| author | paulson <lp15@cam.ac.uk> | 
| Wed, 09 Dec 2015 17:35:22 +0000 | |
| changeset 61810 | 3c5040d5694a | 
| parent 61808 | fc1556774cfe | 
| child 61988 | 34b51f436e92 | 
| permissions | -rw-r--r-- | 
| 42146 
5b52c6a9c627
split Product_Measure into Binary_Product_Measure and Finite_Product_Measure
 hoelzl parents: 
42067diff
changeset | 1 | (* Title: HOL/Probability/Finite_Product_Measure.thy | 
| 42067 | 2 | Author: Johannes Hölzl, TU München | 
| 3 | *) | |
| 4 | ||
| 61808 | 5 | section \<open>Finite product measures\<close> | 
| 42067 | 6 | |
| 42146 
5b52c6a9c627
split Product_Measure into Binary_Product_Measure and Finite_Product_Measure
 hoelzl parents: 
42067diff
changeset | 7 | theory Finite_Product_Measure | 
| 
5b52c6a9c627
split Product_Measure into Binary_Product_Measure and Finite_Product_Measure
 hoelzl parents: 
42067diff
changeset | 8 | imports Binary_Product_Measure | 
| 35833 | 9 | begin | 
| 10 | ||
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 11 | lemma PiE_choice: "(\<exists>f\<in>PiE I F. \<forall>i\<in>I. P i (f i)) \<longleftrightarrow> (\<forall>i\<in>I. \<exists>x\<in>F i. P i x)" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 12 | by (auto simp: Bex_def PiE_iff Ball_def dest!: choice_iff'[THEN iffD1]) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 13 | (force intro: exI[of _ "restrict f I" for f]) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 14 | |
| 61424 
c3658c18b7bc
prod_case as canonical name for product type eliminator
 haftmann parents: 
61378diff
changeset | 15 | lemma case_prod_const: "(\<lambda>(i, j). c) = (\<lambda>_. c)" | 
| 47694 | 16 | by auto | 
| 17 | ||
| 61808 | 18 | subsubsection \<open>More about Function restricted by @{const extensional}\<close>
 | 
| 50038 | 19 | |
| 35833 | 20 | definition | 
| 49780 | 21 | "merge I J = (\<lambda>(x, y) i. if i \<in> I then x i else if i \<in> J then y i else undefined)" | 
| 40859 | 22 | |
| 23 | lemma merge_apply[simp]: | |
| 49780 | 24 |   "I \<inter> J = {} \<Longrightarrow> i \<in> I \<Longrightarrow> merge I J (x, y) i = x i"
 | 
| 25 |   "I \<inter> J = {} \<Longrightarrow> i \<in> J \<Longrightarrow> merge I J (x, y) i = y i"
 | |
| 26 |   "J \<inter> I = {} \<Longrightarrow> i \<in> I \<Longrightarrow> merge I J (x, y) i = x i"
 | |
| 27 |   "J \<inter> I = {} \<Longrightarrow> i \<in> J \<Longrightarrow> merge I J (x, y) i = y i"
 | |
| 28 | "i \<notin> I \<Longrightarrow> i \<notin> J \<Longrightarrow> merge I J (x, y) i = undefined" | |
| 40859 | 29 | unfolding merge_def by auto | 
| 30 | ||
| 31 | lemma merge_commute: | |
| 49780 | 32 |   "I \<inter> J = {} \<Longrightarrow> merge I J (x, y) = merge J I (y, x)"
 | 
| 50003 | 33 | by (force simp: merge_def) | 
| 40859 | 34 | |
| 35 | lemma Pi_cancel_merge_range[simp]: | |
| 49780 | 36 |   "I \<inter> J = {} \<Longrightarrow> x \<in> Pi I (merge I J (A, B)) \<longleftrightarrow> x \<in> Pi I A"
 | 
| 37 |   "I \<inter> J = {} \<Longrightarrow> x \<in> Pi I (merge J I (B, A)) \<longleftrightarrow> x \<in> Pi I A"
 | |
| 38 |   "J \<inter> I = {} \<Longrightarrow> x \<in> Pi I (merge I J (A, B)) \<longleftrightarrow> x \<in> Pi I A"
 | |
| 39 |   "J \<inter> I = {} \<Longrightarrow> x \<in> Pi I (merge J I (B, A)) \<longleftrightarrow> x \<in> Pi I A"
 | |
| 40859 | 40 | by (auto simp: Pi_def) | 
| 41 | ||
| 42 | lemma Pi_cancel_merge[simp]: | |
| 49780 | 43 |   "I \<inter> J = {} \<Longrightarrow> merge I J (x, y) \<in> Pi I B \<longleftrightarrow> x \<in> Pi I B"
 | 
| 44 |   "J \<inter> I = {} \<Longrightarrow> merge I J (x, y) \<in> Pi I B \<longleftrightarrow> x \<in> Pi I B"
 | |
| 45 |   "I \<inter> J = {} \<Longrightarrow> merge I J (x, y) \<in> Pi J B \<longleftrightarrow> y \<in> Pi J B"
 | |
| 46 |   "J \<inter> I = {} \<Longrightarrow> merge I J (x, y) \<in> Pi J B \<longleftrightarrow> y \<in> Pi J B"
 | |
| 40859 | 47 | by (auto simp: Pi_def) | 
| 48 | ||
| 49780 | 49 | lemma extensional_merge[simp]: "merge I J (x, y) \<in> extensional (I \<union> J)" | 
| 40859 | 50 | by (auto simp: extensional_def) | 
| 51 | ||
| 52 | lemma restrict_merge[simp]: | |
| 49780 | 53 |   "I \<inter> J = {} \<Longrightarrow> restrict (merge I J (x, y)) I = restrict x I"
 | 
| 54 |   "I \<inter> J = {} \<Longrightarrow> restrict (merge I J (x, y)) J = restrict y J"
 | |
| 55 |   "J \<inter> I = {} \<Longrightarrow> restrict (merge I J (x, y)) I = restrict x I"
 | |
| 56 |   "J \<inter> I = {} \<Longrightarrow> restrict (merge I J (x, y)) J = restrict y J"
 | |
| 47694 | 57 | by (auto simp: restrict_def) | 
| 40859 | 58 | |
| 50042 
6fe18351e9dd
moved lemmas into projective_family; added header for theory Projective_Family
 immler@in.tum.de parents: 
50041diff
changeset | 59 | lemma split_merge: "P (merge I J (x,y) i) \<longleftrightarrow> (i \<in> I \<longrightarrow> P (x i)) \<and> (i \<in> J - I \<longrightarrow> P (y i)) \<and> (i \<notin> I \<union> J \<longrightarrow> P undefined)" | 
| 
6fe18351e9dd
moved lemmas into projective_family; added header for theory Projective_Family
 immler@in.tum.de parents: 
50041diff
changeset | 60 | unfolding merge_def by auto | 
| 
6fe18351e9dd
moved lemmas into projective_family; added header for theory Projective_Family
 immler@in.tum.de parents: 
50041diff
changeset | 61 | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 62 | lemma PiE_cancel_merge[simp]: | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 63 |   "I \<inter> J = {} \<Longrightarrow>
 | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 64 | merge I J (x, y) \<in> PiE (I \<union> J) B \<longleftrightarrow> x \<in> Pi I B \<and> y \<in> Pi J B" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 65 | by (auto simp: PiE_def restrict_Pi_cancel) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 66 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 67 | lemma merge_singleton[simp]: "i \<notin> I \<Longrightarrow> merge I {i} (x,y) = restrict (x(i := y i)) (insert i I)"
 | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 68 | unfolding merge_def by (auto simp: fun_eq_iff) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 69 | |
| 50042 
6fe18351e9dd
moved lemmas into projective_family; added header for theory Projective_Family
 immler@in.tum.de parents: 
50041diff
changeset | 70 | lemma extensional_merge_sub: "I \<union> J \<subseteq> K \<Longrightarrow> merge I J (x, y) \<in> extensional K" | 
| 
6fe18351e9dd
moved lemmas into projective_family; added header for theory Projective_Family
 immler@in.tum.de parents: 
50041diff
changeset | 71 | unfolding merge_def extensional_def by auto | 
| 
6fe18351e9dd
moved lemmas into projective_family; added header for theory Projective_Family
 immler@in.tum.de parents: 
50041diff
changeset | 72 | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 73 | lemma merge_restrict[simp]: | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 74 | "merge I J (restrict x I, y) = merge I J (x, y)" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 75 | "merge I J (x, restrict y J) = merge I J (x, y)" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 76 | unfolding merge_def by auto | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 77 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 78 | lemma merge_x_x_eq_restrict[simp]: | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 79 | "merge I J (x, x) = restrict x (I \<union> J)" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 80 | unfolding merge_def by auto | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 81 | |
| 50042 
6fe18351e9dd
moved lemmas into projective_family; added header for theory Projective_Family
 immler@in.tum.de parents: 
50041diff
changeset | 82 | lemma injective_vimage_restrict: | 
| 
6fe18351e9dd
moved lemmas into projective_family; added header for theory Projective_Family
 immler@in.tum.de parents: 
50041diff
changeset | 83 | assumes J: "J \<subseteq> I" | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 84 |   and sets: "A \<subseteq> (\<Pi>\<^sub>E i\<in>J. S i)" "B \<subseteq> (\<Pi>\<^sub>E i\<in>J. S i)" and ne: "(\<Pi>\<^sub>E i\<in>I. S i) \<noteq> {}"
 | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 85 | and eq: "(\<lambda>x. restrict x J) -` A \<inter> (\<Pi>\<^sub>E i\<in>I. S i) = (\<lambda>x. restrict x J) -` B \<inter> (\<Pi>\<^sub>E i\<in>I. S i)" | 
| 50042 
6fe18351e9dd
moved lemmas into projective_family; added header for theory Projective_Family
 immler@in.tum.de parents: 
50041diff
changeset | 86 | shows "A = B" | 
| 
6fe18351e9dd
moved lemmas into projective_family; added header for theory Projective_Family
 immler@in.tum.de parents: 
50041diff
changeset | 87 | proof (intro set_eqI) | 
| 
6fe18351e9dd
moved lemmas into projective_family; added header for theory Projective_Family
 immler@in.tum.de parents: 
50041diff
changeset | 88 | fix x | 
| 
6fe18351e9dd
moved lemmas into projective_family; added header for theory Projective_Family
 immler@in.tum.de parents: 
50041diff
changeset | 89 | from ne obtain y where y: "\<And>i. i \<in> I \<Longrightarrow> y i \<in> S i" by auto | 
| 
6fe18351e9dd
moved lemmas into projective_family; added header for theory Projective_Family
 immler@in.tum.de parents: 
50041diff
changeset | 90 |   have "J \<inter> (I - J) = {}" by auto
 | 
| 
6fe18351e9dd
moved lemmas into projective_family; added header for theory Projective_Family
 immler@in.tum.de parents: 
50041diff
changeset | 91 | show "x \<in> A \<longleftrightarrow> x \<in> B" | 
| 
6fe18351e9dd
moved lemmas into projective_family; added header for theory Projective_Family
 immler@in.tum.de parents: 
50041diff
changeset | 92 | proof cases | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 93 | assume x: "x \<in> (\<Pi>\<^sub>E i\<in>J. S i)" | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 94 | have "x \<in> A \<longleftrightarrow> merge J (I - J) (x,y) \<in> (\<lambda>x. restrict x J) -` A \<inter> (\<Pi>\<^sub>E i\<in>I. S i)" | 
| 61808 | 95 | using y x \<open>J \<subseteq> I\<close> PiE_cancel_merge[of "J" "I - J" x y S] | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 96 | by (auto simp del: PiE_cancel_merge simp add: Un_absorb1) | 
| 50042 
6fe18351e9dd
moved lemmas into projective_family; added header for theory Projective_Family
 immler@in.tum.de parents: 
50041diff
changeset | 97 | then show "x \<in> A \<longleftrightarrow> x \<in> B" | 
| 61808 | 98 | using y x \<open>J \<subseteq> I\<close> PiE_cancel_merge[of "J" "I - J" x y S] | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 99 | by (auto simp del: PiE_cancel_merge simp add: Un_absorb1 eq) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 100 | qed (insert sets, auto) | 
| 50042 
6fe18351e9dd
moved lemmas into projective_family; added header for theory Projective_Family
 immler@in.tum.de parents: 
50041diff
changeset | 101 | qed | 
| 
6fe18351e9dd
moved lemmas into projective_family; added header for theory Projective_Family
 immler@in.tum.de parents: 
50041diff
changeset | 102 | |
| 41095 | 103 | lemma restrict_vimage: | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 104 |   "I \<inter> J = {} \<Longrightarrow>
 | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 105 | (\<lambda>x. (restrict x I, restrict x J)) -` (Pi\<^sub>E I E \<times> Pi\<^sub>E J F) = Pi (I \<union> J) (merge I J (E, F))" | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 106 | by (auto simp: restrict_Pi_cancel PiE_def) | 
| 41095 | 107 | |
| 108 | lemma merge_vimage: | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 109 |   "I \<inter> J = {} \<Longrightarrow> merge I J -` Pi\<^sub>E (I \<union> J) E = Pi I E \<times> Pi J E"
 | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 110 | by (auto simp: restrict_Pi_cancel PiE_def) | 
| 50104 | 111 | |
| 61808 | 112 | subsection \<open>Finite product spaces\<close> | 
| 40859 | 113 | |
| 61808 | 114 | subsubsection \<open>Products\<close> | 
| 40859 | 115 | |
| 47694 | 116 | definition prod_emb where | 
| 117 | "prod_emb I M K X = (\<lambda>x. restrict x K) -` X \<inter> (PIE i:I. space (M i))" | |
| 118 | ||
| 119 | lemma prod_emb_iff: | |
| 120 | "f \<in> prod_emb I M K X \<longleftrightarrow> f \<in> extensional I \<and> (restrict f K \<in> X) \<and> (\<forall>i\<in>I. f i \<in> space (M i))" | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 121 | unfolding prod_emb_def PiE_def by auto | 
| 40859 | 122 | |
| 47694 | 123 | lemma | 
| 124 |   shows prod_emb_empty[simp]: "prod_emb M L K {} = {}"
 | |
| 125 | and prod_emb_Un[simp]: "prod_emb M L K (A \<union> B) = prod_emb M L K A \<union> prod_emb M L K B" | |
| 126 | and prod_emb_Int: "prod_emb M L K (A \<inter> B) = prod_emb M L K A \<inter> prod_emb M L K B" | |
| 127 | and prod_emb_UN[simp]: "prod_emb M L K (\<Union>i\<in>I. F i) = (\<Union>i\<in>I. prod_emb M L K (F i))" | |
| 128 |     and prod_emb_INT[simp]: "I \<noteq> {} \<Longrightarrow> prod_emb M L K (\<Inter>i\<in>I. F i) = (\<Inter>i\<in>I. prod_emb M L K (F i))"
 | |
| 129 | and prod_emb_Diff[simp]: "prod_emb M L K (A - B) = prod_emb M L K A - prod_emb M L K B" | |
| 130 | by (auto simp: prod_emb_def) | |
| 40859 | 131 | |
| 47694 | 132 | lemma prod_emb_PiE: "J \<subseteq> I \<Longrightarrow> (\<And>i. i \<in> J \<Longrightarrow> E i \<subseteq> space (M i)) \<Longrightarrow> | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 133 | prod_emb I M J (\<Pi>\<^sub>E i\<in>J. E i) = (\<Pi>\<^sub>E i\<in>I. if i \<in> J then E i else space (M i))" | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 134 | by (force simp: prod_emb_def PiE_iff split_if_mem2) | 
| 47694 | 135 | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 136 | lemma prod_emb_PiE_same_index[simp]: | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 137 | "(\<And>i. i \<in> I \<Longrightarrow> E i \<subseteq> space (M i)) \<Longrightarrow> prod_emb I M I (Pi\<^sub>E I E) = Pi\<^sub>E I E" | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 138 | by (auto simp: prod_emb_def PiE_iff) | 
