author | hoelzl |
Thu, 22 Jan 2015 14:51:08 +0100 | |
changeset 59425 | c5e79df8cc21 |
parent 59353 | f0707dc3d9aa |
child 60580 | 7e741e22d7fc |
permissions | -rw-r--r-- |
42146
5b52c6a9c627
split Product_Measure into Binary_Product_Measure and Finite_Product_Measure
hoelzl
parents:
42067
diff
changeset
|
1 |
(* Title: HOL/Probability/Finite_Product_Measure.thy |
42067 | 2 |
Author: Johannes Hölzl, TU München |
3 |
*) |
|
4 |
||
58876 | 5 |
section {*Finite product measures*} |
42067 | 6 |
|
42146
5b52c6a9c627
split Product_Measure into Binary_Product_Measure and Finite_Product_Measure
hoelzl
parents:
42067
diff
changeset
|
7 |
theory Finite_Product_Measure |
5b52c6a9c627
split Product_Measure into Binary_Product_Measure and Finite_Product_Measure
hoelzl
parents:
42067
diff
changeset
|
8 |
imports Binary_Product_Measure |
35833 | 9 |
begin |
10 |
||
57447
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents:
57418
diff
changeset
|
11 |
lemma PiE_choice: "(\<exists>f\<in>PiE I F. \<forall>i\<in>I. P i (f i)) \<longleftrightarrow> (\<forall>i\<in>I. \<exists>x\<in>F i. P i x)" |
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents:
57418
diff
changeset
|
12 |
by (auto simp: Bex_def PiE_iff Ball_def dest!: choice_iff'[THEN iffD1]) |
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents:
57418
diff
changeset
|
13 |
(force intro: exI[of _ "restrict f I" for f]) |
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents:
57418
diff
changeset
|
14 |
|
47694 | 15 |
lemma split_const: "(\<lambda>(i, j). c) = (\<lambda>_. c)" |
16 |
by auto |
|
17 |
||
56994 | 18 |
subsubsection {* More about Function restricted by @{const extensional} *} |
50038 | 19 |
|
35833 | 20 |
definition |
49780 | 21 |
"merge I J = (\<lambda>(x, y) i. if i \<in> I then x i else if i \<in> J then y i else undefined)" |
40859 | 22 |
|
23 |
lemma merge_apply[simp]: |
|
49780 | 24 |
"I \<inter> J = {} \<Longrightarrow> i \<in> I \<Longrightarrow> merge I J (x, y) i = x i" |
25 |
"I \<inter> J = {} \<Longrightarrow> i \<in> J \<Longrightarrow> merge I J (x, y) i = y i" |
|
26 |
"J \<inter> I = {} \<Longrightarrow> i \<in> I \<Longrightarrow> merge I J (x, y) i = x i" |
|
27 |
"J \<inter> I = {} \<Longrightarrow> i \<in> J \<Longrightarrow> merge I J (x, y) i = y i" |
|
28 |
"i \<notin> I \<Longrightarrow> i \<notin> J \<Longrightarrow> merge I J (x, y) i = undefined" |
|
40859 | 29 |
unfolding merge_def by auto |
30 |
||
31 |
lemma merge_commute: |
|
49780 | 32 |
"I \<inter> J = {} \<Longrightarrow> merge I J (x, y) = merge J I (y, x)" |
50003 | 33 |
by (force simp: merge_def) |
40859 | 34 |
|
35 |
lemma Pi_cancel_merge_range[simp]: |
|
49780 | 36 |
"I \<inter> J = {} \<Longrightarrow> x \<in> Pi I (merge I J (A, B)) \<longleftrightarrow> x \<in> Pi I A" |
37 |
"I \<inter> J = {} \<Longrightarrow> x \<in> Pi I (merge J I (B, A)) \<longleftrightarrow> x \<in> Pi I A" |
|
38 |
"J \<inter> I = {} \<Longrightarrow> x \<in> Pi I (merge I J (A, B)) \<longleftrightarrow> x \<in> Pi I A" |
|
39 |
"J \<inter> I = {} \<Longrightarrow> x \<in> Pi I (merge J I (B, A)) \<longleftrightarrow> x \<in> Pi I A" |
|
40859 | 40 |
by (auto simp: Pi_def) |
41 |
||
42 |
lemma Pi_cancel_merge[simp]: |
|
49780 | 43 |
"I \<inter> J = {} \<Longrightarrow> merge I J (x, y) \<in> Pi I B \<longleftrightarrow> x \<in> Pi I B" |
44 |
"J \<inter> I = {} \<Longrightarrow> merge I J (x, y) \<in> Pi I B \<longleftrightarrow> x \<in> Pi I B" |
|
45 |
"I \<inter> J = {} \<Longrightarrow> merge I J (x, y) \<in> Pi J B \<longleftrightarrow> y \<in> Pi J B" |
|
46 |
"J \<inter> I = {} \<Longrightarrow> merge I J (x, y) \<in> Pi J B \<longleftrightarrow> y \<in> Pi J B" |
|
40859 | 47 |
by (auto simp: Pi_def) |
48 |
||
49780 | 49 |
lemma extensional_merge[simp]: "merge I J (x, y) \<in> extensional (I \<union> J)" |
40859 | 50 |
by (auto simp: extensional_def) |
51 |
||
52 |
lemma restrict_merge[simp]: |
|
49780 | 53 |
"I \<inter> J = {} \<Longrightarrow> restrict (merge I J (x, y)) I = restrict x I" |
54 |
"I \<inter> J = {} \<Longrightarrow> restrict (merge I J (x, y)) J = restrict y J" |
|
55 |
"J \<inter> I = {} \<Longrightarrow> restrict (merge I J (x, y)) I = restrict x I" |
|
56 |
"J \<inter> I = {} \<Longrightarrow> restrict (merge I J (x, y)) J = restrict y J" |
|
47694 | 57 |
by (auto simp: restrict_def) |
40859 | 58 |
|
50042
6fe18351e9dd
moved lemmas into projective_family; added header for theory Projective_Family
immler@in.tum.de
parents:
50041
diff
changeset
|
59 |
lemma split_merge: "P (merge I J (x,y) i) \<longleftrightarrow> (i \<in> I \<longrightarrow> P (x i)) \<and> (i \<in> J - I \<longrightarrow> P (y i)) \<and> (i \<notin> I \<union> J \<longrightarrow> P undefined)" |
6fe18351e9dd
moved lemmas into projective_family; added header for theory Projective_Family
immler@in.tum.de
parents:
50041
diff
changeset
|
60 |
unfolding merge_def by auto |
6fe18351e9dd
moved lemmas into projective_family; added header for theory Projective_Family
immler@in.tum.de
parents:
50041
diff
changeset
|
61 |
|
50123
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
62 |
lemma PiE_cancel_merge[simp]: |
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
63 |
"I \<inter> J = {} \<Longrightarrow> |
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
64 |
merge I J (x, y) \<in> PiE (I \<union> J) B \<longleftrightarrow> x \<in> Pi I B \<and> y \<in> Pi J B" |
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
65 |
by (auto simp: PiE_def restrict_Pi_cancel) |
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
66 |
|
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
67 |
lemma merge_singleton[simp]: "i \<notin> I \<Longrightarrow> merge I {i} (x,y) = restrict (x(i := y i)) (insert i I)" |
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
68 |
unfolding merge_def by (auto simp: fun_eq_iff) |
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
69 |
|
50042
6fe18351e9dd
moved lemmas into projective_family; added header for theory Projective_Family
immler@in.tum.de
parents:
50041
diff
changeset
|
70 |
lemma extensional_merge_sub: "I \<union> J \<subseteq> K \<Longrightarrow> merge I J (x, y) \<in> extensional K" |
6fe18351e9dd
moved lemmas into projective_family; added header for theory Projective_Family
immler@in.tum.de
parents:
50041
diff
changeset
|
71 |
unfolding merge_def extensional_def by auto |
6fe18351e9dd
moved lemmas into projective_family; added header for theory Projective_Family
immler@in.tum.de
parents:
50041
diff
changeset
|
72 |
|
50123
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
73 |
lemma merge_restrict[simp]: |
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
74 |
"merge I J (restrict x I, y) = merge I J (x, y)" |
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
75 |
"merge I J (x, restrict y J) = merge I J (x, y)" |
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
76 |
unfolding merge_def by auto |
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
77 |
|
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
78 |
lemma merge_x_x_eq_restrict[simp]: |
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
79 |
"merge I J (x, x) = restrict x (I \<union> J)" |
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
80 |
unfolding merge_def by auto |
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
81 |
|
50042
6fe18351e9dd
moved lemmas into projective_family; added header for theory Projective_Family
immler@in.tum.de
parents:
50041
diff
changeset
|
82 |
lemma injective_vimage_restrict: |
6fe18351e9dd
moved lemmas into projective_family; added header for theory Projective_Family
immler@in.tum.de
parents:
50041
diff
changeset
|
83 |
assumes J: "J \<subseteq> I" |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
84 |
and sets: "A \<subseteq> (\<Pi>\<^sub>E i\<in>J. S i)" "B \<subseteq> (\<Pi>\<^sub>E i\<in>J. S i)" and ne: "(\<Pi>\<^sub>E i\<in>I. S i) \<noteq> {}" |
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
85 |
and eq: "(\<lambda>x. restrict x J) -` A \<inter> (\<Pi>\<^sub>E i\<in>I. S i) = (\<lambda>x. restrict x J) -` B \<inter> (\<Pi>\<^sub>E i\<in>I. S i)" |
50042
6fe18351e9dd
moved lemmas into projective_family; added header for theory Projective_Family
immler@in.tum.de
parents:
50041
diff
changeset
|
86 |
shows "A = B" |
6fe18351e9dd
moved lemmas into projective_family; added header for theory Projective_Family
immler@in.tum.de
parents:
50041
diff
changeset
|
87 |
proof (intro set_eqI) |
6fe18351e9dd
moved lemmas into projective_family; added header for theory Projective_Family
immler@in.tum.de
parents:
50041
diff
changeset
|
88 |
fix x |
6fe18351e9dd
moved lemmas into projective_family; added header for theory Projective_Family
immler@in.tum.de
parents:
50041
diff
changeset
|
89 |
from ne obtain y where y: "\<And>i. i \<in> I \<Longrightarrow> y i \<in> S i" by auto |
6fe18351e9dd
moved lemmas into projective_family; added header for theory Projective_Family
immler@in.tum.de
parents:
50041
diff
changeset
|
90 |
have "J \<inter> (I - J) = {}" by auto |
6fe18351e9dd
moved lemmas into projective_family; added header for theory Projective_Family
immler@in.tum.de
parents:
50041
diff
changeset
|
91 |
show "x \<in> A \<longleftrightarrow> x \<in> B" |
6fe18351e9dd
moved lemmas into projective_family; added header for theory Projective_Family
immler@in.tum.de
parents:
50041
diff
changeset
|
92 |
proof cases |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
93 |
assume x: "x \<in> (\<Pi>\<^sub>E i\<in>J. S i)" |
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
94 |
have "x \<in> A \<longleftrightarrow> merge J (I - J) (x,y) \<in> (\<lambda>x. restrict x J) -` A \<inter> (\<Pi>\<^sub>E i\<in>I. S i)" |
50123
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
95 |
using y x `J \<subseteq> I` PiE_cancel_merge[of "J" "I - J" x y S] |
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
96 |
by (auto simp del: PiE_cancel_merge simp add: Un_absorb1) |
50042
6fe18351e9dd
moved lemmas into projective_family; added header for theory Projective_Family
immler@in.tum.de
parents:
50041
diff
changeset
|
97 |
then show "x \<in> A \<longleftrightarrow> x \<in> B" |
50123
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
98 |
using y x `J \<subseteq> I` PiE_cancel_merge[of "J" "I - J" x y S] |
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
99 |
by (auto simp del: PiE_cancel_merge simp add: Un_absorb1 eq) |
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
100 |
qed (insert sets, auto) |
50042
6fe18351e9dd
moved lemmas into projective_family; added header for theory Projective_Family
immler@in.tum.de
parents:
50041
diff
changeset
|
101 |
qed |
6fe18351e9dd
moved lemmas into projective_family; added header for theory Projective_Family
immler@in.tum.de
parents:
50041
diff
changeset
|
102 |
|
41095 | 103 |
lemma restrict_vimage: |
50123
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
104 |
"I \<inter> J = {} \<Longrightarrow> |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
105 |
(\<lambda>x. (restrict x I, restrict x J)) -` (Pi\<^sub>E I E \<times> Pi\<^sub>E J F) = Pi (I \<union> J) (merge I J (E, F))" |
50123
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
106 |
by (auto simp: restrict_Pi_cancel PiE_def) |
41095 | 107 |
|
108 |
lemma merge_vimage: |
|
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
109 |
"I \<inter> J = {} \<Longrightarrow> merge I J -` Pi\<^sub>E (I \<union> J) E = Pi I E \<times> Pi J E" |
50123
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
110 |
by (auto simp: restrict_Pi_cancel PiE_def) |
50104 | 111 |
|
56994 | 112 |
subsection {* Finite product spaces *} |
40859 | 113 |
|
56994 | 114 |
subsubsection {* Products *} |
40859 | 115 |
|
47694 | 116 |
definition prod_emb where |
117 |
"prod_emb I M K X = (\<lambda>x. restrict x K) -` X \<inter> (PIE i:I. space (M i))" |
|
118 |
||
119 |
lemma prod_emb_iff: |
|
120 |
"f \<in> prod_emb I M K X \<longleftrightarrow> f \<in> extensional I \<and> (restrict f K \<in> X) \<and> (\<forall>i\<in>I. f i \<in> space (M i))" |
|
50123
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
121 |
unfolding prod_emb_def PiE_def by auto |
40859 | 122 |
|
47694 | 123 |
lemma |
124 |
