author | wenzelm |
Thu, 16 Oct 2008 22:44:24 +0200 | |
changeset 28615 | 4c8fa015ec7f |
parent 27668 | 6eb20b2cecf8 |
child 29667 | 53103fc8ffa3 |
permissions | -rw-r--r-- |
24197 | 1 |
(* Title: HOL/Library/Abstract_Rat.thy |
2 |
ID: $Id$ |
|
3 |
Author: Amine Chaieb |
|
4 |
*) |
|
5 |
||
6 |
header {* Abstract rational numbers *} |
|
7 |
||
8 |
theory Abstract_Rat |
|
27368 | 9 |
imports Plain GCD |
24197 | 10 |
begin |
11 |
||
12 |
types Num = "int \<times> int" |
|
25005 | 13 |
|
14 |
abbreviation |
|
15 |
Num0_syn :: Num ("0\<^sub>N") |
|
16 |
where "0\<^sub>N \<equiv> (0, 0)" |
|
17 |
||
18 |
abbreviation |
|
19 |
Numi_syn :: "int \<Rightarrow> Num" ("_\<^sub>N") |
|
20 |
where "i\<^sub>N \<equiv> (i, 1)" |
|
24197 | 21 |
|
22 |
definition |
|
23 |
isnormNum :: "Num \<Rightarrow> bool" |
|
24 |
where |
|
27556 | 25 |
"isnormNum = (\<lambda>(a,b). (if a = 0 then b = 0 else b > 0 \<and> zgcd a b = 1))" |
24197 | 26 |
|
27 |
definition |
|
28 |
normNum :: "Num \<Rightarrow> Num" |
|
29 |
where |
|
30 |
"normNum = (\<lambda>(a,b). (if a=0 \<or> b = 0 then (0,0) else |
|
27556 | 31 |
(let g = zgcd a b |
24197 | 32 |
in if b > 0 then (a div g, b div g) else (- (a div g), - (b div g)))))" |
33 |
||
27668 | 34 |
declare zgcd_zdvd1[presburger] |
35 |
declare zgcd_zdvd2[presburger] |
|
24197 | 36 |
lemma normNum_isnormNum [simp]: "isnormNum (normNum x)" |
37 |
proof - |
|
38 |
have " \<exists> a b. x = (a,b)" by auto |
|
39 |
then obtain a b where x[simp]: "x = (a,b)" by blast |
|
40 |
{assume "a=0 \<or> b = 0" hence ?thesis by (simp add: normNum_def isnormNum_def)} |
|
41 |
moreover |
|
42 |
{assume anz: "a \<noteq> 0" and bnz: "b \<noteq> 0" |
|
27556 | 43 |
let ?g = "zgcd a b" |
24197 | 44 |
let ?a' = "a div ?g" |
45 |
let ?b' = "b div ?g" |
|
27556 | 46 |
let ?g' = "zgcd ?a' ?b'" |
47 |
from anz bnz have "?g \<noteq> 0" by simp with zgcd_pos[of a b] |
|
24197 | 48 |
have gpos: "?g > 0" by arith |
27668 | 49 |
have gdvd: "?g dvd a" "?g dvd b" by arith+ |
24197 | 50 |
from zdvd_mult_div_cancel[OF gdvd(1)] zdvd_mult_div_cancel[OF gdvd(2)] |
51 |
anz bnz |
|
52 |
have nz':"?a' \<noteq> 0" "?b' \<noteq> 0" |
|
27556 | 53 |
by - (rule notI,simp add:zgcd_def)+ |
27668 | 54 |
from anz bnz have stupid: "a \<noteq> 0 \<or> b \<noteq> 0" by arith |
27556 | 55 |
from div_zgcd_relprime[OF stupid] have gp1: "?g' = 1" . |
24197 | 56 |
from bnz have "b < 0 \<or> b > 0" by arith |
57 |
moreover |
|
58 |
{assume b: "b > 0" |
|
27668 | 59 |
from b have "?b' \<ge> 0" |
60 |
by (presburger add: pos_imp_zdiv_nonneg_iff[OF gpos]) |
|
61 |
with nz' have b': "?b' > 0" by arith |
|
24197 | 62 |
from b b' anz bnz nz' gp1 have ?thesis |
63 |
by (simp add: isnormNum_def normNum_def Let_def split_def fst_conv snd_conv)} |
|
64 |
moreover {assume b: "b < 0" |
|
65 |
{assume b': "?b' \<ge> 0" |
|
66 |
from gpos have th: "?g \<ge> 0" by arith |
|
67 |
from mult_nonneg_nonneg[OF th b'] zdvd_mult_div_cancel[OF gdvd(2)] |
|
27668 | 68 |
have False using b by arith } |
24197 | 69 |
hence b': "?b' < 0" by (presburger add: linorder_not_le[symmetric]) |
70 |
from anz bnz nz' b b' gp1 have ?thesis |
|
71 |
by (simp add: isnormNum_def normNum_def Let_def split_def fst_conv snd_conv)} |
|
72 |
ultimately have ?thesis by blast |
|
73 |
} |
|
74 |
ultimately show ?thesis by blast |
|
75 |
qed |
|
76 |
||
77 |
text {* Arithmetic over Num *} |
|
78 |
||
79 |
definition |
|
80 |
Nadd :: "Num \<Rightarrow> Num \<Rightarrow> Num" (infixl "+\<^sub>N" 60) |
|
81 |
where |
|
82 |
"Nadd = (\<lambda>(a,b) (a',b'). if a = 0 \<or> b = 0 then normNum(a',b') |
|
83 |
else if a'=0 \<or> b' = 0 then normNum(a,b) |
|
84 |
else normNum(a*b' + b*a', b*b'))" |
|
85 |
||
86 |
definition |
|
87 |
Nmul :: "Num \<Rightarrow> Num \<Rightarrow> Num" (infixl "*\<^sub>N" 60) |
