \<longrightarrow> y \<in> S))"
|
|
343 |
|
|
344 |
instance proof
|
|
345 |
show "open (UNIV :: ('a ^ 'b) set)"
|
|
346 |
unfolding open_vector_def by auto
|
|
347 |
next
|
|
348 |
fix S T :: "('a ^ 'b) set"
|
|
349 |
assume "open S" "open T" thus "open (S \<inter> T)"
|
|
350 |
unfolding open_vector_def
|
|
351 |
apply clarify
|
|
352 |
apply (drule (1) bspec)+
|
|
353 |
apply (clarify, rename_tac Sa Ta)
|
|
354 |
apply (rule_tac x="\<lambda>i. Sa i \<inter> Ta i" in exI)
|
|
355 |
apply (simp add: open_Int)
|
|
356 |
done
|
|
357 |
next
|
|
358 |
fix K :: "('a ^ 'b) set set"
|
|
359 |
assume "\<forall>S\<in>K. open S" thus "open (\<Union>K)"
|
|
360 |
unfolding open_vector_def
|
|
361 |
apply clarify
|
|
362 |
apply (drule (1) bspec)
|
|
363 |
apply (drule (1) bspec)
|
|
364 |
apply clarify
|
|
365 |
apply (rule_tac x=A in exI)
|
|
366 |
apply fast
|
|
367 |
done
|
|
368 |
qed
|
|
369 |
|
|
370 |
end
|
|
371 |
|
|
372 |
lemma open_vector_box: "\<forall>i. open (S i) \<Longrightarrow> open {x. \<forall>i. x $ i \<in> S i}"
|
|
373 |
unfolding open_vector_def by auto
|
|
374 |
|
|
375 |
lemma open_vimage_Cart_nth: "open S \<Longrightarrow> open ((\<lambda>x. x $ i) -` S)"
|
|
376 |
unfolding open_vector_def
|
|
377 |
apply clarify
|
|
378 |
apply (rule_tac x="\<lambda>k. if k = i then S else UNIV" in exI, simp)
|
|
379 |
done
|
|
380 |
|
|
381 |
lemma closed_vimage_Cart_nth: "closed S \<Longrightarrow> closed ((\<lambda>x. x $ i) -` S)"
|
|
382 |
unfolding closed_open vimage_Compl [symmetric]
|
|
383 |
by (rule open_vimage_Cart_nth)
|
|
384 |
|
|
385 |
lemma closed_vector_box: "\<forall>i. closed (S i) \<Longrightarrow> closed {x. \<forall>i. x $ i \<in> S i}"
|
|
386 |
proof -
|
|
387 |
have "{x. \<forall>i. x $ i \<in> S i} = (\<Inter>i. (\<lambda>x. x $ i) -` S i)" by auto
|
|
388 |
thus "\<forall>i. closed (S i) \<Longrightarrow> closed {x. \<forall>i. x $ i \<in> S i}"
|
|
389 |
by (simp add: closed_INT closed_vimage_Cart_nth)
|
|
390 |
qed
|
|
391 |
|
|
392 |
lemma tendsto_Cart_nth [tendsto_intros]:
|
|
393 |
assumes "((\<lambda>x. f x) ---> a) net"
|
|
394 |
shows "((\<lambda>x. f x $ i) ---> a $ i) net"
|
|
395 |
proof (rule topological_tendstoI)
|
|
396 |
fix S assume "open S" "a $ i \<in> S"
|
|
397 |
then have "open ((\<lambda>y. y $ i) -` S)" "a \<in> ((\<lambda>y. y $ i) -` S)"
|
|
398 |
by (simp_all add: open_vimage_Cart_nth)
|
|
399 |
with assms have "eventually (\<lambda>x. f x \<in> (\<lambda>y. y $ i) -` S) net"
|
|
400 |
by (rule topological_tendstoD)
|
|
401 |
then show "eventually (\<lambda>x. f x $ i \<in> S) net"
|
|
402 |
by simp
|
|
403 |
qed
|
|
404 |
|
|
405 |
subsection {* Square root of sum of squares *}
|
|
406 |
|
|
407 |
definition
|
|
408 |
"setL2 f A = sqrt (\<Sum>i\<in>A. (f i)\<twosuperior>)"
|
|
409 |
|
|
410 |
lemma setL2_cong:
|
|
411 |
"\<lbrakk>A = B; \<And>x. x \<in> B \<Longrightarrow> f x = g x\<rbrakk> \<Longrightarrow> setL2 f A = setL2 g B"
|
|
412 |
unfolding setL2_def by simp
|
|
413 |
|
|
414 |
lemma strong_setL2_cong:
|
|
415 |
"\<lbrakk>A = B; \<And>x. x \<in> B =simp=> f x = g x\<rbrakk> \<Longrightarrow> setL2 f A = setL2 g B"
|
|
416 |
unfolding setL2_def simp_implies_def by simp
|
|
417 |
|
|
418 |
lemma setL2_infinite [simp]: "\<not> finite A \<Longrightarrow> setL2 f A = 0"
|
|
419 |
unfolding setL2_def by simp
|
|
420 |
|
|
421 |
lemma setL2_empty [simp]: "setL2 f {} = 0"
|
|
422 |
unfolding setL2_def by simp
|
|
423 |
|
|
424 |
lemma setL2_insert [simp]:
|
|
425 |
"\<lbrakk>finite F; a \<notin> F\<rbrakk> \<Longrightarrow>
|
|
426 |
setL2 f (insert a F) = sqrt ((f a)\<twosuperior> + (setL2 f F)\<twosuperior>)"
|
|
427 |
unfolding setL2_def by (simp add: setsum_nonneg)
|
|
428 |
|
|
429 |
lemma setL2_nonneg [simp]: "0 \<le> setL2 f A"
|
|
430 |
unfolding setL2_def by (simp add: setsum_nonneg)
|
|
431 |
|
|
432 |
lemma setL2_0': "\<forall>a\<in>A. f a = 0 \<Longrightarrow> setL2 f A = 0"
|
|
433 |
unfolding setL2_def by simp
|
|
434 |
|
|
435 |
lemma setL2_constant: "setL2 (\<lambda>x. y) A = sqrt (of_nat (card A)) * \<bar>y\<bar>"
|
|
436 |
unfolding setL2_def by (simp add: real_sqrt_mult)
|
|
437 |
|
|
438 |
lemma setL2_mono:
|
|
439 |
assumes "\<And>i. i \<in> K \<Longrightarrow> f i \<le> g i"
|
|
440 |
assumes "\<And>i. i \<in> K \<Longrightarrow> 0 \<le> f i"
|
|
441 |
shows "setL2 f K \<le> setL2 g K"
|
|
442 |
unfolding setL2_def
|
|
443 |
by (simp add: setsum_nonneg setsum_mono power_mono prems)
|
|
444 |
|
|
445 |
lemma setL2_strict_mono:
|
|
446 |
assumes "finite K" and "K \<noteq> {}"
|
|
447 |
assumes "\<And>i. i \<in> K \<Longrightarrow> f i < g i"
|
|
448 |
assumes "\<And>i. i \<in> K \<Longrightarrow> 0 \<le> f i"
|
|
449 |
shows "setL2 f K < setL2 g K"
|
|
450 |
unfolding setL2_def
|
|
451 |
by (simp add: setsum_strict_mono power_strict_mono assms)
|
|
452 |
|
|
453 |
lemma setL2_right_distrib:
|
|
454 |
"0 \<le> r \<Longrightarrow> r * setL2 f A = setL2 (\<lambda>x. r * f x) A"
|
|
455 |
unfolding setL2_def
|
|
456 |
apply (simp add: power_mult_distrib)
|
|
457 |
apply (simp add: setsum_right_distrib [symmetric])
|
|
458 |
apply (simp add: real_sqrt_mult setsum_nonneg)
|
|
459 |
done
|
|
460 |
|
|
461 |
lemma setL2_left_distrib:
|
|
462 |
"0 \<le> r \<Longrightarrow> setL2 f A * r = setL2 (\<lambda>x. f x * r) A"
|
|
463 |
unfolding setL2_def
|
|
464 |
apply (simp add: power_mult_distrib)
|
|
465 |
apply (simp add: setsum_left_distrib [symmetric])
|
|
466 |
apply (simp add: real_sqrt_mult setsum_nonneg)
|
|
467 |
done
|
|
468 |
|
|
469 |
lemma setsum_nonneg_eq_0_iff:
|
|
470 |
fixes f :: "'a \<Rightarrow> 'b::pordered_ab_group_add"
|
|
471 |
shows "\<lbrakk>finite A; \<forall>x\<in>A. 0 \<le> f x\<rbrakk> \<Longrightarrow> setsum f A = 0 \<longleftrightarrow> (\<forall>x\<in>A. f x = 0)"
|
|
472 |
apply (induct set: finite, simp)
|
|
473 |
apply (simp add: add_nonneg_eq_0_iff setsum_nonneg)
|
|
474 |
done
|
|
475 |
|
|
476 |
lemma setL2_eq_0_iff: "finite A \<Longrightarrow> setL2 f A = 0 \<longleftrightarrow> (\<forall>x\<in>A. f x = 0)"
|
|
477 |
unfolding setL2_def
|
|
478 |
by (simp add: setsum_nonneg setsum_nonneg_eq_0_iff)
|
|
479 |
|
|
480 |
lemma setL2_triangle_ineq:
|
|
481 |
shows "setL2 (\<lambda>i. f i + g i) A \<le> setL2 f A + setL2 g A"
|
|
482 |
proof (cases "finite A")
|
|
483 |
case False
|
|
484 |
thus ?thesis by simp
|
|
485 |
next
|
|
486 |
case True
|
|
487 |
thus ?thesis
|
|
488 |
proof (induct set: finite)
|
|
489 |
case empty
|
|
490 |
show ?case by simp
|
|
491 |
next
|
|
492 |
case (insert x F)
|
|
493 |
hence "sqrt ((f x + g x)\<twosuperior> + (setL2 (\<lambda>i. f i + g i) F)\<twosuperior>) \<le>
|
|
494 |
sqrt ((f x + g x)\<twosuperior> + (setL2 f F + setL2 g F)\<twosuperior>)"
|
|
495 |
by (intro real_sqrt_le_mono add_left_mono power_mono insert
|
|
496 |
setL2_nonneg add_increasing zero_le_power2)
|
|
497 |
also have
|
|
498 |
"\<dots> \<le> sqrt ((f x)\<twosuperior> + (setL2 f F)\<twosuperior>) + sqrt ((g x)\<twosuperior> + (setL2 g F)\<twosuperior>)"
|
|
499 |
by (rule real_sqrt_sum_squares_triangle_ineq)
|
|
500 |
finally show ?case
|
|
501 |
using insert by simp
|
|
502 |
qed
|
|
503 |
qed
|
|
504 |
|
|
505 |
lemma sqrt_sum_squares_le_sum:
|
|
506 |
"\<lbrakk>0 \<le> x; 0 \<le> y\<rbrakk> \<Longrightarrow> sqrt (x\<twosuperior> + y\<twosuperior>) \<le> x + y"
|
|
507 |
apply (rule power2_le_imp_le)
|
|
508 |
apply (simp add: power2_sum)
|
|
509 |
apply (simp add: mult_nonneg_nonneg)
|
|
510 |
apply (simp add: add_nonneg_nonneg)
|
|
511 |
done
|
|
512 |
|
|
513 |
lemma setL2_le_setsum [rule_format]:
|
|
514 |
"(\<forall>i\<in>A. 0 \<le> f i) \<longrightarrow> setL2 f A \<le> setsum f A"
|
|
515 |
apply (cases "finite A")
|
|
516 |
apply (induct set: finite)
|
|
517 |
apply simp
|
|
518 |
apply clarsimp
|
|
519 |
apply (erule order_trans [OF sqrt_sum_squares_le_sum])
|
|
520 |
apply simp
|
|
521 |
apply simp
|
|
522 |
apply simp
|
|
523 |
done
|
|
524 |
|
|
525 |
lemma sqrt_sum_squares_le_sum_abs: "sqrt (x\<twosuperior> + y\<twosuperior>) \<le> \<bar>x\<bar> + \<bar>y\<bar>"
|
|
526 |
apply (rule power2_le_imp_le)
|
|
527 |
apply (simp add: power2_sum)
|
|
528 |
apply (simp add: mult_nonneg_nonneg)
|
|
529 |
apply (simp add: add_nonneg_nonneg)
|
|
530 |
done
|
|
531 |
|
|
532 |
lemma setL2_le_setsum_abs: "setL2 f A \<le> (\<Sum>i\<in>A. \<bar>f i\<bar>)"
|
|
533 |
apply (cases "finite A")
|
|
534 |
apply (induct set: finite)
|
|
535 |
apply simp
|
|
536 |
apply simp
|
|
537 |
apply (rule order_trans [OF sqrt_sum_squares_le_sum_abs])
|
|
538 |
apply simp
|
|
539 |
apply simp
|
|
540 |
done
|
|
541 |
|
|
542 |
lemma setL2_mult_ineq_lemma:
|
|
543 |
fixes a b c d :: real
|
|
544 |
shows "2 * (a * c) * (b * d) \<le> a\<twosuperior> * d\<twosuperior> + b\<twosuperior> * c\<twosuperior>"
|
|
545 |
proof -
|
|
546 |
have "0 \<le> (a * d - b * c)\<twosuperior>" by simp
|
|
547 |
also have "\<dots> = a\<twosuperior> * d\<twosuperior> + b\<twosuperior> * c\<twosuperior> - 2 * (a * d) * (b * c)"
|
|
548 |
by (simp only: power2_diff power_mult_distrib)
|
|
549 |
also have "\<dots> = a\<twosuperior> * d\<twosuperior> + b\<twosuperior> * c\<twosuperior> - 2 * (a * c) * (b * d)"
|
|
550 |
by simp
|
|
551 |
finally show "2 * (a * c) * (b * d) \<le> a\<twosuperior> * d\<twosuperior> + b\<twosuperior> * c\<twosuperior>"
|
|
552 |
by simp
|
|
553 |
qed
|
|
554 |
|
|
555 |
lemma setL2_mult_ineq: "(\<Sum>i\<in>A. \<bar>f i\<bar> * \<bar>g i\<bar>) \<le> setL2 f A * setL2 g A"
|
|
556 |
apply (cases "finite A")
|
|
557 |
apply (induct set: finite)
|
|
558 |
apply simp
|
|
559 |
apply (rule power2_le_imp_le, simp)
|
|
560 |
apply (rule order_trans)
|
|
561 |
apply (rule power_mono)
|
|
562 |
apply (erule add_left_mono)
|
|
563 |
apply (simp add: add_nonneg_nonneg mult_nonneg_nonneg setsum_nonneg)
|
|
564 |
apply (simp add: power2_sum)
|
|
565 |
apply (simp add: power_mult_distrib)
|
|
566 |
apply (simp add: right_distrib left_distrib)
|
|
567 |
apply (rule ord_le_eq_trans)
|
|
568 |
apply (rule setL2_mult_ineq_lemma)
|
|
569 |
apply simp
|
|
570 |
apply (intro mult_nonneg_nonneg setL2_nonneg)
|
|
571 |
apply simp
|
|
572 |
done
|
|
573 |
|
|
574 |
lemma member_le_setL2: "\<lbrakk>finite A; i \<in> A\<rbrakk> \<Longrightarrow> f i \<le> setL2 f A"
|
|
575 |
apply (rule_tac s="insert i (A - {i})" and t="A" in subst)
|
|
576 |
apply fast
|
|
577 |
apply (subst setL2_insert)
|
|
578 |
apply simp
|
|
579 |
apply simp
|
|
580 |
apply simp
|
|
581 |
done
|
|
582 |
|
|
583 |
subsection {* Metric *}
|
|
584 |
|
|
585 |
(* TODO: move somewhere else *)
|
|
586 |
lemma finite_choice: "finite A \<Longrightarrow> \<forall>x\<in>A. \<exists>y. P x y \<Longrightarrow> \<exists>f. \<forall>x\<in>A. P x (f x)"
|
|
587 |
apply (induct set: finite, simp_all)
|
|
588 |
apply (clarify, rename_tac y)
|
|
589 |
apply (rule_tac x="f(x:=y)" in exI, simp)
|
|
590 |
done
|
|
591 |
|
|
592 |
instantiation "^" :: (metric_space, finite) metric_space
|
|
593 |
begin
|
|
594 |
|
|
595 |
definition dist_vector_def:
|
|
596 |
"dist (x::'a^'b) (y::'a^'b) = setL2 (\<lambda>i. dist (x$i) (y$i)) UNIV"
|
|
597 |
|
|
598 |
lemma dist_nth_le: "dist (x $ i) (y $ i) \<le> dist x y"
|
|
599 |
unfolding dist_vector_def
|
|
600 |
by (rule member_le_setL2) simp_all
|
|
601 |
|
|
602 |
instance proof
|
|
603 |
fix x y :: "'a ^ 'b"
|
|
604 |
show "dist x y = 0 \<longleftrightarrow> x = y"
|
|
605 |
unfolding dist_vector_def
|
|
606 |
by (simp add: setL2_eq_0_iff Cart_eq)
|
|
607 |
next
|
|
608 |
fix x y z :: "'a ^ 'b"
|
|
609 |
show "dist x y \<le> dist x z + dist y z"
|
|
610 |
unfolding dist_vector_def
|
|
611 |
apply (rule order_trans [OF _ setL2_triangle_ineq])
|
|
612 |
apply (simp add: setL2_mono dist_triangle2)
|
|
613 |
done
|
|
614 |
next
|
|
615 |
(* FIXME: long proof! *)
|
|
616 |
fix S :: "('a ^ 'b) set"
|
|
617 |
show "open S \<longleftrightarrow> (\<forall>x\<in>S. \<exists>e>0. \<forall>y. dist y x < e \<longrightarrow> y \<in> S)"
|
|
618 |
unfolding open_vector_def open_dist
|
|
619 |
apply safe
|
|
620 |
apply (drule (1) bspec)
|
|
621 |
apply clarify
|
|
622 |
apply (subgoal_tac "\<exists>e>0. \<forall>i y. dist y (x$i) < e \<longrightarrow> y \<in> A i")
|
|
623 |
apply clarify
|
|
624 |
apply (rule_tac x=e in exI, clarify)
|
|
625 |
apply (drule spec, erule mp, clarify)
|
|
626 |
apply (drule spec, drule spec, erule mp)
|
|
627 |
apply (erule le_less_trans [OF dist_nth_le])
|
|
628 |
apply (subgoal_tac "\<forall>i\<in>UNIV. \<exists>e>0. \<forall>y. dist y (x$i) < e \<longrightarrow> y \<in> A i")
|
|
629 |
apply (drule finite_choice [OF finite], clarify)
|
|
630 |
apply (rule_tac x="Min (range f)" in exI, simp)
|
|
631 |
apply clarify
|
|
632 |
apply (drule_tac x=i in spec, clarify)
|
|
633 |
apply (erule (1) bspec)
|
|
634 |
apply (drule (1) bspec, clarify)
|
|
635 |
apply (subgoal_tac "\<exists>r. (\<forall>i::'b. 0 < r i) \<and> e = setL2 r UNIV")
|
|
636 |
apply clarify
|
|
637 |
apply (rule_tac x="\<lambda>i. {y. dist y (x$i) < r i}" in exI)
|
|
638 |
apply (rule conjI)
|
|
639 |
apply clarify
|
|
640 |
apply (rule conjI)
|
|
641 |
apply (clarify, rename_tac y)
|
|
642 |
apply (rule_tac x="r i - dist y (x$i)" in exI, rule conjI, simp)
|
|
643 |
apply clarify
|
|
644 |
apply (simp only: less_diff_eq)
|
|
645 |
apply (erule le_less_trans [OF dist_triangle])
|
|
646 |
apply simp
|
|
647 |
apply clarify
|
|
648 |
apply (drule spec, erule mp)
|
|
649 |
apply (simp add: dist_vector_def setL2_strict_mono)
|
|
650 |
apply (rule_tac x="\<lambda>i. e / sqrt (of_nat CARD('b))" in exI)
|
|
651 |
apply (simp add: divide_pos_pos setL2_constant)
|
|
652 |
done
|
|
653 |
qed
|
|
654 |
|
|
655 |
end
|
|
656 |
|
|
657 |
lemma LIMSEQ_Cart_nth:
|
|
658 |
"(X ----> a) \<Longrightarrow> (\<lambda>n. X n $ i) ----> a $ i"
|
|
659 |
unfolding LIMSEQ_conv_tendsto by (rule tendsto_Cart_nth)
|
|
660 |
|
|
661 |
lemma LIM_Cart_nth:
|
|
662 |
"(f -- x --> y) \<Longrightarrow> (\<lambda>x. f x $ i) -- x --> y $ i"
|
|
663 |
unfolding LIM_conv_tendsto by (rule tendsto_Cart_nth)
|
|
664 |
|
|
665 |
lemma Cauchy_Cart_nth:
|
|
666 |
"Cauchy (\<lambda>n. X n) \<Longrightarrow> Cauchy (\<lambda>n. X n $ i)"
|
|
667 |
unfolding Cauchy_def by (fast intro: le_less_trans [OF dist_nth_le])
|
|
668 |
|
|
669 |
lemma LIMSEQ_vector:
|
|
670 |
fixes X :: "nat \<Rightarrow> 'a::metric_space ^ 'n::finite"
|
|
671 |
assumes X: "\<And>i. (\<lambda>n. X n $ i) ----> (a $ i)"
|
|
672 |
shows "X ----> a"
|
|
673 |
proof (rule metric_LIMSEQ_I)
|
|
674 |
fix r :: real assume "0 < r"
|
|
675 |
then have "0 < r / of_nat CARD('n)" (is "0 < ?s")
|
|
676 |
by (simp add: divide_pos_pos)
|
|
677 |
def N \<equiv> "\<lambda>i. LEAST N. \<forall>n\<ge>N. dist (X n $ i) (a $ i) < ?s"
|
|
678 |
def M \<equiv> "Max (range N)"
|
|
679 |
have "\<And>i. \<exists>N. \<forall>n\<ge>N. dist (X n $ i) (a $ i) < ?s"
|
|
680 |
using X `0 < ?s` by (rule metric_LIMSEQ_D)
|
|
681 |
hence "\<And>i. \<forall>n\<ge>N i. dist (X n $ i) (a $ i) < ?s"
|
|
682 |
unfolding N_def by (rule LeastI_ex)
|
|
683 |
hence M: "\<And>i. \<forall>n\<ge>M. dist (X n $ i) (a $ i) < ?s"
|
|
684 |
unfolding M_def by simp
|
|
685 |
{
|
|
686 |
fix n :: nat assume "M \<le> n"
|
|
687 |
have "dist (X n) a = setL2 (\<lambda>i. dist (X n $ i) (a $ i)) UNIV"
|
|
688 |
unfolding dist_vector_def ..
|
|
689 |
also have "\<dots> \<le> setsum (\<lambda>i. dist (X n $ i) (a $ i)) UNIV"
|
|
690 |
by (rule setL2_le_setsum [OF zero_le_dist])
|
|
691 |
also have "\<dots> < setsum (\<lambda>i::'n. ?s) UNIV"
|
|
692 |
by (rule setsum_strict_mono, simp_all add: M `M \<le> n`)
|
|
693 |
also have "\<dots> = r"
|
|
694 |
by simp
|
|
695 |
finally have "dist (X n) a < r" .
|
|
696 |
}
|
|
697 |
hence "\<forall>n\<ge>M. dist (X n) a < r"
|
|
698 |
by simp
|
|
699 |
then show "\<exists>M. \<forall>n\<ge>M. dist (X n) a < r" ..
|
|
700 |
qed
|
|
701 |
|
|
702 |
lemma Cauchy_vector:
|
|
703 |
fixes X :: "nat \<Rightarrow> 'a::metric_space ^ 'n::finite"
|
|
704 |
assumes X: "\<And>i. Cauchy (\<lambda>n. X n $ i)"
|
|
705 |
shows "Cauchy (\<lambda>n. X n)"
|
|
706 |
proof (rule metric_CauchyI)
|
|
707 |
fix r :: real assume "0 < r"
|
|
708 |
then have "0 < r / of_nat CARD('n)" (is "0 < ?s")
|
|
709 |
by (simp add: divide_pos_pos)
|
|
710 |
def N \<equiv> "\<lambda>i. LEAST N. \<forall>m\<ge>N. \<forall>n\<ge>N. dist (X m $ i) (X n $ i) < ?s"
|
|
711 |
def M \<equiv> "Max (range N)"
|
|
712 |
have "\<And>i. \<exists>N. \<forall>m\<ge>N. \<forall>n\<ge>N. dist (X m $ i) (X n $ i) < ?s"
|
|
713 |
using X `0 < ?s` by (rule metric_CauchyD)
|
|
714 |
hence "\<And>i. \<forall>m\<ge>N i. \<forall>n\<ge>N i. dist (X m $ i) (X n $ i) < ?s"
|
|
715 |
unfolding N_def by (rule LeastI_ex)
|
|
716 |
hence M: "\<And>i. \<forall>m\<ge>M. \<forall>n\<ge>M. dist (X m $ i) (X n $ i) < ?s"
|
|
717 |
unfolding M_def by simp
|
|
718 |
{
|
|
719 |
fix m n :: nat
|
|
720 |
assume "M \<le> m" "M \<le> n"
|
|
721 |
have "dist (X m) (X n) = setL2 (\<lambda>i. dist (X m $ i) (X n $ i)) UNIV"
|
|
722 |
unfolding dist_vector_def ..
|
|
723 |
also have "\<dots> \<le> setsum (\<lambda>i. dist (X m $ i) (X n $ i)) UNIV"
|
|
724 |
by (rule setL2_le_setsum [OF zero_le_dist])
|
|
725 |
also have "\<dots> < setsum (\<lambda>i::'n. ?s) UNIV"
|
|
726 |
by (rule setsum_strict_mono, simp_all add: M `M \<le> m` `M \<le> n`)
|
|
727 |
also have "\<dots> = r"
|
|
728 |
by simp
|
|
729 |
finally have "dist (X m) (X n) < r" .
|
|
730 |
}
|
|
731 |
hence "\<forall>m\<ge>M. \<forall>n\<ge>M. dist (X m) (X n) < r"
|
|
732 |
by simp
|
|
733 |
then show "\<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. dist (X m) (X n) < r" ..
|
|
734 |
qed
|
|
735 |
|
|
736 |
instance "^" :: (complete_space, finite) complete_space
|
|
737 |
proof
|
|
738 |
fix X :: "nat \<Rightarrow> 'a ^ 'b" assume "Cauchy X"
|
|
739 |
have "\<And>i. (\<lambda>n. X n $ i) ----> lim (\<lambda>n. X n $ i)"
|
|
740 |
using Cauchy_Cart_nth [OF `Cauchy X`]
|
|
741 |
by (simp add: Cauchy_convergent_iff convergent_LIMSEQ_iff)
|
|
742 |
hence "X ----> Cart_lambda (\<lambda>i. lim (\<lambda>n. X n $ i))"
|
|
743 |
by (simp add: LIMSEQ_vector)
|
|
744 |
then show "convergent X"
|
|
745 |
by (rule convergentI)
|
|
746 |
qed
|
|
747 |
|
|
748 |
subsection {* Norms *}
|
|
749 |
|
|
750 |
instantiation "^" :: (real_normed_vector, finite) real_normed_vector
|
|
751 |
begin
|
|
752 |
|
|
753 |
definition norm_vector_def:
|
|
754 |
"norm (x::'a^'b) = setL2 (\<lambda>i. norm (x$i)) UNIV"
|
|
755 |
|
|
756 |
definition vector_sgn_def:
|
|
757 |
"sgn (x::'a^'b) = scaleR (inverse (norm x)) x"
|
|
758 |
|
|
759 |
instance proof
|
|
760 |
fix a :: real and x y :: "'a ^ 'b"
|
|
761 |
show "0 \<le> norm x"
|
|
762 |
unfolding norm_vector_def
|
|
763 |
by (rule setL2_nonneg)
|
|
764 |
show "norm x = 0 \<longleftrightarrow> x = 0"
|
|
765 |
unfolding norm_vector_def
|
|
766 |
by (simp add: setL2_eq_0_iff Cart_eq)
|
|
767 |
show "norm (x + y) \<le> norm x + norm y"
|
|
768 |
unfolding norm_vector_def
|
|
769 |
apply (rule order_trans [OF _ setL2_triangle_ineq])
|
|
770 |
apply (simp add: setL2_mono norm_triangle_ineq)
|
|
771 |
done
|
|
772 |
show "norm (scaleR a x) = \<bar>a\<bar> * norm x"
|
|
773 |
unfolding norm_vector_def
|
|
774 |
by (simp add: setL2_right_distrib)
|
|
775 |
show "sgn x = scaleR (inverse (norm x)) x"
|
|
776 |
by (rule vector_sgn_def)
|
|
777 |
show "dist x y = norm (x - y)"
|
|
778 |
unfolding dist_vector_def norm_vector_def
|
|
779 |
by (simp add: dist_norm)
|
|
780 |
qed
|
|
781 |
|
|
782 |
end
|
|
783 |
|
|
784 |
lemma norm_nth_le: "norm (x $ i) \<le> norm x"
|
|
785 |
unfolding norm_vector_def
|
|
786 |
by (rule member_le_setL2) simp_all
|
|
787 |
|
|
788 |
interpretation Cart_nth: bounded_linear "\<lambda>x. x $ i"
|
|
789 |
apply default
|
|
790 |
apply (rule vector_add_component)
|
|
791 |
apply (rule vector_scaleR_component)
|
|
792 |
apply (rule_tac x="1" in exI, simp add: norm_nth_le)
|
|
793 |
done
|
|
794 |
|
|
795 |
instance "^" :: (banach, finite) banach ..
|
|
796 |
|
|
797 |
subsection {* Inner products *}
|
|
798 |
|
|
799 |
instantiation "^" :: (real_inner, finite) real_inner
|
|
800 |
begin
|
|
801 |
|
|
802 |
definition inner_vector_def:
|
|
803 |
"inner x y = setsum (\<lambda>i. inner (x$i) (y$i)) UNIV"
|
|
804 |
|
|
805 |
instance proof
|
|
806 |
fix r :: real and x y z :: "'a ^ 'b"
|
|
807 |
show "inner x y = inner y x"
|
|
808 |
unfolding inner_vector_def
|
|
809 |
by (simp add: inner_commute)
|
|
810 |
show "inner (x + y) z = inner x z + inner y z"
|
|
811 |
unfolding inner_vector_def
|
|
812 |
by (simp add: inner_add_left setsum_addf)
|
|
813 |
show "inner (scaleR r x) y = r * inner x y"
|
|
814 |
unfolding inner_vector_def
|
|
815 |
by (simp add: setsum_right_distrib)
|
|
816 |
show "0 \<le> inner x x"
|
|
817 |
unfolding inner_vector_def
|
|
818 |
by (simp add: setsum_nonneg)
|
|
819 |
show "inner x x = 0 \<longleftrightarrow> x = 0"
|
|
820 |
unfolding inner_vector_def
|
|
821 |
by (simp add: Cart_eq setsum_nonneg_eq_0_iff)
|
|
822 |
show "norm x = sqrt (inner x x)"
|
|
823 |
unfolding inner_vector_def norm_vector_def setL2_def
|
|
824 |
by (simp add: power2_norm_eq_inner)
|
|
825 |
qed
|
|
826 |
|
|
827 |
end
|
|
828 |
|
|
829 |
subsection{* Properties of the dot product. *}
|
|
830 |
|
|
831 |
lemma dot_sym: "(x::'a:: {comm_monoid_add, ab_semigroup_mult} ^ 'n) \<bullet> y = y \<bullet> x"
|
|
832 |
by (vector mult_commute)
|
|
833 |
lemma dot_ladd: "((x::'a::ring ^ 'n) + y) \<bullet> z = (x \<bullet> z) + (y \<bullet> z)"
|
|
834 |
by (vector ring_simps)
|
|
835 |
lemma dot_radd: "x \<bullet> (y + (z::'a::ring ^ 'n)) = (x \<bullet> y) + (x \<bullet> z)"
|
|
836 |
by (vector ring_simps)
|
|
837 |
lemma dot_lsub: "((x::'a::ring ^ 'n) - y) \<bullet> z = (x \<bullet> z) - (y \<bullet> z)"
|
|
838 |
by (vector ring_simps)
|
|
839 |
lemma dot_rsub: "(x::'a::ring ^ 'n) \<bullet> (y - z) = (x \<bullet> y) - (x \<bullet> z)"
|
|
840 |
by (vector ring_simps)
|
|
841 |
lemma dot_lmult: "(c *s x) \<bullet> y = (c::'a::ring) * (x \<bullet> y)" by (vector ring_simps)
|
|
842 |
lemma dot_rmult: "x \<bullet> (c *s y) = (c::'a::comm_ring) * (x \<bullet> y)" by (vector ring_simps)
|
|
843 |
lemma dot_lneg: "(-x) \<bullet> (y::'a::ring ^ 'n) = -(x \<bullet> y)" by vector
|
|
844 |
lemma dot_rneg: "(x::'a::ring ^ 'n) \<bullet> (-y) = -(x \<bullet> y)" by vector
|
|
845 |
lemma dot_lzero[simp]: "0 \<bullet> x = (0::'a::{comm_monoid_add, mult_zero})" by vector
|
|
846 |
lemma dot_rzero[simp]: "x \<bullet> 0 = (0::'a::{comm_monoid_add, mult_zero})" by vector
|
|
847 |
lemma dot_pos_le[simp]: "(0::'a\<Colon>ordered_ring_strict) <= x \<bullet> x"
|
|
848 |
by (simp add: dot_def setsum_nonneg)
|
|
849 |
|
|
850 |
lemma setsum_squares_eq_0_iff: assumes fS: "finite F" and fp: "\<forall>x \<in> F. f x \<ge> (0 ::'a::pordered_ab_group_add)" shows "setsum f F = 0 \<longleftrightarrow> (ALL x:F. f x = 0)"
|
|
851 |
using fS fp setsum_nonneg[OF fp]
|
|
852 |
proof (induct set: finite)
|
|
853 |
case empty thus ?case by simp
|
|
854 |
next
|
|
855 |
case (insert x F)
|
|
856 |
from insert.prems have Fx: "f x \<ge> 0" and Fp: "\<forall> a \<in> F. f a \<ge> 0" by simp_all
|
|
857 |
from insert.hyps Fp setsum_nonneg[OF Fp]
|
|
858 |
have h: "setsum f F = 0 \<longleftrightarrow> (\<forall>a \<in>F. f a = 0)" by metis
|
|
859 |
from add_nonneg_eq_0_iff[OF Fx setsum_nonneg[OF Fp]] insert.hyps(1,2)
|
|
860 |
show ?case by (simp add: h)
|
|
861 |
qed
|
|
862 |
|
|
863 |
lemma dot_eq_0: "x \<bullet> x = 0 \<longleftrightarrow> (x::'a::{ordered_ring_strict,ring_no_zero_divisors} ^ 'n::finite) = 0"
|
|
864 |
by (simp add: dot_def setsum_squares_eq_0_iff Cart_eq)
|
|
865 |
|
|
866 |
lemma dot_pos_lt[simp]: "(0 < x \<bullet> x) \<longleftrightarrow> (x::'a::{ordered_ring_strict,ring_no_zero_divisors} ^ 'n::finite) \<noteq> 0" using dot_eq_0[of x] dot_pos_le[of x]
|
|
867 |
by (auto simp add: le_less)
|
|
868 |
|
|
869 |
subsection{* The collapse of the general concepts to dimension one. *}
|
|
870 |
|
|
871 |
lemma vector_one: "(x::'a ^1) = (\<chi> i. (x$1))"
|
|
872 |
by (simp add: Cart_eq forall_1)
|
|
873 |
|
|
874 |
lemma forall_one: "(\<forall>(x::'a ^1). P x) \<longleftrightarrow> (\<forall>x. P(\<chi> i. x))"
|
|
875 |
apply auto
|
|
876 |
apply (erule_tac x= "x$1" in allE)
|
|
877 |
apply (simp only: vector_one[symmetric])
|
|
878 |
done
|
|
879 |
|
|
880 |
lemma norm_vector_1: "norm (x :: _^1) = norm (x$1)"
|
|
881 |
by (simp add: norm_vector_def UNIV_1)
|
|
882 |
|
|
883 |
lemma norm_real: "norm(x::real ^ 1) = abs(x$1)"
|
|
884 |
by (simp add: norm_vector_1)
|
|
885 |
|
|
886 |
lemma dist_real: "dist(x::real ^ 1) y = abs((x$1) - (y$1))"
|
|
887 |
by (auto simp add: norm_real dist_norm)
|
|
888 |
|
|
889 |
subsection {* A connectedness or intermediate value lemma with several applications. *}
|
|
890 |
|
|
891 |
lemma connected_real_lemma:
|
|
892 |
fixes f :: "real \<Rightarrow> 'a::metric_space"
|
|
893 |
assumes ab: "a \<le> b" and fa: "f a \<in> e1" and fb: "f b \<in> e2"
|
|
894 |
and dst: "\<And>e x. a <= x \<Longrightarrow> x <= b \<Longrightarrow> 0 < e ==> \<exists>d > 0. \<forall>y. abs(y - x) < d \<longrightarrow> dist(f y) (f x) < e"
|
|
895 |
and e1: "\<forall>y \<in> e1. \<exists>e > 0. \<forall>y'. dist y' y < e \<longrightarrow> y' \<in> e1"
|
|
896 |
and e2: "\<forall>y \<in> e2. \<exists>e > 0. \<forall>y'. dist y' y < e \<longrightarrow> y' \<in> e2"
|
|
897 |
and e12: "~(\<exists>x \<ge> a. x <= b \<and> f x \<in> e1 \<and> f x \<in> e2)"
|
|
898 |
shows "\<exists>x \<ge> a. x <= b \<and> f x \<notin> e1 \<and> f x \<notin> e2" (is "\<exists> x. ?P x")
|
|
899 |
proof-
|
|
900 |
let ?S = "{c. \<forall>x \<ge> a. x <= c \<longrightarrow> f x \<in> e1}"
|
|
901 |
have Se: " \<exists>x. x \<in> ?S" apply (rule exI[where x=a]) by (auto simp add: fa)
|
|
902 |
have Sub: "\<exists>y. isUb UNIV ?S y"
|
|
903 |
apply (rule exI[where x= b])
|
|
904 |
using ab fb e12 by (auto simp add: isUb_def setle_def)
|
|
905 |
from reals_complete[OF Se Sub] obtain l where
|
|
906 |
l: "isLub UNIV ?S l"by blast
|
|
907 |
have alb: "a \<le> l" "l \<le> b" using l ab fa fb e12
|
|
908 |
apply (auto simp add: isLub_def leastP_def isUb_def setle_def setge_def)
|
|
909 |
by (metis linorder_linear)
|
|
910 |
have ale1: "\<forall>z \<ge> a. z < l \<longrightarrow> f z \<in> e1" using l
|
|
911 |
apply (auto simp add: isLub_def leastP_def isUb_def setle_def setge_def)
|
|
912 |
by (metis linorder_linear not_le)
|
|
913 |
have th1: "\<And>z x e d :: real. z <= x + e \<Longrightarrow> e < d ==> z < x \<or> abs(z - x) < d" by arith
|
|
914 |
have th2: "\<And>e x:: real. 0 < e ==> ~(x + e <= x)" by arith
|
|
915 |
have th3: "\<And>d::real. d > 0 \<Longrightarrow> \<exists>e > 0. e < d" by dlo
|
|
916 |
{assume le2: "f l \<in> e2"
|
|
917 |
from le2 fa fb e12 alb have la: "l \<noteq> a" by metis
|
|
918 |
hence lap: "l - a > 0" using alb by arith
|
|
919 |
from e2[rule_format, OF le2] obtain e where
|
|
920 |
e: "e > 0" "\<forall>y. dist y (f l) < e \<longrightarrow> y \<in> e2" by metis
|
|
921 |
from dst[OF alb e(1)] obtain d where
|
|
922 |
d: "d > 0" "\<forall>y. \<bar>y - l\<bar> < d \<longrightarrow> dist (f y) (f l) < e" by metis
|
|
923 |
have "\<exists>d'. d' < d \<and> d' >0 \<and> l - d' > a" using lap d(1)
|
|
924 |
apply ferrack by arith
|
|
925 |
then obtain d' where d': "d' > 0" "d' < d" "l - d' > a" by metis
|
|
926 |
from d e have th0: "\<forall>y. \<bar>y - l\<bar> < d \<longrightarrow> f y \<in> e2" by metis
|
|
927 |
from th0[rule_format, of "l - d'"] d' have "f (l - d') \<in> e2" by auto
|
|
928 |
moreover
|
|
929 |
have "f (l - d') \<in> e1" using ale1[rule_format, of "l -d'"] d' by auto
|
|
930 |
ultimately have False using e12 alb d' by auto}
|
|
931 |
moreover
|
|
932 |
{assume le1: "f l \<in> e1"
|
|
933 |
from le1 fa fb e12 alb have lb: "l \<noteq> b" by metis
|
|
934 |
hence blp: "b - l > 0" using alb by arith
|
|
935 |
from e1[rule_format, OF le1] obtain e where
|
|
936 |
e: "e > 0" "\<forall>y. dist y (f l) < e \<longrightarrow> y \<in> e1" by metis
|
|
937 |
from dst[OF alb e(1)] obtain d where
|
|
938 |
d: "d > 0" "\<forall>y. \<bar>y - l\<bar> < d \<longrightarrow> dist (f y) (f l) < e" by metis
|
|
939 |
have "\<exists>d'. d' < d \<and> d' >0" using d(1) by dlo
|
|
940 |
then obtain d' where d': "d' > 0" "d' < d" by metis
|
|
941 |
from d e have th0: "\<forall>y. \<bar>y - l\<bar> < d \<longrightarrow> f y \<in> e1" by auto
|
|
942 |
hence "\<forall>y. l \<le> y \<and> y \<le> l + d' \<longrightarrow> f y \<in> e1" using d' by auto
|
|
943 |
with ale1 have "\<forall>y. a \<le> y \<and> y \<le> l + d' \<longrightarrow> f y \<in> e1" by auto
|
|
944 |
with l d' have False
|
|
945 |
by (auto simp add: isLub_def isUb_def setle_def setge_def leastP_def) }
|
|
946 |
ultimately show ?thesis using alb by metis
|
|
947 |
qed
|
|
948 |
|
|
949 |
text{* One immediately useful corollary is the existence of square roots! --- Should help to get rid of all the development of square-root for reals as a special case @{typ "real^1"} *}
|
|
950 |
|
|
951 |
lemma square_bound_lemma: "(x::real) < (1 + x) * (1 + x)"
|
|
952 |
proof-
|
|
953 |
have "(x + 1/2)^2 + 3/4 > 0" using zero_le_power2[of "x+1/2"] by arith
|
|
954 |
thus ?thesis by (simp add: ring_simps power2_eq_square)
|
|
955 |
qed
|
|
956 |
|
|
957 |
lemma square_continuous: "0 < (e::real) ==> \<exists>d. 0 < d \<and> (\<forall>y. abs(y - x) < d \<longrightarrow> abs(y * y - x * x) < e)"
|
|
958 |
using isCont_power[OF isCont_ident, of 2, unfolded isCont_def LIM_eq, rule_format, of e x] apply (auto simp add: power2_eq_square)
|
|
959 |
apply (rule_tac x="s" in exI)
|
|
960 |
apply auto
|
|
961 |
apply (erule_tac x=y in allE)
|
|
962 |
apply auto
|
|
963 |
done
|
|
964 |
|
|
965 |
lemma real_le_lsqrt: "0 <= x \<Longrightarrow> 0 <= y \<Longrightarrow> x <= y^2 ==> sqrt x <= y"
|
|
966 |
using real_sqrt_le_iff[of x "y^2"] by simp
|
|
967 |
|
|
968 |
lemma real_le_rsqrt: "x^2 \<le> y \<Longrightarrow> x \<le> sqrt y"
|
|
969 |
using real_sqrt_le_mono[of "x^2" y] by simp
|
|
970 |
|
|
971 |
lemma real_less_rsqrt: "x^2 < y \<Longrightarrow> x < sqrt y"
|
|
972 |
using real_sqrt_less_mono[of "x^2" y] by simp
|
|
973 |
|
|
974 |
lemma sqrt_even_pow2: assumes n: "even n"
|
|
975 |
shows "sqrt(2 ^ n) = 2 ^ (n div 2)"
|
|
976 |
proof-
|
|
977 |
from n obtain m where m: "n = 2*m" unfolding even_nat_equiv_def2
|
|
978 |
by (auto simp add: nat_number)
|
|
979 |
from m have "sqrt(2 ^ n) = sqrt ((2 ^ m) ^ 2)"
|
|
980 |
by (simp only: power_mult[symmetric] mult_commute)
|
|
981 |
then show ?thesis using m by simp
|
|
982 |
qed
|
|
983 |
|
|
984 |
lemma real_div_sqrt: "0 <= x ==> x / sqrt(x) = sqrt(x)"
|
|
985 |
apply (cases "x = 0", simp_all)
|
|
986 |
using sqrt_divide_self_eq[of x]
|
|
987 |
apply (simp add: inverse_eq_divide real_sqrt_ge_0_iff field_simps)
|
|
988 |
done
|
|
989 |
|
|
990 |
text{* Hence derive more interesting properties of the norm. *}
|
|
991 |
|
|
992 |
text {*
|
|
993 |
This type-specific version is only here
|
|
994 |
to make @{text normarith.ML} happy.
