author | haftmann |
Mon, 26 Apr 2010 11:34:17 +0200 | |
changeset 36349 | 39be26d1bc28 |
parent 35028 | 108662d50512 |
child 36409 | d323e7773aa8 |
permissions | -rw-r--r-- |
24197 | 1 |
(* Title: HOL/Library/Abstract_Rat.thy |
2 |
Author: Amine Chaieb |
|
3 |
*) |
|
4 |
||
5 |
header {* Abstract rational numbers *} |
|
6 |
||
7 |
theory Abstract_Rat |
|
31964 | 8 |
imports GCD Main |
24197 | 9 |
begin |
10 |
||
11 |
types Num = "int \<times> int" |
|
25005 | 12 |
|
13 |
abbreviation |
|
14 |
Num0_syn :: Num ("0\<^sub>N") |
|
15 |
where "0\<^sub>N \<equiv> (0, 0)" |
|
16 |
||
17 |
abbreviation |
|
18 |
Numi_syn :: "int \<Rightarrow> Num" ("_\<^sub>N") |
|
19 |
where "i\<^sub>N \<equiv> (i, 1)" |
|
24197 | 20 |
|
21 |
definition |
|
22 |
isnormNum :: "Num \<Rightarrow> bool" |
|
23 |
where |
|
31706 | 24 |
"isnormNum = (\<lambda>(a,b). (if a = 0 then b = 0 else b > 0 \<and> gcd a b = 1))" |
24197 | 25 |
|
26 |
definition |
|
27 |
normNum :: "Num \<Rightarrow> Num" |
|
28 |
where |
|
29 |
"normNum = (\<lambda>(a,b). (if a=0 \<or> b = 0 then (0,0) else |
|
31706 | 30 |
(let g = gcd a b |
24197 | 31 |
in if b > 0 then (a div g, b div g) else (- (a div g), - (b div g)))))" |
32 |
||
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31706
diff
changeset
|
33 |
declare gcd_dvd1_int[presburger] |
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31706
diff
changeset
|
34 |
declare gcd_dvd2_int[presburger] |
24197 | 35 |
lemma normNum_isnormNum [simp]: "isnormNum (normNum x)" |
36 |
proof - |
|
37 |
have " \<exists> a b. x = (a,b)" by auto |
|
38 |
then obtain a b where x[simp]: "x = (a,b)" by blast |
|
39 |
{assume "a=0 \<or> b = 0" hence ?thesis by (simp add: normNum_def isnormNum_def)} |
|
40 |
moreover |
|
41 |
{assume anz: "a \<noteq> 0" and bnz: "b \<noteq> 0" |
|
31706 | 42 |
let ?g = "gcd a b" |
24197 | 43 |
let ?a' = "a div ?g" |
44 |
let ?b' = "b div ?g" |
|
31706 | 45 |
let ?g' = "gcd ?a' ?b'" |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31706
diff
changeset
|
46 |
from anz bnz have "?g \<noteq> 0" by simp with gcd_ge_0_int[of a b] |
24197 | 47 |
have gpos: "?g > 0" by arith |
27668 | 48 |
have gdvd: "?g dvd a" "?g dvd b" by arith+ |
24197 | 49 |
from zdvd_mult_div_cancel[OF gdvd(1)] zdvd_mult_div_cancel[OF gdvd(2)] |
50 |
anz bnz |
|
31706 | 51 |
have nz':"?a' \<noteq> 0" "?b' \<noteq> 0" |
52 |
by - (rule notI, simp)+ |
|
27668 | 53 |
from anz bnz have stupid: "a \<noteq> 0 \<or> b \<noteq> 0" by arith |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31706
diff
changeset
|
54 |
from div_gcd_coprime_int[OF stupid] have gp1: "?g' = 1" . |
24197 | 55 |
from bnz have "b < 0 \<or> b > 0" by arith |
56 |
moreover |
|
57 |
{assume b: "b > 0" |
|
27668 | 58 |
from b have "?b' \<ge> 0" |
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32456
diff
changeset
|
59 |
by (presburger add: pos_imp_zdiv_nonneg_iff[OF gpos]) |
27668 | 60 |
with nz' have b': "?b' > 0" by arith |
24197 | 61 |
from b b' anz bnz nz' gp1 have ?thesis |
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32456
diff
changeset
|
62 |
by (simp add: isnormNum_def normNum_def Let_def split_def fst_conv snd_conv)} |
24197 | 63 |
moreover {assume b: "b < 0" |
64 |
{assume b': "?b' \<ge> 0" |
|
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32456
diff
changeset
|
65 |
from gpos have th: "?g \<ge> 0" by arith |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32456
diff
changeset
|
66 |
from mult_nonneg_nonneg[OF th b'] zdvd_mult_div_cancel[OF gdvd(2)] |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32456
diff
changeset
|
67 |
have False using b by arith } |
24197 | 68 |
hence b': "?b' < 0" by (presburger add: linorder_not_le[symmetric]) |
69 |
from anz bnz nz' b b' gp1 have ?thesis |
|
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32456
diff
changeset
|
70 |
by (simp add: isnormNum_def normNum_def Let_def split_def)} |