|
88 |
where |
|
27556 | 89 |
"Nmul = (\<lambda>(a,b) (a',b'). let g = zgcd (a*a') (b*b') |
24197 | 90 |
in (a*a' div g, b*b' div g))" |
91 |
||
92 |
definition |
|
93 |
Nneg :: "Num \<Rightarrow> Num" ("~\<^sub>N") |
|
94 |
where |
|
95 |
"Nneg \<equiv> (\<lambda>(a,b). (-a,b))" |
|
96 |
||
97 |
definition |
|
98 |
Nsub :: "Num \<Rightarrow> Num \<Rightarrow> Num" (infixl "-\<^sub>N" 60) |
|
99 |
where |
|
100 |
"Nsub = (\<lambda>a b. a +\<^sub>N ~\<^sub>N b)" |
|
101 |
||
102 |
definition |
|
103 |
Ninv :: "Num \<Rightarrow> Num" |
|
104 |
where |
|
105 |
"Ninv \<equiv> \<lambda>(a,b). if a < 0 then (-b, \<bar>a\<bar>) else (b,a)" |
|
106 |
||
107 |
definition |
|
108 |
Ndiv :: "Num \<Rightarrow> Num \<Rightarrow> Num" (infixl "\<div>\<^sub>N" 60) |
|
109 |
where |
|
110 |
"Ndiv \<equiv> \<lambda>a b. a *\<^sub>N Ninv b" |
|
111 |
||
112 |
lemma Nneg_normN[simp]: "isnormNum x \<Longrightarrow> isnormNum (~\<^sub>N x)" |
|
113 |
by(simp add: isnormNum_def Nneg_def split_def) |
|
114 |
lemma Nadd_normN[simp]: "isnormNum (x +\<^sub>N y)" |
|
115 |
by (simp add: Nadd_def split_def) |
|
116 |
lemma Nsub_normN[simp]: "\<lbrakk> isnormNum y\<rbrakk> \<Longrightarrow> isnormNum (x -\<^sub>N y)" |
|
117 |
by (simp add: Nsub_def split_def) |
|
118 |
lemma Nmul_normN[simp]: assumes xn:"isnormNum x" and yn: "isnormNum y" |
|
119 |
shows "isnormNum (x *\<^sub>N y)" |
|
120 |
proof- |
|
121 |
have "\<exists>a b. x = (a,b)" and "\<exists> a' b'. y = (a',b')" by auto |
|
122 |
then obtain a b a' b' where ab: "x = (a,b)" and ab': "y = (a',b')" by blast |
|
123 |
{assume "a = 0" |
|
124 |
hence ?thesis using xn ab ab' |
|
27556 | 125 |
by (simp add: zgcd_def isnormNum_def Let_def Nmul_def split_def)} |
24197 | 126 |
moreover |
127 |
{assume "a' = 0" |
|
128 |
hence ?thesis using yn ab ab' |
|
27556 | 129 |
by (simp add: zgcd_def isnormNum_def Let_def Nmul_def split_def)} |
24197 | 130 |
moreover |
131 |
{assume a: "a \<noteq>0" and a': "a'\<noteq>0" |
|
132 |
hence bp: "b > 0" "b' > 0" using xn yn ab ab' by (simp_all add: isnormNum_def) |
|
133 |
from mult_pos_pos[OF bp] have "x *\<^sub>N y = normNum (a*a', b*b')" |
|
134 |
using ab ab' a a' bp by (simp add: Nmul_def Let_def split_def normNum_def) |
|
135 |
hence ?thesis by simp} |
|
136 |
ultimately show ?thesis by blast |
|
137 |
qed |
|
138 |
||
139 |
lemma Ninv_normN[simp]: "isnormNum x \<Longrightarrow> isnormNum (Ninv x)" |
|
25005 | 140 |
by (simp add: Ninv_def isnormNum_def split_def) |
27556 | 141 |
(cases "fst x = 0", auto simp add: zgcd_commute) |
24197 | 142 |
|
143 |
lemma isnormNum_int[simp]: |
|
144 |
"isnormNum 0\<^sub>N" "isnormNum (1::int)\<^sub>N" "i \<noteq> 0 \<Longrightarrow> isnormNum i\<^sub>N" |
|
27556 | 145 |
by (simp_all add: isnormNum_def zgcd_def) |
24197 | 146 |
|
147 |
||
148 |
text {* Relations over Num *} |
|
149 |
||
150 |
definition |
|
151 |
Nlt0:: "Num \<Rightarrow> bool" ("0>\<^sub>N") |
|
152 |
where |
|
153 |
"Nlt0 = (\<lambda>(a,b). a < 0)" |
|
154 |
||
155 |
definition |
|
156 |
Nle0:: "Num \<Rightarrow> bool" ("0\<ge>\<^sub>N") |
|
157 |
where |
|
158 |
"Nle0 = (\<lambda>(a,b). a \<le> 0)" |
|
159 |
||
160 |
definition |
|
161 |
Ngt0:: "Num \<Rightarrow> bool" ("0<\<^sub>N") |
|
162 |
where |
|
163 |
"Ngt0 = (\<lambda>(a,b). a > 0)" |
|
164 |
||
165 |
definition |
|
166 |
Nge0:: "Num \<Rightarrow> bool" ("0\<le>\<^sub>N") |
|
167 |
where |
|
168 |
"Nge0 = (\<lambda>(a,b). a \<ge> 0)" |
|
169 |
||
170 |
definition |
|
171 |
Nlt :: "Num \<Rightarrow> Num \<Rightarrow> bool" (infix "<\<^sub>N" 55) |
|
172 |
where |
|
173 |
"Nlt = (\<lambda>a b. 0>\<^sub>N (a -\<^sub>N b))" |
|
174 |
||
175 |
definition |
|
176 |
Nle :: "Num \<Rightarrow> Num \<Rightarrow> bool" (infix "\<le>\<^sub>N" 55) |
|
177 |
