author  blanchet 
Mon, 03 Mar 2014 12:48:19 +0100  
changeset 55851  3d40cf74726c 
parent 55811  aa1acc25126b 
child 55856  bddaada24074 
permissions  rwrr 
55059  1 
(* Title: HOL/BNF_LFP.thy 
48975
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset

2 
Author: Dmitriy Traytel, TU Muenchen 
53305  3 
Author: Lorenz Panny, TU Muenchen 
4 
Author: Jasmin Blanchette, TU Muenchen 

5 
Copyright 2012, 2013 

48975
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset

6 

7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset

7 
Least fixed point operation on bounded natural functors. 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset

8 
*) 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset

9 

7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset

10 
header {* Least Fixed Point Operation on Bounded Natural Functors *} 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset

11 

7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset

12 
theory BNF_LFP 
53311  13 
imports BNF_FP_Base 
48975
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset

14 
keywords 
53305  15 
"datatype_new" :: thy_decl and 
55575
a5e33e18fb5c
moved 'primrec' up (for real this time) and removed temporary 'old_primrec'
blanchet
parents:
55571
diff
changeset

16 
"datatype_compat" :: thy_decl 
48975
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset

17 
begin 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset

18 

49312  19 
lemma subset_emptyI: "(\<And>x. x \<in> A \<Longrightarrow> False) \<Longrightarrow> A \<subseteq> {}" 
20 
by blast 

21 

22 
lemma image_Collect_subsetI: 

23 
"(\<And>x. P x \<Longrightarrow> f x \<in> B) \<Longrightarrow> f ` {x. P x} \<subseteq> B" 

24 
by blast 

25 

26 
lemma Collect_restrict: "{x. x \<in> X \<and> P x} \<subseteq> X" 

27 
by auto 

28 

29 
lemma prop_restrict: "\<lbrakk>x \<in> Z; Z \<subseteq> {x. x \<in> X \<and> P x}\<rbrakk> \<Longrightarrow> P x" 

30 
by auto 

31 

55023
38db7814481d
get rid of 'rel' locale, to facilitate inclusion of 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54841
diff
changeset

32 
lemma underS_I: "\<lbrakk>i \<noteq> j; (i, j) \<in> R\<rbrakk> \<Longrightarrow> i \<in> underS R j" 
38db7814481d
get rid of 'rel' locale, to facilitate inclusion of 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54841
diff
changeset

33 
unfolding underS_def by simp 
49312  34 

55023
38db7814481d
get rid of 'rel' locale, to facilitate inclusion of 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54841
diff
changeset

35 
lemma underS_E: "i \<in> underS R j \<Longrightarrow> i \<noteq> j \<and> (i, j) \<in> R" 
38db7814481d
get rid of 'rel' locale, to facilitate inclusion of 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54841
diff
changeset

36 
unfolding underS_def by simp 
49312  37 

55023
38db7814481d
get rid of 'rel' locale, to facilitate inclusion of 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54841
diff
changeset

38 
lemma underS_Field: "i \<in> underS R j \<Longrightarrow> i \<in> Field R" 
38db7814481d
get rid of 'rel' locale, to facilitate inclusion of 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54841
diff
changeset

39 
unfolding underS_def Field_def by auto 
49312  40 

41 
lemma FieldI2: "(i, j) \<in> R \<Longrightarrow> j \<in> Field R" 

42 
unfolding Field_def by auto 

43 

44 
lemma fst_convol': "fst (<f, g> x) = f x" 

45 
using fst_convol unfolding convol_def by simp 

46 

47 
lemma snd_convol': "snd (<f, g> x) = g x" 

48 
using snd_convol unfolding convol_def by simp 

49 

50 
lemma convol_expand_snd: "fst o f = g \<Longrightarrow> <g, snd o f> = f" 

51 
unfolding convol_def by auto 

52 

55811  53 
lemma convol_expand_snd': 
54 
assumes "(fst o f = g)" 

55 
shows "h = snd o f \<longleftrightarrow> <g, h> = f" 

56 
proof  

57 
from assms have *: "<g, snd o f> = f" by (rule convol_expand_snd) 

58 
then have "h = snd o f \<longleftrightarrow> h = snd o <g, snd o f>" by simp 

59 
moreover have "\<dots> \<longleftrightarrow> h = snd o f" by (simp add: snd_convol) 

60 
moreover have "\<dots> \<longleftrightarrow> <g, h> = f" by (subst (2) *[symmetric]) (auto simp: convol_def fun_eq_iff) 

61 
ultimately show ?thesis by simp 

62 
qed 

51739
3514b90d0a8b
(co)rec is (just as the (un)fold) the unique morphism;
traytel
parents:
49635
diff
changeset

