| author | wenzelm | 
| Mon, 02 Oct 2017 13:45:36 +0200 | |
| changeset 66748 | 3efac90a11a7 | 
| parent 65036 | ab7e11730ad8 | 
| child 67399 | eab6ce8368fa | 
| permissions | -rw-r--r-- | 
| 63627 | 1 | (* Title: HOL/Analysis/Finite_Product_Measure.thy | 
| 42067 | 2 | Author: Johannes Hölzl, TU München | 
| 3 | *) | |
| 4 | ||
| 61808 | 5 | section \<open>Finite product measures\<close> | 
| 42067 | 6 | |
| 42146 
5b52c6a9c627
split Product_Measure into Binary_Product_Measure and Finite_Product_Measure
 hoelzl parents: 
42067diff
changeset | 7 | theory Finite_Product_Measure | 
| 
5b52c6a9c627
split Product_Measure into Binary_Product_Measure and Finite_Product_Measure
 hoelzl parents: 
42067diff
changeset | 8 | imports Binary_Product_Measure | 
| 35833 | 9 | begin | 
| 10 | ||
| 64910 | 11 | lemma PiE_choice: "(\<exists>f\<in>Pi\<^sub>E I F. \<forall>i\<in>I. P i (f i)) \<longleftrightarrow> (\<forall>i\<in>I. \<exists>x\<in>F i. P i x)" | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 12 | by (auto simp: Bex_def PiE_iff Ball_def dest!: choice_iff'[THEN iffD1]) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 13 | (force intro: exI[of _ "restrict f I" for f]) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 14 | |
| 61424 
c3658c18b7bc
prod_case as canonical name for product type eliminator
 haftmann parents: 
61378diff
changeset | 15 | lemma case_prod_const: "(\<lambda>(i, j). c) = (\<lambda>_. c)" | 
| 47694 | 16 | by auto | 
| 17 | ||
| 61808 | 18 | subsubsection \<open>More about Function restricted by @{const extensional}\<close>
 | 
| 50038 | 19 | |
| 35833 | 20 | definition | 
| 49780 | 21 | "merge I J = (\<lambda>(x, y) i. if i \<in> I then x i else if i \<in> J then y i else undefined)" | 
| 40859 | 22 | |
| 23 | lemma merge_apply[simp]: | |
| 49780 | 24 |   "I \<inter> J = {} \<Longrightarrow> i \<in> I \<Longrightarrow> merge I J (x, y) i = x i"
 | 
| 25 |   "I \<inter> J = {} \<Longrightarrow> i \<in> J \<Longrightarrow> merge I J (x, y) i = y i"
 | |
| 26 |   "J \<inter> I = {} \<Longrightarrow> i \<in> I \<Longrightarrow> merge I J (x, y) i = x i"
 | |
| 27 |   "J \<inter> I = {} \<Longrightarrow> i \<in> J \<Longrightarrow> merge I J (x, y) i = y i"
 | |
| 28 | "i \<notin> I \<Longrightarrow> i \<notin> J \<Longrightarrow> merge I J (x, y) i = undefined" | |
| 40859 | 29 | unfolding merge_def by auto | 
| 30 | ||
| 31 | lemma merge_commute: | |
| 49780 | 32 |   "I \<inter> J = {} \<Longrightarrow> merge I J (x, y) = merge J I (y, x)"
 | 
| 50003 | 33 | by (force simp: merge_def) | 
| 40859 | 34 | |
| 35 | lemma Pi_cancel_merge_range[simp]: | |
| 49780 | 36 |   "I \<inter> J = {} \<Longrightarrow> x \<in> Pi I (merge I J (A, B)) \<longleftrightarrow> x \<in> Pi I A"
 | 
| 37 |   "I \<inter> J = {} \<Longrightarrow> x \<in> Pi I (merge J I (B, A)) \<longleftrightarrow> x \<in> Pi I A"
 | |
| 38 |   "J \<inter> I = {} \<Longrightarrow> x \<in> Pi I (merge I J (A, B)) \<longleftrightarrow> x \<in> Pi I A"
 | |
| 39 |   "J \<inter> I = {} \<Longrightarrow> x \<in> Pi I (merge J I (B, A)) \<longleftrightarrow> x \<in> Pi I A"
 | |
| 40859 | 40 | by (auto simp: Pi_def) | 
| 41 | ||
| 42 | lemma Pi_cancel_merge[simp]: | |
| 49780 | 43 |   "I \<inter> J = {} \<Longrightarrow> merge I J (x, y) \<in> Pi I B \<longleftrightarrow> x \<in> Pi I B"
 | 
| 44 |   "J \<inter> I = {} \<Longrightarrow> merge I J (x, y) \<in> Pi I B \<longleftrightarrow> x \<in> Pi I B"
 | |
| 45 |   "I \<inter> J = {} \<Longrightarrow> merge I J (x, y) \<in> Pi J B \<longleftrightarrow> y \<in> Pi J B"
 | |
| 46 |   "J \<inter> I = {} \<Longrightarrow> merge I J (x, y) \<in> Pi J B \<longleftrightarrow> y \<in> Pi J B"
 | |
| 40859 | 47 | by (auto simp: Pi_def) | 
| 48 | ||
| 49780 | 49 | lemma extensional_merge[simp]: "merge I J (x, y) \<in> extensional (I \<union> J)" | 
| 40859 | 50 | by (auto simp: extensional_def) | 
| 51 | ||
| 52 | lemma restrict_merge[simp]: | |
| 49780 | 53 |   "I \<inter> J = {} \<Longrightarrow> restrict (merge I J (x, y)) I = restrict x I"
 | 
| 54 |   "I \<inter> J = {} \<Longrightarrow> restrict (merge I J (x, y)) J = restrict y J"
 | |
| 55 |   "J \<inter> I = {} \<Longrightarrow> restrict (merge I J (x, y)) I = restrict x I"
 | |
| 56 |   "J \<inter> I = {} \<Longrightarrow> restrict (merge I J (x, y)) J = restrict y J"
 | |
| 47694 | 57 | by (auto simp: restrict_def) | 
| 40859 | 58 | |
| 50042 
6fe18351e9dd
moved lemmas into projective_family; added header for theory Projective_Family
 immler@in.tum.de parents: 
50041diff
changeset | 59 | lemma split_merge: "P (merge I J (x,y) i) \<longleftrightarrow> (i \<in> I \<longrightarrow> P (x i)) \<and> (i \<in> J - I \<longrightarrow> P (y i)) \<and> (i \<notin> I \<union> J \<longrightarrow> P undefined)" | 
| 
6fe18351e9dd
moved lemmas into projective_family; added header for theory Projective_Family
 immler@in.tum.de parents: 
50041diff
changeset | 60 | unfolding merge_def by auto | 
| 
6fe18351e9dd
moved lemmas into projective_family; added header for theory Projective_Family
 immler@in.tum.de parents: 
50041diff