where |
|
178 |
"Nle = (\<lambda>a b. 0\<ge>\<^sub>N (a -\<^sub>N b))" |
|
179 |
||
180 |
definition |
|
181 |
"INum = (\<lambda>(a,b). of_int a / of_int b)" |
|
182 |
||
183 |
lemma INum_int [simp]: "INum i\<^sub>N = ((of_int i) ::'a::field)" "INum 0\<^sub>N = (0::'a::field)" |
|
184 |
by (simp_all add: INum_def) |
|
185 |
||
186 |
lemma isnormNum_unique[simp]: |
|
187 |
assumes na: "isnormNum x" and nb: "isnormNum y" |
|
188 |
shows "((INum x ::'a::{ring_char_0,field, division_by_zero}) = INum y) = (x = y)" (is "?lhs = ?rhs") |
|
189 |
proof |
|
190 |
have "\<exists> a b a' b'. x = (a,b) \<and> y = (a',b')" by auto |
|
191 |
then obtain a b a' b' where xy[simp]: "x = (a,b)" "y=(a',b')" by blast |
|
192 |
assume H: ?lhs |
|
193 |
{assume "a = 0 \<or> b = 0 \<or> a' = 0 \<or> b' = 0" hence ?rhs |
|
194 |
using na nb H |
|
195 |
apply (simp add: INum_def split_def isnormNum_def) |
|
196 |
apply (cases "a = 0", simp_all) |
|
197 |
apply (cases "b = 0", simp_all) |
|
198 |
apply (cases "a' = 0", simp_all) |
|
199 |
apply (cases "a' = 0", simp_all add: of_int_eq_0_iff) |
|
200 |
done} |
|
201 |
moreover |
|
202 |
{ assume az: "a \<noteq> 0" and bz: "b \<noteq> 0" and a'z: "a'\<noteq>0" and b'z: "b'\<noteq>0" |
|
203 |
from az bz a'z b'z na nb have pos: "b > 0" "b' > 0" by (simp_all add: isnormNum_def) |
|
204 |
from prems have eq:"a * b' = a'*b" |
|
205 |
by (simp add: INum_def eq_divide_eq divide_eq_eq of_int_mult[symmetric] del: of_int_mult) |
|
27556 | 206 |
from prems have gcd1: "zgcd a b = 1" "zgcd b a = 1" "zgcd a' b' = 1" "zgcd b' a' = 1" |
207 |
by (simp_all add: isnormNum_def add: zgcd_commute) |
|
27668 | 208 |
from eq have raw_dvd: "a dvd a'*b" "b dvd b'*a" "a' dvd a*b'" "b' dvd b*a'" |
209 |
apply - |
|
210 |
apply algebra |
|
211 |
apply algebra |
|
212 |
apply simp |
|
213 |
apply algebra |
|
24197 | 214 |
done |
215 |
from zdvd_dvd_eq[OF bz zrelprime_dvd_mult[OF gcd1(2) raw_dvd(2)] |
|
216 |
zrelprime_dvd_mult[OF gcd1(4) raw_dvd(4)]] |
|
27668 | 217 |
have eq1: "b = b'" using pos by arith |
24197 | 218 |
with eq have "a = a'" using pos by simp |
219 |
with eq1 have ?rhs by simp} |
|
220 |
ultimately show ?rhs by blast |
|
221 |
next |
|
222 |
assume ?rhs thus ?lhs by simp |
|
223 |
qed |
|
224 |
||
225 |
||
226 |
lemma isnormNum0[simp]: "isnormNum x \<Longrightarrow> (INum x = (0::'a::{ring_char_0, field,division_by_zero})) = (x = 0\<^sub>N)" |
|
227 |
unfolding INum_int(2)[symmetric] |
|
228 |
by (rule isnormNum_unique, simp_all) |
|
229 |
||
230 |
lemma of_int_div_aux: "d ~= 0 ==> ((of_int x)::'a::{field, ring_char_0}) / (of_int d) = |
|
231 |
of_int (x div d) + (of_int (x mod d)) / ((of_int d)::'a)" |
|
232 |
proof - |
|
233 |
assume "d ~= 0" |
|
234 |
hence dz: "of_int d \<noteq> (0::'a)" by (simp add: of_int_eq_0_iff) |
|
235 |
let ?t = "of_int (x div d) * ((of_int d)::'a) + of_int(x mod d)" |
|
236 |
let ?f = "\<lambda>x. x / of_int d" |
|
237 |
have "x = (x div d) * d + x mod d" |
|
238 |
by auto |
|
239 |
then have eq: "of_int x = ?t" |
|
240 |
by (simp only: of_int_mult[symmetric] of_int_add [symmetric]) |
|
241 |
then have "of_int x / of_int d = ?t / of_int d" |
|
242 |
using cong[OF refl[of ?f] eq] by simp |
|
243 |
then show ?thesis by (simp add: add_divide_distrib ring_simps prems) |
|
244 |
qed |
|
245 |
||
246 |
lemma of_int_div: "(d::int) ~= 0 ==> d dvd n ==> |
|
247 |
(of_int(n div d)::'a::{field, ring_char_0}) = of_int n / of_int d" |
|
248 |
apply (frule of_int_div_aux [of d n, where ?'a = 'a]) |
|
249 |
apply simp |
|
250 |
apply (simp add: zdvd_iff_zmod_eq_0) |
|
251 |
done |
|
252 |
||
253 |
||
254 |
lemma normNum[simp]: "INum (normNum x) = (INum x :: 'a::{ring_char_0,field, division_by_zero})" |
|
255 |
proof- |
|
256 |
have "\<exists> a b. x = (a,b)" by auto |