24197 | 71 |
ultimately have ?thesis by blast |
72 |
} |
|
73 |
ultimately show ?thesis by blast |
|
74 |
qed |
|
75 |
||
76 |
text {* Arithmetic over Num *} |
|
77 |
||
78 |
definition |
|
79 |
Nadd :: "Num \<Rightarrow> Num \<Rightarrow> Num" (infixl "+\<^sub>N" 60) |
|
80 |
where |
|
81 |
"Nadd = (\<lambda>(a,b) (a',b'). if a = 0 \<or> b = 0 then normNum(a',b') |
|
82 |
else if a'=0 \<or> b' = 0 then normNum(a,b) |
|
83 |
else normNum(a*b' + b*a', b*b'))" |
|
84 |
||
85 |
definition |
|
86 |
Nmul :: "Num \<Rightarrow> Num \<Rightarrow> Num" (infixl "*\<^sub>N" 60) |
|
87 |
where |
|
31706 | 88 |
"Nmul = (\<lambda>(a,b) (a',b'). let g = gcd (a*a') (b*b') |
24197 | 89 |
in (a*a' div g, b*b' div g))" |
90 |
||
91 |
definition |
|
92 |
Nneg :: "Num \<Rightarrow> Num" ("~\<^sub>N") |
|
93 |
where |
|
94 |
"Nneg \<equiv> (\<lambda>(a,b). (-a,b))" |
|
95 |
||
96 |
definition |
|
97 |
Nsub :: "Num \<Rightarrow> Num \<Rightarrow> Num" (infixl "-\<^sub>N" 60) |
|
98 |
where |
|
99 |
"Nsub = (\<lambda>a b. a +\<^sub>N ~\<^sub>N b)" |
|
100 |
||
101 |
definition |
|
102 |
Ninv :: "Num \<Rightarrow> Num" |
|
103 |
where |
|
104 |
"Ninv \<equiv> \<lambda>(a,b). if a < 0 then (-b, \<bar>a\<bar>) else (b,a)" |
|
105 |
||
106 |
definition |
|
107 |
Ndiv :: "Num \<Rightarrow> Num \<Rightarrow> Num" (infixl "\<div>\<^sub>N" 60) |
|
108 |
where |
|
109 |
"Ndiv \<equiv> \<lambda>a b. a *\<^sub>N Ninv b" |
|
110 |
||
111 |
lemma Nneg_normN[simp]: "isnormNum x \<Longrightarrow> isnormNum (~\<^sub>N x)" |
|
112 |
by(simp add: isnormNum_def Nneg_def split_def) |
|
113 |
lemma Nadd_normN[simp]: "isnormNum (x +\<^sub>N y)" |
|
114 |
by (simp add: Nadd_def split_def) |
|
115 |
lemma Nsub_normN[simp]: "\<lbrakk> isnormNum y\<rbrakk> \<Longrightarrow> isnormNum (x -\<^sub>N y)" |
|
116 |
by (simp add: Nsub_def split_def) |
|
117 |
lemma Nmul_normN[simp]: assumes xn:"isnormNum x" and yn: "isnormNum y" |
|
118 |
shows "isnormNum (x *\<^sub>N y)" |
|
119 |
proof- |
|
120 |
have "\<exists>a b. x = (a,b)" and "\<exists> a' b'. y = (a',b')" by auto |
|
121 |
then obtain a b a' b' where ab: "x = (a,b)" and ab': "y = (a',b')" by blast |
|
122 |
{assume "a = 0" |
|
123 |
hence ?thesis using xn ab ab' |
|
31706 | 124 |
by (simp add: isnormNum_def Let_def Nmul_def split_def)} |
24197 | 125 |
moreover |
126 |
{assume "a' = 0" |
|
127 |
hence ?thesis using yn ab ab' |
|
31706 | 128 |
by (simp add: isnormNum_def Let_def Nmul_def split_def)} |
24197 | 129 |
moreover |
130 |
{assume a: "a \<noteq>0" and a': "a'\<noteq>0" |
|
131 |
hence bp: "b > 0" "b' > 0" using xn yn ab ab' by (simp_all add: isnormNum_def) |
|
132 |
from mult_pos_pos[OF bp] have "x *\<^sub>N y = normNum (a*a', b*b')" |
|
133 |
using ab ab' a a' bp by (simp add: Nmul_def Let_def split_def normNum_def) |
|
134 |
hence ?thesis by simp} |
|
135 |
ultimately show ?thesis by blast |
|
136 |
qed |
|
137 |
||
138 |
lemma Ninv_normN[simp]: "isnormNum x \<Longrightarrow> isnormNum (Ninv x)" |
|
25005 | 139 |
by (simp add: Ninv_def isnormNum_def split_def) |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31706
diff
changeset
|
140 |
(cases "fst x = 0", auto simp add: gcd_commute_int) |
24197 | 141 |
|
142 |
lemma isnormNum_int[simp]: |
|
143 |
"isnormNum 0\<^sub>N" "isnormNum (1::int)\<^sub>N" "i \<noteq> 0 \<Longrightarrow> isnormNum i\<^sub>N" |
|
31706 | 144 |
by (simp_all add: isnormNum_def) |
24197 | 145 |
|
146 |
||
147 |
text {* Relations over Num *} |
|
148 |
||
149 |
definition |
|
150 |
Nlt0:: "Num \<Rightarrow> bool" ("0>\<^sub>N") |
|
151 |
where |
|
152 |
"Nlt0 = (\<lambda>(a,b). a < 0)" |
|
153 |
||
154 |
definition |
|
155 |
Nle0:: "Num \<Rightarrow> bool" ("0\<ge>\<^sub>N") |
|
156 |
where |
|
157 |
"Nle0 = (\<lambda>(a,b). a \<le> 0)" |
|
158 |
||
159 |
definition |
|
160 |
Ngt0:: "Num \<Rightarrow> bool" ("0<\<^sub>N") |
|
161 |
