| author | bulwahn | 
| Sat, 25 Feb 2012 09:07:41 +0100 | |
| changeset 46671 | 3a40ea076230 | 
| parent 35416 | d8d7d1b785af | 
| child 46932 | 53d06963d83d | 
| permissions | -rw-r--r-- | 
| 17914 | 1  | 
(*<*)theory CTL imports Base begin(*>*)  | 
| 9958 | 2  | 
|
| 10971 | 3  | 
subsection{*Computation Tree Logic --- CTL*};
 | 
| 9958 | 4  | 
|
| 10212 | 5  | 
text{*\label{sec:CTL}
 | 
| 11494 | 6  | 
\index{CTL|(}%
 | 
| 10867 | 7  | 
The semantics of PDL only needs reflexive transitive closure.  | 
8  | 
Let us be adventurous and introduce a more expressive temporal operator.  | 
|
9  | 
We extend the datatype  | 
|
| 10149 | 10  | 
@{text formula} by a new constructor
 | 
| 10159 | 11  | 
*};  | 
| 10149 | 12  | 
(*<*)  | 
| 18724 | 13  | 
datatype formula = Atom "atom"  | 
| 10149 | 14  | 
| Neg formula  | 
15  | 
| And formula formula  | 
|
16  | 
| AX formula  | 
|
17  | 
| EF formula(*>*)  | 
|
| 10159 | 18  | 
| AF formula;  | 
| 9958 | 19  | 
|
| 10149 | 20  | 
text{*\noindent
 | 
| 10983 | 21  | 
which stands for ``\emph{A}lways in the \emph{F}uture'':
 | 
22  | 
on all infinite paths, at some point the formula holds.  | 
|
23  | 
Formalizing the notion of an infinite path is easy  | 
|
| 10159 | 24  | 
in HOL: it is simply a function from @{typ nat} to @{typ state}.
 | 
25  | 
*};  | 
|
| 9958 | 26  | 
|
| 27015 | 27  | 
definition Paths :: "state \<Rightarrow> (nat \<Rightarrow> state)set" where  | 
28  | 
"Paths s \<equiv> {p. s = p 0 \<and> (\<forall>i. (p i, p(i+1)) \<in> M)}"
 | 
|
| 10149 | 29  | 
|
30  | 
text{*\noindent
 | 
|
| 15904 | 31  | 
This definition allows a succinct statement of the semantics of @{const AF}:
 | 
| 10867 | 32  | 
\footnote{Do not be misled: neither datatypes nor recursive functions can be
 | 
| 10149 | 33  | 
extended by new constructors or equations. This is just a trick of the  | 
| 12815 | 34  | 
presentation (see \S\ref{sec:doc-prep-suppress}). In reality one has to define
 | 
35  | 
a new datatype and a new function.}  | 
|
| 10159 | 36  | 
*};  | 
| 10149 | 37  | 
(*<*)  | 
| 27015 | 38  | 
primrec valid :: "state \<Rightarrow> formula \<Rightarrow> bool" ("(_ \<Turnstile> _)" [80,80] 80) where
 | 
39  | 
"s \<Turnstile> Atom a = (a \<in> L s)" |  | 
|
40  | 
"s \<Turnstile> Neg f = (~(s \<Turnstile> f))" |  | 
|
41  | 
"s \<Turnstile> And f g = (s \<Turnstile> f \<and> s \<Turnstile> g)" |  | 
|
42  | 
"s \<Turnstile> AX f = (\<forall>t. (s,t) \<in> M \<longrightarrow> t \<Turnstile> f)" |  | 
|
43  | 
"s \<Turnstile> EF f = (\<exists>t. (s,t) \<in> M\<^sup>* \<and> t \<Turnstile> f)" |  | 
|
| 10149 | 44  | 
(*>*)  | 
| 27015 | 45  | 
"s \<Turnstile> AF f = (\<forall>p \<in> Paths s. \<exists>i. p i \<Turnstile> f)"  | 
| 9958 | 46  | 
|
| 10149 | 47  | 