changeset | 61 | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 62 | lemma PiE_cancel_merge[simp]: | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 63 |   "I \<inter> J = {} \<Longrightarrow>
 | 
| 64910 | 64 | merge I J (x, y) \<in> Pi\<^sub>E (I \<union> J) B \<longleftrightarrow> x \<in> Pi I B \<and> y \<in> Pi J B" | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 65 | by (auto simp: PiE_def restrict_Pi_cancel) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 66 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 67 | lemma merge_singleton[simp]: "i \<notin> I \<Longrightarrow> merge I {i} (x,y) = restrict (x(i := y i)) (insert i I)"
 | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 68 | unfolding merge_def by (auto simp: fun_eq_iff) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 69 | |
| 50042 
6fe18351e9dd
moved lemmas into projective_family; added header for theory Projective_Family
 immler@in.tum.de parents: 
50041diff
changeset | 70 | lemma extensional_merge_sub: "I \<union> J \<subseteq> K \<Longrightarrow> merge I J (x, y) \<in> extensional K" | 
| 
6fe18351e9dd
moved lemmas into projective_family; added header for theory Projective_Family
 immler@in.tum.de parents: 
50041diff
changeset | 71 | unfolding merge_def extensional_def by auto | 
| 
6fe18351e9dd
moved lemmas into projective_family; added header for theory Projective_Family
 immler@in.tum.de parents: 
50041diff
changeset | 72 | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 73 | lemma merge_restrict[simp]: | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 74 | "merge I J (restrict x I, y) = merge I J (x, y)" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 75 | "merge I J (x, restrict y J) = merge I J (x, y)" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 76 | unfolding merge_def by auto | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 77 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 78 | lemma merge_x_x_eq_restrict[simp]: | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 79 | "merge I J (x, x) = restrict x (I \<union> J)" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 80 | unfolding merge_def by auto | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 81 | |
| 50042 
6fe18351e9dd
moved lemmas into projective_family; added header for theory Projective_Family
 immler@in.tum.de parents: 
50041diff
changeset | 82 | lemma injective_vimage_restrict: | 
| 
6fe18351e9dd
moved lemmas into projective_family; added header for theory Projective_Family
 immler@in.tum.de parents: 
50041diff
changeset | 83 | assumes J: "J \<subseteq> I" | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 84 |   and sets: "A \<subseteq> (\<Pi>\<^sub>E i\<in>J. S i)" "B \<subseteq> (\<Pi>\<^sub>E i\<in>J. S i)" and ne: "(\<Pi>\<^sub>E i\<in>I. S i) \<noteq> {}"
 | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 85 | and eq: "(\<lambda>x. restrict x J) -` A \<inter> (\<Pi>\<^sub>E i\<in>I. S i) = (\<lambda>x. restrict x J) -` B \<inter> (\<Pi>\<^sub>E i\<in>I. S i)" | 
| 50042 
6fe18351e9dd
moved lemmas into projective_family; added header for theory Projective_Family
 immler@in.tum.de parents: 
50041diff
changeset | 86 | shows "A = B" | 
| 
6fe18351e9dd
moved lemmas into projective_family; added header for theory Projective_Family
 immler@in.tum.de parents: 
50041diff
changeset | 87 | proof (intro set_eqI) | 
| 
6fe18351e9dd
moved lemmas into projective_family; added header for theory Projective_Family
 immler@in.tum.de parents: 
50041diff
changeset | 88 | fix x | 
| 
6fe18351e9dd
moved lemmas into projective_family; added header for theory Projective_Family
 immler@in.tum.de parents: 
50041diff
changeset | 89 | from ne obtain y where y: "\<And>i. i \<in> I \<Longrightarrow> y i \<in> S i" by auto | 
| 
6fe18351e9dd
moved lemmas into projective_family; added header for theory Projective_Family
 immler@in.tum.de parents: 
50041diff
changeset | 90 |   have "J \<inter> (I - J) = {}" by auto
 | 
| 
6fe18351e9dd
moved lemmas into projective_family; added header for theory Projective_Family
 immler@in.tum.de parents: 
50041diff
changeset | 91 | show "x \<in> A \<longleftrightarrow> x \<in> B" | 
| 
6fe18351e9dd
moved lemmas into projective_family; added header for theory Projective_Family
 immler@in.tum.de parents: 
50041diff
changeset | 92 | proof cases | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 93 | assume x: "x \<in> (\<Pi>\<^sub>E i\<in>J. S i)" | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 94 | have "x \<in> A \<longleftrightarrow> merge J (I - J) (x,y) \<in> (\<lambda>x. restrict x J) -` A \<inter> (\<Pi>\<^sub>E i\<in>I. S i)" | 
| 61808 | 95 | using y x \<open>J \<subseteq> I\<close> PiE_cancel_merge[of "J" "I - J" x y S] | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 96 | by (auto simp del: PiE_cancel_merge simp add: Un_absorb1) | 
| 50042 
6fe18351e9dd
moved lemmas into projective_family; added header for theory Projective_Family
 immler@in.tum.de parents: 
50041diff
changeset | 97 | then show "x \<in> A \<longleftrightarrow> x \<in> B" | 
| 61808 | 98 | using y x \<open>J \<subseteq> I\<close> PiE_cancel_merge[of "J" "I - J" x y S] | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 99 | by (auto simp del: PiE_cancel_merge simp add: Un_absorb1 eq) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 100 | qed (insert sets, auto) | 