shows prod_emb_empty[simp]: "prod_emb M L K {} = {}" |
|
125 |
and prod_emb_Un[simp]: "prod_emb M L K (A \<union> B) = prod_emb M L K A \<union> prod_emb M L K B" |
|
126 |
and prod_emb_Int: "prod_emb M L K (A \<inter> B) = prod_emb M L K A \<inter> prod_emb M L K B" |
|
127 |
and prod_emb_UN[simp]: "prod_emb M L K (\<Union>i\<in>I. F i) = (\<Union>i\<in>I. prod_emb M L K (F i))" |
|
128 |
and prod_emb_INT[simp]: "I \<noteq> {} \<Longrightarrow> prod_emb M L K (\<Inter>i\<in>I. F i) = (\<Inter>i\<in>I. prod_emb M L K (F i))" |
|
129 |
and prod_emb_Diff[simp]: "prod_emb M L K (A - B) = prod_emb M L K A - prod_emb M L K B" |
|
130 |
by (auto simp: prod_emb_def) |
|
40859 | 131 |
|
47694 | 132 |
lemma prod_emb_PiE: "J \<subseteq> I \<Longrightarrow> (\<And>i. i \<in> J \<Longrightarrow> E i \<subseteq> space (M i)) \<Longrightarrow> |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
133 |
prod_emb I M J (\<Pi>\<^sub>E i\<in>J. E i) = (\<Pi>\<^sub>E i\<in>I. if i \<in> J then E i else space (M i))" |
50123
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
134 |
by (force simp: prod_emb_def PiE_iff split_if_mem2) |
47694 | 135 |
|
50123
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
136 |
lemma prod_emb_PiE_same_index[simp]: |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
137 |
"(\<And>i. i \<in> I \<Longrightarrow> E i \<subseteq> space (M i)) \<Longrightarrow> prod_emb I M I (Pi\<^sub>E I E) = Pi\<^sub>E I E" |
50123
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
138 |
by (auto simp: prod_emb_def PiE_iff) |
41689
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
hoelzl
parents:
41661
diff
changeset
|
139 |
|
50038 | 140 |
lemma prod_emb_trans[simp]: |
141 |
"J \<subseteq> K \<Longrightarrow> K \<subseteq> L \<Longrightarrow> prod_emb L M K (prod_emb K M J X) = prod_emb L M J X" |
|
50123
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
142 |
by (auto simp add: Int_absorb1 prod_emb_def PiE_def) |
50038 | 143 |
|
144 |
lemma prod_emb_Pi: |
|
145 |
assumes "X \<in> (\<Pi> j\<in>J. sets (M j))" "J \<subseteq> K" |
|
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
146 |
shows "prod_emb K M J (Pi\<^sub>E J X) = (\<Pi>\<^sub>E i\<in>K. if i \<in> J then X i else space (M i))" |
50244
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
immler
parents:
50123
diff
changeset
|
147 |
using assms sets.space_closed |
50123
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
148 |
by (auto simp: prod_emb_def PiE_iff split: split_if_asm) blast+ |
50038 | 149 |
|
150 |
lemma prod_emb_id: |
|
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
151 |
"B \<subseteq> (\<Pi>\<^sub>E i\<in>L. space (M i)) \<Longrightarrow> prod_emb L M L B = B" |
50123
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
152 |
by (auto simp: prod_emb_def subset_eq extensional_restrict) |
50038 | 153 |
|
50041
afe886a04198
removed redundant/unnecessary assumptions from projective_family
immler@in.tum.de
parents:
50038
diff
changeset
|
154 |
lemma prod_emb_mono: |
afe886a04198
removed redundant/unnecessary assumptions from projective_family
immler@in.tum.de
parents:
50038
diff
changeset
|
155 |
"F \<subseteq> G \<Longrightarrow> prod_emb A M B F \<subseteq> prod_emb A M B G" |
afe886a04198
removed redundant/unnecessary assumptions from projective_family
immler@in.tum.de
parents:
50038
diff
changeset
|
156 |
by (auto simp: prod_emb_def) |
afe886a04198
removed redundant/unnecessary assumptions from projective_family
immler@in.tum.de
parents:
50038
diff
changeset
|
157 |
|
47694 | 158 |
definition PiM :: "'i set \<Rightarrow> ('i \<Rightarrow> 'a measure) \<Rightarrow> ('i \<Rightarrow> 'a) measure" where |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
159 |
"PiM I M = extend_measure (\<Pi>\<^sub>E i\<in>I. space (M i)) |
47694 | 160 |
{(J, X). (J \<noteq> {} \<or> I = {}) \<and> finite J \<and> J \<subseteq> I \<and> X \<in> (\<Pi> j\<in>J. sets (M j))} |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
161 |
(\<lambda>(J, X). prod_emb I M J (\<Pi>\<^sub>E j\<in>J. X j)) |
47694 | 162 |
(\<lambda>(J, X). \<Prod>j\<in>J \<union> {i\<in>I. emeasure (M i) (space (M i)) \<noteq> 1}. if j \<in> J then emeasure (M j) (X j) else emeasure (M j) (space (M j)))" |
163 |
||
164 |
definition prod_algebra :: "'i set \<Rightarrow> ('i \<Rightarrow> 'a measure) \<Rightarrow> ('i \<Rightarrow> 'a) set set" where |
|
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
165 |
"prod_algebra I M = (\<lambda>(J, X). prod_emb I M J (\<Pi>\<^sub>E j\<in>J. X j)) ` |
47694 | 166 |
{(J, X). (J \<noteq> {} \<or> I = {}) \<and> finite J \<and> J \<subseteq> I \<and> X \<in> (\<Pi> j\<in>J. sets (M j))}" |
167 |
||
168 |
abbreviation |
|
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
169 |
"Pi\<^sub>M I M \<equiv> PiM I M" |
41689
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
hoelzl
parents:
41661
diff
changeset
|
170 |
|
40859 | 171 |
syntax |
47694 | 172 |
"_PiM" :: "pttrn \<Rightarrow> 'i set \<Rightarrow> 'a measure \<Rightarrow> ('i => 'a) measure" ("(3PIM _:_./ _)" 10) |
40859 | 173 |
|
174 |
syntax (xsymbols) |
|
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
175 |
"_PiM" :: "pttrn \<Rightarrow> 'i set \<Rightarrow> 'a measure \<Rightarrow> ('i => 'a) measure" ("(3\<Pi>\<^sub>M _\<in>_./ _)" 10) |
40859 | 176 |
|
177 |
syntax (HTML output) |
|
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
178 |
"_PiM" :: "pttrn \<Rightarrow> 'i set \<Rightarrow> 'a measure \<Rightarrow> ('i => 'a) measure" ("(3\<Pi>\<^sub>M _\<in>_./ _)" 10) |
40859 | 179 |
|
180 |
translations |
|
47694 | 181 |
"PIM x:I. M" == "CONST PiM I (%x. M)" |
41689
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
hoelzl
parents:
41661
diff
changeset
|
182 |
|
59425 | 183 |
lemma extend_measure_cong: |
184 |
assumes "\<Omega> = \<Omega>'" "I = I'" "G = G'" "\<And>i. i \<in> I' \<Longrightarrow> \<mu> i = \<mu>' i" |
|
185 |
shows "extend_measure \<Omega> I G \<mu> = extend_measure \<Omega>' I' G' \<mu>'" |
|
186 |
unfolding extend_measure_def by (auto simp add: assms) |
|
187 |
||
188 |
lemma Pi_cong_sets: |
|
189 |
"\<lbrakk>I = J; \<And>x. x \<in> I \<Longrightarrow> M x = N x\<rbrakk> \<Longrightarrow> Pi I M = Pi J N" |
|
190 |
unfolding Pi_def by auto |
|
191 |
||
192 |
lemma PiM_cong: |
|
193 |
assumes "I = J" "\<And>x. x \<in> I \<Longrightarrow> M x = N x" |
|
194 |
shows "PiM I M = PiM J N" |
|
195 |
unfolding PiM_def |
|
196 |
proof (rule extend_measure_cong) |
|
197 |
case goal1 show ?case using assms |
|
198 |
by (subst assms(1), intro PiE_cong[of J "\<lambda>i. space (M i)" "\<lambda>i. space (N i)"]) simp_all |
|
199 |
next |
|
200 |
case goal2 |
|
201 |
have "\<And>K. K \<subseteq> J \<Longrightarrow> (\<Pi> j\<in>K. sets (M j)) = (\<Pi> j\<in>K. sets (N j))" |
|
202 |
using assms by (intro Pi_cong_sets) auto |
|
203 |
thus ?case by (auto simp: assms) |
|
204 |
next |
|
205 |
case goal3 show ?case using assms |
|
206 |
by (intro ext) (auto simp: prod_emb_def dest: PiE_mem) |
|
207 |
next |
|
208 |
case (goal4 x) |
|
209 |
thus ?case using assms |
|
210 |
by (auto intro!: setprod.cong split: split_if_asm) |
|
211 |
qed |
|
212 |
||
213 |
||
47694 | 214 |
lemma prod_algebra_sets_into_space: |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
215 |
"prod_algebra I M \<subseteq> Pow (\<Pi>\<^sub>E i\<in>I. space (M i))" |
50245
dea9363887a6
based countable topological basis on Countable_Set
immler
parents:
50244
diff
changeset
|
216 |
by (auto simp: prod_emb_def prod_algebra_def) |
40859 | 217 |
|
47694 | 218 |
lemma prod_algebra_eq_finite: |
219 |
assumes I: "finite I" |
|
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
220 |
shows "prod_algebra I M = {(\<Pi>\<^sub>E i\<in>I. X i) |X. X \<in> (\<Pi> j\<in>I. sets (M j))}" (is "?L = ?R") |
47694 | 221 |
proof (intro iffI set_eqI) |
222 |
fix A assume "A \<in> ?L" |
|
223 |
then obtain J E where J: "J \<noteq> {} \<or> I = {}" "finite J" "J \<subseteq> I" "\<forall>i\<in>J. E i \<in> sets (M i)" |
|
224 |
and A: "A = prod_emb I M J (PIE j:J. E j)" |
|
225 |
by (auto simp: prod_algebra_def) |
|
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
226 |
let ?A = "\<Pi>\<^sub>E i\<in>I. if i \<in> J then E i else space (M i)" |
47694 | 227 |
have A: "A = ?A" |
50244
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
immler
parents:
50123
diff
changeset
|
228 |
unfolding A using J by (intro prod_emb_PiE sets.sets_into_space) auto |
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
immler
parents:
50123
diff
changeset
|
229 |
show "A \<in> ?R" unfolding A using J sets.top |
47694 | 230 |
by (intro CollectI exI[of _ "\<lambda>i. if i \<in> J then E i else space (M i)"]) simp |
231 |
next |
|
232 |
fix A assume "A \<in> ?R" |
|
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
233 |
then obtain X where A: "A = (\<Pi>\<^sub>E i\<in>I. X i)" and X: "X \<in> (\<Pi> j\<in>I. sets (M j))" by auto |
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
234 |
then have A: "A = prod_emb I M I (\<Pi>\<^sub>E i\<in>I. X i)" |
50244
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
immler
parents:
50123
diff
changeset
|
235 |
by (simp add: prod_emb_PiE_same_index[OF sets.sets_into_space] Pi_iff) |
47694 | 236 |
from X I show "A \<in> ?L" unfolding A |
237 |
by (auto simp: prod_algebra_def) |
|
238 |
qed |
|
41095 | 239 |
|
47694 | 240 |
lemma prod_algebraI: |
241 |
"finite J \<Longrightarrow> (J \<noteq> {} \<or> I = {}) \<Longrightarrow> J \<subseteq> I \<Longrightarrow> (\<And>i. i \<in> J \<Longrightarrow> E i \<in> sets (M i)) |
|
242 |
\<Longrightarrow> prod_emb I M J (PIE j:J. E j) \<in> prod_algebra I M" |
|
50123
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
243 |
by (auto simp: prod_algebra_def) |
41689
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
hoelzl
parents:
41661
diff
changeset
|
244 |
|
50038 | 245 |
lemma prod_algebraI_finite: |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
246 |
"finite I \<Longrightarrow> (\<forall>i\<in>I. E i \<in> sets (M i)) \<Longrightarrow> (Pi\<^sub>E I E) \<in> prod_algebra I M" |
50244
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
immler
parents:
50123
diff
changeset
|
247 |
using prod_algebraI[of I I E M] prod_emb_PiE_same_index[of I E M, OF sets.sets_into_space] by simp |
50038 | 248 |
|
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
249 |
lemma Int_stable_PiE: "Int_stable {Pi\<^sub>E J E | E. \<forall>i\<in>I. E i \<in> sets (M i)}" |
50038 | 250 |
proof (safe intro!: Int_stableI) |
251 |
fix E F assume "\<forall>i\<in>I. E i \<in> sets (M i)" "\<forall>i\<in>I. F i \<in> sets (M i)" |
|
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
252 |
then show "\<exists>G. Pi\<^sub>E J E \<inter> Pi\<^sub>E J F = Pi\<^sub>E J G \<and> (\<forall>i\<in>I. G i \<in> sets (M i))" |
50123
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
253 |
by (auto intro!: exI[of _ "\<lambda>i. E i \<inter> F i"] simp: PiE_Int) |
50038 | 254 |
qed |
255 |
||
47694 | 256 |
lemma prod_algebraE: |
257 |
assumes A: "A \<in> prod_algebra I M" |
|
258 |
obtains J E where "A = prod_emb I M J (PIE j:J. E j)" |
|
259 |
"finite J" "J \<noteq> {} \<or> I = {}" "J \<subseteq> I" "\<And>i. i \<in> J \<Longrightarrow> E i \<in> sets (M i)" |
|
260 |
using A by (auto simp: prod_algebra_def) |
|
42988 | 261 |
|
47694 | 262 |
lemma prod_algebraE_all: |
263 |
assumes A: "A \<in> prod_algebra I M" |
|
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
264 |
obtains E where "A = Pi\<^sub>E I E" "E \<in> (\<Pi> i\<in>I. sets (M i))" |
47694 | 265 |
proof - |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
266 |
from A obtain E J where A: "A = prod_emb I M J (Pi\<^sub>E J E)" |
47694 | 267 |
and J: "J \<subseteq> I" and E: "E \<in> (\<Pi> i\<in>J. sets (M i))" |
268 |
by (auto simp: prod_algebra_def) |
|
269 |
from E have "\<And>i. i \<in> J \<Longrightarrow> E i \<subseteq> space (M i)" |
|
50244
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
immler
parents:
50123
diff
changeset
|
270 |
using sets.sets_into_space by auto |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
271 |
then have "A = (\<Pi>\<^sub>E i\<in>I. if i\<in>J then E i else space (M i))" |
47694 | 272 |