|
257 |
then obtain a b where x[simp]: "x = (a,b)" by blast |
|
258 |
{assume "a=0 \<or> b = 0" hence ?thesis |
|
259 |
by (simp add: INum_def normNum_def split_def Let_def)} |
|
260 |
moreover |
|
261 |
{assume a: "a\<noteq>0" and b: "b\<noteq>0" |
|
27556 | 262 |
let ?g = "zgcd a b" |
24197 | 263 |
from a b have g: "?g \<noteq> 0"by simp |
264 |
from of_int_div[OF g, where ?'a = 'a] |
|
265 |
have ?thesis by (auto simp add: INum_def normNum_def split_def Let_def)} |
|
266 |
ultimately show ?thesis by blast |
|
267 |
qed |
|
268 |
||
26509 | 269 |
lemma INum_normNum_iff: "(INum x ::'a::{field, division_by_zero, ring_char_0}) = INum y \<longleftrightarrow> normNum x = normNum y" (is "?lhs = ?rhs") |
24197 | 270 |
proof - |
271 |
have "normNum x = normNum y \<longleftrightarrow> (INum (normNum x) :: 'a) = INum (normNum y)" |
|
272 |
by (simp del: normNum) |
|
273 |
also have "\<dots> = ?lhs" by simp |
|
274 |
finally show ?thesis by simp |
|
275 |
qed |
|
276 |
||
277 |
lemma Nadd[simp]: "INum (x +\<^sub>N y) = INum x + (INum y :: 'a :: {ring_char_0,division_by_zero,field})" |
|
278 |
proof- |
|
279 |
let ?z = "0:: 'a" |
|
280 |
have " \<exists> a b. x = (a,b)" " \<exists> a' b'. y = (a',b')" by auto |
|
281 |
then obtain a b a' b' where x[simp]: "x = (a,b)" |
|
282 |
and y[simp]: "y = (a',b')" by blast |
|
283 |
{assume "a=0 \<or> a'= 0 \<or> b =0 \<or> b' = 0" hence ?thesis |
|
284 |
apply (cases "a=0",simp_all add: Nadd_def) |
|
285 |
apply (cases "b= 0",simp_all add: INum_def) |
|
286 |
apply (cases "a'= 0",simp_all) |
|
287 |
apply (cases "b'= 0",simp_all) |
|
288 |
done } |
|
289 |
moreover |
|
290 |
{assume aa':"a \<noteq> 0" "a'\<noteq> 0" and bb': "b \<noteq> 0" "b' \<noteq> 0" |
|
291 |
{assume z: "a * b' + b * a' = 0" |
|
292 |
hence "of_int (a*b' + b*a') / (of_int b* of_int b') = ?z" by simp |
|
293 |
hence "of_int b' * of_int a / (of_int b * of_int b') + of_int b * of_int a' / (of_int b * of_int b') = ?z" by (simp add:add_divide_distrib) |
|
294 |
hence th: "of_int a / of_int b + of_int a' / of_int b' = ?z" using bb' aa' by simp |
|
295 |
from z aa' bb' have ?thesis |
|
296 |
by (simp add: th Nadd_def normNum_def INum_def split_def)} |
|
297 |
moreover {assume z: "a * b' + b * a' \<noteq> 0" |
|
27556 | 298 |
let ?g = "zgcd (a * b' + b * a') (b*b')" |
24197 | 299 |
have gz: "?g \<noteq> 0" using z by simp |
300 |
have ?thesis using aa' bb' z gz |
|
27567 | 301 |
of_int_div[where ?'a = 'a, OF gz zgcd_zdvd1[where i="a * b' + b * a'" and j="b*b'"]] of_int_div[where ?'a = 'a, |
302 |
OF gz zgcd_zdvd2[where i="a * b' + b * a'" and j="b*b'"]] |
|
24197 | 303 |
by (simp add: x y Nadd_def INum_def normNum_def Let_def add_divide_distrib)} |
304 |
ultimately have ?thesis using aa' bb' |
|
305 |
by (simp add: Nadd_def INum_def normNum_def x y Let_def) } |
|
306 |
ultimately show ?thesis by blast |
|
307 |
qed |
|
308 |
||
309 |
lemma Nmul[simp]: "INum (x *\<^sub>N y) = INum x * (INum y:: 'a :: {ring_char_0,division_by_zero,field}) " |
|
310 |
proof- |
|
311 |
let ?z = "0::'a" |
|
312 |
have " \<exists> a b. x = (a,b)" " \<exists> a' b'. y = (a',b')" by auto |
|
313 |
then obtain a b a' b' where x: "x = (a,b)" and y: "y = (a',b')" by blast |
|
314 |
{assume "a=0 \<or> a'= 0 \<or> b = 0 \<or> b' = 0" hence ?thesis |
|
315 |
apply (cases "a=0",simp_all add: x y Nmul_def INum_def Let_def) |
|
316 |
apply (cases "b=0",simp_all) |
|
317 |
apply (cases "a'=0",simp_all) |
|
318 |
done } |
|
319 |
moreover |
|
320 |
{assume z: "a \<noteq> 0" "a' \<noteq> 0" "b \<noteq> 0" "b' \<noteq> 0" |
|
27556 | 321 |
let ?g="zgcd (a*a') (b*b')" |
24197 | 322 |
have gz: "?g \<noteq> 0" using z by simp |
27567 | 323 |
from z of_int_div[where ?'a = 'a, OF gz zgcd_zdvd1[where i="a*a'" and j="b*b'"]] |
324 |