|
|
995 |
*}
|
|
996 |
lemma norm_0: "norm (0::real ^ _) = 0"
|
|
997 |
by (rule norm_zero)
|
|
998 |
|
|
999 |
lemma norm_mul[simp]: "norm(a *s x) = abs(a) * norm x"
|
|
1000 |
by (simp add: norm_vector_def vector_component setL2_right_distrib
|
|
1001 |
abs_mult cong: strong_setL2_cong)
|
|
1002 |
lemma norm_eq_0_dot: "(norm x = 0) \<longleftrightarrow> (x \<bullet> x = (0::real))"
|
|
1003 |
by (simp add: norm_vector_def dot_def setL2_def power2_eq_square)
|
|
1004 |
lemma real_vector_norm_def: "norm x = sqrt (x \<bullet> x)"
|
|
1005 |
by (simp add: norm_vector_def setL2_def dot_def power2_eq_square)
|
|
1006 |
lemma norm_pow_2: "norm x ^ 2 = x \<bullet> x"
|
|
1007 |
by (simp add: real_vector_norm_def)
|
|
1008 |
lemma norm_eq_0_imp: "norm x = 0 ==> x = (0::real ^'n::finite)" by (metis norm_eq_zero)
|
|
1009 |
lemma vector_mul_eq_0[simp]: "(a *s x = 0) \<longleftrightarrow> a = (0::'a::idom) \<or> x = 0"
|
|
1010 |
by vector
|
|
1011 |
lemma vector_mul_lcancel[simp]: "a *s x = a *s y \<longleftrightarrow> a = (0::real) \<or> x = y"
|
|
1012 |
by (metis eq_iff_diff_eq_0 vector_mul_eq_0 vector_ssub_ldistrib)
|
|
1013 |
lemma vector_mul_rcancel[simp]: "a *s x = b *s x \<longleftrightarrow> (a::real) = b \<or> x = 0"
|
|
1014 |
by (metis eq_iff_diff_eq_0 vector_mul_eq_0 vector_sub_rdistrib)
|
|
1015 |
lemma vector_mul_lcancel_imp: "a \<noteq> (0::real) ==> a *s x = a *s y ==> (x = y)"
|
|
1016 |
by (metis vector_mul_lcancel)
|
|
1017 |
lemma vector_mul_rcancel_imp: "x \<noteq> 0 \<Longrightarrow> (a::real) *s x = b *s x ==> a = b"
|
|
1018 |
by (metis vector_mul_rcancel)
|
|
1019 |
lemma norm_cauchy_schwarz:
|
|
1020 |
fixes x y :: "real ^ 'n::finite"
|
|
1021 |
shows "x \<bullet> y <= norm x * norm y"
|
|
1022 |
proof-
|
|
1023 |
{assume "norm x = 0"
|
|
1024 |
hence ?thesis by (simp add: dot_lzero dot_rzero)}
|
|
1025 |
moreover
|
|
1026 |
{assume "norm y = 0"
|
|
1027 |
hence ?thesis by (simp add: dot_lzero dot_rzero)}
|
|
1028 |
moreover
|
|
1029 |
{assume h: "norm x \<noteq> 0" "norm y \<noteq> 0"
|
|
1030 |
let ?z = "norm y *s x - norm x *s y"
|
|
1031 |
from h have p: "norm x * norm y > 0" by (metis norm_ge_zero le_less zero_compare_simps)
|
|
1032 |
from dot_pos_le[of ?z]
|
|
1033 |
have "(norm x * norm y) * (x \<bullet> y) \<le> norm x ^2 * norm y ^2"
|
|
1034 |
apply (simp add: dot_rsub dot_lsub dot_lmult dot_rmult ring_simps)
|
|
1035 |
by (simp add: norm_pow_2[symmetric] power2_eq_square dot_sym)
|
|
1036 |
hence "x\<bullet>y \<le> (norm x ^2 * norm y ^2) / (norm x * norm y)" using p
|
|
1037 |
by (simp add: field_simps)
|
|
1038 |
hence ?thesis using h by (simp add: power2_eq_square)}
|
|
1039 |
ultimately show ?thesis by metis
|
|
1040 |
qed
|
|
1041 |
|
|
1042 |
lemma norm_cauchy_schwarz_abs:
|
|
1043 |
fixes x y :: "real ^ 'n::finite"
|
|
1044 |
shows "\<bar>x \<bullet> y\<bar> \<le> norm x * norm y"
|
|
1045 |
using norm_cauchy_schwarz[of x y] norm_cauchy_schwarz[of x "-y"]
|
|
1046 |
by (simp add: real_abs_def dot_rneg)
|
|
1047 |
|
|
1048 |
lemma norm_triangle_sub:
|
|
1049 |
fixes x y :: "'a::real_normed_vector"
|
|
1050 |
shows "norm x \<le> norm y + norm (x - y)"
|
|
1051 |
using norm_triangle_ineq[of "y" "x - y"] by (simp add: ring_simps)
|
|
1052 |
|
|
1053 |
lemma norm_triangle_le: "norm(x::real ^'n::finite) + norm y <= e ==> norm(x + y) <= e"
|
|
1054 |
by (metis order_trans norm_triangle_ineq)
|
|
1055 |
lemma norm_triangle_lt: "norm(x::real ^'n::finite) + norm(y) < e ==> norm(x + y) < e"
|
|
1056 |
by (metis basic_trans_rules(21) norm_triangle_ineq)
|
|
1057 |
|
|
1058 |
lemma component_le_norm: "\<bar>x$i\<bar> <= norm (x::real ^ 'n::finite)"
|
|
1059 |
apply (simp add: norm_vector_def)
|
|
1060 |
apply (rule member_le_setL2, simp_all)
|
|
1061 |
done
|
|
1062 |
|
|
1063 |
lemma norm_bound_component_le: "norm(x::real ^ 'n::finite) <= e
|
|
1064 |
==> \<bar>x$i\<bar> <= e"
|
|
1065 |
by (metis component_le_norm order_trans)
|
|
1066 |
|
|
1067 |
lemma norm_bound_component_lt: "norm(x::real ^ 'n::finite) < e
|
|
1068 |
==> \<bar>x$i\<bar> < e"
|
|
1069 |
by (metis component_le_norm basic_trans_rules(21))
|
|
1070 |
|
|
1071 |
lemma norm_le_l1: "norm (x:: real ^'n::finite) <= setsum(\<lambda>i. \<bar>x$i\<bar>) UNIV"
|
|
1072 |
by (simp add: norm_vector_def setL2_le_setsum)
|
|
1073 |
|
|
1074 |
lemma real_abs_norm: "\<bar>norm x\<bar> = norm (x :: real ^ _)"
|
|
1075 |
by (rule abs_norm_cancel)
|
|
1076 |
lemma real_abs_sub_norm: "\<bar>norm(x::real ^'n::finite) - norm y\<bar> <= norm(x - y)"
|
|
1077 |
by (rule norm_triangle_ineq3)
|
|
1078 |
lemma norm_le: "norm(x::real ^ _) <= norm(y) \<longleftrightarrow> x \<bullet> x <= y \<bullet> y"
|
|
1079 |
by (simp add: real_vector_norm_def)
|
|
1080 |
lemma norm_lt: "norm(x::real ^ _) < norm(y) \<longleftrightarrow> x \<bullet> x < y \<bullet> y"
|
|
1081 |
by (simp add: real_vector_norm_def)
|
|
1082 |
lemma norm_eq: "norm (x::real ^ _) = norm y \<longleftrightarrow> x \<bullet> x = y \<bullet> y"
|
|
1083 |
by (simp add: order_eq_iff norm_le)
|
|
1084 |
lemma norm_eq_1: "norm(x::real ^ _) = 1 \<longleftrightarrow> x \<bullet> x = 1"
|
|
1085 |
by (simp add: real_vector_norm_def)
|
|
1086 |
|
|
1087 |
text{* Squaring equations and inequalities involving norms. *}
|
|
1088 |
|
|
1089 |
lemma dot_square_norm: "x \<bullet> x = norm(x)^2"
|
|
1090 |
by (simp add: real_vector_norm_def)
|
|
1091 |
|
|
1092 |
lemma norm_eq_square: "norm(x) = a \<longleftrightarrow> 0 <= a \<and> x \<bullet> x = a^2"
|
|
1093 |
by (auto simp add: real_vector_norm_def)
|
|
1094 |
|
|
1095 |
lemma real_abs_le_square_iff: "\<bar>x\<bar> \<le> \<bar>y\<bar> \<longleftrightarrow> (x::real)^2 \<le> y^2"
|
|
1096 |
proof-
|
|
1097 |
have "x^2 \<le> y^2 \<longleftrightarrow> (x -y) * (y + x) \<le> 0" by (simp add: ring_simps power2_eq_square)
|
|
1098 |
also have "\<dots> \<longleftrightarrow> \<bar>x\<bar> \<le> \<bar>y\<bar>" apply (simp add: zero_compare_simps real_abs_def not_less) by arith
|
|
1099 |
finally show ?thesis ..
|
|
1100 |
qed
|
|
1101 |
|
|
1102 |
lemma norm_le_square: "norm(x) <= a \<longleftrightarrow> 0 <= a \<and> x \<bullet> x <= a^2"
|
|
1103 |
apply (simp add: dot_square_norm real_abs_le_square_iff[symmetric])
|
|
1104 |
using norm_ge_zero[of x]
|
|
1105 |
apply arith
|
|
1106 |
done
|
|
1107 |
|
|
1108 |
lemma norm_ge_square: "norm(x) >= a \<longleftrightarrow> a <= 0 \<or> x \<bullet> x >= a ^ 2"
|
|
1109 |
apply (simp add: dot_square_norm real_abs_le_square_iff[symmetric])
|
|
1110 |
using norm_ge_zero[of x]
|
|
1111 |
apply arith
|
|
1112 |
done
|
|
1113 |
|
|
1114 |
lemma norm_lt_square: "norm(x) < a \<longleftrightarrow> 0 < a \<and> x \<bullet> x < a^2"
|
|
1115 |
by (metis not_le norm_ge_square)
|
|
1116 |
lemma norm_gt_square: "norm(x) > a \<longleftrightarrow> a < 0 \<or> x \<bullet> x > a^2"
|
|
1117 |
by (metis norm_le_square not_less)
|
|
1118 |
|
|
1119 |
text{* Dot product in terms of the norm rather than conversely. *}
|
|
1120 |
|
|
1121 |
lemma dot_norm: "x \<bullet> y = (norm(x + y) ^2 - norm x ^ 2 - norm y ^ 2) / 2"
|
|
1122 |
by (simp add: norm_pow_2 dot_ladd dot_radd dot_sym)
|
|
1123 |
|
|
1124 |
lemma dot_norm_neg: "x \<bullet> y = ((norm x ^ 2 + norm y ^ 2) - norm(x - y) ^ 2) / 2"
|
|
1125 |
by (simp add: norm_pow_2 dot_ladd dot_radd dot_lsub dot_rsub dot_sym)
|
|
1126 |
|
|
1127 |
|
|
1128 |
text{* Equality of vectors in terms of @{term "op \<bullet>"} products. *}
|
|
1129 |
|
|
1130 |
lemma vector_eq: "(x:: real ^ 'n::finite) = y \<longleftrightarrow> x \<bullet> x = x \<bullet> y\<and> y \<bullet> y = x \<bullet> x" (is "?lhs \<longleftrightarrow> ?rhs")
|
|
1131 |
proof
|
|
1132 |
assume "?lhs" then show ?rhs by simp
|
|
1133 |
next
|
|
1134 |
assume ?rhs
|
|
1135 |
then have "x \<bullet> x - x \<bullet> y = 0 \<and> x \<bullet> y - y\<bullet> y = 0" by simp
|
|
1136 |
hence "x \<bullet> (x - y) = 0 \<and> y \<bullet> (x - y) = 0"
|
|
1137 |
by (simp add: dot_rsub dot_lsub dot_sym)
|
|
1138 |
then have "(x - y) \<bullet> (x - y) = 0" by (simp add: ring_simps dot_lsub dot_rsub)
|
|
1139 |
then show "x = y" by (simp add: dot_eq_0)
|
|
1140 |
qed
|
|
1141 |
|
|
1142 |
|
|
1143 |
subsection{* General linear decision procedure for normed spaces. *}
|
|
1144 |
|
|
1145 |
lemma norm_cmul_rule_thm:
|
|
1146 |
fixes x :: "'a::real_normed_vector"
|
|
1147 |
shows "b >= norm(x) ==> \<bar>c\<bar> * b >= norm(scaleR c x)"
|
|
1148 |
unfolding norm_scaleR
|
|
1149 |
apply (erule mult_mono1)
|
|
1150 |
apply simp
|
|
1151 |
done
|
|
1152 |
|
|
1153 |
(* FIXME: Move all these theorems into the ML code using lemma antiquotation *)
|
|
1154 |
lemma norm_add_rule_thm:
|
|
1155 |
fixes x1 x2 :: "'a::real_normed_vector"
|
|
1156 |
shows "norm x1 \<le> b1 \<Longrightarrow> norm x2 \<le> b2 \<Longrightarrow> norm (x1 + x2) \<le> b1 + b2"
|
|
1157 |
by (rule order_trans [OF norm_triangle_ineq add_mono])
|
|
1158 |
|
|
1159 |
lemma ge_iff_diff_ge_0: "(a::'a::ordered_ring) \<ge> b == a - b \<ge> 0"
|
|
1160 |
by (simp add: ring_simps)
|
|
1161 |
|
|
1162 |
lemma pth_1:
|
|
1163 |
fixes x :: "'a::real_normed_vector"
|
|
1164 |
shows "x == scaleR 1 x" by simp
|
|
1165 |
|
|
1166 |
lemma pth_2:
|
|
1167 |
fixes x :: "'a::real_normed_vector"
|
|
1168 |
shows "x - y == x + -y" by (atomize (full)) simp
|
|
1169 |
|
|
1170 |
lemma pth_3:
|
|
1171 |
fixes x :: "'a::real_normed_vector"
|
|
1172 |
shows "- x == scaleR (-1) x" by simp
|
|
1173 |
|
|
1174 |
lemma pth_4:
|
|
1175 |
fixes x :: "'a::real_normed_vector"
|
|
1176 |
shows "scaleR 0 x == 0" and "scaleR c 0 = (0::'a)" by simp_all
|
|
1177 |
|
|
1178 |
lemma pth_5:
|
|
1179 |
fixes x :: "'a::real_normed_vector"
|
|
1180 |
shows "scaleR c (scaleR d x) == scaleR (c * d) x" by simp
|
|
1181 |
|
|
1182 |
lemma pth_6:
|
|
1183 |
fixes x :: "'a::real_normed_vector"
|
|
1184 |
shows "scaleR c (x + y) == scaleR c x + scaleR c y"
|
|
1185 |
by (simp add: scaleR_right_distrib)
|
|
1186 |
|
|
1187 |
lemma pth_7:
|
|
1188 |
fixes x :: "'a::real_normed_vector"
|
|
1189 |
shows "0 + x == x" and "x + 0 == x" by simp_all
|
|
1190 |
|
|
1191 |
lemma pth_8:
|
|
1192 |
fixes x :: "'a::real_normed_vector"
|
|
1193 |
shows "scaleR c x + scaleR d x == scaleR (c + d) x"
|
|
1194 |
by (simp add: scaleR_left_distrib)
|
|
1195 |
|
|
1196 |
lemma pth_9:
|
|
1197 |
fixes x :: "'a::real_normed_vector" shows
|
|
1198 |
"(scaleR c x + z) + scaleR d x == scaleR (c + d) x + z"
|
|
1199 |
"scaleR c x + (scaleR d x + z) == scaleR (c + d) x + z"
|
|
1200 |
"(scaleR c x + w) + (scaleR d x + z) == scaleR (c + d) x + (w + z)"
|
|
1201 |
by (simp_all add: algebra_simps)
|
|
1202 |
|
|
1203 |
lemma pth_a:
|
|
1204 |
fixes x :: "'a::real_normed_vector"
|
|
1205 |
shows "scaleR 0 x + y == y" by simp
|
|
1206 |
|
|
1207 |
lemma pth_b:
|
|
1208 |
fixes x :: "'a::real_normed_vector" shows
|
|
1209 |
"scaleR c x + scaleR d y == scaleR c x + scaleR d y"
|
|
1210 |
"(scaleR c x + z) + scaleR d y == scaleR c x + (z + scaleR d y)"
|
|
1211 |
"scaleR c x + (scaleR d y + z) == scaleR c x + (scaleR d y + z)"
|
|
1212 |
"(scaleR c x + w) + (scaleR d y + z) == scaleR c x + (w + (scaleR d y + z))"
|
|
1213 |
by (simp_all add: algebra_simps)
|
|
1214 |
|
|
1215 |
lemma pth_c:
|
|
1216 |
fixes x :: "'a::real_normed_vector" shows
|
|
1217 |
"scaleR c x + scaleR d y == scaleR d y + scaleR c x"
|
|
1218 |
"(scaleR c x + z) + scaleR d y == scaleR d y + (scaleR c x + z)"
|
|
1219 |
"scaleR c x + (scaleR d y + z) == scaleR d y + (scaleR c x + z)"
|
|
1220 |
"(scaleR c x + w) + (scaleR d y + z) == scaleR d y + ((scaleR c x + w) + z)"
|
|
1221 |
by (simp_all add: algebra_simps)
|
|
1222 |
|
|
1223 |
lemma pth_d:
|
|
1224 |
fixes x :: "'a::real_normed_vector"
|
|
1225 |
shows "x + 0 == x" by simp
|
|
1226 |
|
|
1227 |
lemma norm_imp_pos_and_ge:
|
|
1228 |
fixes x :: "'a::real_normed_vector"
|
|
1229 |
shows "norm x == n \<Longrightarrow> norm x \<ge> 0 \<and> n \<ge> norm x"
|
|
1230 |
by atomize auto
|
|
1231 |
|
|
1232 |
lemma real_eq_0_iff_le_ge_0: "(x::real) = 0 == x \<ge> 0 \<and> -x \<ge> 0" by arith
|
|
1233 |
|
|
1234 |
lemma norm_pths:
|
|
1235 |
fixes x :: "'a::real_normed_vector" shows
|
|
1236 |
"x = y \<longleftrightarrow> norm (x - y) \<le> 0"
|
|
1237 |
"x \<noteq> y \<longleftrightarrow> \<not> (norm (x - y) \<le> 0)"
|
|
1238 |
using norm_ge_zero[of "x - y"] by auto
|
|
1239 |
|
|
1240 |
lemma vector_dist_norm:
|
|
1241 |
fixes x :: "'a::real_normed_vector"
|
|
1242 |
shows "dist x y = norm (x - y)"
|
|
1243 |
by (rule dist_norm)
|
|
1244 |
|
|
1245 |
use "normarith.ML"
|
|
1246 |
|
|
1247 |
method_setup norm = {* Scan.succeed (SIMPLE_METHOD' o NormArith.norm_arith_tac)
|
|
1248 |
*} "Proves simple linear statements about vector norms"
|
|
1249 |
|
|
1250 |
|
|
1251 |
text{* Hence more metric properties. *}
|
|
1252 |
|
|
1253 |
lemma dist_triangle_alt:
|
|
1254 |
fixes x y z :: "'a::metric_space"
|
|
1255 |
shows "dist y z <= dist x y + dist x z"
|
|
1256 |
using dist_triangle [of y z x] by (simp add: dist_commute)
|
|
1257 |
|
|
1258 |
lemma dist_pos_lt:
|
|
1259 |
fixes x y :: "'a::metric_space"
|
|
1260 |
shows "x \<noteq> y ==> 0 < dist x y"
|
|
1261 |
by (simp add: zero_less_dist_iff)
|
|
1262 |
|
|
1263 |
lemma dist_nz:
|
|
1264 |
fixes x y :: "'a::metric_space"
|
|
1265 |
shows "x \<noteq> y \<longleftrightarrow> 0 < dist x y"
|
|
1266 |
by (simp add: zero_less_dist_iff)
|
|
1267 |
|
|
1268 |
lemma dist_triangle_le:
|
|
1269 |
fixes x y z :: "'a::metric_space"
|
|
1270 |
shows "dist x z + dist y z <= e \<Longrightarrow> dist x y <= e"
|
|
1271 |
by (rule order_trans [OF dist_triangle2])
|
|
1272 |
|
|
1273 |
lemma dist_triangle_lt:
|
|
1274 |
fixes x y z :: "'a::metric_space"
|
|
1275 |
shows "dist x z + dist y z < e ==> dist x y < e"
|
|
1276 |
by (rule le_less_trans [OF dist_triangle2])
|
|
1277 |
|
|
1278 |
lemma dist_triangle_half_l:
|
|
1279 |
fixes x1 x2 y :: "'a::metric_space"
|
|
1280 |
shows "dist x1 y < e / 2 \<Longrightarrow> dist x2 y < e / 2 \<Longrightarrow> dist x1 x2 < e"
|
|
1281 |
by (rule dist_triangle_lt [where z=y], simp)
|
|
1282 |
|
|
1283 |
lemma dist_triangle_half_r:
|
|
1284 |
fixes x1 x2 y :: "'a::metric_space"
|
|
1285 |
shows "dist y x1 < e / 2 \<Longrightarrow> dist y x2 < e / 2 \<Longrightarrow> dist x1 x2 < e"
|
|
1286 |
by (rule dist_triangle_half_l, simp_all add: dist_commute)
|
|
1287 |
|
|
1288 |
lemma dist_triangle_add:
|
|
1289 |
fixes x y x' y' :: "'a::real_normed_vector"
|
|
1290 |
shows "dist (x + y) (x' + y') <= dist x x' + dist y y'"
|
|
1291 |
by norm
|
|
1292 |
|
|
1293 |
lemma dist_mul[simp]: "dist (c *s x) (c *s y) = \<bar>c\<bar> * dist x y"
|
|
1294 |
unfolding dist_norm vector_ssub_ldistrib[symmetric] norm_mul ..
|
|
1295 |
|
|
1296 |
lemma dist_triangle_add_half:
|
|
1297 |
fixes x x' y y' :: "'a::real_normed_vector"
|
|
1298 |
shows "dist x x' < e / 2 \<Longrightarrow> dist y y' < e / 2 \<Longrightarrow> dist(x + y) (x' + y') < e"
|
|
1299 |
by norm
|
|
1300 |
|
|
1301 |
lemma setsum_component [simp]:
|
|
1302 |
fixes f:: " 'a \<Rightarrow> ('b::comm_monoid_add) ^'n"
|
|
1303 |
shows "(setsum f S)$i = setsum (\<lambda>x. (f x)$i) S"
|
|
1304 |
by (cases "finite S", induct S set: finite, simp_all)
|
|
1305 |
|
|
1306 |
lemma setsum_eq: "setsum f S = (\<chi> i. setsum (\<lambda>x. (f x)$i ) S)"
|
|
1307 |
by (simp add: Cart_eq)
|
|
1308 |
|
|
1309 |
lemma setsum_clauses:
|
|
1310 |
shows "setsum f {} = 0"
|
|
1311 |
and "finite S \<Longrightarrow> setsum f (insert x S) =
|
|
1312 |
(if x \<in> S then setsum f S else f x + setsum f S)"
|
|
1313 |
by (auto simp add: insert_absorb)
|
|
1314 |
|
|
1315 |
lemma setsum_cmul:
|
|
1316 |
fixes f:: "'c \<Rightarrow> ('a::semiring_1)^'n"
|
|
1317 |
shows "setsum (\<lambda>x. c *s f x) S = c *s setsum f S"
|
|
1318 |
by (simp add: Cart_eq setsum_right_distrib)
|
|
1319 |
|
|
1320 |
lemma setsum_norm:
|
|
1321 |
fixes f :: "'a \<Rightarrow> 'b::real_normed_vector"
|
|
1322 |
assumes fS: "finite S"
|
|
1323 |
shows "norm (setsum f S) <= setsum (\<lambda>x. norm(f x)) S"
|
|
1324 |
proof(induct rule: finite_induct[OF fS])
|
|
1325 |
case 1 thus ?case by simp
|
|
1326 |
next
|
|
1327 |
case (2 x S)
|
|
1328 |
from "2.hyps" have "norm (setsum f (insert x S)) \<le> norm (f x) + norm (setsum f S)" by (simp add: norm_triangle_ineq)
|
|
1329 |
also have "\<dots> \<le> norm (f x) + setsum (\<lambda>x. norm(f x)) S"
|
|
1330 |
using "2.hyps" by simp
|
|
1331 |
finally show ?case using "2.hyps" by simp
|
|
1332 |
qed
|
|
1333 |
|
|
1334 |
lemma real_setsum_norm:
|
|
1335 |
fixes f :: "'a \<Rightarrow> real ^'n::finite"
|
|
1336 |
assumes fS: "finite S"
|
|
1337 |
shows "norm (setsum f S) <= setsum (\<lambda>x. norm(f x)) S"
|
|
1338 |
proof(induct rule: finite_induct[OF fS])
|
|
1339 |
case 1 thus ?case by simp
|
|
1340 |
next
|
|
1341 |
case (2 x S)
|
|
1342 |
from "2.hyps" have "norm (setsum f (insert x S)) \<le> norm (f x) + norm (setsum f S)" by (simp add: norm_triangle_ineq)
|
|
1343 |
also have "\<dots> \<le> norm (f x) + setsum (\<lambda>x. norm(f x)) S"
|
|
1344 |
using "2.hyps" by simp
|
|
1345 |
finally show ?case using "2.hyps" by simp
|
|
1346 |
qed
|
|
1347 |
|
|
1348 |
lemma setsum_norm_le:
|
|
1349 |
fixes f :: "'a \<Rightarrow> 'b::real_normed_vector"
|
|
1350 |
assumes fS: "finite S"
|
|
1351 |
and fg: "\<forall>x \<in> S. norm (f x) \<le> g x"
|
|
1352 |
shows "norm (setsum f S) \<le> setsum g S"
|
|
1353 |
proof-
|
|
1354 |
from fg have "setsum (\<lambda>x. norm(f x)) S <= setsum g S"
|
|
1355 |
by - (rule setsum_mono, simp)
|
|
1356 |
then show ?thesis using setsum_norm[OF fS, of f] fg
|
|
1357 |
by arith
|
|
1358 |
qed
|
|
1359 |
|
|
1360 |
lemma real_setsum_norm_le:
|
|
1361 |
fixes f :: "'a \<Rightarrow> real ^ 'n::finite"
|
|
1362 |
assumes fS: "finite S"
|
|
1363 |
and fg: "\<forall>x \<in> S. norm (f x) \<le> g x"
|
|
1364 |
shows "norm (setsum f S) \<le> setsum g S"
|
|
1365 |
proof-
|
|
1366 |
from fg have "setsum (\<lambda>x. norm(f x)) S <= setsum g S"
|
|
1367 |
by - (rule setsum_mono, simp)
|
|
1368 |
then show ?thesis using real_setsum_norm[OF fS, of f] fg
|
|
1369 |
by arith
|
|
1370 |
qed
|
|
1371 |
|
|
1372 |
lemma setsum_norm_bound:
|
|
1373 |
fixes f :: "'a \<Rightarrow> 'b::real_normed_vector"
|
|
1374 |
assumes fS: "finite S"
|
|
1375 |
and K: "\<forall>x \<in> S. norm (f x) \<le> K"
|
|
1376 |
shows "norm (setsum f S) \<le> of_nat (card S) * K"
|
|
1377 |
using setsum_norm_le[OF fS K] setsum_constant[symmetric]
|
|
1378 |
by simp
|
|
1379 |
|
|
1380 |
lemma real_setsum_norm_bound:
|
|
1381 |
fixes f :: "'a \<Rightarrow> real ^ 'n::finite"
|
|
1382 |
assumes fS: "finite S"
|
|
1383 |
and K: "\<forall>x \<in> S. norm (f x) \<le> K"
|
|
1384 |
shows "norm (setsum f S) \<le> of_nat (card S) * K"
|
|
1385 |
using real_setsum_norm_le[OF fS K] setsum_constant[symmetric]
|
|
1386 |
by simp
|
|
1387 |
|
|
1388 |
lemma setsum_vmul:
|
|
1389 |
fixes f :: "'a \<Rightarrow> 'b::{real_normed_vector,semiring, mult_zero}"
|
|
1390 |
assumes fS: "finite S"
|
|
1391 |
shows "setsum f S *s v = setsum (\<lambda>x. f x *s v) S"
|
|
1392 |
proof(induct rule: finite_induct[OF fS])
|
|
1393 |
case 1 then show ?case by (simp add: vector_smult_lzero)
|
|
1394 |
next
|
|
1395 |
case (2 x F)
|
|
1396 |
from "2.hyps" have "setsum f (insert x F) *s v = (f x + setsum f F) *s v"
|
|
1397 |
by simp
|
|
1398 |
also have "\<dots> = f x *s v + setsum f F *s v"
|
|
1399 |
by (simp add: vector_sadd_rdistrib)
|
|
1400 |
also have "\<dots> = setsum (\<lambda>x. f x *s v) (insert x F)" using "2.hyps" by simp
|
|
1401 |
finally show ?case .
|
|
1402 |
qed
|
|
1403 |
|
|
1404 |
(* FIXME : Problem thm setsum_vmul[of _ "f:: 'a \<Rightarrow> real ^'n"] ---
|
|
1405 |
Get rid of *s and use real_vector instead! Also prove that ^ creates a real_vector !! *)
|
|
1406 |
|
|
1407 |
(* FIXME: Here too need stupid finiteness assumption on T!!! *)
|
|
1408 |
lemma setsum_group:
|
|
1409 |
assumes fS: "finite S" and fT: "finite T" and fST: "f ` S \<subseteq> T"
|
|
1410 |
shows "setsum (\<lambda>y. setsum g {x. x\<in> S \<and> f x = y}) T = setsum g S"
|
|
1411 |
|
|
1412 |
apply (subst setsum_image_gen[OF fS, of g f])
|
|
1413 |
apply (rule setsum_mono_zero_right[OF fT fST])
|
|
1414 |
by (auto intro: setsum_0')
|
|
1415 |
|
|
1416 |
lemma vsum_norm_allsubsets_bound:
|
|
1417 |
fixes f:: "'a \<Rightarrow> real ^'n::finite"
|
|
1418 |
assumes fP: "finite P" and fPs: "\<And>Q. Q \<subseteq> P \<Longrightarrow> norm (setsum f Q) \<le> e"
|
|
1419 |
shows "setsum (\<lambda>x. norm (f x)) P \<le> 2 * real CARD('n) * e"
|
|
1420 |
proof-
|
|
1421 |
let ?d = "real CARD('n)"
|
|
1422 |
let ?nf = "\<lambda>x. norm (f x)"
|
|
1423 |
let ?U = "UNIV :: 'n set"
|
|
1424 |
have th0: "setsum (\<lambda>x. setsum (\<lambda>i. \<bar>f x $ i\<bar>) ?U) P = setsum (\<lambda>i. setsum (\<lambda>x. \<bar>f x $ i\<bar>) P) ?U"
|
|
1425 |
by (rule setsum_commute)
|
|
1426 |
have th1: "2 * ?d * e = of_nat (card ?U) * (2 * e)" by (simp add: real_of_nat_def)
|
|
1427 |
have "setsum ?nf P \<le> setsum (\<lambda>x. setsum (\<lambda>i. \<bar>f x $ i\<bar>) ?U) P"
|
|
1428 |
apply (rule setsum_mono)
|
|
1429 |
by (rule norm_le_l1)
|
|
1430 |
also have "\<dots> \<le> 2 * ?d * e"
|
|
1431 |
unfolding th0 th1
|
|
1432 |
proof(rule setsum_bounded)
|
|
1433 |
fix i assume i: "i \<in> ?U"
|
|
1434 |
let ?Pp = "{x. x\<in> P \<and> f x $ i \<ge> 0}"
|
|
1435 |
let ?Pn = "{x. x \<in> P \<and> f x $ i < 0}"
|
|
1436 |
have thp: "P = ?Pp \<union> ?Pn" by auto
|
|
1437 |
have thp0: "?Pp \<inter> ?Pn ={}" by auto
|
|
1438 |
have PpP: "?Pp \<subseteq> P" and PnP: "?Pn \<subseteq> P" by blast+
|
|
1439 |
have Ppe:"setsum (\<lambda>x. \<bar>f x $ i\<bar>) ?Pp \<le> e"
|
|
1440 |
using component_le_norm[of "setsum (\<lambda>x. f x) ?Pp" i] fPs[OF PpP]
|
|
1441 |
by (auto intro: abs_le_D1)
|
|
1442 |
have Pne: "setsum (\<lambda>x. \<bar>f x $ i\<bar>) ?Pn \<le> e"
|
|
1443 |
using component_le_norm[of "setsum (\<lambda>x. - f x) ?Pn" i] fPs[OF PnP]
|
|
1444 |
by (auto simp add: setsum_negf intro: abs_le_D1)
|
|
1445 |
have "setsum (\<lambda>x. \<bar>f x $ i\<bar>) P = setsum (\<lambda>x. \<bar>f x $ i\<bar>) ?Pp + setsum (\<lambda>x. \<bar>f x $ i\<bar>) ?Pn"
|
|
1446 |
apply (subst thp)
|
|
1447 |
apply (rule setsum_Un_zero)
|
|
1448 |
using fP thp0 by auto
|
|
1449 |
also have "\<dots> \<le> 2*e" using Pne Ppe by arith
|
|
1450 |
finally show "setsum (\<lambda>x. \<bar>f x $ i\<bar>) P \<le> 2*e" .
|
|
1451 |
qed
|
|
1452 |
finally show ?thesis .