using A J by (auto simp: prod_emb_PiE) |
53374
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
wenzelm
parents:
53015
diff
changeset
|
273 |
moreover have "(\<lambda>i. if i\<in>J then E i else space (M i)) \<in> (\<Pi> i\<in>I. sets (M i))" |
50244
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
immler
parents:
50123
diff
changeset
|
274 |
using sets.top E by auto |
47694 | 275 |
ultimately show ?thesis using that by auto |
276 |
qed |
|
40859 | 277 |
|
47694 | 278 |
lemma Int_stable_prod_algebra: "Int_stable (prod_algebra I M)" |
279 |
proof (unfold Int_stable_def, safe) |
|
280 |
fix A assume "A \<in> prod_algebra I M" |
|
281 |
from prod_algebraE[OF this] guess J E . note A = this |
|
282 |
fix B assume "B \<in> prod_algebra I M" |
|
283 |
from prod_algebraE[OF this] guess K F . note B = this |
|
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
284 |
have "A \<inter> B = prod_emb I M (J \<union> K) (\<Pi>\<^sub>E i\<in>J \<union> K. (if i \<in> J then E i else space (M i)) \<inter> |
47694 | 285 |
(if i \<in> K then F i else space (M i)))" |
50244
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
immler
parents:
50123
diff
changeset
|
286 |
unfolding A B using A(2,3,4) A(5)[THEN sets.sets_into_space] B(2,3,4) |
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
immler
parents:
50123
diff
changeset
|
287 |
B(5)[THEN sets.sets_into_space] |
47694 | 288 |
apply (subst (1 2 3) prod_emb_PiE) |
289 |
apply (simp_all add: subset_eq PiE_Int) |
|
290 |
apply blast |
|
291 |
apply (intro PiE_cong) |
|
292 |
apply auto |
|
293 |
done |
|
294 |
also have "\<dots> \<in> prod_algebra I M" |
|
295 |
using A B by (auto intro!: prod_algebraI) |
|
296 |
finally show "A \<inter> B \<in> prod_algebra I M" . |
|
297 |
qed |
|
298 |
||
299 |
lemma prod_algebra_mono: |
|
300 |
assumes space: "\<And>i. i \<in> I \<Longrightarrow> space (E i) = space (F i)" |
|
301 |
assumes sets: "\<And>i. i \<in> I \<Longrightarrow> sets (E i) \<subseteq> sets (F i)" |
|
302 |
shows "prod_algebra I E \<subseteq> prod_algebra I F" |
|
303 |
proof |
|
304 |
fix A assume "A \<in> prod_algebra I E" |
|
305 |
then obtain J G where J: "J \<noteq> {} \<or> I = {}" "finite J" "J \<subseteq> I" |
|
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
306 |
and A: "A = prod_emb I E J (\<Pi>\<^sub>E i\<in>J. G i)" |
47694 | 307 |
and G: "\<And>i. i \<in> J \<Longrightarrow> G i \<in> sets (E i)" |
308 |
by (auto simp: prod_algebra_def) |
|
309 |
moreover |
|
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
310 |
from space have "(\<Pi>\<^sub>E i\<in>I. space (E i)) = (\<Pi>\<^sub>E i\<in>I. space (F i))" |
47694 | 311 |
by (rule PiE_cong) |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
312 |
with A have "A = prod_emb I F J (\<Pi>\<^sub>E i\<in>J. G i)" |
47694 | 313 |
by (simp add: prod_emb_def) |
314 |
moreover |
|
315 |
from sets G J have "\<And>i. i \<in> J \<Longrightarrow> G i \<in> sets (F i)" |
|
316 |
by auto |
|
317 |
ultimately show "A \<in> prod_algebra I F" |
|
318 |
apply (simp add: prod_algebra_def image_iff) |
|
319 |
apply (intro exI[of _ J] exI[of _ G] conjI) |
|
320 |
apply auto |
|
321 |
done |
|
41689
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
hoelzl
parents:
41661
diff
changeset
|
322 |
qed |
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
hoelzl
parents:
41661
diff
changeset
|
323 |
|
50104 | 324 |
lemma prod_algebra_cong: |
325 |
assumes "I = J" and sets: "(\<And>i. i \<in> I \<Longrightarrow> sets (M i) = sets (N i))" |
|
326 |
shows "prod_algebra I M = prod_algebra J N" |
|
327 |
proof - |
|
328 |
have space: "\<And>i. i \<in> I \<Longrightarrow> space (M i) = space (N i)" |
|
329 |
using sets_eq_imp_space_eq[OF sets] by auto |
|
330 |
with sets show ?thesis unfolding `I = J` |
|
331 |
by (intro antisym prod_algebra_mono) auto |
|
332 |
qed |
|
333 |
||
334 |
lemma space_in_prod_algebra: |
|
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
335 |
"(\<Pi>\<^sub>E i\<in>I. space (M i)) \<in> prod_algebra I M" |
50104 | 336 |
proof cases |
337 |
assume "I = {}" then show ?thesis |
|
338 |
by (auto simp add: prod_algebra_def image_iff prod_emb_def) |
|
339 |
next |
|
340 |
assume "I \<noteq> {}" |
|
341 |
then obtain i where "i \<in> I" by auto |
|
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
342 |
then have "(\<Pi>\<^sub>E i\<in>I. space (M i)) = prod_emb I M {i} (\<Pi>\<^sub>E i\<in>{i}. space (M i))" |
50123
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
343 |
by (auto simp: prod_emb_def) |
50104 | 344 |
also have "\<dots> \<in> prod_algebra I M" |
345 |
using `i \<in> I` by (intro prod_algebraI) auto |
|
346 |
finally show ?thesis . |
|
347 |
qed |
|
348 |
||
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
349 |
lemma space_PiM: "space (\<Pi>\<^sub>M i\<in>I. M i) = (\<Pi>\<^sub>E i\<in>I. space (M i))" |
47694 | 350 |
using prod_algebra_sets_into_space unfolding PiM_def prod_algebra_def by (intro space_extend_measure) simp |
351 |
||
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
352 |
lemma sets_PiM: "sets (\<Pi>\<^sub>M i\<in>I. M i) = sigma_sets (\<Pi>\<^sub>E i\<in>I. space (M i)) (prod_algebra I M)" |
47694 | 353 |
using prod_algebra_sets_into_space unfolding PiM_def prod_algebra_def by (intro sets_extend_measure) simp |
41689
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
hoelzl
parents:
41661
diff
changeset
|
354 |
|
47694 | 355 |
lemma sets_PiM_single: "sets (PiM I M) = |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
356 |
sigma_sets (\<Pi>\<^sub>E i\<in>I. space (M i)) {{f\<in>\<Pi>\<^sub>E i\<in>I. space (M i). f i \<in> A} | i A. i \<in> I \<and> A \<in> sets (M i)}" |
47694 | 357 |
(is "_ = sigma_sets ?\<Omega> ?R") |
358 |
unfolding sets_PiM |
|
359 |
proof (rule sigma_sets_eqI) |
|
360 |
interpret R: sigma_algebra ?\<Omega> "sigma_sets ?\<Omega> ?R" by (rule sigma_algebra_sigma_sets) auto |
|
361 |
fix A assume "A \<in> prod_algebra I M" |
|
362 |
from prod_algebraE[OF this] guess J X . note X = this |
|
363 |
show "A \<in> sigma_sets ?\<Omega> ?R" |
|
364 |
proof cases |
|
365 |
assume "I = {}" |
|
366 |
with X have "A = {\<lambda>x. undefined}" by (auto simp: prod_emb_def) |
|
367 |
with `I = {}` show ?thesis by (auto intro!: sigma_sets_top) |
|
368 |
next |
|
369 |
assume "I \<noteq> {}" |
|
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
370 |
with X have "A = (\<Inter>j\<in>J. {f\<in>(\<Pi>\<^sub>E i\<in>I. space (M i)). f j \<in> X j})" |
50123
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
371 |
by (auto simp: prod_emb_def) |
47694 | 372 |
also have "\<dots> \<in> sigma_sets ?\<Omega> ?R" |
373 |
using X `I \<noteq> {}` by (intro R.finite_INT sigma_sets.Basic) auto |
|
374 |
finally show "A \<in> sigma_sets ?\<Omega> ?R" . |
|
375 |
qed |
|
376 |
next |
|
377 |
fix A assume "A \<in> ?R" |
|
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
378 |
then obtain i B where A: "A = {f\<in>\<Pi>\<^sub>E i\<in>I. space (M i). f i \<in> B}" "i \<in> I" "B \<in> sets (M i)" |
47694 | 379 |
by auto |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
380 |
then have "A = prod_emb I M {i} (\<Pi>\<^sub>E i\<in>{i}. B)" |
50123
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
381 |
by (auto simp: prod_emb_def) |
47694 | 382 |
also have "\<dots> \<in> sigma_sets ?\<Omega> (prod_algebra I M)" |
383 |
using A by (intro sigma_sets.Basic prod_algebraI) auto |
|
384 |
finally show "A \<in> sigma_sets ?\<Omega> (prod_algebra I M)" . |
|
385 |
qed |
|
386 |
||
58606 | 387 |
lemma sets_PiM_eq_proj: |
388 |
"I \<noteq> {} \<Longrightarrow> sets (PiM I M) = sets (\<Squnion>\<^sub>\<sigma> i\<in>I. vimage_algebra (\<Pi>\<^sub>E i\<in>I. space (M i)) (\<lambda>x. x i) (M i))" |
|
389 |
apply (simp add: sets_PiM_single sets_Sup_sigma) |
|
390 |
apply (subst SUP_cong[OF refl]) |
|
391 |
apply (rule sets_vimage_algebra2) |
|
392 |
apply auto [] |
|
393 |
apply (auto intro!: arg_cong2[where f=sigma_sets]) |
|
394 |
done |
|
395 |
||
59088
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
396 |
lemma |
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
397 |
shows space_PiM_empty: "space (Pi\<^sub>M {} M) = {\<lambda>k. undefined}" |
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
398 |
and sets_PiM_empty: "sets (Pi\<^sub>M {} M) = { {}, {\<lambda>k. undefined} }" |
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
399 |
by (simp_all add: space_PiM sets_PiM_single image_constant sigma_sets_empty_eq) |
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
400 |
|
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
401 |
lemma sets_PiM_sigma: |
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
402 |
assumes \<Omega>_cover: "\<And>i. i \<in> I \<Longrightarrow> \<exists>S\<subseteq>E i. countable S \<and> \<Omega> i = \<Union>S" |
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
403 |
assumes E: "\<And>i. i \<in> I \<Longrightarrow> E i \<subseteq> Pow (\<Omega> i)" |
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
404 |
assumes J: "\<And>j. j \<in> J \<Longrightarrow> finite j" "\<Union>J = I" |
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
405 |
defines "P \<equiv> {{f\<in>(\<Pi>\<^sub>E i\<in>I. \<Omega> i). \<forall>i\<in>j. f i \<in> A i} | A j. j \<in> J \<and> A \<in> Pi j E}" |
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
406 |
shows "sets (\<Pi>\<^sub>M i\<in>I. sigma (\<Omega> i) (E i)) = sets (sigma (\<Pi>\<^sub>E i\<in>I. \<Omega> i) P)" |
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
407 |
proof cases |
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
408 |
assume "I = {}" |
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
409 |
with `\<Union>J = I` have "P = {{\<lambda>_. undefined}} \<or> P = {}" |
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
410 |
by (auto simp: P_def) |
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
411 |
with `I = {}` show ?thesis |
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
412 |
by (auto simp add: sets_PiM_empty sigma_sets_empty_eq) |
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
413 |
next |
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
414 |
let ?F = "\<lambda>i. {(\<lambda>x. x i) -` A \<inter> Pi\<^sub>E I \<Omega> |A. A \<in> E i}" |
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
415 |
assume "I \<noteq> {}" |
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
416 |
then have "sets (Pi\<^sub>M I (\<lambda>i. sigma (\<Omega> i) (E i))) = |
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
417 |
sets (\<Squnion>\<^sub>\<sigma> i\<in>I. vimage_algebra (\<Pi>\<^sub>E i\<in>I. \<Omega> i) (\<lambda>x. x i) (sigma (\<Omega> i) (E i)))" |
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
418 |
by (subst sets_PiM_eq_proj) (auto simp: space_measure_of_conv) |
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
419 |
also have "\<dots> = sets (\<Squnion>\<^sub>\<sigma> i\<in>I. sigma (Pi\<^sub>E I \<Omega>) (?F i))" |
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
420 |
using E by (intro SUP_sigma_cong arg_cong[where f=sets] vimage_algebra_sigma) auto |
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
421 |
also have "\<dots> = sets (sigma (Pi\<^sub>E I \<Omega>) (\<Union>i\<in>I. ?F i))" |
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
422 |
using `I \<noteq> {}` by (intro arg_cong[where f=sets] SUP_sigma_sigma) auto |
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
423 |
also have "\<dots> = sets (sigma (Pi\<^sub>E I \<Omega>) P)" |
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
424 |
proof (intro arg_cong[where f=sets] sigma_eqI sigma_sets_eqI) |
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
425 |
show "(\<Union>i\<in>I. ?F i) \<subseteq> Pow (Pi\<^sub>E I \<Omega>)" "P \<subseteq> Pow (Pi\<^sub>E I \<Omega>)" |
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
426 |
by (auto simp: P_def) |
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
427 |
next |
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
428 |
interpret P: sigma_algebra "\<Pi>\<^sub>E i\<in>I. \<Omega> i" "sigma_sets (\<Pi>\<^sub>E i\<in>I. \<Omega> i) P" |
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
429 |