text{*\noindent
 | 
| 15904 | 48  | 
Model checking @{const AF} involves a function which
 | 
| 10159 | 49  | 
is just complicated enough to warrant a separate definition:  | 
50  | 
*};  | 
|
| 10149 | 51  | 
|
| 27015 | 52  | 
definition af :: "state set \<Rightarrow> state set \<Rightarrow> state set" where  | 
53  | 
"af A T \<equiv> A \<union> {s. \<forall>t. (s, t) \<in> M \<longrightarrow> t \<in> T}"
 | 
|
| 10149 | 54  | 
|
55  | 
text{*\noindent
 | 
|
| 10867 | 56  | 
Now we define @{term "mc(AF f)"} as the least set @{term T} that includes
 | 
| 10149 | 57  | 
@{term"mc f"} and all states all of whose direct successors are in @{term T}:
 | 
| 10159 | 58  | 
*};  | 
| 10149 | 59  | 
(*<*)  | 
| 27015 | 60  | 
primrec mc :: "formula \<Rightarrow> state set" where  | 
61  | 
"mc(Atom a)  = {s. a \<in> L s}" |
 | 
|
62  | 
"mc(Neg f) = -mc f" |  | 
|
63  | 
"mc(And f g) = mc f \<inter> mc g" |  | 
|
64  | 
"mc(AX f)    = {s. \<forall>t. (s,t) \<in> M  \<longrightarrow> t \<in> mc f}" |
 | 
|
65  | 
"mc(EF f) = lfp(\<lambda>T. mc f \<union> M\<inverse> `` T)"|(*>*)  | 
|
| 9958 | 66  | 
"mc(AF f) = lfp(af(mc f))";  | 
| 10159 | 67  | 
|
68  | 
text{*\noindent
 | 
|
| 15904 | 69  | 
Because @{const af} is monotone in its second argument (and also its first, but
 | 
| 10983 | 70  | 
that is irrelevant), @{term"af A"} has a least fixed point:
 | 
| 10159 | 71  | 
*};  | 
72  | 
||
73  | 
lemma mono_af: "mono(af A)";  | 
|
74  | 
apply(simp add: mono_def af_def);  | 
|
75  | 
apply blast;  | 
|
76  | 
done  | 
|
| 10149 | 77  | 
(*<*)  | 
| 10839 | 78  | 
lemma mono_ef: "mono(\<lambda>T. A \<union> M\<inverse> `` T)";  | 
| 10159 | 79  | 
apply(rule monoI);  | 
80  | 
by(blast);  | 
|
| 9958 | 81  | 
|
| 10149 | 82  | 
lemma EF_lemma:  | 
| 10839 | 83  | 
  "lfp(\<lambda>T. A \<union> M\<inverse> `` T) = {s. \<exists>t. (s,t) \<in> M\<^sup>* \<and> t \<in> A}";
 | 
| 9958 | 84  | 
apply(rule equalityI);  | 
85  | 
apply(rule subsetI);  | 
|
| 10159 | 86  | 
apply(simp);  | 
| 21260 | 87  | 
apply(erule lfp_induct_set);  | 
| 10159 | 88  | 
apply(rule mono_ef);  | 
89  | 
apply(simp);  | 
|
| 10281 | 90  | 
apply(blast intro: rtrancl_trans);  | 
| 10159 | 91  | 
apply(rule subsetI);  | 
92  | 
apply(simp, clarify);  | 
|
93  | 
apply(erule converse_rtrancl_induct);  | 
|
| 11231 | 94  | 
apply(subst lfp_unfold[OF mono_ef]);  | 
| 10159 | 95  | 
apply(blast);  | 
| 11231 | 96  | 
apply(subst lfp_unfold[OF mono_ef]);  | 
| 10159 | 97  | 
by(blast);  | 
| 10149 | 98  | 
(*>*)  | 
| 10159 | 99  | 
text{*
 | 
| 10867 | 100  | 
All we need to prove now is  @{prop"mc(AF f) = {s. s \<Turnstile> AF f}"}, which states
 | 
| 15904 | 101  | 
that @{term mc} and @{text"\<Turnstile>"} agree for @{const AF}\@.