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 139 | |
| 50038 | 140 | lemma prod_emb_trans[simp]: | 
| 141 | "J \<subseteq> K \<Longrightarrow> K \<subseteq> L \<Longrightarrow> prod_emb L M K (prod_emb K M J X) = prod_emb L M J X" | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 142 | by (auto simp add: Int_absorb1 prod_emb_def PiE_def) | 
| 50038 | 143 | |
| 144 | lemma prod_emb_Pi: | |
| 145 | assumes "X \<in> (\<Pi> j\<in>J. sets (M j))" "J \<subseteq> K" | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 146 | shows "prod_emb K M J (Pi\<^sub>E J X) = (\<Pi>\<^sub>E i\<in>K. if i \<in> J then X i else space (M i))" | 
| 50244 
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
 immler parents: 
50123diff
changeset | 147 | using assms sets.space_closed | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 148 | by (auto simp: prod_emb_def PiE_iff split: split_if_asm) blast+ | 
| 50038 | 149 | |
| 150 | lemma prod_emb_id: | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 151 | "B \<subseteq> (\<Pi>\<^sub>E i\<in>L. space (M i)) \<Longrightarrow> prod_emb L M L B = B" | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 152 | by (auto simp: prod_emb_def subset_eq extensional_restrict) | 
| 50038 | 153 | |
| 50041 
afe886a04198
removed redundant/unnecessary assumptions from projective_family
 immler@in.tum.de parents: 
50038diff
changeset | 154 | lemma prod_emb_mono: | 
| 
afe886a04198
removed redundant/unnecessary assumptions from projective_family
 immler@in.tum.de parents: 
50038diff
changeset | 155 | "F \<subseteq> G \<Longrightarrow> prod_emb A M B F \<subseteq> prod_emb A M B G" | 
| 
afe886a04198
removed redundant/unnecessary assumptions from projective_family
 immler@in.tum.de parents: 
50038diff
changeset | 156 | by (auto simp: prod_emb_def) | 
| 
afe886a04198
removed redundant/unnecessary assumptions from projective_family
 immler@in.tum.de parents: 
50038diff
changeset | 157 | |
| 47694 | 158 | definition PiM :: "'i set \<Rightarrow> ('i \<Rightarrow> 'a measure) \<Rightarrow> ('i \<Rightarrow> 'a) measure" where
 | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 159 | "PiM I M = extend_measure (\<Pi>\<^sub>E i\<in>I. space (M i)) | 
| 47694 | 160 |     {(J, X). (J \<noteq> {} \<or> I = {}) \<and> finite J \<and> J \<subseteq> I \<and> X \<in> (\<Pi> j\<in>J. sets (M j))}
 | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 161 | (\<lambda>(J, X). prod_emb I M J (\<Pi>\<^sub>E j\<in>J. X j)) | 
| 47694 | 162 |     (\<lambda>(J, X). \<Prod>j\<in>J \<union> {i\<in>I. emeasure (M i) (space (M i)) \<noteq> 1}. if j \<in> J then emeasure (M j) (X j) else emeasure (M j) (space (M j)))"
 | 
| 163 | ||
| 164 | definition prod_algebra :: "'i set \<Rightarrow> ('i \<Rightarrow> 'a measure) \<Rightarrow> ('i \<Rightarrow> 'a) set set" where
 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 165 | "prod_algebra I M = (\<lambda>(J, X). prod_emb I M J (\<Pi>\<^sub>E j\<in>J. X j)) ` | 
| 47694 | 166 |     {(J, X). (J \<noteq> {} \<or> I = {}) \<and> finite J \<and> J \<subseteq> I \<and> X \<in> (\<Pi> j\<in>J. sets (M j))}"
 | 
| 167 | ||
| 168 | abbreviation | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 169 | "Pi\<^sub>M I M \<equiv> PiM I M" | 
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 170 | |
| 40859 | 171 | syntax | 
| 47694 | 172 |   "_PiM" :: "pttrn \<Rightarrow> 'i set \<Rightarrow> 'a measure \<Rightarrow> ('i => 'a) measure"  ("(3PIM _:_./ _)" 10)
 | 
| 40859 | 173 | syntax (xsymbols) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 174 |   "_PiM" :: "pttrn \<Rightarrow> 'i set \<Rightarrow> 'a measure \<Rightarrow> ('i => 'a) measure"  ("(3\<Pi>\<^sub>M _\<in>_./ _)"  10)
 | 
| 40859 | 175 | translations | 
| 47694 | 176 | "PIM x:I. M" == "CONST PiM I (%x. M)" | 
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 177 | |
| 59425 | 178 | lemma extend_measure_cong: | 
| 179 | assumes "\<Omega> = \<Omega>'" "I = I'" "G = G'" "\<And>i. i \<in> I' \<Longrightarrow> \<mu> i = \<mu>' i" | |
| 180 | shows "extend_measure \<Omega> I G \<mu> = extend_measure \<Omega>' I' G' \<mu>'" | |
| 181 | unfolding extend_measure_def by (auto simp add: assms) | |
| 182 | ||
| 183 | lemma Pi_cong_sets: | |
| 184 | "\<lbrakk>I = J; \<And>x. x \<in> I \<Longrightarrow> M x = N x\<rbrakk> \<Longrightarrow> Pi I M = Pi J N" | |
| 185 | unfolding Pi_def by auto | |
| 186 | ||
| 187 | lemma PiM_cong: | |
| 188 | assumes "I = J" "\<And>x. x \<in> I \<Longrightarrow> M x = N x" | |
| 189 | shows "PiM I M = PiM J N" | |
| 60580 | 190 | unfolding PiM_def | 
| 61166 
5976fe402824
renamed method "goals" to "goal_cases" to emphasize its meaning;
 wenzelm parents: 
60580diff
changeset | 191 | proof (rule extend_measure_cong, goal_cases) | 
| 60580 | 192 | case 1 | 
| 193 | show ?case using assms | |
| 59425 | 194 | by (subst assms(1), intro PiE_cong[of J "\<lambda>i. space (M i)" "\<lambda>i. space (N i)"]) simp_all | 
| 195 | next | |
| 60580 | 196 | case 2 | 
| 59425 | 197 | have "\<And>K. K \<subseteq> J \<Longrightarrow> (\<Pi> j\<in>K. sets (M j)) = (\<Pi> j\<in>K. sets (N j))" | 
| 198 | using assms by (intro Pi_cong_sets) auto | |
| 199 | thus ?case by (auto simp: assms) | |
| 200 | next | |
| 60580 | 201 | case 3 | 
| 202 | show ?case using assms | |
| 59425 | 203 | by (intro ext) (auto simp: prod_emb_def dest: PiE_mem) | 
| 204 | next | |
| 60580 | 205 | case (4 x) | 
| 59425 | 206 | thus ?case using assms | 
| 207 | by (auto intro!: setprod.cong split: split_if_asm) | |
| 208 | qed | |
| 209 | ||
| 210 | ||
| 47694 | 211 | lemma prod_algebra_sets_into_space: | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 212 | "prod_algebra I M \<subseteq> Pow (\<Pi>\<^sub>E i\<in>I. space (M i))" | 
| 50245 
dea9363887a6
based countable topological basis on Countable_Set
 immler parents: 
50244diff
changeset | 213 | by (auto simp: prod_emb_def prod_algebra_def) | 
| 40859 | 214 | |
| 47694 | 215 | lemma prod_algebra_eq_finite: | 
| 216 | assumes I: "finite I" | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 217 |   shows "prod_algebra I M = {(\<Pi>\<^sub>E i\<in>I. X i) |X. X \<in> (\<Pi> j\<in>I. sets (M j))}" (is "?L = ?R")
 | 
| 47694 | 218 | proof (intro iffI set_eqI) | 
| 219 | fix A assume "A \<in> ?L" | |
| 220 |   then obtain J E where J: "J \<noteq> {} \<or> I = {}" "finite J" "J \<subseteq> I" "\<forall>i\<in>J. E i \<in> sets (M i)"
 | |
| 221 | and A: "A = prod_emb I M J (PIE j:J. E j)" | |
| 222 | by (auto simp: prod_algebra_def) | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 223 | let ?A = "\<Pi>\<^sub>E i\<in>I. if i \<in> J then E i else space (M i)" | 
| 47694 | 224 | have A: "A = ?A" | 
| 50244 
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
 immler parents: 
50123diff
changeset | 225 | unfolding A using J by (intro prod_emb_PiE sets.sets_into_space) auto | 
| 
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
 immler parents: 
50123diff
changeset | 226 | show "A \<in> ?R" unfolding A using J sets.top | 
| 47694 | 227 | by (intro CollectI exI[of _ "\<lambda>i. if i \<in> J then E i else space (M i)"]) simp | 
| 228 | next | |
| 229 | fix A assume "A \<in> ?R" | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 230 | then obtain X where A: "A = (\<Pi>\<^sub>E i\<in>I. X i)" and X: "X \<in> (\<Pi> j\<in>I. sets (M j))" by auto | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 231 | then have A: "A = prod_emb I M I (\<Pi>\<^sub>E i\<in>I. X i)" | 
| 50244 
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
 immler parents: 
50123diff
changeset | 232 | by (simp add: prod_emb_PiE_same_index[OF sets.sets_into_space] Pi_iff) | 
| 47694 | 233 | from X I show "A \<in> ?L" unfolding A | 
| 234 | by (auto simp: prod_algebra_def) | |
| 235 | qed | |
| 41095 | 236 | |
| 47694 | 237 | lemma prod_algebraI: | 
| 238 |   "finite J \<Longrightarrow> (J \<noteq> {} \<or> I = {}) \<Longrightarrow> J \<subseteq> I \<Longrightarrow> (\<And>i. i \<in> J \<Longrightarrow> E i \<in> sets (M i))
 | |
| 239 | \<Longrightarrow> prod_emb I M J (PIE j:J. E j) \<in> prod_algebra I M" | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 240 | by (auto simp: prod_algebra_def) | 
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 241 | |
| 50038 | 242 | lemma prod_algebraI_finite: | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 243 | "finite I \<Longrightarrow> (\<forall>i\<in>I. E i \<in> sets (M i)) \<Longrightarrow> (Pi\<^sub>E I E) \<in> prod_algebra I M" | 
| 50244 
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
 immler parents: 
50123diff
changeset | 244 | using prod_algebraI[of I I E M] prod_emb_PiE_same_index[of I E M, OF sets.sets_into_space] by simp | 
| 50038 | 245 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 246 | lemma Int_stable_PiE: "Int_stable {Pi\<^sub>E J E | E. \<forall>i\<in>I. E i \<in> sets (M i)}"
 | 
| 50038 | 247 | proof (safe intro!: Int_stableI) | 
| 248 | fix E F assume "\<forall>i\<in>I. E i \<in> sets (M i)" "\<forall>i\<in>I. F i \<in> sets (M i)" | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 249 | then show "\<exists>G. Pi\<^sub>E J E \<inter> Pi\<^sub>E J F = Pi\<^sub>E J G \<and> (\<forall>i\<in>I. G i \<in> sets (M i))" | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 250 | by (auto intro!: exI[of _ "\<lambda>i. E i \<inter> F i"] simp: PiE_Int) | 
| 50038 | 251 | qed | 
| 252 | ||
| 47694 | 253 | lemma prod_algebraE: | 
| 254 | assumes A: "A \<in> prod_algebra I M" | |
| 255 | obtains J E where "A = prod_emb I M J (PIE j:J. E j)" | |
| 256 |     "finite J" "J \<noteq> {} \<or> I = {}" "J \<subseteq> I" "\<And>i. i \<in> J \<Longrightarrow> E i \<in> sets (M i)" 
 | |
| 257 | using A by (auto simp: prod_algebra_def) | |
| 42988 | 258 | |
| 47694 | 259 | lemma prod_algebraE_all: | 
| 260 | assumes A: "A \<in> prod_algebra I M" | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 261 | obtains E where "A = Pi\<^sub>E I E" "E \<in> (\<Pi> i\<in>I. sets (M i))" | 
| 47694 | 262 | proof - | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 263 | from A obtain E J where A: "A = prod_emb I M J (Pi\<^sub>E J E)" | 
| 47694 | 264 | and J: "J \<subseteq> I" and E: "E \<in> (\<Pi> i\<in>J. sets (M i))" | 
| 265 | by (auto simp: prod_algebra_def) | |
| 266 | from E have "\<And>i. i \<in> J \<Longrightarrow> E i \<subseteq> space (M i)" | |
| 50244 
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
 immler parents: 
50123diff
changeset | 267 | using sets.sets_into_space by auto | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 268 | then have "A = (\<Pi>\<^sub>E i\<in>I. if i\<in>J then E i else space (M i))" | 
| 47694 | 269 | using A J by (auto simp: prod_emb_PiE) | 
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53015diff
changeset | 270 | moreover have "(\<lambda>i. if i\<in>J then E i else space (M i)) \<in> (\<Pi> i\<in>I. sets (M i))" | 
| 50244 
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
 immler parents: 
50123diff
changeset | 271 | using sets.top E by auto | 
| 47694 | 272 | ultimately show ?thesis using that by auto | 
| 273 | qed | |
| 40859 | 274 | |
| 47694 | 275 | lemma Int_stable_prod_algebra: "Int_stable (prod_algebra I M)" | 
| 276 | proof (unfold Int_stable_def, safe) | |
| 277 | fix A assume "A \<in> prod_algebra I M" | |
| 278 | from prod_algebraE[OF this] guess J E . note A = this | |
| 279 | fix B assume "B \<in> prod_algebra I M" | |
| 280 | from prod_algebraE[OF this] guess K F . note B = this | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 281 | have "A \<inter> B = prod_emb I M (J \<union> K) (\<Pi>\<^sub>E i\<in>J \<union> K. (if i \<in> J then E i else space (M i)) \<inter> | 
| 47694 | 282 | (if i \<in> K then F i else space (M i)))" | 
| 50244 
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
 immler parents: 
50123diff
changeset | 283 | unfolding A B using A(2,3,4) A(5)[THEN sets.sets_into_space] B(2,3,4) | 
| 
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
 immler parents: 
50123diff
changeset | 284 | B(5)[THEN sets.sets_into_space] | 
| 47694 | 285 | apply (subst (1 2 3) prod_emb_PiE) | 
| 286 | apply (simp_all add: subset_eq PiE_Int) | |
| 287 | apply blast | |
| 288 | apply (intro PiE_cong) | |
| 289 | apply auto | |
| 290 | done | |
| 291 | also have "\<dots> \<in> prod_algebra I M" | |
| 292 | using A B by (auto intro!: prod_algebraI) | |
| 293 | finally show "A \<inter> B \<in> prod_algebra I M" . | |
| 294 | qed | |
| 295 | ||
| 296 | lemma prod_algebra_mono: | |
| 297 | assumes space: "\<And>i. i \<in> I \<Longrightarrow> space (E i) = space (F i)" | |
| 298 | assumes sets: "\<And>i. i \<in> I \<Longrightarrow> sets (E i) \<subseteq> sets (F i)" | |
| 299 | shows "prod_algebra I E \<subseteq> prod_algebra I F" | |
| 300 | proof | |
| 301 | fix A assume "A \<in> prod_algebra I E" | |
| 302 |   then obtain J G where J: "J \<noteq> {} \<or> I = {}" "finite J" "J \<subseteq> I"
 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 303 | and A: "A = prod_emb I E J (\<Pi>\<^sub>E i\<in>J. G i)" | 
| 47694 | 304 | and G: "\<And>i. i \<in> J \<Longrightarrow> G i \<in> sets (E i)" | 
| 305 | by (auto simp: prod_algebra_def) | |
| 306 | moreover | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 307 | from space have "(\<Pi>\<^sub>E i\<in>I. space (E i)) = (\<Pi>\<^sub>E i\<in>I. space (F i))" | 
| 47694 | 308 | by (rule PiE_cong) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 309 | with A have "A = prod_emb I F J (\<Pi>\<^sub>E i\<in>J. G i)" | 
| 47694 | 310 | by (simp add: prod_emb_def) | 
| 311 | moreover | |
| 312 | from sets G J have "\<And>i. i \<in> J \<Longrightarrow> G i \<in> sets (F i)" | |
| 313 | by auto | |
| 314 | ultimately show "A \<in> prod_algebra I F" | |
| 315 | apply (simp add: prod_algebra_def image_iff) | |
| 316 | apply (intro exI[of _ J] exI[of _ G] conjI) | |
| 317 | apply auto | |
| 318 | done | |
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 319 | qed | 