by (auto intro!: sigma_algebra_sigma_sets simp: P_def) |
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
430 |
|
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
431 |
fix Z assume "Z \<in> (\<Union>i\<in>I. ?F i)" |
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
432 |
then obtain i A where i: "i \<in> I" "A \<in> E i" and Z_def: "Z = (\<lambda>x. x i) -` A \<inter> Pi\<^sub>E I \<Omega>" |
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
433 |
by auto |
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
434 |
from `i \<in> I` J obtain j where j: "i \<in> j" "j \<in> J" "j \<subseteq> I" "finite j" |
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
435 |
by auto |
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
436 |
obtain S where S: "\<And>i. i \<in> j \<Longrightarrow> S i \<subseteq> E i" "\<And>i. i \<in> j \<Longrightarrow> countable (S i)" |
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
437 |
"\<And>i. i \<in> j \<Longrightarrow> \<Omega> i = \<Union>(S i)" |
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
438 |
by (metis subset_eq \<Omega>_cover `j \<subseteq> I`) |
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
439 |
def A' \<equiv> "\<lambda>n. n(i := A)" |
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
440 |
then have A'_i: "\<And>n. A' n i = A" |
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
441 |
by simp |
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
442 |
{ fix n assume "n \<in> Pi\<^sub>E (j - {i}) S" |
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
443 |
then have "A' n \<in> Pi j E" |
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
444 |
unfolding PiE_def Pi_def using S(1) by (auto simp: A'_def `A \<in> E i` ) |
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
445 |
with `j \<in> J` have "{f \<in> Pi\<^sub>E I \<Omega>. \<forall>i\<in>j. f i \<in> A' n i} \<in> P" |
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
446 |
by (auto simp: P_def) } |
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
447 |
note A'_in_P = this |
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
448 |
|
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
449 |
{ fix x assume "x i \<in> A" "x \<in> Pi\<^sub>E I \<Omega>" |
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
450 |
with S(3) `j \<subseteq> I` have "\<forall>i\<in>j. \<exists>s\<in>S i. x i \<in> s" |
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
451 |
by (auto simp: PiE_def Pi_def) |
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
452 |
then obtain s where s: "\<And>i. i \<in> j \<Longrightarrow> s i \<in> S i" "\<And>i. i \<in> j \<Longrightarrow> x i \<in> s i" |
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
453 |
by metis |
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
454 |
with `x i \<in> A` have "\<exists>n\<in>PiE (j-{i}) S. \<forall>i\<in>j. x i \<in> A' n i" |
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
455 |
by (intro bexI[of _ "restrict (s(i := A)) (j-{i})"]) (auto simp: A'_def split: if_splits) } |
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
456 |
then have "Z = (\<Union>n\<in>PiE (j-{i}) S. {f\<in>(\<Pi>\<^sub>E i\<in>I. \<Omega> i). \<forall>i\<in>j. f i \<in> A' n i})" |
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
457 |
unfolding Z_def |
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
458 |
by (auto simp add: set_eq_iff ball_conj_distrib `i\<in>j` A'_i dest: bspec[OF _ `i\<in>j`] |
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
459 |
cong: conj_cong) |
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
460 |
also have "\<dots> \<in> sigma_sets (\<Pi>\<^sub>E i\<in>I. \<Omega> i) P" |
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
461 |
using `finite j` S(2) |
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
462 |
by (intro P.countable_UN' countable_PiE) (simp_all add: image_subset_iff A'_in_P) |
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
463 |
finally show "Z \<in> sigma_sets (\<Pi>\<^sub>E i\<in>I. \<Omega> i) P" . |
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
464 |
next |
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
465 |
interpret F: sigma_algebra "\<Pi>\<^sub>E i\<in>I. \<Omega> i" "sigma_sets (\<Pi>\<^sub>E i\<in>I. \<Omega> i) (\<Union>i\<in>I. ?F i)" |
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
466 |
by (auto intro!: sigma_algebra_sigma_sets) |
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
467 |
|
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
468 |
fix b assume "b \<in> P" |
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
469 |
then obtain A j where b: "b = {f\<in>(\<Pi>\<^sub>E i\<in>I. \<Omega> i). \<forall>i\<in>j. f i \<in> A i}" "j \<in> J" "A \<in> Pi j E" |
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
470 |
by (auto simp: P_def) |
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
471 |
show "b \<in> sigma_sets (Pi\<^sub>E I \<Omega>) (\<Union>i\<in>I. ?F i)" |
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
472 |
proof cases |
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
473 |
assume "j = {}" |
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
474 |
with b have "b = (\<Pi>\<^sub>E i\<in>I. \<Omega> i)" |
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
475 |
by auto |
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
476 |
then show ?thesis |
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
477 |
by blast |
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
478 |
next |
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
479 |
assume "j \<noteq> {}" |
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
480 |
with J b(2,3) have eq: "b = (\<Inter>i\<in>j. ((\<lambda>x. x i) -` A i \<inter> Pi\<^sub>E I \<Omega>))" |
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
481 |
unfolding b(1) |
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
482 |
by (auto simp: PiE_def Pi_def) |
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
483 |
show ?thesis |
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
484 |
unfolding eq using `A \<in> Pi j E` `j \<in> J` J(2) |
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
485 |
by (intro F.finite_INT J `j \<in> J` `j \<noteq> {}` sigma_sets.Basic) blast |
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
486 |
qed |
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
487 |
qed |
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
488 |
finally show "?thesis" . |
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
489 |
qed |
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents:
59048
diff
changeset
|
490 |
|
58606 | 491 |
lemma sets_PiM_in_sets: |
492 |
assumes space: "space N = (\<Pi>\<^sub>E i\<in>I. space (M i))" |
|
493 |
assumes sets: "\<And>i A. i \<in> I \<Longrightarrow> A \<in> sets (M i) \<Longrightarrow> {x\<in>space N. x i \<in> A} \<in> sets N" |
|
494 |
shows "sets (\<Pi>\<^sub>M i \<in> I. M i) \<subseteq> sets N" |
|
495 |
unfolding sets_PiM_single space[symmetric] |
|
496 |
by (intro sets.sigma_sets_subset subsetI) (auto intro: sets) |
|
497 |
||
59048 | 498 |
lemma sets_PiM_cong[measurable_cong]: |
499 |
assumes "I = J" "\<And>i. i \<in> J \<Longrightarrow> sets (M i) = sets (N i)" shows "sets (PiM I M) = sets (PiM J N)" |
|
58606 | 500 |
using assms sets_eq_imp_space_eq[OF assms(2)] by (simp add: sets_PiM_single cong: PiE_cong conj_cong) |
501 |
||
47694 | 502 |
lemma sets_PiM_I: |
503 |
assumes "finite J" "J \<subseteq> I" "\<forall>i\<in>J. E i \<in> sets (M i)" |
|
504 |
shows "prod_emb I M J (PIE j:J. E j) \<in> sets (PIM i:I. M i)" |
|
505 |
proof cases |
|
506 |
assume "J = {}" |
|
507 |
then have "prod_emb I M J (PIE j:J. E j) = (PIE j:I. space (M j))" |
|
508 |
by (auto simp: prod_emb_def) |
|
509 |
then show ?thesis |
|
510 |
by (auto simp add: sets_PiM intro!: sigma_sets_top) |
|
511 |
next |
|
512 |
assume "J \<noteq> {}" with assms show ?thesis |
|
50003 | 513 |
by (force simp add: sets_PiM prod_algebra_def) |
40859 | 514 |
qed |
515 |
||
47694 | 516 |
lemma measurable_PiM: |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
517 |
assumes space: "f \<in> space N \<rightarrow> (\<Pi>\<^sub>E i\<in>I. space (M i))" |
47694 | 518 |
assumes sets: "\<And>X J. J \<noteq> {} \<or> I = {} \<Longrightarrow> finite J \<Longrightarrow> J \<subseteq> I \<Longrightarrow> (\<And>i. i \<in> J \<Longrightarrow> X i \<in> sets (M i)) \<Longrightarrow> |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
519 |
f -` prod_emb I M J (Pi\<^sub>E J X) \<inter> space N \<in> sets N" |
47694 | 520 |
shows "f \<in> measurable N (PiM I M)" |
521 |
using sets_PiM prod_algebra_sets_into_space space |
|
522 |
proof (rule measurable_sigma_sets) |
|
523 |
fix A assume "A \<in> prod_algebra I M" |
|
524 |
from prod_algebraE[OF this] guess J X . |
|
525 |
with sets[of J X] show "f -` A \<inter> space N \<in> sets N" by auto |
|
526 |
qed |
|
527 |
||
528 |
lemma measurable_PiM_Collect: |
|
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
529 |
assumes space: "f \<in> space N \<rightarrow> (\<Pi>\<^sub>E i\<in>I. space (M i))" |
47694 | 530 |
assumes sets: "\<And>X J. J \<noteq> {} \<or> I = {} \<Longrightarrow> finite J \<Longrightarrow> J \<subseteq> I \<Longrightarrow> (\<And>i. i \<in> J \<Longrightarrow> X i \<in> sets (M i)) \<Longrightarrow> |
531 |
{\<omega>\<in>space N. \<forall>i\<in>J. f \<omega> i \<in> X i} \<in> sets N" |
|
532 |
shows "f \<in> measurable N (PiM I M)" |
|
533 |
using sets_PiM prod_algebra_sets_into_space space |
|
534 |
proof (rule measurable_sigma_sets) |
|
535 |
fix A assume "A \<in> prod_algebra I M" |
|
536 |
from prod_algebraE[OF this] guess J X . note X = this |
|
50123
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
537 |
then have "f -` A \<inter> space N = {\<omega> \<in> space N. \<forall>i\<in>J. f \<omega> i \<in> X i}" |
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
538 |
using space by (auto simp: prod_emb_def del: PiE_I) |
47694 | 539 |
also have "\<dots> \<in> sets N" using X(3,2,4,5) by (rule sets) |
540 |
finally show "f -` A \<inter> space N \<in> sets N" . |
|
41689
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
hoelzl
parents:
41661
diff
changeset
|
541 |
qed |
41095 | 542 |
|
47694 | 543 |
lemma measurable_PiM_single: |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
544 |
assumes space: "f \<in> space N \<rightarrow> (\<Pi>\<^sub>E i\<in>I. space (M i))" |
47694 | 545 |
assumes sets: "\<And>A i. i \<in> I \<Longrightarrow> A \<in> sets (M i) \<Longrightarrow> {\<omega> \<in> space N. f \<omega> i \<in> A} \<in> sets N" |
546 |
shows "f \<in> measurable N (PiM I M)" |
|
547 |
using sets_PiM_single |
|
548 |
proof (rule measurable_sigma_sets) |
|
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
549 |
fix A assume "A \<in> {{f \<in> \<Pi>\<^sub>E i\<in>I. space (M i). f i \<in> A} |i A. i \<in> I \<and> A \<in> sets (M i)}" |
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
550 |
then obtain B i where "A = {f \<in> \<Pi>\<^sub>E i\<in>I. space (M i). f i \<in> B}" and B: "i \<in> I" "B \<in> sets (M i)" |
47694 | 551 |
by auto |
552 |
with space have "f -` A \<inter> space N = {\<omega> \<in> space N. f \<omega> i \<in> B}" by auto |
|
553 |
also have "\<dots> \<in> sets N" using B by (rule sets) |
|
554 |
finally show "f -` A \<inter> space N \<in> sets N" . |
|
555 |
qed (auto simp: space) |
|
40859 | 556 |
|
50099 | 557 |
lemma measurable_PiM_single': |
558 |
assumes f: "\<And>i. i \<in> I \<Longrightarrow> f i \<in> measurable N (M i)" |
|
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
559 |
and "(\<lambda>\<omega> i. f i \<omega>) \<in> space N \<rightarrow> (\<Pi>\<^sub>E i\<in>I. space (M i))" |
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
560 |
shows "(\<lambda>\<omega> i. f i \<omega>) \<in> measurable N (Pi\<^sub>M I M)" |
50099 | 561 |
proof (rule measurable_PiM_single) |
562 |
fix A i assume A: "i \<in> I" "A \<in> sets (M i)" |
|
563 |
then have "{\<omega> \<in> space N. f i \<omega> \<in> A} = f i -` A \<inter> space N" |
|
564 |
by auto |
|
565 |
then show "{\<omega> \<in> space N. f i \<omega> \<in> A} \<in> sets N" |