63 

49312  64 
definition inver where 
65 
"inver g f A = (ALL a : A. g (f a) = a)" 

66 

67 
lemma bij_betw_iff_ex: 

68 
"bij_betw f A B = (EX g. g ` B = A \<and> inver g f A \<and> inver f g B)" (is "?L = ?R") 

69 
proof (rule iffI) 

70 
assume ?L 

71 
hence f: "f ` A = B" and inj_f: "inj_on f A" unfolding bij_betw_def by auto 

72 
let ?phi = "% b a. a : A \<and> f a = b" 

73 
have "ALL b : B. EX a. ?phi b a" using f by blast 

74 
then obtain g where g: "ALL b : B. g b : A \<and> f (g b) = b" 

75 
using bchoice[of B ?phi] by blast 

76 
hence gg: "ALL b : f ` A. g b : A \<and> f (g b) = b" using f by blast 

49326  77 
have gf: "inver g f A" unfolding inver_def 
55811  78 
proof 
79 
fix a assume "a \<in> A" 

80 
then show "g (f a) = a" using the_inv_into_f_f[OF inj_f, of "g (f a)"] 

81 
the_inv_into_f_f[OF inj_f, of a] gg imageI[of a A f] by auto 

82 
qed 

49312  83 
moreover have "g ` B \<le> A \<and> inver f g B" using g unfolding inver_def by blast 
84 
moreover have "A \<le> g ` B" 

85 
proof safe 

86 
fix a assume a: "a : A" 

87 
hence "f a : B" using f by auto 

88 
moreover have "a = g (f a)" using a gf unfolding inver_def by auto 

89 
ultimately show "a : g ` B" by blast 

90 
qed 

91 
ultimately show ?R by blast 

92 
next 

93 
assume ?R 

94 
then obtain g where g: "g ` B = A \<and> inver g f A \<and> inver f g B" by blast 

95 
show ?L unfolding bij_betw_def 

96 
proof safe 

97 
show "inj_on f A" unfolding inj_on_def 

98 
proof safe 

99 
fix a1 a2 assume a: "a1 : A" "a2 : A" and "f a1 = f a2" 

100 
hence "g (f a1) = g (f a2)" by simp 

101 
thus "a1 = a2" using a g unfolding inver_def by simp 

102 
qed 

103 
next 

104 
fix a assume "a : A" 

105 
then obtain b where b: "b : B" and a: "a = g b" using g by blast 

106 
hence "b = f (g b)" using g unfolding inver_def by auto 

107 
thus "f a : B" unfolding a using b by simp 

108 
next 

109 
fix b assume "b : B" 

110 
hence "g b : A \<and> b = f (g b)" using g unfolding inver_def by auto 

111 
thus "b : f ` A" by auto 

112 
qed 

113 
qed 

114 

115 
lemma bij_betw_ex_weakE: 

116 
"\<lbrakk>bij_betw f A B\<rbrakk> \<Longrightarrow> \<exists>g. g ` B \<subseteq> A \<and> inver g f A \<and> inver f g B" 

117 
by (auto simp only: bij_betw_iff_ex) 

118 

119 
lemma inver_surj: "\<lbrakk>g ` B \<subseteq> A; f ` A \<subseteq> B; inver g f A\<rbrakk> \<Longrightarrow> g ` B = A" 

120 
unfolding inver_def by auto (rule rev_image_eqI, auto) 

121 

122 
lemma inver_mono: "\<lbrakk>A \<subseteq> B; inver f g B\<rbrakk> \<Longrightarrow> inver f g A" 

123 
unfolding inver_def by auto 

124 

125 
lemma inver_pointfree: "inver f g A = (\<forall>a \<in> A. (f o g) a = a)" 

126 
unfolding inver_def by simp 

127 

128 
lemma bij_betwE: "bij_betw f A B \<Longrightarrow> \<forall>a\<in>A. f a \<in> B" 

129 
unfolding bij_betw_def by auto 

130 

131 
lemma bij_betw_imageE: "bij_betw f A B \<Longrightarrow> f ` A = B" 

132 
unfolding bij_betw_def by auto 

133 

134 
lemma inverE: "\<lbrakk>inver f f' A; x \<in> A\<rbrakk> \<Longrightarrow> f (f' x) = x" 

135 
unfolding inver_def by auto 

136 

137 
lemma bij_betw_inver1: "bij_betw f A B \<Longrightarrow> inver (inv_into A f) f A" 

138 
unfolding bij_betw_def inver_def by auto 

139 

140 
lemma bij_betw_inver2: "bij_betw f A B \<Longrightarrow> inver f (inv_into A f) B" 