| 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 320 | |
| 50104 | 321 | lemma prod_algebra_cong: | 
| 322 | assumes "I = J" and sets: "(\<And>i. i \<in> I \<Longrightarrow> sets (M i) = sets (N i))" | |
| 323 | shows "prod_algebra I M = prod_algebra J N" | |
| 324 | proof - | |
| 325 | have space: "\<And>i. i \<in> I \<Longrightarrow> space (M i) = space (N i)" | |
| 326 | using sets_eq_imp_space_eq[OF sets] by auto | |
| 61808 | 327 | with sets show ?thesis unfolding \<open>I = J\<close> | 
| 50104 | 328 | by (intro antisym prod_algebra_mono) auto | 
| 329 | qed | |
| 330 | ||
| 331 | lemma space_in_prod_algebra: | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 332 | "(\<Pi>\<^sub>E i\<in>I. space (M i)) \<in> prod_algebra I M" | 
| 50104 | 333 | proof cases | 
| 334 |   assume "I = {}" then show ?thesis
 | |
| 335 | by (auto simp add: prod_algebra_def image_iff prod_emb_def) | |
| 336 | next | |
| 337 |   assume "I \<noteq> {}"
 | |
| 338 | then obtain i where "i \<in> I" by auto | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 339 |   then have "(\<Pi>\<^sub>E i\<in>I. space (M i)) = prod_emb I M {i} (\<Pi>\<^sub>E i\<in>{i}. space (M i))"
 | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 340 | by (auto simp: prod_emb_def) | 
| 50104 | 341 | also have "\<dots> \<in> prod_algebra I M" | 
| 61808 | 342 | using \<open>i \<in> I\<close> by (intro prod_algebraI) auto | 
| 50104 | 343 | finally show ?thesis . | 
| 344 | qed | |
| 345 | ||
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 346 | lemma space_PiM: "space (\<Pi>\<^sub>M i\<in>I. M i) = (\<Pi>\<^sub>E i\<in>I. space (M i))" | 
| 47694 | 347 | using prod_algebra_sets_into_space unfolding PiM_def prod_algebra_def by (intro space_extend_measure) simp | 
| 348 | ||
| 61359 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 349 | lemma prod_emb_subset_PiM[simp]: "prod_emb I M K X \<subseteq> space (PiM I M)" | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 350 | by (auto simp: prod_emb_def space_PiM) | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 351 | |
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 352 | lemma space_PiM_empty_iff[simp]: "space (PiM I M) = {} \<longleftrightarrow>  (\<exists>i\<in>I. space (M i) = {})"
 | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 353 | by (auto simp: space_PiM PiE_eq_empty_iff) | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 354 | |
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 355 | lemma undefined_in_PiM_empty[simp]: "(\<lambda>x. undefined) \<in> space (PiM {} M)"
 | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 356 | by (auto simp: space_PiM) | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 357 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 358 | lemma sets_PiM: "sets (\<Pi>\<^sub>M i\<in>I. M i) = sigma_sets (\<Pi>\<^sub>E i\<in>I. space (M i)) (prod_algebra I M)" | 
| 47694 | 359 | using prod_algebra_sets_into_space unfolding PiM_def prod_algebra_def by (intro sets_extend_measure) simp | 
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 360 | |
| 47694 | 361 | lemma sets_PiM_single: "sets (PiM I M) = | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 362 |     sigma_sets (\<Pi>\<^sub>E i\<in>I. space (M i)) {{f\<in>\<Pi>\<^sub>E i\<in>I. space (M i). f i \<in> A} | i A. i \<in> I \<and> A \<in> sets (M i)}"
 | 
| 47694 | 363 | (is "_ = sigma_sets ?\<Omega> ?R") | 
| 364 | unfolding sets_PiM | |
| 365 | proof (rule sigma_sets_eqI) | |
| 366 | interpret R: sigma_algebra ?\<Omega> "sigma_sets ?\<Omega> ?R" by (rule sigma_algebra_sigma_sets) auto | |
| 367 | fix A assume "A \<in> prod_algebra I M" | |
| 368 | from prod_algebraE[OF this] guess J X . note X = this | |
| 369 | show "A \<in> sigma_sets ?\<Omega> ?R" | |
| 370 | proof cases | |
| 371 |     assume "I = {}"
 | |
| 372 |     with X have "A = {\<lambda>x. undefined}" by (auto simp: prod_emb_def)
 | |
| 61808 | 373 |     with \<open>I = {}\<close> show ?thesis by (auto intro!: sigma_sets_top)
 | 
| 47694 | 374 | next | 
| 375 |     assume "I \<noteq> {}"
 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 376 |     with X have "A = (\<Inter>j\<in>J. {f\<in>(\<Pi>\<^sub>E i\<in>I. space (M i)). f j \<in> X j})"
 | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 377 | by (auto simp: prod_emb_def) | 
| 47694 | 378 | also have "\<dots> \<in> sigma_sets ?\<Omega> ?R" | 
| 61808 | 379 |       using X \<open>I \<noteq> {}\<close> by (intro R.finite_INT sigma_sets.Basic) auto
 | 
| 47694 | 380 | finally show "A \<in> sigma_sets ?\<Omega> ?R" . | 
| 381 | qed | |
| 382 | next | |
| 383 | fix A assume "A \<in> ?R" | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 384 |   then obtain i B where A: "A = {f\<in>\<Pi>\<^sub>E i\<in>I. space (M i). f i \<in> B}" "i \<in> I" "B \<in> sets (M i)" 
 | 
| 47694 | 385 | by auto | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 386 |   then have "A = prod_emb I M {i} (\<Pi>\<^sub>E i\<in>{i}. B)"
 | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 387 | by (auto simp: prod_emb_def) | 
| 47694 | 388 | also have "\<dots> \<in> sigma_sets ?\<Omega> (prod_algebra I M)" | 
| 389 | using A by (intro sigma_sets.Basic prod_algebraI) auto | |
| 390 | finally show "A \<in> sigma_sets ?\<Omega> (prod_algebra I M)" . | |
| 391 | qed | |
| 392 | ||
| 58606 | 393 | lemma sets_PiM_eq_proj: | 
| 394 |   "I \<noteq> {} \<Longrightarrow> sets (PiM I M) = sets (\<Squnion>\<^sub>\<sigma> i\<in>I. vimage_algebra (\<Pi>\<^sub>E i\<in>I. space (M i)) (\<lambda>x. x i) (M i))"
 | |
| 395 | apply (simp add: sets_PiM_single sets_Sup_sigma) | |
| 396 | apply (subst SUP_cong[OF refl]) | |
| 397 | apply (rule sets_vimage_algebra2) | |
| 398 | apply auto [] | |
| 399 | apply (auto intro!: arg_cong2[where f=sigma_sets]) | |
| 400 | done | |
| 401 | ||
| 59088 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 402 | lemma | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 403 |   shows space_PiM_empty: "space (Pi\<^sub>M {} M) = {\<lambda>k. undefined}"
 | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 404 |     and sets_PiM_empty: "sets (Pi\<^sub>M {} M) = { {}, {\<lambda>k. undefined} }"
 | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 405 | by (simp_all add: space_PiM sets_PiM_single image_constant sigma_sets_empty_eq) | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 406 | |
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 407 | lemma sets_PiM_sigma: | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 408 | assumes \<Omega>_cover: "\<And>i. i \<in> I \<Longrightarrow> \<exists>S\<subseteq>E i. countable S \<and> \<Omega> i = \<Union>S" | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 409 | assumes E: "\<And>i. i \<in> I \<Longrightarrow> E i \<subseteq> Pow (\<Omega> i)" | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 410 | assumes J: "\<And>j. j \<in> J \<Longrightarrow> finite j" "\<Union>J = I" | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 411 |   defines "P \<equiv> {{f\<in>(\<Pi>\<^sub>E i\<in>I. \<Omega> i). \<forall>i\<in>j. f i \<in> A i} | A j. j \<in> J \<and> A \<in> Pi j E}"
 | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 412 | shows "sets (\<Pi>\<^sub>M i\<in>I. sigma (\<Omega> i) (E i)) = sets (sigma (\<Pi>\<^sub>E i\<in>I. \<Omega> i) P)" | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 413 | proof cases | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 414 |   assume "I = {}" 
 | 
| 61808 | 415 |   with \<open>\<Union>J = I\<close> have "P = {{\<lambda>_. undefined}} \<or> P = {}"
 | 
| 59088 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 416 | by (auto simp: P_def) | 
| 61808 | 417 |   with \<open>I = {}\<close> show ?thesis
 | 
| 59088 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 418 | by (auto simp add: sets_PiM_empty sigma_sets_empty_eq) | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 419 | next | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 420 |   let ?F = "\<lambda>i. {(\<lambda>x. x i) -` A \<inter> Pi\<^sub>E I \<Omega> |A. A \<in> E i}"
 | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 421 |   assume "I \<noteq> {}"
 | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 422 | then have "sets (Pi\<^sub>M I (\<lambda>i. sigma (\<Omega> i) (E i))) = | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 423 | sets (\<Squnion>\<^sub>\<sigma> i\<in>I. vimage_algebra (\<Pi>\<^sub>E i\<in>I. \<Omega> i) (\<lambda>x. x i) (sigma (\<Omega> i) (E i)))" | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 424 | by (subst sets_PiM_eq_proj) (auto simp: space_measure_of_conv) | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 425 | also have "\<dots> = sets (\<Squnion>\<^sub>\<sigma> i\<in>I. sigma (Pi\<^sub>E I \<Omega>) (?F i))" | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 426 | using E by (intro SUP_sigma_cong arg_cong[where f=sets] vimage_algebra_sigma) auto | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 427 | also have "\<dots> = sets (sigma (Pi\<^sub>E I \<Omega>) (\<Union>i\<in>I. ?F i))" | 
| 61808 | 428 |     using \<open>I \<noteq> {}\<close> by (intro arg_cong[where f=sets] SUP_sigma_sigma) auto
 | 
| 59088 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 429 | also have "\<dots> = sets (sigma (Pi\<^sub>E I \<Omega>) P)" | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 430 | proof (intro arg_cong[where f=sets] sigma_eqI sigma_sets_eqI) | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 431 | show "(\<Union>i\<in>I. ?F i) \<subseteq> Pow (Pi\<^sub>E I \<Omega>)" "P \<subseteq> Pow (Pi\<^sub>E I \<Omega>)" | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 432 | by (auto simp: P_def) | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 433 | next | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 434 | interpret P: sigma_algebra "\<Pi>\<^sub>E i\<in>I. \<Omega> i" "sigma_sets (\<Pi>\<^sub>E i\<in>I. \<Omega> i) P" | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 435 | by (auto intro!: sigma_algebra_sigma_sets simp: P_def) | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 436 | |
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 437 | fix Z assume "Z \<in> (\<Union>i\<in>I. ?F i)" | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 438 | then obtain i A where i: "i \<in> I" "A \<in> E i" and Z_def: "Z = (\<lambda>x. x i) -` A \<inter> Pi\<^sub>E I \<Omega>" | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 439 | by auto | 
| 61808 | 440 | from \<open>i \<in> I\<close> J obtain j where j: "i \<in> j" "j \<in> J" "j \<subseteq> I" "finite j" | 
| 59088 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 441 | by auto | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 442 | obtain S where S: "\<And>i. i \<in> j \<Longrightarrow> S i \<subseteq> E i" "\<And>i. i \<in> j \<Longrightarrow> countable (S i)" | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 443 | "\<And>i. i \<in> j \<Longrightarrow> \<Omega> i = \<Union>(S i)" | 
| 61808 | 444 | by (metis subset_eq \<Omega>_cover \<open>j \<subseteq> I\<close>) | 
| 59088 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 445 | def A' \<equiv> "\<lambda>n. n(i := A)" | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 446 | then have A'_i: "\<And>n. A' n i = A" | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 447 | by simp | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 448 |     { fix n assume "n \<in> Pi\<^sub>E (j - {i}) S"
 | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 449 | then have "A' n \<in> Pi j E" | 
| 61808 | 450 | unfolding PiE_def Pi_def using S(1) by (auto simp: A'_def \<open>A \<in> E i\<close> ) | 
| 451 |       with \<open>j \<in> J\<close> have "{f \<in> Pi\<^sub>E I \<Omega>. \<forall>i\<in>j. f i \<in> A' n i} \<in> P"
 | |
| 59088 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 452 | by (auto simp: P_def) } | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 453 | note A'_in_P = this | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 454 | |
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 455 |     { fix x assume "x i \<in> A" "x \<in> Pi\<^sub>E I \<Omega>"
 | 
| 61808 | 456 | with S(3) \<open>j \<subseteq> I\<close> have "\<forall>i\<in>j. \<exists>s\<in>S i. x i \<in> s" | 
| 59088 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 457 | by (auto simp: PiE_def Pi_def) | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 458 | then obtain s where s: "\<And>i. i \<in> j \<Longrightarrow> s i \<in> S i" "\<And>i. i \<in> j \<Longrightarrow> x i \<in> s i" | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 459 | by metis | 
| 61808 | 460 |       with \<open>x i \<in> A\<close> have "\<exists>n\<in>PiE (j-{i}) S. \<forall>i\<in>j. x i \<in> A' n i"
 | 
| 59088 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 461 |         by (intro bexI[of _ "restrict (s(i := A)) (j-{i})"]) (auto simp: A'_def split: if_splits) }
 | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 462 |     then have "Z = (\<Union>n\<in>PiE (j-{i}) S. {f\<in>(\<Pi>\<^sub>E i\<in>I. \<Omega> i). \<forall>i\<in>j. f i \<in> A' n i})"
 | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 463 | unfolding Z_def | 
| 61808 | 464 | by (auto simp add: set_eq_iff ball_conj_distrib \<open>i\<in>j\<close> A'_i dest: bspec[OF _ \<open>i\<in>j\<close>] | 
| 59088 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 465 | cong: conj_cong) | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 466 | also have "\<dots> \<in> sigma_sets (\<Pi>\<^sub>E i\<in>I. \<Omega> i) P" | 
| 61808 | 467 | using \<open>finite j\<close> S(2) | 