|
566 |
using A f by (auto intro!: measurable_sets) |
|
567 |
qed fact |
|
568 |
||
50003 | 569 |
lemma sets_PiM_I_finite[measurable]: |
47694 | 570 |
assumes "finite I" and sets: "(\<And>i. i \<in> I \<Longrightarrow> E i \<in> sets (M i))" |
571 |
shows "(PIE j:I. E j) \<in> sets (PIM i:I. M i)" |
|
50244
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
immler
parents:
50123
diff
changeset
|
572 |
using sets_PiM_I[of I I E M] sets.sets_into_space[OF sets] `finite I` sets by auto |
47694 | 573 |
|
59353
f0707dc3d9aa
measurability prover: removed app splitting, replaced by more powerful destruction rules
hoelzl
parents:
59088
diff
changeset
|
574 |
lemma measurable_component_singleton[measurable (raw)]: |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
575 |
assumes "i \<in> I" shows "(\<lambda>x. x i) \<in> measurable (Pi\<^sub>M I M) (M i)" |
41689
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
hoelzl
parents:
41661
diff
changeset
|
576 |
proof (unfold measurable_def, intro CollectI conjI ballI) |
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
hoelzl
parents:
41661
diff
changeset
|
577 |
fix A assume "A \<in> sets (M i)" |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
578 |
then have "(\<lambda>x. x i) -` A \<inter> space (Pi\<^sub>M I M) = prod_emb I M {i} (\<Pi>\<^sub>E j\<in>{i}. A)" |
50244
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
immler
parents:
50123
diff
changeset
|
579 |
using sets.sets_into_space `i \<in> I` |
47694 | 580 |
by (fastforce dest: Pi_mem simp: prod_emb_def space_PiM split: split_if_asm) |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
581 |
then show "(\<lambda>x. x i) -` A \<inter> space (Pi\<^sub>M I M) \<in> sets (Pi\<^sub>M I M)" |
47694 | 582 |
using `A \<in> sets (M i)` `i \<in> I` by (auto intro!: sets_PiM_I) |
583 |
qed (insert `i \<in> I`, auto simp: space_PiM) |
|
584 |
||
59353
f0707dc3d9aa
measurability prover: removed app splitting, replaced by more powerful destruction rules
hoelzl
parents:
59088
diff
changeset
|
585 |
lemma measurable_component_singleton'[measurable_dest]: |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
586 |
assumes f: "f \<in> measurable N (Pi\<^sub>M I M)" |
59353
f0707dc3d9aa
measurability prover: removed app splitting, replaced by more powerful destruction rules
hoelzl
parents:
59088
diff
changeset
|
587 |
assumes g: "g \<in> measurable L N" |
50021
d96a3f468203
add support for function application to measurability prover
hoelzl
parents:
50003
diff
changeset
|
588 |
assumes i: "i \<in> I" |
59353
f0707dc3d9aa
measurability prover: removed app splitting, replaced by more powerful destruction rules
hoelzl
parents:
59088
diff
changeset
|
589 |
shows "(\<lambda>x. (f (g x)) i) \<in> measurable L (M i)" |
f0707dc3d9aa
measurability prover: removed app splitting, replaced by more powerful destruction rules
hoelzl
parents:
59088
diff
changeset
|
590 |
using measurable_compose[OF measurable_compose[OF g f] measurable_component_singleton, OF i] . |
50021
d96a3f468203
add support for function application to measurability prover
hoelzl
parents:
50003
diff
changeset
|
591 |
|
59353
f0707dc3d9aa
measurability prover: removed app splitting, replaced by more powerful destruction rules
hoelzl
parents:
59088
diff
changeset
|
592 |
lemma measurable_PiM_component_rev: |
50099 | 593 |
"i \<in> I \<Longrightarrow> f \<in> measurable (M i) N \<Longrightarrow> (\<lambda>x. f (x i)) \<in> measurable (PiM I M) N" |
594 |
by simp |
|
595 |
||
55415 | 596 |
lemma measurable_case_nat[measurable (raw)]: |
50021
d96a3f468203
add support for function application to measurability prover
hoelzl
parents:
50003
diff
changeset
|
597 |
assumes [measurable (raw)]: "i = 0 \<Longrightarrow> f \<in> measurable M N" |
d96a3f468203
add support for function application to measurability prover
hoelzl
parents:
50003
diff
changeset
|
598 |
"\<And>j. i = Suc j \<Longrightarrow> (\<lambda>x. g x j) \<in> measurable M N" |
55415 | 599 |
shows "(\<lambda>x. case_nat (f x) (g x) i) \<in> measurable M N" |
50021
d96a3f468203
add support for function application to measurability prover
hoelzl
parents:
50003
diff
changeset
|
600 |
by (cases i) simp_all |
59048 | 601 |
|
55415 | 602 |
lemma measurable_case_nat'[measurable (raw)]: |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
603 |
assumes fg[measurable]: "f \<in> measurable N M" "g \<in> measurable N (\<Pi>\<^sub>M i\<in>UNIV. M)" |
55415 | 604 |
shows "(\<lambda>x. case_nat (f x) (g x)) \<in> measurable N (\<Pi>\<^sub>M i\<in>UNIV. M)" |
50099 | 605 |
using fg[THEN measurable_space] |
50123
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
606 |
by (auto intro!: measurable_PiM_single' simp add: space_PiM PiE_iff split: nat.split) |
50099 | 607 |
|
50003 | 608 |
lemma measurable_add_dim[measurable]: |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
609 |
"(\<lambda>(f, y). f(i := y)) \<in> measurable (Pi\<^sub>M I M \<Otimes>\<^sub>M M i) (Pi\<^sub>M (insert i I) M)" |
47694 | 610 |
(is "?f \<in> measurable ?P ?I") |
611 |
proof (rule measurable_PiM_single) |
|
612 |
fix j A assume j: "j \<in> insert i I" and A: "A \<in> sets (M j)" |
|
613 |
have "{\<omega> \<in> space ?P. (\<lambda>(f, x). fun_upd f i x) \<omega> j \<in> A} = |
|
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
614 |
(if j = i then space (Pi\<^sub>M I M) \<times> A else ((\<lambda>x. x j) \<circ> fst) -` A \<inter> space ?P)" |
50244
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
immler
parents:
50123
diff
changeset
|
615 |
using sets.sets_into_space[OF A] by (auto simp add: space_pair_measure space_PiM) |
47694 | 616 |
also have "\<dots> \<in> sets ?P" |
617 |
using A j |
|
618 |
by (auto intro!: measurable_sets[OF measurable_comp, OF _ measurable_component_singleton]) |
|
55414
eab03e9cee8a
renamed '{prod,sum,bool,unit}_case' to 'case_...'
blanchet
parents:
53374
diff
changeset
|
619 |
finally show "{\<omega> \<in> space ?P. case_prod (\<lambda>f. fun_upd f i) \<omega> j \<in> A} \<in> sets ?P" . |
50123
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
620 |
qed (auto simp: space_pair_measure space_PiM PiE_def) |
41661 | 621 |
|
50003 | 622 |
lemma measurable_component_update: |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
623 |
"x \<in> space (Pi\<^sub>M I M) \<Longrightarrow> i \<notin> I \<Longrightarrow> (\<lambda>v. x(i := v)) \<in> measurable (M i) (Pi\<^sub>M (insert i I) M)" |
50003 | 624 |
by simp |
625 |
||
626 |
lemma measurable_merge[measurable]: |
|
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
627 |
"merge I J \<in> measurable (Pi\<^sub>M I M \<Otimes>\<^sub>M Pi\<^sub>M J M) (Pi\<^sub>M (I \<union> J) M)" |
47694 | 628 |
(is "?f \<in> measurable ?P ?U") |
629 |
proof (rule measurable_PiM_single) |
|
630 |
fix i A assume A: "A \<in> sets (M i)" "i \<in> I \<union> J" |
|
49780 | 631 |
then have "{\<omega> \<in> space ?P. merge I J \<omega> i \<in> A} = |
47694 | 632 |
(if i \<in> I then ((\<lambda>x. x i) \<circ> fst) -` A \<inter> space ?P else ((\<lambda>x. x i) \<circ> snd) -` A \<inter> space ?P)" |
49776 | 633 |
by (auto simp: merge_def) |
47694 | 634 |
also have "\<dots> \<in> sets ?P" |
635 |
using A |
|
636 |
by (auto intro!: measurable_sets[OF measurable_comp, OF _ measurable_component_singleton]) |
|
49780 | 637 |
finally show "{\<omega> \<in> space ?P. merge I J \<omega> i \<in> A} \<in> sets ?P" . |
50123
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
638 |
qed (auto simp: space_pair_measure space_PiM PiE_iff merge_def extensional_def) |
42988 | 639 |
|
50003 | 640 |
lemma measurable_restrict[measurable (raw)]: |
47694 | 641 |
assumes X: "\<And>i. i \<in> I \<Longrightarrow> X i \<in> measurable N (M i)" |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
642 |
shows "(\<lambda>x. \<lambda>i\<in>I. X i x) \<in> measurable N (Pi\<^sub>M I M)" |
47694 | 643 |
proof (rule measurable_PiM_single) |
644 |
fix A i assume A: "i \<in> I" "A \<in> sets (M i)" |
|
645 |
then have "{\<omega> \<in> space N. (\<lambda>i\<in>I. X i \<omega>) i \<in> A} = X i -` A \<inter> space N" |
|
646 |
by auto |
|
647 |
then show "{\<omega> \<in> space N. (\<lambda>i\<in>I. X i \<omega>) i \<in> A} \<in> sets N" |
|
648 |
using A X by (auto intro!: measurable_sets) |
|
50123
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
649 |
qed (insert X, auto simp add: PiE_def dest: measurable_space) |
47694 | 650 |
|
57025 | 651 |
lemma measurable_abs_UNIV: |
652 |
"(\<And>n. (\<lambda>\<omega>. f n \<omega>) \<in> measurable M (N n)) \<Longrightarrow> (\<lambda>\<omega> n. f n \<omega>) \<in> measurable M (PiM UNIV N)" |
|
653 |
by (intro measurable_PiM_single) (auto dest: measurable_space) |
|
654 |
||
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
655 |
lemma measurable_restrict_subset: "J \<subseteq> L \<Longrightarrow> (\<lambda>f. restrict f J) \<in> measurable (Pi\<^sub>M L M) (Pi\<^sub>M J M)" |
50038 | 656 |
by (intro measurable_restrict measurable_component_singleton) auto |
657 |
||
59425 | 658 |
lemma measurable_restrict_subset': |
659 |
assumes "J \<subseteq> L" "\<And>x. x \<in> J \<Longrightarrow> sets (M x) = sets (N x)" |
|
660 |
shows "(\<lambda>f. restrict f J) \<in> measurable (Pi\<^sub>M L M) (Pi\<^sub>M J N)" |
|
661 |
proof- |
|
662 |
from assms(1) have "(\<lambda>f. restrict f J) \<in> measurable (Pi\<^sub>M L M) (Pi\<^sub>M J M)" |
|
663 |
by (rule measurable_restrict_subset) |
|
664 |
also from assms(2) have "measurable (Pi\<^sub>M L M) (Pi\<^sub>M J M) = measurable (Pi\<^sub>M L M) (Pi\<^sub>M J N)" |
|
665 |
by (intro sets_PiM_cong measurable_cong_sets) simp_all |
|
666 |
finally show ?thesis . |
|
667 |
qed |
|
668 |
||
50038 | 669 |
lemma measurable_prod_emb[intro, simp]: |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
670 |
"J \<subseteq> L \<Longrightarrow> X \<in> sets (Pi\<^sub>M J M) \<Longrightarrow> prod_emb L M J X \<in> sets (Pi\<^sub>M L M)" |
50038 | 671 |
unfolding prod_emb_def space_PiM[symmetric] |
672 |
by (auto intro!: measurable_sets measurable_restrict measurable_component_singleton) |
|
673 |
||
50003 | 674 |
lemma sets_in_Pi_aux: |
675 |
"finite I \<Longrightarrow> (\<And>j. j \<in> I \<Longrightarrow> {x\<in>space (M j). x \<in> F j} \<in> sets (M j)) \<Longrightarrow> |
|
676 |
{x\<in>space (PiM I M). x \<in> Pi I F} \<in> sets (PiM I M)" |
|
677 |
by (simp add: subset_eq Pi_iff) |
|
678 |
||
679 |
lemma sets_in_Pi[measurable (raw)]: |
|
680 |
"finite I \<Longrightarrow> f \<in> measurable N (PiM I M) \<Longrightarrow> |
|
681 |
(\<And>j. j \<in> I \<Longrightarrow> {x\<in>space (M j). x \<in> F j} \<in> sets (M j)) \<Longrightarrow> |
|
50387 | 682 |
Measurable.pred N (\<lambda>x. f x \<in> Pi I F)" |
50003 | 683 |
unfolding pred_def |
684 |
by (rule measurable_sets_Collect[of f N "PiM I M", OF _ sets_in_Pi_aux]) auto |
|
685 |
||
686 |
lemma sets_in_extensional_aux: |
|
687 |
"{x\<in>space (PiM I M). x \<in> extensional I} \<in> sets (PiM I M)" |
|
688 |
proof - |
|
689 |
have "{x\<in>space (PiM I M). x \<in> extensional I} = space (PiM I M)" |
|
690 |
by (auto simp add: extensional_def space_PiM) |
|
691 |
then show ?thesis by simp |
|
692 |
qed |
|
693 |
||
694 |
lemma sets_in_extensional[measurable (raw)]: |
|
50387 | 695 |
"f \<in> measurable N (PiM I M) \<Longrightarrow> Measurable.pred N (\<lambda>x. f x \<in> extensional I)" |
50003 | 696 |
unfolding pred_def |
697 |
by (rule measurable_sets_Collect[of f N "PiM I M", OF _ sets_in_extensional_aux]) auto |
|
698 |
||
47694 | 699 |
locale product_sigma_finite = |
700 |
fixes M :: "'i \<Rightarrow> 'a measure" |
|
41689
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
hoelzl
parents:
41661
diff
changeset
|
701 |
assumes sigma_finite_measures: "\<And>i. sigma_finite_measure (M i)" |
40859 | 702 |
|
41689
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
hoelzl
parents:
41661
diff
changeset
|
703 |
sublocale product_sigma_finite \<subseteq> M: sigma_finite_measure "M i" for i |
40859 | 704 |
by (rule sigma_finite_measures) |
705 |
||
47694 | 706 |
locale finite_product_sigma_finite = product_sigma_finite M for M :: "'i \<Rightarrow> 'a measure" + |
707 |
fixes I :: "'i set" |
|
708 |
assumes finite_index: "finite I" |
|
41689