of_int_div[where ?'a = 'a , OF gz zgcd_zdvd2[where i="a*a'" and j="b*b'"]] |
|
24197 | 325 |
have ?thesis by (simp add: Nmul_def x y Let_def INum_def)} |
326 |
ultimately show ?thesis by blast |
|
327 |
qed |
|
328 |
||
329 |
lemma Nneg[simp]: "INum (~\<^sub>N x) = - (INum x ::'a:: field)" |
|
330 |
by (simp add: Nneg_def split_def INum_def) |
|
331 |
||
332 |
lemma Nsub[simp]: shows "INum (x -\<^sub>N y) = INum x - (INum y:: 'a :: {ring_char_0,division_by_zero,field})" |
|
333 |
by (simp add: Nsub_def split_def) |
|
334 |
||
335 |
lemma Ninv[simp]: "INum (Ninv x) = (1::'a :: {division_by_zero,field}) / (INum x)" |
|
336 |
by (simp add: Ninv_def INum_def split_def) |
|
337 |
||
338 |
lemma Ndiv[simp]: "INum (x \<div>\<^sub>N y) = INum x / (INum y ::'a :: {ring_char_0, division_by_zero,field})" by (simp add: Ndiv_def) |
|
339 |
||
340 |
lemma Nlt0_iff[simp]: assumes nx: "isnormNum x" |
|
341 |
shows "((INum x :: 'a :: {ring_char_0,division_by_zero,ordered_field})< 0) = 0>\<^sub>N x " |
|
342 |
proof- |
|
343 |
have " \<exists> a b. x = (a,b)" by simp |
|
344 |
then obtain a b where x[simp]:"x = (a,b)" by blast |
|
345 |
{assume "a = 0" hence ?thesis by (simp add: Nlt0_def INum_def) } |
|
346 |
moreover |
|
347 |
{assume a: "a\<noteq>0" hence b: "(of_int b::'a) > 0" using nx by (simp add: isnormNum_def) |
|
348 |
from pos_divide_less_eq[OF b, where b="of_int a" and a="0::'a"] |
|
349 |
have ?thesis by (simp add: Nlt0_def INum_def)} |
|
350 |
ultimately show ?thesis by blast |
|
351 |
qed |
|
352 |
||
353 |
lemma Nle0_iff[simp]:assumes nx: "isnormNum x" |
|
354 |
shows "((INum x :: 'a :: {ring_char_0,division_by_zero,ordered_field}) \<le> 0) = 0\<ge>\<^sub>N x" |
|
355 |
proof- |
|
356 |
have " \<exists> a b. x = (a,b)" by simp |
|
357 |
then obtain a b where x[simp]:"x = (a,b)" by blast |
|
358 |
{assume "a = 0" hence ?thesis by (simp add: Nle0_def INum_def) } |
|
359 |
moreover |
|
360 |
{assume a: "a\<noteq>0" hence b: "(of_int b :: 'a) > 0" using nx by (simp add: isnormNum_def) |
|
361 |
from pos_divide_le_eq[OF b, where b="of_int a" and a="0::'a"] |
|
362 |
have ?thesis by (simp add: Nle0_def INum_def)} |
|
363 |
ultimately show ?thesis by blast |
|
364 |
qed |
|
365 |
||
366 |
lemma Ngt0_iff[simp]:assumes nx: "isnormNum x" shows "((INum x :: 'a :: {ring_char_0,division_by_zero,ordered_field})> 0) = 0<\<^sub>N x" |
|
367 |
proof- |
|
368 |
have " \<exists> a b. x = (a,b)" by simp |
|
369 |
then obtain a b where x[simp]:"x = (a,b)" by blast |
|
370 |
{assume "a = 0" hence ?thesis by (simp add: Ngt0_def INum_def) } |
|
371 |
moreover |
|
372 |
{assume a: "a\<noteq>0" hence b: "(of_int b::'a) > 0" using nx by (simp add: isnormNum_def) |
|
373 |
from pos_less_divide_eq[OF b, where b="of_int a" and a="0::'a"] |
|
374 |
have ?thesis by (simp add: Ngt0_def INum_def)} |
|
375 |
ultimately show ?thesis by blast |
|
376 |
qed |
|
377 |
lemma Nge0_iff[simp]:assumes nx: "isnormNum x" |
|
378 |
shows "((INum x :: 'a :: {ring_char_0,division_by_zero,ordered_field}) \<ge> 0) = 0\<le>\<^sub>N x" |
|
379 |
proof- |
|
380 |
have " \<exists> a b. x = (a,b)" by simp |
|
381 |
then obtain a b where x[simp]:"x = (a,b)" by blast |
|
382 |
{assume "a = 0" hence ?thesis by (simp add: Nge0_def INum_def) } |
|
383 |
moreover |
|
384 |
{assume a: "a\<noteq>0" hence b: "(of_int b::'a) > 0" using nx by (simp add: isnormNum_def) |
|
385 |
from pos_le_divide_eq[OF b, where b="of_int a" and a="0::'a"] |
|
386 |
have ?thesis by (simp add: Nge0_def INum_def)} |
|
387 |
ultimately show ?thesis by blast |
|
388 |
qed |
|
389 |
||
390 |
lemma Nlt_iff[simp]: assumes nx: "isnormNum x" and ny: "isnormNum y" |
|
391 |
shows "((INum x :: 'a :: {ring_char_0,division_by_zero,ordered_field}) < INum y) = (x <\<^sub>N y)" |
|
392 |