| 50042 
6fe18351e9dd
moved lemmas into projective_family; added header for theory Projective_Family
 immler@in.tum.de parents: 
50041diff
changeset | 101 | qed | 
| 
6fe18351e9dd
moved lemmas into projective_family; added header for theory Projective_Family
 immler@in.tum.de parents: 
50041diff
changeset | 102 | |
| 41095 | 103 | lemma restrict_vimage: | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 104 |   "I \<inter> J = {} \<Longrightarrow>
 | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 105 | (\<lambda>x. (restrict x I, restrict x J)) -` (Pi\<^sub>E I E \<times> Pi\<^sub>E J F) = Pi (I \<union> J) (merge I J (E, F))" | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 106 | by (auto simp: restrict_Pi_cancel PiE_def) | 
| 41095 | 107 | |
| 108 | lemma merge_vimage: | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 109 |   "I \<inter> J = {} \<Longrightarrow> merge I J -` Pi\<^sub>E (I \<union> J) E = Pi I E \<times> Pi J E"
 | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 110 | by (auto simp: restrict_Pi_cancel PiE_def) | 
| 50104 | 111 | |
| 61808 | 112 | subsection \<open>Finite product spaces\<close> | 
| 40859 | 113 | |
| 61808 | 114 | subsubsection \<open>Products\<close> | 
| 40859 | 115 | |
| 47694 | 116 | definition prod_emb where | 
| 64910 | 117 | "prod_emb I M K X = (\<lambda>x. restrict x K) -` X \<inter> (\<Pi>\<^sub>E i\<in>I. space (M i))" | 
| 47694 | 118 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 119 | lemma prod_emb_iff: | 
| 47694 | 120 | "f \<in> prod_emb I M K X \<longleftrightarrow> f \<in> extensional I \<and> (restrict f K \<in> X) \<and> (\<forall>i\<in>I. f i \<in> space (M i))" | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 121 | unfolding prod_emb_def PiE_def by auto | 
| 40859 | 122 | |
| 47694 | 123 | lemma | 
| 124 |   shows prod_emb_empty[simp]: "prod_emb M L K {} = {}"
 | |
| 125 | and prod_emb_Un[simp]: "prod_emb M L K (A \<union> B) = prod_emb M L K A \<union> prod_emb M L K B" | |
| 126 | and prod_emb_Int: "prod_emb M L K (A \<inter> B) = prod_emb M L K A \<inter> prod_emb M L K B" | |
| 127 | and prod_emb_UN[simp]: "prod_emb M L K (\<Union>i\<in>I. F i) = (\<Union>i\<in>I. prod_emb M L K (F i))" | |
| 128 |     and prod_emb_INT[simp]: "I \<noteq> {} \<Longrightarrow> prod_emb M L K (\<Inter>i\<in>I. F i) = (\<Inter>i\<in>I. prod_emb M L K (F i))"
 | |
| 129 | and prod_emb_Diff[simp]: "prod_emb M L K (A - B) = prod_emb M L K A - prod_emb M L K B" | |
| 130 | by (auto simp: prod_emb_def) | |
| 40859 | 131 | |
| 47694 | 132 | lemma prod_emb_PiE: "J \<subseteq> I \<Longrightarrow> (\<And>i. i \<in> J \<Longrightarrow> E i \<subseteq> space (M i)) \<Longrightarrow> | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 133 | prod_emb I M J (\<Pi>\<^sub>E i\<in>J. E i) = (\<Pi>\<^sub>E i\<in>I. if i \<in> J then E i else space (M i))" | 
| 62390 | 134 | by (force simp: prod_emb_def PiE_iff if_split_mem2) | 
| 47694 | 135 | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 136 | lemma prod_emb_PiE_same_index[simp]: | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 137 | "(\<And>i. i \<in> I \<Longrightarrow> E i \<subseteq> space (M i)) \<Longrightarrow> prod_emb I M I (Pi\<^sub>E I E) = Pi\<^sub>E I E" | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 138 | by (auto simp: prod_emb_def PiE_iff) | 
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 139 | |
| 50038 | 140 | lemma prod_emb_trans[simp]: | 
| 141 | "J \<subseteq> K \<Longrightarrow> K \<subseteq> L \<Longrightarrow> prod_emb L M K (prod_emb K M J X) = prod_emb L M J X" | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 142 | by (auto simp add: Int_absorb1 prod_emb_def PiE_def) | 
| 50038 | 143 | |
| 144 | lemma prod_emb_Pi: | |
| 145 | assumes "X \<in> (\<Pi> j\<in>J. sets (M j))" "J \<subseteq> K" | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 146 | shows "prod_emb K M J (Pi\<^sub>E J X) = (\<Pi>\<^sub>E i\<in>K. if i \<in> J then X i else space (M i))" | 
| 50244 
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
 immler parents: 
50123diff
changeset | 147 | using assms sets.space_closed | 
| 62390 | 148 | by (auto simp: prod_emb_def PiE_iff split: if_split_asm) blast+ | 
| 50038 | 149 | |
| 150 | lemma prod_emb_id: | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 151 | "B \<subseteq> (\<Pi>\<^sub>E i\<in>L. space (M i)) \<Longrightarrow> prod_emb L M L B = B" | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 152 | by (auto simp: prod_emb_def subset_eq extensional_restrict) | 
| 50038 | 153 | |
| 50041 
afe886a04198
removed redundant/unnecessary assumptions from projective_family
 immler@in.tum.de parents: 
50038diff
changeset | 154 | lemma prod_emb_mono: | 
| 
afe886a04198
removed redundant/unnecessary assumptions from projective_family
 immler@in.tum.de parents: 
50038diff
changeset | 155 | "F \<subseteq> G \<Longrightarrow> prod_emb A M B F \<subseteq> prod_emb A M B G" | 
| 
afe886a04198
removed redundant/unnecessary assumptions from projective_family