|
|
1453 |
qed
|
|
1454 |
|
|
1455 |
lemma dot_lsum: "finite S \<Longrightarrow> setsum f S \<bullet> (y::'a::{comm_ring}^'n) = setsum (\<lambda>x. f x \<bullet> y) S "
|
|
1456 |
by (induct rule: finite_induct, auto simp add: dot_lzero dot_ladd dot_radd)
|
|
1457 |
|
|
1458 |
lemma dot_rsum: "finite S \<Longrightarrow> (y::'a::{comm_ring}^'n) \<bullet> setsum f S = setsum (\<lambda>x. y \<bullet> f x) S "
|
|
1459 |
by (induct rule: finite_induct, auto simp add: dot_rzero dot_radd)
|
|
1460 |
|
|
1461 |
subsection{* Basis vectors in coordinate directions. *}
|
|
1462 |
|
|
1463 |
|
|
1464 |
definition "basis k = (\<chi> i. if i = k then 1 else 0)"
|
|
1465 |
|
|
1466 |
lemma basis_component [simp]: "basis k $ i = (if k=i then 1 else 0)"
|
|
1467 |
unfolding basis_def by simp
|
|
1468 |
|
|
1469 |
lemma delta_mult_idempotent:
|
|
1470 |
"(if k=a then 1 else (0::'a::semiring_1)) * (if k=a then 1 else 0) = (if k=a then 1 else 0)" by (cases "k=a", auto)
|
|
1471 |
|
|
1472 |
lemma norm_basis:
|
|
1473 |
shows "norm (basis k :: real ^'n::finite) = 1"
|
|
1474 |
apply (simp add: basis_def real_vector_norm_def dot_def)
|
|
1475 |
apply (vector delta_mult_idempotent)
|
|
1476 |
using setsum_delta[of "UNIV :: 'n set" "k" "\<lambda>k. 1::real"]
|
|
1477 |
apply auto
|
|
1478 |
done
|
|
1479 |
|
|
1480 |
lemma norm_basis_1: "norm(basis 1 :: real ^'n::{finite,one}) = 1"
|
|
1481 |
by (rule norm_basis)
|
|
1482 |
|
|
1483 |
lemma vector_choose_size: "0 <= c ==> \<exists>(x::real^'n::finite). norm x = c"
|
|
1484 |
apply (rule exI[where x="c *s basis arbitrary"])
|
|
1485 |
by (simp only: norm_mul norm_basis)
|
|
1486 |
|
|
1487 |
lemma vector_choose_dist: assumes e: "0 <= e"
|
|
1488 |
shows "\<exists>(y::real^'n::finite). dist x y = e"
|
|
1489 |
proof-
|
|
1490 |
from vector_choose_size[OF e] obtain c:: "real ^'n" where "norm c = e"
|
|
1491 |
by blast
|
|
1492 |
then have "dist x (x - c) = e" by (simp add: dist_norm)
|
|
1493 |
then show ?thesis by blast
|
|
1494 |
qed
|
|
1495 |
|
|
1496 |
lemma basis_inj: "inj (basis :: 'n \<Rightarrow> real ^'n::finite)"
|
|
1497 |
by (simp add: inj_on_def Cart_eq)
|
|
1498 |
|
|
1499 |
lemma cond_value_iff: "f (if b then x else y) = (if b then f x else f y)"
|
|
1500 |
by auto
|
|
1501 |
|
|
1502 |
lemma basis_expansion:
|
|
1503 |
"setsum (\<lambda>i. (x$i) *s basis i) UNIV = (x::('a::ring_1) ^'n::finite)" (is "?lhs = ?rhs" is "setsum ?f ?S = _")
|
|
1504 |
by (auto simp add: Cart_eq cond_value_iff setsum_delta[of "?S", where ?'b = "'a", simplified] cong del: if_weak_cong)
|
|
1505 |
|
|
1506 |
lemma basis_expansion_unique:
|
|
1507 |
"setsum (\<lambda>i. f i *s basis i) UNIV = (x::('a::comm_ring_1) ^'n::finite) \<longleftrightarrow> (\<forall>i. f i = x$i)"
|
|
1508 |
by (simp add: Cart_eq setsum_delta cond_value_iff cong del: if_weak_cong)
|
|
1509 |
|
|
1510 |
lemma cond_application_beta: "(if b then f else g) x = (if b then f x else g x)"
|
|
1511 |
by auto
|
|
1512 |
|
|
1513 |
lemma dot_basis:
|
|
1514 |
shows "basis i \<bullet> x = x$i" "x \<bullet> (basis i :: 'a^'n::finite) = (x$i :: 'a::semiring_1)"
|
|
1515 |
by (auto simp add: dot_def basis_def cond_application_beta cond_value_iff setsum_delta cong del: if_weak_cong)
|
|
1516 |
|
|
1517 |
lemma inner_basis:
|
|
1518 |
fixes x :: "'a::{real_inner, real_algebra_1} ^ 'n::finite"
|
|
1519 |
shows "inner (basis i) x = inner 1 (x $ i)"
|
|
1520 |
and "inner x (basis i) = inner (x $ i) 1"
|
|
1521 |
unfolding inner_vector_def basis_def
|
|
1522 |
by (auto simp add: cond_application_beta cond_value_iff setsum_delta cong del: if_weak_cong)
|
|
1523 |
|
|
1524 |
lemma basis_eq_0: "basis i = (0::'a::semiring_1^'n) \<longleftrightarrow> False"
|
|
1525 |
by (auto simp add: Cart_eq)
|
|
1526 |
|
|
1527 |
lemma basis_nonzero:
|
|
1528 |
shows "basis k \<noteq> (0:: 'a::semiring_1 ^'n)"
|
|
1529 |
by (simp add: basis_eq_0)
|
|
1530 |
|
|
1531 |
lemma vector_eq_ldot: "(\<forall>x. x \<bullet> y = x \<bullet> z) \<longleftrightarrow> y = (z::'a::semiring_1^'n::finite)"
|
|
1532 |
apply (auto simp add: Cart_eq dot_basis)
|
|
1533 |
apply (erule_tac x="basis i" in allE)
|
|
1534 |
apply (simp add: dot_basis)
|
|
1535 |
apply (subgoal_tac "y = z")
|
|
1536 |
apply simp
|
|
1537 |
apply (simp add: Cart_eq)
|
|
1538 |
done
|
|
1539 |
|
|
1540 |
lemma vector_eq_rdot: "(\<forall>z. x \<bullet> z = y \<bullet> z) \<longleftrightarrow> x = (y::'a::semiring_1^'n::finite)"
|
|
1541 |
apply (auto simp add: Cart_eq dot_basis)
|
|
1542 |
apply (erule_tac x="basis i" in allE)
|
|
1543 |
apply (simp add: dot_basis)
|
|
1544 |
apply (subgoal_tac "x = y")
|
|
1545 |
apply simp
|
|
1546 |
apply (simp add: Cart_eq)
|
|
1547 |
done
|
|
1548 |
|
|
1549 |
subsection{* Orthogonality. *}
|
|
1550 |
|
|
1551 |
definition "orthogonal x y \<longleftrightarrow> (x \<bullet> y = 0)"
|
|
1552 |
|
|
1553 |
lemma orthogonal_basis:
|
|
1554 |
shows "orthogonal (basis i :: 'a^'n::finite) x \<longleftrightarrow> x$i = (0::'a::ring_1)"
|
|
1555 |
by (auto simp add: orthogonal_def dot_def basis_def cond_value_iff cond_application_beta setsum_delta cong del: if_weak_cong)
|
|
1556 |
|
|
1557 |
lemma orthogonal_basis_basis:
|
|
1558 |
shows "orthogonal (basis i :: 'a::ring_1^'n::finite) (basis j) \<longleftrightarrow> i \<noteq> j"
|
|
1559 |
unfolding orthogonal_basis[of i] basis_component[of j] by simp
|
|
1560 |
|
|
1561 |
(* FIXME : Maybe some of these require less than comm_ring, but not all*)
|
|
1562 |
lemma orthogonal_clauses:
|
|
1563 |
"orthogonal a (0::'a::comm_ring ^'n)"
|
|
1564 |
"orthogonal a x ==> orthogonal a (c *s x)"
|
|
1565 |
"orthogonal a x ==> orthogonal a (-x)"
|
|
1566 |
"orthogonal a x \<Longrightarrow> orthogonal a y ==> orthogonal a (x + y)"
|
|
1567 |
"orthogonal a x \<Longrightarrow> orthogonal a y ==> orthogonal a (x - y)"
|
|
1568 |
"orthogonal 0 a"
|
|
1569 |
"orthogonal x a ==> orthogonal (c *s x) a"
|
|
1570 |
"orthogonal x a ==> orthogonal (-x) a"
|
|
1571 |
"orthogonal x a \<Longrightarrow> orthogonal y a ==> orthogonal (x + y) a"
|
|
1572 |
"orthogonal x a \<Longrightarrow> orthogonal y a ==> orthogonal (x - y) a"
|
|
1573 |
unfolding orthogonal_def dot_rneg dot_rmult dot_radd dot_rsub
|
|
1574 |
dot_lzero dot_rzero dot_lneg dot_lmult dot_ladd dot_lsub
|
|
1575 |
by simp_all
|
|
1576 |
|
|
1577 |
lemma orthogonal_commute: "orthogonal (x::'a::{ab_semigroup_mult,comm_monoid_add} ^'n)y \<longleftrightarrow> orthogonal y x"
|
|
1578 |
by (simp add: orthogonal_def dot_sym)
|
|
1579 |
|
|
1580 |
subsection{* Explicit vector construction from lists. *}
|
|
1581 |
|
|
1582 |
primrec from_nat :: "nat \<Rightarrow> 'a::{monoid_add,one}"
|
|
1583 |
where "from_nat 0 = 0" | "from_nat (Suc n) = 1 + from_nat n"
|
|
1584 |
|
|
1585 |
lemma from_nat [simp]: "from_nat = of_nat"
|
|
1586 |
by (rule ext, induct_tac x, simp_all)
|
|
1587 |
|
|
1588 |
primrec
|
|
1589 |
list_fun :: "nat \<Rightarrow> _ list \<Rightarrow> _ \<Rightarrow> _"
|
|
1590 |
where
|
|
1591 |
"list_fun n [] = (\<lambda>x. 0)"
|
|
1592 |
| "list_fun n (x # xs) = fun_upd (list_fun (Suc n) xs) (from_nat n) x"
|
|
1593 |
|
|
1594 |
definition "vector l = (\<chi> i. list_fun 1 l i)"
|
|
1595 |
(*definition "vector l = (\<chi> i. if i <= length l then l ! (i - 1) else 0)"*)
|
|
1596 |
|
|
1597 |
lemma vector_1: "(vector[x]) $1 = x"
|
|
1598 |
unfolding vector_def by simp
|
|
1599 |
|
|
1600 |
lemma vector_2:
|
|
1601 |
"(vector[x,y]) $1 = x"
|
|
1602 |
"(vector[x,y] :: 'a^2)$2 = (y::'a::zero)"
|
|
1603 |
unfolding vector_def by simp_all
|
|
1604 |
|
|
1605 |
lemma vector_3:
|
|
1606 |
"(vector [x,y,z] ::('a::zero)^3)$1 = x"
|
|
1607 |
"(vector [x,y,z] ::('a::zero)^3)$2 = y"
|
|
1608 |
"(vector [x,y,z] ::('a::zero)^3)$3 = z"
|
|
1609 |
unfolding vector_def by simp_all
|
|
1610 |
|
|
1611 |
lemma forall_vector_1: "(\<forall>v::'a::zero^1. P v) \<longleftrightarrow> (\<forall>x. P(vector[x]))"
|
|
1612 |
apply auto
|
|
1613 |
apply (erule_tac x="v$1" in allE)
|
|
1614 |
apply (subgoal_tac "vector [v$1] = v")
|
|
1615 |
apply simp
|
|
1616 |
apply (vector vector_def)
|
|
1617 |
apply (simp add: forall_1)
|
|
1618 |
done
|
|
1619 |
|
|
1620 |
lemma forall_vector_2: "(\<forall>v::'a::zero^2. P v) \<longleftrightarrow> (\<forall>x y. P(vector[x, y]))"
|
|
1621 |
apply auto
|
|
1622 |
apply (erule_tac x="v$1" in allE)
|
|
1623 |
apply (erule_tac x="v$2" in allE)
|
|
1624 |
apply (subgoal_tac "vector [v$1, v$2] = v")
|
|
1625 |
apply simp
|
|
1626 |
apply (vector vector_def)
|
|
1627 |
apply (simp add: forall_2)
|
|
1628 |
done
|
|
1629 |
|
|
1630 |
lemma forall_vector_3: "(\<forall>v::'a::zero^3. P v) \<longleftrightarrow> (\<forall>x y z. P(vector[x, y, z]))"
|
|
1631 |
apply auto
|
|
1632 |
apply (erule_tac x="v$1" in allE)
|
|
1633 |
apply (erule_tac x="v$2" in allE)
|
|
1634 |
apply (erule_tac x="v$3" in allE)
|
|
1635 |
apply (subgoal_tac "vector [v$1, v$2, v$3] = v")
|
|
1636 |
apply simp
|
|
1637 |
apply (vector vector_def)
|
|
1638 |
apply (simp add: forall_3)
|
|
1639 |
done
|
|
1640 |
|
|
1641 |
subsection{* Linear functions. *}
|
|
1642 |
|
|
1643 |
definition "linear f \<longleftrightarrow> (\<forall>x y. f(x + y) = f x + f y) \<and> (\<forall>c x. f(c *s x) = c *s f x)"
|
|
1644 |
|
|
1645 |
lemma linear_compose_cmul: "linear f ==> linear (\<lambda>x. (c::'a::comm_semiring) *s f x)"
|
|
1646 |
by (vector linear_def Cart_eq ring_simps)
|
|
1647 |
|
|
1648 |
lemma linear_compose_neg: "linear (f :: 'a ^'n \<Rightarrow> 'a::comm_ring ^'m) ==> linear (\<lambda>x. -(f(x)))" by (vector linear_def Cart_eq)
|
|
1649 |
|
|
1650 |
lemma linear_compose_add: "linear (f :: 'a ^'n \<Rightarrow> 'a::semiring_1 ^'m) \<Longrightarrow> linear g ==> linear (\<lambda>x. f(x) + g(x))"
|
|
1651 |
by (vector linear_def Cart_eq ring_simps)
|
|
1652 |
|
|
1653 |
lemma linear_compose_sub: "linear (f :: 'a ^'n \<Rightarrow> 'a::ring_1 ^'m) \<Longrightarrow> linear g ==> linear (\<lambda>x. f x - g x)"
|
|
1654 |
by (vector linear_def Cart_eq ring_simps)
|
|
1655 |
|
|
1656 |
lemma linear_compose: "linear f \<Longrightarrow> linear g ==> linear (g o f)"
|
|
1657 |
by (simp add: linear_def)
|
|
1658 |
|
|
1659 |
lemma linear_id: "linear id" by (simp add: linear_def id_def)
|
|
1660 |
|
|
1661 |
lemma linear_zero: "linear (\<lambda>x. 0::'a::semiring_1 ^ 'n)" by (simp add: linear_def)
|
|
1662 |
|
|
1663 |
lemma linear_compose_setsum:
|
|
1664 |
assumes fS: "finite S" and lS: "\<forall>a \<in> S. linear (f a :: 'a::semiring_1 ^ 'n \<Rightarrow> 'a ^ 'm)"
|
|
1665 |
shows "linear(\<lambda>x. setsum (\<lambda>a. f a x :: 'a::semiring_1 ^'m) S)"
|
|
1666 |
using lS
|
|
1667 |
apply (induct rule: finite_induct[OF fS])
|
|
1668 |
by (auto simp add: linear_zero intro: linear_compose_add)
|
|
1669 |
|
|
1670 |
lemma linear_vmul_component:
|
|
1671 |
fixes f:: "'a::semiring_1^'m \<Rightarrow> 'a^'n"
|
|
1672 |
assumes lf: "linear f"
|
|
1673 |
shows "linear (\<lambda>x. f x $ k *s v)"
|
|
1674 |
using lf
|
|
1675 |
apply (auto simp add: linear_def )
|
|
1676 |
by (vector ring_simps)+
|
|
1677 |
|
|
1678 |
lemma linear_0: "linear f ==> f 0 = (0::'a::semiring_1 ^'n)"
|
|
1679 |
unfolding linear_def
|
|
1680 |
apply clarsimp
|
|
1681 |
apply (erule allE[where x="0::'a"])
|
|
1682 |
apply simp
|
|
1683 |
done
|
|
1684 |
|
|
1685 |
lemma linear_cmul: "linear f ==> f(c*s x) = c *s f x" by (simp add: linear_def)
|
|
1686 |
|
|
1687 |
lemma linear_neg: "linear (f :: 'a::ring_1 ^'n \<Rightarrow> _) ==> f (-x) = - f x"
|
|
1688 |
unfolding vector_sneg_minus1
|
|
1689 |
using linear_cmul[of f] by auto
|
|
1690 |
|
|
1691 |
lemma linear_add: "linear f ==> f(x + y) = f x + f y" by (metis linear_def)
|
|
1692 |
|
|
1693 |
lemma linear_sub: "linear (f::'a::ring_1 ^'n \<Rightarrow> _) ==> f(x - y) = f x - f y"
|
|
1694 |
by (simp add: diff_def linear_add linear_neg)
|
|
1695 |
|
|
1696 |
lemma linear_setsum:
|
|
1697 |
fixes f:: "'a::semiring_1^'n \<Rightarrow> _"
|
|
1698 |
assumes lf: "linear f" and fS: "finite S"
|
|
1699 |
shows "f (setsum g S) = setsum (f o g) S"
|
|
1700 |
proof (induct rule: finite_induct[OF fS])
|
|
1701 |
case 1 thus ?case by (simp add: linear_0[OF lf])
|
|
1702 |
next
|
|
1703 |
case (2 x F)
|
|
1704 |
have "f (setsum g (insert x F)) = f (g x + setsum g F)" using "2.hyps"
|
|
1705 |
by simp
|
|
1706 |
also have "\<dots> = f (g x) + f (setsum g F)" using linear_add[OF lf] by simp
|
|
1707 |
also have "\<dots> = setsum (f o g) (insert x F)" using "2.hyps" by simp
|
|
1708 |
finally show ?case .
|
|
1709 |
qed
|
|
1710 |
|
|
1711 |
lemma linear_setsum_mul:
|
|
1712 |
fixes f:: "'a ^'n \<Rightarrow> 'a::semiring_1^'m"
|
|
1713 |
assumes lf: "linear f" and fS: "finite S"
|
|
1714 |
shows "f (setsum (\<lambda>i. c i *s v i) S) = setsum (\<lambda>i. c i *s f (v i)) S"
|
|
1715 |
using linear_setsum[OF lf fS, of "\<lambda>i. c i *s v i" , unfolded o_def]
|
|
1716 |
linear_cmul[OF lf] by simp
|
|
1717 |
|
|
1718 |
lemma linear_injective_0:
|
|
1719 |
assumes lf: "linear (f:: 'a::ring_1 ^ 'n \<Rightarrow> _)"
|
|
1720 |
shows "inj f \<longleftrightarrow> (\<forall>x. f x = 0 \<longrightarrow> x = 0)"
|
|
1721 |
proof-
|
|
1722 |
have "inj f \<longleftrightarrow> (\<forall> x y. f x = f y \<longrightarrow> x = y)" by (simp add: inj_on_def)
|
|
1723 |
also have "\<dots> \<longleftrightarrow> (\<forall> x y. f x - f y = 0 \<longrightarrow> x - y = 0)" by simp
|
|
1724 |
also have "\<dots> \<longleftrightarrow> (\<forall> x y. f (x - y) = 0 \<longrightarrow> x - y = 0)"
|
|
1725 |
by (simp add: linear_sub[OF lf])
|
|
1726 |
also have "\<dots> \<longleftrightarrow> (\<forall> x. f x = 0 \<longrightarrow> x = 0)" by auto
|
|
1727 |
finally show ?thesis .
|
|
1728 |
qed
|
|
1729 |
|
|
1730 |
lemma linear_bounded:
|
|
1731 |
fixes f:: "real ^'m::finite \<Rightarrow> real ^'n::finite"
|
|
1732 |
assumes lf: "linear f"
|
|
1733 |
shows "\<exists>B. \<forall>x. norm (f x) \<le> B * norm x"
|
|
1734 |
proof-
|
|
1735 |
let ?S = "UNIV:: 'm set"
|
|
1736 |
let ?B = "setsum (\<lambda>i. norm(f(basis i))) ?S"
|
|
1737 |
have fS: "finite ?S" by simp
|
|
1738 |
{fix x:: "real ^ 'm"
|
|
1739 |
let ?g = "(\<lambda>i. (x$i) *s (basis i) :: real ^ 'm)"
|
|
1740 |
have "norm (f x) = norm (f (setsum (\<lambda>i. (x$i) *s (basis i)) ?S))"
|
|
1741 |
by (simp only: basis_expansion)
|
|
1742 |
also have "\<dots> = norm (setsum (\<lambda>i. (x$i) *s f (basis i))?S)"
|
|
1743 |
using linear_setsum[OF lf fS, of ?g, unfolded o_def] linear_cmul[OF lf]
|
|
1744 |
by auto
|
|
1745 |
finally have th0: "norm (f x) = norm (setsum (\<lambda>i. (x$i) *s f (basis i))?S)" .
|
|
1746 |
{fix i assume i: "i \<in> ?S"
|
|
1747 |
from component_le_norm[of x i]
|
|
1748 |
have "norm ((x$i) *s f (basis i :: real ^'m)) \<le> norm (f (basis i)) * norm x"
|
|
1749 |
unfolding norm_mul
|
|
1750 |
apply (simp only: mult_commute)
|
|
1751 |
apply (rule mult_mono)
|
|
1752 |
by (auto simp add: ring_simps norm_ge_zero) }
|
|
1753 |
then have th: "\<forall>i\<in> ?S. norm ((x$i) *s f (basis i :: real ^'m)) \<le> norm (f (basis i)) * norm x" by metis
|
|
1754 |
from real_setsum_norm_le[OF fS, of "\<lambda>i. (x$i) *s (f (basis i))", OF th]
|
|
1755 |
have "norm (f x) \<le> ?B * norm x" unfolding th0 setsum_left_distrib by metis}
|
|
1756 |
then show ?thesis by blast
|
|
1757 |
qed
|
|
1758 |
|
|
1759 |
lemma linear_bounded_pos:
|
|
1760 |
fixes f:: "real ^'n::finite \<Rightarrow> real ^ 'm::finite"
|
|
1761 |
assumes lf: "linear f"
|
|
1762 |
shows "\<exists>B > 0. \<forall>x. norm (f x) \<le> B * norm x"
|
|
1763 |
proof-
|
|
1764 |
from linear_bounded[OF lf] obtain B where
|
|
1765 |
B: "\<forall>x. norm (f x) \<le> B * norm x" by blast
|
|
1766 |
let ?K = "\<bar>B\<bar> + 1"
|
|
1767 |
have Kp: "?K > 0" by arith
|
|
1768 |
{assume C: "B < 0"
|
|
1769 |
have "norm (1::real ^ 'n) > 0" by (simp add: zero_less_norm_iff)
|
|
1770 |
with C have "B * norm (1:: real ^ 'n) < 0"
|
|
1771 |
by (simp add: zero_compare_simps)
|
|
1772 |
with B[rule_format, of 1] norm_ge_zero[of "f 1"] have False by simp
|
|
1773 |
}
|
|
1774 |
then have Bp: "B \<ge> 0" by ferrack
|
|
1775 |
{fix x::"real ^ 'n"
|
|
1776 |
have "norm (f x) \<le> ?K * norm x"
|
|
1777 |
using B[rule_format, of x] norm_ge_zero[of x] norm_ge_zero[of "f x"] Bp
|
|
1778 |
apply (auto simp add: ring_simps split add: abs_split)
|
|
1779 |
apply (erule order_trans, simp)
|
|
1780 |
done
|
|
1781 |
}
|
|
1782 |
then show ?thesis using Kp by blast
|
|
1783 |
qed
|
|
1784 |
|
|
1785 |
lemma smult_conv_scaleR: "c *s x = scaleR c x"
|
|
1786 |
unfolding vector_scalar_mult_def vector_scaleR_def by simp
|
|
1787 |
|
|
1788 |
lemma linear_conv_bounded_linear:
|
|
1789 |
fixes f :: "real ^ _ \<Rightarrow> real ^ _"
|
|
1790 |
shows "linear f \<longleftrightarrow> bounded_linear f"
|
|
1791 |
proof
|
|
1792 |
assume "linear f"
|
|
1793 |
show "bounded_linear f"
|
|
1794 |
proof
|
|
1795 |
fix x y show "f (x + y) = f x + f y"
|
|
1796 |
using `linear f` unfolding linear_def by simp
|
|
1797 |
next
|
|
1798 |
fix r x show "f (scaleR r x) = scaleR r (f x)"
|
|
1799 |
using `linear f` unfolding linear_def
|
|
1800 |
by (simp add: smult_conv_scaleR)
|
|
1801 |
next
|
|
1802 |
have "\<exists>B. \<forall>x. norm (f x) \<le> B * norm x"
|
|
1803 |
using `linear f` by (rule linear_bounded)
|
|
1804 |
thus "\<exists>K. \<forall>x. norm (f x) \<le> norm x * K"
|
|
1805 |
by (simp add: mult_commute)
|
|
1806 |
qed
|
|
1807 |
next
|
|
1808 |
assume "bounded_linear f"
|
|
1809 |
then interpret f: bounded_linear f .
|
|
1810 |
show "linear f"
|
|
1811 |
unfolding linear_def smult_conv_scaleR
|
|
1812 |
by (simp add: f.add f.scaleR)
|
|
1813 |
qed
|
|
1814 |
|
|
1815 |
subsection{* Bilinear functions. *}
|
|
1816 |
|
|
1817 |
definition "bilinear f \<longleftrightarrow> (\<forall>x. linear(\<lambda>y. f x y)) \<and> (\<forall>y. linear(\<lambda>x. f x y))"
|
|
1818 |
|
|
1819 |
lemma bilinear_ladd: "bilinear h ==> h (x + y) z = (h x z) + (h y z)"
|
|
1820 |
by (simp add: bilinear_def linear_def)
|
|
1821 |
lemma bilinear_radd: "bilinear h ==> h x (y + z) = (h x y) + (h x z)"
|
|
1822 |
by (simp add: bilinear_def linear_def)
|
|
1823 |
|
|
1824 |
lemma bilinear_lmul: "bilinear h ==> h (c *s x) y = c *s (h x y)"
|
|
1825 |
by (simp add: bilinear_def linear_def)
|
|
1826 |
|
|
1827 |
lemma bilinear_rmul: "bilinear h ==> h x (c *s y) = c *s (h x y)"
|
|
1828 |
by (simp add: bilinear_def linear_def)
|
|
1829 |
|
|
1830 |
lemma bilinear_lneg: "bilinear h ==> h (- (x:: 'a::ring_1 ^ 'n)) y = -(h x y)"
|
|
1831 |
by (simp only: vector_sneg_minus1 bilinear_lmul)
|
|
1832 |
|
|
1833 |
lemma bilinear_rneg: "bilinear h ==> h x (- (y:: 'a::ring_1 ^ 'n)) = - h x y"
|
|
1834 |
by (simp only: vector_sneg_minus1 bilinear_rmul)
|
|
1835 |
|
|
1836 |
lemma (in ab_group_add) eq_add_iff: "x = x + y \<longleftrightarrow> y = 0"
|
|
1837 |
using add_imp_eq[of x y 0] by auto
|
|
1838 |
|
|
1839 |
lemma bilinear_lzero:
|
|
1840 |
fixes h :: "'a::ring^'n \<Rightarrow> _" assumes bh: "bilinear h" shows "h 0 x = 0"
|
|
1841 |
using bilinear_ladd[OF bh, of 0 0 x]
|
|
1842 |
by (simp add: eq_add_iff ring_simps)
|
|
1843 |
|
|
1844 |
lemma bilinear_rzero:
|
|
1845 |
fixes h :: "'a::ring^'n \<Rightarrow> _" assumes bh: "bilinear h" shows "h x 0 = 0"
|
|
1846 |
using bilinear_radd[OF bh, of x 0 0 ]
|
|
1847 |
by (simp add: eq_add_iff ring_simps)
|
|
1848 |
|
|
1849 |
lemma bilinear_lsub: "bilinear h ==> h (x - (y:: 'a::ring_1 ^ 'n)) z = h x z - h y z"
|
|
1850 |
by (simp add: diff_def bilinear_ladd bilinear_lneg)
|
|
1851 |
|
|
1852 |
lemma bilinear_rsub: "bilinear h ==> h z (x - (y:: 'a::ring_1 ^ 'n)) = h z x - h z y"
|
|
1853 |
by (simp add: diff_def bilinear_radd bilinear_rneg)
|
|
1854 |
|
|
1855 |
lemma bilinear_setsum:
|
|
1856 |
fixes h:: "'a ^'n \<Rightarrow> 'a::semiring_1^'m \<Rightarrow> 'a ^ 'k"
|
|
1857 |
assumes bh: "bilinear h" and fS: "finite S" and fT: "finite T"
|
|
1858 |
shows "h (setsum f S) (setsum g T) = setsum (\<lambda>(i,j). h (f i) (g j)) (S \<times> T) "
|
|
1859 |
proof-
|
|
1860 |
have "h (setsum f S) (setsum g T) = setsum (\<lambda>x. h (f x) (setsum g T)) S"
|
|
1861 |
apply (rule linear_setsum[unfolded o_def])
|
|
1862 |
using bh fS by (auto simp add: bilinear_def)
|
|
1863 |
also have "\<dots> = setsum (\<lambda>x. setsum (\<lambda>y. h (f x) (g y)) T) S"
|
|
1864 |
apply (rule setsum_cong, simp)
|
|
1865 |
apply (rule linear_setsum[unfolded o_def])
|
|
1866 |
using bh fT by (auto simp add: bilinear_def)
|
|
1867 |
finally show ?thesis unfolding setsum_cartesian_product .
|
|
1868 |
qed
|
|
1869 |
|
|
1870 |
lemma bilinear_bounded:
|
|
1871 |
fixes h:: "real ^'m::finite \<Rightarrow> real^'n::finite \<Rightarrow> real ^ 'k::finite"
|
|
1872 |
assumes bh: "bilinear h"
|
|
1873 |
shows "\<exists>B. \<forall>x y. norm (h x y) \<le> B * norm x * norm y"
|
|
1874 |
proof-
|
|
1875 |
let ?M = "UNIV :: 'm set"
|
|
1876 |
let ?N = "UNIV :: 'n set"
|
|
1877 |
let ?B = "setsum (\<lambda>(i,j). norm (h (basis i) (basis j))) (?M \<times> ?N)"
|
|
1878 |
have fM: "finite ?M" and fN: "finite ?N" by simp_all
|
|
1879 |
{fix x:: "real ^ 'm" and y :: "real^'n"
|
|
1880 |
have "norm (h x y) = norm (h (setsum (\<lambda>i. (x$i) *s basis i) ?M) (setsum (\<lambda>i. (y$i) *s basis i) ?N))" unfolding basis_expansion ..
|
|
1881 |
also have "\<dots> = norm (setsum (\<lambda> (i,j). h ((x$i) *s basis i) ((y$j) *s basis j)) (?M \<times> ?N))" unfolding bilinear_setsum[OF bh fM fN] ..
|
|
1882 |
finally have th: "norm (h x y) = \<dots>" .
|
|
1883 |
have "norm (h x y) \<le> ?B * norm x * norm y"
|
|
1884 |
apply (simp add: setsum_left_distrib th)
|
|
1885 |
apply (rule real_setsum_norm_le)
|
|
1886 |
using fN fM
|
|
1887 |
apply simp
|
|
1888 |
apply (auto simp add: bilinear_rmul[OF bh] bilinear_lmul[OF bh] norm_mul ring_simps)
|
|
1889 |
apply (rule mult_mono)
|
|
1890 |
apply (auto simp add: norm_ge_zero zero_le_mult_iff component_le_norm)
|
|
1891 |
apply (rule mult_mono)
|
|
1892 |
apply (auto simp add: norm_ge_zero zero_le_mult_iff component_le_norm)
|
|
1893 |
done}
|
|
1894 |
then show ?thesis by metis
|
|
1895 |
qed
|
|
1896 |
|
|
1897 |
lemma bilinear_bounded_pos:
|
|
1898 |
fixes h:: "real ^'m::finite \<Rightarrow> real^'n::finite \<Rightarrow> real ^ 'k::finite"
|
|
1899 |
assumes bh: "bilinear h"
|
|
1900 |
shows "\<exists>B > 0. \<forall>x y. norm (h x y) \<le> B * norm x * norm y"
|
|
1901 |
proof-
|
|
1902 |
from bilinear_bounded[OF bh] obtain B where
|
|
1903 |
B: "\<forall>x y. norm (h x y) \<le> B * norm x * norm y" by blast
|
|
1904 |
let ?K = "\<bar>B\<bar> + 1"
|
|
1905 |
have Kp: "?K > 0" by arith
|
|
1906 |
have KB: "B < ?K" by arith
|
|
1907 |
{fix x::"real ^'m" and y :: "real ^'n"
|
|
1908 |
from KB Kp
|
|
1909 |
have "B * norm x * norm y \<le> ?K * norm x * norm y"
|
|
1910 |
apply -
|
|
1911 |
apply (rule mult_right_mono, rule mult_right_mono)
|
|
1912 |
by (auto simp add: norm_ge_zero)
|
|
1913 |
then have "norm (h x y) \<le> ?K * norm x * norm y"
|
|
1914 |
using B[rule_format, of x y] by simp}
|
|
1915 |
with Kp show ?thesis by blast
|
|
1916 |
qed
|
|
1917 |
|
|
1918 |
lemma bilinear_conv_bounded_bilinear:
|
|
1919 |
fixes h :: "real ^ _ \<Rightarrow> real ^ _ \<Rightarrow> real ^ _"
|
|
1920 |
shows "bilinear h \<longleftrightarrow> bounded_bilinear h"
|
|
1921 |
proof
|
|
1922 |
assume "bilinear h"
|
|
1923 |
show "bounded_bilinear h"
|
|
1924 |
proof
|
|
1925 |
fix x y z show "h (x + y) z = h x z + h y z"
|
|
1926 |
using `bilinear h` unfolding bilinear_def linear_def by simp
|
|
1927 |
next
|
|
1928 |
fix x y z show "h x (y + z) = h x y + h x z"
|
|
1929 |
using `bilinear h` unfolding bilinear_def linear_def by simp
|
|
1930 |
next
|
|
1931 |
fix r x y show "h (scaleR r x) y = scaleR r (h x y)"
|
|
1932 |
using `bilinear h` unfolding bilinear_def linear_def
|
|
1933 |
by (simp add: smult_conv_scaleR)
|
|
1934 |
next
|
|
1935 |
fix r x y show "h x (scaleR r y) = scaleR r (h x y)"
|
|
1936 |
using `bilinear h` unfolding bilinear_def linear_def
|
|
1937 |
by (simp add: smult_conv_scaleR)
|
|
1938 |
next
|
|
1939 |
have "\<exists>B. \<forall>x y. norm (h x y) \<le> B * norm x * norm y"
|
|
1940 |
using `bilinear h` by (rule bilinear_bounded)
|
|
1941 |
thus "\<exists>K. \<forall>x y. norm (h x y) \<le> norm x * norm y * K"
|
|
1942 |
by (simp add: mult_ac)
|
|
1943 |
qed
|
|
1944 |
next
|
|
1945 |
assume "bounded_bilinear h"
|
|
1946 |
then interpret h: bounded_bilinear h .
|
|
1947 |
show "bilinear h"
|
|
1948 |
unfolding bilinear_def linear_conv_bounded_linear
|
|
1949 |
using h.bounded_linear_left h.bounded_linear_right
|
|
1950 |
by simp
|
|
1951 |
qed
|
|
1952 |
|
|
1953 |
subsection{* Adjoints. *}
|
|
1954 |
|
|
1955 |
definition "adjoint f = (SOME f'. \<forall>x y. f x \<bullet> y = x \<bullet> f' y)"
|
|
1956 |
|
|
1957 |
lemma choice_iff: "(\<forall>x. \<exists>y. P x y) \<longleftrightarrow> (\<exists>f. \<forall>x. P x (f x))" by metis
|
|
1958 |
|
|
1959 |
lemma adjoint_works_lemma:
|
|
1960 |
fixes f:: "'a::ring_1 ^'n::finite \<Rightarrow> 'a ^ 'm::finite"
|
|
1961 |
assumes lf: "linear f"
|
|
1962 |
shows "\<forall>x y. f x \<bullet> y = x \<bullet> adjoint f y"
|
|
1963 |
proof-
|
|
1964 |
let ?N = "UNIV :: 'n set"
|
|
1965 |
let ?M = "UNIV :: 'm set"
|
|
1966 |
have fN: "finite ?N" by simp
|
|
1967 |
have fM: "finite ?M" by simp
|
|
1968 |
{fix y:: "'a ^ 'm"
|
|
1969 |
let ?w = "(\<chi> i. (f (basis i) \<bullet> y)) :: 'a ^ 'n"
|
|
1970 |
{fix x
|
|
1971 |
have "f x \<bullet> y = f (setsum (\<lambda>i. (x$i) *s basis i) ?N) \<bullet> y"
|
|
1972 |
by (simp only: basis_expansion)
|
|
1973 |
also have "\<dots> = (setsum (\<lambda>i. (x$i) *s f (basis i)) ?N) \<bullet> y"
|
|
1974 |
unfolding linear_setsum[OF lf fN]
|
|
1975 |
by (simp add: linear_cmul[OF lf])
|
|
1976 |
finally have "f x \<bullet> y = x \<bullet> ?w"
|
|
1977 |
apply (simp only: )
|
|
1978 |
apply (simp add: dot_def setsum_left_distrib setsum_right_distrib setsum_commute[of _ ?M ?N] ring_simps)
|
|
1979 |
done}
|
|
1980 |
}
|
|
1981 |
then show ?thesis unfolding adjoint_def
|
|
1982 |
some_eq_ex[of "\<lambda>f'. \<forall>x y. f x \<bullet> y = x \<bullet> f' y"]
|
|
1983 |
using choice_iff[of "\<lambda>a b. \<forall>x. f x \<bullet> a = x \<bullet> b "]
|
|
1984 |
by metis
|
|
1985 |
qed
|
|
1986 |
|
|
1987 |
lemma adjoint_works:
|
|
1988 |
fixes f:: "'a::ring_1 ^'n::finite \<Rightarrow> 'a ^ 'm::finite"
|
|
1989 |
assumes lf: "linear f"
|
|
1990 |
shows "x \<bullet> adjoint f y = f x \<bullet> y"
|
|
1991 |
using adjoint_works_lemma[OF lf] by metis
|
|
1992 |
|
|
1993 |
|
|
1994 |
lemma adjoint_linear:
|
|
1995 |
fixes f :: "'a::comm_ring_1 ^'n::finite \<Rightarrow> 'a ^ 'm::finite"
|
|
1996 |
assumes lf: "linear f"
|
|
1997 |
shows "linear (adjoint f)"
|
|
1998 |
by (simp add: linear_def vector_eq_ldot[symmetric] dot_radd dot_rmult adjoint_works[OF lf])
|
|
1999 |
|
|
2000 |
lemma adjoint_clauses:
|
|
2001 |
fixes f:: "'a::comm_ring_1 ^'n::finite \<Rightarrow> 'a ^ 'm::finite"
|
|
2002 |
assumes lf: "linear f"
|
|
2003 |
shows "x \<bullet> adjoint f y = f x \<bullet> y"
|
|
2004 |
and "adjoint f y \<bullet> x = y \<bullet> f x"
|
|
2005 |
by (simp_all add: adjoint_works[OF lf] dot_sym )
|
|
2006 |
|
|
2007 |
lemma adjoint_adjoint:
|
|
2008 |
fixes f:: "'a::comm_ring_1 ^ 'n::finite \<Rightarrow> 'a ^ 'm::finite"
|
|
2009 |
assumes lf: "linear f"
|
|
2010 |
shows "adjoint (adjoint f) = f"
|
|
2011 |
apply (rule ext)
|
|
2012 |
by (simp add: vector_eq_ldot[symmetric] adjoint_clauses[OF adjoint_linear[OF lf]] adjoint_clauses[OF lf])
|
|
2013 |
|
|
2014 |
lemma adjoint_unique:
|
|
2015 |
fixes f:: "'a::comm_ring_1 ^ 'n::finite \<Rightarrow> 'a ^ 'm::finite"
|
|
2016 |
assumes lf: "linear f" and u: "\<forall>x y. f' x \<bullet> y = x \<bullet> f y"
|
|
2017 |
shows "f' = adjoint f"
|
|
2018 |
apply (rule ext)
|
|
2019 |
using u
|
|
2020 |
by (simp add: vector_eq_rdot[symmetric] adjoint_clauses[OF lf])
|
|
2021 |
|
|
2022 |
text{* Matrix notation. NB: an MxN matrix is of type @{typ "'a^'n^'m"}, not @{typ "'a^'m^'n"} *}
|
|
2023 |
|
|
2024 |
consts generic_mult :: "'a \<Rightarrow> 'b \<Rightarrow> 'c" (infixr "\<star>" 75)
|
|
2025 |
|
|
2026 |
defs (overloaded)
|
|
2027 |
matrix_matrix_mult_def: "(m:: ('a::semiring_1) ^'n^'m) \<star> (m' :: 'a ^'p^'n) \<equiv> (\<chi> i j. setsum (\<lambda>k. ((m$i)$k) * ((m'$k)$j)) (UNIV :: 'n set)) ::'a ^ 'p ^'m"
|
|
2028 |
|
|
2029 |
abbreviation
|
|
2030 |
matrix_matrix_mult' :: "('a::semiring_1) ^'n^'m \<Rightarrow> 'a ^'p^'n \<Rightarrow> 'a ^ 'p ^'m" (infixl "**" 70)
|
|
2031 |
where "m ** m' == m\<star> m'"
|
|
2032 |
|
|
2033 |
defs (overloaded)
|
|
2034 |
matrix_vector_mult_def: "(m::('a::semiring_1) ^'n^'m) \<star> (x::'a ^'n) \<equiv> (\<chi> i. setsum (\<lambda>j. ((m$i)$j) * (x$j)) (UNIV ::'n set)) :: 'a^'m"
|
|
2035 |
|
|
2036 |
abbreviation
|
|
2037 |
matrix_vector_mult' :: "('a::semiring_1) ^'n^'m \<Rightarrow> 'a ^'n \<Rightarrow> 'a ^ 'm" (infixl "*v" 70)
|
|
2038 |
where
|
|
2039 |
"m *v v == m \<star> v"
|
|
2040 |
|
|
2041 |
defs (overloaded)
|
|
2042 |
vector_matrix_mult_def: "(x::'a^'m) \<star> (m::('a::semiring_1) ^'n^'m) \<equiv> (\<chi> j. setsum (\<lambda>i. ((m$i)$j) * (x$i)) (UNIV :: 'm set)) :: 'a^'n"
|
|
2043 |
|
|
2044 |
abbreviation
|
|
2045 |
vactor_matrix_mult' :: "'a ^ 'm \<Rightarrow> ('a::semiring_1) ^'n^'m \<Rightarrow> 'a ^'n " (infixl "v*" 70)
|
|
2046 |
where
|
|
2047 |
"v v* m == v \<star> m"
|
|
2048 |
|
|
2049 |
definition "(mat::'a::zero => 'a ^'n^'n) k = (\<chi> i j. if i = j then k else 0)"
|
|
2050 |
definition "(transp::'a^'n^'m \<Rightarrow> 'a^'m^'n) A = (\<chi> i j. ((A$j)$i))"
|
|
2051 |
definition "(row::'m => 'a ^'n^'m \<Rightarrow> 'a ^'n) i A = (\<chi> j. ((A$i)$j))"
|
|
2052 |
definition "(column::'n =>'a^'n^'m =>'a^'m) j A = (\<chi> i. ((A$i)$j))"
|
|
2053 |
definition "rows(A::'a^'n^'m) = { row i A | i. i \<in> (UNIV :: 'm set)}"
|
|
2054 |
definition "columns(A::'a^'n^'m) = { column i A | i. i \<in> (UNIV :: 'n set)}"
|
|
2055 |
|
|
2056 |
lemma mat_0[simp]: "mat 0 = 0" by (vector mat_def)
|
|
2057 |
lemma matrix_add_ldistrib: "(A ** (B + C)) = (A \<star> B) + (A \<star> C)"
|
|
2058 |
by (vector matrix_matrix_mult_def setsum_addf[symmetric] ring_simps)
|
|
2059 |
|
|
2060 |
lemma matrix_mul_lid:
|
|
2061 |
fixes A :: "'a::semiring_1 ^ 'm ^ 'n::finite"
|
|
2062 |
shows "mat 1 ** A = A"
|
|
2063 |
apply (simp add: matrix_matrix_mult_def mat_def)
|
|
2064 |
apply vector
|
|
2065 |
by (auto simp only: cond_value_iff cond_application_beta setsum_delta'[OF finite] mult_1_left mult_zero_left if_True UNIV_I)
|
|
2066 |
|
|
2067 |
|
|
2068 |
lemma matrix_mul_rid:
|
|
2069 |
fixes A :: "'a::semiring_1 ^ 'm::finite ^ 'n"
|
|
2070 |
shows "A ** mat 1 = A"
|
|
2071 |
apply (simp add: matrix_matrix_mult_def mat_def)
|
|
2072 |
apply vector
|
|
2073 |
by (auto simp only: cond_value_iff cond_application_beta setsum_delta[OF finite] mult_1_right mult_zero_right if_True UNIV_I cong: if_cong)
|
|
2074 |
|
|
2075 |
lemma matrix_mul_assoc: "A ** (B ** C) = (A ** B) ** C"
|
|
2076 |
apply (vector matrix_matrix_mult_def setsum_right_distrib setsum_left_distrib mult_assoc)
|
|
2077 |
apply (subst setsum_commute)
|
|
2078 |
apply simp
|
|
2079 |
done
|
|
2080 |
|
|
2081 |
lemma matrix_vector_mul_assoc: "A *v (B *v x) = (A ** B) *v x"
|
|
2082 |
apply (vector matrix_matrix_mult_def matrix_vector_mult_def setsum_right_distrib setsum_left_distrib mult_assoc)
|
|
2083 |
apply (subst setsum_commute)
|
|
2084 |
apply simp
|
|
2085 |
done
|
|
2086 |
|
|
2087 |
lemma matrix_vector_mul_lid: "mat 1 *v x = (x::'a::semiring_1 ^ 'n::finite)"
|
|
2088 |
apply (vector matrix_vector_mult_def mat_def)
|
|
2089 |
by (simp add: cond_value_iff cond_application_beta
|
|
2090 |
setsum_delta' cong del: if_weak_cong)
|
|
2091 |
|
|
2092 |
lemma matrix_transp_mul: "transp(A ** B) = transp B ** transp (A::'a::comm_semiring_1^'m^'n)"
|
|
2093 |
by (simp add: matrix_matrix_mult_def transp_def Cart_eq mult_commute)
|
|
2094 |
|
|
2095 |
lemma matrix_eq:
|
|
2096 |
fixes A B :: "'a::semiring_1 ^ 'n::finite ^ 'm"
|
|
2097 |
shows "A = B \<longleftrightarrow> (\<forall>x. A *v x = B *v x)" (is "?lhs \<longleftrightarrow> ?rhs")
|
|
2098 |
apply auto
|
|
2099 |
apply (subst Cart_eq)
|
|
2100 |
apply clarify
|
|
2101 |
apply (clarsimp simp add: matrix_vector_mult_def basis_def cond_value_iff cond_application_beta Cart_eq cong del: if_weak_cong)
|
|
2102 |
apply (erule_tac x="basis ia" in allE)
|
|
2103 |
apply (erule_tac x="i" in allE)
|
|
2104 |
by (auto simp add: basis_def cond_value_iff cond_application_beta setsum_delta[OF finite] cong del: if_weak_cong)
|
|
2105 |
|
|
2106 |
lemma matrix_vector_mul_component:
|
|
2107 |
shows "((A::'a::semiring_1^'n'^'m) *v x)$k = (A$k) \<bullet> x"
|
|
2108 |
by (simp add: matrix_vector_mult_def dot_def)
|
|
2109 |
|
|
2110 |
lemma dot_lmul_matrix: "((x::'a::comm_semiring_1 ^'n) v* A) \<bullet> y = x \<bullet> (A *v y)"
|
|
2111 |
apply (simp add: dot_def matrix_vector_mult_def vector_matrix_mult_def setsum_left_distrib setsum_right_distrib mult_ac)
|
|
2112 |
apply (subst setsum_commute)
|
|
2113 |
by simp
|
|
2114 |
|
|
2115 |
lemma transp_mat: "transp (mat n) = mat n"
|
|
2116 |
by (vector transp_def mat_def)
|
|
2117 |
|
|
2118 |
lemma transp_transp: "transp(transp A) = A"
|
|
2119 |
by (vector transp_def)
|
|
2120 |
|
|
2121 |
lemma row_transp:
|
|
2122 |
fixes A:: "'a::semiring_1^'n^'m"
|
|
2123 |
shows "row i (transp A) = column i A"
|
|
2124 |
by (simp add: row_def column_def transp_def Cart_eq)
|
|
2125 |
|
|
2126 |
lemma column_transp:
|
|
2127 |
fixes A:: "'a::semiring_1^'n^'m"
|
|
2128 |
shows "column i (transp A) = row i A"
|
|
2129 |
by (simp add: row_def column_def transp_def Cart_eq)
|
|
2130 |
|
|
2131 |
lemma rows_transp: "rows(transp (A::'a::semiring_1^'n^'m)) = columns A"
|
|
2132 |
by (auto simp add: rows_def columns_def row_transp intro: set_ext)
|
|
2133 |
|
|
2134 |
lemma columns_transp: "columns(transp (A::'a::semiring_1^'n^'m)) = rows A" by (metis transp_transp rows_transp)
|
|
2135 |
|
|
2136 |
text{* Two sometimes fruitful ways of looking at matrix-vector multiplication. *}
|
|
2137 |
|
|
2138 |
lemma matrix_mult_dot: "A *v x = (\<chi> i. A$i \<bullet> x)"
|
|
2139 |
by (simp add: matrix_vector_mult_def dot_def)
|
|
2140 |
|
|
2141 |
lemma matrix_mult_vsum: "(A::'a::comm_semiring_1^'n^'m) *v x = setsum (\<lambda>i. (x$i) *s column i A) (UNIV:: 'n set)"
|
|
2142 |
by (simp add: matrix_vector_mult_def Cart_eq column_def mult_commute)
|
|
2143 |
|
|
2144 |
lemma vector_componentwise:
|
|
2145 |
"(x::'a::ring_1^'n::finite) = (\<chi> j. setsum (\<lambda>i. (x$i) * (basis i :: 'a^'n)$j) (UNIV :: 'n set))"
|
|
2146 |
apply (subst basis_expansion[symmetric])
|
|
2147 |
by (vector Cart_eq setsum_component)
|
|
2148 |
|
|
2149 |
lemma linear_componentwise:
|
|
2150 |
fixes f:: "'a::ring_1 ^ 'm::finite \<Rightarrow> 'a ^ 'n"
|
|
2151 |
assumes lf: "linear f"
|
|
2152 |
shows "(f x)$j = setsum (\<lambda>i. (x$i) * (f (basis i)$j)) (UNIV :: 'm set)" (is "?lhs = ?rhs")
|
|
2153 |
proof-
|
|
2154 |
let ?M = "(UNIV :: 'm set)"
|
|
2155 |
let ?N = "(UNIV :: 'n set)"
|
|
2156 |
have fM: "finite ?M" by simp
|
|
2157 |
have "?rhs = (setsum (\<lambda>i.(x$i) *s f (basis i) ) ?M)$j"
|
|
2158 |
unfolding vector_smult_component[symmetric]
|
|
2159 |
unfolding setsum_component[of "(\<lambda>i.(x$i) *s f (basis i :: 'a^'m))" ?M]
|
|
2160 |
..