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
hoelzl
parents:
41661
diff
changeset
|
709 |
|
40859 | 710 |
lemma (in finite_product_sigma_finite) sigma_finite_pairs: |
711 |
"\<exists>F::'i \<Rightarrow> nat \<Rightarrow> 'a set. |
|
712 |
(\<forall>i\<in>I. range (F i) \<subseteq> sets (M i)) \<and> |
|
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
713 |
(\<forall>k. \<forall>i\<in>I. emeasure (M i) (F i k) \<noteq> \<infinity>) \<and> incseq (\<lambda>k. \<Pi>\<^sub>E i\<in>I. F i k) \<and> |
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
714 |
(\<Union>k. \<Pi>\<^sub>E i\<in>I. F i k) = space (PiM I M)" |
40859 | 715 |
proof - |
47694 | 716 |
have "\<forall>i::'i. \<exists>F::nat \<Rightarrow> 'a set. range F \<subseteq> sets (M i) \<and> incseq F \<and> (\<Union>i. F i) = space (M i) \<and> (\<forall>k. emeasure (M i) (F k) \<noteq> \<infinity>)" |
717 |
using M.sigma_finite_incseq by metis |
|
40859 | 718 |
from choice[OF this] guess F :: "'i \<Rightarrow> nat \<Rightarrow> 'a set" .. |
47694 | 719 |
then have F: "\<And>i. range (F i) \<subseteq> sets (M i)" "\<And>i. incseq (F i)" "\<And>i. (\<Union>j. F i j) = space (M i)" "\<And>i k. emeasure (M i) (F i k) \<noteq> \<infinity>" |
40859 | 720 |
by auto |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
721 |
let ?F = "\<lambda>k. \<Pi>\<^sub>E i\<in>I. F i k" |
47694 | 722 |
note space_PiM[simp] |
40859 | 723 |
show ?thesis |
41981
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
hoelzl
parents:
41831
diff
changeset
|
724 |
proof (intro exI[of _ F] conjI allI incseq_SucI set_eqI iffI ballI) |
40859 | 725 |
fix i show "range (F i) \<subseteq> sets (M i)" by fact |
726 |
next |
|
47694 | 727 |
fix i k show "emeasure (M i) (F i k) \<noteq> \<infinity>" by fact |
40859 | 728 |
next |
50123
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
729 |
fix x assume "x \<in> (\<Union>i. ?F i)" with F(1) show "x \<in> space (PiM I M)" |
50244
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
immler
parents:
50123
diff
changeset
|
730 |
by (auto simp: PiE_def dest!: sets.sets_into_space) |
40859 | 731 |
next |
47694 | 732 |
fix f assume "f \<in> space (PiM I M)" |
41981
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
hoelzl
parents:
41831
diff
changeset
|
733 |
with Pi_UN[OF finite_index, of "\<lambda>k i. F i k"] F |
50123
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
734 |
show "f \<in> (\<Union>i. ?F i)" by (auto simp: incseq_def PiE_def) |
40859 | 735 |
next |
736 |
fix i show "?F i \<subseteq> ?F (Suc i)" |
|
41981
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
hoelzl
parents:
41831
diff
changeset
|
737 |
using `\<And>i. incseq (F i)`[THEN incseq_SucD] by auto |
40859 | 738 |
qed |
739 |
qed |
|
740 |
||
49780 | 741 |
lemma emeasure_PiM_empty[simp]: "emeasure (PiM {} M) {\<lambda>_. undefined} = 1" |
742 |
proof - |
|
743 |
let ?\<mu> = "\<lambda>A. if A = {} then 0 else (1::ereal)" |
|
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
744 |
have "emeasure (Pi\<^sub>M {} M) (prod_emb {} M {} (\<Pi>\<^sub>E i\<in>{}. {})) = 1" |
49780 | 745 |
proof (subst emeasure_extend_measure_Pair[OF PiM_def]) |
746 |
show "positive (PiM {} M) ?\<mu>" |
|
747 |
by (auto simp: positive_def) |
|
748 |
show "countably_additive (PiM {} M) ?\<mu>" |
|
50244
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
immler
parents:
50123
diff
changeset
|
749 |
by (rule sets.countably_additiveI_finite) |
49780 | 750 |
(auto simp: additive_def positive_def sets_PiM_empty space_PiM_empty intro!: ) |
751 |
qed (auto simp: prod_emb_def) |
|
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
752 |
also have "(prod_emb {} M {} (\<Pi>\<^sub>E i\<in>{}. {})) = {\<lambda>_. undefined}" |
49780 | 753 |
by (auto simp: prod_emb_def) |
754 |
finally show ?thesis |
|
755 |
by simp |
|
756 |
qed |
|
757 |
||
758 |
lemma PiM_empty: "PiM {} M = count_space {\<lambda>_. undefined}" |
|
759 |
by (rule measure_eqI) (auto simp add: sets_PiM_empty one_ereal_def) |
|
760 |
||
49776 | 761 |
lemma (in product_sigma_finite) emeasure_PiM: |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
762 |
"finite I \<Longrightarrow> (\<And>i. i\<in>I \<Longrightarrow> A i \<in> sets (M i)) \<Longrightarrow> emeasure (PiM I M) (Pi\<^sub>E I A) = (\<Prod>i\<in>I. emeasure (M i) (A i))" |
49776 | 763 |
proof (induct I arbitrary: A rule: finite_induct) |
40859 | 764 |
case (insert i I) |
41689
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
hoelzl
parents:
41661
diff
changeset
|
765 |
interpret finite_product_sigma_finite M I by default fact |
40859 | 766 |
have "finite (insert i I)" using `finite I` by auto |
41689
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
hoelzl
parents:
41661
diff
changeset
|
767 |
interpret I': finite_product_sigma_finite M "insert i I" by default fact |
41661 | 768 |
let ?h = "(\<lambda>(f, y). f(i := y))" |
47694 | 769 |
|
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
770 |
let ?P = "distr (Pi\<^sub>M I M \<Otimes>\<^sub>M M i) (Pi\<^sub>M (insert i I) M) ?h" |
47694 | 771 |
let ?\<mu> = "emeasure ?P" |
772 |
let ?I = "{j \<in> insert i I. emeasure (M j) (space (M j)) \<noteq> 1}" |
|
773 |
let ?f = "\<lambda>J E j. if j \<in> J then emeasure (M j) (E j) else emeasure (M j) (space (M j))" |
|
774 |
||
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
775 |
have "emeasure (Pi\<^sub>M (insert i I) M) (prod_emb (insert i I) M (insert i I) (Pi\<^sub>E (insert i I) A)) = |
49776 | 776 |
(\<Prod>i\<in>insert i I. emeasure (M i) (A i))" |
777 |
proof (subst emeasure_extend_measure_Pair[OF PiM_def]) |
|
778 |
fix J E assume "(J \<noteq> {} \<or> insert i I = {}) \<and> finite J \<and> J \<subseteq> insert i I \<and> E \<in> (\<Pi> j\<in>J. sets (M j))" |
|
779 |
then have J: "J \<noteq> {}" "finite J" "J \<subseteq> insert i I" and E: "\<forall>j\<in>J. E j \<in> sets (M j)" by auto |
|
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
780 |
let ?p = "prod_emb (insert i I) M J (Pi\<^sub>E J E)" |
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
781 |
let ?p' = "prod_emb I M (J - {i}) (\<Pi>\<^sub>E j\<in>J-{i}. E j)" |
49776 | 782 |
have "?\<mu> ?p = |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
783 |
emeasure (Pi\<^sub>M I M \<Otimes>\<^sub>M (M i)) (?h -` ?p \<inter> space (Pi\<^sub>M I M \<Otimes>\<^sub>M M i))" |
49776 | 784 |
by (intro emeasure_distr measurable_add_dim sets_PiM_I) fact+ |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
785 |
also have "?h -` ?p \<inter> space (Pi\<^sub>M I M \<Otimes>\<^sub>M M i) = ?p' \<times> (if i \<in> J then E i else space (M i))" |
50244
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
immler
parents:
50123
diff
changeset
|
786 |
using J E[rule_format, THEN sets.sets_into_space] |
50123
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
787 |
by (force simp: space_pair_measure space_PiM prod_emb_iff PiE_def Pi_iff split: split_if_asm) |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
788 |
also have "emeasure (Pi\<^sub>M I M \<Otimes>\<^sub>M (M i)) (?p' \<times> (if i \<in> J then E i else space (M i))) = |
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
789 |
emeasure (Pi\<^sub>M I M) ?p' * emeasure (M i) (if i \<in> J then (E i) else space (M i))" |
49776 | 790 |
using J E by (intro M.emeasure_pair_measure_Times sets_PiM_I) auto |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
791 |
also have "?p' = (\<Pi>\<^sub>E j\<in>I. if j \<in> J-{i} then E j else space (M j))" |
50244
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
immler
parents:
50123
diff
changeset
|
792 |
using J E[rule_format, THEN sets.sets_into_space] |
50123
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
793 |
by (auto simp: prod_emb_iff PiE_def Pi_iff split: split_if_asm) blast+ |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
794 |
also have "emeasure (Pi\<^sub>M I M) (\<Pi>\<^sub>E j\<in>I. if j \<in> J-{i} then E j else space (M j)) = |
49776 | 795 |
(\<Prod> j\<in>I. if j \<in> J-{i} then emeasure (M j) (E j) else emeasure (M j) (space (M j)))" |
57418 | 796 |
using E by (subst insert) (auto intro!: setprod.cong) |
49776 | 797 |
also have "(\<Prod>j\<in>I. if j \<in> J - {i} then emeasure (M j) (E j) else emeasure (M j) (space (M j))) * |
798 |
emeasure (M i) (if i \<in> J then E i else space (M i)) = (\<Prod>j\<in>insert i I. ?f J E j)" |
|
57512
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
57447
diff
changeset
|
799 |
using insert by (auto simp: mult.commute intro!: arg_cong2[where f="op *"] setprod.cong) |
49776 | 800 |
also have "\<dots> = (\<Prod>j\<in>J \<union> ?I. ?f J E j)" |
57418 | 801 |
using insert(1,2) J E by (intro setprod.mono_neutral_right) auto |
49776 | 802 |
finally show "?\<mu> ?p = \<dots>" . |
47694 | 803 |
|
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
804 |
show "prod_emb (insert i I) M J (Pi\<^sub>E J E) \<in> Pow (\<Pi>\<^sub>E i\<in>insert i I. space (M i))" |
50244
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
immler
parents:
50123
diff
changeset
|
805 |
using J E[rule_format, THEN sets.sets_into_space] by (auto simp: prod_emb_iff PiE_def) |
49776 | 806 |
next |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
807 |
show "positive (sets (Pi\<^sub>M (insert i I) M)) ?\<mu>" "countably_additive (sets (Pi\<^sub>M (insert i I) M)) ?\<mu>" |
49776 | 808 |
using emeasure_positive[of ?P] emeasure_countably_additive[of ?P] by simp_all |
809 |
next |
|
810 |
show "(insert i I \<noteq> {} \<or> insert i I = {}) \<and> finite (insert i I) \<and> |
|
811 |
insert i I \<subseteq> insert i I \<and> A \<in> (\<Pi> j\<in>insert i I. sets (M j))" |
|
812 |
using insert by auto |
|
57418 | 813 |
qed (auto intro!: setprod.cong) |
49776 | 814 |
with insert show ?case |
50244
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
immler
parents:
50123
diff
changeset
|
815 |
by (subst (asm) prod_emb_PiE_same_index) (auto intro!: sets.sets_into_space) |
50003 | 816 |
qed simp |
47694 | 817 |
|
49776 | 818 |
lemma (in product_sigma_finite) sigma_finite: |
819 |
assumes "finite I" |
|
820 |
shows "sigma_finite_measure (PiM I M)" |
|
57447
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents:
57418
diff
changeset
|
821 |
proof |
49776 | 822 |
interpret finite_product_sigma_finite M I by default fact |
823 |
||
57447
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents:
57418
diff
changeset
|
824 |
obtain F where F: "\<And>j. countable (F j)" "\<And>j f. f \<in> F j \<Longrightarrow> f \<in> sets (M j)" |
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents:
57418
diff
changeset
|
825 |
"\<And>j f. f \<in> F j \<Longrightarrow> emeasure (M j) f \<noteq> \<infinity>" and |
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents:
57418
diff
changeset
|
826 |
in_space: "\<And>j. space (M j) = (\<Union>F j)" |
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents:
57418
diff
changeset
|
827 |
using sigma_finite_countable by (metis subset_eq) |
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents:
57418
diff
changeset
|
828 |
moreover have "(\<Union>(PiE I ` PiE I F)) = space (Pi\<^sub>M I M)" |
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents:
57418
diff
changeset
|
829 |
using in_space by (auto simp: space_PiM PiE_iff intro!: PiE_choice[THEN iffD2]) |
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents:
57418
diff
changeset
|
830 |
ultimately show "\<exists>A. countable A \<and> A \<subseteq> sets (Pi\<^sub>M I M) \<and> \<Union>A = space (Pi\<^sub>M I M) \<and> (\<forall>a\<in>A. emeasure (Pi\<^sub>M I M) a \<noteq> \<infinity>)" |
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents:
57418
diff
changeset
|
831 |
by (intro exI[of _ "PiE I ` PiE I F"]) |
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents:
57418
diff
changeset
|
832 |
(auto intro!: countable_PiE sets_PiM_I_finite |
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents:
57418
diff
changeset
|
833 |
simp: PiE_iff emeasure_PiM finite_index setprod_PInf emeasure_nonneg) |
40859 | 834 |
qed |
835 |
||
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
836 |
sublocale finite_product_sigma_finite \<subseteq> sigma_finite_measure "Pi\<^sub>M I M" |
47694 | 837 |