proof- |
|
393 |
let ?z = "0::'a" |
|
394 |
have "((INum x ::'a) < INum y) = (INum (x -\<^sub>N y) < ?z)" using nx ny by simp |
|
395 |
also have "\<dots> = (0>\<^sub>N (x -\<^sub>N y))" using Nlt0_iff[OF Nsub_normN[OF ny]] by simp |
|
396 |
finally show ?thesis by (simp add: Nlt_def) |
|
397 |
qed |
|
398 |
||
399 |
lemma Nle_iff[simp]: assumes nx: "isnormNum x" and ny: "isnormNum y" |
|
400 |
shows "((INum x :: 'a :: {ring_char_0,division_by_zero,ordered_field})\<le> INum y) = (x \<le>\<^sub>N y)" |
|
401 |
proof- |
|
402 |
have "((INum x ::'a) \<le> INum y) = (INum (x -\<^sub>N y) \<le> (0::'a))" using nx ny by simp |
|
403 |
also have "\<dots> = (0\<ge>\<^sub>N (x -\<^sub>N y))" using Nle0_iff[OF Nsub_normN[OF ny]] by simp |
|
404 |
finally show ?thesis by (simp add: Nle_def) |
|
405 |
qed |
|
406 |
||
28615
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
407 |
lemma Nadd_commute: |
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
408 |
assumes "SORT_CONSTRAINT('a::{ring_char_0,division_by_zero,field})" |
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
409 |
shows "x +\<^sub>N y = y +\<^sub>N x" |
24197 | 410 |
proof- |
411 |
have n: "isnormNum (x +\<^sub>N y)" "isnormNum (y +\<^sub>N x)" by simp_all |
|
28615
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
412 |
have "(INum (x +\<^sub>N y)::'a) = INum (y +\<^sub>N x)" by simp |
24197 | 413 |
with isnormNum_unique[OF n] show ?thesis by simp |
414 |
qed |
|
415 |
||
28615
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
416 |
lemma [simp]: |
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
417 |
assumes "SORT_CONSTRAINT('a::{ring_char_0,division_by_zero,field})" |
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
418 |
shows "(0, b) +\<^sub>N y = normNum y" |
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
419 |
and "(a, 0) +\<^sub>N y = normNum y" |
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
420 |
and "x +\<^sub>N (0, b) = normNum x" |
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
421 |
and "x +\<^sub>N (a, 0) = normNum x" |
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
422 |
apply (simp add: Nadd_def split_def) |
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
423 |
apply (simp add: Nadd_def split_def) |
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
424 |
apply (subst Nadd_commute, simp add: Nadd_def split_def) |
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
425 |
apply (subst Nadd_commute, simp add: Nadd_def split_def) |
24197 | 426 |
done |
427 |
||
28615
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
428 |
lemma normNum_nilpotent_aux[simp]: |
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
429 |
assumes "SORT_CONSTRAINT('a::{ring_char_0,division_by_zero,field})" |
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
430 |
assumes nx: "isnormNum x" |
24197 | 431 |
shows "normNum x = x" |
432 |
proof- |
|
433 |
let ?a = "normNum x" |
|
434 |
have n: "isnormNum ?a" by simp |
|
28615
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
435 |
have th:"INum ?a = (INum x ::'a)" by simp |
24197 | 436 |
with isnormNum_unique[OF n nx] |
437 |
show ?thesis by simp |
|
438 |
qed |
|
439 |
||
28615
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
440 |
lemma normNum_nilpotent[simp]: |
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
441 |
assumes "SORT_CONSTRAINT('a::{ring_char_0,division_by_zero,field})" |
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
442 |
shows "normNum (normNum x) = normNum x" |
24197 | 443 |
by simp |
28615
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
444 |
|
24197 | 445 |
lemma normNum0[simp]: "normNum (0,b) = 0\<^sub>N" "normNum (a,0) = 0\<^sub>N" |
446 |
by (simp_all add: normNum_def) |
|