 | 
| 10867 | 102  | 
This time we prove the two inclusions separately, starting  | 
| 10159 | 103  | 
with the easy one:  | 
104  | 
*};  | 
|
| 9958 | 105  | 
|
| 27015 | 106  | 
theorem AF_lemma1: "lfp(af A) \<subseteq> {s. \<forall>p \<in> Paths s. \<exists>i. p i \<in> A}"
 | 
| 10159 | 107  | 
|
108  | 
txt{*\noindent
 | 
|
| 15904 | 109  | 
In contrast to the analogous proof for @{const EF}, and just
 | 
| 11494 | 110  | 
for a change, we do not use fixed point induction. Park-induction,  | 
111  | 
named after David Park, is weaker but sufficient for this proof:  | 
|
| 10995 | 112  | 
\begin{center}
 | 
113  | 
@{thm lfp_lowerbound[of _ "S",no_vars]} \hfill (@{thm[source]lfp_lowerbound})
 | 
|
114  | 
\end{center}
 | 
|
| 10225 | 115  | 
The instance of the premise @{prop"f S \<subseteq> S"} is proved pointwise,
 | 
| 15102 | 116  | 
a decision that \isa{auto} takes for us:
 | 
| 10159 | 117  | 
*};  | 
| 10225 | 118  | 
apply(rule lfp_lowerbound);  | 
| 15102 | 119  | 
apply(auto simp add: af_def Paths_def);  | 
| 10363 | 120  | 
|
| 10225 | 121  | 
txt{*
 | 
| 10363 | 122  | 
@{subgoals[display,indent=0,margin=70,goals_limit=1]}
 | 
| 15102 | 123  | 
In this remaining case, we set @{term t} to @{term"p(1::nat)"}.
 | 
| 15106 | 124  | 
The rest is automatic, which is surprising because it involves  | 
125  | 
finding the instantiation @{term"\<lambda>i::nat. p(i+1)"}
 | 
|
126  | 
for @{text"\<forall>p"}.
 | 
|
| 10159 | 127  | 
*};  | 
128  | 
||
| 9958 | 129  | 
apply(erule_tac x = "p 1" in allE);  | 
| 15102 | 130  | 
apply(auto);  | 
| 10159 | 131  | 
done;  | 
| 9958 | 132  | 
|
| 10225 | 133  | 
|
| 9958 | 134  | 
text{*
 | 
| 10867 | 135  | 
The opposite inclusion is proved by contradiction: if some state  | 
| 10159 | 136  | 
@{term s} is not in @{term"lfp(af A)"}, then we can construct an
 | 
| 11494 | 137  | 
infinite @{term A}-avoiding path starting from~@{term s}. The reason is
 | 
| 15904 | 138  | 
that by unfolding @{const lfp} we find that if @{term s} is not in
 | 
| 9958 | 139  | 
@{term"lfp(af A)"}, then @{term s} is not in @{term A} and there is a
 | 
| 10983 | 140  | 
direct successor of @{term s} that is again not in \mbox{@{term"lfp(af
 | 
141  | 
A)"}}. Iterating this argument yields the promised infinite  | 
|
| 9958 | 142  | 
@{term A}-avoiding path. Let us formalize this sketch.
 | 
143  | 
||
| 10867 | 144  | 
The one-step argument in the sketch above  | 
145  | 
is proved by a variant of contraposition:  | 
|
| 9958 | 146  | 
*};  | 
147  | 
||
148  | 
lemma not_in_lfp_afD:  | 
|
| 10983 | 149  | 
"s \<notin> lfp(af A) \<Longrightarrow> s \<notin> A \<and> (\<exists> t. (s,t) \<in> M \<and> t \<notin> lfp(af A))";  | 
| 10235 | 150  | 
apply(erule contrapos_np);  | 
| 11231 | 151  | 
apply(subst lfp_unfold[OF mono_af]);  | 
| 12815 | 152  | 
apply(simp add: af_def);  | 
| 10159 | 153  | 
done;  | 
| 9958 | 154  | 
|
155  | 
text{*\noindent
 | 
|
| 10867 | 156  | 
We assume the negation of the conclusion and prove @{term"s : lfp(af A)"}.
 | 
| 15904 | 157  | 
Unfolding @{const lfp} once and
 | 
158  | 
simplifying with the definition of @{const af} finishes the proof.