|
|
2161 |
then show ?thesis unfolding linear_setsum_mul[OF lf fM, symmetric] basis_expansion ..
|
|
2162 |
qed
|
|
2163 |
|
|
2164 |
text{* Inverse matrices (not necessarily square) *}
|
|
2165 |
|
|
2166 |
definition "invertible(A::'a::semiring_1^'n^'m) \<longleftrightarrow> (\<exists>A'::'a^'m^'n. A ** A' = mat 1 \<and> A' ** A = mat 1)"
|
|
2167 |
|
|
2168 |
definition "matrix_inv(A:: 'a::semiring_1^'n^'m) =
|
|
2169 |
(SOME A'::'a^'m^'n. A ** A' = mat 1 \<and> A' ** A = mat 1)"
|
|
2170 |
|
|
2171 |
text{* Correspondence between matrices and linear operators. *}
|
|
2172 |
|
|
2173 |
definition matrix:: "('a::{plus,times, one, zero}^'m \<Rightarrow> 'a ^ 'n) \<Rightarrow> 'a^'m^'n"
|
|
2174 |
where "matrix f = (\<chi> i j. (f(basis j))$i)"
|
|
2175 |
|
|
2176 |
lemma matrix_vector_mul_linear: "linear(\<lambda>x. A *v (x::'a::comm_semiring_1 ^ 'n))"
|
|
2177 |
by (simp add: linear_def matrix_vector_mult_def Cart_eq ring_simps setsum_right_distrib setsum_addf)
|
|
2178 |
|
|
2179 |
lemma matrix_works: assumes lf: "linear f" shows "matrix f *v x = f (x::'a::comm_ring_1 ^ 'n::finite)"
|
|
2180 |
apply (simp add: matrix_def matrix_vector_mult_def Cart_eq mult_commute)
|
|
2181 |
apply clarify
|
|
2182 |
apply (rule linear_componentwise[OF lf, symmetric])
|
|
2183 |
done
|
|
2184 |
|
|
2185 |
lemma matrix_vector_mul: "linear f ==> f = (\<lambda>x. matrix f *v (x::'a::comm_ring_1 ^ 'n::finite))" by (simp add: ext matrix_works)
|
|
2186 |
|
|
2187 |
lemma matrix_of_matrix_vector_mul: "matrix(\<lambda>x. A *v (x :: 'a:: comm_ring_1 ^ 'n::finite)) = A"
|
|
2188 |
by (simp add: matrix_eq matrix_vector_mul_linear matrix_works)
|
|
2189 |
|
|
2190 |
lemma matrix_compose:
|
|
2191 |
assumes lf: "linear (f::'a::comm_ring_1^'n::finite \<Rightarrow> 'a^'m::finite)"
|
|
2192 |
and lg: "linear (g::'a::comm_ring_1^'m::finite \<Rightarrow> 'a^'k)"
|
|
2193 |
shows "matrix (g o f) = matrix g ** matrix f"
|
|
2194 |
using lf lg linear_compose[OF lf lg] matrix_works[OF linear_compose[OF lf lg]]
|
|
2195 |
by (simp add: matrix_eq matrix_works matrix_vector_mul_assoc[symmetric] o_def)
|
|
2196 |
|
|
2197 |
lemma matrix_vector_column:"(A::'a::comm_semiring_1^'n^'m) *v x = setsum (\<lambda>i. (x$i) *s ((transp A)$i)) (UNIV:: 'n set)"
|
|
2198 |
by (simp add: matrix_vector_mult_def transp_def Cart_eq mult_commute)
|
|
2199 |
|
|
2200 |
lemma adjoint_matrix: "adjoint(\<lambda>x. (A::'a::comm_ring_1^'n::finite^'m::finite) *v x) = (\<lambda>x. transp A *v x)"
|
|
2201 |
apply (rule adjoint_unique[symmetric])
|
|
2202 |
apply (rule matrix_vector_mul_linear)
|
|
2203 |
apply (simp add: transp_def dot_def matrix_vector_mult_def setsum_left_distrib setsum_right_distrib)
|
|
2204 |
apply (subst setsum_commute)
|
|
2205 |
apply (auto simp add: mult_ac)
|
|
2206 |
done
|
|
2207 |
|
|
2208 |
lemma matrix_adjoint: assumes lf: "linear (f :: 'a::comm_ring_1^'n::finite \<Rightarrow> 'a ^ 'm::finite)"
|
|
2209 |
shows "matrix(adjoint f) = transp(matrix f)"
|
|
2210 |
apply (subst matrix_vector_mul[OF lf])
|
|
2211 |
unfolding adjoint_matrix matrix_of_matrix_vector_mul ..
|
|
2212 |
|
|
2213 |
subsection{* Interlude: Some properties of real sets *}
|
|
2214 |
|
|
2215 |
lemma seq_mono_lemma: assumes "\<forall>(n::nat) \<ge> m. (d n :: real) < e n" and "\<forall>n \<ge> m. e n <= e m"
|
|
2216 |
shows "\<forall>n \<ge> m. d n < e m"
|
|
2217 |
using prems apply auto
|
|
2218 |
apply (erule_tac x="n" in allE)
|
|
2219 |
apply (erule_tac x="n" in allE)
|
|
2220 |
apply auto
|
|
2221 |
done
|
|
2222 |
|
|
2223 |
|
|
2224 |
lemma real_convex_bound_lt:
|
|
2225 |
assumes xa: "(x::real) < a" and ya: "y < a" and u: "0 <= u" and v: "0 <= v"
|
|
2226 |
and uv: "u + v = 1"
|
|
2227 |
shows "u * x + v * y < a"
|
|
2228 |
proof-
|
|
2229 |
have uv': "u = 0 \<longrightarrow> v \<noteq> 0" using u v uv by arith
|
|
2230 |
have "a = a * (u + v)" unfolding uv by simp
|
|
2231 |
hence th: "u * a + v * a = a" by (simp add: ring_simps)
|
|
2232 |
from xa u have "u \<noteq> 0 \<Longrightarrow> u*x < u*a" by (simp add: mult_compare_simps)
|
|
2233 |
from ya v have "v \<noteq> 0 \<Longrightarrow> v * y < v * a" by (simp add: mult_compare_simps)
|
|
2234 |
from xa ya u v have "u * x + v * y < u * a + v * a"
|
|
2235 |
apply (cases "u = 0", simp_all add: uv')
|
|
2236 |
apply(rule mult_strict_left_mono)
|
|
2237 |
using uv' apply simp_all
|
|
2238 |
|
|
2239 |
apply (rule add_less_le_mono)
|
|
2240 |
apply(rule mult_strict_left_mono)
|
|
2241 |
apply simp_all
|
|
2242 |
apply (rule mult_left_mono)
|
|
2243 |
apply simp_all
|
|
2244 |
done
|
|
2245 |
thus ?thesis unfolding th .
|
|
2246 |
qed
|
|
2247 |
|
|
2248 |
lemma real_convex_bound_le:
|
|
2249 |
assumes xa: "(x::real) \<le> a" and ya: "y \<le> a" and u: "0 <= u" and v: "0 <= v"
|
|
2250 |
and uv: "u + v = 1"
|
|
2251 |
shows "u * x + v * y \<le> a"
|
|
2252 |
proof-
|
|
2253 |
from xa ya u v have "u * x + v * y \<le> u * a + v * a" by (simp add: add_mono mult_left_mono)
|
|
2254 |
also have "\<dots> \<le> (u + v) * a" by (simp add: ring_simps)
|
|
2255 |
finally show ?thesis unfolding uv by simp
|
|
2256 |
qed
|
|
2257 |
|
|
2258 |
lemma infinite_enumerate: assumes fS: "infinite S"
|
|
2259 |
shows "\<exists>r. subseq r \<and> (\<forall>n. r n \<in> S)"
|
|
2260 |
unfolding subseq_def
|
|
2261 |
using enumerate_in_set[OF fS] enumerate_mono[of _ _ S] fS by auto
|
|
2262 |
|
|
2263 |
lemma approachable_lt_le: "(\<exists>(d::real)>0. \<forall>x. f x < d \<longrightarrow> P x) \<longleftrightarrow> (\<exists>d>0. \<forall>x. f x \<le> d \<longrightarrow> P x)"
|
|
2264 |
apply auto
|
|
2265 |
apply (rule_tac x="d/2" in exI)
|
|
2266 |
apply auto
|
|
2267 |
done
|
|
2268 |
|
|
2269 |
|
|
2270 |
lemma triangle_lemma:
|
|
2271 |
assumes x: "0 <= (x::real)" and y:"0 <= y" and z: "0 <= z" and xy: "x^2 <= y^2 + z^2"
|
|
2272 |
shows "x <= y + z"
|
|
2273 |
proof-
|
|
2274 |
have "y^2 + z^2 \<le> y^2 + 2*y*z + z^2" using z y by (simp add: zero_compare_simps)
|
|
2275 |
with xy have th: "x ^2 \<le> (y+z)^2" by (simp add: power2_eq_square ring_simps)
|
|
2276 |
from y z have yz: "y + z \<ge> 0" by arith
|
|
2277 |
from power2_le_imp_le[OF th yz] show ?thesis .
|
|
2278 |
qed
|
|
2279 |
|
|
2280 |
|
|
2281 |
lemma lambda_skolem: "(\<forall>i. \<exists>x. P i x) \<longleftrightarrow>
|
|
2282 |
(\<exists>x::'a ^ 'n. \<forall>i. P i (x$i))" (is "?lhs \<longleftrightarrow> ?rhs")
|
|
2283 |
proof-
|
|
2284 |
let ?S = "(UNIV :: 'n set)"
|
|
2285 |
{assume H: "?rhs"
|
|
2286 |
then have ?lhs by auto}
|
|
2287 |
moreover
|
|
2288 |
{assume H: "?lhs"
|
|
2289 |
then obtain f where f:"\<forall>i. P i (f i)" unfolding choice_iff by metis
|
|
2290 |
let ?x = "(\<chi> i. (f i)) :: 'a ^ 'n"
|
|
2291 |
{fix i
|
|
2292 |
from f have "P i (f i)" by metis
|
|
2293 |
then have "P i (?x$i)" by auto
|
|
2294 |
}
|
|
2295 |
hence "\<forall>i. P i (?x$i)" by metis
|
|
2296 |
hence ?rhs by metis }
|
|
2297 |
ultimately show ?thesis by metis
|
|
2298 |
qed
|
|
2299 |
|
|
2300 |
subsection{* Operator norm. *}
|
|
2301 |
|
33270
|
2302 |
definition "onorm f = Sup {norm (f x)| x. norm x = 1}"
|
33175
|
2303 |
|
|
2304 |
lemma norm_bound_generalize:
|
|
2305 |
fixes f:: "real ^'n::finite \<Rightarrow> real^'m::finite"
|
|
2306 |
assumes lf: "linear f"
|
|
2307 |
shows "(\<forall>x. norm x = 1 \<longrightarrow> norm (f x) \<le> b) \<longleftrightarrow> (\<forall>x. norm (f x) \<le> b * norm x)" (is "?lhs \<longleftrightarrow> ?rhs")
|
|
2308 |
proof-
|
|
2309 |
{assume H: ?rhs
|
|
2310 |
{fix x :: "real^'n" assume x: "norm x = 1"
|
|
2311 |
from H[rule_format, of x] x have "norm (f x) \<le> b" by simp}
|
|
2312 |
then have ?lhs by blast }
|
|
2313 |
|
|
2314 |
moreover
|
|
2315 |
{assume H: ?lhs
|
|
2316 |
from H[rule_format, of "basis arbitrary"]
|
|
2317 |
have bp: "b \<ge> 0" using norm_ge_zero[of "f (basis arbitrary)"]
|
|
2318 |
by (auto simp add: norm_basis elim: order_trans [OF norm_ge_zero])
|
|
2319 |
{fix x :: "real ^'n"
|
|
2320 |
{assume "x = 0"
|
|
2321 |
then have "norm (f x) \<le> b * norm x" by (simp add: linear_0[OF lf] bp)}
|
|
2322 |
moreover
|
|
2323 |
{assume x0: "x \<noteq> 0"
|
|
2324 |
hence n0: "norm x \<noteq> 0" by (metis norm_eq_zero)
|
|
2325 |
let ?c = "1/ norm x"
|
|
2326 |
have "norm (?c*s x) = 1" using x0 by (simp add: n0 norm_mul)
|
|
2327 |
with H have "norm (f(?c*s x)) \<le> b" by blast
|
|
2328 |
hence "?c * norm (f x) \<le> b"
|
|
2329 |
by (simp add: linear_cmul[OF lf] norm_mul)
|
|
2330 |
hence "norm (f x) \<le> b * norm x"
|
|
2331 |
using n0 norm_ge_zero[of x] by (auto simp add: field_simps)}
|
|
2332 |
ultimately have "norm (f x) \<le> b * norm x" by blast}
|
|
2333 |
then have ?rhs by blast}
|
|
2334 |
ultimately show ?thesis by blast
|
|
2335 |
qed
|
|
2336 |
|
|
2337 |
lemma onorm:
|
|
2338 |
fixes f:: "real ^'n::finite \<Rightarrow> real ^'m::finite"
|
|
2339 |
assumes lf: "linear f"
|
|
2340 |
shows "norm (f x) <= onorm f * norm x"
|
|
2341 |
and "\<forall>x. norm (f x) <= b * norm x \<Longrightarrow> onorm f <= b"
|
|
2342 |
proof-
|
|
2343 |
{
|
|
2344 |
let ?S = "{norm (f x) |x. norm x = 1}"
|
|
2345 |
have Se: "?S \<noteq> {}" using norm_basis by auto
|
|
2346 |
from linear_bounded[OF lf] have b: "\<exists> b. ?S *<= b"
|
|
2347 |
unfolding norm_bound_generalize[OF lf, symmetric] by (auto simp add: setle_def)
|
33270
|
2348 |
{from Sup[OF Se b, unfolded onorm_def[symmetric]]
|
33175
|
2349 |
show "norm (f x) <= onorm f * norm x"
|
|
2350 |
apply -
|
|
2351 |
apply (rule spec[where x = x])
|
|
2352 |
unfolding norm_bound_generalize[OF lf, symmetric]
|
|
2353 |
by (auto simp add: isLub_def isUb_def leastP_def setge_def setle_def)}
|
|
2354 |
{
|
|
2355 |
show "\<forall>x. norm (f x) <= b * norm x \<Longrightarrow> onorm f <= b"
|
33270
|
2356 |
using Sup[OF Se b, unfolded onorm_def[symmetric]]
|
33175
|
2357 |
unfolding norm_bound_generalize[OF lf, symmetric]
|
|
2358 |
by (auto simp add: isLub_def isUb_def leastP_def setge_def setle_def)}
|
|
2359 |
}
|
|
2360 |
qed
|
|
2361 |
|
|
2362 |
lemma onorm_pos_le: assumes lf: "linear (f::real ^'n::finite \<Rightarrow> real ^'m::finite)" shows "0 <= onorm f"
|
|
2363 |
using order_trans[OF norm_ge_zero onorm(1)[OF lf, of "basis arbitrary"], unfolded norm_basis] by simp
|
|
2364 |
|
|
2365 |
lemma onorm_eq_0: assumes lf: "linear (f::real ^'n::finite \<Rightarrow> real ^'m::finite)"
|
|
2366 |
shows "onorm f = 0 \<longleftrightarrow> (\<forall>x. f x = 0)"
|
|
2367 |
using onorm[OF lf]
|
|
2368 |
apply (auto simp add: onorm_pos_le)
|
|
2369 |
apply atomize
|
|
2370 |
apply (erule allE[where x="0::real"])
|
|
2371 |
using onorm_pos_le[OF lf]
|
|
2372 |
apply arith
|
|
2373 |
done
|
|
2374 |
|
|
2375 |
lemma onorm_const: "onorm(\<lambda>x::real^'n::finite. (y::real ^ 'm::finite)) = norm y"
|
|
2376 |
proof-
|
|
2377 |
let ?f = "\<lambda>x::real^'n. (y::real ^ 'm)"
|
|
2378 |
have th: "{norm (?f x)| x. norm x = 1} = {norm y}"
|
|
2379 |
by(auto intro: vector_choose_size set_ext)
|
|
2380 |
show ?thesis
|
|
2381 |
unfolding onorm_def th
|
33270
|
2382 |
apply (rule Sup_unique) by (simp_all add: setle_def)
|
33175
|
2383 |
qed
|
|
2384 |
|
|
2385 |
lemma onorm_pos_lt: assumes lf: "linear (f::real ^ 'n::finite \<Rightarrow> real ^'m::finite)"
|
|
2386 |
shows "0 < onorm f \<longleftrightarrow> ~(\<forall>x. f x = 0)"
|
|
2387 |
unfolding onorm_eq_0[OF lf, symmetric]
|
|
2388 |
using onorm_pos_le[OF lf] by arith
|
|
2389 |
|
|
2390 |
lemma onorm_compose:
|
|
2391 |
assumes lf: "linear (f::real ^'n::finite \<Rightarrow> real ^'m::finite)"
|
|
2392 |
and lg: "linear (g::real^'k::finite \<Rightarrow> real^'n::finite)"
|
|
2393 |
shows "onorm (f o g) <= onorm f * onorm g"
|
|
2394 |
apply (rule onorm(2)[OF linear_compose[OF lg lf], rule_format])
|
|
2395 |
unfolding o_def
|
|
2396 |
apply (subst mult_assoc)
|
|
2397 |
apply (rule order_trans)
|
|
2398 |
apply (rule onorm(1)[OF lf])
|
|
2399 |
apply (rule mult_mono1)
|
|
2400 |
apply (rule onorm(1)[OF lg])
|
|
2401 |
apply (rule onorm_pos_le[OF lf])
|
|
2402 |
done
|
|
2403 |
|
|
2404 |
lemma onorm_neg_lemma: assumes lf: "linear (f::real ^'n::finite \<Rightarrow> real^'m::finite)"
|
|
2405 |
shows "onorm (\<lambda>x. - f x) \<le> onorm f"
|
|
2406 |
using onorm[OF linear_compose_neg[OF lf]] onorm[OF lf]
|
|
2407 |
unfolding norm_minus_cancel by metis
|
|
2408 |
|
|
2409 |
lemma onorm_neg: assumes lf: "linear (f::real ^'n::finite \<Rightarrow> real^'m::finite)"
|
|
2410 |
shows "onorm (\<lambda>x. - f x) = onorm f"
|
|
2411 |
using onorm_neg_lemma[OF lf] onorm_neg_lemma[OF linear_compose_neg[OF lf]]
|
|
2412 |
by simp
|
|
2413 |
|
|
2414 |
lemma onorm_triangle:
|
|
2415 |
assumes lf: "linear (f::real ^'n::finite \<Rightarrow> real ^'m::finite)" and lg: "linear g"
|
|
2416 |
shows "onorm (\<lambda>x. f x + g x) <= onorm f + onorm g"
|
|
2417 |
apply(rule onorm(2)[OF linear_compose_add[OF lf lg], rule_format])
|
|
2418 |
apply (rule order_trans)
|
|
2419 |
apply (rule norm_triangle_ineq)
|
|
2420 |
apply (simp add: distrib)
|
|
2421 |
apply (rule add_mono)
|
|
2422 |
apply (rule onorm(1)[OF lf])
|
|
2423 |
apply (rule onorm(1)[OF lg])
|
|
2424 |
done
|
|
2425 |
|
|
2426 |
lemma onorm_triangle_le: "linear (f::real ^'n::finite \<Rightarrow> real ^'m::finite) \<Longrightarrow> linear g \<Longrightarrow> onorm(f) + onorm(g) <= e
|
|
2427 |
\<Longrightarrow> onorm(\<lambda>x. f x + g x) <= e"
|
|
2428 |
apply (rule order_trans)
|
|
2429 |
apply (rule onorm_triangle)
|
|
2430 |
apply assumption+
|
|
2431 |
done
|
|
2432 |
|
|
2433 |
lemma onorm_triangle_lt: "linear (f::real ^'n::finite \<Rightarrow> real ^'m::finite) \<Longrightarrow> linear g \<Longrightarrow> onorm(f) + onorm(g) < e
|
|
2434 |
==> onorm(\<lambda>x. f x + g x) < e"
|
|
2435 |
apply (rule order_le_less_trans)
|
|
2436 |
apply (rule onorm_triangle)
|
|
2437 |
by assumption+
|
|
2438 |
|
|
2439 |
(* "lift" from 'a to 'a^1 and "drop" from 'a^1 to 'a -- FIXME: potential use of transfer *)
|
|
2440 |
|
|
2441 |
definition vec1:: "'a \<Rightarrow> 'a ^ 1" where "vec1 x = (\<chi> i. x)"
|
|
2442 |
|
|
2443 |
definition dest_vec1:: "'a ^1 \<Rightarrow> 'a"
|
|
2444 |
where "dest_vec1 x = (x$1)"
|
|
2445 |
|
|
2446 |
lemma vec1_component[simp]: "(vec1 x)$1 = x"
|
|
2447 |
by (simp add: vec1_def)
|
|
2448 |
|
|
2449 |
lemma vec1_dest_vec1[simp]: "vec1(dest_vec1 x) = x" "dest_vec1(vec1 y) = y"
|
|
2450 |
by (simp_all add: vec1_def dest_vec1_def Cart_eq forall_1)
|
|
2451 |
|
|
2452 |
lemma forall_vec1: "(\<forall>x. P x) \<longleftrightarrow> (\<forall>x. P (vec1 x))" by (metis vec1_dest_vec1)
|
|
2453 |
|
|
2454 |
lemma exists_vec1: "(\<exists>x. P x) \<longleftrightarrow> (\<exists>x. P(vec1 x))" by (metis vec1_dest_vec1)
|
|
2455 |
|
|
2456 |
lemma forall_dest_vec1: "(\<forall>x. P x) \<longleftrightarrow> (\<forall>x. P(dest_vec1 x))" by (metis vec1_dest_vec1)
|
|
2457 |
|
|
2458 |
lemma exists_dest_vec1: "(\<exists>x. P x) \<longleftrightarrow> (\<exists>x. P(dest_vec1 x))"by (metis vec1_dest_vec1)
|
|
2459 |
|
|
2460 |
lemma vec1_eq[simp]: "vec1 x = vec1 y \<longleftrightarrow> x = y" by (metis vec1_dest_vec1)
|
|
2461 |
|
|
2462 |
lemma dest_vec1_eq[simp]: "dest_vec1 x = dest_vec1 y \<longleftrightarrow> x = y" by (metis vec1_dest_vec1)
|
|
2463 |
|
|
2464 |
lemma vec1_in_image_vec1: "vec1 x \<in> (vec1 ` S) \<longleftrightarrow> x \<in> S" by auto
|
|
2465 |
|
|
2466 |
lemma vec1_vec: "vec1 x = vec x" by (vector vec1_def)
|
|
2467 |
|
|
2468 |
lemma vec1_add: "vec1(x + y) = vec1 x + vec1 y" by (vector vec1_def)
|
|
2469 |
lemma vec1_sub: "vec1(x - y) = vec1 x - vec1 y" by (vector vec1_def)
|
|
2470 |
lemma vec1_cmul: "vec1(c* x) = c *s vec1 x " by (vector vec1_def)
|
|
2471 |
lemma vec1_neg: "vec1(- x) = - vec1 x " by (vector vec1_def)
|
|
2472 |
|
|
2473 |
lemma vec1_setsum: assumes fS: "finite S"
|
|
2474 |
shows "vec1(setsum f S) = setsum (vec1 o f) S"
|
|
2475 |
apply (induct rule: finite_induct[OF fS])
|
|
2476 |
apply (simp add: vec1_vec)
|
|
2477 |
apply (auto simp add: vec1_add)
|
|
2478 |
done
|
|
2479 |
|
|
2480 |
lemma dest_vec1_lambda: "dest_vec1(\<chi> i. x i) = x 1"
|
|
2481 |
by (simp add: dest_vec1_def)
|
|
2482 |
|
|
2483 |
lemma dest_vec1_vec: "dest_vec1(vec x) = x"
|
|
2484 |
by (simp add: vec1_vec[symmetric])
|
|
2485 |
|
|
2486 |
lemma dest_vec1_add: "dest_vec1(x + y) = dest_vec1 x + dest_vec1 y"
|
|
2487 |
by (metis vec1_dest_vec1 vec1_add)
|
|
2488 |
|
|
2489 |
lemma dest_vec1_sub: "dest_vec1(x - y) = dest_vec1 x - dest_vec1 y"
|
|
2490 |
by (metis vec1_dest_vec1 vec1_sub)
|
|
2491 |
|
|
2492 |
lemma dest_vec1_cmul: "dest_vec1(c*sx) = c * dest_vec1 x"
|
|
2493 |
by (metis vec1_dest_vec1 vec1_cmul)
|
|
2494 |
|
|
2495 |
lemma dest_vec1_neg: "dest_vec1(- x) = - dest_vec1 x"
|
|
2496 |
by (metis vec1_dest_vec1 vec1_neg)
|
|
2497 |
|
|
2498 |
lemma dest_vec1_0[simp]: "dest_vec1 0 = 0" by (metis vec_0 dest_vec1_vec)
|
|
2499 |
|
|
2500 |
lemma dest_vec1_sum: assumes fS: "finite S"
|
|
2501 |
shows "dest_vec1(setsum f S) = setsum (dest_vec1 o f) S"
|
|
2502 |
apply (induct rule: finite_induct[OF fS])
|
|
2503 |
apply (simp add: dest_vec1_vec)
|
|
2504 |
apply (auto simp add: dest_vec1_add)
|
|
2505 |
done
|
|
2506 |
|
|
2507 |
lemma norm_vec1: "norm(vec1 x) = abs(x)"
|
|
2508 |
by (simp add: vec1_def norm_real)
|
|
2509 |
|
|
2510 |
lemma dist_vec1: "dist(vec1 x) (vec1 y) = abs(x - y)"
|
|
2511 |
by (simp only: dist_real vec1_component)
|
|
2512 |
lemma abs_dest_vec1: "norm x = \<bar>dest_vec1 x\<bar>"
|
|
2513 |
by (metis vec1_dest_vec1 norm_vec1)
|
|
2514 |
|
|
2515 |
lemma linear_vmul_dest_vec1:
|
|
2516 |
fixes f:: "'a::semiring_1^'n \<Rightarrow> 'a^1"
|
|
2517 |
shows "linear f \<Longrightarrow> linear (\<lambda>x. dest_vec1(f x) *s v)"
|
|
2518 |
unfolding dest_vec1_def
|
|
2519 |
apply (rule linear_vmul_component)
|
|
2520 |
by auto
|
|
2521 |
|
|
2522 |
lemma linear_from_scalars:
|
|
2523 |
assumes lf: "linear (f::'a::comm_ring_1 ^1 \<Rightarrow> 'a^'n)"
|
|
2524 |
shows "f = (\<lambda>x. dest_vec1 x *s column 1 (matrix f))"
|
|
2525 |
apply (rule ext)
|
|
2526 |
apply (subst matrix_works[OF lf, symmetric])
|
|
2527 |
apply (auto simp add: Cart_eq matrix_vector_mult_def dest_vec1_def column_def mult_commute UNIV_1)
|
|
2528 |
done
|
|
2529 |
|
|
2530 |
lemma linear_to_scalars: assumes lf: "linear (f::'a::comm_ring_1 ^'n::finite \<Rightarrow> 'a^1)"
|
|
2531 |
shows "f = (\<lambda>x. vec1(row 1 (matrix f) \<bullet> x))"
|
|
2532 |
apply (rule ext)
|
|
2533 |
apply (subst matrix_works[OF lf, symmetric])
|
|
2534 |
apply (simp add: Cart_eq matrix_vector_mult_def vec1_def row_def dot_def mult_commute forall_1)
|
|
2535 |
done
|
|
2536 |
|
|
2537 |
lemma dest_vec1_eq_0: "dest_vec1 x = 0 \<longleftrightarrow> x = 0"
|
|
2538 |
by (simp add: dest_vec1_eq[symmetric])
|
|
2539 |
|
|
2540 |
lemma setsum_scalars: assumes fS: "finite S"
|
|
2541 |
shows "setsum f S = vec1 (setsum (dest_vec1 o f) S)"
|
|
2542 |
unfolding vec1_setsum[OF fS] by simp
|
|
2543 |
|
|
2544 |
lemma dest_vec1_wlog_le: "(\<And>(x::'a::linorder ^ 1) y. P x y \<longleftrightarrow> P y x) \<Longrightarrow> (\<And>x y. dest_vec1 x <= dest_vec1 y ==> P x y) \<Longrightarrow> P x y"
|
|
2545 |
apply (cases "dest_vec1 x \<le> dest_vec1 y")
|
|
2546 |
apply simp
|
|
2547 |
apply (subgoal_tac "dest_vec1 y \<le> dest_vec1 x")
|
|
2548 |
apply (auto)
|
|
2549 |
done
|
|
2550 |
|
|
2551 |
text{* Pasting vectors. *}
|
|
2552 |
|
|
2553 |
lemma linear_fstcart: "linear fstcart"
|
|
2554 |
by (auto simp add: linear_def Cart_eq)
|
|
2555 |
|
|
2556 |
lemma linear_sndcart: "linear sndcart"
|
|
2557 |
by (auto simp add: linear_def Cart_eq)
|
|
2558 |
|
|
2559 |
lemma fstcart_vec[simp]: "fstcart(vec x) = vec x"
|
|
2560 |
by (simp add: Cart_eq)
|
|
2561 |
|
|
2562 |
lemma fstcart_add[simp]:"fstcart(x + y) = fstcart (x::'a::{plus,times}^('b + 'c)) + fstcart y"
|
|
2563 |
by (simp add: Cart_eq)
|
|
2564 |
|
|
2565 |
lemma fstcart_cmul[simp]:"fstcart(c*s x) = c*s fstcart (x::'a::{plus,times}^('b + 'c))"
|
|
2566 |
by (simp add: Cart_eq)
|
|
2567 |
|
|
2568 |
lemma fstcart_neg[simp]:"fstcart(- x) = - fstcart (x::'a::ring_1^('b + 'c))"
|
|
2569 |
by (simp add: Cart_eq)
|
|
2570 |
|
|
2571 |
lemma fstcart_sub[simp]:"fstcart(x - y) = fstcart (x::'a::ring_1^('b + 'c)) - fstcart y"
|
|
2572 |
by (simp add: Cart_eq)
|
|
2573 |
|
|
2574 |
lemma fstcart_setsum:
|
|
2575 |
fixes f:: "'d \<Rightarrow> 'a::semiring_1^_"
|
|
2576 |
assumes fS: "finite S"
|
|
2577 |
shows "fstcart (setsum f S) = setsum (\<lambda>i. fstcart (f i)) S"
|
|
2578 |
by (induct rule: finite_induct[OF fS], simp_all add: vec_0[symmetric] del: vec_0)
|
|
2579 |
|
|
2580 |
lemma sndcart_vec[simp]: "sndcart(vec x) = vec x"
|
|
2581 |
by (simp add: Cart_eq)
|
|
2582 |
|
|
2583 |
lemma sndcart_add[simp]:"sndcart(x + y) = sndcart (x::'a::{plus,times}^('b + 'c)) + sndcart y"
|
|
2584 |
by (simp add: Cart_eq)
|
|
2585 |
|
|
2586 |
lemma sndcart_cmul[simp]:"sndcart(c*s x) = c*s sndcart (x::'a::{plus,times}^('b + 'c))"
|
|
2587 |
by (simp add: Cart_eq)
|
|
2588 |
|
|
2589 |
lemma sndcart_neg[simp]:"sndcart(- x) = - sndcart (x::'a::ring_1^('b + 'c))"
|
|
2590 |
by (simp add: Cart_eq)
|
|
2591 |
|
|
2592 |
lemma sndcart_sub[simp]:"sndcart(x - y) = sndcart (x::'a::ring_1^('b + 'c)) - sndcart y"
|
|
2593 |
by (simp add: Cart_eq)
|
|
2594 |
|
|
2595 |
lemma sndcart_setsum:
|
|
2596 |
fixes f:: "'d \<Rightarrow> 'a::semiring_1^_"
|
|
2597 |
assumes fS: "finite S"
|
|
2598 |
shows "sndcart (setsum f S) = setsum (\<lambda>i. sndcart (f i)) S"
|
|
2599 |
by (induct rule: finite_induct[OF fS], simp_all add: vec_0[symmetric] del: vec_0)
|
|
2600 |
|
|
2601 |
lemma pastecart_vec[simp]: "pastecart (vec x) (vec x) = vec x"
|
|
2602 |
by (simp add: pastecart_eq fstcart_pastecart sndcart_pastecart)
|
|
2603 |
|
|
2604 |
lemma pastecart_add[simp]:"pastecart (x1::'a::{plus,times}^_) y1 + pastecart x2 y2 = pastecart (x1 + x2) (y1 + y2)"
|
|
2605 |
by (simp add: pastecart_eq fstcart_pastecart sndcart_pastecart)
|
|
2606 |
|
|
2607 |
lemma pastecart_cmul[simp]: "pastecart (c *s (x1::'a::{plus,times}^_)) (c *s y1) = c *s pastecart x1 y1"
|
|
2608 |
by (simp add: pastecart_eq fstcart_pastecart sndcart_pastecart)
|
|
2609 |
|
|
2610 |
lemma pastecart_neg[simp]: "pastecart (- (x::'a::ring_1^_)) (- y) = - pastecart x y"
|
|
2611 |
unfolding vector_sneg_minus1 pastecart_cmul ..