141 
unfolding bij_betw_def inver_def by auto 

142 

143 
lemma bij_betwI: "\<lbrakk>bij_betw g B A; inver g f A; inver f g B\<rbrakk> \<Longrightarrow> bij_betw f A B" 

49326  144 
by (drule bij_betw_imageE, unfold bij_betw_iff_ex) blast 
49312  145 

146 
lemma bij_betwI': 

147 
"\<lbrakk>\<And>x y. \<lbrakk>x \<in> X; y \<in> X\<rbrakk> \<Longrightarrow> (f x = f y) = (x = y); 

148 
\<And>x. x \<in> X \<Longrightarrow> f x \<in> Y; 

149 
\<And>y. y \<in> Y \<Longrightarrow> \<exists>x \<in> X. y = f x\<rbrakk> \<Longrightarrow> bij_betw f X Y" 

53695  150 
unfolding bij_betw_def inj_on_def by blast 
49312  151 

152 
lemma surj_fun_eq: 

153 
assumes surj_on: "f ` X = UNIV" and eq_on: "\<forall>x \<in> X. (g1 o f) x = (g2 o f) x" 

154 
shows "g1 = g2" 

155 
proof (rule ext) 

156 
fix y 

157 
from surj_on obtain x where "x \<in> X" and "y = f x" by blast 

158 
thus "g1 y = g2 y" using eq_on by simp 

159 
qed 

160 

161 
lemma Card_order_wo_rel: "Card_order r \<Longrightarrow> wo_rel r" 

49514  162 
unfolding wo_rel_def card_order_on_def by blast 
49312  163 

164 
lemma Cinfinite_limit: "\<lbrakk>x \<in> Field r; Cinfinite r\<rbrakk> \<Longrightarrow> 

165 
\<exists>y \<in> Field r. x \<noteq> y \<and> (x, y) \<in> r" 

166 
unfolding cinfinite_def by (auto simp add: infinite_Card_order_limit) 

167 

168 
lemma Card_order_trans: 

169 
"\<lbrakk>Card_order r; x \<noteq> y; (x, y) \<in> r; y \<noteq> z; (y, z) \<in> r\<rbrakk> \<Longrightarrow> x \<noteq> z \<and> (x, z) \<in> r" 

170 
unfolding card_order_on_def well_order_on_def linear_order_on_def 

171 
partial_order_on_def preorder_on_def trans_def antisym_def by blast 

172 

173 
lemma Cinfinite_limit2: 

174 
assumes x1: "x1 \<in> Field r" and x2: "x2 \<in> Field r" and r: "Cinfinite r" 

175 
shows "\<exists>y \<in> Field r. (x1 \<noteq> y \<and> (x1, y) \<in> r) \<and> (x2 \<noteq> y \<and> (x2, y) \<in> r)" 

176 
proof  

177 
from r have trans: "trans r" and total: "Total r" and antisym: "antisym r" 

178 
unfolding card_order_on_def well_order_on_def linear_order_on_def 

179 
partial_order_on_def preorder_on_def by auto 

180 
obtain y1 where y1: "y1 \<in> Field r" "x1 \<noteq> y1" "(x1, y1) \<in> r" 

181 
using Cinfinite_limit[OF x1 r] by blast 

182 
obtain y2 where y2: "y2 \<in> Field r" "x2 \<noteq> y2" "(x2, y2) \<in> r" 

183 
using Cinfinite_limit[OF x2 r] by blast 

184 
show ?thesis 

185 
proof (cases "y1 = y2") 

186 
case True with y1 y2 show ?thesis by blast 

187 
next 

188 
case False 

189 
with y1(1) y2(1) total have "(y1, y2) \<in> r \<or> (y2, y1) \<in> r" 

190 
unfolding total_on_def by auto 

191 
thus ?thesis 

192 
proof 

193 
assume *: "(y1, y2) \<in> r" 

194 
with trans y1(3) have "(x1, y2) \<in> r" unfolding trans_def by blast 

195 
with False y1 y2 * antisym show ?thesis by (cases "x1 = y2") (auto simp: antisym_def) 

196 
next 

197 
assume *: "(y2, y1) \<in> r" 

198 
with trans y2(3) have "(x2, y1) \<in> r" unfolding trans_def by blast 

199 
with False y1 y2 * antisym show ?thesis by (cases "x2 = y1") (auto simp: antisym_def) 

200 
qed 

201 
qed 

202 
qed 

203 

204 
lemma Cinfinite_limit_finite: "\<lbrakk>finite X; X \<subseteq> Field r; Cinfinite r\<rbrakk> 

205 
\<Longrightarrow> \<exists>y \<in> Field r. \<forall>x \<in> X. (x \<noteq> y \<and> (x, y) \<in> r)" 

206 
proof (induct X rule: finite_induct) 