 immler@in.tum.de parents: 
50038diff
changeset | 156 | by (auto simp: prod_emb_def) | 
| 
afe886a04198
removed redundant/unnecessary assumptions from projective_family
 immler@in.tum.de parents: 
50038diff
changeset | 157 | |
| 47694 | 158 | definition PiM :: "'i set \<Rightarrow> ('i \<Rightarrow> 'a measure) \<Rightarrow> ('i \<Rightarrow> 'a) measure" where
 | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 159 | "PiM I M = extend_measure (\<Pi>\<^sub>E i\<in>I. space (M i)) | 
| 47694 | 160 |     {(J, X). (J \<noteq> {} \<or> I = {}) \<and> finite J \<and> J \<subseteq> I \<and> X \<in> (\<Pi> j\<in>J. sets (M j))}
 | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 161 | (\<lambda>(J, X). prod_emb I M J (\<Pi>\<^sub>E j\<in>J. X j)) | 
| 47694 | 162 |     (\<lambda>(J, X). \<Prod>j\<in>J \<union> {i\<in>I. emeasure (M i) (space (M i)) \<noteq> 1}. if j \<in> J then emeasure (M j) (X j) else emeasure (M j) (space (M j)))"
 | 
| 163 | ||
| 164 | definition prod_algebra :: "'i set \<Rightarrow> ('i \<Rightarrow> 'a measure) \<Rightarrow> ('i \<Rightarrow> 'a) set set" where
 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 165 | "prod_algebra I M = (\<lambda>(J, X). prod_emb I M J (\<Pi>\<^sub>E j\<in>J. X j)) ` | 
| 47694 | 166 |     {(J, X). (J \<noteq> {} \<or> I = {}) \<and> finite J \<and> J \<subseteq> I \<and> X \<in> (\<Pi> j\<in>J. sets (M j))}"
 | 
| 167 | ||
| 168 | abbreviation | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 169 | "Pi\<^sub>M I M \<equiv> PiM I M" | 
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 170 | |
| 40859 | 171 | syntax | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 172 |   "_PiM" :: "pttrn \<Rightarrow> 'i set \<Rightarrow> 'a measure \<Rightarrow> ('i => 'a) measure"  ("(3\<Pi>\<^sub>M _\<in>_./ _)"  10)
 | 
| 40859 | 173 | translations | 
| 61988 | 174 | "\<Pi>\<^sub>M x\<in>I. M" == "CONST PiM I (%x. M)" | 
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 175 | |
| 59425 | 176 | lemma extend_measure_cong: | 
| 177 | assumes "\<Omega> = \<Omega>'" "I = I'" "G = G'" "\<And>i. i \<in> I' \<Longrightarrow> \<mu> i = \<mu>' i" | |
| 178 | shows "extend_measure \<Omega> I G \<mu> = extend_measure \<Omega>' I' G' \<mu>'" | |
| 179 | unfolding extend_measure_def by (auto simp add: assms) | |
| 180 | ||
| 181 | lemma Pi_cong_sets: | |
| 182 | "\<lbrakk>I = J; \<And>x. x \<in> I \<Longrightarrow> M x = N x\<rbrakk> \<Longrightarrow> Pi I M = Pi J N" | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 183 | unfolding Pi_def by auto | 
| 59425 | 184 | |
| 185 | lemma PiM_cong: | |
| 186 | assumes "I = J" "\<And>x. x \<in> I \<Longrightarrow> M x = N x" | |
| 187 | shows "PiM I M = PiM J N" | |
| 60580 | 188 | unfolding PiM_def | 
| 61166 
5976fe402824
renamed method "goals" to "goal_cases" to emphasize its meaning;
 wenzelm parents: 
60580diff
changeset | 189 | proof (rule extend_measure_cong, goal_cases) | 
| 60580 | 190 | case 1 | 
| 191 | show ?case using assms | |
| 59425 | 192 | by (subst assms(1), intro PiE_cong[of J "\<lambda>i. space (M i)" "\<lambda>i. space (N i)"]) simp_all | 
| 193 | next | |
| 60580 | 194 | case 2 | 
| 59425 | 195 | have "\<And>K. K \<subseteq> J \<Longrightarrow> (\<Pi> j\<in>K. sets (M j)) = (\<Pi> j\<in>K. sets (N j))" | 
| 196 | using assms by (intro Pi_cong_sets) auto | |
| 197 | thus ?case by (auto simp: assms) | |
| 198 | next | |
| 60580 | 199 | case 3 | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 200 | show ?case using assms | 
| 59425 | 201 | by (intro ext) (auto simp: prod_emb_def dest: PiE_mem) | 
| 202 | next | |
| 60580 | 203 | case (4 x) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 204 | thus ?case using assms | 
| 64272 | 205 | by (auto intro!: prod.cong split: if_split_asm) | 
| 59425 | 206 | qed | 
| 207 | ||
| 208 | ||
| 47694 | 209 | lemma prod_algebra_sets_into_space: | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 210 | "prod_algebra I M \<subseteq> Pow (\<Pi>\<^sub>E i\<in>I. space (M i))" | 
| 50245 
dea9363887a6
based countable topological basis on Countable_Set
 immler parents: 
50244diff
changeset | 211 | by (auto simp: prod_emb_def prod_algebra_def) | 
| 40859 | 212 | |
| 47694 | 213 | lemma prod_algebra_eq_finite: | 
| 214 | assumes I: "finite I" | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 215 |   shows "prod_algebra I M = {(\<Pi>\<^sub>E i\<in>I. X i) |X. X \<in> (\<Pi> j\<in>I. sets (M j))}" (is "?L = ?R")
 | 
| 47694 | 216 | proof (intro iffI set_eqI) | 
| 217 | fix A assume "A \<in> ?L" | |
| 218 |   then obtain J E where J: "J \<noteq> {} \<or> I = {}" "finite J" "J \<subseteq> I" "\<forall>i\<in>J. E i \<in> sets (M i)"
 | |
| 64910 | 219 | and A: "A = prod_emb I M J (\<Pi>\<^sub>E j\<in>J. E j)" | 
| 47694 | 220 | by (auto simp: prod_algebra_def) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 221 | let ?A = "\<Pi>\<^sub>E i\<in>I. if i \<in> J then E i else space (M i)" | 
| 47694 | 222 | have A: "A = ?A" | 
| 50244 
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
 immler parents: 
50123diff
changeset | 223 | unfolding A using J by (intro prod_emb_PiE sets.sets_into_space) auto | 