| 59088 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 468 | by (intro P.countable_UN' countable_PiE) (simp_all add: image_subset_iff A'_in_P) | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 469 | finally show "Z \<in> sigma_sets (\<Pi>\<^sub>E i\<in>I. \<Omega> i) P" . | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 470 | next | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 471 | interpret F: sigma_algebra "\<Pi>\<^sub>E i\<in>I. \<Omega> i" "sigma_sets (\<Pi>\<^sub>E i\<in>I. \<Omega> i) (\<Union>i\<in>I. ?F i)" | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 472 | by (auto intro!: sigma_algebra_sigma_sets) | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 473 | |
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 474 | fix b assume "b \<in> P" | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 475 |     then obtain A j where b: "b = {f\<in>(\<Pi>\<^sub>E i\<in>I. \<Omega> i). \<forall>i\<in>j. f i \<in> A i}" "j \<in> J" "A \<in> Pi j E"
 | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 476 | by (auto simp: P_def) | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 477 | show "b \<in> sigma_sets (Pi\<^sub>E I \<Omega>) (\<Union>i\<in>I. ?F i)" | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 478 | proof cases | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 479 |       assume "j = {}"
 | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 480 | with b have "b = (\<Pi>\<^sub>E i\<in>I. \<Omega> i)" | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 481 | by auto | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 482 | then show ?thesis | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 483 | by blast | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 484 | next | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 485 |       assume "j \<noteq> {}"
 | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 486 | with J b(2,3) have eq: "b = (\<Inter>i\<in>j. ((\<lambda>x. x i) -` A i \<inter> Pi\<^sub>E I \<Omega>))" | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 487 | unfolding b(1) | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 488 | by (auto simp: PiE_def Pi_def) | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 489 | show ?thesis | 
| 61808 | 490 | unfolding eq using \<open>A \<in> Pi j E\<close> \<open>j \<in> J\<close> J(2) | 
| 491 |         by (intro F.finite_INT J \<open>j \<in> J\<close> \<open>j \<noteq> {}\<close> sigma_sets.Basic) blast
 | |
| 59088 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 492 | qed | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 493 | qed | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 494 | finally show "?thesis" . | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 495 | qed | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 496 | |
| 58606 | 497 | lemma sets_PiM_in_sets: | 
| 498 | assumes space: "space N = (\<Pi>\<^sub>E i\<in>I. space (M i))" | |
| 499 |   assumes sets: "\<And>i A. i \<in> I \<Longrightarrow> A \<in> sets (M i) \<Longrightarrow> {x\<in>space N. x i \<in> A} \<in> sets N"
 | |
| 500 | shows "sets (\<Pi>\<^sub>M i \<in> I. M i) \<subseteq> sets N" | |
| 501 | unfolding sets_PiM_single space[symmetric] | |
| 502 | by (intro sets.sigma_sets_subset subsetI) (auto intro: sets) | |
| 503 | ||
| 59048 | 504 | lemma sets_PiM_cong[measurable_cong]: | 
| 505 | assumes "I = J" "\<And>i. i \<in> J \<Longrightarrow> sets (M i) = sets (N i)" shows "sets (PiM I M) = sets (PiM J N)" | |
| 58606 | 506 | using assms sets_eq_imp_space_eq[OF assms(2)] by (simp add: sets_PiM_single cong: PiE_cong conj_cong) | 
| 507 | ||
| 47694 | 508 | lemma sets_PiM_I: | 
| 509 | assumes "finite J" "J \<subseteq> I" "\<forall>i\<in>J. E i \<in> sets (M i)" | |
| 510 | shows "prod_emb I M J (PIE j:J. E j) \<in> sets (PIM i:I. M i)" | |
| 511 | proof cases | |
| 512 |   assume "J = {}"
 | |
| 513 | then have "prod_emb I M J (PIE j:J. E j) = (PIE j:I. space (M j))" | |
| 514 | by (auto simp: prod_emb_def) | |
| 515 | then show ?thesis | |
| 516 | by (auto simp add: sets_PiM intro!: sigma_sets_top) | |
| 517 | next | |
| 518 |   assume "J \<noteq> {}" with assms show ?thesis
 | |
| 50003 | 519 | by (force simp add: sets_PiM prod_algebra_def) | 
| 40859 | 520 | qed | 
| 521 | ||
| 47694 | 522 | lemma measurable_PiM: | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 523 | assumes space: "f \<in> space N \<rightarrow> (\<Pi>\<^sub>E i\<in>I. space (M i))" | 
| 47694 | 524 |   assumes sets: "\<And>X J. J \<noteq> {} \<or> I = {} \<Longrightarrow> finite J \<Longrightarrow> J \<subseteq> I \<Longrightarrow> (\<And>i. i \<in> J \<Longrightarrow> X i \<in> sets (M i)) \<Longrightarrow>
 | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 525 | f -` prod_emb I M J (Pi\<^sub>E J X) \<inter> space N \<in> sets N" | 
| 47694 | 526 | shows "f \<in> measurable N (PiM I M)" | 
| 527 | using sets_PiM prod_algebra_sets_into_space space | |
| 528 | proof (rule measurable_sigma_sets) | |
| 529 | fix A assume "A \<in> prod_algebra I M" | |
| 530 | from prod_algebraE[OF this] guess J X . | |
| 531 | with sets[of J X] show "f -` A \<inter> space N \<in> sets N" by auto | |
| 532 | qed | |
| 533 | ||
| 534 | lemma measurable_PiM_Collect: | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 535 | assumes space: "f \<in> space N \<rightarrow> (\<Pi>\<^sub>E i\<in>I. space (M i))" | 
| 47694 | 536 |   assumes sets: "\<And>X J. J \<noteq> {} \<or> I = {} \<Longrightarrow> finite J \<Longrightarrow> J \<subseteq> I \<Longrightarrow> (\<And>i. i \<in> J \<Longrightarrow> X i \<in> sets (M i)) \<Longrightarrow>
 | 
| 537 |     {\<omega>\<in>space N. \<forall>i\<in>J. f \<omega> i \<in> X i} \<in> sets N" 
 | |
| 538 | shows "f \<in> measurable N (PiM I M)" | |
| 539 | using sets_PiM prod_algebra_sets_into_space space | |
| 540 | proof (rule measurable_sigma_sets) | |
| 541 | fix A assume "A \<in> prod_algebra I M" | |
| 542 | from prod_algebraE[OF this] guess J X . note X = this | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 543 |   then have "f -` A \<inter> space N = {\<omega> \<in> space N. \<forall>i\<in>J. f \<omega> i \<in> X i}"
 | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 544 | using space by (auto simp: prod_emb_def del: PiE_I) | 
| 47694 | 545 | also have "\<dots> \<in> sets N" using X(3,2,4,5) by (rule sets) | 
| 546 | finally show "f -` A \<inter> space N \<in> sets N" . | |
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 547 | qed | 
| 41095 | 548 | |
| 47694 | 549 | lemma measurable_PiM_single: | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 550 | assumes space: "f \<in> space N \<rightarrow> (\<Pi>\<^sub>E i\<in>I. space (M i))" | 
| 47694 | 551 |   assumes sets: "\<And>A i. i \<in> I \<Longrightarrow> A \<in> sets (M i) \<Longrightarrow> {\<omega> \<in> space N. f \<omega> i \<in> A} \<in> sets N" 
 | 
| 552 | shows "f \<in> measurable N (PiM I M)" | |
| 553 | using sets_PiM_single | |
| 554 | proof (rule measurable_sigma_sets) | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 555 |   fix A assume "A \<in> {{f \<in> \<Pi>\<^sub>E i\<in>I. space (M i). f i \<in> A} |i A. i \<in> I \<and> A \<in> sets (M i)}"
 | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 556 |   then obtain B i where "A = {f \<in> \<Pi>\<^sub>E i\<in>I. space (M i). f i \<in> B}" and B: "i \<in> I" "B \<in> sets (M i)"
 | 
| 47694 | 557 | by auto | 
| 558 |   with space have "f -` A \<inter> space N = {\<omega> \<in> space N. f \<omega> i \<in> B}" by auto
 | |
| 559 | also have "\<dots> \<in> sets N" using B by (rule sets) | |
| 560 | finally show "f -` A \<inter> space N \<in> sets N" . | |
| 561 | qed (auto simp: space) | |
| 40859 | 562 | |
| 50099 | 563 | lemma measurable_PiM_single': | 
| 564 | assumes f: "\<And>i. i \<in> I \<Longrightarrow> f i \<in> measurable N (M i)" | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 565 | and "(\<lambda>\<omega> i. f i \<omega>) \<in> space N \<rightarrow> (\<Pi>\<^sub>E i\<in>I. space (M i))" | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 566 | shows "(\<lambda>\<omega> i. f i \<omega>) \<in> measurable N (Pi\<^sub>M I M)" | 
| 50099 | 567 | proof (rule measurable_PiM_single) | 
| 568 | fix A i assume A: "i \<in> I" "A \<in> sets (M i)" | |
| 569 |   then have "{\<omega> \<in> space N. f i \<omega> \<in> A} = f i -` A \<inter> space N"
 | |
| 570 | by auto | |
| 571 |   then show "{\<omega> \<in> space N. f i \<omega> \<in> A} \<in> sets N"
 | |
| 572 | using A f by (auto intro!: measurable_sets) | |
| 573 | qed fact | |
| 574 | ||
| 50003 | 575 | lemma sets_PiM_I_finite[measurable]: | 
| 47694 | 576 | assumes "finite I" and sets: "(\<And>i. i \<in> I \<Longrightarrow> E i \<in> sets (M i))" | 
| 577 | shows "(PIE j:I. E j) \<in> sets (PIM i:I. M i)" | |
| 61808 | 578 | using sets_PiM_I[of I I E M] sets.sets_into_space[OF sets] \<open>finite I\<close> sets by auto | 
| 47694 | 579 | |
| 59353 
f0707dc3d9aa
measurability prover: removed app splitting, replaced by more powerful destruction rules
 hoelzl parents: 
59088diff
changeset | 580 | lemma measurable_component_singleton[measurable (raw)]: | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 581 | assumes "i \<in> I" shows "(\<lambda>x. x i) \<in> measurable (Pi\<^sub>M I M) (M i)" | 
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 582 | proof (unfold measurable_def, intro CollectI conjI ballI) | 
| 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 583 | fix A assume "A \<in> sets (M i)" | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 584 |   then have "(\<lambda>x. x i) -` A \<inter> space (Pi\<^sub>M I M) = prod_emb I M {i} (\<Pi>\<^sub>E j\<in>{i}. A)"
 | 
| 61808 | 585 | using sets.sets_into_space \<open>i \<in> I\<close> | 
| 47694 | 586 | by (fastforce dest: Pi_mem simp: prod_emb_def space_PiM split: split_if_asm) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 587 | then show "(\<lambda>x. x i) -` A \<inter> space (Pi\<^sub>M I M) \<in> sets (Pi\<^sub>M I M)" | 
| 61808 | 588 | using \<open>A \<in> sets (M i)\<close> \<open>i \<in> I\<close> by (auto intro!: sets_PiM_I) | 
| 589 | qed (insert \<open>i \<in> I\<close>, auto simp: space_PiM) | |
| 47694 | 590 | |
| 59353 
f0707dc3d9aa
measurability prover: removed app splitting, replaced by more powerful destruction rules
 hoelzl parents: 
59088diff
changeset | 591 | lemma measurable_component_singleton'[measurable_dest]: | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 592 | assumes f: "f \<in> measurable N (Pi\<^sub>M I M)" | 
| 59353 
f0707dc3d9aa
measurability prover: removed app splitting, replaced by more powerful destruction rules
 hoelzl parents: 
59088diff
changeset | 593 | assumes g: "g \<in> measurable L N" | 
| 50021 
d96a3f468203
add support for function application to measurability prover
 hoelzl parents: 
50003diff
changeset | 594 | assumes i: "i \<in> I" | 
| 59353 
f0707dc3d9aa
measurability prover: removed app splitting, replaced by more powerful destruction rules
 hoelzl parents: 
59088diff
changeset | 595 | shows "(\<lambda>x. (f (g x)) i) \<in> measurable L (M i)" | 
| 
f0707dc3d9aa
measurability prover: removed app splitting, replaced by more powerful destruction rules
 hoelzl parents: 
59088diff
changeset | 596 | using measurable_compose[OF measurable_compose[OF g f] measurable_component_singleton, OF i] . | 
| 50021 
d96a3f468203
add support for function application to measurability prover
 hoelzl parents: 
50003diff
changeset | 597 | |
| 59353 
f0707dc3d9aa
measurability prover: removed app splitting, replaced by more powerful destruction rules
 hoelzl parents: 
59088diff
changeset | 598 | lemma measurable_PiM_component_rev: | 
| 50099 | 599 | "i \<in> I \<Longrightarrow> f \<in> measurable (M i) N \<Longrightarrow> (\<lambda>x. f (x i)) \<in> measurable (PiM I M) N" | 
| 600 | by simp | |
| 601 | ||
| 55415 | 602 | lemma measurable_case_nat[measurable (raw)]: | 
| 50021 
d96a3f468203
add support for function application to measurability prover
 hoelzl parents: 
50003diff
changeset | 603 | assumes [measurable (raw)]: "i = 0 \<Longrightarrow> f \<in> measurable M N" | 
| 
d96a3f468203
add support for function application to measurability prover
 hoelzl parents: 
50003diff
changeset | 604 | "\<And>j. i = Suc j \<Longrightarrow> (\<lambda>x. g x j) \<in> measurable M N" | 
| 55415 | 605 | shows "(\<lambda>x. case_nat (f x) (g x) i) \<in> measurable M N" | 
| 50021 
d96a3f468203
add support for function application to measurability prover
 hoelzl parents: 
50003diff
changeset | 606 | by (cases i) simp_all | 
| 59048 | 607 | |
| 55415 | 608 | lemma measurable_case_nat'[measurable (raw)]: | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 609 | assumes fg[measurable]: "f \<in> measurable N M" "g \<in> measurable N (\<Pi>\<^sub>M i\<in>UNIV. M)" | 
| 55415 | 610 | shows "(\<lambda>x. case_nat (f x) (g x)) \<in> measurable N (\<Pi>\<^sub>M i\<in>UNIV. M)" | 
| 50099 | 611 | using fg[THEN measurable_space] | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 612 | by (auto intro!: measurable_PiM_single' simp add: space_PiM PiE_iff split: nat.split) | 
| 50099 | 613 | |
| 50003 | 614 | lemma measurable_add_dim[measurable]: | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 615 | "(\<lambda>(f, y). f(i := y)) \<in> measurable (Pi\<^sub>M I M \<Otimes>\<^sub>M M i) (Pi\<^sub>M (insert i I) M)" | 
| 47694 | 616 | (is "?f \<in> measurable ?P ?I") | 
| 617 | proof (rule measurable_PiM_single) | |
| 618 | fix j A assume j: "j \<in> insert i I" and A: "A \<in> sets (M j)" | |
| 619 |   have "{\<omega> \<in> space ?P. (\<lambda>(f, x). fun_upd f i x) \<omega> j \<in> A} =
 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 620 | (if j = i then space (Pi\<^sub>M I M) \<times> A else ((\<lambda>x. x j) \<circ> fst) -` A \<inter> space ?P)" | 
| 50244 
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
 immler parents: 
50123diff
changeset | 621 | using sets.sets_into_space[OF A] by (auto simp add: space_pair_measure space_PiM) | 
| 47694 | 622 | also have "\<dots> \<in> sets ?P" | 
| 623 | using A j | |
| 624 | by (auto intro!: measurable_sets[OF measurable_comp, OF _ measurable_component_singleton]) | |
| 55414 
eab03e9cee8a
renamed '{prod,sum,bool,unit}_case' to 'case_...'