using sigma_finite[OF finite_index] . |
40859 | 838 |
|
839 |
lemma (in finite_product_sigma_finite) measure_times: |
|
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
840 |
"(\<And>i. i \<in> I \<Longrightarrow> A i \<in> sets (M i)) \<Longrightarrow> emeasure (Pi\<^sub>M I M) (Pi\<^sub>E I A) = (\<Prod>i\<in>I. emeasure (M i) (A i))" |
47694 | 841 |
using emeasure_PiM[OF finite_index] by auto |
41096 | 842 |
|
56996 | 843 |
lemma (in product_sigma_finite) nn_integral_empty: |
41981
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
hoelzl
parents:
41831
diff
changeset
|
844 |
assumes pos: "0 \<le> f (\<lambda>k. undefined)" |
56996 | 845 |
shows "integral\<^sup>N (Pi\<^sub>M {} M) f = f (\<lambda>k. undefined)" |
40859 | 846 |
proof - |
41689
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
hoelzl
parents:
41661
diff
changeset
|
847 |
interpret finite_product_sigma_finite M "{}" by default (fact finite.emptyI) |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
848 |
have "\<And>A. emeasure (Pi\<^sub>M {} M) (Pi\<^sub>E {} A) = 1" |
40859 | 849 |
using assms by (subst measure_times) auto |
850 |
then show ?thesis |
|
56996 | 851 |
unfolding nn_integral_def simple_function_def simple_integral_def[abs_def] |
47694 | 852 |
proof (simp add: space_PiM_empty sets_PiM_empty, intro antisym) |
41981
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
hoelzl
parents:
41831
diff
changeset
|
853 |
show "f (\<lambda>k. undefined) \<le> (SUP f:{g. g \<le> max 0 \<circ> f}. f (\<lambda>k. undefined))" |
44928
7ef6505bde7f
renamed Complete_Lattices lemmas, removed legacy names
hoelzl
parents:
44890
diff
changeset
|
854 |
by (intro SUP_upper) (auto simp: le_fun_def split: split_max) |
41981
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
hoelzl
parents:
41831
diff
changeset
|
855 |
show "(SUP f:{g. g \<le> max 0 \<circ> f}. f (\<lambda>k. undefined)) \<le> f (\<lambda>k. undefined)" using pos |
44928
7ef6505bde7f
renamed Complete_Lattices lemmas, removed legacy names
hoelzl
parents:
44890
diff
changeset
|
856 |
by (intro SUP_least) (auto simp: le_fun_def simp: max_def split: split_if_asm) |
40859 | 857 |
qed |
858 |
qed |
|
859 |
||
47694 | 860 |
lemma (in product_sigma_finite) distr_merge: |
40859 | 861 |
assumes IJ[simp]: "I \<inter> J = {}" and fin: "finite I" "finite J" |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
862 |
shows "distr (Pi\<^sub>M I M \<Otimes>\<^sub>M Pi\<^sub>M J M) (Pi\<^sub>M (I \<union> J) M) (merge I J) = Pi\<^sub>M (I \<union> J) M" |
47694 | 863 |
(is "?D = ?P") |
40859 | 864 |
proof - |
41689
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
hoelzl
parents:
41661
diff
changeset
|
865 |
interpret I: finite_product_sigma_finite M I by default fact |
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
hoelzl
parents:
41661
diff
changeset
|
866 |
interpret J: finite_product_sigma_finite M J by default fact |
40859 | 867 |
have "finite (I \<union> J)" using fin by auto |
41689
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
hoelzl
parents:
41661
diff
changeset
|
868 |
interpret IJ: finite_product_sigma_finite M "I \<union> J" by default fact |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
869 |
interpret P: pair_sigma_finite "Pi\<^sub>M I M" "Pi\<^sub>M J M" by default |
49780 | 870 |
let ?g = "merge I J" |
47694 | 871 |
|
41661 | 872 |
from IJ.sigma_finite_pairs obtain F where |
873 |
F: "\<And>i. i\<in> I \<union> J \<Longrightarrow> range (F i) \<subseteq> sets (M i)" |
|
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
874 |
"incseq (\<lambda>k. \<Pi>\<^sub>E i\<in>I \<union> J. F i k)" |
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
875 |
"(\<Union>k. \<Pi>\<^sub>E i\<in>I \<union> J. F i k) = space ?P" |
47694 | 876 |
"\<And>k. \<forall>i\<in>I\<union>J. emeasure (M i) (F i k) \<noteq> \<infinity>" |
41661 | 877 |
by auto |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
878 |
let ?F = "\<lambda>k. \<Pi>\<^sub>E i\<in>I \<union> J. F i k" |
47694 | 879 |
|
880 |
show ?thesis |
|
881 |
proof (rule measure_eqI_generator_eq[symmetric]) |
|
882 |
show "Int_stable (prod_algebra (I \<union> J) M)" |
|
883 |
by (rule Int_stable_prod_algebra) |
|
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
884 |
show "prod_algebra (I \<union> J) M \<subseteq> Pow (\<Pi>\<^sub>E i \<in> I \<union> J. space (M i))" |
47694 | 885 |
by (rule prod_algebra_sets_into_space) |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
886 |
show "sets ?P = sigma_sets (\<Pi>\<^sub>E i\<in>I \<union> J. space (M i)) (prod_algebra (I \<union> J) M)" |
47694 | 887 |
by (rule sets_PiM) |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
888 |
then show "sets ?D = sigma_sets (\<Pi>\<^sub>E i\<in>I \<union> J. space (M i)) (prod_algebra (I \<union> J) M)" |
47694 | 889 |
by simp |
890 |
||
891 |
show "range ?F \<subseteq> prod_algebra (I \<union> J) M" using F |
|
892 |
using fin by (auto simp: prod_algebra_eq_finite) |
|
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
893 |
show "(\<Union>i. \<Pi>\<^sub>E ia\<in>I \<union> J. F ia i) = (\<Pi>\<^sub>E i\<in>I \<union> J. space (M i))" |
47694 | 894 |
using F(3) by (simp add: space_PiM) |
41981
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
hoelzl
parents:
41831
diff
changeset
|
895 |
next |
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
hoelzl
parents:
41831
diff
changeset
|
896 |
fix k |
47694 | 897 |
from F `finite I` setprod_PInf[of "I \<union> J", OF emeasure_nonneg, of M] |
898 |
show "emeasure ?P (?F k) \<noteq> \<infinity>" by (subst IJ.measure_times) auto |
|
41661 | 899 |
next |
47694 | 900 |
fix A assume A: "A \<in> prod_algebra (I \<union> J) M" |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
901 |
with fin obtain F where A_eq: "A = (Pi\<^sub>E (I \<union> J) F)" and F: "\<forall>i\<in>J. F i \<in> sets (M i)" "\<forall>i\<in>I. F i \<in> sets (M i)" |
47694 | 902 |
by (auto simp add: prod_algebra_eq_finite) |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
903 |
let ?B = "Pi\<^sub>M I M \<Otimes>\<^sub>M Pi\<^sub>M J M" |
47694 | 904 |
let ?X = "?g -` A \<inter> space ?B" |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
905 |
have "Pi\<^sub>E I F \<subseteq> space (Pi\<^sub>M I M)" "Pi\<^sub>E J F \<subseteq> space (Pi\<^sub>M J M)" |
50244
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
immler
parents:
50123
diff
changeset
|
906 |
using F[rule_format, THEN sets.sets_into_space] by (force simp: space_PiM)+ |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
907 |
then have X: "?X = (Pi\<^sub>E I F \<times> Pi\<^sub>E J F)" |
47694 | 908 |
unfolding A_eq by (subst merge_vimage) (auto simp: space_pair_measure space_PiM) |
909 |
have "emeasure ?D A = emeasure ?B ?X" |
|
910 |
using A by (intro emeasure_distr measurable_merge) (auto simp: sets_PiM) |
|
911 |
also have "emeasure ?B ?X = (\<Prod>i\<in>I. emeasure (M i) (F i)) * (\<Prod>i\<in>J. emeasure (M i) (F i))" |
|
50003 | 912 |
using `finite J` `finite I` F unfolding X |
50123
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
913 |
by (simp add: J.emeasure_pair_measure_Times I.measure_times J.measure_times) |
47694 | 914 |
also have "\<dots> = (\<Prod>i\<in>I \<union> J. emeasure (M i) (F i))" |
57418 | 915 |
using `finite J` `finite I` `I \<inter> J = {}` by (simp add: setprod.union_inter_neutral) |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
916 |
also have "\<dots> = emeasure ?P (Pi\<^sub>E (I \<union> J) F)" |
41661 | 917 |
using `finite J` `finite I` F unfolding A |
918 |
by (intro IJ.measure_times[symmetric]) auto |
|
47694 | 919 |
finally show "emeasure ?P A = emeasure ?D A" using A_eq by simp |
920 |
qed |
|
41661 | 921 |
qed |
41026
bea75746dc9d
folding on arbitrary Lebesgue integrable functions
hoelzl
parents:
41023
diff
changeset
|
922 |
|
56996 | 923 |
lemma (in product_sigma_finite) product_nn_integral_fold: |
47694 | 924 |
assumes IJ: "I \<inter> J = {}" "finite I" "finite J" |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
925 |
and f: "f \<in> borel_measurable (Pi\<^sub>M (I \<union> J) M)" |
56996 | 926 |
shows "integral\<^sup>N (Pi\<^sub>M (I \<union> J) M) f = |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
927 |
(\<integral>\<^sup>+ x. (\<integral>\<^sup>+ y. f (merge I J (x, y)) \<partial>(Pi\<^sub>M J M)) \<partial>(Pi\<^sub>M I M))" |
41026
bea75746dc9d
folding on arbitrary Lebesgue integrable functions
hoelzl
parents:
41023
diff
changeset
|
928 |
proof - |
41689
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
hoelzl
parents:
41661
diff
changeset
|
929 |
interpret I: finite_product_sigma_finite M I by default fact |
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
hoelzl
parents:
41661
diff
changeset
|
930 |
interpret J: finite_product_sigma_finite M J by default fact |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
931 |
interpret P: pair_sigma_finite "Pi\<^sub>M I M" "Pi\<^sub>M J M" by default |
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
932 |
have P_borel: "(\<lambda>x. f (merge I J x)) \<in> borel_measurable (Pi\<^sub>M I M \<Otimes>\<^sub>M Pi\<^sub>M J M)" |
49776 | 933 |
using measurable_comp[OF measurable_merge f] by (simp add: comp_def) |
41661 | 934 |
show ?thesis |
47694 | 935 |
apply (subst distr_merge[OF IJ, symmetric]) |
56996 | 936 |
apply (subst nn_integral_distr[OF measurable_merge f]) |
937 |
apply (subst J.nn_integral_fst[symmetric, OF P_borel]) |
|
47694 | 938 |
apply simp |
939 |
done |
|
40859 | 940 |
qed |
941 |
||
47694 | 942 |
lemma (in product_sigma_finite) distr_singleton: |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
943 |
"distr (Pi\<^sub>M {i} M) (M i) (\<lambda>x. x i) = M i" (is "?D = _") |
47694 | 944 |
proof (intro measure_eqI[symmetric]) |
41831 | 945 |
interpret I: finite_product_sigma_finite M "{i}" by default simp |
47694 | 946 |
fix A assume A: "A \<in> sets (M i)" |
53374
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
wenzelm
parents:
53015
diff
changeset
|
947 |
then have "(\<lambda>x. x i) -` A \<inter> space (Pi\<^sub>M {i} M) = (\<Pi>\<^sub>E i\<in>{i}. A)" |
50244
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
immler
parents:
50123
diff
changeset
|
948 |
using sets.sets_into_space by (auto simp: space_PiM) |
53374
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
wenzelm
parents:
53015
diff
changeset
|
949 |
then show "emeasure (M i) A = emeasure ?D A" |
47694 | 950 |
using A I.measure_times[of "\<lambda>_. A"] |
951 |
by (simp add: emeasure_distr measurable_component_singleton) |
|
952 |
qed simp |
|
41831 | 953 |
|
56996 | 954 |
lemma (in product_sigma_finite) product_nn_integral_singleton: |
40859 | 955 |
assumes f: "f \<in> borel_measurable (M i)" |
56996 | 956 |
shows "integral\<^sup>N (Pi\<^sub>M {i} M) (\<lambda>x. f (x i)) = integral\<^sup>N (M i) f" |
40859 | 957 |
proof - |
41689
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
hoelzl
parents:
41661
diff
changeset
|
958 |
interpret I: finite_product_sigma_finite M "{i}" by default simp |
47694 | 959 |
from f show ?thesis |
960 |
apply (subst distr_singleton[symmetric]) |
|
56996 | 961 |
apply (subst nn_integral_distr[OF measurable_component_singleton]) |
47694 | 962 |
apply simp_all |
963 |
done |
|
40859 | 964 |
qed |
965 |
||
56996 | 966 |
lemma (in product_sigma_finite) product_nn_integral_insert: |
49780 | 967 |
assumes I[simp]: "finite I" "i \<notin> I" |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
968 |
and f: "f \<in> borel_measurable (Pi\<^sub>M (insert i I) M)" |
56996 | 969 |
shows "integral\<^sup>N (Pi\<^sub>M (insert i I) M) f = (\<integral>\<^sup>+ x. (\<integral>\<^sup>+ y. f (x(i := y)) \<partial>(M i)) \<partial>(Pi\<^sub>M I M))" |
41096 | 970 |
proof - |
41689
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
hoelzl
parents:
41661
diff
changeset
|
971 |
interpret I: finite_product_sigma_finite M I by default auto |
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
hoelzl
parents:
41661
diff
changeset
|
972 |
interpret i: finite_product_sigma_finite M "{i}" by default auto |
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
hoelzl
parents:
41661
diff
changeset
|
973 |
have IJ: "I \<inter> {i} = {}" and insert: "I \<union> {i} = insert i I" |