207 
case empty thus ?case unfolding cinfinite_def using ex_in_conv[of "Field r"] finite.emptyI by auto 

208 
next 

209 
case (insert x X) 

210 
then obtain y where y: "y \<in> Field r" "\<forall>x \<in> X. (x \<noteq> y \<and> (x, y) \<in> r)" by blast 

211 
then obtain z where z: "z \<in> Field r" "x \<noteq> z \<and> (x, z) \<in> r" "y \<noteq> z \<and> (y, z) \<in> r" 

212 
using Cinfinite_limit2[OF _ y(1) insert(5), of x] insert(4) by blast 

49326  213 
show ?case 
214 
apply (intro bexI ballI) 

215 
apply (erule insertE) 

216 
apply hypsubst 

217 
apply (rule z(2)) 

218 
using Card_order_trans[OF insert(5)[THEN conjunct2]] y(2) z(3) 

219 
apply blast 

220 
apply (rule z(1)) 

221 
done 

49312  222 
qed 
223 

224 
lemma insert_subsetI: "\<lbrakk>x \<in> A; X \<subseteq> A\<rbrakk> \<Longrightarrow> insert x X \<subseteq> A" 

225 
by auto 

226 

227 
(*helps resolution*) 

228 
lemma well_order_induct_imp: 

229 
"wo_rel r \<Longrightarrow> (\<And>x. \<forall>y. y \<noteq> x \<and> (y, x) \<in> r \<longrightarrow> y \<in> Field r \<longrightarrow> P y \<Longrightarrow> x \<in> Field r \<longrightarrow> P x) \<Longrightarrow> 

230 
x \<in> Field r \<longrightarrow> P x" 

231 
by (erule wo_rel.well_order_induct) 

232 

233 
lemma meta_spec2: 

234 
assumes "(\<And>x y. PROP P x y)" 

235 
shows "PROP P x y" 

55084  236 
by (rule assms) 
49312  237 

54841
af71b753c459
express weak pullback property of bnfs only in terms of the relator
traytel
parents:
54246
diff
changeset

238 
lemma nchotomy_relcomppE: 
55811  239 
assumes "\<And>y. \<exists>x. y = f x" "(r OO s) a c" "\<And>b. r a (f b) \<Longrightarrow> s (f b) c \<Longrightarrow> P" 
240 
shows P 

241 
proof (rule relcompp.cases[OF assms(2)], hypsubst) 

242 
fix b assume "r a b" "s b c" 

243 
moreover from assms(1) obtain b' where "b = f b'" by blast 

244 
ultimately show P by (blast intro: assms(3)) 

245 
qed 

54841
af71b753c459
express weak pullback property of bnfs only in terms of the relator
traytel
parents:
54246
diff
changeset

246 

55066  247 
lemma vimage2p_fun_rel: "fun_rel (vimage2p f g R) R f g" 
52731  248 
unfolding fun_rel_def vimage2p_def by auto 
249 

250 
lemma predicate2D_vimage2p: "\<lbrakk>R \<le> vimage2p f g S; R x y\<rbrakk> \<Longrightarrow> S (f x) (g y)" 

251 
unfolding vimage2p_def by auto 

252 

55084  253 
lemma id_transfer: "fun_rel A A id id" 
55851
3d40cf74726c
optimize cardinal bounds involving natLeq (omega)
blanchet
parents:
55811
diff
changeset

254 
unfolding fun_rel_def by simp 
55084  255 

55770
f2cf7f92c9ac
intermediate typedef for the type of the bound (local to lfp)
traytel
parents:
55575
diff
changeset

256 
lemma ssubst_Pair_rhs: "\<lbrakk>(r, s) \<in> R; s' = s\<rbrakk> \<Longrightarrow> (r, s') \<in> R" 
55851
3d40cf74726c
optimize cardinal bounds involving natLeq (omega)
blanchet
parents:
55811
diff
changeset

257 
by (rule ssubst) 
55770
f2cf7f92c9ac
intermediate typedef for the type of the bound (local to lfp)
traytel
parents:
55575
diff
changeset

258 

55062  259 
ML_file "Tools/BNF/bnf_lfp_util.ML" 
260 
ML_file "Tools/BNF/bnf_lfp_tactics.ML" 

261 
ML_file "Tools/BNF/bnf_lfp.ML" 

262 
ML_file "Tools/BNF/bnf_lfp_compat.ML" 

55571  263 
ML_file "Tools/BNF/bnf_lfp_rec_sugar_more.ML" 
49309
f20b24214ac2
split basic BNFs into really basic ones and others, and added Andreas Lochbihler's "option" BNF
blanchet
parents:
49308
diff
changeset

264 

55084  265 
hide_fact (open) id_transfer 
266 

48975
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset

267 
end 