 | 
|
| 9958 | 159  | 
|
160  | 
Now we iterate this process. The following construction of the desired  | 
|
| 10895 | 161  | 
path is parameterized by a predicate @{term Q} that should hold along the path:
 | 
| 9958 | 162  | 
*};  | 
163  | 
||
| 27015 | 164  | 
primrec path :: "state \<Rightarrow> (state \<Rightarrow> bool) \<Rightarrow> (nat \<Rightarrow> state)" where  | 
165  | 
"path s Q 0 = s" |  | 
|
166  | 
"path s Q (Suc n) = (SOME t. (path s Q n,t) \<in> M \<and> Q t)"  | 
|
| 9958 | 167  | 
|
168  | 
text{*\noindent
 | 
|
| 12699 | 169  | 
Element @{term"n+1::nat"} on this path is some arbitrary successor
 | 
| 10895 | 170  | 
@{term t} of element @{term n} such that @{term"Q t"} holds.  Remember that @{text"SOME t. R t"}
 | 
| 10654 | 171  | 
is some arbitrary but fixed @{term t} such that @{prop"R t"} holds (see \S\ref{sec:SOME}). Of
 | 
| 10867 | 172  | 
course, such a @{term t} need not exist, but that is of no
 | 
| 15904 | 173  | 
concern to us since we will only use @{const path} when a
 | 
| 10159 | 174  | 
suitable @{term t} does exist.
 | 
| 9958 | 175  | 
|
| 10895 | 176  | 
Let us show that if each state @{term s} that satisfies @{term Q}
 | 
177  | 
has a successor that again satisfies @{term Q}, then there exists an infinite @{term Q}-path:
 | 
|
| 9958 | 178  | 
*};  | 
179  | 
||
| 10159 | 180  | 
lemma infinity_lemma:  | 
| 10895 | 181  | 
"\<lbrakk> Q s; \<forall>s. Q s \<longrightarrow> (\<exists> t. (s,t) \<in> M \<and> Q t) \<rbrakk> \<Longrightarrow>  | 
182  | 
\<exists>p\<in>Paths s. \<forall>i. Q(p i)";  | 
|
| 9958 | 183  | 
|
184  | 
txt{*\noindent
 | 
|
| 10983 | 185  | 
First we rephrase the conclusion slightly because we need to prove simultaneously  | 
186  | 
both the path property and the fact that @{term Q} holds:
 | 
|
| 9958 | 187  | 
*};  | 
188  | 
||
| 12489 | 189  | 
apply(subgoal_tac  | 
190  | 
"\<exists>p. s = p 0 \<and> (\<forall>i::nat. (p i, p(i+1)) \<in> M \<and> Q(p i))");  | 
|
| 9958 | 191  | 
|
192  | 
txt{*\noindent
 | 
|
| 10159 | 193  | 
From this proposition the original goal follows easily:  | 
| 9958 | 194  | 
*};  | 
195  | 
||
| 12815 | 196  | 
apply(simp add: Paths_def, blast);  | 
| 10159 | 197  | 
|
198  | 
txt{*\noindent
 | 
|
| 10895 | 199  | 
The new subgoal is proved by providing the witness @{term "path s Q"} for @{term p}:
 | 
| 10159 | 200  | 
*};  | 
201  | 
||
| 10895 | 202  | 
apply(rule_tac x = "path s Q" in exI);  | 
| 10159 | 203  | 
apply(clarsimp);  | 
204  | 
||
205  | 
txt{*\noindent
 | 
|
| 11494 | 206  | 
After simplification and clarification, the subgoal has the following form:  | 
| 10363 | 207  | 
@{subgoals[display,indent=0,margin=70,goals_limit=1]}
 | 
| 11494 | 208  | 
It invites a proof by induction on @{term i}:
 | 
| 10159 | 209  | 
*};  | 
210  | 
||
| 9958 | 211  | 
apply(induct_tac i);  | 
212  | 
apply(simp);  | 
|
| 10159 | 213  | 
|
214  | 
txt{*\noindent
 | 
|
| 10983 | 215  | 
After simplification, the base case boils down to  | 
| 10363 | 216  | 
@{subgoals[display,indent=0,margin=70,goals_limit=1]}
 | 
| 10159 | 217  | 