28615
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
447 |
|
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
448 |
lemma normNum_Nadd: |
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
449 |
assumes "SORT_CONSTRAINT('a::{ring_char_0,division_by_zero,field})" |
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
450 |
shows "normNum (x +\<^sub>N y) = x +\<^sub>N y" by simp |
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
451 |
|
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
452 |
lemma Nadd_normNum1[simp]: |
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
453 |
assumes "SORT_CONSTRAINT('a::{ring_char_0,division_by_zero,field})" |
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
454 |
shows "normNum x +\<^sub>N y = x +\<^sub>N y" |
24197 | 455 |
proof- |
456 |
have n: "isnormNum (normNum x +\<^sub>N y)" "isnormNum (x +\<^sub>N y)" by simp_all |
|
28615
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
457 |
have "INum (normNum x +\<^sub>N y) = INum x + (INum y :: 'a)" by simp |
24197 | 458 |
also have "\<dots> = INum (x +\<^sub>N y)" by simp |
459 |
finally show ?thesis using isnormNum_unique[OF n] by simp |
|
460 |
qed |
|
461 |
||
28615
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
462 |
lemma Nadd_normNum2[simp]: |
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
463 |
assumes "SORT_CONSTRAINT('a::{ring_char_0,division_by_zero,field})" |
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
464 |
shows "x +\<^sub>N normNum y = x +\<^sub>N y" |
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
465 |
proof- |
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
466 |
have n: "isnormNum (x +\<^sub>N normNum y)" "isnormNum (x +\<^sub>N y)" by simp_all |
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
467 |
have "INum (x +\<^sub>N normNum y) = INum x + (INum y :: 'a)" by simp |
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
468 |
also have "\<dots> = INum (x +\<^sub>N y)" by simp |
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
469 |
finally show ?thesis using isnormNum_unique[OF n] by simp |
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
470 |
qed |
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
471 |
|
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
472 |
lemma Nadd_assoc: |
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
473 |
assumes "SORT_CONSTRAINT('a::{ring_char_0,division_by_zero,field})" |
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
474 |
shows "x +\<^sub>N y +\<^sub>N z = x +\<^sub>N (y +\<^sub>N z)" |
24197 | 475 |
proof- |
476 |
have n: "isnormNum (x +\<^sub>N y +\<^sub>N z)" "isnormNum (x +\<^sub>N (y +\<^sub>N z))" by simp_all |
|
28615
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
477 |
have "INum (x +\<^sub>N y +\<^sub>N z) = (INum (x +\<^sub>N (y +\<^sub>N z)) :: 'a)" by simp |
24197 | 478 |
with isnormNum_unique[OF n] show ?thesis by simp |
479 |
qed |
|
480 |
||
481 |
lemma Nmul_commute: "isnormNum x \<Longrightarrow> isnormNum y \<Longrightarrow> x *\<^sub>N y = y *\<^sub>N x" |
|
27556 | 482 |
by (simp add: Nmul_def split_def Let_def zgcd_commute mult_commute) |
24197 | 483 |
|
28615
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
484 |
lemma Nmul_assoc: |
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
485 |
assumes "SORT_CONSTRAINT('a::{ring_char_0,division_by_zero,field})" |
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
486 |
assumes nx: "isnormNum x" and ny:"isnormNum y" and nz:"isnormNum z" |
24197 | 487 |
shows "x *\<^sub>N y *\<^sub>N z = x *\<^sub>N (y *\<^sub>N z)" |
488 |
proof- |
|
489 |
from nx ny nz have n: "isnormNum (x *\<^sub>N y *\<^sub>N z)" "isnormNum (x *\<^sub>N (y *\<^sub>N z))" |
|
490 |
by simp_all |
|