|
|
2612 |
|
|
2613 |
lemma pastecart_sub: "pastecart (x1::'a::ring_1^_) y1 - pastecart x2 y2 = pastecart (x1 - x2) (y1 - y2)"
|
|
2614 |
by (simp add: diff_def pastecart_neg[symmetric] del: pastecart_neg)
|
|
2615 |
|
|
2616 |
lemma pastecart_setsum:
|
|
2617 |
fixes f:: "'d \<Rightarrow> 'a::semiring_1^_"
|
|
2618 |
assumes fS: "finite S"
|
|
2619 |
shows "pastecart (setsum f S) (setsum g S) = setsum (\<lambda>i. pastecart (f i) (g i)) S"
|
|
2620 |
by (simp add: pastecart_eq fstcart_setsum[OF fS] sndcart_setsum[OF fS] fstcart_pastecart sndcart_pastecart)
|
|
2621 |
|
|
2622 |
lemma setsum_Plus:
|
|
2623 |
"\<lbrakk>finite A; finite B\<rbrakk> \<Longrightarrow>
|
|
2624 |
(\<Sum>x\<in>A <+> B. g x) = (\<Sum>x\<in>A. g (Inl x)) + (\<Sum>x\<in>B. g (Inr x))"
|
|
2625 |
unfolding Plus_def
|
|
2626 |
by (subst setsum_Un_disjoint, auto simp add: setsum_reindex)
|
|
2627 |
|
|
2628 |
lemma setsum_UNIV_sum:
|
|
2629 |
fixes g :: "'a::finite + 'b::finite \<Rightarrow> _"
|
|
2630 |
shows "(\<Sum>x\<in>UNIV. g x) = (\<Sum>x\<in>UNIV. g (Inl x)) + (\<Sum>x\<in>UNIV. g (Inr x))"
|
|
2631 |
apply (subst UNIV_Plus_UNIV [symmetric])
|
|
2632 |
apply (rule setsum_Plus [OF finite finite])
|
|
2633 |
done
|
|
2634 |
|
|
2635 |
lemma norm_fstcart: "norm(fstcart x) <= norm (x::real ^('n::finite + 'm::finite))"
|
|
2636 |
proof-
|
|
2637 |
have th0: "norm x = norm (pastecart (fstcart x) (sndcart x))"
|
|
2638 |
by (simp add: pastecart_fst_snd)
|
|
2639 |
have th1: "fstcart x \<bullet> fstcart x \<le> pastecart (fstcart x) (sndcart x) \<bullet> pastecart (fstcart x) (sndcart x)"
|
|
2640 |
by (simp add: dot_def setsum_UNIV_sum pastecart_def setsum_nonneg)
|
|
2641 |
then show ?thesis
|
|
2642 |
unfolding th0
|
|
2643 |
unfolding real_vector_norm_def real_sqrt_le_iff id_def
|
|
2644 |
by (simp add: dot_def)
|
|
2645 |
qed
|
|
2646 |
|
|
2647 |
lemma dist_fstcart: "dist(fstcart (x::real^_)) (fstcart y) <= dist x y"
|
|
2648 |
unfolding dist_norm by (metis fstcart_sub[symmetric] norm_fstcart)
|
|
2649 |
|
|
2650 |
lemma norm_sndcart: "norm(sndcart x) <= norm (x::real ^('n::finite + 'm::finite))"
|
|
2651 |
proof-
|
|
2652 |
have th0: "norm x = norm (pastecart (fstcart x) (sndcart x))"
|
|
2653 |
by (simp add: pastecart_fst_snd)
|
|
2654 |
have th1: "sndcart x \<bullet> sndcart x \<le> pastecart (fstcart x) (sndcart x) \<bullet> pastecart (fstcart x) (sndcart x)"
|
|
2655 |
by (simp add: dot_def setsum_UNIV_sum pastecart_def setsum_nonneg)
|
|
2656 |
then show ?thesis
|
|
2657 |
unfolding th0
|
|
2658 |
unfolding real_vector_norm_def real_sqrt_le_iff id_def
|
|
2659 |
by (simp add: dot_def)
|
|
2660 |
qed
|
|
2661 |
|
|
2662 |
lemma dist_sndcart: "dist(sndcart (x::real^_)) (sndcart y) <= dist x y"
|
|
2663 |
unfolding dist_norm by (metis sndcart_sub[symmetric] norm_sndcart)
|
|
2664 |
|
|
2665 |
lemma dot_pastecart: "(pastecart (x1::'a::{times,comm_monoid_add}^'n::finite) (x2::'a::{times,comm_monoid_add}^'m::finite)) \<bullet> (pastecart y1 y2) = x1 \<bullet> y1 + x2 \<bullet> y2"
|
|
2666 |
by (simp add: dot_def setsum_UNIV_sum pastecart_def)
|
|
2667 |
|
|
2668 |
text {* TODO: move to NthRoot *}
|
|
2669 |
lemma sqrt_add_le_add_sqrt:
|
|
2670 |
assumes x: "0 \<le> x" and y: "0 \<le> y"
|
|
2671 |
shows "sqrt (x + y) \<le> sqrt x + sqrt y"
|
|
2672 |
apply (rule power2_le_imp_le)
|
|
2673 |
apply (simp add: real_sum_squared_expand add_nonneg_nonneg x y)
|
|
2674 |
apply (simp add: mult_nonneg_nonneg x y)
|
|
2675 |
apply (simp add: add_nonneg_nonneg x y)
|
|
2676 |
done
|
|
2677 |
|
|
2678 |
lemma norm_pastecart: "norm (pastecart x y) <= norm x + norm y"
|
|
2679 |
unfolding norm_vector_def setL2_def setsum_UNIV_sum
|
|
2680 |
by (simp add: sqrt_add_le_add_sqrt setsum_nonneg)
|
|
2681 |
|
|
2682 |
subsection {* A generic notion of "hull" (convex, affine, conic hull and closure). *}
|
|
2683 |
|
|
2684 |
definition hull :: "'a set set \<Rightarrow> 'a set \<Rightarrow> 'a set" (infixl "hull" 75) where
|
|
2685 |
"S hull s = Inter {t. t \<in> S \<and> s \<subseteq> t}"
|
|
2686 |
|
|
2687 |
lemma hull_same: "s \<in> S \<Longrightarrow> S hull s = s"
|
|
2688 |
unfolding hull_def by auto
|
|
2689 |
|
|
2690 |
lemma hull_in: "(\<And>T. T \<subseteq> S ==> Inter T \<in> S) ==> (S hull s) \<in> S"
|
|
2691 |
unfolding hull_def subset_iff by auto
|
|
2692 |
|
|
2693 |
lemma hull_eq: "(\<And>T. T \<subseteq> S ==> Inter T \<in> S) ==> (S hull s) = s \<longleftrightarrow> s \<in> S"
|
|
2694 |
using hull_same[of s S] hull_in[of S s] by metis
|
|
2695 |
|
|
2696 |
|
|
2697 |
lemma hull_hull: "S hull (S hull s) = S hull s"
|
|
2698 |
unfolding hull_def by blast
|
|
2699 |
|
|
2700 |
lemma hull_subset: "s \<subseteq> (S hull s)"
|
|
2701 |
unfolding hull_def by blast
|
|
2702 |
|
|
2703 |
lemma hull_mono: " s \<subseteq> t ==> (S hull s) \<subseteq> (S hull t)"
|
|
2704 |
unfolding hull_def by blast
|
|
2705 |
|
|
2706 |
lemma hull_antimono: "S \<subseteq> T ==> (T hull s) \<subseteq> (S hull s)"
|
|
2707 |
unfolding hull_def by blast
|
|
2708 |
|
|
2709 |
lemma hull_minimal: "s \<subseteq> t \<Longrightarrow> t \<in> S ==> (S hull s) \<subseteq> t"
|
|
2710 |
unfolding hull_def by blast
|
|
2711 |
|
|
2712 |
lemma subset_hull: "t \<in> S ==> S hull s \<subseteq> t \<longleftrightarrow> s \<subseteq> t"
|
|
2713 |
unfolding hull_def by blast
|
|
2714 |
|
|
2715 |
lemma hull_unique: "s \<subseteq> t \<Longrightarrow> t \<in> S \<Longrightarrow> (\<And>t'. s \<subseteq> t' \<Longrightarrow> t' \<in> S ==> t \<subseteq> t')
|
|
2716 |
==> (S hull s = t)"
|
|
2717 |
unfolding hull_def by auto
|
|
2718 |
|
|
2719 |
lemma hull_induct: "(\<And>x. x\<in> S \<Longrightarrow> P x) \<Longrightarrow> Q {x. P x} \<Longrightarrow> \<forall>x\<in> Q hull S. P x"
|
|
2720 |
using hull_minimal[of S "{x. P x}" Q]
|
|
2721 |
by (auto simp add: subset_eq Collect_def mem_def)
|
|
2722 |
|
|
2723 |
lemma hull_inc: "x \<in> S \<Longrightarrow> x \<in> P hull S" by (metis hull_subset subset_eq)
|
|
2724 |
|
|
2725 |
lemma hull_union_subset: "(S hull s) \<union> (S hull t) \<subseteq> (S hull (s \<union> t))"
|
|
2726 |
unfolding Un_subset_iff by (metis hull_mono Un_upper1 Un_upper2)
|
|
2727 |
|
|
2728 |
lemma hull_union: assumes T: "\<And>T. T \<subseteq> S ==> Inter T \<in> S"
|
|
2729 |
shows "S hull (s \<union> t) = S hull (S hull s \<union> S hull t)"
|
|
2730 |
apply rule
|
|
2731 |
apply (rule hull_mono)
|
|
2732 |
unfolding Un_subset_iff
|
|
2733 |
apply (metis hull_subset Un_upper1 Un_upper2 subset_trans)
|
|
2734 |
apply (rule hull_minimal)
|
|
2735 |
apply (metis hull_union_subset)
|
|
2736 |
apply (metis hull_in T)
|
|
2737 |
done
|
|
2738 |
|
|
2739 |
lemma hull_redundant_eq: "a \<in> (S hull s) \<longleftrightarrow> (S hull (insert a s) = S hull s)"
|
|
2740 |
unfolding hull_def by blast
|
|
2741 |
|
|
2742 |
lemma hull_redundant: "a \<in> (S hull s) ==> (S hull (insert a s) = S hull s)"
|
|
2743 |
by (metis hull_redundant_eq)
|
|
2744 |
|
|
2745 |
text{* Archimedian properties and useful consequences. *}
|
|
2746 |
|
|
2747 |
lemma real_arch_simple: "\<exists>n. x <= real (n::nat)"
|
|
2748 |
using reals_Archimedean2[of x] apply auto by (rule_tac x="Suc n" in exI, auto)
|
|
2749 |
lemmas real_arch_lt = reals_Archimedean2
|
|
2750 |
|
|
2751 |
lemmas real_arch = reals_Archimedean3
|
|
2752 |
|
|
2753 |
lemma real_arch_inv: "0 < e \<longleftrightarrow> (\<exists>n::nat. n \<noteq> 0 \<and> 0 < inverse (real n) \<and> inverse (real n) < e)"
|
|
2754 |
using reals_Archimedean
|
|
2755 |
apply (auto simp add: field_simps inverse_positive_iff_positive)
|
|
2756 |
apply (subgoal_tac "inverse (real n) > 0")
|
|
2757 |
apply arith
|
|
2758 |
apply simp
|
|
2759 |
done
|
|
2760 |
|
|
2761 |
lemma real_pow_lbound: "0 <= x ==> 1 + real n * x <= (1 + x) ^ n"
|
|
2762 |
proof(induct n)
|
|
2763 |
case 0 thus ?case by simp
|
|
2764 |
next
|
|
2765 |
case (Suc n)
|
|
2766 |
hence h: "1 + real n * x \<le> (1 + x) ^ n" by simp
|
|
2767 |
from h have p: "1 \<le> (1 + x) ^ n" using Suc.prems by simp
|
|
2768 |
from h have "1 + real n * x + x \<le> (1 + x) ^ n + x" by simp
|
|
2769 |
also have "\<dots> \<le> (1 + x) ^ Suc n" apply (subst diff_le_0_iff_le[symmetric])
|
|
2770 |
apply (simp add: ring_simps)
|
|
2771 |
using mult_left_mono[OF p Suc.prems] by simp
|
|
2772 |
finally show ?case by (simp add: real_of_nat_Suc ring_simps)
|
|
2773 |
qed
|
|
2774 |
|
|
2775 |
lemma real_arch_pow: assumes x: "1 < (x::real)" shows "\<exists>n. y < x^n"
|
|
2776 |
proof-
|
|
2777 |
from x have x0: "x - 1 > 0" by arith
|
|
2778 |
from real_arch[OF x0, rule_format, of y]
|
|
2779 |
obtain n::nat where n:"y < real n * (x - 1)" by metis
|
|
2780 |
from x0 have x00: "x- 1 \<ge> 0" by arith
|
|
2781 |
from real_pow_lbound[OF x00, of n] n
|
|
2782 |
have "y < x^n" by auto
|
|
2783 |
then show ?thesis by metis
|
|
2784 |
qed
|
|
2785 |
|
|
2786 |
lemma real_arch_pow2: "\<exists>n. (x::real) < 2^ n"
|
|
2787 |
using real_arch_pow[of 2 x] by simp
|
|
2788 |
|
|
2789 |
lemma real_arch_pow_inv: assumes y: "(y::real) > 0" and x1: "x < 1"
|
|
2790 |
shows "\<exists>n. x^n < y"
|
|
2791 |
proof-
|
|
2792 |
{assume x0: "x > 0"
|
|
2793 |
from x0 x1 have ix: "1 < 1/x" by (simp add: field_simps)
|
|
2794 |
from real_arch_pow[OF ix, of "1/y"]
|
|
2795 |
obtain n where n: "1/y < (1/x)^n" by blast
|
|
2796 |
then
|
|
2797 |
have ?thesis using y x0 by (auto simp add: field_simps power_divide) }
|
|
2798 |
moreover
|
|
2799 |
{assume "\<not> x > 0" with y x1 have ?thesis apply auto by (rule exI[where x=1], auto)}
|
|
2800 |
ultimately show ?thesis by metis
|
|
2801 |
qed
|
|
2802 |
|
|
2803 |
lemma forall_pos_mono: "(\<And>d e::real. d < e \<Longrightarrow> P d ==> P e) \<Longrightarrow> (\<And>n::nat. n \<noteq> 0 ==> P(inverse(real n))) \<Longrightarrow> (\<And>e. 0 < e ==> P e)"
|
|
2804 |
by (metis real_arch_inv)
|
|
2805 |
|
|
2806 |
lemma forall_pos_mono_1: "(\<And>d e::real. d < e \<Longrightarrow> P d ==> P e) \<Longrightarrow> (\<And>n. P(inverse(real (Suc n)))) ==> 0 < e ==> P e"
|
|
2807 |
apply (rule forall_pos_mono)
|
|
2808 |
apply auto
|
|
2809 |
apply (atomize)
|
|
2810 |
apply (erule_tac x="n - 1" in allE)
|
|
2811 |
apply auto
|
|
2812 |
done
|
|
2813 |
|
|
2814 |
lemma real_archimedian_rdiv_eq_0: assumes x0: "x \<ge> 0" and c: "c \<ge> 0" and xc: "\<forall>(m::nat)>0. real m * x \<le> c"
|
|
2815 |
shows "x = 0"
|
|
2816 |
proof-
|
|
2817 |
{assume "x \<noteq> 0" with x0 have xp: "x > 0" by arith
|
|
2818 |
from real_arch[OF xp, rule_format, of c] obtain n::nat where n: "c < real n * x" by blast
|
|
2819 |
with xc[rule_format, of n] have "n = 0" by arith
|
|
2820 |
with n c have False by simp}
|
|
2821 |
then show ?thesis by blast
|
|
2822 |
qed
|
|
2823 |
|
|
2824 |
(* ------------------------------------------------------------------------- *)
|
|
2825 |
(* Geometric progression. *)
|
|
2826 |
(* ------------------------------------------------------------------------- *)
|
|
2827 |
|
|
2828 |
lemma sum_gp_basic: "((1::'a::{field}) - x) * setsum (\<lambda>i. x^i) {0 .. n} = (1 - x^(Suc n))"
|
|
2829 |
(is "?lhs = ?rhs")
|
|
2830 |
proof-
|
|
2831 |
{assume x1: "x = 1" hence ?thesis by simp}
|
|
2832 |
moreover
|
|
2833 |
{assume x1: "x\<noteq>1"
|
|
2834 |
hence x1': "x - 1 \<noteq> 0" "1 - x \<noteq> 0" "x - 1 = - (1 - x)" "- (1 - x) \<noteq> 0" by auto
|
|
2835 |
from geometric_sum[OF x1, of "Suc n", unfolded x1']
|
|
2836 |
have "(- (1 - x)) * setsum (\<lambda>i. x^i) {0 .. n} = - (1 - x^(Suc n))"
|
|
2837 |
unfolding atLeastLessThanSuc_atLeastAtMost
|
|
2838 |
using x1' apply (auto simp only: field_simps)
|
|
2839 |
apply (simp add: ring_simps)
|
|
2840 |
done
|
|
2841 |
then have ?thesis by (simp add: ring_simps) }
|
|
2842 |
ultimately show ?thesis by metis
|
|
2843 |
qed
|
|
2844 |
|
|
2845 |
lemma sum_gp_multiplied: assumes mn: "m <= n"
|
|
2846 |
shows "((1::'a::{field}) - x) * setsum (op ^ x) {m..n} = x^m - x^ Suc n"
|
|
2847 |
(is "?lhs = ?rhs")
|
|
2848 |
proof-
|
|
2849 |
let ?S = "{0..(n - m)}"
|
|
2850 |
from mn have mn': "n - m \<ge> 0" by arith
|
|
2851 |
let ?f = "op + m"
|
|
2852 |
have i: "inj_on ?f ?S" unfolding inj_on_def by auto
|
|
2853 |
have f: "?f ` ?S = {m..n}"
|
|
2854 |
using mn apply (auto simp add: image_iff Bex_def) by arith
|
|
2855 |
have th: "op ^ x o op + m = (\<lambda>i. x^m * x^i)"
|
|
2856 |
by (rule ext, simp add: power_add power_mult)
|
|
2857 |
from setsum_reindex[OF i, of "op ^ x", unfolded f th setsum_right_distrib[symmetric]]
|
|
2858 |
have "?lhs = x^m * ((1 - x) * setsum (op ^ x) {0..n - m})" by simp
|
|
2859 |
then show ?thesis unfolding sum_gp_basic using mn
|
|
2860 |
by (simp add: ring_simps power_add[symmetric])
|
|
2861 |
qed
|
|
2862 |
|
|
2863 |
lemma sum_gp: "setsum (op ^ (x::'a::{field})) {m .. n} =
|
|
2864 |
(if n < m then 0 else if x = 1 then of_nat ((n + 1) - m)
|
|
2865 |
else (x^ m - x^ (Suc n)) / (1 - x))"
|
|
2866 |
proof-
|
|
2867 |
{assume nm: "n < m" hence ?thesis by simp}
|
|
2868 |
moreover
|
|
2869 |
{assume "\<not> n < m" hence nm: "m \<le> n" by arith
|
|
2870 |
{assume x: "x = 1" hence ?thesis by simp}
|
|
2871 |
moreover
|
|
2872 |
{assume x: "x \<noteq> 1" hence nz: "1 - x \<noteq> 0" by simp
|
|
2873 |
from sum_gp_multiplied[OF nm, of x] nz have ?thesis by (simp add: field_simps)}
|
|
2874 |
ultimately have ?thesis by metis
|
|
2875 |
}
|
|
2876 |
ultimately show ?thesis by metis
|
|
2877 |
qed
|
|
2878 |
|
|
2879 |
lemma sum_gp_offset: "setsum (op ^ (x::'a::{field})) {m .. m+n} =
|
|
2880 |
(if x = 1 then of_nat n + 1 else x^m * (1 - x^Suc n) / (1 - x))"
|
|
2881 |
unfolding sum_gp[of x m "m + n"] power_Suc
|
|
2882 |
by (simp add: ring_simps power_add)
|
|
2883 |
|
|
2884 |
|
|
2885 |
subsection{* A bit of linear algebra. *}
|
|
2886 |
|
|
2887 |
definition "subspace S \<longleftrightarrow> 0 \<in> S \<and> (\<forall>x\<in> S. \<forall>y \<in>S. x + y \<in> S) \<and> (\<forall>c. \<forall>x \<in>S. c *s x \<in>S )"
|
|
2888 |
definition "span S = (subspace hull S)"
|
|
2889 |
definition "dependent S \<longleftrightarrow> (\<exists>a \<in> S. a \<in> span(S - {a}))"
|
|
2890 |
abbreviation "independent s == ~(dependent s)"
|
|
2891 |
|
|
2892 |
(* Closure properties of subspaces. *)
|
|
2893 |
|
|
2894 |
lemma subspace_UNIV[simp]: "subspace(UNIV)" by (simp add: subspace_def)
|
|
2895 |
|
|
2896 |
lemma subspace_0: "subspace S ==> 0 \<in> S" by (metis subspace_def)
|
|
2897 |
|
|
2898 |
lemma subspace_add: "subspace S \<Longrightarrow> x \<in> S \<Longrightarrow> y \<in> S ==> x + y \<in> S"
|
|
2899 |
by (metis subspace_def)
|
|
2900 |
|
|
2901 |
lemma subspace_mul: "subspace S \<Longrightarrow> x \<in> S \<Longrightarrow> c *s x \<in> S"
|
|
2902 |
by (metis subspace_def)
|
|
2903 |
|
|
2904 |
lemma subspace_neg: "subspace S \<Longrightarrow> (x::'a::ring_1^'n) \<in> S \<Longrightarrow> - x \<in> S"
|
|
2905 |
by (metis vector_sneg_minus1 subspace_mul)
|
|
2906 |
|
|
2907 |
lemma subspace_sub: "subspace S \<Longrightarrow> (x::'a::ring_1^'n) \<in> S \<Longrightarrow> y \<in> S \<Longrightarrow> x - y \<in> S"
|
|
2908 |
by (metis diff_def subspace_add subspace_neg)
|
|
2909 |
|
|
2910 |
lemma subspace_setsum:
|
|
2911 |
assumes sA: "subspace A" and fB: "finite B"
|
|
2912 |
and f: "\<forall>x\<in> B. f x \<in> A"
|
|
2913 |
shows "setsum f B \<in> A"
|
|
2914 |
using fB f sA
|
|
2915 |
apply(induct rule: finite_induct[OF fB])
|
|
2916 |
by (simp add: subspace_def sA, auto simp add: sA subspace_add)
|
|
2917 |
|
|
2918 |
lemma subspace_linear_image:
|
|
2919 |
assumes lf: "linear (f::'a::semiring_1^'n \<Rightarrow> _)" and sS: "subspace S"
|
|
2920 |
shows "subspace(f ` S)"
|
|
2921 |
using lf sS linear_0[OF lf]
|
|
2922 |
unfolding linear_def subspace_def
|
|
2923 |
apply (auto simp add: image_iff)
|
|
2924 |
apply (rule_tac x="x + y" in bexI, auto)
|
|
2925 |
apply (rule_tac x="c*s x" in bexI, auto)
|
|
2926 |
done
|
|
2927 |
|
|
2928 |
lemma subspace_linear_preimage: "linear (f::'a::semiring_1^'n \<Rightarrow> _) ==> subspace S ==> subspace {x. f x \<in> S}"
|
|
2929 |
by (auto simp add: subspace_def linear_def linear_0[of f])
|
|
2930 |
|
|
2931 |
lemma subspace_trivial: "subspace {0::'a::semiring_1 ^_}"
|
|
2932 |
by (simp add: subspace_def)
|
|
2933 |
|
|
2934 |
lemma subspace_inter: "subspace A \<Longrightarrow> subspace B ==> subspace (A \<inter> B)"
|
|
2935 |
by (simp add: subspace_def)
|
|
2936 |
|
|
2937 |
|
|
2938 |
lemma span_mono: "A \<subseteq> B ==> span A \<subseteq> span B"
|
|
2939 |
by (metis span_def hull_mono)
|
|
2940 |
|
|
2941 |
lemma subspace_span: "subspace(span S)"
|
|
2942 |
unfolding span_def
|
|
2943 |
apply (rule hull_in[unfolded mem_def])
|
|
2944 |
apply (simp only: subspace_def Inter_iff Int_iff subset_eq)
|
|
2945 |
apply auto
|
|
2946 |
apply (erule_tac x="X" in ballE)
|
|
2947 |
apply (simp add: mem_def)
|
|
2948 |
apply blast
|
|
2949 |
apply (erule_tac x="X" in ballE)
|
|
2950 |
apply (erule_tac x="X" in ballE)
|
|
2951 |
apply (erule_tac x="X" in ballE)
|
|
2952 |
apply (clarsimp simp add: mem_def)
|
|
2953 |
apply simp
|
|
2954 |
apply simp
|
|
2955 |
apply simp
|
|
2956 |
apply (erule_tac x="X" in ballE)
|
|
2957 |
apply (erule_tac x="X" in ballE)
|
|
2958 |
apply (simp add: mem_def)
|
|
2959 |
apply simp
|
|
2960 |
apply simp
|
|
2961 |
done
|
|
2962 |
|
|
2963 |
lemma span_clauses:
|
|
2964 |
"a \<in> S ==> a \<in> span S"
|
|
2965 |
"0 \<in> span S"
|
|
2966 |
"x\<in> span S \<Longrightarrow> y \<in> span S ==> x + y \<in> span S"
|
|
2967 |
"x \<in> span S \<Longrightarrow> c *s x \<in> span S"
|
|
2968 |
by (metis span_def hull_subset subset_eq subspace_span subspace_def)+
|
|
2969 |
|
|
2970 |
lemma span_induct: assumes SP: "\<And>x. x \<in> S ==> P x"
|
|
2971 |
and P: "subspace P" and x: "x \<in> span S" shows "P x"
|
|
2972 |
proof-
|
|
2973 |
from SP have SP': "S \<subseteq> P" by (simp add: mem_def subset_eq)
|
|
2974 |
from P have P': "P \<in> subspace" by (simp add: mem_def)
|
|
2975 |
from x hull_minimal[OF SP' P', unfolded span_def[symmetric]]
|
|
2976 |
show "P x" by (metis mem_def subset_eq)
|
|
2977 |
qed
|
|
2978 |
|
|
2979 |
lemma span_empty: "span {} = {(0::'a::semiring_0 ^ 'n)}"
|
|
2980 |
apply (simp add: span_def)
|
|
2981 |
apply (rule hull_unique)
|
|
2982 |
apply (auto simp add: mem_def subspace_def)
|
|
2983 |
unfolding mem_def[of "0::'a^'n", symmetric]
|
|
2984 |
apply simp
|
|
2985 |
done
|
|
2986 |
|
|
2987 |
lemma independent_empty: "independent {}"
|
|
2988 |
by (simp add: dependent_def)
|
|
2989 |
|
|
2990 |
lemma independent_mono: "independent A \<Longrightarrow> B \<subseteq> A ==> independent B"
|
|
2991 |
apply (clarsimp simp add: dependent_def span_mono)
|
|
2992 |
apply (subgoal_tac "span (B - {a}) \<le> span (A - {a})")
|
|
2993 |
apply force
|
|
2994 |
apply (rule span_mono)
|
|
2995 |
apply auto
|
|
2996 |
done
|
|
2997 |
|
|
2998 |
lemma span_subspace: "A \<subseteq> B \<Longrightarrow> B \<le> span A \<Longrightarrow> subspace B \<Longrightarrow> span A = B"
|
|
2999 |
by (metis order_antisym span_def hull_minimal mem_def)
|
|
3000 |
|
|
3001 |
lemma span_induct': assumes SP: "\<forall>x \<in> S. P x"
|
|
3002 |
and P: "subspace P" shows "\<forall>x \<in> span S. P x"
|
|
3003 |
using span_induct SP P by blast
|
|
3004 |
|
|
3005 |
inductive span_induct_alt_help for S:: "'a::semiring_1^'n \<Rightarrow> bool"
|
|
3006 |
where
|
|
3007 |
span_induct_alt_help_0: "span_induct_alt_help S 0"
|
|
3008 |
| span_induct_alt_help_S: "x \<in> S \<Longrightarrow> span_induct_alt_help S z \<Longrightarrow> span_induct_alt_help S (c *s x + z)"
|
|
3009 |
|
|
3010 |
lemma span_induct_alt':
|
|
3011 |
assumes h0: "h (0::'a::semiring_1^'n)" and hS: "\<And>c x y. x \<in> S \<Longrightarrow> h y \<Longrightarrow> h (c*s x + y)" shows "\<forall>x \<in> span S. h x"
|
|
3012 |
proof-
|
|
3013 |
{fix x:: "'a^'n" assume x: "span_induct_alt_help S x"
|
|
3014 |
have "h x"
|
|
3015 |
apply (rule span_induct_alt_help.induct[OF x])
|
|
3016 |
apply (rule h0)
|
|
3017 |
apply (rule hS, assumption, assumption)
|
|
3018 |
done}
|
|
3019 |
note th0 = this
|
|
3020 |
{fix x assume x: "x \<in> span S"
|
|
3021 |
|
|
3022 |
have "span_induct_alt_help S x"
|
|
3023 |
proof(rule span_induct[where x=x and S=S])
|
|
3024 |
show "x \<in> span S" using x .
|
|
3025 |
next
|
|
3026 |
fix x assume xS : "x \<in> S"
|
|
3027 |
from span_induct_alt_help_S[OF xS span_induct_alt_help_0, of 1]
|
|
3028 |
show "span_induct_alt_help S x" by simp
|
|
3029 |
next
|
|
3030 |
have "span_induct_alt_help S 0" by (rule span_induct_alt_help_0)
|
|
3031 |
moreover
|
|
3032 |
{fix x y assume h: "span_induct_alt_help S x" "span_induct_alt_help S y"
|
|
3033 |
from h
|
|
3034 |
have "span_induct_alt_help S (x + y)"
|
|
3035 |
apply (induct rule: span_induct_alt_help.induct)
|
|
3036 |
apply simp
|
|
3037 |
unfolding add_assoc
|
|
3038 |
apply (rule span_induct_alt_help_S)
|
|
3039 |
apply assumption
|
|
3040 |
apply simp
|
|
3041 |
done}
|
|
3042 |
moreover
|
|
3043 |
{fix c x assume xt: "span_induct_alt_help S x"
|
|
3044 |
then have "span_induct_alt_help S (c*s x)"
|
|
3045 |
apply (induct rule: span_induct_alt_help.induct)
|
|
3046 |
apply (simp add: span_induct_alt_help_0)
|
|
3047 |
apply (simp add: vector_smult_assoc vector_add_ldistrib)
|
|
3048 |
apply (rule span_induct_alt_help_S)
|
|
3049 |
apply assumption
|
|
3050 |
apply simp
|
|
3051 |
done
|
|
3052 |
}
|
|
3053 |
ultimately show "subspace (span_induct_alt_help S)"
|
|
3054 |
unfolding subspace_def mem_def Ball_def by blast
|
|
3055 |
qed}
|
|
3056 |
with th0 show ?thesis by blast
|
|
3057 |
qed
|
|
3058 |
|
|
3059 |
lemma span_induct_alt:
|
|
3060 |
assumes h0: "h (0::'a::semiring_1^'n)" and hS: "\<And>c x y. x \<in> S \<Longrightarrow> h y \<Longrightarrow> h (c*s x + y)" and x: "x \<in> span S"
|
|
3061 |
shows "h x"
|
|
3062 |
using span_induct_alt'[of h S] h0 hS x by blast
|
|
3063 |
|
|
3064 |
(* Individual closure properties. *)
|
|
3065 |
|
|
3066 |
lemma span_superset: "x \<in> S ==> x \<in> span S" by (metis span_clauses)
|
|
3067 |
|
|
3068 |
lemma span_0: "0 \<in> span S" by (metis subspace_span subspace_0)
|
|
3069 |
|
|
3070 |
lemma span_add: "x \<in> span S \<Longrightarrow> y \<in> span S ==> x + y \<in> span S"
|
|
3071 |
by (metis subspace_add subspace_span)
|
|
3072 |
|
|
3073 |
lemma span_mul: "x \<in> span S ==> (c *s x) \<in> span S"
|
|
3074 |
by (metis subspace_span subspace_mul)
|
|
3075 |
|
|
3076 |
lemma span_neg: "x \<in> span S ==> - (x::'a::ring_1^'n) \<in> span S"
|
|
3077 |
by (metis subspace_neg subspace_span)
|
|
3078 |
|
|
3079 |
lemma span_sub: "(x::'a::ring_1^'n) \<in> span S \<Longrightarrow> y \<in> span S ==> x - y \<in> span S"
|
|
3080 |
by (metis subspace_span subspace_sub)
|
|
3081 |
|
|
3082 |
lemma span_setsum: "finite A \<Longrightarrow> \<forall>x \<in> A. f x \<in> span S ==> setsum f A \<in> span S"
|
|
3083 |
apply (rule subspace_setsum)
|
|
3084 |
by (metis subspace_span subspace_setsum)+
|
|
3085 |
|
|
3086 |
lemma span_add_eq: "(x::'a::ring_1^'n) \<in> span S \<Longrightarrow> x + y \<in> span S \<longleftrightarrow> y \<in> span S"
|
|
3087 |
apply (auto simp only: span_add span_sub)
|
|
3088 |
apply (subgoal_tac "(x + y) - x \<in> span S", simp)
|
|
3089 |
by (simp only: span_add span_sub)
|
|
3090 |
|
|
3091 |
(* Mapping under linear image. *)
|
|
3092 |
|
|
3093 |
lemma span_linear_image: assumes lf: "linear (f::'a::semiring_1 ^ 'n => _)"
|
|
3094 |
shows "span (f ` S) = f ` (span S)"
|
|
3095 |
proof-
|
|
3096 |
{fix x
|
|
3097 |
assume x: "x \<in> span (f ` S)"
|
|
3098 |
have "x \<in> f ` span S"
|
|
3099 |
apply (rule span_induct[where x=x and S = "f ` S"])
|
|
3100 |
apply (clarsimp simp add: image_iff)
|
|
3101 |
apply (frule span_superset)
|
|
3102 |
apply blast
|
|
3103 |
apply (simp only: mem_def)
|
|
3104 |
apply (rule subspace_linear_image[OF lf])
|
|
3105 |
apply (rule subspace_span)
|
|
3106 |
apply (rule x)
|
|
3107 |
done}
|
|
3108 |
moreover
|
|
3109 |
{fix x assume x: "x \<in> span S"
|
|
3110 |
have th0:"(\<lambda>a. f a \<in> span (f ` S)) = {x. f x \<in> span (f ` S)}" apply (rule set_ext)
|
|
3111 |
unfolding mem_def Collect_def ..
|
|
3112 |
have "f x \<in> span (f ` S)"
|
|
3113 |
apply (rule span_induct[where S=S])
|
|
3114 |
apply (rule span_superset)
|
|
3115 |
apply simp
|
|
3116 |
apply (subst th0)
|
|
3117 |
apply (rule subspace_linear_preimage[OF lf subspace_span, of "f ` S"])
|
|
3118 |
apply (rule x)
|
|
3119 |
done}
|
|
3120 |
ultimately show ?thesis by blast
|
|
3121 |
qed
|
|
3122 |
|
|
3123 |
(* The key breakdown property. *)
|
|
3124 |
|
|
3125 |
lemma span_breakdown:
|
|
3126 |
assumes bS: "(b::'a::ring_1 ^ 'n) \<in> S" and aS: "a \<in> span S"
|
|
3127 |
shows "\<exists>k. a - k*s b \<in> span (S - {b})" (is "?P a")
|
|
3128 |
proof-
|
|
3129 |
{fix x assume xS: "x \<in> S"
|
|
3130 |
{assume ab: "x = b"
|
|
3131 |
then have "?P x"
|
|
3132 |
apply simp
|
|
3133 |
apply (rule exI[where x="1"], simp)
|
|
3134 |
by (rule span_0)}
|
|
3135 |
moreover
|
|
3136 |
{assume ab: "x \<noteq> b"
|
|
3137 |
then have "?P x" using xS
|
|
3138 |
apply -
|
|
3139 |
apply (rule exI[where x=0])
|
|
3140 |
apply (rule span_superset)
|
|
3141 |
by simp}
|
|
3142 |
ultimately have "?P x" by blast}
|
|
3143 |
moreover have "subspace ?P"
|
|
3144 |
unfolding subspace_def
|
|
3145 |
apply auto
|
|
3146 |
apply (simp add: mem_def)
|
|
3147 |
apply (rule exI[where x=0])
|
|
3148 |
using span_0[of "S - {b}"]
|
|
3149 |
apply (simp add: mem_def)
|
|
3150 |
apply (clarsimp simp add: mem_def)
|
|
3151 |
apply (rule_tac x="k + ka" in exI)
|
|
3152 |
apply (subgoal_tac "x + y - (k + ka) *s b = (x - k*s b) + (y - ka *s b)")
|
|
3153 |
apply (simp only: )
|
|
3154 |
apply (rule span_add[unfolded mem_def])
|
|
3155 |
apply assumption+
|
|
3156 |
apply (vector ring_simps)
|
|
3157 |
apply (clarsimp simp add: mem_def)
|
|
3158 |
apply (rule_tac x= "c*k" in exI)
|
|
3159 |
apply (subgoal_tac "c *s x - (c * k) *s b = c*s (x - k*s b)")
|
|
3160 |
apply (simp only: )
|
|
3161 |
apply (rule span_mul[unfolded mem_def])
|
|
3162 |
apply assumption
|
|
3163 |
by (vector ring_simps)
|
|
3164 |
ultimately show "?P a" using aS span_induct[where S=S and P= "?P"] by metis
|
|
3165 |
qed
|
|
3166 |
|
|
3167 |
lemma span_breakdown_eq:
|
|
3168 |
"(x::'a::ring_1^'n) \<in> span (insert a S) \<longleftrightarrow> (\<exists>k. (x - k *s a) \<in> span S)" (is "?lhs \<longleftrightarrow> ?rhs")
|
|
3169 |
proof-
|
|
3170 |
{assume x: "x \<in> span (insert a S)"
|
|
3171 |
from x span_breakdown[of "a" "insert a S" "x"]
|
|
3172 |
have ?rhs apply clarsimp
|
|
3173 |
apply (rule_tac x= "k" in exI)
|
|
3174 |
apply (rule set_rev_mp[of _ "span (S - {a})" _])
|
|
3175 |
apply assumption
|
|
3176 |
apply (rule span_mono)
|
|
3177 |
apply blast
|
|
3178 |
done}
|
|
3179 |
moreover
|
|
3180 |
{ fix k assume k: "x - k *s a \<in> span S"
|
|
3181 |
have eq: "x = (x - k *s a) + k *s a" by vector
|
|
3182 |
have "(x - k *s a) + k *s a \<in> span (insert a S)"
|
|
3183 |
apply (rule span_add)
|
|
3184 |
apply (rule set_rev_mp[of _ "span S" _])
|
|
3185 |
apply (rule k)
|
|
3186 |
apply (rule span_mono)
|
|
3187 |
apply blast
|
|
3188 |
apply (rule span_mul)
|
|
3189 |
apply (rule span_superset)
|
|
3190 |
apply blast
|
|
3191 |
done
|
|
3192 |
then have ?lhs using eq by metis}
|
|
3193 |
ultimately show ?thesis by blast
|
|
3194 |
qed
|
|
3195 |
|
|
3196 |
(* Hence some "reversal" results.*)
|
|
3197 |
|
|
3198 |
lemma in_span_insert:
|
|
3199 |
assumes a: "(a::'a::field^'n) \<in> span (insert b S)" and na: "a \<notin> span S"
|
|
3200 |
shows "b \<in> span (insert a S)"
|
|
3201 |
proof-
|
|
3202 |
from span_breakdown[of b "insert b S" a, OF insertI1 a]
|
|
3203 |
obtain k where k: "a - k*s b \<in> span (S - {b})" by auto
|
|
3204 |
{assume k0: "k = 0"
|
|
3205 |
with k have "a \<in> span S"
|
|
3206 |
apply (simp)
|
|
3207 |
apply (rule set_rev_mp)
|
|
3208 |
apply assumption
|
|
3209 |
apply (rule span_mono)
|
|
3210 |
apply blast
|
|
3211 |
done
|
|
3212 |
with na have ?thesis by blast}
|
|
3213 |
moreover
|
|
3214 |
{assume k0: "k \<noteq> 0"
|
|
3215 |
have eq: "b = (1/k) *s a - ((1/k) *s a - b)" by vector
|
|
3216 |
from k0 have eq': "(1/k) *s (a - k*s b) = (1/k) *s a - b"
|
|
3217 |
by (vector field_simps)
|
|
3218 |
from k have "(1/k) *s (a - k*s b) \<in> span (S - {b})"
|
|
3219 |
by (rule span_mul)
|
|
3220 |
hence th: "(1/k) *s a - b \<in> span (S - {b})"
|
|
3221 |
unfolding eq' .
|
|
3222 |
|
|
3223 |
from k
|
|
3224 |
have ?thesis
|
|
3225 |
apply (subst eq)
|
|
3226 |
apply (rule span_sub)
|
|
3227 |
apply (rule span_mul)
|
|
3228 |
apply (rule span_superset)
|
|
3229 |
apply blast
|
|
3230 |
apply (rule set_rev_mp)
|
|
3231 |
apply (rule th)
|
|
3232 |
apply (rule span_mono)
|
|
3233 |
using na by blast}
|
|
3234 |
ultimately show ?thesis by blast
|
|
3235 |
qed
|
|
3236 |
|
|
3237 |
lemma in_span_delete:
|
|
3238 |
assumes a: "(a::'a::field^'n) \<in> span S"
|
|
3239 |
and na: "a \<notin> span (S-{b})"
|
|
3240 |
shows "b \<in> span (insert a (S - {b}))"
|
|
3241 |
apply (rule in_span_insert)
|
|
3242 |
apply (rule set_rev_mp)
|
|
3243 |
apply (rule a)
|
|
3244 |
apply (rule span_mono)
|
|
3245 |
apply blast
|
|
3246 |
apply (rule na)
|
|
3247 |
done
|
|
3248 |
|
|
3249 |
(* Transitivity property. *)
|
|
3250 |
|
|
3251 |
lemma span_trans:
|
|
3252 |
assumes x: "(x::'a::ring_1^'n) \<in> span S" and y: "y \<in> span (insert x S)"
|
|
3253 |
shows "y \<in> span S"
|
|
3254 |
proof-
|
|
3255 |
from span_breakdown[of x "insert x S" y, OF insertI1 y]
|
|
3256 |
obtain k where k: "y -k*s x \<in> span (S - {x})" by auto
|
|
3257 |
have eq: "y = (y - k *s x) + k *s x" by vector
|
|
3258 |
show ?thesis
|
|
3259 |
apply (subst eq)
|
|
3260 |
apply (rule span_add)
|
|
3261 |
apply (rule set_rev_mp)
|
|
3262 |
apply (rule k)
|
|
3263 |
apply (rule span_mono)
|
|
3264 |
apply blast
|
|
3265 |
apply (rule span_mul)
|
|
3266 |
by (rule x)
|
|
3267 |
qed
|
|
3268 |
|
|
3269 |
(* ------------------------------------------------------------------------- *)
|
|
3270 |
(* An explicit expansion is sometimes needed. *)
|
|
3271 |
(* ------------------------------------------------------------------------- *)
|
|
3272 |
|
|
3273 |
lemma span_explicit:
|
|
3274 |
"span P = {y::'a::semiring_1^'n. \<exists>S u. finite S \<and> S \<subseteq> P \<and> setsum (\<lambda>v. u v *s v) S = y}"
|
|
3275 |
(is "_ = ?E" is "_ = {y. ?h y}" is "_ = {y. \<exists>S u. ?Q S u y}")
|
|
3276 |
proof-
|
|
3277 |
{fix x assume x: "x \<in> ?E"
|
|
3278 |
then obtain S u where fS: "finite S" and SP: "S\<subseteq>P" and u: "setsum (\<lambda>v. u v *s v) S = x"
|
|
3279 |
by blast
|
|
3280 |
have "x \<in> span P"
|
|
3281 |
unfolding u[symmetric]
|
|
3282 |
apply (rule span_setsum[OF fS])
|
|
3283 |
using span_mono[OF SP]
|
|
3284 |
by (auto intro: span_superset span_mul)}
|
|
3285 |
moreover
|
|
3286 |
have "\<forall>x \<in> span P. x \<in> ?E"
|
|
3287 |
unfolding mem_def Collect_def
|
|
3288 |
proof(rule span_induct_alt')
|
|
3289 |
show "?h 0"
|
|
3290 |
apply (rule exI[where x="{}"]) by simp
|
|
3291 |
next
|
|
3292 |
fix c x y
|
|
3293 |
assume x: "x \<in> P" and hy: "?h y"
|
|
3294 |
from hy obtain S u where fS: "finite S" and SP: "S\<subseteq>P"
|
|
3295 |
and u: "setsum (\<lambda>v. u v *s v) S = y" by blast
|
|
3296 |
let ?S = "insert x S"
|
|
3297 |
let ?u = "\<lambda>y. if y = x then (if x \<in> S then u y + c else c)
|
|
3298 |
else u y"
|
|
3299 |
from fS SP x have th0: "finite (insert x S)" "insert x S \<subseteq> P" by blast+
|
|
3300 |
{assume xS: "x \<in> S"
|
|
3301 |
have S1: "S = (S - {x}) \<union> {x}"
|
|
3302 |
and Sss:"finite (S - {x})" "finite {x}" "(S -{x}) \<inter> {x} = {}" using xS fS by auto
|
|
3303 |
have "setsum (\<lambda>v. ?u v *s v) ?S =(\<Sum>v\<in>S - {x}. u v *s v) + (u x + c) *s x"
|
|
3304 |
using xS
|
|
3305 |
by (simp add: setsum_Un_disjoint[OF Sss, unfolded S1[symmetric]]
|
|
3306 |
setsum_clauses(2)[OF fS] cong del: if_weak_cong)
|
|
3307 |
also have "\<dots> = (\<Sum>v\<in>S. u v *s v) + c *s x"
|
|
3308 |
apply (simp add: setsum_Un_disjoint[OF Sss, unfolded S1[symmetric]])
|
|
3309 |
by (vector ring_simps)
|
|
3310 |
also have "\<dots> = c*s x + y"
|
|
3311 |
by (simp add: add_commute u)
|
|
3312 |
finally have "setsum (\<lambda>v. ?u v *s v) ?S = c*s x + y" .