The conclusion looks exceedingly trivial: after all, @{term t} is chosen such that @{prop"(s,t):M"}
 | 
218  | 
holds. However, we first have to show that such a @{term t} actually exists! This reasoning
 | 
|
219  | 
is embodied in the theorem @{thm[source]someI2_ex}:
 | 
|
220  | 
@{thm[display,eta_contract=false]someI2_ex}
 | 
|
221  | 
When we apply this theorem as an introduction rule, @{text"?P x"} becomes
 | 
|
| 10895 | 222  | 
@{prop"(s, x) : M & Q x"} and @{text"?Q x"} becomes @{prop"(s,x) : M"} and we have to prove
 | 
223  | 
two subgoals: @{prop"EX a. (s, a) : M & Q a"}, which follows from the assumptions, and
 | 
|
224  | 
@{prop"(s, x) : M & Q x ==> (s,x) : M"}, which is trivial. Thus it is not surprising that
 | 
|
| 10159 | 225  | 
@{text fast} can prove the base case quickly:
 | 
226  | 
*};  | 
|
227  | 
||
| 12815 | 228  | 
apply(fast intro: someI2_ex);  | 
| 10159 | 229  | 
|
230  | 
txt{*\noindent
 | 
|
| 11494 | 231  | 
What is worth noting here is that we have used \methdx{fast} rather than
 | 
| 10212 | 232  | 
@{text blast}.  The reason is that @{text blast} would fail because it cannot
 | 
233  | 
cope with @{thm[source]someI2_ex}: unifying its conclusion with the current
 | 
|
| 11149 | 234  | 
subgoal is non-trivial because of the nested schematic variables. For  | 
| 10212 | 235  | 
efficiency reasons @{text blast} does not even attempt such unifications.
 | 
236  | 
Although @{text fast} can in principle cope with complicated unification
 | 
|
237  | 
problems, in practice the number of unifiers arising is often prohibitive and  | 
|
238  | 
the offending rule may need to be applied explicitly rather than  | 
|
239  | 
automatically. This is what happens in the step case.  | 
|
| 10159 | 240  | 
|
| 10212 | 241  | 
The induction step is similar, but more involved, because now we face nested  | 
| 16069 | 242  | 
occurrences of @{text SOME}. As a result, @{text fast} is no longer able to
 | 
| 10212 | 243  | 
solve the subgoal and we apply @{thm[source]someI2_ex} by hand.  We merely
 | 
244  | 
show the proof commands but do not describe the details:  | 
|
| 10159 | 245  | 
*};  | 
246  | 
||
| 9958 | 247  | 
apply(simp);  | 
| 10000 | 248  | 
apply(rule someI2_ex);  | 
| 9958 | 249  | 
apply(blast);  | 
| 10000 | 250  | 
apply(rule someI2_ex);  | 
| 9958 | 251  | 
apply(blast);  | 
| 10159 | 252  | 
apply(blast);  | 
253  | 
done;  | 
|
| 9958 | 254  | 
|
| 10159 | 255  | 
text{*
 | 
| 15904 | 256  | 
Function @{const path} has fulfilled its purpose now and can be forgotten.
 | 
| 10867 | 257  | 
It was merely defined to provide the witness in the proof of the  | 
| 10171 | 258  | 
@{thm[source]infinity_lemma}. Aficionados of minimal proofs might like to know
 | 
| 10159 | 259  | 
that we could have given the witness without having to define a new function:  | 
260  | 
the term  | 
|
| 10895 | 261  | 
@{term[display]"nat_rec s (\<lambda>n t. SOME u. (t,u)\<in>M \<and> Q u)"}
 | 
262  | 
is extensionally equal to @{term"path s Q"},
 | 
|
| 10867 | 263  | 
where @{term nat_rec} is the predefined primitive recursor on @{typ nat}.