 blanchet parents: 
53374diff
changeset | 625 |   finally show "{\<omega> \<in> space ?P. case_prod (\<lambda>f. fun_upd f i) \<omega> j \<in> A} \<in> sets ?P" .
 | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 626 | qed (auto simp: space_pair_measure space_PiM PiE_def) | 
| 41661 | 627 | |
| 61359 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 628 | lemma measurable_fun_upd: | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 629 |   assumes I: "I = J \<union> {i}"
 | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 630 | assumes f[measurable]: "f \<in> measurable N (PiM J M)" | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 631 | assumes h[measurable]: "h \<in> measurable N (M i)" | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 632 | shows "(\<lambda>x. (f x) (i := h x)) \<in> measurable N (PiM I M)" | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 633 | proof (intro measurable_PiM_single') | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 634 | fix j assume "j \<in> I" then show "(\<lambda>\<omega>. ((f \<omega>)(i := h \<omega>)) j) \<in> measurable N (M j)" | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 635 | unfolding I by (cases "j = i") auto | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 636 | next | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 637 | show "(\<lambda>x. (f x)(i := h x)) \<in> space N \<rightarrow> (\<Pi>\<^sub>E i\<in>I. space (M i))" | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 638 | using I f[THEN measurable_space] h[THEN measurable_space] | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 639 | by (auto simp: space_PiM PiE_iff extensional_def) | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 640 | qed | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 641 | |
| 50003 | 642 | lemma measurable_component_update: | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 643 | "x \<in> space (Pi\<^sub>M I M) \<Longrightarrow> i \<notin> I \<Longrightarrow> (\<lambda>v. x(i := v)) \<in> measurable (M i) (Pi\<^sub>M (insert i I) M)" | 
| 50003 | 644 | by simp | 
| 645 | ||
| 646 | lemma measurable_merge[measurable]: | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 647 | "merge I J \<in> measurable (Pi\<^sub>M I M \<Otimes>\<^sub>M Pi\<^sub>M J M) (Pi\<^sub>M (I \<union> J) M)" | 
| 47694 | 648 | (is "?f \<in> measurable ?P ?U") | 
| 649 | proof (rule measurable_PiM_single) | |
| 650 | fix i A assume A: "A \<in> sets (M i)" "i \<in> I \<union> J" | |
| 49780 | 651 |   then have "{\<omega> \<in> space ?P. merge I J \<omega> i \<in> A} =
 | 
| 47694 | 652 | (if i \<in> I then ((\<lambda>x. x i) \<circ> fst) -` A \<inter> space ?P else ((\<lambda>x. x i) \<circ> snd) -` A \<inter> space ?P)" | 
| 49776 | 653 | by (auto simp: merge_def) | 
| 47694 | 654 | also have "\<dots> \<in> sets ?P" | 
| 655 | using A | |
| 656 | by (auto intro!: measurable_sets[OF measurable_comp, OF _ measurable_component_singleton]) | |
| 49780 | 657 |   finally show "{\<omega> \<in> space ?P. merge I J \<omega> i \<in> A} \<in> sets ?P" .
 | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 658 | qed (auto simp: space_pair_measure space_PiM PiE_iff merge_def extensional_def) | 
| 42988 | 659 | |
| 50003 | 660 | lemma measurable_restrict[measurable (raw)]: | 
| 47694 | 661 | assumes X: "\<And>i. i \<in> I \<Longrightarrow> X i \<in> measurable N (M i)" | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 662 | shows "(\<lambda>x. \<lambda>i\<in>I. X i x) \<in> measurable N (Pi\<^sub>M I M)" | 
| 47694 | 663 | proof (rule measurable_PiM_single) | 
| 664 | fix A i assume A: "i \<in> I" "A \<in> sets (M i)" | |
| 665 |   then have "{\<omega> \<in> space N. (\<lambda>i\<in>I. X i \<omega>) i \<in> A} = X i -` A \<inter> space N"
 | |
| 666 | by auto | |
| 667 |   then show "{\<omega> \<in> space N. (\<lambda>i\<in>I. X i \<omega>) i \<in> A} \<in> sets N"
 | |
| 668 | using A X by (auto intro!: measurable_sets) | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 669 | qed (insert X, auto simp add: PiE_def dest: measurable_space) | 
| 47694 | 670 | |
| 57025 | 671 | lemma measurable_abs_UNIV: | 
| 672 | "(\<And>n. (\<lambda>\<omega>. f n \<omega>) \<in> measurable M (N n)) \<Longrightarrow> (\<lambda>\<omega> n. f n \<omega>) \<in> measurable M (PiM UNIV N)" | |
| 673 | by (intro measurable_PiM_single) (auto dest: measurable_space) | |
| 674 | ||
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 675 | lemma measurable_restrict_subset: "J \<subseteq> L \<Longrightarrow> (\<lambda>f. restrict f J) \<in> measurable (Pi\<^sub>M L M) (Pi\<^sub>M J M)" | 
| 50038 | 676 | by (intro measurable_restrict measurable_component_singleton) auto | 
| 677 | ||
| 59425 | 678 | lemma measurable_restrict_subset': | 
| 679 | assumes "J \<subseteq> L" "\<And>x. x \<in> J \<Longrightarrow> sets (M x) = sets (N x)" | |
| 680 | shows "(\<lambda>f. restrict f J) \<in> measurable (Pi\<^sub>M L M) (Pi\<^sub>M J N)" | |
| 681 | proof- | |
| 682 | from assms(1) have "(\<lambda>f. restrict f J) \<in> measurable (Pi\<^sub>M L M) (Pi\<^sub>M J M)" | |
| 683 | by (rule measurable_restrict_subset) | |
| 684 | also from assms(2) have "measurable (Pi\<^sub>M L M) (Pi\<^sub>M J M) = measurable (Pi\<^sub>M L M) (Pi\<^sub>M J N)" | |
| 685 | by (intro sets_PiM_cong measurable_cong_sets) simp_all | |
| 686 | finally show ?thesis . | |
| 687 | qed | |
| 688 | ||
| 50038 | 689 | lemma measurable_prod_emb[intro, simp]: | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 690 | "J \<subseteq> L \<Longrightarrow> X \<in> sets (Pi\<^sub>M J M) \<Longrightarrow> prod_emb L M J X \<in> sets (Pi\<^sub>M L M)" | 
| 50038 | 691 | unfolding prod_emb_def space_PiM[symmetric] | 
| 692 | by (auto intro!: measurable_sets measurable_restrict measurable_component_singleton) | |
| 693 | ||
| 61359 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 694 | lemma merge_in_prod_emb: | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 695 | assumes "y \<in> space (PiM I M)" "x \<in> X" and X: "X \<in> sets (Pi\<^sub>M J M)" and "J \<subseteq> I" | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 696 | shows "merge J I (x, y) \<in> prod_emb I M J X" | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 697 | using assms sets.sets_into_space[OF X] | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 698 | by (simp add: merge_def prod_emb_def subset_eq space_PiM PiE_def extensional_restrict Pi_iff | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 699 | cong: if_cong restrict_cong) | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 700 | (simp add: extensional_def) | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 701 | |
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 702 | lemma prod_emb_eq_emptyD: | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 703 |   assumes J: "J \<subseteq> I" and ne: "space (PiM I M) \<noteq> {}" and X: "X \<in> sets (Pi\<^sub>M J M)"
 | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 704 |     and *: "prod_emb I M J X = {}"
 | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 705 |   shows "X = {}"
 | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 706 | proof safe | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 707 | fix x assume "x \<in> X" | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 708 | obtain \<omega> where "\<omega> \<in> space (PiM I M)" | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 709 | using ne by blast | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 710 |   from merge_in_prod_emb[OF this \<open>x\<in>X\<close> X J] * show "x \<in> {}" by auto 
 | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 711 | qed | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 712 | |
| 50003 | 713 | lemma sets_in_Pi_aux: | 
| 714 |   "finite I \<Longrightarrow> (\<And>j. j \<in> I \<Longrightarrow> {x\<in>space (M j). x \<in> F j} \<in> sets (M j)) \<Longrightarrow>
 | |
| 715 |   {x\<in>space (PiM I M). x \<in> Pi I F} \<in> sets (PiM I M)"
 | |
| 716 | by (simp add: subset_eq Pi_iff) | |
| 717 | ||
| 718 | lemma sets_in_Pi[measurable (raw)]: | |
| 719 | "finite I \<Longrightarrow> f \<in> measurable N (PiM I M) \<Longrightarrow> | |
| 720 |   (\<And>j. j \<in> I \<Longrightarrow> {x\<in>space (M j). x \<in> F j} \<in> sets (M j)) \<Longrightarrow>
 | |
| 50387 | 721 | Measurable.pred N (\<lambda>x. f x \<in> Pi I F)" | 
| 50003 | 722 | unfolding pred_def | 
| 723 | by (rule measurable_sets_Collect[of f N "PiM I M", OF _ sets_in_Pi_aux]) auto | |
| 724 | ||
| 725 | lemma sets_in_extensional_aux: | |
| 726 |   "{x\<in>space (PiM I M). x \<in> extensional I} \<in> sets (PiM I M)"
 | |
| 727 | proof - | |
| 728 |   have "{x\<in>space (PiM I M). x \<in> extensional I} = space (PiM I M)"
 | |
| 729 | by (auto simp add: extensional_def space_PiM) | |
| 730 | then show ?thesis by simp | |
| 731 | qed | |
| 732 | ||
| 733 | lemma sets_in_extensional[measurable (raw)]: | |
| 50387 | 734 | "f \<in> measurable N (PiM I M) \<Longrightarrow> Measurable.pred N (\<lambda>x. f x \<in> extensional I)" | 
| 50003 | 735 | unfolding pred_def | 
| 736 | by (rule measurable_sets_Collect[of f N "PiM I M", OF _ sets_in_extensional_aux]) auto | |
| 737 | ||
| 61363 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 738 | lemma sets_PiM_I_countable: | 
| 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 739 | assumes I: "countable I" and E: "\<And>i. i \<in> I \<Longrightarrow> E i \<in> sets (M i)" shows "Pi\<^sub>E I E \<in> sets (Pi\<^sub>M I M)" | 
| 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 740 | proof cases | 
| 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 741 |   assume "I \<noteq> {}"
 | 
| 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 742 |   then have "PiE I E = (\<Inter>i\<in>I. prod_emb I M {i} (PiE {i} E))"
 | 
| 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 743 | using E[THEN sets.sets_into_space] by (auto simp: PiE_iff prod_emb_def fun_eq_iff) | 
| 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 744 | also have "\<dots> \<in> sets (PiM I M)" | 
| 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 745 |     using I \<open>I \<noteq> {}\<close> by (safe intro!: sets.countable_INT' measurable_prod_emb sets_PiM_I_finite E)
 | 
| 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 746 | finally show ?thesis . | 
| 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 747 | qed (simp add: sets_PiM_empty) | 
| 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 748 | |
| 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 749 | lemma sets_PiM_D_countable: | 
| 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 750 | assumes A: "A \<in> PiM I M" | 
| 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 751 | shows "\<exists>J\<subseteq>I. \<exists>X\<in>PiM J M. countable J \<and> A = prod_emb I M J X" | 
| 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 752 | using A[unfolded sets_PiM_single] | 
| 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 753 | proof induction | 
| 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 754 | case (Basic A) | 
| 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 755 |   then obtain i X where *: "i \<in> I" "X \<in> sets (M i)" and "A = {f \<in> \<Pi>\<^sub>E i\<in>I. space (M i). f i \<in> X}"
 | 
| 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 756 | by auto | 
| 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 757 |   then have A: "A = prod_emb I M {i} (\<Pi>\<^sub>E _\<in>{i}. X)"
 | 
| 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 758 | by (auto simp: prod_emb_def) | 
| 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 759 | then show ?case | 
| 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 760 |     by (intro exI[of _ "{i}"] conjI bexI[of _ "\<Pi>\<^sub>E _\<in>{i}. X"])
 | 
| 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 761 | (auto intro: countable_finite * sets_PiM_I_finite) | 
| 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 762 | next | 
| 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 763 | case Empty then show ?case | 
| 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 764 |     by (intro exI[of _ "{}"] conjI bexI[of _ "{}"]) auto
 | 
| 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 765 | next | 
| 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 766 | case (Compl A) | 
| 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 767 | then obtain J X where "J \<subseteq> I" "X \<in> sets (Pi\<^sub>M J M)" "countable J" "A = prod_emb I M J X" | 
| 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 768 | by auto | 