|
|
3313 |
then have "?Q ?S ?u (c*s x + y)" using th0 by blast}
|
|
3314 |
moreover
|
|
3315 |
{assume xS: "x \<notin> S"
|
|
3316 |
have th00: "(\<Sum>v\<in>S. (if v = x then c else u v) *s v) = y"
|
|
3317 |
unfolding u[symmetric]
|
|
3318 |
apply (rule setsum_cong2)
|
|
3319 |
using xS by auto
|
|
3320 |
have "?Q ?S ?u (c*s x + y)" using fS xS th0
|
|
3321 |
by (simp add: th00 setsum_clauses add_commute cong del: if_weak_cong)}
|
|
3322 |
ultimately have "?Q ?S ?u (c*s x + y)"
|
|
3323 |
by (cases "x \<in> S", simp, simp)
|
|
3324 |
then show "?h (c*s x + y)"
|
|
3325 |
apply -
|
|
3326 |
apply (rule exI[where x="?S"])
|
|
3327 |
apply (rule exI[where x="?u"]) by metis
|
|
3328 |
qed
|
|
3329 |
ultimately show ?thesis by blast
|
|
3330 |
qed
|
|
3331 |
|
|
3332 |
lemma dependent_explicit:
|
|
3333 |
"dependent P \<longleftrightarrow> (\<exists>S u. finite S \<and> S \<subseteq> P \<and> (\<exists>(v::'a::{idom,field}^'n) \<in>S. u v \<noteq> 0 \<and> setsum (\<lambda>v. u v *s v) S = 0))" (is "?lhs = ?rhs")
|
|
3334 |
proof-
|
|
3335 |
{assume dP: "dependent P"
|
|
3336 |
then obtain a S u where aP: "a \<in> P" and fS: "finite S"
|
|
3337 |
and SP: "S \<subseteq> P - {a}" and ua: "setsum (\<lambda>v. u v *s v) S = a"
|
|
3338 |
unfolding dependent_def span_explicit by blast
|
|
3339 |
let ?S = "insert a S"
|
|
3340 |
let ?u = "\<lambda>y. if y = a then - 1 else u y"
|
|
3341 |
let ?v = a
|
|
3342 |
from aP SP have aS: "a \<notin> S" by blast
|
|
3343 |
from fS SP aP have th0: "finite ?S" "?S \<subseteq> P" "?v \<in> ?S" "?u ?v \<noteq> 0" by auto
|
|
3344 |
have s0: "setsum (\<lambda>v. ?u v *s v) ?S = 0"
|
|
3345 |
using fS aS
|
|
3346 |
apply (simp add: vector_smult_lneg vector_smult_lid setsum_clauses ring_simps )
|
|
3347 |
apply (subst (2) ua[symmetric])
|
|
3348 |
apply (rule setsum_cong2)
|
|
3349 |
by auto
|
|
3350 |
with th0 have ?rhs
|
|
3351 |
apply -
|
|
3352 |
apply (rule exI[where x= "?S"])
|
|
3353 |
apply (rule exI[where x= "?u"])
|
|
3354 |
by clarsimp}
|
|
3355 |
moreover
|
|
3356 |
{fix S u v assume fS: "finite S"
|
|
3357 |
and SP: "S \<subseteq> P" and vS: "v \<in> S" and uv: "u v \<noteq> 0"
|
|
3358 |
and u: "setsum (\<lambda>v. u v *s v) S = 0"
|
|
3359 |
let ?a = v
|
|
3360 |
let ?S = "S - {v}"
|
|
3361 |
let ?u = "\<lambda>i. (- u i) / u v"
|
|
3362 |
have th0: "?a \<in> P" "finite ?S" "?S \<subseteq> P" using fS SP vS by auto
|
|
3363 |
have "setsum (\<lambda>v. ?u v *s v) ?S = setsum (\<lambda>v. (- (inverse (u ?a))) *s (u v *s v)) S - ?u v *s v"
|
|
3364 |
using fS vS uv
|
|
3365 |
by (simp add: setsum_diff1 vector_smult_lneg divide_inverse
|
|
3366 |
vector_smult_assoc field_simps)
|
|
3367 |
also have "\<dots> = ?a"
|
|
3368 |
unfolding setsum_cmul u
|
|
3369 |
using uv by (simp add: vector_smult_lneg)
|
|
3370 |
finally have "setsum (\<lambda>v. ?u v *s v) ?S = ?a" .
|
|
3371 |
with th0 have ?lhs
|
|
3372 |
unfolding dependent_def span_explicit
|
|
3373 |
apply -
|
|
3374 |
apply (rule bexI[where x= "?a"])
|
|
3375 |
apply simp_all
|
|
3376 |
apply (rule exI[where x= "?S"])
|
|
3377 |
by auto}
|
|
3378 |
ultimately show ?thesis by blast
|
|
3379 |
qed
|
|
3380 |
|
|
3381 |
|
|
3382 |
lemma span_finite:
|
|
3383 |
assumes fS: "finite S"
|
|
3384 |
shows "span S = {(y::'a::semiring_1^'n). \<exists>u. setsum (\<lambda>v. u v *s v) S = y}"
|
|
3385 |
(is "_ = ?rhs")
|
|
3386 |
proof-
|
|
3387 |
{fix y assume y: "y \<in> span S"
|
|
3388 |
from y obtain S' u where fS': "finite S'" and SS': "S' \<subseteq> S" and
|
|
3389 |
u: "setsum (\<lambda>v. u v *s v) S' = y" unfolding span_explicit by blast
|
|
3390 |
let ?u = "\<lambda>x. if x \<in> S' then u x else 0"
|
|
3391 |
from setsum_restrict_set[OF fS, of "\<lambda>v. u v *s v" S', symmetric] SS'
|
|
3392 |
have "setsum (\<lambda>v. ?u v *s v) S = setsum (\<lambda>v. u v *s v) S'"
|
|
3393 |
unfolding cond_value_iff cond_application_beta
|
|
3394 |
by (simp add: cond_value_iff inf_absorb2 cong del: if_weak_cong)
|
|
3395 |
hence "setsum (\<lambda>v. ?u v *s v) S = y" by (metis u)
|
|
3396 |
hence "y \<in> ?rhs" by auto}
|
|
3397 |
moreover
|
|
3398 |
{fix y u assume u: "setsum (\<lambda>v. u v *s v) S = y"
|
|
3399 |
then have "y \<in> span S" using fS unfolding span_explicit by auto}
|
|
3400 |
ultimately show ?thesis by blast
|
|
3401 |
qed
|
|
3402 |
|
|
3403 |
|
|
3404 |
(* Standard bases are a spanning set, and obviously finite. *)
|
|
3405 |
|
|
3406 |
lemma span_stdbasis:"span {basis i :: 'a::ring_1^'n::finite | i. i \<in> (UNIV :: 'n set)} = UNIV"
|
|
3407 |
apply (rule set_ext)
|
|
3408 |
apply auto
|
|
3409 |
apply (subst basis_expansion[symmetric])
|
|
3410 |
apply (rule span_setsum)
|
|
3411 |
apply simp
|
|
3412 |
apply auto
|
|
3413 |
apply (rule span_mul)
|
|
3414 |
apply (rule span_superset)
|
|
3415 |
apply (auto simp add: Collect_def mem_def)
|
|
3416 |
done
|
|
3417 |
|
|
3418 |
lemma has_size_stdbasis: "{basis i ::real ^'n::finite | i. i \<in> (UNIV :: 'n set)} hassize CARD('n)" (is "?S hassize ?n")
|
|
3419 |
proof-
|
|
3420 |
have eq: "?S = basis ` UNIV" by blast
|
|
3421 |
show ?thesis unfolding eq
|
|
3422 |
apply (rule hassize_image_inj[OF basis_inj])
|
|
3423 |
by (simp add: hassize_def)
|
|
3424 |
qed
|
|
3425 |
|
|
3426 |
lemma finite_stdbasis: "finite {basis i ::real^'n::finite |i. i\<in> (UNIV:: 'n set)}"
|
|
3427 |
using has_size_stdbasis[unfolded hassize_def]
|
|
3428 |
..
|
|
3429 |
|
|
3430 |
lemma card_stdbasis: "card {basis i ::real^'n::finite |i. i\<in> (UNIV :: 'n set)} = CARD('n)"
|
|
3431 |
using has_size_stdbasis[unfolded hassize_def]
|
|
3432 |
..
|
|
3433 |
|
|
3434 |
lemma independent_stdbasis_lemma:
|
|
3435 |
assumes x: "(x::'a::semiring_1 ^ 'n) \<in> span (basis ` S)"
|
|
3436 |
and iS: "i \<notin> S"
|
|
3437 |
shows "(x$i) = 0"
|
|
3438 |
proof-
|
|
3439 |
let ?U = "UNIV :: 'n set"
|
|
3440 |
let ?B = "basis ` S"
|
|
3441 |
let ?P = "\<lambda>(x::'a^'n). \<forall>i\<in> ?U. i \<notin> S \<longrightarrow> x$i =0"
|
|
3442 |
{fix x::"'a^'n" assume xS: "x\<in> ?B"
|
|
3443 |
from xS have "?P x" by auto}
|
|
3444 |
moreover
|
|
3445 |
have "subspace ?P"
|
|
3446 |
by (auto simp add: subspace_def Collect_def mem_def)
|
|
3447 |
ultimately show ?thesis
|
|
3448 |
using x span_induct[of ?B ?P x] iS by blast
|
|
3449 |
qed
|
|
3450 |
|
|
3451 |
lemma independent_stdbasis: "independent {basis i ::real^'n::finite |i. i\<in> (UNIV :: 'n set)}"
|
|
3452 |
proof-
|
|
3453 |
let ?I = "UNIV :: 'n set"
|
|
3454 |
let ?b = "basis :: _ \<Rightarrow> real ^'n"
|
|
3455 |
let ?B = "?b ` ?I"
|
|
3456 |
have eq: "{?b i|i. i \<in> ?I} = ?B"
|
|
3457 |
by auto
|
|
3458 |
{assume d: "dependent ?B"
|
|
3459 |
then obtain k where k: "k \<in> ?I" "?b k \<in> span (?B - {?b k})"
|
|
3460 |
unfolding dependent_def by auto
|
|
3461 |
have eq1: "?B - {?b k} = ?B - ?b ` {k}" by simp
|
|
3462 |
have eq2: "?B - {?b k} = ?b ` (?I - {k})"
|
|
3463 |
unfolding eq1
|
|
3464 |
apply (rule inj_on_image_set_diff[symmetric])
|
|
3465 |
apply (rule basis_inj) using k(1) by auto
|
|
3466 |
from k(2) have th0: "?b k \<in> span (?b ` (?I - {k}))" unfolding eq2 .
|
|
3467 |
from independent_stdbasis_lemma[OF th0, of k, simplified]
|
|
3468 |
have False by simp}
|
|
3469 |
then show ?thesis unfolding eq dependent_def ..
|
|
3470 |
qed
|
|
3471 |
|
|
3472 |
(* This is useful for building a basis step-by-step. *)
|
|
3473 |
|
|
3474 |
lemma independent_insert:
|
|
3475 |
"independent(insert (a::'a::field ^'n) S) \<longleftrightarrow>
|
|
3476 |
(if a \<in> S then independent S
|
|
3477 |
else independent S \<and> a \<notin> span S)" (is "?lhs \<longleftrightarrow> ?rhs")
|
|
3478 |
proof-
|
|
3479 |
{assume aS: "a \<in> S"
|
|
3480 |
hence ?thesis using insert_absorb[OF aS] by simp}
|
|
3481 |
moreover
|
|
3482 |
{assume aS: "a \<notin> S"
|
|
3483 |
{assume i: ?lhs
|
|
3484 |
then have ?rhs using aS
|
|
3485 |
apply simp
|
|
3486 |
apply (rule conjI)
|
|
3487 |
apply (rule independent_mono)
|
|
3488 |
apply assumption
|
|
3489 |
apply blast
|
|
3490 |
by (simp add: dependent_def)}
|
|
3491 |
moreover
|
|
3492 |
{assume i: ?rhs
|
|
3493 |
have ?lhs using i aS
|
|
3494 |
apply simp
|
|
3495 |
apply (auto simp add: dependent_def)
|
|
3496 |
apply (case_tac "aa = a", auto)
|
|
3497 |
apply (subgoal_tac "insert a S - {aa} = insert a (S - {aa})")
|
|
3498 |
apply simp
|
|
3499 |
apply (subgoal_tac "a \<in> span (insert aa (S - {aa}))")
|
|
3500 |
apply (subgoal_tac "insert aa (S - {aa}) = S")
|
|
3501 |
apply simp
|
|
3502 |
apply blast
|
|
3503 |
apply (rule in_span_insert)
|
|
3504 |
apply assumption
|
|
3505 |
apply blast
|
|
3506 |
apply blast
|
|
3507 |
done}
|
|
3508 |
ultimately have ?thesis by blast}
|
|
3509 |
ultimately show ?thesis by blast
|
|
3510 |
qed
|
|
3511 |
|
|
3512 |
(* The degenerate case of the Exchange Lemma. *)
|
|
3513 |
|
|
3514 |
lemma mem_delete: "x \<in> (A - {a}) \<longleftrightarrow> x \<noteq> a \<and> x \<in> A"
|
|
3515 |
by blast
|
|
3516 |
|
|
3517 |
lemma span_span: "span (span A) = span A"
|
|
3518 |
unfolding span_def hull_hull ..
|
|
3519 |
|
|
3520 |
lemma span_inc: "S \<subseteq> span S"
|
|
3521 |
by (metis subset_eq span_superset)
|
|
3522 |
|
|
3523 |
lemma spanning_subset_independent:
|
|
3524 |
assumes BA: "B \<subseteq> A" and iA: "independent (A::('a::field ^'n) set)"
|
|
3525 |
and AsB: "A \<subseteq> span B"
|
|
3526 |
shows "A = B"
|
|
3527 |
proof
|
|
3528 |
from BA show "B \<subseteq> A" .
|
|
3529 |
next
|
|
3530 |
from span_mono[OF BA] span_mono[OF AsB]
|
|
3531 |
have sAB: "span A = span B" unfolding span_span by blast
|
|
3532 |
|
|
3533 |
{fix x assume x: "x \<in> A"
|
|
3534 |
from iA have th0: "x \<notin> span (A - {x})"
|
|
3535 |
unfolding dependent_def using x by blast
|
|
3536 |
from x have xsA: "x \<in> span A" by (blast intro: span_superset)
|
|
3537 |
have "A - {x} \<subseteq> A" by blast
|
|
3538 |
hence th1:"span (A - {x}) \<subseteq> span A" by (metis span_mono)
|
|
3539 |
{assume xB: "x \<notin> B"
|
|
3540 |
from xB BA have "B \<subseteq> A -{x}" by blast
|
|
3541 |
hence "span B \<subseteq> span (A - {x})" by (metis span_mono)
|
|
3542 |
with th1 th0 sAB have "x \<notin> span A" by blast
|
|
3543 |
with x have False by (metis span_superset)}
|
|
3544 |
then have "x \<in> B" by blast}
|
|
3545 |
then show "A \<subseteq> B" by blast
|
|
3546 |
qed
|
|
3547 |
|
|
3548 |
(* The general case of the Exchange Lemma, the key to what follows. *)
|
|
3549 |
|
|
3550 |
lemma exchange_lemma:
|
|
3551 |
assumes f:"finite (t:: ('a::field^'n) set)" and i: "independent s"
|
|
3552 |
and sp:"s \<subseteq> span t"
|
|
3553 |
shows "\<exists>t'. (t' hassize card t) \<and> s \<subseteq> t' \<and> t' \<subseteq> s \<union> t \<and> s \<subseteq> span t'"
|
|
3554 |
using f i sp
|
|
3555 |
proof(induct c\<equiv>"card(t - s)" arbitrary: s t rule: nat_less_induct)
|
|
3556 |
fix n:: nat and s t :: "('a ^'n) set"
|
|
3557 |
assume H: " \<forall>m<n. \<forall>(x:: ('a ^'n) set) xa.
|
|
3558 |
finite xa \<longrightarrow>
|
|
3559 |
independent x \<longrightarrow>
|
|
3560 |
x \<subseteq> span xa \<longrightarrow>
|
|
3561 |
m = card (xa - x) \<longrightarrow>
|
|
3562 |
(\<exists>t'. (t' hassize card xa) \<and>
|
|
3563 |
x \<subseteq> t' \<and> t' \<subseteq> x \<union> xa \<and> x \<subseteq> span t')"
|
|
3564 |
and ft: "finite t" and s: "independent s" and sp: "s \<subseteq> span t"
|
|
3565 |
and n: "n = card (t - s)"
|
|
3566 |
let ?P = "\<lambda>t'. (t' hassize card t) \<and> s \<subseteq> t' \<and> t' \<subseteq> s \<union> t \<and> s \<subseteq> span t'"
|
|
3567 |
let ?ths = "\<exists>t'. ?P t'"
|
|
3568 |
{assume st: "s \<subseteq> t"
|
|
3569 |
from st ft span_mono[OF st] have ?ths apply - apply (rule exI[where x=t])
|
|
3570 |
by (auto simp add: hassize_def intro: span_superset)}
|
|
3571 |
moreover
|
|
3572 |
{assume st: "t \<subseteq> s"
|
|
3573 |
|
|
3574 |
from spanning_subset_independent[OF st s sp]
|
|
3575 |
st ft span_mono[OF st] have ?ths apply - apply (rule exI[where x=t])
|
|
3576 |
by (auto simp add: hassize_def intro: span_superset)}
|
|
3577 |
moreover
|
|
3578 |
{assume st: "\<not> s \<subseteq> t" "\<not> t \<subseteq> s"
|
|
3579 |
from st(2) obtain b where b: "b \<in> t" "b \<notin> s" by blast
|
|
3580 |
from b have "t - {b} - s \<subset> t - s" by blast
|
|
3581 |
then have cardlt: "card (t - {b} - s) < n" using n ft
|
|
3582 |
by (auto intro: psubset_card_mono)
|
|
3583 |
from b ft have ct0: "card t \<noteq> 0" by auto
|
|
3584 |
{assume stb: "s \<subseteq> span(t -{b})"
|
|
3585 |
from ft have ftb: "finite (t -{b})" by auto
|
|
3586 |
from H[rule_format, OF cardlt ftb s stb]
|
|
3587 |
obtain u where u: "u hassize card (t-{b})" "s \<subseteq> u" "u \<subseteq> s \<union> (t - {b})" "s \<subseteq> span u" by blast
|
|
3588 |
let ?w = "insert b u"
|
|
3589 |
have th0: "s \<subseteq> insert b u" using u by blast
|
|
3590 |
from u(3) b have "u \<subseteq> s \<union> t" by blast
|
|
3591 |
then have th1: "insert b u \<subseteq> s \<union> t" using u b by blast
|
|
3592 |
have bu: "b \<notin> u" using b u by blast
|
|
3593 |
from u(1) have fu: "finite u" by (simp add: hassize_def)
|
|
3594 |
from u(1) ft b have "u hassize (card t - 1)" by auto
|
|
3595 |
then
|
|
3596 |
have th2: "insert b u hassize card t"
|
|
3597 |
using card_insert_disjoint[OF fu bu] ct0 by (auto simp add: hassize_def)
|
|
3598 |
from u(4) have "s \<subseteq> span u" .
|
|
3599 |
also have "\<dots> \<subseteq> span (insert b u)" apply (rule span_mono) by blast
|
|
3600 |
finally have th3: "s \<subseteq> span (insert b u)" . from th0 th1 th2 th3 have th: "?P ?w" by blast
|
|
3601 |
from th have ?ths by blast}
|
|
3602 |
moreover
|
|
3603 |
{assume stb: "\<not> s \<subseteq> span(t -{b})"
|
|
3604 |
from stb obtain a where a: "a \<in> s" "a \<notin> span (t - {b})" by blast
|
|
3605 |
have ab: "a \<noteq> b" using a b by blast
|
|
3606 |
have at: "a \<notin> t" using a ab span_superset[of a "t- {b}"] by auto
|
|
3607 |
have mlt: "card ((insert a (t - {b})) - s) < n"
|
|
3608 |
using cardlt ft n a b by auto
|
|
3609 |
have ft': "finite (insert a (t - {b}))" using ft by auto
|
|
3610 |
{fix x assume xs: "x \<in> s"
|
|
3611 |
have t: "t \<subseteq> (insert b (insert a (t -{b})))" using b by auto
|
|
3612 |
from b(1) have "b \<in> span t" by (simp add: span_superset)
|
|
3613 |
have bs: "b \<in> span (insert a (t - {b}))"
|
|
3614 |
by (metis in_span_delete a sp mem_def subset_eq)
|
|
3615 |
from xs sp have "x \<in> span t" by blast
|
|
3616 |
with span_mono[OF t]
|
|
3617 |
have x: "x \<in> span (insert b (insert a (t - {b})))" ..
|
|
3618 |
from span_trans[OF bs x] have "x \<in> span (insert a (t - {b}))" .}
|
|
3619 |
then have sp': "s \<subseteq> span (insert a (t - {b}))" by blast
|
|
3620 |
|
|
3621 |
from H[rule_format, OF mlt ft' s sp' refl] obtain u where
|
|
3622 |
u: "u hassize card (insert a (t -{b}))" "s \<subseteq> u" "u \<subseteq> s \<union> insert a (t -{b})"
|
|
3623 |
"s \<subseteq> span u" by blast
|
|
3624 |
from u a b ft at ct0 have "?P u" by (auto simp add: hassize_def)
|
|
3625 |
then have ?ths by blast }
|
|
3626 |
ultimately have ?ths by blast
|
|
3627 |
}
|
|
3628 |
ultimately
|
|
3629 |
show ?ths by blast
|
|
3630 |
qed
|
|
3631 |
|
|
3632 |
(* This implies corresponding size bounds. *)
|
|
3633 |
|
|
3634 |
lemma independent_span_bound:
|
|
3635 |
assumes f: "finite t" and i: "independent (s::('a::field^'n) set)" and sp:"s \<subseteq> span t"
|
|
3636 |
shows "finite s \<and> card s \<le> card t"
|
|
3637 |
by (metis exchange_lemma[OF f i sp] hassize_def finite_subset card_mono)
|
|
3638 |
|
|
3639 |
|
|
3640 |
lemma finite_Atleast_Atmost_nat[simp]: "finite {f x |x. x\<in> (UNIV::'a::finite set)}"
|
|
3641 |
proof-
|
|
3642 |
have eq: "{f x |x. x\<in> UNIV} = f ` UNIV" by auto
|
|
3643 |
show ?thesis unfolding eq
|
|
3644 |
apply (rule finite_imageI)
|
|
3645 |
apply (rule finite)
|
|
3646 |
done
|
|
3647 |
qed
|
|
3648 |
|
|
3649 |
|
|
3650 |
lemma independent_bound:
|
|
3651 |
fixes S:: "(real^'n::finite) set"
|
|
3652 |
shows "independent S \<Longrightarrow> finite S \<and> card S <= CARD('n)"
|
|
3653 |
apply (subst card_stdbasis[symmetric])
|
|
3654 |
apply (rule independent_span_bound)
|
|
3655 |
apply (rule finite_Atleast_Atmost_nat)
|
|
3656 |
apply assumption
|
|
3657 |
unfolding span_stdbasis
|
|
3658 |
apply (rule subset_UNIV)
|
|
3659 |
done
|
|
3660 |
|
|
3661 |
lemma dependent_biggerset: "(finite (S::(real ^'n::finite) set) ==> card S > CARD('n)) ==> dependent S"
|
|
3662 |
by (metis independent_bound not_less)
|
|
3663 |
|
|
3664 |
(* Hence we can create a maximal independent subset. *)
|
|
3665 |
|
|
3666 |
lemma maximal_independent_subset_extend:
|
|
3667 |
assumes sv: "(S::(real^'n::finite) set) \<subseteq> V" and iS: "independent S"
|
|
3668 |
shows "\<exists>B. S \<subseteq> B \<and> B \<subseteq> V \<and> independent B \<and> V \<subseteq> span B"
|
|
3669 |
using sv iS
|
|
3670 |
proof(induct d\<equiv> "CARD('n) - card S" arbitrary: S rule: nat_less_induct)
|
|
3671 |
fix n and S:: "(real^'n) set"
|
|
3672 |
assume H: "\<forall>m<n. \<forall>S \<subseteq> V. independent S \<longrightarrow> m = CARD('n) - card S \<longrightarrow>
|
|
3673 |
(\<exists>B. S \<subseteq> B \<and> B \<subseteq> V \<and> independent B \<and> V \<subseteq> span B)"
|
|
3674 |
and sv: "S \<subseteq> V" and i: "independent S" and n: "n = CARD('n) - card S"
|
|
3675 |
let ?P = "\<lambda>B. S \<subseteq> B \<and> B \<subseteq> V \<and> independent B \<and> V \<subseteq> span B"
|
|
3676 |
let ?ths = "\<exists>x. ?P x"
|
|
3677 |
let ?d = "CARD('n)"
|
|
3678 |
{assume "V \<subseteq> span S"
|
|
3679 |
then have ?ths using sv i by blast }
|
|
3680 |
moreover
|
|
3681 |
{assume VS: "\<not> V \<subseteq> span S"
|
|
3682 |
from VS obtain a where a: "a \<in> V" "a \<notin> span S" by blast
|
|
3683 |
from a have aS: "a \<notin> S" by (auto simp add: span_superset)
|
|
3684 |
have th0: "insert a S \<subseteq> V" using a sv by blast
|
|
3685 |
from independent_insert[of a S] i a
|
|
3686 |
have th1: "independent (insert a S)" by auto
|
|
3687 |
have mlt: "?d - card (insert a S) < n"
|
|
3688 |
using aS a n independent_bound[OF th1]
|
|
3689 |
by auto
|
|
3690 |
|
|
3691 |
from H[rule_format, OF mlt th0 th1 refl]
|
|
3692 |
obtain B where B: "insert a S \<subseteq> B" "B \<subseteq> V" "independent B" " V \<subseteq> span B"
|
|
3693 |
by blast
|
|
3694 |
from B have "?P B" by auto
|
|
3695 |
then have ?ths by blast}
|
|
3696 |
ultimately show ?ths by blast
|
|
3697 |
qed
|
|
3698 |
|
|
3699 |
lemma maximal_independent_subset:
|
|
3700 |
"\<exists>(B:: (real ^'n::finite) set). B\<subseteq> V \<and> independent B \<and> V \<subseteq> span B"
|
|
3701 |
by (metis maximal_independent_subset_extend[of "{}:: (real ^'n) set"] empty_subsetI independent_empty)
|
|
3702 |
|
|
3703 |
(* Notion of dimension. *)
|
|
3704 |
|
|
3705 |
definition "dim V = (SOME n. \<exists>B. B \<subseteq> V \<and> independent B \<and> V \<subseteq> span B \<and> (B hassize n))"
|
|
3706 |
|
|
3707 |
lemma basis_exists: "\<exists>B. (B :: (real ^'n::finite) set) \<subseteq> V \<and> independent B \<and> V \<subseteq> span B \<and> (B hassize dim V)"
|
|
3708 |
unfolding dim_def some_eq_ex[of "\<lambda>n. \<exists>B. B \<subseteq> V \<and> independent B \<and> V \<subseteq> span B \<and> (B hassize n)"]
|
|
3709 |
unfolding hassize_def
|
|
3710 |
using maximal_independent_subset[of V] independent_bound
|
|
3711 |
by auto
|
|
3712 |
|
|
3713 |
(* Consequences of independence or spanning for cardinality. *)
|
|
3714 |
|
|
3715 |
lemma independent_card_le_dim: "(B::(real ^'n::finite) set) \<subseteq> V \<Longrightarrow> independent B \<Longrightarrow> finite B \<and> card B \<le> dim V"
|
|
3716 |
by (metis basis_exists[of V] independent_span_bound[where ?'a=real] hassize_def subset_trans)
|
|
3717 |
|
|
3718 |
lemma span_card_ge_dim: "(B::(real ^'n::finite) set) \<subseteq> V \<Longrightarrow> V \<subseteq> span B \<Longrightarrow> finite B \<Longrightarrow> dim V \<le> card B"
|
|
3719 |
by (metis basis_exists[of V] independent_span_bound hassize_def subset_trans)
|
|
3720 |
|
|
3721 |
lemma basis_card_eq_dim:
|
|
3722 |
"B \<subseteq> (V:: (real ^'n::finite) set) \<Longrightarrow> V \<subseteq> span B \<Longrightarrow> independent B \<Longrightarrow> finite B \<and> card B = dim V"
|
|
3723 |
by (metis order_eq_iff independent_card_le_dim span_card_ge_dim independent_mono)
|
|
3724 |
|
|
3725 |
lemma dim_unique: "(B::(real ^'n::finite) set) \<subseteq> V \<Longrightarrow> V \<subseteq> span B \<Longrightarrow> independent B \<Longrightarrow> B hassize n \<Longrightarrow> dim V = n"
|
|
3726 |
by (metis basis_card_eq_dim hassize_def)
|
|
3727 |
|
|
3728 |
(* More lemmas about dimension. *)
|
|
3729 |
|
|
3730 |
lemma dim_univ: "dim (UNIV :: (real^'n::finite) set) = CARD('n)"
|
|
3731 |
apply (rule dim_unique[of "{basis i |i. i\<in> (UNIV :: 'n set)}"])
|
|
3732 |
by (auto simp only: span_stdbasis has_size_stdbasis independent_stdbasis)
|
|
3733 |
|
|
3734 |
lemma dim_subset:
|
|
3735 |
"(S:: (real ^'n::finite) set) \<subseteq> T \<Longrightarrow> dim S \<le> dim T"
|
|
3736 |
using basis_exists[of T] basis_exists[of S]
|
|
3737 |
by (metis independent_span_bound[where ?'a = real and ?'n = 'n] subset_eq hassize_def)
|
|
3738 |
|
|
3739 |
lemma dim_subset_univ: "dim (S:: (real^'n::finite) set) \<le> CARD('n)"
|
|
3740 |
by (metis dim_subset subset_UNIV dim_univ)
|
|
3741 |
|
|
3742 |
(* Converses to those. *)
|
|
3743 |
|
|
3744 |
lemma card_ge_dim_independent:
|
|
3745 |
assumes BV:"(B::(real ^'n::finite) set) \<subseteq> V" and iB:"independent B" and dVB:"dim V \<le> card B"
|
|
3746 |
shows "V \<subseteq> span B"
|
|
3747 |
proof-
|
|
3748 |
{fix a assume aV: "a \<in> V"
|
|
3749 |
{assume aB: "a \<notin> span B"
|
|
3750 |
then have iaB: "independent (insert a B)" using iB aV BV by (simp add: independent_insert)
|
|
3751 |
from aV BV have th0: "insert a B \<subseteq> V" by blast
|
|
3752 |
from aB have "a \<notin>B" by (auto simp add: span_superset)
|
|
3753 |
with independent_card_le_dim[OF th0 iaB] dVB have False by auto}
|
|
3754 |
then have "a \<in> span B" by blast}
|
|
3755 |
then show ?thesis by blast
|
|
3756 |
qed
|
|
3757 |
|
|
3758 |
lemma card_le_dim_spanning:
|
|
3759 |
assumes BV: "(B:: (real ^'n::finite) set) \<subseteq> V" and VB: "V \<subseteq> span B"
|
|
3760 |
and fB: "finite B" and dVB: "dim V \<ge> card B"
|
|
3761 |
shows "independent B"
|
|
3762 |
proof-
|
|
3763 |
{fix a assume a: "a \<in> B" "a \<in> span (B -{a})"
|
|
3764 |
from a fB have c0: "card B \<noteq> 0" by auto
|
|
3765 |
from a fB have cb: "card (B -{a}) = card B - 1" by auto
|
|
3766 |
from BV a have th0: "B -{a} \<subseteq> V" by blast
|
|
3767 |
{fix x assume x: "x \<in> V"
|
|
3768 |
from a have eq: "insert a (B -{a}) = B" by blast
|
|
3769 |
from x VB have x': "x \<in> span B" by blast
|
|
3770 |
from span_trans[OF a(2), unfolded eq, OF x']
|
|
3771 |
have "x \<in> span (B -{a})" . }
|
|
3772 |
then have th1: "V \<subseteq> span (B -{a})" by blast
|
|
3773 |
have th2: "finite (B -{a})" using fB by auto
|
|
3774 |
from span_card_ge_dim[OF th0 th1 th2]
|
|
3775 |
have c: "dim V \<le> card (B -{a})" .
|
|
3776 |
from c c0 dVB cb have False by simp}
|
|
3777 |
then show ?thesis unfolding dependent_def by blast
|
|
3778 |
qed
|
|
3779 |
|
|
3780 |
lemma card_eq_dim: "(B:: (real ^'n::finite) set) \<subseteq> V \<Longrightarrow> B hassize dim V \<Longrightarrow> independent B \<longleftrightarrow> V \<subseteq> span B"
|
|
3781 |
by (metis hassize_def order_eq_iff card_le_dim_spanning
|
|
3782 |
card_ge_dim_independent)
|
|
3783 |
|
|
3784 |
(* ------------------------------------------------------------------------- *)
|
|
3785 |
(* More general size bound lemmas. *)
|
|
3786 |
(* ------------------------------------------------------------------------- *)
|
|
3787 |
|
|
3788 |
lemma independent_bound_general:
|
|
3789 |
"independent (S:: (real^'n::finite) set) \<Longrightarrow> finite S \<and> card S \<le> dim S"
|
|
3790 |
by (metis independent_card_le_dim independent_bound subset_refl)
|
|
3791 |
|
|
3792 |
lemma dependent_biggerset_general: "(finite (S:: (real^'n::finite) set) \<Longrightarrow> card S > dim S) \<Longrightarrow> dependent S"
|
|
3793 |
using independent_bound_general[of S] by (metis linorder_not_le)
|
|
3794 |
|
|
3795 |
lemma dim_span: "dim (span (S:: (real ^'n::finite) set)) = dim S"
|
|
3796 |
proof-
|
|
3797 |
have th0: "dim S \<le> dim (span S)"
|
|
3798 |
by (auto simp add: subset_eq intro: dim_subset span_superset)
|
|
3799 |
from basis_exists[of S]
|
|
3800 |
obtain B where B: "B \<subseteq> S" "independent B" "S \<subseteq> span B" "B hassize dim S" by blast
|
|
3801 |
from B have fB: "finite B" "card B = dim S" unfolding hassize_def by blast+
|
|
3802 |
have bSS: "B \<subseteq> span S" using B(1) by (metis subset_eq span_inc)
|
|
3803 |
have sssB: "span S \<subseteq> span B" using span_mono[OF B(3)] by (simp add: span_span)
|
|
3804 |
from span_card_ge_dim[OF bSS sssB fB(1)] th0 show ?thesis
|
|
3805 |
using fB(2) by arith
|
|
3806 |
qed
|
|
3807 |
|
|
3808 |
lemma subset_le_dim: "(S:: (real ^'n::finite) set) \<subseteq> span T \<Longrightarrow> dim S \<le> dim T"
|
|
3809 |
by (metis dim_span dim_subset)
|
|
3810 |
|
|
3811 |
lemma span_eq_dim: "span (S:: (real ^'n::finite) set) = span T ==> dim S = dim T"
|
|
3812 |
by (metis dim_span)
|
|
3813 |
|
|
3814 |
lemma spans_image:
|
|
3815 |
assumes lf: "linear (f::'a::semiring_1^'n \<Rightarrow> _)" and VB: "V \<subseteq> span B"
|
|
3816 |
shows "f ` V \<subseteq> span (f ` B)"
|
|
3817 |
unfolding span_linear_image[OF lf]
|
|
3818 |
by (metis VB image_mono)
|
|
3819 |
|
|
3820 |
lemma dim_image_le:
|
|
3821 |
fixes f :: "real^'n::finite \<Rightarrow> real^'m::finite"
|
|
3822 |
assumes lf: "linear f" shows "dim (f ` S) \<le> dim (S:: (real ^'n::finite) set)"
|
|
3823 |
proof-
|
|
3824 |
from basis_exists[of S] obtain B where
|
|
3825 |
B: "B \<subseteq> S" "independent B" "S \<subseteq> span B" "B hassize dim S" by blast
|
|
3826 |
from B have fB: "finite B" "card B = dim S" unfolding hassize_def by blast+
|
|
3827 |
have "dim (f ` S) \<le> card (f ` B)"
|
|
3828 |
apply (rule span_card_ge_dim)
|
|
3829 |
using lf B fB by (auto simp add: span_linear_image spans_image subset_image_iff)
|
|
3830 |
also have "\<dots> \<le> dim S" using card_image_le[OF fB(1)] fB by simp
|
|
3831 |
finally show ?thesis .
|
|
3832 |
qed
|
|
3833 |
|
|
3834 |
(* Relation between bases and injectivity/surjectivity of map. *)
|
|
3835 |
|
|
3836 |
lemma spanning_surjective_image:
|
|
3837 |
assumes us: "UNIV \<subseteq> span (S:: ('a::semiring_1 ^'n) set)"
|
|
3838 |
and lf: "linear f" and sf: "surj f"
|
|
3839 |
shows "UNIV \<subseteq> span (f ` S)"
|
|
3840 |
proof-
|
|
3841 |
have "UNIV \<subseteq> f ` UNIV" using sf by (auto simp add: surj_def)
|
|
3842 |
also have " \<dots> \<subseteq> span (f ` S)" using spans_image[OF lf us] .
|
|
3843 |
finally show ?thesis .