| 
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
 immler parents: 
50123diff
changeset | 224 | show "A \<in> ?R" unfolding A using J sets.top | 
| 47694 | 225 | by (intro CollectI exI[of _ "\<lambda>i. if i \<in> J then E i else space (M i)"]) simp | 
| 226 | next | |
| 227 | fix A assume "A \<in> ?R" | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 228 | then obtain X where A: "A = (\<Pi>\<^sub>E i\<in>I. X i)" and X: "X \<in> (\<Pi> j\<in>I. sets (M j))" by auto | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 229 | then have A: "A = prod_emb I M I (\<Pi>\<^sub>E i\<in>I. X i)" | 
| 50244 
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
 immler parents: 
50123diff
changeset | 230 | by (simp add: prod_emb_PiE_same_index[OF sets.sets_into_space] Pi_iff) | 
| 47694 | 231 | from X I show "A \<in> ?L" unfolding A | 
| 232 | by (auto simp: prod_algebra_def) | |
| 233 | qed | |
| 41095 | 234 | |
| 47694 | 235 | lemma prod_algebraI: | 
| 236 |   "finite J \<Longrightarrow> (J \<noteq> {} \<or> I = {}) \<Longrightarrow> J \<subseteq> I \<Longrightarrow> (\<And>i. i \<in> J \<Longrightarrow> E i \<in> sets (M i))
 | |
| 64910 | 237 | \<Longrightarrow> prod_emb I M J (\<Pi>\<^sub>E j\<in>J. E j) \<in> prod_algebra I M" | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 238 | by (auto simp: prod_algebra_def) | 
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 239 | |
| 50038 | 240 | lemma prod_algebraI_finite: | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 241 | "finite I \<Longrightarrow> (\<forall>i\<in>I. E i \<in> sets (M i)) \<Longrightarrow> (Pi\<^sub>E I E) \<in> prod_algebra I M" | 
| 50244 
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
 immler parents: 
50123diff
changeset | 242 | using prod_algebraI[of I I E M] prod_emb_PiE_same_index[of I E M, OF sets.sets_into_space] by simp | 
| 50038 | 243 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 244 | lemma Int_stable_PiE: "Int_stable {Pi\<^sub>E J E | E. \<forall>i\<in>I. E i \<in> sets (M i)}"
 | 
| 50038 | 245 | proof (safe intro!: Int_stableI) | 
| 246 | fix E F assume "\<forall>i\<in>I. E i \<in> sets (M i)" "\<forall>i\<in>I. F i \<in> sets (M i)" | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 247 | then show "\<exists>G. Pi\<^sub>E J E \<inter> Pi\<^sub>E J F = Pi\<^sub>E J G \<and> (\<forall>i\<in>I. G i \<in> sets (M i))" | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 248 | by (auto intro!: exI[of _ "\<lambda>i. E i \<inter> F i"] simp: PiE_Int) | 
| 50038 | 249 | qed | 
| 250 | ||
| 47694 | 251 | lemma prod_algebraE: | 
| 252 | assumes A: "A \<in> prod_algebra I M" | |
| 64910 | 253 | obtains J E where "A = prod_emb I M J (\<Pi>\<^sub>E j\<in>J. E j)" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 254 |     "finite J" "J \<noteq> {} \<or> I = {}" "J \<subseteq> I" "\<And>i. i \<in> J \<Longrightarrow> E i \<in> sets (M i)"
 | 
| 47694 | 255 | using A by (auto simp: prod_algebra_def) | 
| 42988 | 256 | |
| 47694 | 257 | lemma prod_algebraE_all: | 
| 258 | assumes A: "A \<in> prod_algebra I M" | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 259 | obtains E where "A = Pi\<^sub>E I E" "E \<in> (\<Pi> i\<in>I. sets (M i))" | 
| 47694 | 260 | proof - | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 261 | from A obtain E J where A: "A = prod_emb I M J (Pi\<^sub>E J E)" | 
| 47694 | 262 | and J: "J \<subseteq> I" and E: "E \<in> (\<Pi> i\<in>J. sets (M i))" | 
| 263 | by (auto simp: prod_algebra_def) | |
| 264 | from E have "\<And>i. i \<in> J \<Longrightarrow> E i \<subseteq> space (M i)" | |
| 50244 
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
 immler parents: 
50123diff
changeset | 265 | using sets.sets_into_space by auto | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 266 | then have "A = (\<Pi>\<^sub>E i\<in>I. if i\<in>J then E i else space (M i))" | 
| 47694 | 267 | using A J by (auto simp: prod_emb_PiE) | 
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53015diff
changeset | 268 | moreover have "(\<lambda>i. if i\<in>J then E i else space (M i)) \<in> (\<Pi> i\<in>I. sets (M i))" | 
| 50244 
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
 immler parents: 
50123diff
changeset | 269 | using sets.top E by auto | 
| 47694 | 270 | ultimately show ?thesis using that by auto | 
| 271 | qed | |
| 40859 | 272 | |
| 47694 | 273 | lemma Int_stable_prod_algebra: "Int_stable (prod_algebra I M)" | 
| 274 | proof (unfold Int_stable_def, safe) | |
| 275 | fix A assume "A \<in> prod_algebra I M" | |
| 276 | from prod_algebraE[OF this] guess J E . note A = this | |
| 277 | fix B assume "B \<in> prod_algebra I M" | |
| 278 | from prod_algebraE[OF this] guess K F . note B = this | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 279 | have "A \<inter> B = prod_emb I M (J \<union> K) (\<Pi>\<^sub>E i\<in>J \<union> K. (if i \<in> J then E i else space (M i)) \<inter> | 
| 47694 | 280 | (if i \<in> K then F i else space (M i)))" | 
| 50244 
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
 immler parents: 
50123diff
changeset | 281 | unfolding A B using A(2,3,4) A(5)[THEN sets.sets_into_space] B(2,3,4) | 