| 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 769 | then show ?case | 
| 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 770 | by (intro exI[of _ J] bexI[of _ "space (PiM J M) - X"] conjI) | 
| 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 771 | (auto simp add: space_PiM prod_emb_PiE intro!: sets_PiM_I_countable) | 
| 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 772 | next | 
| 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 773 | case (Union K) | 
| 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 774 | obtain J X where J: "\<And>i. J i \<subseteq> I" "\<And>i. countable (J i)" and X: "\<And>i. X i \<in> sets (Pi\<^sub>M (J i) M)" | 
| 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 775 | and K: "\<And>i. K i = prod_emb I M (J i) (X i)" | 
| 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 776 | by (metis Union.IH) | 
| 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 777 | show ?case | 
| 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 778 | proof (intro exI[of _ "\<Union>i. J i"] bexI[of _ "\<Union>i. prod_emb (\<Union>i. J i) M (J i) (X i)"] conjI) | 
| 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 779 | show "(\<Union>i. J i) \<subseteq> I" "countable (\<Union>i. J i)" using J by auto | 
| 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 780 | with J show "UNION UNIV K = prod_emb I M (\<Union>i. J i) (\<Union>i. prod_emb (\<Union>i. J i) M (J i) (X i))" | 
| 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 781 | by (simp add: K[abs_def] SUP_upper) | 
| 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 782 | qed(auto intro: X) | 
| 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 783 | qed | 
| 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 784 | |
| 61362 | 785 | lemma measure_eqI_PiM_finite: | 
| 786 | assumes [simp]: "finite I" "sets P = PiM I M" "sets Q = PiM I M" | |
| 787 | assumes eq: "\<And>A. (\<And>i. i \<in> I \<Longrightarrow> A i \<in> sets (M i)) \<Longrightarrow> P (Pi\<^sub>E I A) = Q (Pi\<^sub>E I A)" | |
| 788 | assumes A: "range A \<subseteq> prod_algebra I M" "(\<Union>i. A i) = space (PiM I M)" "\<And>i::nat. P (A i) \<noteq> \<infinity>" | |
| 789 | shows "P = Q" | |
| 790 | proof (rule measure_eqI_generator_eq[OF Int_stable_prod_algebra prod_algebra_sets_into_space]) | |
| 791 | show "range A \<subseteq> prod_algebra I M" "(\<Union>i. A i) = (\<Pi>\<^sub>E i\<in>I. space (M i))" "\<And>i. P (A i) \<noteq> \<infinity>" | |
| 792 | unfolding space_PiM[symmetric] by fact+ | |
| 793 | fix X assume "X \<in> prod_algebra I M" | |
| 794 | then obtain J E where X: "X = prod_emb I M J (PIE j:J. E j)" | |
| 795 | and J: "finite J" "J \<subseteq> I" "\<And>j. j \<in> J \<Longrightarrow> E j \<in> sets (M j)" | |
| 796 | by (force elim!: prod_algebraE) | |
| 797 | then show "emeasure P X = emeasure Q X" | |
| 798 | unfolding X by (subst (1 2) prod_emb_Pi) (auto simp: eq) | |
| 799 | qed (simp_all add: sets_PiM) | |
| 800 | ||
| 801 | lemma measure_eqI_PiM_infinite: | |
| 802 | assumes [simp]: "sets P = PiM I M" "sets Q = PiM I M" | |
| 803 | assumes eq: "\<And>A J. finite J \<Longrightarrow> J \<subseteq> I \<Longrightarrow> (\<And>i. i \<in> J \<Longrightarrow> A i \<in> sets (M i)) \<Longrightarrow> | |
| 804 | P (prod_emb I M J (Pi\<^sub>E J A)) = Q (prod_emb I M J (Pi\<^sub>E J A))" | |
| 805 | assumes A: "finite_measure P" | |
| 806 | shows "P = Q" | |
| 807 | proof (rule measure_eqI_generator_eq[OF Int_stable_prod_algebra prod_algebra_sets_into_space]) | |
| 808 | interpret finite_measure P by fact | |
| 809 | def i \<equiv> "SOME i. i \<in> I" | |
| 810 |   have i: "I \<noteq> {} \<Longrightarrow> i \<in> I"
 | |
| 811 | unfolding i_def by (rule someI_ex) auto | |
| 812 |   def A \<equiv> "\<lambda>n::nat. if I = {} then prod_emb I M {} (\<Pi>\<^sub>E i\<in>{}. {}) else prod_emb I M {i} (\<Pi>\<^sub>E i\<in>{i}. space (M i))"
 | |
| 813 | then show "range A \<subseteq> prod_algebra I M" | |
| 814 |     using prod_algebraI[of "{}" I "\<lambda>i. space (M i)" M] by (auto intro!: prod_algebraI i)
 | |
| 815 | have "\<And>i. A i = space (PiM I M)" | |
| 816 | by (auto simp: prod_emb_def space_PiM PiE_iff A_def i ex_in_conv[symmetric] exI) | |
| 817 | then show "(\<Union>i. A i) = (\<Pi>\<^sub>E i\<in>I. space (M i))" "\<And>i. emeasure P (A i) \<noteq> \<infinity>" | |
| 818 | by (auto simp: space_PiM) | |
| 819 | next | |
| 820 | fix X assume X: "X \<in> prod_algebra I M" | |
| 821 | then obtain J E where X: "X = prod_emb I M J (PIE j:J. E j)" | |
| 822 | and J: "finite J" "J \<subseteq> I" "\<And>j. j \<in> J \<Longrightarrow> E j \<in> sets (M j)" | |
| 823 | by (force elim!: prod_algebraE) | |
| 824 | then show "emeasure P X = emeasure Q X" | |
| 825 | by (auto intro!: eq) | |
| 826 | qed (auto simp: sets_PiM) | |
| 827 | ||
| 47694 | 828 | locale product_sigma_finite = | 
| 829 | fixes M :: "'i \<Rightarrow> 'a measure" | |
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 830 | assumes sigma_finite_measures: "\<And>i. sigma_finite_measure (M i)" | 
| 40859 | 831 | |
| 61565 
352c73a689da
Qualifiers in locale expressions default to mandatory regardless of the command.
 ballarin parents: 
61424diff
changeset | 832 | sublocale product_sigma_finite \<subseteq> M?: sigma_finite_measure "M i" for i | 
| 40859 | 833 | by (rule sigma_finite_measures) | 
| 834 | ||
| 47694 | 835 | locale finite_product_sigma_finite = product_sigma_finite M for M :: "'i \<Rightarrow> 'a measure" + | 
| 836 | fixes I :: "'i set" | |
| 837 | assumes finite_index: "finite I" | |
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 838 | |
| 40859 | 839 | lemma (in finite_product_sigma_finite) sigma_finite_pairs: | 
| 840 | "\<exists>F::'i \<Rightarrow> nat \<Rightarrow> 'a set. | |
| 841 | (\<forall>i\<in>I. range (F i) \<subseteq> sets (M i)) \<and> | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 842 | (\<forall>k. \<forall>i\<in>I. emeasure (M i) (F i k) \<noteq> \<infinity>) \<and> incseq (\<lambda>k. \<Pi>\<^sub>E i\<in>I. F i k) \<and> | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 843 | (\<Union>k. \<Pi>\<^sub>E i\<in>I. F i k) = space (PiM I M)" | 
| 40859 | 844 | proof - | 
| 47694 | 845 | have "\<forall>i::'i. \<exists>F::nat \<Rightarrow> 'a set. range F \<subseteq> sets (M i) \<and> incseq F \<and> (\<Union>i. F i) = space (M i) \<and> (\<forall>k. emeasure (M i) (F k) \<noteq> \<infinity>)" | 
| 846 | using M.sigma_finite_incseq by metis | |
| 40859 | 847 | from choice[OF this] guess F :: "'i \<Rightarrow> nat \<Rightarrow> 'a set" .. | 
| 47694 | 848 | then have F: "\<And>i. range (F i) \<subseteq> sets (M i)" "\<And>i. incseq (F i)" "\<And>i. (\<Union>j. F i j) = space (M i)" "\<And>i k. emeasure (M i) (F i k) \<noteq> \<infinity>" | 
| 40859 | 849 | by auto | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 850 | let ?F = "\<lambda>k. \<Pi>\<^sub>E i\<in>I. F i k" | 
| 47694 | 851 | note space_PiM[simp] | 
| 40859 | 852 | show ?thesis | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 853 | proof (intro exI[of _ F] conjI allI incseq_SucI set_eqI iffI ballI) | 
| 40859 | 854 | fix i show "range (F i) \<subseteq> sets (M i)" by fact | 
| 855 | next | |
| 47694 | 856 | fix i k show "emeasure (M i) (F i k) \<noteq> \<infinity>" by fact | 
| 40859 | 857 | next | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 858 | fix x assume "x \<in> (\<Union>i. ?F i)" with F(1) show "x \<in> space (PiM I M)" | 
| 50244 
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
 immler parents: 
50123diff
changeset | 859 | by (auto simp: PiE_def dest!: sets.sets_into_space) | 
| 40859 | 860 | next | 
| 47694 | 861 | fix f assume "f \<in> space (PiM I M)" | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 862 | with Pi_UN[OF finite_index, of "\<lambda>k i. F i k"] F | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 863 | show "f \<in> (\<Union>i. ?F i)" by (auto simp: incseq_def PiE_def) | 
| 40859 | 864 | next | 
| 865 | fix i show "?F i \<subseteq> ?F (Suc i)" | |
| 61808 | 866 | using \<open>\<And>i. incseq (F i)\<close>[THEN incseq_SucD] by auto | 
| 40859 | 867 | qed | 
| 868 | qed | |
| 869 | ||
| 49780 | 870 | lemma emeasure_PiM_empty[simp]: "emeasure (PiM {} M) {\<lambda>_. undefined} = 1"
 | 
| 871 | proof - | |
| 872 |   let ?\<mu> = "\<lambda>A. if A = {} then 0 else (1::ereal)"
 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 873 |   have "emeasure (Pi\<^sub>M {} M) (prod_emb {} M {} (\<Pi>\<^sub>E i\<in>{}. {})) = 1"
 | 
| 49780 | 874 | proof (subst emeasure_extend_measure_Pair[OF PiM_def]) | 
| 875 |     show "positive (PiM {} M) ?\<mu>"
 | |
| 876 | by (auto simp: positive_def) | |
| 877 |     show "countably_additive (PiM {} M) ?\<mu>"
 | |
| 50244 
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
 immler parents: 
50123diff
changeset | 878 | by (rule sets.countably_additiveI_finite) | 
| 49780 | 879 | (auto simp: additive_def positive_def sets_PiM_empty space_PiM_empty intro!: ) | 
| 880 | qed (auto simp: prod_emb_def) | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 881 |   also have "(prod_emb {} M {} (\<Pi>\<^sub>E i\<in>{}. {})) = {\<lambda>_. undefined}"
 | 
| 49780 | 882 | by (auto simp: prod_emb_def) | 
| 883 | finally show ?thesis | |
| 884 | by simp | |
| 885 | qed | |
| 886 | ||
| 887 | lemma PiM_empty: "PiM {} M = count_space {\<lambda>_. undefined}"
 | |
| 888 | by (rule measure_eqI) (auto simp add: sets_PiM_empty one_ereal_def) | |
| 889 | ||
| 49776 | 890 | lemma (in product_sigma_finite) emeasure_PiM: | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 891 | "finite I \<Longrightarrow> (\<And>i. i\<in>I \<Longrightarrow> A i \<in> sets (M i)) \<Longrightarrow> emeasure (PiM I M) (Pi\<^sub>E I A) = (\<Prod>i\<in>I. emeasure (M i) (A i))" | 
| 49776 | 892 | proof (induct I arbitrary: A rule: finite_induct) | 
| 40859 | 893 | case (insert i I) | 
| 61169 | 894 | interpret finite_product_sigma_finite M I by standard fact | 
| 61808 | 895 | have "finite (insert i I)" using \<open>finite I\<close> by auto | 
| 61169 | 896 | interpret I': finite_product_sigma_finite M "insert i I" by standard fact | 
| 41661 | 897 | let ?h = "(\<lambda>(f, y). f(i := y))" | 
| 47694 | 898 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 899 | let ?P = "distr (Pi\<^sub>M I M \<Otimes>\<^sub>M M i) (Pi\<^sub>M (insert i I) M) ?h" | 
| 47694 | 900 | let ?\<mu> = "emeasure ?P" | 
| 901 |   let ?I = "{j \<in> insert i I. emeasure (M j) (space (M j)) \<noteq> 1}"
 | |
| 902 | let ?f = "\<lambda>J E j. if j \<in> J then emeasure (M j) (E j) else emeasure (M j) (space (M j))" | |
| 903 | ||
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 904 | have "emeasure (Pi\<^sub>M (insert i I) M) (prod_emb (insert i I) M (insert i I) (Pi\<^sub>E (insert i I) A)) = | 
| 49776 | 905 | (\<Prod>i\<in>insert i I. emeasure (M i) (A i))" | 
| 906 | proof (subst emeasure_extend_measure_Pair[OF PiM_def]) | |
| 907 |     fix J E assume "(J \<noteq> {} \<or> insert i I = {}) \<and> finite J \<and> J \<subseteq> insert i I \<and> E \<in> (\<Pi> j\<in>J. sets (M j))"
 | |
| 908 |     then have J: "J \<noteq> {}" "finite J" "J \<subseteq> insert i I" and E: "\<forall>j\<in>J. E j \<in> sets (M j)" by auto
 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 909 | let ?p = "prod_emb (insert i I) M J (Pi\<^sub>E J E)" | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 910 |     let ?p' = "prod_emb I M (J - {i}) (\<Pi>\<^sub>E j\<in>J-{i}. E j)"
 | 
| 49776 | 911 | have "?\<mu> ?p = | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 912 | emeasure (Pi\<^sub>M I M \<Otimes>\<^sub>M (M i)) (?h -` ?p \<inter> space (Pi\<^sub>M I M \<Otimes>\<^sub>M M i))" | 
| 49776 | 913 | by (intro emeasure_distr measurable_add_dim sets_PiM_I) fact+ | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 914 | also have "?h -` ?p \<inter> space (Pi\<^sub>M I M \<Otimes>\<^sub>M M i) = ?p' \<times> (if i \<in> J then E i else space (M i))" | 
| 50244 
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
 immler parents: 
50123diff
changeset | 915 | using J E[rule_format, THEN sets.sets_into_space] | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 916 | by (force simp: space_pair_measure space_PiM prod_emb_iff PiE_def Pi_iff split: split_if_asm) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 917 | also have "emeasure (Pi\<^sub>M I M \<Otimes>\<^sub>M (M i)) (?p' \<times> (if i \<in> J then E i else space (M i))) = | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 918 | emeasure (Pi\<^sub>M I M) ?p' * emeasure (M i) (if i \<in> J then (E i) else space (M i))" | 