where |
|
162 |
"Ngt0 = (\<lambda>(a,b). a > 0)" |
|
163 |
||
164 |
definition |
|
165 |
Nge0:: "Num \<Rightarrow> bool" ("0\<le>\<^sub>N") |
|
166 |
where |
|
167 |
"Nge0 = (\<lambda>(a,b). a \<ge> 0)" |
|
168 |
||
169 |
definition |
|
170 |
Nlt :: "Num \<Rightarrow> Num \<Rightarrow> bool" (infix "<\<^sub>N" 55) |
|
171 |
where |
|
172 |
"Nlt = (\<lambda>a b. 0>\<^sub>N (a -\<^sub>N b))" |
|
173 |
||
174 |
definition |
|
175 |
Nle :: "Num \<Rightarrow> Num \<Rightarrow> bool" (infix "\<le>\<^sub>N" 55) |
|
176 |
where |
|
177 |
"Nle = (\<lambda>a b. 0\<ge>\<^sub>N (a -\<^sub>N b))" |
|
178 |
||
179 |
definition |
|
180 |
"INum = (\<lambda>(a,b). of_int a / of_int b)" |
|
181 |
||
182 |
lemma INum_int [simp]: "INum i\<^sub>N = ((of_int i) ::'a::field)" "INum 0\<^sub>N = (0::'a::field)" |
|
183 |
by (simp_all add: INum_def) |
|
184 |
||
185 |
lemma isnormNum_unique[simp]: |
|
186 |
assumes na: "isnormNum x" and nb: "isnormNum y" |
|
36349 | 187 |
shows "((INum x ::'a::{ring_char_0,field, division_ring_inverse_zero}) = INum y) = (x = y)" (is "?lhs = ?rhs") |
24197 | 188 |
proof |
189 |
have "\<exists> a b a' b'. x = (a,b) \<and> y = (a',b')" by auto |
|
190 |
then obtain a b a' b' where xy[simp]: "x = (a,b)" "y=(a',b')" by blast |
|
191 |
assume H: ?lhs |
|
32456
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
nipkow
parents:
31967
diff
changeset
|
192 |
{assume "a = 0 \<or> b = 0 \<or> a' = 0 \<or> b' = 0" |
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
nipkow
parents:
31967
diff
changeset
|
193 |
hence ?rhs using na nb H |
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
nipkow
parents:
31967
diff
changeset
|
194 |
by (simp add: INum_def split_def isnormNum_def split: split_if_asm)} |
24197 | 195 |
moreover |
196 |
{ assume az: "a \<noteq> 0" and bz: "b \<noteq> 0" and a'z: "a'\<noteq>0" and b'z: "b'\<noteq>0" |
|
197 |
from az bz a'z b'z na nb have pos: "b > 0" "b' > 0" by (simp_all add: isnormNum_def) |
|
198 |
from prems have eq:"a * b' = a'*b" |
|
199 |
by (simp add: INum_def eq_divide_eq divide_eq_eq of_int_mult[symmetric] del: of_int_mult) |
|
31706 | 200 |
from prems have gcd1: "gcd a b = 1" "gcd b a = 1" "gcd a' b' = 1" "gcd b' a' = 1" |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31706
diff
changeset
|
201 |
by (simp_all add: isnormNum_def add: gcd_commute_int) |
27668 | 202 |
from eq have raw_dvd: "a dvd a'*b" "b dvd b'*a" "a' dvd a*b'" "b' dvd b*a'" |
203 |
apply - |
|
204 |
apply algebra |
|
205 |
apply algebra |
|
206 |
apply simp |
|
207 |
apply algebra |
|
24197 | 208 |
done |
33657 | 209 |
from zdvd_antisym_abs[OF coprime_dvd_mult_int[OF gcd1(2) raw_dvd(2)] |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31706
diff
changeset
|
210 |
coprime_dvd_mult_int[OF gcd1(4) raw_dvd(4)]] |
27668 | 211 |
have eq1: "b = b'" using pos by arith |
24197 | 212 |
with eq have "a = a'" using pos by simp |
213 |
with eq1 have ?rhs by simp} |
|
214 |
ultimately show ?rhs by blast |
|
215 |
next |
|
216 |
assume ?rhs thus ?lhs by simp |
|
217 |
qed |
|
218 |
||
219 |
||
36349 | 220 |
lemma isnormNum0[simp]: "isnormNum x \<Longrightarrow> (INum x = (0::'a::{ring_char_0, field,division_ring_inverse_zero})) = (x = 0\<^sub>N)" |
24197 | 221 |
unfolding INum_int(2)[symmetric] |
222 |
by (rule isnormNum_unique, simp_all) |
|
223 |
||
224 |
lemma of_int_div_aux: "d ~= 0 ==> ((of_int x)::'a::{field, ring_char_0}) / (of_int d) = |
|
225 |
of_int (x div d) + (of_int (x mod d)) / ((of_int d)::'a)" |
|
226 |
proof - |
|
227 |
assume "d ~= 0" |
|
228 |
hence dz: "of_int d \<noteq> (0::'a)" by (simp add: of_int_eq_0_iff) |
|
229 |
let ?t = "of_int (x div d) * ((of_int d)::'a) + of_int(x mod d)" |
|
230 |
let ?f = "\<lambda>x. x / of_int d" |
|
231 |
have "x = (x div d) * d + x mod d" |
|
232 |
by auto |
|
233 |
then have eq: "of_int x = ?t" |
|
234 |
by (simp only: of_int_mult[symmetric] of_int_add [symmetric]) |