 | 
| 10159 | 264  | 
*};  | 
265  | 
(*<*)  | 
|
| 13552 | 266  | 
lemma  | 
| 10895 | 267  | 
"\<lbrakk> Q s; \<forall> s. Q s \<longrightarrow> (\<exists> t. (s,t)\<in>M \<and> Q t) \<rbrakk> \<Longrightarrow>  | 
268  | 
\<exists> p\<in>Paths s. \<forall> i. Q(p i)";  | 
|
| 9958 | 269  | 
apply(subgoal_tac  | 
| 10895 | 270  | 
"\<exists> p. s = p 0 \<and> (\<forall> i. (p i,p(Suc i))\<in>M \<and> Q(p i))");  | 
| 12815 | 271  | 
apply(simp add: Paths_def);  | 
| 9958 | 272  | 
apply(blast);  | 
| 10895 | 273  | 
apply(rule_tac x = "nat_rec s (\<lambda>n t. SOME u. (t,u)\<in>M \<and> Q u)" in exI);  | 
| 9958 | 274  | 
apply(simp);  | 
275  | 
apply(intro strip);  | 
|
276  | 
apply(induct_tac i);  | 
|
277  | 
apply(simp);  | 
|
| 12815 | 278  | 
apply(fast intro: someI2_ex);  | 
| 9958 | 279  | 
apply(simp);  | 
| 10000 | 280  | 
apply(rule someI2_ex);  | 
| 9958 | 281  | 
apply(blast);  | 
| 10000 | 282  | 
apply(rule someI2_ex);  | 
| 9958 | 283  | 
apply(blast);  | 
284  | 
by(blast);  | 
|
| 10159 | 285  | 
(*>*)  | 
| 9958 | 286  | 
|
| 10159 | 287  | 
text{*
 | 
288  | 
At last we can prove the opposite direction of @{thm[source]AF_lemma1}:
 | 
|
289  | 
*};  | 
|
290  | 
||
| 12328 | 291  | 
theorem AF_lemma2: "{s. \<forall>p \<in> Paths s. \<exists>i. p i \<in> A} \<subseteq> lfp(af A)";
 | 
| 10159 | 292  | 
|
293  | 
txt{*\noindent
 | 
|
| 10237 | 294  | 
The proof is again pointwise and then by contraposition:  | 
| 10159 | 295  | 
*};  | 
296  | 
||
| 9958 | 297  | 
apply(rule subsetI);  | 
| 10235 | 298  | 
apply(erule contrapos_pp);  | 
| 9958 | 299  | 
apply simp;  | 
| 10159 | 300  | 
|
301  | 
txt{*
 | 
|
| 10363 | 302  | 
@{subgoals[display,indent=0,goals_limit=1]}
 | 
| 10159 | 303  | 
Applying the @{thm[source]infinity_lemma} as a destruction rule leaves two subgoals, the second
 | 
304  | 
premise of @{thm[source]infinity_lemma} and the original subgoal:
 | 
|
305  | 
*};  | 
|
306  | 
||
307  | 
apply(drule infinity_lemma);  | 
|
308  | 
||
309  | 
txt{*
 | 
|
| 10363 | 310  | 
@{subgoals[display,indent=0,margin=65]}
 | 
| 10159 | 311  | 
Both are solved automatically:  | 
312  | 
*};  | 
|
| 9958 | 313  | 
|
| 12815 | 314  | 
apply(auto dest: not_in_lfp_afD);  | 
| 10159 | 315  | 
done;  | 
| 9958 | 316  | 
|
| 10159 | 317  | 
text{*
 | 
| 10867 | 318  | 
If you find these proofs too complicated, we recommend that you read  | 
319  | 
\S\ref{sec:CTL-revisited}, where we show how inductive definitions lead to
 | 
|
| 10217 | 320  | 
simpler arguments.  | 
321  | 
||
322  | 
The main theorem is proved as for PDL, except that we also derive the  | 
|
323  | 
necessary equality @{text"lfp(af A) = ..."} by combining
 | 
|
324  | 
@{thm[source]AF_lemma1} and @{thm[source]AF_lemma2} on the spot:
 | 
|
| 10159 | 325  | 
*}  | 
326  | 
||
327  | 
theorem "mc f = {s. s \<Turnstile> f}";
 | 
|
328  | 
apply(induct_tac f);  | 
|
329  | 
apply(auto simp add: EF_lemma equalityI[OF AF_lemma1 AF_lemma2]);  | 
|
330  | 
done  | 
|
331  | 
||
332  | 
text{*
 | 
|
| 10281 | 333  | 
|
| 10867 | 334  | 
The language defined above is not quite CTL\@. The latter also includes an  | 
| 10983 | 335  | 
until-operator @{term"EU f g"} with semantics ``there \emph{E}xists a path
 | 
| 11494 | 336  | 
where @{term f} is true \emph{U}ntil @{term g} becomes true''.  We need
 | 
337  | 
an auxiliary function:  | 
|
| 10281 | 338  | 
*}  | 
339  | 
||
340  | 
primrec  | 
|
| 27027 | 341  | 
until:: "state set \<Rightarrow> state set \<Rightarrow> state \<Rightarrow> state list \<Rightarrow> bool" where  | 
342  | 
"until A B s [] = (s \<in> B)" |  | 
|
| 10281 | 343  | 
"until A B s (t#p) = (s \<in> A \<and> (s,t) \<in> M \<and> until A B t p)"  | 
| 27027 | 344  | 
(*<*)definition  | 
345  | 
eusem :: "state set \<Rightarrow> state set \<Rightarrow> state set" where  | 
|
| 10281 | 346  | 
"eusem A B \<equiv> {s. \<exists>p. until A B s p}"(*>*)
 | 
347  | 
||
348  | 
text{*\noindent
 | 
|
| 11494 | 349  | 
Expressing the semantics of @{term EU} is now straightforward:
 | 
| 10983 | 350  | 
@{prop[display]"s \<Turnstile> EU f g = (\<exists>p. until {t. t \<Turnstile> f} {t. t \<Turnstile> g} s p)"}
 | 
| 10281 | 351  | 
Note that @{term EU} is not definable in terms of the other operators!