| 
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
 immler parents: 
50123diff
changeset | 282 | B(5)[THEN sets.sets_into_space] | 
| 47694 | 283 | apply (subst (1 2 3) prod_emb_PiE) | 
| 284 | apply (simp_all add: subset_eq PiE_Int) | |
| 285 | apply blast | |
| 286 | apply (intro PiE_cong) | |
| 287 | apply auto | |
| 288 | done | |
| 289 | also have "\<dots> \<in> prod_algebra I M" | |
| 290 | using A B by (auto intro!: prod_algebraI) | |
| 291 | finally show "A \<inter> B \<in> prod_algebra I M" . | |
| 292 | qed | |
| 293 | ||
| 294 | lemma prod_algebra_mono: | |
| 295 | assumes space: "\<And>i. i \<in> I \<Longrightarrow> space (E i) = space (F i)" | |
| 296 | assumes sets: "\<And>i. i \<in> I \<Longrightarrow> sets (E i) \<subseteq> sets (F i)" | |
| 297 | shows "prod_algebra I E \<subseteq> prod_algebra I F" | |
| 298 | proof | |
| 299 | fix A assume "A \<in> prod_algebra I E" | |
| 300 |   then obtain J G where J: "J \<noteq> {} \<or> I = {}" "finite J" "J \<subseteq> I"
 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 301 | and A: "A = prod_emb I E J (\<Pi>\<^sub>E i\<in>J. G i)" | 
| 47694 | 302 | and G: "\<And>i. i \<in> J \<Longrightarrow> G i \<in> sets (E i)" | 
| 303 | by (auto simp: prod_algebra_def) | |
| 304 | moreover | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 305 | from space have "(\<Pi>\<^sub>E i\<in>I. space (E i)) = (\<Pi>\<^sub>E i\<in>I. space (F i))" | 
| 47694 | 306 | by (rule PiE_cong) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 307 | with A have "A = prod_emb I F J (\<Pi>\<^sub>E i\<in>J. G i)" | 
| 47694 | 308 | by (simp add: prod_emb_def) | 
| 309 | moreover | |
| 310 | from sets G J have "\<And>i. i \<in> J \<Longrightarrow> G i \<in> sets (F i)" | |
| 311 | by auto | |
| 312 | ultimately show "A \<in> prod_algebra I F" | |
| 313 | apply (simp add: prod_algebra_def image_iff) | |
| 314 | apply (intro exI[of _ J] exI[of _ G] conjI) | |
| 315 | apply auto | |
| 316 | done | |
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 317 | qed | 
| 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 318 | |
| 50104 | 319 | lemma prod_algebra_cong: | 
| 320 | assumes "I = J" and sets: "(\<And>i. i \<in> I \<Longrightarrow> sets (M i) = sets (N i))" | |
| 321 | shows "prod_algebra I M = prod_algebra J N" | |
| 322 | proof - | |
| 323 | have space: "\<And>i. i \<in> I \<Longrightarrow> space (M i) = space (N i)" | |
| 324 | using sets_eq_imp_space_eq[OF sets] by auto | |
| 61808 | 325 | with sets show ?thesis unfolding \<open>I = J\<close> | 
| 50104 | 326 | by (intro antisym prod_algebra_mono) auto | 
| 327 | qed | |
| 328 | ||
| 329 | lemma space_in_prod_algebra: | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 330 | "(\<Pi>\<^sub>E i\<in>I. space (M i)) \<in> prod_algebra I M" | 
| 50104 | 331 | proof cases | 
| 332 |   assume "I = {}" then show ?thesis
 | |
| 333 | by (auto simp add: prod_algebra_def image_iff prod_emb_def) | |
| 334 | next | |
| 335 |   assume "I \<noteq> {}"
 | |
| 336 | then obtain i where "i \<in> I" by auto | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 337 |   then have "(\<Pi>\<^sub>E i\<in>I. space (M i)) = prod_emb I M {i} (\<Pi>\<^sub>E i\<in>{i}. space (M i))"
 | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 338 | by (auto simp: prod_emb_def) | 
| 50104 | 339 | also have "\<dots> \<in> prod_algebra I M" | 
| 61808 | 340 | using \<open>i \<in> I\<close> by (intro prod_algebraI) auto | 
| 50104 | 341 | finally show ?thesis . | 
| 342 | qed | |
| 343 | ||
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 344 | lemma space_PiM: "space (\<Pi>\<^sub>M i\<in>I. M i) = (\<Pi>\<^sub>E i\<in>I. space (M i))" | 
| 47694 | 345 | using prod_algebra_sets_into_space unfolding PiM_def prod_algebra_def by (intro space_extend_measure) simp | 
| 346 | ||
| 61359 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 347 | lemma prod_emb_subset_PiM[simp]: "prod_emb I M K X \<subseteq> space (PiM I M)" | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 348 | by (auto simp: prod_emb_def space_PiM) | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 349 | |
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 350 | lemma space_PiM_empty_iff[simp]: "space (PiM I M) = {} \<longleftrightarrow>  (\<exists>i\<in>I. space (M i) = {})"
 | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 351 | by (auto simp: space_PiM PiE_eq_empty_iff) | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 352 | |
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 353 | lemma undefined_in_PiM_empty[simp]: "(\<lambda>x. undefined) \<in> space (PiM {} M)"
 | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 354 | by (auto simp: space_PiM) | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 355 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 356 | lemma sets_PiM: "sets (\<Pi>\<^sub>M i\<in>I. M i) = sigma_sets (\<Pi>\<^sub>E i\<in>I. space (M i)) (prod_algebra I M)" | 
| 47694 | 357 | using prod_algebra_sets_into_space unfolding PiM_def prod_algebra_def by (intro sets_extend_measure) simp | 
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 358 | |