| 49776 | 919 | using J E by (intro M.emeasure_pair_measure_Times sets_PiM_I) auto | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 920 |     also have "?p' = (\<Pi>\<^sub>E j\<in>I. if j \<in> J-{i} then E j else space (M j))"
 | 
| 50244 
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
 immler parents: 
50123diff
changeset | 921 | using J E[rule_format, THEN sets.sets_into_space] | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 922 | by (auto simp: prod_emb_iff PiE_def Pi_iff split: split_if_asm) blast+ | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 923 |     also have "emeasure (Pi\<^sub>M I M) (\<Pi>\<^sub>E j\<in>I. if j \<in> J-{i} then E j else space (M j)) =
 | 
| 49776 | 924 |       (\<Prod> j\<in>I. if j \<in> J-{i} then emeasure (M j) (E j) else emeasure (M j) (space (M j)))"
 | 
| 57418 | 925 | using E by (subst insert) (auto intro!: setprod.cong) | 
| 49776 | 926 |     also have "(\<Prod>j\<in>I. if j \<in> J - {i} then emeasure (M j) (E j) else emeasure (M j) (space (M j))) *
 | 
| 927 | emeasure (M i) (if i \<in> J then E i else space (M i)) = (\<Prod>j\<in>insert i I. ?f J E j)" | |
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
57447diff
changeset | 928 | using insert by (auto simp: mult.commute intro!: arg_cong2[where f="op *"] setprod.cong) | 
| 49776 | 929 | also have "\<dots> = (\<Prod>j\<in>J \<union> ?I. ?f J E j)" | 
| 57418 | 930 | using insert(1,2) J E by (intro setprod.mono_neutral_right) auto | 
| 49776 | 931 | finally show "?\<mu> ?p = \<dots>" . | 
| 47694 | 932 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 933 | show "prod_emb (insert i I) M J (Pi\<^sub>E J E) \<in> Pow (\<Pi>\<^sub>E i\<in>insert i I. space (M i))" | 
| 50244 
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
 immler parents: 
50123diff
changeset | 934 | using J E[rule_format, THEN sets.sets_into_space] by (auto simp: prod_emb_iff PiE_def) | 
| 49776 | 935 | next | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 936 | show "positive (sets (Pi\<^sub>M (insert i I) M)) ?\<mu>" "countably_additive (sets (Pi\<^sub>M (insert i I) M)) ?\<mu>" | 
| 49776 | 937 | using emeasure_positive[of ?P] emeasure_countably_additive[of ?P] by simp_all | 
| 938 | next | |
| 939 |     show "(insert i I \<noteq> {} \<or> insert i I = {}) \<and> finite (insert i I) \<and>
 | |
| 940 | insert i I \<subseteq> insert i I \<and> A \<in> (\<Pi> j\<in>insert i I. sets (M j))" | |
| 941 | using insert by auto | |
| 57418 | 942 | qed (auto intro!: setprod.cong) | 
| 49776 | 943 | with insert show ?case | 
| 50244 
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
 immler parents: 
50123diff
changeset | 944 | by (subst (asm) prod_emb_PiE_same_index) (auto intro!: sets.sets_into_space) | 
| 50003 | 945 | qed simp | 
| 47694 | 946 | |
| 61359 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 947 | lemma (in product_sigma_finite) PiM_eqI: | 
| 61362 | 948 | assumes I[simp]: "finite I" and P: "sets P = PiM I M" | 
| 61359 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 949 | assumes eq: "\<And>A. (\<And>i. i \<in> I \<Longrightarrow> A i \<in> sets (M i)) \<Longrightarrow> P (Pi\<^sub>E I A) = (\<Prod>i\<in>I. emeasure (M i) (A i))" | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 950 | shows "P = PiM I M" | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 951 | proof - | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 952 | interpret finite_product_sigma_finite M I | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 953 | proof qed fact | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 954 | from sigma_finite_pairs guess C .. note C = this | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 955 | show ?thesis | 
| 61362 | 956 | proof (rule measure_eqI_PiM_finite[OF I refl P, symmetric]) | 
| 957 | show "(\<And>i. i \<in> I \<Longrightarrow> A i \<in> sets (M i)) \<Longrightarrow> (Pi\<^sub>M I M) (Pi\<^sub>E I A) = P (Pi\<^sub>E I A)" for A | |
| 958 | by (simp add: eq emeasure_PiM) | |
| 61359 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 959 | def A \<equiv> "\<lambda>n. \<Pi>\<^sub>E i\<in>I. C i n" | 
| 61362 | 960 | with C show "range A \<subseteq> prod_algebra I M" "\<And>i. emeasure (Pi\<^sub>M I M) (A i) \<noteq> \<infinity>" "(\<Union>i. A i) = space (PiM I M)" | 
| 961 | by (auto intro!: prod_algebraI_finite simp: emeasure_PiM subset_eq setprod_PInf emeasure_nonneg) | |
| 61359 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 962 | qed | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 963 | qed | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 964 | |
| 49776 | 965 | lemma (in product_sigma_finite) sigma_finite: | 
| 966 | assumes "finite I" | |
| 967 | shows "sigma_finite_measure (PiM I M)" | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 968 | proof | 
| 61169 | 969 | interpret finite_product_sigma_finite M I by standard fact | 
| 49776 | 970 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 971 | obtain F where F: "\<And>j. countable (F j)" "\<And>j f. f \<in> F j \<Longrightarrow> f \<in> sets (M j)" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 972 | "\<And>j f. f \<in> F j \<Longrightarrow> emeasure (M j) f \<noteq> \<infinity>" and | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 973 | in_space: "\<And>j. space (M j) = (\<Union>F j)" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 974 | using sigma_finite_countable by (metis subset_eq) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 975 | moreover have "(\<Union>(PiE I ` PiE I F)) = space (Pi\<^sub>M I M)" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 976 | using in_space by (auto simp: space_PiM PiE_iff intro!: PiE_choice[THEN iffD2]) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 977 | ultimately show "\<exists>A. countable A \<and> A \<subseteq> sets (Pi\<^sub>M I M) \<and> \<Union>A = space (Pi\<^sub>M I M) \<and> (\<forall>a\<in>A. emeasure (Pi\<^sub>M I M) a \<noteq> \<infinity>)" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 978 | by (intro exI[of _ "PiE I ` PiE I F"]) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 979 | (auto intro!: countable_PiE sets_PiM_I_finite | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 980 | simp: PiE_iff emeasure_PiM finite_index setprod_PInf emeasure_nonneg) | 
| 40859 | 981 | qed | 
| 982 | ||
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 983 | sublocale finite_product_sigma_finite \<subseteq> sigma_finite_measure "Pi\<^sub>M I M" | 
| 47694 | 984 | using sigma_finite[OF finite_index] . | 
| 40859 | 985 | |
| 986 | lemma (in finite_product_sigma_finite) measure_times: | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 987 | "(\<And>i. i \<in> I \<Longrightarrow> A i \<in> sets (M i)) \<Longrightarrow> emeasure (Pi\<^sub>M I M) (Pi\<^sub>E I A) = (\<Prod>i\<in>I. emeasure (M i) (A i))" | 
| 47694 | 988 | using emeasure_PiM[OF finite_index] by auto | 
| 41096 | 989 | |
| 56996 | 990 | lemma (in product_sigma_finite) nn_integral_empty: | 
| 61359 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 991 |   "0 \<le> f (\<lambda>k. undefined) \<Longrightarrow> integral\<^sup>N (Pi\<^sub>M {} M) f = f (\<lambda>k. undefined)"
 | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 992 | by (simp add: PiM_empty nn_integral_count_space_finite max.absorb2) | 
| 40859 | 993 | |
| 47694 | 994 | lemma (in product_sigma_finite) distr_merge: | 
| 40859 | 995 |   assumes IJ[simp]: "I \<inter> J = {}" and fin: "finite I" "finite J"
 | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 996 | shows "distr (Pi\<^sub>M I M \<Otimes>\<^sub>M Pi\<^sub>M J M) (Pi\<^sub>M (I \<union> J) M) (merge I J) = Pi\<^sub>M (I \<union> J) M" | 
| 47694 | 997 | (is "?D = ?P") | 
| 61359 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 998 | proof (rule PiM_eqI) | 
| 61169 | 999 | interpret I: finite_product_sigma_finite M I by standard fact | 
| 1000 | interpret J: finite_product_sigma_finite M J by standard fact | |
| 61359 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 1001 | fix A assume A: "\<And>i. i \<in> I \<union> J \<Longrightarrow> A i \<in> sets (M i)" | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 1002 | have *: "(merge I J -` Pi\<^sub>E (I \<union> J) A \<inter> space (Pi\<^sub>M I M \<Otimes>\<^sub>M Pi\<^sub>M J M)) = PiE I A \<times> PiE J A" | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 1003 | using A[THEN sets.sets_into_space] by (auto simp: space_PiM space_pair_measure) | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 1004 | from A fin show "emeasure (distr (Pi\<^sub>M I M \<Otimes>\<^sub>M Pi\<^sub>M J M) (Pi\<^sub>M (I \<union> J) M) (merge I J)) (Pi\<^sub>E (I \<union> J) A) = | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 1005 | (\<Prod>i\<in>I \<union> J. emeasure (M i) (A i))" | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 1006 | by (subst emeasure_distr) | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 1007 | (auto simp: * J.emeasure_pair_measure_Times I.measure_times J.measure_times setprod.union_disjoint) | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 1008 | qed (insert fin, simp_all) | 
| 41026 
bea75746dc9d
folding on arbitrary Lebesgue integrable functions
 hoelzl parents: 
41023diff
changeset | 1009 | |
| 56996 | 1010 | lemma (in product_sigma_finite) product_nn_integral_fold: | 
| 47694 | 1011 |   assumes IJ: "I \<inter> J = {}" "finite I" "finite J"
 | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 1012 | and f: "f \<in> borel_measurable (Pi\<^sub>M (I \<union> J) M)" | 
| 56996 | 1013 | shows "integral\<^sup>N (Pi\<^sub>M (I \<union> J) M) f = | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 1014 | (\<integral>\<^sup>+ x. (\<integral>\<^sup>+ y. f (merge I J (x, y)) \<partial>(Pi\<^sub>M J M)) \<partial>(Pi\<^sub>M I M))" | 
| 41026 
bea75746dc9d
folding on arbitrary Lebesgue integrable functions
 hoelzl parents: 
41023diff
changeset | 1015 | proof - | 
| 61169 | 1016 | interpret I: finite_product_sigma_finite M I by standard fact | 
| 1017 | interpret J: finite_product_sigma_finite M J by standard fact | |
| 1018 | interpret P: pair_sigma_finite "Pi\<^sub>M I M" "Pi\<^sub>M J M" by standard | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 1019 | have P_borel: "(\<lambda>x. f (merge I J x)) \<in> borel_measurable (Pi\<^sub>M I M \<Otimes>\<^sub>M Pi\<^sub>M J M)" | 
| 49776 | 1020 | using measurable_comp[OF measurable_merge f] by (simp add: comp_def) | 
| 41661 | 1021 | show ?thesis | 
| 47694 | 1022 | apply (subst distr_merge[OF IJ, symmetric]) | 
| 56996 | 1023 | apply (subst nn_integral_distr[OF measurable_merge f]) | 
| 1024 | apply (subst J.nn_integral_fst[symmetric, OF P_borel]) | |
| 47694 | 1025 | apply simp | 
| 1026 | done | |
| 40859 | 1027 | qed | 
| 1028 | ||
| 47694 | 1029 | lemma (in product_sigma_finite) distr_singleton: | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 1030 |   "distr (Pi\<^sub>M {i} M) (M i) (\<lambda>x. x i) = M i" (is "?D = _")
 | 
| 47694 | 1031 | proof (intro measure_eqI[symmetric]) | 
| 61169 | 1032 |   interpret I: finite_product_sigma_finite M "{i}" by standard simp
 | 
| 47694 | 1033 | fix A assume A: "A \<in> sets (M i)" | 
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53015diff
changeset | 1034 |   then have "(\<lambda>x. x i) -` A \<inter> space (Pi\<^sub>M {i} M) = (\<Pi>\<^sub>E i\<in>{i}. A)"
 | 
| 50244 
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
 immler parents: 
50123diff
changeset | 1035 | using sets.sets_into_space by (auto simp: space_PiM) | 
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53015diff
changeset | 1036 | then show "emeasure (M i) A = emeasure ?D A" | 
| 47694 | 1037 | using A I.measure_times[of "\<lambda>_. A"] | 
| 1038 | by (simp add: emeasure_distr measurable_component_singleton) | |
| 1039 | qed simp | |
| 41831 | 1040 | |
| 56996 | 1041 | lemma (in product_sigma_finite) product_nn_integral_singleton: | 
| 40859 | 1042 | assumes f: "f \<in> borel_measurable (M i)" | 
| 56996 | 1043 |   shows "integral\<^sup>N (Pi\<^sub>M {i} M) (\<lambda>x. f (x i)) = integral\<^sup>N (M i) f"
 | 
| 40859 | 1044 | proof - | 
| 61169 | 1045 |   interpret I: finite_product_sigma_finite M "{i}" by standard simp
 | 
| 47694 | 1046 | from f show ?thesis | 
| 1047 | apply (subst distr_singleton[symmetric]) | |
| 56996 | 1048 | apply (subst nn_integral_distr[OF measurable_component_singleton]) | 
| 47694 | 1049 | apply simp_all | 
| 1050 | done | |
| 40859 | 1051 | qed | 
| 1052 | ||
| 56996 | 1053 | lemma (in product_sigma_finite) product_nn_integral_insert: | 