|
235 |
then have "of_int x / of_int d = ?t / of_int d" |
|
236 |
using cong[OF refl[of ?f] eq] by simp |
|
29667 | 237 |
then show ?thesis by (simp add: add_divide_distrib algebra_simps prems) |
24197 | 238 |
qed |
239 |
||
240 |
lemma of_int_div: "(d::int) ~= 0 ==> d dvd n ==> |
|
241 |
(of_int(n div d)::'a::{field, ring_char_0}) = of_int n / of_int d" |
|
242 |
apply (frule of_int_div_aux [of d n, where ?'a = 'a]) |
|
243 |
apply simp |
|
30042 | 244 |
apply (simp add: dvd_eq_mod_eq_0) |
24197 | 245 |
done |
246 |
||
247 |
||
36349 | 248 |
lemma normNum[simp]: "INum (normNum x) = (INum x :: 'a::{ring_char_0,field, division_ring_inverse_zero})" |
24197 | 249 |
proof- |
250 |
have "\<exists> a b. x = (a,b)" by auto |
|
251 |
then obtain a b where x[simp]: "x = (a,b)" by blast |
|
252 |
{assume "a=0 \<or> b = 0" hence ?thesis |
|
253 |
by (simp add: INum_def normNum_def split_def Let_def)} |
|
254 |
moreover |
|
255 |
{assume a: "a\<noteq>0" and b: "b\<noteq>0" |
|
31706 | 256 |
let ?g = "gcd a b" |
24197 | 257 |
from a b have g: "?g \<noteq> 0"by simp |
258 |
from of_int_div[OF g, where ?'a = 'a] |
|
259 |
have ?thesis by (auto simp add: INum_def normNum_def split_def Let_def)} |
|
260 |
ultimately show ?thesis by blast |
|
261 |
qed |
|
262 |
||
36349 | 263 |
lemma INum_normNum_iff: "(INum x ::'a::{field, division_ring_inverse_zero, ring_char_0}) = INum y \<longleftrightarrow> normNum x = normNum y" (is "?lhs = ?rhs") |
24197 | 264 |
proof - |
265 |
have "normNum x = normNum y \<longleftrightarrow> (INum (normNum x) :: 'a) = INum (normNum y)" |
|
266 |
by (simp del: normNum) |
|
267 |
also have "\<dots> = ?lhs" by simp |
|
268 |
finally show ?thesis by simp |
|
269 |
qed |
|
270 |
||
36349 | 271 |
lemma Nadd[simp]: "INum (x +\<^sub>N y) = INum x + (INum y :: 'a :: {ring_char_0,division_ring_inverse_zero,field})" |
24197 | 272 |
proof- |
273 |
let ?z = "0:: 'a" |
|
274 |
have " \<exists> a b. x = (a,b)" " \<exists> a' b'. y = (a',b')" by auto |
|
275 |
then obtain a b a' b' where x[simp]: "x = (a,b)" |
|
276 |
and y[simp]: "y = (a',b')" by blast |
|
277 |
{assume "a=0 \<or> a'= 0 \<or> b =0 \<or> b' = 0" hence ?thesis |
|
278 |
apply (cases "a=0",simp_all add: Nadd_def) |
|
279 |
apply (cases "b= 0",simp_all add: INum_def) |
|
280 |
apply (cases "a'= 0",simp_all) |
|
281 |
apply (cases "b'= 0",simp_all) |
|
282 |
done } |
|
283 |
moreover |
|
284 |
{assume aa':"a \<noteq> 0" "a'\<noteq> 0" and bb': "b \<noteq> 0" "b' \<noteq> 0" |
|
285 |
{assume z: "a * b' + b * a' = 0" |
|
286 |
hence "of_int (a*b' + b*a') / (of_int b* of_int b') = ?z" by simp |
|
287 |
hence "of_int b' * of_int a / (of_int b * of_int b') + of_int b * of_int a' / (of_int b * of_int b') = ?z" by (simp add:add_divide_distrib) |
|
288 |
hence th: "of_int a / of_int b + of_int a' / of_int b' = ?z" using bb' aa' by simp |
|
289 |
from z aa' bb' have ?thesis |
|
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32456
diff
changeset
|
290 |
by (simp add: th Nadd_def normNum_def INum_def split_def)} |
24197 | 291 |
moreover {assume z: "a * b' + b * a' \<noteq> 0" |
31706 | 292 |
let ?g = "gcd (a * b' + b * a') (b*b')" |
24197 | 293 |
have gz: "?g \<noteq> 0" using z by simp |
294 |
have ?thesis using aa' bb' z gz |
|
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32456
diff
changeset
|
295 |
of_int_div[where ?'a = 'a, OF gz gcd_dvd1_int[where x="a * b' + b * a'" and y="b*b'"]] of_int_div[where ?'a = 'a, |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32456
diff
changeset
|
296 |
OF gz gcd_dvd2_int[where x="a * b' + b * a'" and y="b*b'"]] |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32456
diff
changeset
|
297 |
by (simp add: x y Nadd_def INum_def normNum_def Let_def add_divide_distrib)} |
24197 | 298 |
ultimately have ?thesis using aa' bb' |
299 |
by (simp add: Nadd_def INum_def normNum_def x y Let_def) } |