| 47694 | 359 | lemma sets_PiM_single: "sets (PiM I M) = | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 360 |     sigma_sets (\<Pi>\<^sub>E i\<in>I. space (M i)) {{f\<in>\<Pi>\<^sub>E i\<in>I. space (M i). f i \<in> A} | i A. i \<in> I \<and> A \<in> sets (M i)}"
 | 
| 47694 | 361 | (is "_ = sigma_sets ?\<Omega> ?R") | 
| 362 | unfolding sets_PiM | |
| 363 | proof (rule sigma_sets_eqI) | |
| 364 | interpret R: sigma_algebra ?\<Omega> "sigma_sets ?\<Omega> ?R" by (rule sigma_algebra_sigma_sets) auto | |
| 365 | fix A assume "A \<in> prod_algebra I M" | |
| 366 | from prod_algebraE[OF this] guess J X . note X = this | |
| 367 | show "A \<in> sigma_sets ?\<Omega> ?R" | |
| 368 | proof cases | |
| 369 |     assume "I = {}"
 | |
| 370 |     with X have "A = {\<lambda>x. undefined}" by (auto simp: prod_emb_def)
 | |
| 61808 | 371 |     with \<open>I = {}\<close> show ?thesis by (auto intro!: sigma_sets_top)
 | 
| 47694 | 372 | next | 
| 373 |     assume "I \<noteq> {}"
 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 374 |     with X have "A = (\<Inter>j\<in>J. {f\<in>(\<Pi>\<^sub>E i\<in>I. space (M i)). f j \<in> X j})"
 | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 375 | by (auto simp: prod_emb_def) | 
| 47694 | 376 | also have "\<dots> \<in> sigma_sets ?\<Omega> ?R" | 
| 61808 | 377 |       using X \<open>I \<noteq> {}\<close> by (intro R.finite_INT sigma_sets.Basic) auto
 | 
| 47694 | 378 | finally show "A \<in> sigma_sets ?\<Omega> ?R" . | 
| 379 | qed | |
| 380 | next | |
| 381 | fix A assume "A \<in> ?R" | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 382 |   then obtain i B where A: "A = {f\<in>\<Pi>\<^sub>E i\<in>I. space (M i). f i \<in> B}" "i \<in> I" "B \<in> sets (M i)"
 | 
| 47694 | 383 | by auto | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 384 |   then have "A = prod_emb I M {i} (\<Pi>\<^sub>E i\<in>{i}. B)"
 | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 385 | by (auto simp: prod_emb_def) | 
| 47694 | 386 | also have "\<dots> \<in> sigma_sets ?\<Omega> (prod_algebra I M)" | 
| 387 | using A by (intro sigma_sets.Basic prod_algebraI) auto | |
| 388 | finally show "A \<in> sigma_sets ?\<Omega> (prod_algebra I M)" . | |
| 389 | qed | |
| 390 | ||
| 58606 | 391 | lemma sets_PiM_eq_proj: | 
| 63333 
158ab2239496
Probability: show that measures form a complete lattice
 hoelzl parents: 
63040diff
changeset | 392 |   "I \<noteq> {} \<Longrightarrow> sets (PiM I M) = sets (SUP i:I. vimage_algebra (\<Pi>\<^sub>E i\<in>I. space (M i)) (\<lambda>x. x i) (M i))"
 | 
| 
158ab2239496
Probability: show that measures form a complete lattice
 hoelzl parents: 
63040diff
changeset | 393 | apply (simp add: sets_PiM_single) | 
| 
158ab2239496
Probability: show that measures form a complete lattice
 hoelzl parents: 
63040diff
changeset | 394 | apply (subst sets_Sup_eq[where X="\<Pi>\<^sub>E i\<in>I. space (M i)"]) | 
| 
158ab2239496
Probability: show that measures form a complete lattice
 hoelzl parents: 
63040diff
changeset | 395 | apply auto [] | 
| 
158ab2239496
Probability: show that measures form a complete lattice
 hoelzl parents: 
63040diff
changeset | 396 | apply auto [] | 
| 
158ab2239496
Probability: show that measures form a complete lattice
 hoelzl parents: 
63040diff
changeset | 397 | apply simp | 
| 58606 | 398 | apply (subst SUP_cong[OF refl]) | 
| 399 | apply (rule sets_vimage_algebra2) | |
| 400 | apply auto [] | |
| 401 | apply (auto intro!: arg_cong2[where f=sigma_sets]) | |
| 402 | done | |
| 403 | ||
| 59088 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 404 | lemma | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 405 |   shows space_PiM_empty: "space (Pi\<^sub>M {} M) = {\<lambda>k. undefined}"
 | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 406 |     and sets_PiM_empty: "sets (Pi\<^sub>M {} M) = { {}, {\<lambda>k. undefined} }"
 | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 407 | by (simp_all add: space_PiM sets_PiM_single image_constant sigma_sets_empty_eq) | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 408 | |
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 409 | lemma sets_PiM_sigma: | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 410 | assumes \<Omega>_cover: "\<And>i. i \<in> I \<Longrightarrow> \<exists>S\<subseteq>E i. countable S \<and> \<Omega> i = \<Union>S" | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 411 | assumes E: "\<And>i. i \<in> I \<Longrightarrow> E i \<subseteq> Pow (\<Omega> i)" | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 412 | assumes J: "\<And>j. j \<in> J \<Longrightarrow> finite j" "\<Union>J = I" | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 413 |   defines "P \<equiv> {{f\<in>(\<Pi>\<^sub>E i\<in>I. \<Omega> i). \<forall>i\<in>j. f i \<in> A i} | A j. j \<in> J \<and> A \<in> Pi j E}"
 | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 414 | shows "sets (\<Pi>\<^sub>M i\<in>I. sigma (\<Omega> i) (E i)) = sets (sigma (\<Pi>\<^sub>E i\<in>I. \<Omega> i) P)" | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 415 | proof cases | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 416 |   assume "I = {}"
 | 