| 49780 | 1054 | assumes I[simp]: "finite I" "i \<notin> I" | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 1055 | and f: "f \<in> borel_measurable (Pi\<^sub>M (insert i I) M)" | 
| 56996 | 1056 | shows "integral\<^sup>N (Pi\<^sub>M (insert i I) M) f = (\<integral>\<^sup>+ x. (\<integral>\<^sup>+ y. f (x(i := y)) \<partial>(M i)) \<partial>(Pi\<^sub>M I M))" | 
| 41096 | 1057 | proof - | 
| 61169 | 1058 | interpret I: finite_product_sigma_finite M I by standard auto | 
| 1059 |   interpret i: finite_product_sigma_finite M "{i}" by standard auto
 | |
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 1060 |   have IJ: "I \<inter> {i} = {}" and insert: "I \<union> {i} = insert i I"
 | 
| 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 1061 | using f by auto | 
| 41096 | 1062 | show ?thesis | 
| 56996 | 1063 | unfolding product_nn_integral_fold[OF IJ, unfolded insert, OF I(1) i.finite_index f] | 
| 1064 | proof (rule nn_integral_cong, subst product_nn_integral_singleton[symmetric]) | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 1065 | fix x assume x: "x \<in> space (Pi\<^sub>M I M)" | 
| 49780 | 1066 | let ?f = "\<lambda>y. f (x(i := y))" | 
| 1067 | show "?f \<in> borel_measurable (M i)" | |
| 61808 | 1068 | using measurable_comp[OF measurable_component_update f, OF x \<open>i \<notin> I\<close>] | 
| 47694 | 1069 | unfolding comp_def . | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 1070 |     show "(\<integral>\<^sup>+ y. f (merge I {i} (x, y)) \<partial>Pi\<^sub>M {i} M) = (\<integral>\<^sup>+ y. f (x(i := y i)) \<partial>Pi\<^sub>M {i} M)"
 | 
| 49780 | 1071 | using x | 
| 56996 | 1072 | by (auto intro!: nn_integral_cong arg_cong[where f=f] | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 1073 | simp add: space_PiM extensional_def PiE_def) | 
| 41096 | 1074 | qed | 
| 1075 | qed | |
| 1076 | ||
| 59425 | 1077 | lemma (in product_sigma_finite) product_nn_integral_insert_rev: | 
| 1078 | assumes I[simp]: "finite I" "i \<notin> I" | |
| 1079 | and [measurable]: "f \<in> borel_measurable (Pi\<^sub>M (insert i I) M)" | |
| 1080 | shows "integral\<^sup>N (Pi\<^sub>M (insert i I) M) f = (\<integral>\<^sup>+ y. (\<integral>\<^sup>+ x. f (x(i := y)) \<partial>(Pi\<^sub>M I M)) \<partial>(M i))" | |
| 1081 | apply (subst product_nn_integral_insert[OF assms]) | |
| 1082 | apply (rule pair_sigma_finite.Fubini') | |
| 1083 | apply intro_locales [] | |
| 1084 | apply (rule sigma_finite[OF I(1)]) | |
| 1085 | apply measurable | |
| 1086 | done | |
| 1087 | ||
| 56996 | 1088 | lemma (in product_sigma_finite) product_nn_integral_setprod: | 
| 43920 | 1089 | fixes f :: "'i \<Rightarrow> 'a \<Rightarrow> ereal" | 
| 41096 | 1090 | assumes "finite I" and borel: "\<And>i. i \<in> I \<Longrightarrow> f i \<in> borel_measurable (M i)" | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 1091 | and pos: "\<And>i x. i \<in> I \<Longrightarrow> 0 \<le> f i x" | 
| 56996 | 1092 | shows "(\<integral>\<^sup>+ x. (\<Prod>i\<in>I. f i (x i)) \<partial>Pi\<^sub>M I M) = (\<Prod>i\<in>I. integral\<^sup>N (M i) (f i))" | 
| 41096 | 1093 | using assms proof induct | 
| 1094 | case (insert i I) | |
| 61808 | 1095 | note \<open>finite I\<close>[intro, simp] | 
| 61169 | 1096 | interpret I: finite_product_sigma_finite M I by standard auto | 
| 41096 | 1097 | have *: "\<And>x y. (\<Prod>j\<in>I. f j (if j = i then y else x j)) = (\<Prod>j\<in>I. f j (x j))" | 
| 57418 | 1098 | using insert by (auto intro!: setprod.cong) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 1099 | have prod: "\<And>J. J \<subseteq> insert i I \<Longrightarrow> (\<lambda>x. (\<Prod>i\<in>J. f i (x i))) \<in> borel_measurable (Pi\<^sub>M J M)" | 
| 50244 
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
 immler parents: 
50123diff
changeset | 1100 | using sets.sets_into_space insert | 
| 47694 | 1101 | by (intro borel_measurable_ereal_setprod | 
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 1102 | measurable_comp[OF measurable_component_singleton, unfolded comp_def]) | 
| 41096 | 1103 | auto | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 1104 | then show ?case | 
| 56996 | 1105 | apply (simp add: product_nn_integral_insert[OF insert(1,2) prod]) | 
| 1106 | apply (simp add: insert(2-) * pos borel setprod_ereal_pos nn_integral_multc) | |
| 1107 | apply (subst nn_integral_cmult) | |
| 1108 | apply (auto simp add: pos borel insert(2-) setprod_ereal_pos nn_integral_nonneg) | |
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 1109 | done | 
| 47694 | 1110 | qed (simp add: space_PiM) | 
| 41096 | 1111 | |
| 59425 | 1112 | lemma (in product_sigma_finite) product_nn_integral_pair: | 
| 61424 
c3658c18b7bc
prod_case as canonical name for product type eliminator
 haftmann parents: 
61378diff
changeset | 1113 | assumes [measurable]: "case_prod f \<in> borel_measurable (M x \<Otimes>\<^sub>M M y)" | 
| 59425 | 1114 | assumes xy: "x \<noteq> y" | 
| 1115 |   shows "(\<integral>\<^sup>+\<sigma>. f (\<sigma> x) (\<sigma> y) \<partial>PiM {x, y} M) = (\<integral>\<^sup>+z. f (fst z) (snd z) \<partial>(M x \<Otimes>\<^sub>M M y))"
 | |
| 1116 | proof- | |
| 1117 | interpret psm: pair_sigma_finite "M x" "M y" | |
| 1118 | unfolding pair_sigma_finite_def using sigma_finite_measures by simp_all | |
| 1119 |   have "{x, y} = {y, x}" by auto
 | |
| 1120 |   also have "(\<integral>\<^sup>+\<sigma>. f (\<sigma> x) (\<sigma> y) \<partial>PiM {y, x} M) = (\<integral>\<^sup>+y. \<integral>\<^sup>+\<sigma>. f (\<sigma> x) y \<partial>PiM {x} M \<partial>M y)"
 | |
| 1121 | using xy by (subst product_nn_integral_insert_rev) simp_all | |
| 1122 | also have "... = (\<integral>\<^sup>+y. \<integral>\<^sup>+x. f x y \<partial>M x \<partial>M y)" | |
| 1123 | by (intro nn_integral_cong, subst product_nn_integral_singleton) simp_all | |
| 1124 | also have "... = (\<integral>\<^sup>+z. f (fst z) (snd z) \<partial>(M x \<Otimes>\<^sub>M M y))" | |
| 1125 | by (subst psm.nn_integral_snd[symmetric]) simp_all | |
| 1126 | finally show ?thesis . | |
| 1127 | qed | |
| 1128 | ||
| 50104 | 1129 | lemma (in product_sigma_finite) distr_component: | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 1130 |   "distr (M i) (Pi\<^sub>M {i} M) (\<lambda>x. \<lambda>i\<in>{i}. x) = Pi\<^sub>M {i} M" (is "?D = ?P")
 | 
| 61359 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 1131 | proof (intro PiM_eqI) | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 1132 |   fix A assume "\<And>ia. ia \<in> {i} \<Longrightarrow> A ia \<in> sets (M ia)"
 | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 1133 |   moreover then have "(\<lambda>x. \<lambda>i\<in>{i}. x) -` Pi\<^sub>E {i} A \<inter> space (M i) = A i"
 | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 1134 | by (auto dest: sets.sets_into_space) | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 1135 |   ultimately show "emeasure (distr (M i) (Pi\<^sub>M {i} M) (\<lambda>x. \<lambda>i\<in>{i}. x)) (Pi\<^sub>E {i} A) = (\<Prod>i\<in>{i}. emeasure (M i) (A i))"
 | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 1136 | by (subst emeasure_distr) (auto intro!: sets_PiM_I_finite measurable_restrict) | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 1137 | qed simp_all | 
| 41026 
bea75746dc9d
folding on arbitrary Lebesgue integrable functions
 hoelzl parents: 
41023diff
changeset | 1138 | |
| 49776 | 1139 | lemma (in product_sigma_finite) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 1140 |   assumes IJ: "I \<inter> J = {}" "finite I" "finite J" and A: "A \<in> sets (Pi\<^sub>M (I \<union> J) M)"
 | 
| 49776 | 1141 | shows emeasure_fold_integral: | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 1142 | "emeasure (Pi\<^sub>M (I \<union> J) M) A = (\<integral>\<^sup>+x. emeasure (Pi\<^sub>M J M) ((\<lambda>y. merge I J (x, y)) -` A \<inter> space (Pi\<^sub>M J M)) \<partial>Pi\<^sub>M I M)" (is ?I) | 
| 49776 | 1143 | and emeasure_fold_measurable: | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 1144 | "(\<lambda>x. emeasure (Pi\<^sub>M J M) ((\<lambda>y. merge I J (x, y)) -` A \<inter> space (Pi\<^sub>M J M))) \<in> borel_measurable (Pi\<^sub>M I M)" (is ?B) | 
| 49776 | 1145 | proof - | 
| 61169 | 1146 | interpret I: finite_product_sigma_finite M I by standard fact | 
| 1147 | interpret J: finite_product_sigma_finite M J by standard fact | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 1148 | interpret IJ: pair_sigma_finite "Pi\<^sub>M I M" "Pi\<^sub>M J M" .. | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 1149 | have merge: "merge I J -` A \<inter> space (Pi\<^sub>M I M \<Otimes>\<^sub>M Pi\<^sub>M J M) \<in> sets (Pi\<^sub>M I M \<Otimes>\<^sub>M Pi\<^sub>M J M)" | 
| 49776 | 1150 | by (intro measurable_sets[OF _ A] measurable_merge assms) | 
| 1151 | ||
| 1152 | show ?I | |
| 1153 | apply (subst distr_merge[symmetric, OF IJ]) | |
| 1154 | apply (subst emeasure_distr[OF measurable_merge A]) | |
| 1155 | apply (subst J.emeasure_pair_measure_alt[OF merge]) | |
| 56996 | 1156 | apply (auto intro!: nn_integral_cong arg_cong2[where f=emeasure] simp: space_pair_measure) | 
| 49776 | 1157 | done | 
| 1158 | ||
| 1159 | show ?B | |
| 1160 | using IJ.measurable_emeasure_Pair1[OF merge] | |
| 56154 
f0a927235162
more complete set of lemmas wrt. image and composition
 haftmann parents: 
55415diff
changeset | 1161 | by (simp add: vimage_comp comp_def space_pair_measure cong: measurable_cong) | 
| 49776 | 1162 | qed | 
| 1163 | ||
| 1164 | lemma sets_Collect_single: | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 1165 |   "i \<in> I \<Longrightarrow> A \<in> sets (M i) \<Longrightarrow> { x \<in> space (Pi\<^sub>M I M). x i \<in> A } \<in> sets (Pi\<^sub>M I M)"
 | 
| 50003 | 1166 | by simp | 
| 49776 | 1167 | |
| 50104 | 1168 | lemma pair_measure_eq_distr_PiM: | 
| 1169 | fixes M1 :: "'a measure" and M2 :: "'a measure" | |
| 1170 | assumes "sigma_finite_measure M1" "sigma_finite_measure M2" | |
| 55414 
eab03e9cee8a
renamed '{prod,sum,bool,unit}_case' to 'case_...'
 blanchet parents: 
53374diff
changeset | 1171 | shows "(M1 \<Otimes>\<^sub>M M2) = distr (Pi\<^sub>M UNIV (case_bool M1 M2)) (M1 \<Otimes>\<^sub>M M2) (\<lambda>x. (x True, x False))" | 
| 50104 | 1172 | (is "?P = ?D") | 
| 1173 | proof (rule pair_measure_eqI[OF assms]) | |
| 55414 
eab03e9cee8a
renamed '{prod,sum,bool,unit}_case' to 'case_...'
 blanchet parents: 
53374diff
changeset | 1174 | interpret B: product_sigma_finite "case_bool M1 M2" | 
| 50104 | 1175 | unfolding product_sigma_finite_def using assms by (auto split: bool.split) | 
| 55414 
eab03e9cee8a
renamed '{prod,sum,bool,unit}_case' to 'case_...'
 blanchet parents: 
53374diff
changeset | 1176 | let ?B = "Pi\<^sub>M UNIV (case_bool M1 M2)" | 
| 50104 | 1177 | |
| 1178 | have [simp]: "fst \<circ> (\<lambda>x. (x True, x False)) = (\<lambda>x. x True)" "snd \<circ> (\<lambda>x. (x True, x False)) = (\<lambda>x. x False)" | |
| 1179 | by auto | |
| 1180 | fix A B assume A: "A \<in> sets M1" and B: "B \<in> sets M2" | |
| 55414 
eab03e9cee8a
renamed '{prod,sum,bool,unit}_case' to 'case_...'
 blanchet parents: 
53374diff
changeset | 1181 | have "emeasure M1 A * emeasure M2 B = (\<Prod> i\<in>UNIV. emeasure (case_bool M1 M2 i) (case_bool A B i))" | 
| 50104 | 1182 | by (simp add: UNIV_bool ac_simps) | 
| 55414 
eab03e9cee8a
renamed '{prod,sum,bool,unit}_case' to 'case_...'
 blanchet parents: 
53374diff
changeset | 1183 | also have "\<dots> = emeasure ?B (Pi\<^sub>E UNIV (case_bool A B))" | 
| 50104 | 1184 | using A B by (subst B.emeasure_PiM) (auto split: bool.split) | 
| 55414 
eab03e9cee8a
renamed '{prod,sum,bool,unit}_case' to 'case_...'
 blanchet parents: 
53374diff
changeset | 1185 | also have "Pi\<^sub>E UNIV (case_bool A B) = (\<lambda>x. (x True, x False)) -` (A \<times> B) \<inter> space ?B" | 
| 50244 
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
 immler parents: 
50123diff
changeset | 1186 | using A[THEN sets.sets_into_space] B[THEN sets.sets_into_space] | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 1187 | by (auto simp: PiE_iff all_bool_eq space_PiM split: bool.split) | 
| 50104 | 1188 | finally show "emeasure M1 A * emeasure M2 B = emeasure ?D (A \<times> B)" | 
| 1189 | using A B | |
| 55414 
eab03e9cee8a
renamed '{prod,sum,bool,unit}_case' to 'case_...'
 blanchet parents: 
53374diff
changeset | 1190 | measurable_component_singleton[of True UNIV "case_bool M1 M2"] | 
| 
eab03e9cee8a
renamed '{prod,sum,bool,unit}_case' to 'case_...'
 blanchet parents: 
53374diff
changeset | 1191 | measurable_component_singleton[of False UNIV "case_bool M1 M2"] | 
| 50104 | 1192 | by (subst emeasure_distr) (auto simp: measurable_pair_iff) | 
| 1193 | qed simp | |
| 1194 | ||
| 47694 | 1195 | end |