|
300 |
ultimately show ?thesis by blast |
|
301 |
qed |
|
302 |
||
36349 | 303 |
lemma Nmul[simp]: "INum (x *\<^sub>N y) = INum x * (INum y:: 'a :: {ring_char_0,division_ring_inverse_zero,field}) " |
24197 | 304 |
proof- |
305 |
let ?z = "0::'a" |
|
306 |
have " \<exists> a b. x = (a,b)" " \<exists> a' b'. y = (a',b')" by auto |
|
307 |
then obtain a b a' b' where x: "x = (a,b)" and y: "y = (a',b')" by blast |
|
308 |
{assume "a=0 \<or> a'= 0 \<or> b = 0 \<or> b' = 0" hence ?thesis |
|
309 |
apply (cases "a=0",simp_all add: x y Nmul_def INum_def Let_def) |
|
310 |
apply (cases "b=0",simp_all) |
|
311 |
apply (cases "a'=0",simp_all) |
|
312 |
done } |
|
313 |
moreover |
|
314 |
{assume z: "a \<noteq> 0" "a' \<noteq> 0" "b \<noteq> 0" "b' \<noteq> 0" |
|
31706 | 315 |
let ?g="gcd (a*a') (b*b')" |
24197 | 316 |
have gz: "?g \<noteq> 0" using z by simp |
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31706
diff
changeset
|
317 |
from z of_int_div[where ?'a = 'a, OF gz gcd_dvd1_int[where x="a*a'" and y="b*b'"]] |
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31706
diff
changeset
|
318 |
of_int_div[where ?'a = 'a , OF gz gcd_dvd2_int[where x="a*a'" and y="b*b'"]] |
24197 | 319 |
have ?thesis by (simp add: Nmul_def x y Let_def INum_def)} |
320 |
ultimately show ?thesis by blast |
|
321 |
qed |
|
322 |
||
323 |
lemma Nneg[simp]: "INum (~\<^sub>N x) = - (INum x ::'a:: field)" |
|
324 |
by (simp add: Nneg_def split_def INum_def) |
|
325 |
||
36349 | 326 |
lemma Nsub[simp]: shows "INum (x -\<^sub>N y) = INum x - (INum y:: 'a :: {ring_char_0,division_ring_inverse_zero,field})" |
24197 | 327 |
by (simp add: Nsub_def split_def) |
328 |
||
36349 | 329 |
lemma Ninv[simp]: "INum (Ninv x) = (1::'a :: {division_ring_inverse_zero,field}) / (INum x)" |
24197 | 330 |
by (simp add: Ninv_def INum_def split_def) |
331 |
||
36349 | 332 |
lemma Ndiv[simp]: "INum (x \<div>\<^sub>N y) = INum x / (INum y ::'a :: {ring_char_0, division_ring_inverse_zero,field})" by (simp add: Ndiv_def) |
24197 | 333 |
|
334 |
lemma Nlt0_iff[simp]: assumes nx: "isnormNum x" |
|
36349 | 335 |
shows "((INum x :: 'a :: {ring_char_0,division_ring_inverse_zero,linordered_field})< 0) = 0>\<^sub>N x " |
24197 | 336 |
proof- |
337 |
have " \<exists> a b. x = (a,b)" by simp |
|
338 |
then obtain a b where x[simp]:"x = (a,b)" by blast |
|
339 |
{assume "a = 0" hence ?thesis by (simp add: Nlt0_def INum_def) } |
|
340 |
moreover |
|
341 |
{assume a: "a\<noteq>0" hence b: "(of_int b::'a) > 0" using nx by (simp add: isnormNum_def) |
|
342 |
from pos_divide_less_eq[OF b, where b="of_int a" and a="0::'a"] |
|
343 |
have ?thesis by (simp add: Nlt0_def INum_def)} |
|
344 |
ultimately show ?thesis by blast |
|
345 |
qed |
|
346 |
||
347 |
lemma Nle0_iff[simp]:assumes nx: "isnormNum x" |
|
36349 | 348 |
shows "((INum x :: 'a :: {ring_char_0,division_ring_inverse_zero,linordered_field}) \<le> 0) = 0\<ge>\<^sub>N x" |
24197 | 349 |
proof- |
350 |
have " \<exists> a b. x = (a,b)" by simp |
|
351 |
then obtain a b where x[simp]:"x = (a,b)" by blast |
|
352 |
{assume "a = 0" hence ?thesis by (simp add: Nle0_def INum_def) } |
|
353 |
moreover |
|
354 |
{assume a: "a\<noteq>0" hence b: "(of_int b :: 'a) > 0" using nx by (simp add: isnormNum_def) |
|
355 |
from pos_divide_le_eq[OF b, where b="of_int a" and a="0::'a"] |
|
356 |
have ?thesis by (simp add: Nle0_def INum_def)} |
|
357 |
ultimately show ?thesis by blast |
|
358 |
qed |
|
359 |
||
36349 | 360 |
lemma Ngt0_iff[simp]:assumes nx: "isnormNum x" shows "((INum x :: 'a :: {ring_char_0,division_ring_inverse_zero,linordered_field})> 0) = 0<\<^sub>N x" |
24197 | 361 |
proof- |
362 |
have " \<exists> a b. x = (a,b)" by simp |
|
363 |
then obtain a b where x[simp]:"x = (a,b)" by blast |
|
364 |
{assume "a = 0" hence ?thesis by (simp add: Ngt0_def INum_def) } |
|
365 |
moreover |
|