|
|
3844 |
qed
|
|
3845 |
|
|
3846 |
lemma independent_injective_image:
|
|
3847 |
assumes iS: "independent (S::('a::semiring_1^'n) set)" and lf: "linear f" and fi: "inj f"
|
|
3848 |
shows "independent (f ` S)"
|
|
3849 |
proof-
|
|
3850 |
{fix a assume a: "a \<in> S" "f a \<in> span (f ` S - {f a})"
|
|
3851 |
have eq: "f ` S - {f a} = f ` (S - {a})" using fi
|
|
3852 |
by (auto simp add: inj_on_def)
|
|
3853 |
from a have "f a \<in> f ` span (S -{a})"
|
|
3854 |
unfolding eq span_linear_image[OF lf, of "S - {a}"] by blast
|
|
3855 |
hence "a \<in> span (S -{a})" using fi by (auto simp add: inj_on_def)
|
|
3856 |
with a(1) iS have False by (simp add: dependent_def) }
|
|
3857 |
then show ?thesis unfolding dependent_def by blast
|
|
3858 |
qed
|
|
3859 |
|
|
3860 |
(* ------------------------------------------------------------------------- *)
|
|
3861 |
(* Picking an orthogonal replacement for a spanning set. *)
|
|
3862 |
(* ------------------------------------------------------------------------- *)
|
|
3863 |
(* FIXME : Move to some general theory ?*)
|
|
3864 |
definition "pairwise R S \<longleftrightarrow> (\<forall>x \<in> S. \<forall>y\<in> S. x\<noteq>y \<longrightarrow> R x y)"
|
|
3865 |
|
|
3866 |
lemma vector_sub_project_orthogonal: "(b::'a::ordered_field^'n::finite) \<bullet> (x - ((b \<bullet> x) / (b\<bullet>b)) *s b) = 0"
|
|
3867 |
apply (cases "b = 0", simp)
|
|
3868 |
apply (simp add: dot_rsub dot_rmult)
|
|
3869 |
unfolding times_divide_eq_right[symmetric]
|
|
3870 |
by (simp add: field_simps dot_eq_0)
|
|
3871 |
|
|
3872 |
lemma basis_orthogonal:
|
|
3873 |
fixes B :: "(real ^'n::finite) set"
|
|
3874 |
assumes fB: "finite B"
|
|
3875 |
shows "\<exists>C. finite C \<and> card C \<le> card B \<and> span C = span B \<and> pairwise orthogonal C"
|
|
3876 |
(is " \<exists>C. ?P B C")
|
|
3877 |
proof(induct rule: finite_induct[OF fB])
|
|
3878 |
case 1 thus ?case apply (rule exI[where x="{}"]) by (auto simp add: pairwise_def)
|
|
3879 |
next
|
|
3880 |
case (2 a B)
|
|
3881 |
note fB = `finite B` and aB = `a \<notin> B`
|
|
3882 |
from `\<exists>C. finite C \<and> card C \<le> card B \<and> span C = span B \<and> pairwise orthogonal C`
|
|
3883 |
obtain C where C: "finite C" "card C \<le> card B"
|
|
3884 |
"span C = span B" "pairwise orthogonal C" by blast
|
|
3885 |
let ?a = "a - setsum (\<lambda>x. (x\<bullet>a / (x\<bullet>x)) *s x) C"
|
|
3886 |
let ?C = "insert ?a C"
|
|
3887 |
from C(1) have fC: "finite ?C" by simp
|
|
3888 |
from fB aB C(1,2) have cC: "card ?C \<le> card (insert a B)" by (simp add: card_insert_if)
|
|
3889 |
{fix x k
|
|
3890 |
have th0: "\<And>(a::'b::comm_ring) b c. a - (b - c) = c + (a - b)" by (simp add: ring_simps)
|
|
3891 |
have "x - k *s (a - (\<Sum>x\<in>C. (x \<bullet> a / (x \<bullet> x)) *s x)) \<in> span C \<longleftrightarrow> x - k *s a \<in> span C"
|
|
3892 |
apply (simp only: vector_ssub_ldistrib th0)
|
|
3893 |
apply (rule span_add_eq)
|
|
3894 |
apply (rule span_mul)
|
|
3895 |
apply (rule span_setsum[OF C(1)])
|
|
3896 |
apply clarify
|
|
3897 |
apply (rule span_mul)
|
|
3898 |
by (rule span_superset)}
|
|
3899 |
then have SC: "span ?C = span (insert a B)"
|
|
3900 |
unfolding expand_set_eq span_breakdown_eq C(3)[symmetric] by auto
|
|
3901 |
thm pairwise_def
|
|
3902 |
{fix x y assume xC: "x \<in> ?C" and yC: "y \<in> ?C" and xy: "x \<noteq> y"
|
|
3903 |
{assume xa: "x = ?a" and ya: "y = ?a"
|
|
3904 |
have "orthogonal x y" using xa ya xy by blast}
|
|
3905 |
moreover
|
|
3906 |
{assume xa: "x = ?a" and ya: "y \<noteq> ?a" "y \<in> C"
|
|
3907 |
from ya have Cy: "C = insert y (C - {y})" by blast
|
|
3908 |
have fth: "finite (C - {y})" using C by simp
|
|
3909 |
have "orthogonal x y"
|
|
3910 |
using xa ya
|
|
3911 |
unfolding orthogonal_def xa dot_lsub dot_rsub diff_eq_0_iff_eq
|
|
3912 |
apply simp
|
|
3913 |
apply (subst Cy)
|
|
3914 |
using C(1) fth
|
|
3915 |
apply (simp only: setsum_clauses)
|
|
3916 |
thm dot_ladd
|
|
3917 |
apply (auto simp add: dot_ladd dot_radd dot_lmult dot_rmult dot_eq_0 dot_sym[of y a] dot_lsum[OF fth])
|
|
3918 |
apply (rule setsum_0')
|
|
3919 |
apply clarsimp
|
|
3920 |
apply (rule C(4)[unfolded pairwise_def orthogonal_def, rule_format])
|
|
3921 |
by auto}
|
|
3922 |
moreover
|
|
3923 |
{assume xa: "x \<noteq> ?a" "x \<in> C" and ya: "y = ?a"
|
|
3924 |
from xa have Cx: "C = insert x (C - {x})" by blast
|
|
3925 |
have fth: "finite (C - {x})" using C by simp
|
|
3926 |
have "orthogonal x y"
|
|
3927 |
using xa ya
|
|
3928 |
unfolding orthogonal_def ya dot_rsub dot_lsub diff_eq_0_iff_eq
|
|
3929 |
apply simp
|
|
3930 |
apply (subst Cx)
|
|
3931 |
using C(1) fth
|
|
3932 |
apply (simp only: setsum_clauses)
|
|
3933 |
apply (subst dot_sym[of x])
|
|
3934 |
apply (auto simp add: dot_radd dot_rmult dot_eq_0 dot_sym[of x a] dot_rsum[OF fth])
|
|
3935 |
apply (rule setsum_0')
|
|
3936 |
apply clarsimp
|
|
3937 |
apply (rule C(4)[unfolded pairwise_def orthogonal_def, rule_format])
|
|
3938 |
by auto}
|
|
3939 |
moreover
|
|
3940 |
{assume xa: "x \<in> C" and ya: "y \<in> C"
|
|
3941 |
have "orthogonal x y" using xa ya xy C(4) unfolding pairwise_def by blast}
|
|
3942 |
ultimately have "orthogonal x y" using xC yC by blast}
|
|
3943 |
then have CPO: "pairwise orthogonal ?C" unfolding pairwise_def by blast
|
|
3944 |
from fC cC SC CPO have "?P (insert a B) ?C" by blast
|
|
3945 |
then show ?case by blast
|
|
3946 |
qed
|
|
3947 |
|
|
3948 |
lemma orthogonal_basis_exists:
|
|
3949 |
fixes V :: "(real ^'n::finite) set"
|
|
3950 |
shows "\<exists>B. independent B \<and> B \<subseteq> span V \<and> V \<subseteq> span B \<and> (B hassize dim V) \<and> pairwise orthogonal B"
|
|
3951 |
proof-
|
|
3952 |
from basis_exists[of V] obtain B where B: "B \<subseteq> V" "independent B" "V \<subseteq> span B" "B hassize dim V" by blast
|
|
3953 |
from B have fB: "finite B" "card B = dim V" by (simp_all add: hassize_def)
|
|
3954 |
from basis_orthogonal[OF fB(1)] obtain C where
|
|
3955 |
C: "finite C" "card C \<le> card B" "span C = span B" "pairwise orthogonal C" by blast
|
|
3956 |
from C B
|
|
3957 |
have CSV: "C \<subseteq> span V" by (metis span_inc span_mono subset_trans)
|
|
3958 |
from span_mono[OF B(3)] C have SVC: "span V \<subseteq> span C" by (simp add: span_span)
|
|
3959 |
from card_le_dim_spanning[OF CSV SVC C(1)] C(2,3) fB
|
|
3960 |
have iC: "independent C" by (simp add: dim_span)
|
|
3961 |
from C fB have "card C \<le> dim V" by simp
|
|
3962 |
moreover have "dim V \<le> card C" using span_card_ge_dim[OF CSV SVC C(1)]
|
|
3963 |
by (simp add: dim_span)
|
|
3964 |
ultimately have CdV: "C hassize dim V" unfolding hassize_def using C(1) by simp
|
|
3965 |
from C B CSV CdV iC show ?thesis by auto
|
|
3966 |
qed
|
|
3967 |
|
|
3968 |
lemma span_eq: "span S = span T \<longleftrightarrow> S \<subseteq> span T \<and> T \<subseteq> span S"
|
|
3969 |
by (metis set_eq_subset span_mono span_span span_inc) (* FIXME: slow *)
|
|
3970 |
|
|
3971 |
(* ------------------------------------------------------------------------- *)
|
|
3972 |
(* Low-dimensional subset is in a hyperplane (weak orthogonal complement). *)
|
|
3973 |
(* ------------------------------------------------------------------------- *)
|
|
3974 |
|
|
3975 |
lemma span_not_univ_orthogonal:
|
|
3976 |
assumes sU: "span S \<noteq> UNIV"
|
|
3977 |
shows "\<exists>(a:: real ^'n::finite). a \<noteq>0 \<and> (\<forall>x \<in> span S. a \<bullet> x = 0)"
|
|
3978 |
proof-
|
|
3979 |
from sU obtain a where a: "a \<notin> span S" by blast
|
|
3980 |
from orthogonal_basis_exists obtain B where
|
|
3981 |
B: "independent B" "B \<subseteq> span S" "S \<subseteq> span B" "B hassize dim S" "pairwise orthogonal B"
|
|
3982 |
by blast
|
|
3983 |
from B have fB: "finite B" "card B = dim S" by (simp_all add: hassize_def)
|
|
3984 |
from span_mono[OF B(2)] span_mono[OF B(3)]
|
|
3985 |
have sSB: "span S = span B" by (simp add: span_span)
|
|
3986 |
let ?a = "a - setsum (\<lambda>b. (a\<bullet>b / (b\<bullet>b)) *s b) B"
|
|
3987 |
have "setsum (\<lambda>b. (a\<bullet>b / (b\<bullet>b)) *s b) B \<in> span S"
|
|
3988 |
unfolding sSB
|
|
3989 |
apply (rule span_setsum[OF fB(1)])
|
|
3990 |
apply clarsimp
|
|
3991 |
apply (rule span_mul)
|
|
3992 |
by (rule span_superset)
|
|
3993 |
with a have a0:"?a \<noteq> 0" by auto
|
|
3994 |
have "\<forall>x\<in>span B. ?a \<bullet> x = 0"
|
|
3995 |
proof(rule span_induct')
|
|
3996 |
show "subspace (\<lambda>x. ?a \<bullet> x = 0)"
|
|
3997 |
by (auto simp add: subspace_def mem_def dot_radd dot_rmult)
|
|
3998 |
next
|
|
3999 |
{fix x assume x: "x \<in> B"
|
|
4000 |
from x have B': "B = insert x (B - {x})" by blast
|
|
4001 |
have fth: "finite (B - {x})" using fB by simp
|
|
4002 |
have "?a \<bullet> x = 0"
|
|
4003 |
apply (subst B') using fB fth
|
|
4004 |
unfolding setsum_clauses(2)[OF fth]
|
|
4005 |
apply simp
|
|
4006 |
apply (clarsimp simp add: dot_lsub dot_ladd dot_lmult dot_lsum dot_eq_0)
|
|
4007 |
apply (rule setsum_0', rule ballI)
|
|
4008 |
unfolding dot_sym
|
|
4009 |
by (auto simp add: x field_simps dot_eq_0 intro: B(5)[unfolded pairwise_def orthogonal_def, rule_format])}
|
|
4010 |
then show "\<forall>x \<in> B. ?a \<bullet> x = 0" by blast
|
|
4011 |
qed
|
|
4012 |
with a0 show ?thesis unfolding sSB by (auto intro: exI[where x="?a"])
|
|
4013 |
qed
|
|
4014 |
|
|
4015 |
lemma span_not_univ_subset_hyperplane:
|
|
4016 |
assumes SU: "span S \<noteq> (UNIV ::(real^'n::finite) set)"
|
|
4017 |
shows "\<exists> a. a \<noteq>0 \<and> span S \<subseteq> {x. a \<bullet> x = 0}"
|
|
4018 |
using span_not_univ_orthogonal[OF SU] by auto
|
|
4019 |
|
|
4020 |
lemma lowdim_subset_hyperplane:
|
|
4021 |
assumes d: "dim S < CARD('n::finite)"
|
|
4022 |
shows "\<exists>(a::real ^'n::finite). a \<noteq> 0 \<and> span S \<subseteq> {x. a \<bullet> x = 0}"
|
|
4023 |
proof-
|
|
4024 |
{assume "span S = UNIV"
|
|
4025 |
hence "dim (span S) = dim (UNIV :: (real ^'n) set)" by simp
|
|
4026 |
hence "dim S = CARD('n)" by (simp add: dim_span dim_univ)
|
|
4027 |
with d have False by arith}
|
|
4028 |
hence th: "span S \<noteq> UNIV" by blast
|
|
4029 |
from span_not_univ_subset_hyperplane[OF th] show ?thesis .
|
|
4030 |
qed
|
|
4031 |
|
|
4032 |
(* We can extend a linear basis-basis injection to the whole set. *)
|
|
4033 |
|
|
4034 |
lemma linear_indep_image_lemma:
|
|
4035 |
assumes lf: "linear f" and fB: "finite B"
|
|
4036 |
and ifB: "independent (f ` B)"
|
|
4037 |
and fi: "inj_on f B" and xsB: "x \<in> span B"
|
|
4038 |
and fx: "f (x::'a::field^'n) = 0"
|
|
4039 |
shows "x = 0"
|
|
4040 |
using fB ifB fi xsB fx
|
|
4041 |
proof(induct arbitrary: x rule: finite_induct[OF fB])
|
|
4042 |
case 1 thus ?case by (auto simp add: span_empty)
|
|
4043 |
next
|
|
4044 |
case (2 a b x)
|
|
4045 |
have fb: "finite b" using "2.prems" by simp
|
|
4046 |
have th0: "f ` b \<subseteq> f ` (insert a b)"
|
|
4047 |
apply (rule image_mono) by blast
|
|
4048 |
from independent_mono[ OF "2.prems"(2) th0]
|
|
4049 |
have ifb: "independent (f ` b)" .
|
|
4050 |
have fib: "inj_on f b"
|
|
4051 |
apply (rule subset_inj_on [OF "2.prems"(3)])
|
|
4052 |
by blast
|
|
4053 |
from span_breakdown[of a "insert a b", simplified, OF "2.prems"(4)]
|
|
4054 |
obtain k where k: "x - k*s a \<in> span (b -{a})" by blast
|
|
4055 |
have "f (x - k*s a) \<in> span (f ` b)"
|
|
4056 |
unfolding span_linear_image[OF lf]
|
|
4057 |
apply (rule imageI)
|
|
4058 |
using k span_mono[of "b-{a}" b] by blast
|
|
4059 |
hence "f x - k*s f a \<in> span (f ` b)"
|
|
4060 |
by (simp add: linear_sub[OF lf] linear_cmul[OF lf])
|
|
4061 |
hence th: "-k *s f a \<in> span (f ` b)"
|
|
4062 |
using "2.prems"(5) by (simp add: vector_smult_lneg)
|
|
4063 |
{assume k0: "k = 0"
|
|
4064 |
from k0 k have "x \<in> span (b -{a})" by simp
|
|
4065 |
then have "x \<in> span b" using span_mono[of "b-{a}" b]
|
|
4066 |
by blast}
|
|
4067 |
moreover
|
|
4068 |
{assume k0: "k \<noteq> 0"
|
|
4069 |
from span_mul[OF th, of "- 1/ k"] k0
|
|
4070 |
have th1: "f a \<in> span (f ` b)"
|
|
4071 |
by (auto simp add: vector_smult_assoc)
|
|
4072 |
from inj_on_image_set_diff[OF "2.prems"(3), of "insert a b " "{a}", symmetric]
|
|
4073 |
have tha: "f ` insert a b - f ` {a} = f ` (insert a b - {a})" by blast
|
|
4074 |
from "2.prems"(2)[unfolded dependent_def bex_simps(10), rule_format, of "f a"]
|
|
4075 |
have "f a \<notin> span (f ` b)" using tha
|
|
4076 |
using "2.hyps"(2)
|
|
4077 |
"2.prems"(3) by auto
|
|
4078 |
with th1 have False by blast
|
|
4079 |
then have "x \<in> span b" by blast}
|
|
4080 |
ultimately have xsb: "x \<in> span b" by blast
|
|
4081 |
from "2.hyps"(3)[OF fb ifb fib xsb "2.prems"(5)]
|
|
4082 |
show "x = 0" .
|
|
4083 |
qed
|
|
4084 |
|
|
4085 |
(* We can extend a linear mapping from basis. *)
|
|
4086 |
|
|
4087 |
lemma linear_independent_extend_lemma:
|
|
4088 |
assumes fi: "finite B" and ib: "independent B"
|
|
4089 |
shows "\<exists>g. (\<forall>x\<in> span B. \<forall>y\<in> span B. g ((x::'a::field^'n) + y) = g x + g y)
|
|
4090 |
\<and> (\<forall>x\<in> span B. \<forall>c. g (c*s x) = c *s g x)
|
|
4091 |
\<and> (\<forall>x\<in> B. g x = f x)"
|
|
4092 |
using ib fi
|
|
4093 |
proof(induct rule: finite_induct[OF fi])
|
|
4094 |
case 1 thus ?case by (auto simp add: span_empty)
|
|
4095 |
next
|
|
4096 |
case (2 a b)
|
|
4097 |
from "2.prems" "2.hyps" have ibf: "independent b" "finite b"
|
|
4098 |
by (simp_all add: independent_insert)
|
|
4099 |
from "2.hyps"(3)[OF ibf] obtain g where
|
|
4100 |
g: "\<forall>x\<in>span b. \<forall>y\<in>span b. g (x + y) = g x + g y"
|
|
4101 |
"\<forall>x\<in>span b. \<forall>c. g (c *s x) = c *s g x" "\<forall>x\<in>b. g x = f x" by blast
|
|
4102 |
let ?h = "\<lambda>z. SOME k. (z - k *s a) \<in> span b"
|
|
4103 |
{fix z assume z: "z \<in> span (insert a b)"
|
|
4104 |
have th0: "z - ?h z *s a \<in> span b"
|
|
4105 |
apply (rule someI_ex)
|
|
4106 |
unfolding span_breakdown_eq[symmetric]
|
|
4107 |
using z .
|
|
4108 |
{fix k assume k: "z - k *s a \<in> span b"
|
|
4109 |
have eq: "z - ?h z *s a - (z - k*s a) = (k - ?h z) *s a"
|
|
4110 |
by (simp add: ring_simps vector_sadd_rdistrib[symmetric])
|
|
4111 |
from span_sub[OF th0 k]
|
|
4112 |
have khz: "(k - ?h z) *s a \<in> span b" by (simp add: eq)
|
|
4113 |
{assume "k \<noteq> ?h z" hence k0: "k - ?h z \<noteq> 0" by simp
|
|
4114 |
from k0 span_mul[OF khz, of "1 /(k - ?h z)"]
|
|
4115 |
have "a \<in> span b" by (simp add: vector_smult_assoc)
|
|
4116 |
with "2.prems"(1) "2.hyps"(2) have False
|
|
4117 |
by (auto simp add: dependent_def)}
|
|
4118 |
then have "k = ?h z" by blast}
|
|
4119 |
with th0 have "z - ?h z *s a \<in> span b \<and> (\<forall>k. z - k *s a \<in> span b \<longrightarrow> k = ?h z)" by blast}
|
|
4120 |
note h = this
|
|
4121 |
let ?g = "\<lambda>z. ?h z *s f a + g (z - ?h z *s a)"
|
|
4122 |
{fix x y assume x: "x \<in> span (insert a b)" and y: "y \<in> span (insert a b)"
|
|
4123 |
have tha: "\<And>(x::'a^'n) y a k l. (x + y) - (k + l) *s a = (x - k *s a) + (y - l *s a)"
|
|
4124 |
by (vector ring_simps)
|
|
4125 |
have addh: "?h (x + y) = ?h x + ?h y"
|
|
4126 |
apply (rule conjunct2[OF h, rule_format, symmetric])
|
|
4127 |
apply (rule span_add[OF x y])
|
|
4128 |
unfolding tha
|
|
4129 |
by (metis span_add x y conjunct1[OF h, rule_format])
|
|
4130 |
have "?g (x + y) = ?g x + ?g y"
|
|
4131 |
unfolding addh tha
|
|
4132 |
g(1)[rule_format,OF conjunct1[OF h, OF x] conjunct1[OF h, OF y]]
|
|
4133 |
by (simp add: vector_sadd_rdistrib)}
|
|
4134 |
moreover
|
|
4135 |
{fix x:: "'a^'n" and c:: 'a assume x: "x \<in> span (insert a b)"
|
|
4136 |
have tha: "\<And>(x::'a^'n) c k a. c *s x - (c * k) *s a = c *s (x - k *s a)"
|
|
4137 |
by (vector ring_simps)
|
|
4138 |
have hc: "?h (c *s x) = c * ?h x"
|
|
4139 |
apply (rule conjunct2[OF h, rule_format, symmetric])
|
|
4140 |
apply (metis span_mul x)
|
|
4141 |
by (metis tha span_mul x conjunct1[OF h])
|
|
4142 |
have "?g (c *s x) = c*s ?g x"
|
|
4143 |
unfolding hc tha g(2)[rule_format, OF conjunct1[OF h, OF x]]
|
|
4144 |
by (vector ring_simps)}
|
|
4145 |
moreover
|
|
4146 |
{fix x assume x: "x \<in> (insert a b)"
|
|
4147 |
{assume xa: "x = a"
|
|
4148 |
have ha1: "1 = ?h a"
|
|
4149 |
apply (rule conjunct2[OF h, rule_format])
|
|
4150 |
apply (metis span_superset insertI1)
|
|
4151 |
using conjunct1[OF h, OF span_superset, OF insertI1]
|
|
4152 |
by (auto simp add: span_0)
|
|
4153 |
|
|
4154 |
from xa ha1[symmetric] have "?g x = f x"
|
|
4155 |
apply simp
|
|
4156 |
using g(2)[rule_format, OF span_0, of 0]
|
|
4157 |
by simp}
|
|
4158 |
moreover
|
|
4159 |
{assume xb: "x \<in> b"
|
|
4160 |
have h0: "0 = ?h x"
|
|
4161 |
apply (rule conjunct2[OF h, rule_format])
|
|
4162 |
apply (metis span_superset insertI1 xb x)
|
|
4163 |
apply simp
|
|
4164 |
apply (metis span_superset xb)
|
|
4165 |
done
|
|
4166 |
have "?g x = f x"
|
|
4167 |
by (simp add: h0[symmetric] g(3)[rule_format, OF xb])}
|
|
4168 |
ultimately have "?g x = f x" using x by blast }
|
|
4169 |
ultimately show ?case apply - apply (rule exI[where x="?g"]) by blast
|
|
4170 |
qed
|
|
4171 |
|
|
4172 |
lemma linear_independent_extend:
|
|
4173 |
assumes iB: "independent (B:: (real ^'n::finite) set)"
|
|
4174 |
shows "\<exists>g. linear g \<and> (\<forall>x\<in>B. g x = f x)"
|
|
4175 |
proof-
|
|
4176 |
from maximal_independent_subset_extend[of B UNIV] iB
|
|
4177 |
obtain C where C: "B \<subseteq> C" "independent C" "\<And>x. x \<in> span C" by auto
|
|
4178 |
|
|
4179 |
from C(2) independent_bound[of C] linear_independent_extend_lemma[of C f]
|
|
4180 |
obtain g where g: "(\<forall>x\<in> span C. \<forall>y\<in> span C. g (x + y) = g x + g y)
|
|
4181 |
\<and> (\<forall>x\<in> span C. \<forall>c. g (c*s x) = c *s g x)
|
|
4182 |
\<and> (\<forall>x\<in> C. g x = f x)" by blast
|
|
4183 |
from g show ?thesis unfolding linear_def using C
|
|
4184 |
apply clarsimp by blast
|
|
4185 |
qed
|
|
4186 |
|
|
4187 |
(* Can construct an isomorphism between spaces of same dimension. *)
|
|
4188 |
|
|
4189 |
lemma card_le_inj: assumes fA: "finite A" and fB: "finite B"
|
|
4190 |
and c: "card A \<le> card B" shows "(\<exists>f. f ` A \<subseteq> B \<and> inj_on f A)"
|
|
4191 |
using fB c
|
|
4192 |
proof(induct arbitrary: B rule: finite_induct[OF fA])
|
|
4193 |
case 1 thus ?case by simp
|
|
4194 |
next
|
|
4195 |
case (2 x s t)
|
|
4196 |
thus ?case
|
|
4197 |
proof(induct rule: finite_induct[OF "2.prems"(1)])
|
|
4198 |
case 1 then show ?case by simp
|
|
4199 |
next
|
|
4200 |
case (2 y t)
|
|
4201 |
from "2.prems"(1,2,5) "2.hyps"(1,2) have cst:"card s \<le> card t" by simp
|
|
4202 |
from "2.prems"(3) [OF "2.hyps"(1) cst] obtain f where
|
|
4203 |
f: "f ` s \<subseteq> t \<and> inj_on f s" by blast
|
|
4204 |
from f "2.prems"(2) "2.hyps"(2) show ?case
|
|
4205 |
apply -
|
|
4206 |
apply (rule exI[where x = "\<lambda>z. if z = x then y else f z"])
|
|
4207 |
by (auto simp add: inj_on_def)
|
|
4208 |
qed
|
|
4209 |
qed
|
|
4210 |
|
|
4211 |
lemma card_subset_eq: assumes fB: "finite B" and AB: "A \<subseteq> B" and
|
|
4212 |
c: "card A = card B"
|
|
4213 |
shows "A = B"
|
|
4214 |
proof-
|
|
4215 |
from fB AB have fA: "finite A" by (auto intro: finite_subset)
|
|
4216 |
from fA fB have fBA: "finite (B - A)" by auto
|
|
4217 |
have e: "A \<inter> (B - A) = {}" by blast
|
|
4218 |
have eq: "A \<union> (B - A) = B" using AB by blast
|
|
4219 |
from card_Un_disjoint[OF fA fBA e, unfolded eq c]
|
|
4220 |
have "card (B - A) = 0" by arith
|
|
4221 |
hence "B - A = {}" unfolding card_eq_0_iff using fA fB by simp
|
|
4222 |
with AB show "A = B" by blast
|
|
4223 |
qed
|
|
4224 |
|
|
4225 |
lemma subspace_isomorphism:
|
|
4226 |
assumes s: "subspace (S:: (real ^'n::finite) set)"
|
|
4227 |
and t: "subspace (T :: (real ^ 'm::finite) set)"
|
|
4228 |
and d: "dim S = dim T"
|
|
4229 |
shows "\<exists>f. linear f \<and> f ` S = T \<and> inj_on f S"
|
|
4230 |
proof-
|
|
4231 |
from basis_exists[of S] obtain B where
|
|
4232 |
B: "B \<subseteq> S" "independent B" "S \<subseteq> span B" "B hassize dim S" by blast
|
|
4233 |
from basis_exists[of T] obtain C where
|
|
4234 |
C: "C \<subseteq> T" "independent C" "T \<subseteq> span C" "C hassize dim T" by blast
|
|
4235 |
from B(4) C(4) card_le_inj[of B C] d obtain f where
|
|
4236 |
f: "f ` B \<subseteq> C" "inj_on f B" unfolding hassize_def by auto
|
|
4237 |
from linear_independent_extend[OF B(2)] obtain g where
|
|
4238 |
g: "linear g" "\<forall>x\<in> B. g x = f x" by blast
|
|
4239 |
from B(4) have fB: "finite B" by (simp add: hassize_def)
|
|
4240 |
from C(4) have fC: "finite C" by (simp add: hassize_def)
|
|
4241 |
from inj_on_iff_eq_card[OF fB, of f] f(2)
|
|
4242 |
have "card (f ` B) = card B" by simp
|
|
4243 |
with B(4) C(4) have ceq: "card (f ` B) = card C" using d
|
|
4244 |
by (simp add: hassize_def)
|
|
4245 |
have "g ` B = f ` B" using g(2)
|
|
4246 |
by (auto simp add: image_iff)
|
|
4247 |
also have "\<dots> = C" using card_subset_eq[OF fC f(1) ceq] .
|
|
4248 |
finally have gBC: "g ` B = C" .
|
|
4249 |
have gi: "inj_on g B" using f(2) g(2)
|
|
4250 |
by (auto simp add: inj_on_def)
|
|
4251 |
note g0 = linear_indep_image_lemma[OF g(1) fB, unfolded gBC, OF C(2) gi]
|
|
4252 |
{fix x y assume x: "x \<in> S" and y: "y \<in> S" and gxy:"g x = g y"
|
|
4253 |
from B(3) x y have x': "x \<in> span B" and y': "y \<in> span B" by blast+
|
|
4254 |
from gxy have th0: "g (x - y) = 0" by (simp add: linear_sub[OF g(1)])
|
|
4255 |
have th1: "x - y \<in> span B" using x' y' by (metis span_sub)
|
|
4256 |
have "x=y" using g0[OF th1 th0] by simp }
|
|
4257 |
then have giS: "inj_on g S"
|
|
4258 |
unfolding inj_on_def by blast
|
|
4259 |
from span_subspace[OF B(1,3) s]
|
|
4260 |
have "g ` S = span (g ` B)" by (simp add: span_linear_image[OF g(1)])
|
|
4261 |
also have "\<dots> = span C" unfolding gBC ..
|
|
4262 |
also have "\<dots> = T" using span_subspace[OF C(1,3) t] .
|
|
4263 |
finally have gS: "g ` S = T" .
|
|
4264 |
from g(1) gS giS show ?thesis by blast
|
|
4265 |
qed
|
|
4266 |
|
|
4267 |
(* linear functions are equal on a subspace if they are on a spanning set. *)
|
|
4268 |
|
|
4269 |
lemma subspace_kernel:
|
|
4270 |
assumes lf: "linear (f::'a::semiring_1 ^'n \<Rightarrow> _)"
|
|
4271 |
shows "subspace {x. f x = 0}"
|
|
4272 |
apply (simp add: subspace_def)
|
|
4273 |
by (simp add: linear_add[OF lf] linear_cmul[OF lf] linear_0[OF lf])
|
|
4274 |
|
|
4275 |
lemma linear_eq_0_span:
|
|
4276 |
assumes lf: "linear f" and f0: "\<forall>x\<in>B. f x = 0"
|
|
4277 |
shows "\<forall>x \<in> span B. f x = (0::'a::semiring_1 ^'n)"
|
|
4278 |
proof
|
|
4279 |
fix x assume x: "x \<in> span B"
|
|
4280 |
let ?P = "\<lambda>x. f x = 0"
|
|
4281 |
from subspace_kernel[OF lf] have "subspace ?P" unfolding Collect_def .
|
|
4282 |
with x f0 span_induct[of B "?P" x] show "f x = 0" by blast
|
|
4283 |
qed
|
|
4284 |
|
|
4285 |
lemma linear_eq_0:
|
|
4286 |
assumes lf: "linear f" and SB: "S \<subseteq> span B" and f0: "\<forall>x\<in>B. f x = 0"
|
|
4287 |
shows "\<forall>x \<in> S. f x = (0::'a::semiring_1^'n)"
|
|
4288 |
by (metis linear_eq_0_span[OF lf] subset_eq SB f0)
|
|
4289 |
|
|
4290 |
lemma linear_eq:
|
|
4291 |
assumes lf: "linear (f::'a::ring_1^'n \<Rightarrow> _)" and lg: "linear g" and S: "S \<subseteq> span B"
|
|
4292 |
and fg: "\<forall> x\<in> B. f x = g x"
|
|
4293 |
shows "\<forall>x\<in> S. f x = g x"
|
|
4294 |
proof-
|
|
4295 |
let ?h = "\<lambda>x. f x - g x"
|
|
4296 |
from fg have fg': "\<forall>x\<in> B. ?h x = 0" by simp
|
|
4297 |
from linear_eq_0[OF linear_compose_sub[OF lf lg] S fg']
|
|
4298 |
show ?thesis by simp
|
|
4299 |
qed
|
|
4300 |
|
|
4301 |
lemma linear_eq_stdbasis:
|
|
4302 |
assumes lf: "linear (f::'a::ring_1^'m::finite \<Rightarrow> 'a^'n::finite)" and lg: "linear g"
|
|
4303 |
and fg: "\<forall>i. f (basis i) = g(basis i)"
|
|
4304 |
shows "f = g"
|
|
4305 |
proof-
|
|
4306 |
let ?U = "UNIV :: 'm set"
|
|
4307 |
let ?I = "{basis i:: 'a^'m|i. i \<in> ?U}"
|
|
4308 |
{fix x assume x: "x \<in> (UNIV :: ('a^'m) set)"
|
|
4309 |
from equalityD2[OF span_stdbasis]
|
|
4310 |
have IU: " (UNIV :: ('a^'m) set) \<subseteq> span ?I" by blast
|
|
4311 |
from linear_eq[OF lf lg IU] fg x
|
|
4312 |
have "f x = g x" unfolding Collect_def Ball_def mem_def by metis}
|
|
4313 |
then show ?thesis by (auto intro: ext)
|
|
4314 |
qed
|
|
4315 |
|
|
4316 |
(* Similar results for bilinear functions. *)
|
|
4317 |
|
|
4318 |
lemma bilinear_eq:
|
|
4319 |
assumes bf: "bilinear (f:: 'a::ring^'m \<Rightarrow> 'a^'n \<Rightarrow> 'a^'p)"
|
|
4320 |
and bg: "bilinear g"
|
|
4321 |
and SB: "S \<subseteq> span B" and TC: "T \<subseteq> span C"
|
|
4322 |
and fg: "\<forall>x\<in> B. \<forall>y\<in> C. f x y = g x y"
|
|
4323 |
shows "\<forall>x\<in>S. \<forall>y\<in>T. f x y = g x y "
|
|
4324 |
proof-
|
|
4325 |
let ?P = "\<lambda>x. \<forall>y\<in> span C. f x y = g x y"
|
|
4326 |
from bf bg have sp: "subspace ?P"
|
|
4327 |
unfolding bilinear_def linear_def subspace_def bf bg
|
|
4328 |
by(auto simp add: span_0 mem_def bilinear_lzero[OF bf] bilinear_lzero[OF bg] span_add Ball_def intro: bilinear_ladd[OF bf])
|
|
4329 |
|
|
4330 |
have "\<forall>x \<in> span B. \<forall>y\<in> span C. f x y = g x y"
|
|
4331 |
apply -
|
|
4332 |
apply (rule ballI)
|
|
4333 |
apply (rule span_induct[of B ?P])
|
|
4334 |
defer
|
|
4335 |
apply (rule sp)
|
|
4336 |
apply assumption
|
|
4337 |
apply (clarsimp simp add: Ball_def)
|
|
4338 |
apply (rule_tac P="\<lambda>y. f xa y = g xa y" and S=C in span_induct)
|
|
4339 |
using fg
|
|
4340 |
apply (auto simp add: subspace_def)
|
|
4341 |
using bf bg unfolding bilinear_def linear_def
|
|
4342 |
by(auto simp add: span_0 mem_def bilinear_rzero[OF bf] bilinear_rzero[OF bg] span_add Ball_def intro: bilinear_ladd[OF bf])
|
|
4343 |
then show ?thesis using SB TC by (auto intro: ext)
|
|
4344 |
qed
|
|
4345 |
|
|
4346 |
lemma bilinear_eq_stdbasis:
|
|
4347 |
assumes bf: "bilinear (f:: 'a::ring_1^'m::finite \<Rightarrow> 'a^'n::finite \<Rightarrow> 'a^'p)"
|
|
4348 |
and bg: "bilinear g"
|
|
4349 |
and fg: "\<forall>i j. f (basis i) (basis j) = g (basis i) (basis j)"
|
|
4350 |
shows "f = g"
|
|
4351 |
proof-
|
|
4352 |
from fg have th: "\<forall>x \<in> {basis i| i. i\<in> (UNIV :: 'm set)}. \<forall>y\<in> {basis j |j. j \<in> (UNIV :: 'n set)}. f x y = g x y" by blast
|
|
4353 |
from bilinear_eq[OF bf bg equalityD2[OF span_stdbasis] equalityD2[OF span_stdbasis] th] show ?thesis by (blast intro: ext)
|
|
4354 |
qed
|
|
4355 |
|
|
4356 |
(* Detailed theorems about left and right invertibility in general case. *)
|
|
4357 |
|
|
4358 |
lemma left_invertible_transp:
|
|
4359 |
"(\<exists>(B::'a^'n^'m). B ** transp (A::'a^'n^'m) = mat (1::'a::comm_semiring_1)) \<longleftrightarrow> (\<exists>(B::'a^'m^'n). A ** B = mat 1)"
|
|
4360 |
by (metis matrix_transp_mul transp_mat transp_transp)
|
|
4361 |
|
|
4362 |
lemma right_invertible_transp:
|
|
4363 |
"(\<exists>(B::'a^'n^'m). transp (A::'a^'n^'m) ** B = mat (1::'a::comm_semiring_1)) \<longleftrightarrow> (\<exists>(B::'a^'m^'n). B ** A = mat 1)"
|
|
4364 |
by (metis matrix_transp_mul transp_mat transp_transp)
|
|
4365 |
|
|
4366 |
lemma linear_injective_left_inverse:
|
|
4367 |
assumes lf: "linear (f::real ^'n::finite \<Rightarrow> real ^'m::finite)" and fi: "inj f"
|
|
4368 |
shows "\<exists>g. linear g \<and> g o f = id"
|
|
4369 |
proof-
|
|
4370 |
from linear_independent_extend[OF independent_injective_image, OF independent_stdbasis, OF lf fi]
|
|
4371 |
obtain h:: "real ^'m \<Rightarrow> real ^'n" where h: "linear h" " \<forall>x \<in> f ` {basis i|i. i \<in> (UNIV::'n set)}. h x = inv f x" by blast
|
|
4372 |
from h(2)
|
|
4373 |
have th: "\<forall>i. (h \<circ> f) (basis i) = id (basis i)"
|
|
4374 |
using inv_o_cancel[OF fi, unfolded stupid_ext[symmetric] id_def o_def]
|
|
4375 |
by auto
|
|
4376 |
|
|
4377 |
from linear_eq_stdbasis[OF linear_compose[OF lf h(1)] linear_id th]
|
|
4378 |
have "h o f = id" .
|
|
4379 |
then show ?thesis using h(1) by blast
|
|
4380 |
qed
|
|
4381 |
|
|
4382 |
lemma linear_surjective_right_inverse:
|
|
4383 |
assumes lf: "linear (f:: real ^'m::finite \<Rightarrow> real ^'n::finite)" and sf: "surj f"
|
|
4384 |
shows "\<exists>g. linear g \<and> f o g = id"
|
|
4385 |
proof-
|
|
4386 |
from linear_independent_extend[OF independent_stdbasis]
|
|
4387 |
obtain h:: "real ^'n \<Rightarrow> real ^'m" where
|
|
4388 |
h: "linear h" "\<forall> x\<in> {basis i| i. i\<in> (UNIV :: 'n set)}. h x = inv f x" by blast
|
|
4389 |
from h(2)
|
|
4390 |
have th: "\<forall>i. (f o h) (basis i) = id (basis i)"
|
|
4391 |
using sf
|
|
4392 |
apply (auto simp add: surj_iff o_def stupid_ext[symmetric])
|
|
4393 |
apply (erule_tac x="basis i" in allE)
|
|
4394 |
by auto
|
|
4395 |
|
|
4396 |
from linear_eq_stdbasis[OF linear_compose[OF h(1) lf] linear_id th]
|
|
4397 |
have "f o h = id" .
|
|
4398 |
then show ?thesis using h(1) by blast
|
|
4399 |
qed
|
|
4400 |
|
|
4401 |
lemma matrix_left_invertible_injective:
|
|
4402 |
"(\<exists>B. (B::real^'m^'n) ** (A::real^'n::finite^'m::finite) = mat 1) \<longleftrightarrow> (\<forall>x y. A *v x = A *v y \<longrightarrow> x = y)"
|
|
4403 |
proof-
|
|
4404 |
{fix B:: "real^'m^'n" and x y assume B: "B ** A = mat 1" and xy: "A *v x = A*v y"
|
|
4405 |
from xy have "B*v (A *v x) = B *v (A*v y)" by simp
|
|
4406 |
hence "x = y"
|
|
4407 |
unfolding matrix_vector_mul_assoc B matrix_vector_mul_lid .}
|
|
4408 |
moreover
|
|
4409 |
{assume A: "\<forall>x y. A *v x = A *v y \<longrightarrow> x = y"
|
|
4410 |
hence i: "inj (op *v A)" unfolding inj_on_def by auto
|
|
4411 |
from linear_injective_left_inverse[OF matrix_vector_mul_linear i]
|
|
4412 |
obtain g where g: "linear g" "g o op *v A = id" by blast
|
|
4413 |
have "matrix g ** A = mat 1"
|
|
4414 |
unfolding matrix_eq matrix_vector_mul_lid matrix_vector_mul_assoc[symmetric] matrix_works[OF g(1)]
|
|
4415 |
using g(2) by (simp add: o_def id_def stupid_ext)
|
|
4416 |
then have "\<exists>B. (B::real ^'m^'n) ** A = mat 1" by blast}
|
|
4417 |
ultimately show ?thesis by blast
|
|
4418 |
qed
|
|
4419 |
|
|
4420 |
lemma matrix_left_invertible_ker:
|
|
4421 |
"(\<exists>B. (B::real ^'m::finite^'n::finite) ** (A::real^'n^'m) = mat 1) \<longleftrightarrow> (\<forall>x. A *v x = 0 \<longrightarrow> x = 0)"
|
|
4422 |
unfolding matrix_left_invertible_injective
|
|
4423 |
using linear_injective_0[OF matrix_vector_mul_linear, of A]
|
|
4424 |
by (simp add: inj_on_def)
|
|
4425 |
|
|
4426 |
lemma matrix_right_invertible_surjective:
|
|
4427 |
"(\<exists>B. (A::real^'n::finite^'m::finite) ** (B::real^'m^'n) = mat 1) \<longleftrightarrow> surj (\<lambda>x. A *v x)"
|
|
4428 |
proof-
|
|
4429 |
{fix B :: "real ^'m^'n" assume AB: "A ** B = mat 1"
|
|
4430 |
{fix x :: "real ^ 'm"
|
|
4431 |
have "A *v (B *v x) = x"
|
|
4432 |
by (simp add: matrix_vector_mul_lid matrix_vector_mul_assoc AB)}
|
|
4433 |
hence "surj (op *v A)" unfolding surj_def by metis }
|
|
4434 |
moreover
|
|
4435 |
{assume sf: "surj (op *v A)"
|
|
4436 |
from linear_surjective_right_inverse[OF matrix_vector_mul_linear sf]
|
|
4437 |
obtain g:: "real ^'m \<Rightarrow> real ^'n" where g: "linear g" "op *v A o g = id"
|
|
4438 |
by blast
|
|
4439 |
|
|
4440 |
have "A ** (matrix g) = mat 1"
|
|
4441 |
unfolding matrix_eq matrix_vector_mul_lid
|
|
4442 |
matrix_vector_mul_assoc[symmetric] matrix_works[OF g(1)]
|
|
4443 |
using g(2) unfolding o_def stupid_ext[symmetric] id_def
|
|
4444 |
.
|
|
4445 |
hence "\<exists>B. A ** (B::real^'m^'n) = mat 1" by blast
|
|
4446 |
}
|
|
4447 |
ultimately show ?thesis unfolding surj_def by blast
|
|
4448 |
qed
|
|
4449 |
|
|
4450 |
lemma matrix_left_invertible_independent_columns:
|
|
4451 |
fixes A :: "real^'n::finite^'m::finite"
|
|
4452 |
shows "(\<exists>(B::real ^'m^'n). B ** A = mat 1) \<longleftrightarrow> (\<forall>c. setsum (\<lambda>i. c i *s column i A) (UNIV :: 'n set) = 0 \<longrightarrow> (\<forall>i. c i = 0))"
|
|
4453 |
(is "?lhs \<longleftrightarrow> ?rhs")
|
|
4454 |
proof-
|
|
4455 |
let ?U = "UNIV :: 'n set"
|
|
4456 |
{assume k: "\<forall>x. A *v x = 0 \<longrightarrow> x = 0"
|
|
4457 |
{fix c i assume c: "setsum (\<lambda>i. c i *s column i A) ?U = 0"
|
|
4458 |
and i: "i \<in> ?U"
|
|
4459 |
let ?x = "\<chi> i. c i"
|
|
4460 |
have th0:"A *v ?x = 0"
|
|
4461 |
using c
|
|
4462 |
unfolding matrix_mult_vsum Cart_eq
|
|
4463 |
by auto
|
|
4464 |
from k[rule_format, OF th0] i
|
|
4465 |
have "c i = 0" by (vector Cart_eq)}
|
|
4466 |
hence ?rhs by blast}
|
|
4467 |
moreover
|
|
4468 |
{assume H: ?rhs
|
|
4469 |
{fix x assume x: "A *v x = 0"
|
|
4470 |
let ?c = "\<lambda>i. ((x$i ):: real)"
|
|
4471 |
from H[rule_format, of ?c, unfolded matrix_mult_vsum[symmetric], OF x]
|
|
4472 |
have "x = 0" by vector}}
|
|
4473 |
ultimately show ?thesis unfolding matrix_left_invertible_ker by blast
|
|
4474 |
qed
|
|
4475 |
|
|
4476 |
lemma matrix_right_invertible_independent_rows:
|
|
4477 |
fixes A :: "real^'n::finite^'m::finite"
|
|
4478 |
shows "(\<exists>(B::real^'m^'n). A ** B = mat 1) \<longleftrightarrow> (\<forall>c. setsum (\<lambda>i. c i *s row i A) (UNIV :: 'm set) = 0 \<longrightarrow> (\<forall>i. c i = 0))"
|
|
4479 |
unfolding left_invertible_transp[symmetric]
|
|
4480 |
matrix_left_invertible_independent_columns
|
|
4481 |
by (simp add: column_transp)
|
|
4482 |
|
|
4483 |
lemma matrix_right_invertible_span_columns:
|
|
4484 |
"(\<exists>(B::real ^'n::finite^'m::finite). (A::real ^'m^'n) ** B = mat 1) \<longleftrightarrow> span (columns A) = UNIV" (is "?lhs = ?rhs")
|
|
4485 |
proof-
|
|
4486 |
let ?U = "UNIV :: 'm set"
|
|
4487 |
have fU: "finite ?U" by simp
|
|
4488 |
have lhseq: "?lhs \<longleftrightarrow> (\<forall>y. \<exists>(x::real^'m). setsum (\<lambda>i. (x$i) *s column i A) ?U = y)"
|
|
4489 |
unfolding matrix_right_invertible_surjective matrix_mult_vsum surj_def
|
|
4490 |
apply (subst eq_commute) ..