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
hoelzl
parents:
41661
diff
changeset
|
974 |
using f by auto |
41096 | 975 |
show ?thesis |
56996 | 976 |
unfolding product_nn_integral_fold[OF IJ, unfolded insert, OF I(1) i.finite_index f] |
977 |
proof (rule nn_integral_cong, subst product_nn_integral_singleton[symmetric]) |
|
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
978 |
fix x assume x: "x \<in> space (Pi\<^sub>M I M)" |
49780 | 979 |
let ?f = "\<lambda>y. f (x(i := y))" |
980 |
show "?f \<in> borel_measurable (M i)" |
|
47694 | 981 |
using measurable_comp[OF measurable_component_update f, OF x `i \<notin> I`] |
982 |
unfolding comp_def . |
|
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
983 |
show "(\<integral>\<^sup>+ y. f (merge I {i} (x, y)) \<partial>Pi\<^sub>M {i} M) = (\<integral>\<^sup>+ y. f (x(i := y i)) \<partial>Pi\<^sub>M {i} M)" |
49780 | 984 |
using x |
56996 | 985 |
by (auto intro!: nn_integral_cong arg_cong[where f=f] |
50123
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
986 |
simp add: space_PiM extensional_def PiE_def) |
41096 | 987 |
qed |
988 |
qed |
|
989 |
||
59425 | 990 |
lemma (in product_sigma_finite) product_nn_integral_insert_rev: |
991 |
assumes I[simp]: "finite I" "i \<notin> I" |
|
992 |
and [measurable]: "f \<in> borel_measurable (Pi\<^sub>M (insert i I) M)" |
|
993 |
shows "integral\<^sup>N (Pi\<^sub>M (insert i I) M) f = (\<integral>\<^sup>+ y. (\<integral>\<^sup>+ x. f (x(i := y)) \<partial>(Pi\<^sub>M I M)) \<partial>(M i))" |
|
994 |
apply (subst product_nn_integral_insert[OF assms]) |
|
995 |
apply (rule pair_sigma_finite.Fubini') |
|
996 |
apply intro_locales [] |
|
997 |
apply (rule sigma_finite[OF I(1)]) |
|
998 |
apply measurable |
|
999 |
done |
|
1000 |
||
56996 | 1001 |
lemma (in product_sigma_finite) product_nn_integral_setprod: |
43920 | 1002 |
fixes f :: "'i \<Rightarrow> 'a \<Rightarrow> ereal" |
41096 | 1003 |
assumes "finite I" and borel: "\<And>i. i \<in> I \<Longrightarrow> f i \<in> borel_measurable (M i)" |
41981
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
hoelzl
parents:
41831
diff
changeset
|
1004 |
and pos: "\<And>i x. i \<in> I \<Longrightarrow> 0 \<le> f i x" |
56996 | 1005 |
shows "(\<integral>\<^sup>+ x. (\<Prod>i\<in>I. f i (x i)) \<partial>Pi\<^sub>M I M) = (\<Prod>i\<in>I. integral\<^sup>N (M i) (f i))" |
41096 | 1006 |
using assms proof induct |
1007 |
case (insert i I) |
|
1008 |
note `finite I`[intro, simp] |
|
41689
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
hoelzl
parents:
41661
diff
changeset
|
1009 |
interpret I: finite_product_sigma_finite M I by default auto |
41096 | 1010 |
have *: "\<And>x y. (\<Prod>j\<in>I. f j (if j = i then y else x j)) = (\<Prod>j\<in>I. f j (x j))" |
57418 | 1011 |
using insert by (auto intro!: setprod.cong) |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
1012 |
have prod: "\<And>J. J \<subseteq> insert i I \<Longrightarrow> (\<lambda>x. (\<Prod>i\<in>J. f i (x i))) \<in> borel_measurable (Pi\<^sub>M J M)" |
50244
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
immler
parents:
50123
diff
changeset
|
1013 |
using sets.sets_into_space insert |
47694 | 1014 |
by (intro borel_measurable_ereal_setprod |
41689
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
hoelzl
parents:
41661
diff
changeset
|
1015 |
measurable_comp[OF measurable_component_singleton, unfolded comp_def]) |
41096 | 1016 |
auto |
41981
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
hoelzl
parents:
41831
diff
changeset
|
1017 |
then show ?case |
56996 | 1018 |
apply (simp add: product_nn_integral_insert[OF insert(1,2) prod]) |
1019 |
apply (simp add: insert(2-) * pos borel setprod_ereal_pos nn_integral_multc) |
|
1020 |
apply (subst nn_integral_cmult) |
|
1021 |
apply (auto simp add: pos borel insert(2-) setprod_ereal_pos nn_integral_nonneg) |
|
41981
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
hoelzl
parents:
41831
diff
changeset
|
1022 |
done |
47694 | 1023 |
qed (simp add: space_PiM) |
41096 | 1024 |
|
59425 | 1025 |
lemma (in product_sigma_finite) product_nn_integral_pair: |
1026 |
assumes [measurable]: "split f \<in> borel_measurable (M x \<Otimes>\<^sub>M M y)" |
|
1027 |
assumes xy: "x \<noteq> y" |
|
1028 |
shows "(\<integral>\<^sup>+\<sigma>. f (\<sigma> x) (\<sigma> y) \<partial>PiM {x, y} M) = (\<integral>\<^sup>+z. f (fst z) (snd z) \<partial>(M x \<Otimes>\<^sub>M M y))" |
|
1029 |
proof- |
|
1030 |
interpret psm: pair_sigma_finite "M x" "M y" |
|
1031 |
unfolding pair_sigma_finite_def using sigma_finite_measures by simp_all |
|
1032 |
have "{x, y} = {y, x}" by auto |
|
1033 |
also have "(\<integral>\<^sup>+\<sigma>. f (\<sigma> x) (\<sigma> y) \<partial>PiM {y, x} M) = (\<integral>\<^sup>+y. \<integral>\<^sup>+\<sigma>. f (\<sigma> x) y \<partial>PiM {x} M \<partial>M y)" |
|
1034 |
using xy by (subst product_nn_integral_insert_rev) simp_all |
|
1035 |
also have "... = (\<integral>\<^sup>+y. \<integral>\<^sup>+x. f x y \<partial>M x \<partial>M y)" |
|
1036 |
by (intro nn_integral_cong, subst product_nn_integral_singleton) simp_all |
|
1037 |
also have "... = (\<integral>\<^sup>+z. f (fst z) (snd z) \<partial>(M x \<Otimes>\<^sub>M M y))" |
|
1038 |
by (subst psm.nn_integral_snd[symmetric]) simp_all |
|
1039 |
finally show ?thesis . |
|
1040 |
qed |
|
1041 |
||
50104 | 1042 |
lemma (in product_sigma_finite) distr_component: |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
1043 |
"distr (M i) (Pi\<^sub>M {i} M) (\<lambda>x. \<lambda>i\<in>{i}. x) = Pi\<^sub>M {i} M" (is "?D = ?P") |
50104 | 1044 |
proof (intro measure_eqI[symmetric]) |
1045 |
interpret I: finite_product_sigma_finite M "{i}" by default simp |
|
1046 |
||
1047 |
have eq: "\<And>x. x \<in> extensional {i} \<Longrightarrow> (\<lambda>j\<in>{i}. x i) = x" |
|
1048 |
by (auto simp: extensional_def restrict_def) |
|
1049 |
||
59048 | 1050 |
have [measurable]: "\<And>j. j \<in> {i} \<Longrightarrow> (\<lambda>x. x) \<in> measurable (M i) (M j)" by simp |
1051 |
||
50104 | 1052 |
fix A assume A: "A \<in> sets ?P" |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
1053 |
then have "emeasure ?P A = (\<integral>\<^sup>+x. indicator A x \<partial>?P)" |
50104 | 1054 |
by simp |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
1055 |
also have "\<dots> = (\<integral>\<^sup>+x. indicator ((\<lambda>x. \<lambda>i\<in>{i}. x) -` A \<inter> space (M i)) (x i) \<partial>PiM {i} M)" |
56996 | 1056 |
by (intro nn_integral_cong) (auto simp: space_PiM indicator_def PiE_def eq) |
50104 | 1057 |
also have "\<dots> = emeasure ?D A" |
56996 | 1058 |
using A by (simp add: product_nn_integral_singleton emeasure_distr) |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
1059 |
finally show "emeasure (Pi\<^sub>M {i} M) A = emeasure ?D A" . |
50104 | 1060 |
qed simp |
41026
bea75746dc9d
folding on arbitrary Lebesgue integrable functions
hoelzl
parents:
41023
diff
changeset
|
1061 |
|
49776 | 1062 |
lemma (in product_sigma_finite) |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
1063 |
assumes IJ: "I \<inter> J = {}" "finite I" "finite J" and A: "A \<in> sets (Pi\<^sub>M (I \<union> J) M)" |
49776 | 1064 |
shows emeasure_fold_integral: |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
1065 |
"emeasure (Pi\<^sub>M (I \<union> J) M) A = (\<integral>\<^sup>+x. emeasure (Pi\<^sub>M J M) ((\<lambda>y. merge I J (x, y)) -` A \<inter> space (Pi\<^sub>M J M)) \<partial>Pi\<^sub>M I M)" (is ?I) |
49776 | 1066 |
and emeasure_fold_measurable: |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
1067 |
"(\<lambda>x. emeasure (Pi\<^sub>M J M) ((\<lambda>y. merge I J (x, y)) -` A \<inter> space (Pi\<^sub>M J M))) \<in> borel_measurable (Pi\<^sub>M I M)" (is ?B) |
49776 | 1068 |
proof - |
1069 |
interpret I: finite_product_sigma_finite M I by default fact |
|
1070 |
interpret J: finite_product_sigma_finite M J by default fact |
|
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
1071 |
interpret IJ: pair_sigma_finite "Pi\<^sub>M I M" "Pi\<^sub>M J M" .. |
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
1072 |
have merge: "merge I J -` A \<inter> space (Pi\<^sub>M I M \<Otimes>\<^sub>M Pi\<^sub>M J M) \<in> sets (Pi\<^sub>M I M \<Otimes>\<^sub>M Pi\<^sub>M J M)" |
49776 | 1073 |
by (intro measurable_sets[OF _ A] measurable_merge assms) |
1074 |
||
1075 |
show ?I |
|
1076 |
apply (subst distr_merge[symmetric, OF IJ]) |
|
1077 |
apply (subst emeasure_distr[OF measurable_merge A]) |
|
1078 |
apply (subst J.emeasure_pair_measure_alt[OF merge]) |
|
56996 | 1079 |
apply (auto intro!: nn_integral_cong arg_cong2[where f=emeasure] simp: space_pair_measure) |
49776 | 1080 |
done |
1081 |
||
1082 |
show ?B |
|
1083 |
using IJ.measurable_emeasure_Pair1[OF merge] |
|
56154
f0a927235162
more complete set of lemmas wrt. image and composition
haftmann
parents:
55415
diff
changeset
|
1084 |
by (simp add: vimage_comp comp_def space_pair_measure cong: measurable_cong) |
49776 | 1085 |
qed |
1086 |
||
1087 |
lemma sets_Collect_single: |
|
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50387
diff
changeset
|
1088 |
"i \<in> I \<Longrightarrow> A \<in> sets (M i) \<Longrightarrow> { x \<in> space (Pi\<^sub>M I M). x i \<in> A } \<in> sets (Pi\<^sub>M I M)" |
50003 | 1089 |
by simp |
49776 | 1090 |
|
50104 | 1091 |
lemma pair_measure_eq_distr_PiM: |
1092 |
fixes M1 :: "'a measure" and M2 :: "'a measure" |
|
1093 |
assumes "sigma_finite_measure M1" "sigma_finite_measure M2" |
|
55414
eab03e9cee8a
renamed '{prod,sum,bool,unit}_case' to 'case_...'
blanchet
parents:
53374
diff
changeset
|
1094 |
shows "(M1 \<Otimes>\<^sub>M M2) = distr (Pi\<^sub>M UNIV (case_bool M1 M2)) (M1 \<Otimes>\<^sub>M M2) (\<lambda>x. (x True, x False))" |
50104 | 1095 |
(is "?P = ?D") |
1096 |
proof (rule pair_measure_eqI[OF assms]) |
|
55414
eab03e9cee8a
renamed '{prod,sum,bool,unit}_case' to 'case_...'
blanchet
parents:
53374
diff
changeset
|
1097 |
interpret B: product_sigma_finite "case_bool M1 M2" |
50104 | 1098 |
unfolding product_sigma_finite_def using assms by (auto split: bool.split) |
55414
eab03e9cee8a
renamed '{prod,sum,bool,unit}_case' to 'case_...'
blanchet
parents:
53374
diff
changeset
|
1099 |
let ?B = "Pi\<^sub>M UNIV (case_bool M1 M2)" |
50104 | 1100 |
|
1101 |
have [simp]: "fst \<circ> (\<lambda>x. (x True, x False)) = (\<lambda>x. x True)" "snd \<circ> (\<lambda>x. (x True, x False)) = (\<lambda>x. x False)" |
|
1102 |
by auto |
|
1103 |
fix A B assume A: "A \<in> sets M1" and B: "B \<in> sets M2" |
|
55414
eab03e9cee8a
renamed '{prod,sum,bool,unit}_case' to 'case_...'
blanchet
parents:
53374
diff
changeset
|
1104 |
have "emeasure M1 A * emeasure M2 B = (\<Prod> i\<in>UNIV. emeasure (case_bool M1 M2 i) (case_bool A B i))" |
50104 | 1105 |
by (simp add: UNIV_bool ac_simps) |
55414
eab03e9cee8a
renamed '{prod,sum,bool,unit}_case' to 'case_...'
blanchet
parents:
53374
diff
changeset
|
1106 |
also have "\<dots> = emeasure ?B (Pi\<^sub>E UNIV (case_bool A B))" |
50104 | 1107 |
using A B by (subst B.emeasure_PiM) (auto split: bool.split) |
55414
eab03e9cee8a
renamed '{prod,sum,bool,unit}_case' to 'case_...'
blanchet
parents:
53374
diff
changeset
|
1108 |
also have "Pi\<^sub>E UNIV (case_bool A B) = (\<lambda>x. (x True, x False)) -` (A \<times> B) \<inter> space ?B" |
50244
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
immler
parents:
50123
diff
changeset
|
1109 |
using A[THEN sets.sets_into_space] B[THEN sets.sets_into_space] |
50123
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
hoelzl
parents:
50104
diff
changeset
|
1110 |
by (auto simp: PiE_iff all_bool_eq space_PiM split: bool.split) |
50104 | 1111 |
finally show "emeasure M1 A * emeasure M2 B = emeasure ?D (A \<times> B)" |
1112 |
using A B |
|
55414
eab03e9cee8a
renamed '{prod,sum,bool,unit}_case' to 'case_...'
blanchet
parents:
53374
diff
changeset
|
1113 |
measurable_component_singleton[of True UNIV "case_bool M1 M2"] |
eab03e9cee8a
renamed '{prod,sum,bool,unit}_case' to 'case_...'
blanchet
parents:
53374
diff
changeset
|
1114 |
measurable_component_singleton[of False UNIV "case_bool M1 M2"] |
50104 | 1115 |
by (subst emeasure_distr) (auto simp: measurable_pair_iff) |
1116 |
qed simp |
|
1117 |
||
47694 | 1118 |
end |