366 |
{assume a: "a\<noteq>0" hence b: "(of_int b::'a) > 0" using nx by (simp add: isnormNum_def) |
|
367 |
from pos_less_divide_eq[OF b, where b="of_int a" and a="0::'a"] |
|
368 |
have ?thesis by (simp add: Ngt0_def INum_def)} |
|
369 |
ultimately show ?thesis by blast |
|
370 |
qed |
|
371 |
lemma Nge0_iff[simp]:assumes nx: "isnormNum x" |
|
36349 | 372 |
shows "((INum x :: 'a :: {ring_char_0,division_ring_inverse_zero,linordered_field}) \<ge> 0) = 0\<le>\<^sub>N x" |
24197 | 373 |
proof- |
374 |
have " \<exists> a b. x = (a,b)" by simp |
|
375 |
then obtain a b where x[simp]:"x = (a,b)" by blast |
|
376 |
{assume "a = 0" hence ?thesis by (simp add: Nge0_def INum_def) } |
|
377 |
moreover |
|
378 |
{assume a: "a\<noteq>0" hence b: "(of_int b::'a) > 0" using nx by (simp add: isnormNum_def) |
|
379 |
from pos_le_divide_eq[OF b, where b="of_int a" and a="0::'a"] |
|
380 |
have ?thesis by (simp add: Nge0_def INum_def)} |
|
381 |
ultimately show ?thesis by blast |
|
382 |
qed |
|
383 |
||
384 |
lemma Nlt_iff[simp]: assumes nx: "isnormNum x" and ny: "isnormNum y" |
|
36349 | 385 |
shows "((INum x :: 'a :: {ring_char_0,division_ring_inverse_zero,linordered_field}) < INum y) = (x <\<^sub>N y)" |
24197 | 386 |
proof- |
387 |
let ?z = "0::'a" |
|
388 |
have "((INum x ::'a) < INum y) = (INum (x -\<^sub>N y) < ?z)" using nx ny by simp |
|
389 |
also have "\<dots> = (0>\<^sub>N (x -\<^sub>N y))" using Nlt0_iff[OF Nsub_normN[OF ny]] by simp |
|
390 |
finally show ?thesis by (simp add: Nlt_def) |
|
391 |
qed |
|
392 |
||
393 |
lemma Nle_iff[simp]: assumes nx: "isnormNum x" and ny: "isnormNum y" |
|
36349 | 394 |
shows "((INum x :: 'a :: {ring_char_0,division_ring_inverse_zero,linordered_field})\<le> INum y) = (x \<le>\<^sub>N y)" |
24197 | 395 |
proof- |
396 |
have "((INum x ::'a) \<le> INum y) = (INum (x -\<^sub>N y) \<le> (0::'a))" using nx ny by simp |
|
397 |
also have "\<dots> = (0\<ge>\<^sub>N (x -\<^sub>N y))" using Nle0_iff[OF Nsub_normN[OF ny]] by simp |
|
398 |
finally show ?thesis by (simp add: Nle_def) |
|
399 |
qed |
|
400 |
||
28615
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
401 |
lemma Nadd_commute: |
36349 | 402 |
assumes "SORT_CONSTRAINT('a::{ring_char_0,division_ring_inverse_zero,field})" |
28615
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
403 |
shows "x +\<^sub>N y = y +\<^sub>N x" |
24197 | 404 |
proof- |
405 |
have n: "isnormNum (x +\<^sub>N y)" "isnormNum (y +\<^sub>N x)" by simp_all |
|
31964 | 406 |
have "(INum (x +\<^sub>N y)::'a) = INum (y +\<^sub>N x)" by simp |
24197 | 407 |
with isnormNum_unique[OF n] show ?thesis by simp |
408 |
qed |
|
409 |
||
28615
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
410 |
lemma [simp]: |
36349 | 411 |
assumes "SORT_CONSTRAINT('a::{ring_char_0,division_ring_inverse_zero,field})" |
28615
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
412 |
shows "(0, b) +\<^sub>N y = normNum y" |
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
413 |
and "(a, 0) +\<^sub>N y = normNum y" |
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
414 |
and "x +\<^sub>N (0, b) = normNum x" |
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
415 |
and "x +\<^sub>N (a, 0) = normNum x" |
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
416 |
apply (simp add: Nadd_def split_def) |
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
417 |
apply (simp add: Nadd_def split_def) |
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
418 |
apply (subst Nadd_commute, simp add: Nadd_def split_def) |
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
419 |
apply (subst Nadd_commute, simp add: Nadd_def split_def) |
24197 | 420 |
done |
421 |
||
28615
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
422 |
lemma normNum_nilpotent_aux[simp]: |
36349 | 423 |
assumes "SORT_CONSTRAINT('a::{ring_char_0,division_ring_inverse_zero,field})" |