 | 
352  | 
||
353  | 
Model checking @{term EU} is again a least fixed point construction:
 | 
|
| 10839 | 354  | 
@{text[display]"mc(EU f g) = lfp(\<lambda>T. mc g \<union> mc f \<inter> (M\<inverse> `` T))"}
 | 
| 10281 | 355  | 
|
| 10171 | 356  | 
\begin{exercise}
 | 
| 10281 | 357  | 
Extend the datatype of formulae by the above until operator  | 
358  | 
and prove the equivalence between semantics and model checking, i.e.\ that  | 
|
| 10186 | 359  | 
@{prop[display]"mc(EU f g) = {s. s \<Turnstile> EU f g}"}
 | 
360  | 
%For readability you may want to annotate {term EU} with its customary syntax
 | 
|
361  | 
%{text[display]"| EU formula formula    E[_ U _]"}
 | 
|
362  | 
%which enables you to read and write {text"E[f U g]"} instead of {term"EU f g"}.
 | 
|
363  | 
\end{exercise}
 | 
|
| 10867 | 364  | 
For more CTL exercises see, for example, Huth and Ryan \cite{Huth-Ryan-book}.
 | 
| 10281 | 365  | 
*}  | 
366  | 
||
367  | 
(*<*)  | 
|
| 
35416
 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 
haftmann 
parents: 
27027 
diff
changeset
 | 
368  | 
definition eufix :: "state set \<Rightarrow> state set \<Rightarrow> state set \<Rightarrow> state set" where  | 
| 10839 | 369  | 
"eufix A B T \<equiv> B \<union> A \<inter> (M\<inverse> `` T)"  | 
| 10281 | 370  | 
|
371  | 
lemma "lfp(eufix A B) \<subseteq> eusem A B"  | 
|
372  | 
apply(rule lfp_lowerbound)  | 
|
| 15102 | 373  | 
apply(auto simp add: eusem_def eufix_def);  | 
| 10281 | 374  | 
apply(rule_tac x = "[]" in exI);  | 
375  | 
apply simp  | 
|
376  | 
apply(rule_tac x = "y#xc" in exI);  | 
|
377  | 
apply simp;  | 
|
378  | 
done  | 
|
379  | 
||
380  | 
lemma mono_eufix: "mono(eufix A B)";  | 
|
381  | 
apply(simp add: mono_def eufix_def);  | 
|
382  | 
apply blast;  | 
|
383  | 
done  | 
|
384  | 
||
385  | 
lemma "eusem A B \<subseteq> lfp(eufix A B)";  | 
|
| 12815 | 386  | 
apply(clarsimp simp add: eusem_def);  | 
| 10281 | 387  | 
apply(erule rev_mp);  | 
388  | 
apply(rule_tac x = x in spec);  | 
|
389  | 
apply(induct_tac p);  | 
|
| 11231 | 390  | 
apply(subst lfp_unfold[OF mono_eufix])  | 
| 12815 | 391  | 
apply(simp add: eufix_def);  | 
| 10281 | 392  | 
apply(clarsimp);  | 
| 11231 | 393  | 
apply(subst lfp_unfold[OF mono_eufix])  | 
| 12815 | 394  | 
apply(simp add: eufix_def);  | 
| 10281 | 395  | 
apply blast;  | 
396  | 
done  | 
|
| 10178 | 397  | 
|
| 10281 | 398  | 
(*  | 
| 
35416
 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 
haftmann 
parents: 
27027 
diff
changeset
 | 
399  | 
definition eusem :: "state set \<Rightarrow> state set \<Rightarrow> state set" where  | 
| 10281 | 400  | 
"eusem A B \<equiv> {s. \<exists>p\<in>Paths s. \<exists>j. p j \<in> B \<and> (\<forall>i < j. p i \<in> A)}"