|
|
4491 |
have rhseq: "?rhs \<longleftrightarrow> (\<forall>x. x \<in> span (columns A))" by blast
|
|
4492 |
{assume h: ?lhs
|
|
4493 |
{fix x:: "real ^'n"
|
|
4494 |
from h[unfolded lhseq, rule_format, of x] obtain y:: "real ^'m"
|
|
4495 |
where y: "setsum (\<lambda>i. (y$i) *s column i A) ?U = x" by blast
|
|
4496 |
have "x \<in> span (columns A)"
|
|
4497 |
unfolding y[symmetric]
|
|
4498 |
apply (rule span_setsum[OF fU])
|
|
4499 |
apply clarify
|
|
4500 |
apply (rule span_mul)
|
|
4501 |
apply (rule span_superset)
|
|
4502 |
unfolding columns_def
|
|
4503 |
by blast}
|
|
4504 |
then have ?rhs unfolding rhseq by blast}
|
|
4505 |
moreover
|
|
4506 |
{assume h:?rhs
|
|
4507 |
let ?P = "\<lambda>(y::real ^'n). \<exists>(x::real^'m). setsum (\<lambda>i. (x$i) *s column i A) ?U = y"
|
|
4508 |
{fix y have "?P y"
|
|
4509 |
proof(rule span_induct_alt[of ?P "columns A"])
|
|
4510 |
show "\<exists>x\<Colon>real ^ 'm. setsum (\<lambda>i. (x$i) *s column i A) ?U = 0"
|
|
4511 |
apply (rule exI[where x=0])
|
|
4512 |
by (simp add: zero_index vector_smult_lzero)
|
|
4513 |
next
|
|
4514 |
fix c y1 y2 assume y1: "y1 \<in> columns A" and y2: "?P y2"
|
|
4515 |
from y1 obtain i where i: "i \<in> ?U" "y1 = column i A"
|
|
4516 |
unfolding columns_def by blast
|
|
4517 |
from y2 obtain x:: "real ^'m" where
|
|
4518 |
x: "setsum (\<lambda>i. (x$i) *s column i A) ?U = y2" by blast
|
|
4519 |
let ?x = "(\<chi> j. if j = i then c + (x$i) else (x$j))::real^'m"
|
|
4520 |
show "?P (c*s y1 + y2)"
|
|
4521 |
proof(rule exI[where x= "?x"], vector, auto simp add: i x[symmetric] cond_value_iff right_distrib cond_application_beta cong del: if_weak_cong)
|
|
4522 |
fix j
|
|
4523 |
have th: "\<forall>xa \<in> ?U. (if xa = i then (c + (x$i)) * ((column xa A)$j)
|
|
4524 |
else (x$xa) * ((column xa A$j))) = (if xa = i then c * ((column i A)$j) else 0) + ((x$xa) * ((column xa A)$j))" using i(1)
|
|
4525 |
by (simp add: ring_simps)
|
|
4526 |
have "setsum (\<lambda>xa. if xa = i then (c + (x$i)) * ((column xa A)$j)
|
|
4527 |
else (x$xa) * ((column xa A$j))) ?U = setsum (\<lambda>xa. (if xa = i then c * ((column i A)$j) else 0) + ((x$xa) * ((column xa A)$j))) ?U"
|
|
4528 |
apply (rule setsum_cong[OF refl])
|
|
4529 |
using th by blast
|
|
4530 |
also have "\<dots> = setsum (\<lambda>xa. if xa = i then c * ((column i A)$j) else 0) ?U + setsum (\<lambda>xa. ((x$xa) * ((column xa A)$j))) ?U"
|
|
4531 |
by (simp add: setsum_addf)
|
|
4532 |
also have "\<dots> = c * ((column i A)$j) + setsum (\<lambda>xa. ((x$xa) * ((column xa A)$j))) ?U"
|
|
4533 |
unfolding setsum_delta[OF fU]
|
|
4534 |
using i(1) by simp
|
|
4535 |
finally show "setsum (\<lambda>xa. if xa = i then (c + (x$i)) * ((column xa A)$j)
|
|
4536 |
else (x$xa) * ((column xa A$j))) ?U = c * ((column i A)$j) + setsum (\<lambda>xa. ((x$xa) * ((column xa A)$j))) ?U" .
|
|
4537 |
qed
|
|
4538 |
next
|
|
4539 |
show "y \<in> span (columns A)" unfolding h by blast
|
|
4540 |
qed}
|
|
4541 |
then have ?lhs unfolding lhseq ..}
|
|
4542 |
ultimately show ?thesis by blast
|
|
4543 |
qed
|
|
4544 |
|
|
4545 |
lemma matrix_left_invertible_span_rows:
|
|
4546 |
"(\<exists>(B::real^'m::finite^'n::finite). B ** (A::real^'n^'m) = mat 1) \<longleftrightarrow> span (rows A) = UNIV"
|
|
4547 |
unfolding right_invertible_transp[symmetric]
|
|
4548 |
unfolding columns_transp[symmetric]
|
|
4549 |
unfolding matrix_right_invertible_span_columns
|
|
4550 |
..
|
|
4551 |
|
|
4552 |
(* An injective map real^'n->real^'n is also surjective. *)
|
|
4553 |
|
|
4554 |
lemma linear_injective_imp_surjective:
|
|
4555 |
assumes lf: "linear (f:: real ^'n::finite \<Rightarrow> real ^'n)" and fi: "inj f"
|
|
4556 |
shows "surj f"
|
|
4557 |
proof-
|
|
4558 |
let ?U = "UNIV :: (real ^'n) set"
|
|
4559 |
from basis_exists[of ?U] obtain B
|
|
4560 |
where B: "B \<subseteq> ?U" "independent B" "?U \<subseteq> span B" "B hassize dim ?U"
|
|
4561 |
by blast
|
|
4562 |
from B(4) have d: "dim ?U = card B" by (simp add: hassize_def)
|
|
4563 |
have th: "?U \<subseteq> span (f ` B)"
|
|
4564 |
apply (rule card_ge_dim_independent)
|
|
4565 |
apply blast
|
|
4566 |
apply (rule independent_injective_image[OF B(2) lf fi])
|
|
4567 |
apply (rule order_eq_refl)
|
|
4568 |
apply (rule sym)
|
|
4569 |
unfolding d
|
|
4570 |
apply (rule card_image)
|
|
4571 |
apply (rule subset_inj_on[OF fi])
|
|
4572 |
by blast
|
|
4573 |
from th show ?thesis
|
|
4574 |
unfolding span_linear_image[OF lf] surj_def
|
|
4575 |
using B(3) by blast
|
|
4576 |
qed
|
|
4577 |
|
|
4578 |
(* And vice versa. *)
|
|
4579 |
|
|
4580 |
lemma surjective_iff_injective_gen:
|
|
4581 |
assumes fS: "finite S" and fT: "finite T" and c: "card S = card T"
|
|
4582 |
and ST: "f ` S \<subseteq> T"
|
|
4583 |
shows "(\<forall>y \<in> T. \<exists>x \<in> S. f x = y) \<longleftrightarrow> inj_on f S" (is "?lhs \<longleftrightarrow> ?rhs")
|
|
4584 |
proof-
|
|
4585 |
{assume h: "?lhs"
|
|
4586 |
{fix x y assume x: "x \<in> S" and y: "y \<in> S" and f: "f x = f y"
|
|
4587 |
from x fS have S0: "card S \<noteq> 0" by auto
|
|
4588 |
{assume xy: "x \<noteq> y"
|
|
4589 |
have th: "card S \<le> card (f ` (S - {y}))"
|
|
4590 |
unfolding c
|
|
4591 |
apply (rule card_mono)
|
|
4592 |
apply (rule finite_imageI)
|
|
4593 |
using fS apply simp
|
|
4594 |
using h xy x y f unfolding subset_eq image_iff
|
|
4595 |
apply auto
|
|
4596 |
apply (case_tac "xa = f x")
|
|
4597 |
apply (rule bexI[where x=x])
|
|
4598 |
apply auto
|
|
4599 |
done
|
|
4600 |
also have " \<dots> \<le> card (S -{y})"
|
|
4601 |
apply (rule card_image_le)
|
|
4602 |
using fS by simp
|
|
4603 |
also have "\<dots> \<le> card S - 1" using y fS by simp
|
|
4604 |
finally have False using S0 by arith }
|
|
4605 |
then have "x = y" by blast}
|
|
4606 |
then have ?rhs unfolding inj_on_def by blast}
|
|
4607 |
moreover
|
|
4608 |
{assume h: ?rhs
|
|
4609 |
have "f ` S = T"
|
|
4610 |
apply (rule card_subset_eq[OF fT ST])
|
|
4611 |
unfolding card_image[OF h] using c .
|
|
4612 |
then have ?lhs by blast}
|
|
4613 |
ultimately show ?thesis by blast
|
|
4614 |
qed
|
|
4615 |
|
|
4616 |
lemma linear_surjective_imp_injective:
|
|
4617 |
assumes lf: "linear (f::real ^'n::finite => real ^'n)" and sf: "surj f"
|
|
4618 |
shows "inj f"
|
|
4619 |
proof-
|
|
4620 |
let ?U = "UNIV :: (real ^'n) set"
|
|
4621 |
from basis_exists[of ?U] obtain B
|
|
4622 |
where B: "B \<subseteq> ?U" "independent B" "?U \<subseteq> span B" "B hassize dim ?U"
|
|
4623 |
by blast
|
|
4624 |
{fix x assume x: "x \<in> span B" and fx: "f x = 0"
|
|
4625 |
from B(4) have fB: "finite B" by (simp add: hassize_def)
|
|
4626 |
from B(4) have d: "dim ?U = card B" by (simp add: hassize_def)
|
|
4627 |
have fBi: "independent (f ` B)"
|
|
4628 |
apply (rule card_le_dim_spanning[of "f ` B" ?U])
|
|
4629 |
apply blast
|
|
4630 |
using sf B(3)
|
|
4631 |
unfolding span_linear_image[OF lf] surj_def subset_eq image_iff
|
|
4632 |
apply blast
|
|
4633 |
using fB apply (blast intro: finite_imageI)
|
|
4634 |
unfolding d
|
|
4635 |
apply (rule card_image_le)
|
|
4636 |
apply (rule fB)
|
|
4637 |
done
|
|
4638 |
have th0: "dim ?U \<le> card (f ` B)"
|
|
4639 |
apply (rule span_card_ge_dim)
|
|
4640 |
apply blast
|
|
4641 |
unfolding span_linear_image[OF lf]
|
|
4642 |
apply (rule subset_trans[where B = "f ` UNIV"])
|
|
4643 |
using sf unfolding surj_def apply blast
|
|
4644 |
apply (rule image_mono)
|
|
4645 |
apply (rule B(3))
|
|
4646 |
apply (metis finite_imageI fB)
|
|
4647 |
done
|
|
4648 |
|
|
4649 |
moreover have "card (f ` B) \<le> card B"
|
|
4650 |
by (rule card_image_le, rule fB)
|
|
4651 |
ultimately have th1: "card B = card (f ` B)" unfolding d by arith
|
|
4652 |
have fiB: "inj_on f B"
|
|
4653 |
unfolding surjective_iff_injective_gen[OF fB finite_imageI[OF fB] th1 subset_refl, symmetric] by blast
|
|
4654 |
from linear_indep_image_lemma[OF lf fB fBi fiB x] fx
|
|
4655 |
have "x = 0" by blast}
|
|
4656 |
note th = this
|
|
4657 |
from th show ?thesis unfolding linear_injective_0[OF lf]
|
|
4658 |
using B(3) by blast
|
|
4659 |
qed
|
|
4660 |
|
|
4661 |
(* Hence either is enough for isomorphism. *)
|
|
4662 |
|
|
4663 |
lemma left_right_inverse_eq:
|
|
4664 |
assumes fg: "f o g = id" and gh: "g o h = id"
|
|
4665 |
shows "f = h"
|
|
4666 |
proof-
|
|
4667 |
have "f = f o (g o h)" unfolding gh by simp
|
|
4668 |
also have "\<dots> = (f o g) o h" by (simp add: o_assoc)
|
|
4669 |
finally show "f = h" unfolding fg by simp
|
|
4670 |
qed
|
|
4671 |
|
|
4672 |
lemma isomorphism_expand:
|
|
4673 |
"f o g = id \<and> g o f = id \<longleftrightarrow> (\<forall>x. f(g x) = x) \<and> (\<forall>x. g(f x) = x)"
|
|
4674 |
by (simp add: expand_fun_eq o_def id_def)
|
|
4675 |
|
|
4676 |
lemma linear_injective_isomorphism:
|
|
4677 |
assumes lf: "linear (f :: real^'n::finite \<Rightarrow> real ^'n)" and fi: "inj f"
|
|
4678 |
shows "\<exists>f'. linear f' \<and> (\<forall>x. f' (f x) = x) \<and> (\<forall>x. f (f' x) = x)"
|
|
4679 |
unfolding isomorphism_expand[symmetric]
|
|
4680 |
using linear_surjective_right_inverse[OF lf linear_injective_imp_surjective[OF lf fi]] linear_injective_left_inverse[OF lf fi]
|
|
4681 |
by (metis left_right_inverse_eq)
|
|
4682 |
|
|
4683 |
lemma linear_surjective_isomorphism:
|
|
4684 |
assumes lf: "linear (f::real ^'n::finite \<Rightarrow> real ^'n)" and sf: "surj f"
|
|
4685 |
shows "\<exists>f'. linear f' \<and> (\<forall>x. f' (f x) = x) \<and> (\<forall>x. f (f' x) = x)"
|
|
4686 |
unfolding isomorphism_expand[symmetric]
|
|
4687 |
using linear_surjective_right_inverse[OF lf sf] linear_injective_left_inverse[OF lf linear_surjective_imp_injective[OF lf sf]]
|
|
4688 |
by (metis left_right_inverse_eq)
|
|
4689 |
|
|
4690 |
(* Left and right inverses are the same for R^N->R^N. *)
|
|
4691 |
|
|
4692 |
lemma linear_inverse_left:
|
|
4693 |
assumes lf: "linear (f::real ^'n::finite \<Rightarrow> real ^'n)" and lf': "linear f'"
|
|
4694 |
shows "f o f' = id \<longleftrightarrow> f' o f = id"
|
|
4695 |
proof-
|
|
4696 |
{fix f f':: "real ^'n \<Rightarrow> real ^'n"
|
|
4697 |
assume lf: "linear f" "linear f'" and f: "f o f' = id"
|
|
4698 |
from f have sf: "surj f"
|
|
4699 |
|
|
4700 |
apply (auto simp add: o_def stupid_ext[symmetric] id_def surj_def)
|
|
4701 |
by metis
|
|
4702 |
from linear_surjective_isomorphism[OF lf(1) sf] lf f
|
|
4703 |
have "f' o f = id" unfolding stupid_ext[symmetric] o_def id_def
|
|
4704 |
by metis}
|
|
4705 |
then show ?thesis using lf lf' by metis
|
|
4706 |
qed
|
|
4707 |
|
|
4708 |
(* Moreover, a one-sided inverse is automatically linear. *)
|
|
4709 |
|
|
4710 |
lemma left_inverse_linear:
|
|
4711 |
assumes lf: "linear (f::real ^'n::finite \<Rightarrow> real ^'n)" and gf: "g o f = id"
|
|
4712 |
shows "linear g"
|
|
4713 |
proof-
|
|
4714 |
from gf have fi: "inj f" apply (auto simp add: inj_on_def o_def id_def stupid_ext[symmetric])
|
|
4715 |
by metis
|
|
4716 |
from linear_injective_isomorphism[OF lf fi]
|
|
4717 |
obtain h:: "real ^'n \<Rightarrow> real ^'n" where
|
|
4718 |
h: "linear h" "\<forall>x. h (f x) = x" "\<forall>x. f (h x) = x" by blast
|
|
4719 |
have "h = g" apply (rule ext) using gf h(2,3)
|
|
4720 |
apply (simp add: o_def id_def stupid_ext[symmetric])
|
|
4721 |
by metis
|
|
4722 |
with h(1) show ?thesis by blast
|
|
4723 |
qed
|
|
4724 |
|
|
4725 |
lemma right_inverse_linear:
|
|
4726 |
assumes lf: "linear (f:: real ^'n::finite \<Rightarrow> real ^'n)" and gf: "f o g = id"
|
|
4727 |
shows "linear g"
|
|
4728 |
proof-
|
|
4729 |
from gf have fi: "surj f" apply (auto simp add: surj_def o_def id_def stupid_ext[symmetric])
|
|
4730 |
by metis
|
|
4731 |
from linear_surjective_isomorphism[OF lf fi]
|
|
4732 |
obtain h:: "real ^'n \<Rightarrow> real ^'n" where
|
|
4733 |
h: "linear h" "\<forall>x. h (f x) = x" "\<forall>x. f (h x) = x" by blast
|
|
4734 |
have "h = g" apply (rule ext) using gf h(2,3)
|
|
4735 |
apply (simp add: o_def id_def stupid_ext[symmetric])
|
|
4736 |
by metis
|
|
4737 |
with h(1) show ?thesis by blast
|
|
4738 |
qed
|
|
4739 |
|
|
4740 |
(* The same result in terms of square matrices. *)
|
|
4741 |
|
|
4742 |
lemma matrix_left_right_inverse:
|
|
4743 |
fixes A A' :: "real ^'n::finite^'n"
|
|
4744 |
shows "A ** A' = mat 1 \<longleftrightarrow> A' ** A = mat 1"
|
|
4745 |
proof-
|
|
4746 |
{fix A A' :: "real ^'n^'n" assume AA': "A ** A' = mat 1"
|
|
4747 |
have sA: "surj (op *v A)"
|
|
4748 |
unfolding surj_def
|
|
4749 |
apply clarify
|
|
4750 |
apply (rule_tac x="(A' *v y)" in exI)
|
|
4751 |
by (simp add: matrix_vector_mul_assoc AA' matrix_vector_mul_lid)
|
|
4752 |
from linear_surjective_isomorphism[OF matrix_vector_mul_linear sA]
|
|
4753 |
obtain f' :: "real ^'n \<Rightarrow> real ^'n"
|
|
4754 |
where f': "linear f'" "\<forall>x. f' (A *v x) = x" "\<forall>x. A *v f' x = x" by blast
|
|
4755 |
have th: "matrix f' ** A = mat 1"
|
|
4756 |
by (simp add: matrix_eq matrix_works[OF f'(1)] matrix_vector_mul_assoc[symmetric] matrix_vector_mul_lid f'(2)[rule_format])
|
|
4757 |
hence "(matrix f' ** A) ** A' = mat 1 ** A'" by simp
|
|
4758 |
hence "matrix f' = A'" by (simp add: matrix_mul_assoc[symmetric] AA' matrix_mul_rid matrix_mul_lid)
|
|
4759 |
hence "matrix f' ** A = A' ** A" by simp
|
|
4760 |
hence "A' ** A = mat 1" by (simp add: th)}
|
|
4761 |
then show ?thesis by blast
|
|
4762 |
qed
|
|
4763 |
|
|
4764 |
(* Considering an n-element vector as an n-by-1 or 1-by-n matrix. *)
|
|
4765 |
|
|
4766 |
definition "rowvector v = (\<chi> i j. (v$j))"
|
|
4767 |
|
|
4768 |
definition "columnvector v = (\<chi> i j. (v$i))"
|
|
4769 |
|
|
4770 |
lemma transp_columnvector:
|
|
4771 |
"transp(columnvector v) = rowvector v"
|
|
4772 |
by (simp add: transp_def rowvector_def columnvector_def Cart_eq)
|
|
4773 |
|
|
4774 |
lemma transp_rowvector: "transp(rowvector v) = columnvector v"
|
|
4775 |
by (simp add: transp_def columnvector_def rowvector_def Cart_eq)
|
|
4776 |
|
|
4777 |
lemma dot_rowvector_columnvector:
|
|
4778 |
"columnvector (A *v v) = A ** columnvector v"
|
|
4779 |
by (vector columnvector_def matrix_matrix_mult_def matrix_vector_mult_def)
|
|
4780 |
|
|
4781 |
lemma dot_matrix_product: "(x::'a::semiring_1^'n::finite) \<bullet> y = (((rowvector x ::'a^'n^1) ** (columnvector y :: 'a^1^'n))$1)$1"
|
|
4782 |
by (vector matrix_matrix_mult_def rowvector_def columnvector_def dot_def)
|
|
4783 |
|
|
4784 |
lemma dot_matrix_vector_mul:
|
|
4785 |
fixes A B :: "real ^'n::finite ^'n" and x y :: "real ^'n"
|
|
4786 |
shows "(A *v x) \<bullet> (B *v y) =
|
|
4787 |
(((rowvector x :: real^'n^1) ** ((transp A ** B) ** (columnvector y :: real ^1^'n)))$1)$1"
|
|
4788 |
unfolding dot_matrix_product transp_columnvector[symmetric]
|
|
4789 |
dot_rowvector_columnvector matrix_transp_mul matrix_mul_assoc ..
|
|
4790 |
|
|
4791 |
(* Infinity norm. *)
|
|
4792 |
|
33270
|
4793 |
definition "infnorm (x::real^'n::finite) = Sup {abs(x$i) |i. i\<in> (UNIV :: 'n set)}"
|
33175
|
4794 |
|
|
4795 |
lemma numseg_dimindex_nonempty: "\<exists>i. i \<in> (UNIV :: 'n set)"
|
|
4796 |
by auto
|
|
4797 |
|
|
4798 |
lemma infnorm_set_image:
|
|
4799 |
"{abs(x$i) |i. i\<in> (UNIV :: 'n set)} =
|
|
4800 |
(\<lambda>i. abs(x$i)) ` (UNIV :: 'n set)" by blast
|
|
4801 |
|
|
4802 |
lemma infnorm_set_lemma:
|
|
4803 |
shows "finite {abs((x::'a::abs ^'n::finite)$i) |i. i\<in> (UNIV :: 'n set)}"
|
|
4804 |
and "{abs(x$i) |i. i\<in> (UNIV :: 'n::finite set)} \<noteq> {}"
|
|
4805 |
unfolding infnorm_set_image
|
|
4806 |
by (auto intro: finite_imageI)
|
|
4807 |
|
|
4808 |
lemma infnorm_pos_le: "0 \<le> infnorm (x::real^'n::finite)"
|
|
4809 |
unfolding infnorm_def
|
33270
|
4810 |
unfolding Sup_finite_ge_iff[ OF infnorm_set_lemma]
|
33175
|
4811 |
unfolding infnorm_set_image
|
|
4812 |
by auto
|
|
4813 |
|
|
4814 |
lemma infnorm_triangle: "infnorm ((x::real^'n::finite) + y) \<le> infnorm x + infnorm y"
|
|
4815 |
proof-
|
|
4816 |
have th: "\<And>x y (z::real). x - y <= z \<longleftrightarrow> x - z <= y" by arith
|
|
4817 |
have th1: "\<And>S f. f ` S = { f i| i. i \<in> S}" by blast
|
|
4818 |
have th2: "\<And>x (y::real). abs(x + y) - abs(x) <= abs(y)" by arith
|
|
4819 |
show ?thesis
|
|
4820 |
unfolding infnorm_def
|
33270
|
4821 |
unfolding Sup_finite_le_iff[ OF infnorm_set_lemma]
|
33175
|
4822 |
apply (subst diff_le_eq[symmetric])
|
33270
|
4823 |
unfolding Sup_finite_ge_iff[ OF infnorm_set_lemma]
|
33175
|
4824 |
unfolding infnorm_set_image bex_simps
|
|
4825 |
apply (subst th)
|
|
4826 |
unfolding th1
|
33270
|
4827 |
unfolding Sup_finite_ge_iff[ OF infnorm_set_lemma]
|
33175
|
4828 |
|
|
4829 |
unfolding infnorm_set_image ball_simps bex_simps
|
|
4830 |
apply simp
|
|
4831 |
apply (metis th2)
|
|
4832 |
done
|
|
4833 |
qed
|
|
4834 |
|
|
4835 |
lemma infnorm_eq_0: "infnorm x = 0 \<longleftrightarrow> (x::real ^'n::finite) = 0"
|
|
4836 |
proof-
|
|
4837 |
have "infnorm x <= 0 \<longleftrightarrow> x = 0"
|
|
4838 |
unfolding infnorm_def
|
33270
|
4839 |
unfolding Sup_finite_le_iff[OF infnorm_set_lemma]
|
33175
|
4840 |
unfolding infnorm_set_image ball_simps
|
|
4841 |
by vector
|
|
4842 |
then show ?thesis using infnorm_pos_le[of x] by simp
|
|
4843 |
qed
|
|
4844 |
|
|
4845 |
lemma infnorm_0: "infnorm 0 = 0"
|
|
4846 |
by (simp add: infnorm_eq_0)
|
|
4847 |
|
|
4848 |
lemma infnorm_neg: "infnorm (- x) = infnorm x"
|
|
4849 |
unfolding infnorm_def
|
33270
|
4850 |
apply (rule cong[of "Sup" "Sup"])
|
33175
|
4851 |
apply blast
|
|
4852 |
apply (rule set_ext)
|
|
4853 |
apply auto
|
|
4854 |
done
|
|
4855 |
|
|
4856 |
lemma infnorm_sub: "infnorm (x - y) = infnorm (y - x)"
|
|
4857 |
proof-
|
|
4858 |
have "y - x = - (x - y)" by simp
|
|
4859 |
then show ?thesis by (metis infnorm_neg)
|
|
4860 |
qed
|
|
4861 |
|
|
4862 |
lemma real_abs_sub_infnorm: "\<bar> infnorm x - infnorm y\<bar> \<le> infnorm (x - y)"
|
|
4863 |
proof-
|
|
4864 |
have th: "\<And>(nx::real) n ny. nx <= n + ny \<Longrightarrow> ny <= n + nx ==> \<bar>nx - ny\<bar> <= n"
|
|
4865 |
by arith
|
|
4866 |
from infnorm_triangle[of "x - y" " y"] infnorm_triangle[of "x - y" "-x"]
|
|
4867 |
have ths: "infnorm x \<le> infnorm (x - y) + infnorm y"
|
|
4868 |
"infnorm y \<le> infnorm (x - y) + infnorm x"
|
|
4869 |
by (simp_all add: ring_simps infnorm_neg diff_def[symmetric])
|
|
4870 |
from th[OF ths] show ?thesis .
|
|
4871 |
qed
|
|
4872 |
|
|
4873 |
lemma real_abs_infnorm: " \<bar>infnorm x\<bar> = infnorm x"
|
|
4874 |
using infnorm_pos_le[of x] by arith
|
|
4875 |
|
|
4876 |
lemma component_le_infnorm:
|
|
4877 |
shows "\<bar>x$i\<bar> \<le> infnorm (x::real^'n::finite)"
|
|
4878 |
proof-
|
|
4879 |
let ?U = "UNIV :: 'n set"
|
|
4880 |
let ?S = "{\<bar>x$i\<bar> |i. i\<in> ?U}"
|
|
4881 |
have fS: "finite ?S" unfolding image_Collect[symmetric]
|
|
4882 |
apply (rule finite_imageI) unfolding Collect_def mem_def by simp
|
|
4883 |
have S0: "?S \<noteq> {}" by blast
|
|
4884 |
have th1: "\<And>S f. f ` S = { f i| i. i \<in> S}" by blast
|
33270
|
4885 |
from Sup_finite_in[OF fS S0]
|
|
4886 |
show ?thesis unfolding infnorm_def infnorm_set_image
|
|
4887 |
by (metis Sup_finite_ge_iff finite finite_imageI UNIV_not_empty image_is_empty
|
|
4888 |
rangeI real_le_refl)
|
33175
|
4889 |
qed
|
|
4890 |
|
|
4891 |
lemma infnorm_mul_lemma: "infnorm(a *s x) <= \<bar>a\<bar> * infnorm x"
|
|
4892 |
apply (subst infnorm_def)
|
33270
|
4893 |
unfolding Sup_finite_le_iff[OF infnorm_set_lemma]
|
33175
|
4894 |
unfolding infnorm_set_image ball_simps
|
|
4895 |
apply (simp add: abs_mult)
|
|
4896 |
apply (rule allI)
|
|
4897 |
apply (cut_tac component_le_infnorm[of x])
|
|
4898 |
apply (rule mult_mono)
|
|
4899 |
apply auto
|
|
4900 |
done
|
|
4901 |
|
|
4902 |
lemma infnorm_mul: "infnorm(a *s x) = abs a * infnorm x"
|
|
4903 |
proof-
|
|
4904 |
{assume a0: "a = 0" hence ?thesis by (simp add: infnorm_0) }
|
|
4905 |
moreover
|
|
4906 |
{assume a0: "a \<noteq> 0"
|
|
4907 |
from a0 have th: "(1/a) *s (a *s x) = x"
|
|
4908 |
by (simp add: vector_smult_assoc)
|
|
4909 |
from a0 have ap: "\<bar>a\<bar> > 0" by arith
|
|
4910 |
from infnorm_mul_lemma[of "1/a" "a *s x"]
|
|
4911 |
have "infnorm x \<le> 1/\<bar>a\<bar> * infnorm (a*s x)"
|
|
4912 |
unfolding th by simp
|
|
4913 |
with ap have "\<bar>a\<bar> * infnorm x \<le> \<bar>a\<bar> * (1/\<bar>a\<bar> * infnorm (a *s x))" by (simp add: field_simps)
|
|
4914 |
then have "\<bar>a\<bar> * infnorm x \<le> infnorm (a*s x)"
|
|
4915 |
using ap by (simp add: field_simps)
|
|
4916 |
with infnorm_mul_lemma[of a x] have ?thesis by arith }
|
|
4917 |
ultimately show ?thesis by blast
|
|
4918 |
qed
|
|
4919 |
|
|
4920 |
lemma infnorm_pos_lt: "infnorm x > 0 \<longleftrightarrow> x \<noteq> 0"
|
|
4921 |
using infnorm_pos_le[of x] infnorm_eq_0[of x] by arith
|
|
4922 |
|
|
4923 |
(* Prove that it differs only up to a bound from Euclidean norm. *)
|
|
4924 |
|
|
4925 |
lemma infnorm_le_norm: "infnorm x \<le> norm x"
|
33270
|
4926 |
unfolding infnorm_def Sup_finite_le_iff[OF infnorm_set_lemma]
|
33175
|
4927 |
unfolding infnorm_set_image ball_simps
|
|
4928 |
by (metis component_le_norm)
|
|
4929 |
lemma card_enum: "card {1 .. n} = n" by auto
|
|
4930 |
lemma norm_le_infnorm: "norm(x) <= sqrt(real CARD('n)) * infnorm(x::real ^'n::finite)"
|
|
4931 |
proof-
|
|
4932 |
let ?d = "CARD('n)"
|
|
4933 |
have "real ?d \<ge> 0" by simp
|
|
4934 |
hence d2: "(sqrt (real ?d))^2 = real ?d"
|
|
4935 |
by (auto intro: real_sqrt_pow2)
|
|
4936 |
have th: "sqrt (real ?d) * infnorm x \<ge> 0"
|
|
4937 |
by (simp add: zero_le_mult_iff real_sqrt_ge_0_iff infnorm_pos_le)
|
|
4938 |
have th1: "x\<bullet>x \<le> (sqrt (real ?d) * infnorm x)^2"
|
|
4939 |
unfolding power_mult_distrib d2
|
|
4940 |
apply (subst power2_abs[symmetric])
|
|
4941 |
unfolding real_of_nat_def dot_def power2_eq_square[symmetric]
|
|
4942 |
apply (subst power2_abs[symmetric])
|
|
4943 |
apply (rule setsum_bounded)
|
|
4944 |
apply (rule power_mono)
|
|
4945 |
unfolding abs_of_nonneg[OF infnorm_pos_le]
|
33270
|
4946 |
unfolding infnorm_def Sup_finite_ge_iff[OF infnorm_set_lemma]
|
33175
|
4947 |
unfolding infnorm_set_image bex_simps
|
|
4948 |
apply blast
|
|
4949 |
by (rule abs_ge_zero)
|
|
4950 |
from real_le_lsqrt[OF dot_pos_le th th1]
|
|
4951 |
show ?thesis unfolding real_vector_norm_def id_def .
|
|
4952 |
qed
|
|
4953 |
|
|
4954 |
(* Equality in Cauchy-Schwarz and triangle inequalities. *)
|
|
4955 |
|
|
4956 |
lemma norm_cauchy_schwarz_eq: "(x::real ^'n::finite) \<bullet> y = norm x * norm y \<longleftrightarrow> norm x *s y = norm y *s x" (is "?lhs \<longleftrightarrow> ?rhs")
|
|
4957 |
proof-
|
|
4958 |
{assume h: "x = 0"
|
|
4959 |
hence ?thesis by simp}
|
|
4960 |
moreover
|
|
4961 |
{assume h: "y = 0"
|
|
4962 |
hence ?thesis by simp}
|
|
4963 |
moreover
|
|
4964 |
{assume x: "x \<noteq> 0" and y: "y \<noteq> 0"
|
|
4965 |
from dot_eq_0[of "norm y *s x - norm x *s y"]
|
|
4966 |
have "?rhs \<longleftrightarrow> (norm y * (norm y * norm x * norm x - norm x * (x \<bullet> y)) - norm x * (norm y * (y \<bullet> x) - norm x * norm y * norm y) = 0)"
|
|
4967 |
using x y
|
|
4968 |
unfolding dot_rsub dot_lsub dot_lmult dot_rmult
|
|
4969 |
unfolding norm_pow_2[symmetric] power2_eq_square diff_eq_0_iff_eq apply (simp add: dot_sym)
|
|
4970 |
apply (simp add: ring_simps)
|
|
4971 |
apply metis
|
|
4972 |
done
|
|
4973 |
also have "\<dots> \<longleftrightarrow> (2 * norm x * norm y * (norm x * norm y - x \<bullet> y) = 0)" using x y
|
|
4974 |
by (simp add: ring_simps dot_sym)
|
|
4975 |
also have "\<dots> \<longleftrightarrow> ?lhs" using x y
|
|
4976 |
apply simp
|
|
4977 |
by metis
|
|
4978 |
finally have ?thesis by blast}
|
|
4979 |
ultimately show ?thesis by blast
|
|
4980 |
qed
|
|
4981 |
|
|
4982 |
lemma norm_cauchy_schwarz_abs_eq:
|
|
4983 |
fixes x y :: "real ^ 'n::finite"
|
|
4984 |
shows "abs(x \<bullet> y) = norm x * norm y \<longleftrightarrow>
|
|
4985 |
norm x *s y = norm y *s x \<or> norm(x) *s y = - norm y *s x" (is "?lhs \<longleftrightarrow> ?rhs")
|
|
4986 |
proof-
|
|
4987 |
have th: "\<And>(x::real) a. a \<ge> 0 \<Longrightarrow> abs x = a \<longleftrightarrow> x = a \<or> x = - a" by arith
|
|
4988 |
have "?rhs \<longleftrightarrow> norm x *s y = norm y *s x \<or> norm (- x) *s y = norm y *s (- x)"
|
|
4989 |
apply simp by vector
|
|
4990 |
also have "\<dots> \<longleftrightarrow>(x \<bullet> y = norm x * norm y \<or>
|
|
4991 |
(-x) \<bullet> y = norm x * norm y)"
|
|
4992 |
unfolding norm_cauchy_schwarz_eq[symmetric]
|
|
4993 |
unfolding norm_minus_cancel
|
|
4994 |
norm_mul by blast
|
|
4995 |
also have "\<dots> \<longleftrightarrow> ?lhs"
|
|
4996 |
unfolding th[OF mult_nonneg_nonneg, OF norm_ge_zero[of x] norm_ge_zero[of y]] dot_lneg
|
|
4997 |
by arith
|
|
4998 |
finally show ?thesis ..
|
|
4999 |
qed
|
|
5000 |
|
|
5001 |
lemma norm_triangle_eq:
|
|
5002 |
fixes x y :: "real ^ 'n::finite"
|
|
5003 |
shows "norm(x + y) = norm x + norm y \<longleftrightarrow> norm x *s y = norm y *s x"
|
|
5004 |
proof-
|
|
5005 |
{assume x: "x =0 \<or> y =0"
|
|
5006 |
hence ?thesis by (cases "x=0", simp_all)}
|
|
5007 |
moreover
|
|
5008 |
{assume x: "x \<noteq> 0" and y: "y \<noteq> 0"
|
|
5009 |
hence "norm x \<noteq> 0" "norm y \<noteq> 0"
|
|
5010 |
by simp_all
|
|
5011 |
hence n: "norm x > 0" "norm y > 0"
|
|
5012 |
using norm_ge_zero[of x] norm_ge_zero[of y]
|
|
5013 |
by arith+
|
|
5014 |
have th: "\<And>(a::real) b c. a + b + c \<noteq> 0 ==> (a = b + c \<longleftrightarrow> a^2 = (b + c)^2)" by algebra
|
|
5015 |
have "norm(x + y) = norm x + norm y \<longleftrightarrow> norm(x + y)^ 2 = (norm x + norm y) ^2"
|
|
5016 |
apply (rule th) using n norm_ge_zero[of "x + y"]
|
|
5017 |
by arith
|
|
5018 |
also have "\<dots> \<longleftrightarrow> norm x *s y = norm y *s x"
|
|
5019 |
unfolding norm_cauchy_schwarz_eq[symmetric]
|
|
5020 |
unfolding norm_pow_2 dot_ladd dot_radd
|
|
5021 |
by (simp add: norm_pow_2[symmetric] power2_eq_square dot_sym ring_simps)
|
|
5022 |
finally have ?thesis .}
|
|
5023 |
ultimately show ?thesis by blast
|
|
5024 |
qed
|
|
5025 |
|
|
5026 |
(* Collinearity.*)
|
|
5027 |
|
|
5028 |
definition "collinear S \<longleftrightarrow> (\<exists>u. \<forall>x \<in> S. \<forall> y \<in> S. \<exists>c. x - y = c *s u)"
|
|
5029 |
|
|
5030 |
lemma collinear_empty: "collinear {}" by (simp add: collinear_def)
|
|
5031 |
|
|
5032 |
lemma collinear_sing: "collinear {(x::'a::ring_1^'n)}"
|
|
5033 |
apply (simp add: collinear_def)
|
|
5034 |
apply (rule exI[where x=0])
|
|
5035 |
by simp
|
|
5036 |
|
|
5037 |
lemma collinear_2: "collinear {(x::'a::ring_1^'n),y}"
|
|
5038 |
apply (simp add: collinear_def)
|
|
5039 |
apply (rule exI[where x="x - y"])
|
|
5040 |
apply auto
|
|
5041 |
apply (rule exI[where x=0], simp)
|
|
5042 |
apply (rule exI[where x=1], simp)
|
|
5043 |
apply (rule exI[where x="- 1"], simp add: vector_sneg_minus1[symmetric])
|
|
5044 |
apply (rule exI[where x=0], simp)
|
|
5045 |
done
|
|
5046 |
|
|
5047 |
lemma collinear_lemma: "collinear {(0::real^'n),x,y} \<longleftrightarrow> x = 0 \<or> y = 0 \<or> (\<exists>c. y = c *s x)" (is "?lhs \<longleftrightarrow> ?rhs")
|
|
5048 |
proof-
|
|
5049 |
{assume "x=0 \<or> y = 0" hence ?thesis
|
|
5050 |
by (cases "x = 0", simp_all add: collinear_2 insert_commute)}
|
|
5051 |
moreover
|
|
5052 |
{assume x: "x \<noteq> 0" and y: "y \<noteq> 0"
|
|
5053 |
{assume h: "?lhs"
|
|
5054 |
then obtain u where u: "\<forall> x\<in> {0,x,y}. \<forall>y\<in> {0,x,y}. \<exists>c. x - y = c *s u" unfolding collinear_def by blast
|
|
5055 |
from u[rule_format, of x 0] u[rule_format, of y 0]
|
|
5056 |
obtain cx and cy where
|
|
5057 |
cx: "x = cx*s u" and cy: "y = cy*s u"
|
|
5058 |
by auto
|
|
5059 |
from cx x have cx0: "cx \<noteq> 0" by auto
|
|
5060 |
from cy y have cy0: "cy \<noteq> 0" by auto
|
|
5061 |
let ?d = "cy / cx"
|
|
5062 |
from cx cy cx0 have "y = ?d *s x"
|
|
5063 |
by (simp add: vector_smult_assoc)
|
|
5064 |
hence ?rhs using x y by blast}
|
|
5065 |
moreover
|
|
5066 |
{assume h: "?rhs"
|
|
5067 |
then obtain c where c: "y = c*s x" using x y by blast
|
|
5068 |
have ?lhs unfolding collinear_def c
|
|
5069 |
apply (rule exI[where x=x])
|
|
5070 |
apply auto
|
|
5071 |
apply (rule exI[where x="- 1"], simp only: vector_smult_lneg vector_smult_lid)
|
|
5072 |
apply (rule exI[where x= "-c"], simp only: vector_smult_lneg)
|
|
5073 |
apply (rule exI[where x=1], simp)
|
|
5074 |
apply (rule exI[where x="1 - c"], simp add: vector_smult_lneg vector_sub_rdistrib)
|
|
5075 |
apply (rule exI[where x="c - 1"], simp add: vector_smult_lneg vector_sub_rdistrib)
|
|
5076 |
done}
|
|
5077 |
ultimately have ?thesis by blast}
|
|
5078 |
ultimately show ?thesis by blast
|
|
5079 |
qed
|
|
5080 |
|
|
5081 |
lemma norm_cauchy_schwarz_equal:
|
|
5082 |
fixes x y :: "real ^ 'n::finite"
|
|
5083 |
shows "abs(x \<bullet> y) = norm x * norm y \<longleftrightarrow> collinear {(0::real^'n),x,y}"
|
|
5084 |
unfolding norm_cauchy_schwarz_abs_eq
|
|
5085 |
apply (cases "x=0", simp_all add: collinear_2)
|
|
5086 |
apply (cases "y=0", simp_all add: collinear_2 insert_commute)
|
|
5087 |
unfolding collinear_lemma
|
|
5088 |
apply simp
|
|
5089 |
apply (subgoal_tac "norm x \<noteq> 0")
|
|
5090 |
apply (subgoal_tac "norm y \<noteq> 0")
|
|
5091 |
apply (rule iffI)
|
|
5092 |
apply (cases "norm x *s y = norm y *s x")
|
|
5093 |
apply (rule exI[where x="(1/norm x) * norm y"])
|
|
5094 |
apply (drule sym)
|
|
5095 |
unfolding vector_smult_assoc[symmetric]
|
|
5096 |
apply (simp add: vector_smult_assoc field_simps)
|
|
5097 |
apply (rule exI[where x="(1/norm x) * - norm y"])
|
|
5098 |
apply clarify
|
|
5099 |
apply (drule sym)
|
|
5100 |
unfolding vector_smult_assoc[symmetric]
|
|
5101 |
apply (simp add: vector_smult_assoc field_simps)
|
|
5102 |
apply (erule exE)
|
|
5103 |
apply (erule ssubst)
|
|
5104 |
unfolding vector_smult_assoc
|
|
5105 |
unfolding norm_mul
|
|
5106 |
apply (subgoal_tac "norm x * c = \<bar>c\<bar> * norm x \<or> norm x * c = - \<bar>c\<bar> * norm x")
|
|
5107 |
apply (case_tac "c <= 0", simp add: ring_simps)
|
|
5108 |
apply (simp add: ring_simps)
|
|
5109 |
apply (case_tac "c <= 0", simp add: ring_simps)
|
|
5110 |
apply (simp add: ring_simps)
|
|
5111 |
apply simp
|
|
5112 |
apply simp
|
|
5113 |
done
|
|
5114 |
|
|
5115 |
end
|