28615
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
424 |
assumes nx: "isnormNum x" |
24197 | 425 |
shows "normNum x = x" |
426 |
proof- |
|
427 |
let ?a = "normNum x" |
|
428 |
have n: "isnormNum ?a" by simp |
|
31964 | 429 |
have th:"INum ?a = (INum x ::'a)" by simp |
24197 | 430 |
with isnormNum_unique[OF n nx] |
431 |
show ?thesis by simp |
|
432 |
qed |
|
433 |
||
28615
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
434 |
lemma normNum_nilpotent[simp]: |
36349 | 435 |
assumes "SORT_CONSTRAINT('a::{ring_char_0,division_ring_inverse_zero,field})" |
28615
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
436 |
shows "normNum (normNum x) = normNum x" |
24197 | 437 |
by simp |
28615
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
438 |
|
24197 | 439 |
lemma normNum0[simp]: "normNum (0,b) = 0\<^sub>N" "normNum (a,0) = 0\<^sub>N" |
440 |
by (simp_all add: normNum_def) |
|
28615
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
441 |
|
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
442 |
lemma normNum_Nadd: |
36349 | 443 |
assumes "SORT_CONSTRAINT('a::{ring_char_0,division_ring_inverse_zero,field})" |
28615
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
444 |
shows "normNum (x +\<^sub>N y) = x +\<^sub>N y" by simp |
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
445 |
|
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
446 |
lemma Nadd_normNum1[simp]: |
36349 | 447 |
assumes "SORT_CONSTRAINT('a::{ring_char_0,division_ring_inverse_zero,field})" |
28615
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
448 |
shows "normNum x +\<^sub>N y = x +\<^sub>N y" |
24197 | 449 |
proof- |
450 |
have n: "isnormNum (normNum x +\<^sub>N y)" "isnormNum (x +\<^sub>N y)" by simp_all |
|
31964 | 451 |
have "INum (normNum x +\<^sub>N y) = INum x + (INum y :: 'a)" by simp |
24197 | 452 |
also have "\<dots> = INum (x +\<^sub>N y)" by simp |
453 |
finally show ?thesis using isnormNum_unique[OF n] by simp |
|
454 |
qed |
|
455 |
||
28615
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
456 |
lemma Nadd_normNum2[simp]: |
36349 | 457 |
assumes "SORT_CONSTRAINT('a::{ring_char_0,division_ring_inverse_zero,field})" |
28615
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
458 |
shows "x +\<^sub>N normNum y = x +\<^sub>N y" |
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
459 |
proof- |
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
460 |
have n: "isnormNum (x +\<^sub>N normNum y)" "isnormNum (x +\<^sub>N y)" by simp_all |
31964 | 461 |
have "INum (x +\<^sub>N normNum y) = INum x + (INum y :: 'a)" by simp |
28615
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
462 |
also have "\<dots> = INum (x +\<^sub>N y)" by simp |
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
463 |
finally show ?thesis using isnormNum_unique[OF n] by simp |
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
464 |
qed |
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
465 |
|
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
466 |
lemma Nadd_assoc: |
36349 | 467 |
assumes "SORT_CONSTRAINT('a::{ring_char_0,division_ring_inverse_zero,field})" |
28615
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
468 |
shows "x +\<^sub>N y +\<^sub>N z = x +\<^sub>N (y +\<^sub>N z)" |
24197 | 469 |
proof- |
470 |
have n: "isnormNum (x +\<^sub>N y +\<^sub>N z)" "isnormNum (x +\<^sub>N (y +\<^sub>N z))" by simp_all |
|
31964 | 471 |
have "INum (x +\<^sub>N y +\<^sub>N z) = (INum (x +\<^sub>N (y +\<^sub>N z)) :: 'a)" by simp |
24197 | 472 |
with isnormNum_unique[OF n] show ?thesis by simp |
473 |
qed |
|
474 |
||
475 |
lemma Nmul_commute: "isnormNum x \<Longrightarrow> isnormNum y \<Longrightarrow> x *\<^sub>N y = y *\<^sub>N x" |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31706
diff
changeset
|
476 |
by (simp add: Nmul_def split_def Let_def gcd_commute_int mult_commute) |