 | 
401  | 
||
402  | 
axioms  | 
|
403  | 
M_total: "\<exists>t. (s,t) \<in> M"  | 
|
404  | 
||
405  | 
consts apath :: "state \<Rightarrow> (nat \<Rightarrow> state)"  | 
|
406  | 
primrec  | 
|
407  | 
"apath s 0 = s"  | 
|
408  | 
"apath s (Suc i) = (SOME t. (apath s i,t) \<in> M)"  | 
|
409  | 
||
410  | 
lemma [iff]: "apath s \<in> Paths s";  | 
|
| 12815 | 411  | 
apply(simp add: Paths_def);  | 
| 10281 | 412  | 
apply(blast intro: M_total[THEN someI_ex])  | 
413  | 
done  | 
|
414  | 
||
| 
35416
 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 
haftmann 
parents: 
27027 
diff
changeset
 | 
415  | 
definition pcons :: "state \<Rightarrow> (nat \<Rightarrow> state) \<Rightarrow> (nat \<Rightarrow> state)" where  | 
| 10281 | 416  | 
"pcons s p == \<lambda>i. case i of 0 \<Rightarrow> s | Suc j \<Rightarrow> p j"  | 
417  | 
||
418  | 
lemma pcons_PathI: "[| (s,t) : M; p \<in> Paths t |] ==> pcons s p \<in> Paths s";  | 
|
| 12815 | 419  | 
by(simp add: Paths_def pcons_def split: nat.split);  | 
| 10281 | 420  | 
|
421  | 
lemma "lfp(eufix A B) \<subseteq> eusem A B"  | 
|
422  | 
apply(rule lfp_lowerbound)  | 
|
| 12815 | 423  | 
apply(clarsimp simp add: eusem_def eufix_def);  | 
| 10281 | 424  | 
apply(erule disjE);  | 
425  | 
apply(rule_tac x = "apath x" in bexI);  | 
|
426  | 
apply(rule_tac x = 0 in exI);  | 
|
427  | 
apply simp;  | 
|
428  | 
apply simp;  | 
|
429  | 
apply(clarify);  | 
|
430  | 
apply(rule_tac x = "pcons xb p" in bexI);  | 
|
431  | 
apply(rule_tac x = "j+1" in exI);  | 
|
| 12815 | 432  | 
apply (simp add: pcons_def split: nat.split);  | 
433  | 
apply (simp add: pcons_PathI)  | 
|
| 10281 | 434  | 
done  | 
435  | 
*)  | 
|
436  | 
(*>*)  | 
|
| 12334 | 437  | 
|
438  | 
text{* Let us close this section with a few words about the executability of
 | 
|
439  | 
our model checkers. It is clear that if all sets are finite, they can be  | 
|
440  | 
represented as lists and the usual set operations are easily  | 
|
| 15904 | 441  | 
implemented. Only @{const lfp} requires a little thought.  Fortunately, theory
 | 
| 12473 | 442  | 
@{text While_Combinator} in the Library~\cite{HOL-Library} provides a
 | 
| 12334 | 443  | 
theorem stating that in the case of finite sets and a monotone  | 
444  | 
function~@{term F}, the value of \mbox{@{term"lfp F"}} can be computed by
 | 
|
445  | 
iterated application of @{term F} to~@{term"{}"} until a fixed point is
 | 
|
446  | 
reached. It is actually possible to generate executable functional programs  | 
|
| 11494 | 447  | 
from HOL definitions, but that is beyond the scope of the tutorial.%  | 
| 12334 | 448  | 
\index{CTL|)} *}
 | 
| 10212 | 449  | 
(*<*)end(*>*)  |