28615
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
491 |
have "INum (x +\<^sub>N y +\<^sub>N z) = (INum (x +\<^sub>N (y +\<^sub>N z)) :: 'a)" by simp |
24197 | 492 |
with isnormNum_unique[OF n] show ?thesis by simp |
493 |
qed |
|
494 |
||
28615
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
495 |
lemma Nsub0: |
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
496 |
assumes "SORT_CONSTRAINT('a::{ring_char_0,division_by_zero,field})" |
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
497 |
assumes x: "isnormNum x" and y:"isnormNum y" shows "(x -\<^sub>N y = 0\<^sub>N) = (x = y)" |
24197 | 498 |
proof- |
28615
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
499 |
{ fix h :: 'a |
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
500 |
from isnormNum_unique[where 'a = 'a, OF Nsub_normN[OF y], where y="0\<^sub>N"] |
24197 | 501 |
have "(x -\<^sub>N y = 0\<^sub>N) = (INum (x -\<^sub>N y) = (INum 0\<^sub>N :: 'a)) " by simp |
28615
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
502 |
also have "\<dots> = (INum x = (INum y :: 'a))" by simp |
24197 | 503 |
also have "\<dots> = (x = y)" using x y by simp |
28615
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
504 |
finally show ?thesis . } |
24197 | 505 |
qed |
506 |
||
507 |
lemma Nmul0[simp]: "c *\<^sub>N 0\<^sub>N = 0\<^sub>N" " 0\<^sub>N *\<^sub>N c = 0\<^sub>N" |
|
508 |
by (simp_all add: Nmul_def Let_def split_def) |
|
509 |
||
28615
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
510 |
lemma Nmul_eq0[simp]: |
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
511 |
assumes "SORT_CONSTRAINT('a::{ring_char_0,division_by_zero,field})" |
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
512 |
assumes nx:"isnormNum x" and ny: "isnormNum y" |
24197 | 513 |
shows "(x*\<^sub>N y = 0\<^sub>N) = (x = 0\<^sub>N \<or> y = 0\<^sub>N)" |
514 |
proof- |
|
28615
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
515 |
{ fix h :: 'a |
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
516 |
have " \<exists> a b a' b'. x = (a,b) \<and> y= (a',b')" by auto |
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
517 |
then obtain a b a' b' where xy[simp]: "x = (a,b)" "y = (a',b')" by blast |
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
518 |
have n0: "isnormNum 0\<^sub>N" by simp |
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
519 |
show ?thesis using nx ny |
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
520 |
apply (simp only: isnormNum_unique[where ?'a = 'a, OF Nmul_normN[OF nx ny] n0, symmetric] Nmul[where ?'a = 'a]) |
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
521 |
apply (simp add: INum_def split_def isnormNum_def fst_conv snd_conv) |
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
522 |
apply (cases "a=0",simp_all) |
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
523 |
apply (cases "a'=0",simp_all) |
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
524 |
done |
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
525 |
} |
24197 | 526 |
qed |
527 |
lemma Nneg_Nneg[simp]: "~\<^sub>N (~\<^sub>N c) = c" |
|
528 |
by (simp add: Nneg_def split_def) |
|
529 |
||
530 |
lemma Nmul1[simp]: |
|
531 |
"isnormNum c \<Longrightarrow> 1\<^sub>N *\<^sub>N c = c" |
|
532 |
"isnormNum c \<Longrightarrow> c *\<^sub>N 1\<^sub>N = c" |
|
533 |
apply (simp_all add: Nmul_def Let_def split_def isnormNum_def) |
|
28615
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
534 |
apply (cases "fst c = 0", simp_all, cases c, simp_all)+ |
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
535 |
done |
24197 | 536 |
|
28615
4c8fa015ec7f
explicit SORT_CONSTRAINT for proofs depending implicitly on certain sorts;
wenzelm
parents:
27668
diff
changeset
|
537 |
end |