24197 | 477 |
|
28615
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
478 |
lemma Nmul_assoc: |
36349 | 479 |
assumes "SORT_CONSTRAINT('a::{ring_char_0,division_ring_inverse_zero,field})" |
28615
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
480 |
assumes nx: "isnormNum x" and ny:"isnormNum y" and nz:"isnormNum z" |
24197 | 481 |
shows "x *\<^sub>N y *\<^sub>N z = x *\<^sub>N (y *\<^sub>N z)" |
482 |
proof- |
|
483 |
from nx ny nz have n: "isnormNum (x *\<^sub>N y *\<^sub>N z)" "isnormNum (x *\<^sub>N (y *\<^sub>N z))" |
|
484 |
by simp_all |
|
31964 | 485 |
have "INum (x +\<^sub>N y +\<^sub>N z) = (INum (x +\<^sub>N (y +\<^sub>N z)) :: 'a)" by simp |
24197 | 486 |
with isnormNum_unique[OF n] show ?thesis by simp |
487 |
qed |
|
488 |
||
28615
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
489 |
lemma Nsub0: |
36349 | 490 |
assumes "SORT_CONSTRAINT('a::{ring_char_0,division_ring_inverse_zero,field})" |
28615
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
491 |
assumes x: "isnormNum x" and y:"isnormNum y" shows "(x -\<^sub>N y = 0\<^sub>N) = (x = y)" |
24197 | 492 |
proof- |
28615
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
493 |
{ fix h :: 'a |
31964 | 494 |
from isnormNum_unique[where 'a = 'a, OF Nsub_normN[OF y], where y="0\<^sub>N"] |
495 |
have "(x -\<^sub>N y = 0\<^sub>N) = (INum (x -\<^sub>N y) = (INum 0\<^sub>N :: 'a)) " by simp |
|
496 |
also have "\<dots> = (INum x = (INum y :: 'a))" by simp |
|
24197 | 497 |
also have "\<dots> = (x = y)" using x y by simp |
28615
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
498 |
finally show ?thesis . } |
24197 | 499 |
qed |
500 |
||
501 |
lemma Nmul0[simp]: "c *\<^sub>N 0\<^sub>N = 0\<^sub>N" " 0\<^sub>N *\<^sub>N c = 0\<^sub>N" |
|
502 |
by (simp_all add: Nmul_def Let_def split_def) |
|
503 |
||
28615
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
504 |
lemma Nmul_eq0[simp]: |
36349 | 505 |
assumes "SORT_CONSTRAINT('a::{ring_char_0,division_ring_inverse_zero,field})" |
28615
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
506 |
assumes nx:"isnormNum x" and ny: "isnormNum y" |
24197 | 507 |
shows "(x*\<^sub>N y = 0\<^sub>N) = (x = 0\<^sub>N \<or> y = 0\<^sub>N)" |
508 |
proof- |
|
28615
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
509 |
{ fix h :: 'a |
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
510 |
have " \<exists> a b a' b'. x = (a,b) \<and> y= (a',b')" by auto |
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
511 |
then obtain a b a' b' where xy[simp]: "x = (a,b)" "y = (a',b')" by blast |
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
512 |
have n0: "isnormNum 0\<^sub>N" by simp |
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
513 |
show ?thesis using nx ny |
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
514 |
apply (simp only: isnormNum_unique[where ?'a = 'a, OF Nmul_normN[OF nx ny] n0, symmetric] Nmul[where ?'a = 'a]) |
32456
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
nipkow
parents:
31967
diff
changeset
|
515 |
by (simp add: INum_def split_def isnormNum_def fst_conv snd_conv split: split_if_asm) |
28615
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
516 |
} |
24197 | 517 |
qed |
518 |
lemma Nneg_Nneg[simp]: "~\<^sub>N (~\<^sub>N c) = c" |
|
519 |
by (simp add: Nneg_def split_def) |
|
520 |
||
521 |
lemma Nmul1[simp]: |
|
522 |
"isnormNum c \<Longrightarrow> 1\<^sub>N *\<^sub>N c = c" |
|
523 |
"isnormNum c \<Longrightarrow> c *\<^sub>N 1\<^sub>N = c" |
|
524 |
apply (simp_all add: Nmul_def Let_def split_def isnormNum_def) |
|
28615
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
525 |
apply (cases "fst c = 0", simp_all, cases c, simp_all)+ |
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
526 |
done |
24197 | 527 |
|
28615
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
528 |
end |