| 61808 | 417 |   with \<open>\<Union>J = I\<close> have "P = {{\<lambda>_. undefined}} \<or> P = {}"
 | 
| 59088 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 418 | by (auto simp: P_def) | 
| 61808 | 419 |   with \<open>I = {}\<close> show ?thesis
 | 
| 59088 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 420 | by (auto simp add: sets_PiM_empty sigma_sets_empty_eq) | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 421 | next | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 422 |   let ?F = "\<lambda>i. {(\<lambda>x. x i) -` A \<inter> Pi\<^sub>E I \<Omega> |A. A \<in> E i}"
 | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 423 |   assume "I \<noteq> {}"
 | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 424 | then have "sets (Pi\<^sub>M I (\<lambda>i. sigma (\<Omega> i) (E i))) = | 
| 63333 
158ab2239496
Probability: show that measures form a complete lattice
 hoelzl parents: 
63040diff
changeset | 425 | sets (SUP i:I. vimage_algebra (\<Pi>\<^sub>E i\<in>I. \<Omega> i) (\<lambda>x. x i) (sigma (\<Omega> i) (E i)))" | 
| 59088 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 426 | by (subst sets_PiM_eq_proj) (auto simp: space_measure_of_conv) | 
| 63333 
158ab2239496
Probability: show that measures form a complete lattice
 hoelzl parents: 
63040diff
changeset | 427 | also have "\<dots> = sets (SUP i:I. sigma (Pi\<^sub>E I \<Omega>) (?F i))" | 
| 
158ab2239496
Probability: show that measures form a complete lattice
 hoelzl parents: 
63040diff
changeset | 428 | using E by (intro sets_SUP_cong arg_cong[where f=sets] vimage_algebra_sigma) auto | 
| 59088 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 429 | also have "\<dots> = sets (sigma (Pi\<^sub>E I \<Omega>) (\<Union>i\<in>I. ?F i))" | 
| 61808 | 430 |     using \<open>I \<noteq> {}\<close> by (intro arg_cong[where f=sets] SUP_sigma_sigma) auto
 | 
| 59088 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 431 | also have "\<dots> = sets (sigma (Pi\<^sub>E I \<Omega>) P)" | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 432 | proof (intro arg_cong[where f=sets] sigma_eqI sigma_sets_eqI) | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 433 | show "(\<Union>i\<in>I. ?F i) \<subseteq> Pow (Pi\<^sub>E I \<Omega>)" "P \<subseteq> Pow (Pi\<^sub>E I \<Omega>)" | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 434 | by (auto simp: P_def) | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 435 | next | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 436 | interpret P: sigma_algebra "\<Pi>\<^sub>E i\<in>I. \<Omega> i" "sigma_sets (\<Pi>\<^sub>E i\<in>I. \<Omega> i) P" | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 437 | by (auto intro!: sigma_algebra_sigma_sets simp: P_def) | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 438 | |
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 439 | fix Z assume "Z \<in> (\<Union>i\<in>I. ?F i)" | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 440 | then obtain i A where i: "i \<in> I" "A \<in> E i" and Z_def: "Z = (\<lambda>x. x i) -` A \<inter> Pi\<^sub>E I \<Omega>" | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 441 | by auto | 
| 61808 | 442 | from \<open>i \<in> I\<close> J obtain j where j: "i \<in> j" "j \<in> J" "j \<subseteq> I" "finite j" | 
| 59088 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 443 | by auto | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 444 | obtain S where S: "\<And>i. i \<in> j \<Longrightarrow> S i \<subseteq> E i" "\<And>i. i \<in> j \<Longrightarrow> countable (S i)" | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 445 | "\<And>i. i \<in> j \<Longrightarrow> \<Omega> i = \<Union>(S i)" | 
| 61808 | 446 | by (metis subset_eq \<Omega>_cover \<open>j \<subseteq> I\<close>) | 
| 63040 | 447 | define A' where "A' n = n(i := A)" for n | 
| 59088 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 448 | then have A'_i: "\<And>n. A' n i = A" | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 449 | by simp | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 450 |     { fix n assume "n \<in> Pi\<^sub>E (j - {i}) S"
 | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 451 | then have "A' n \<in> Pi j E" | 
| 61808 | 452 | unfolding PiE_def Pi_def using S(1) by (auto simp: A'_def \<open>A \<in> E i\<close> ) | 
| 453 |       with \<open>j \<in> J\<close> have "{f \<in> Pi\<^sub>E I \<Omega>. \<forall>i\<in>j. f i \<in> A' n i} \<in> P"
 | |
| 59088 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 454 | by (auto simp: P_def) } | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 455 | note A'_in_P = this | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 456 | |
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 457 |     { fix x assume "x i \<in> A" "x \<in> Pi\<^sub>E I \<Omega>"
 | 
| 61808 | 458 | with S(3) \<open>j \<subseteq> I\<close> have "\<forall>i\<in>j. \<exists>s\<in>S i. x i \<in> s" | 
| 59088 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 459 | by (auto simp: PiE_def Pi_def) | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 460 | then obtain s where s: "\<And>i. i \<in> j \<Longrightarrow> s i \<in> S i" "\<And>i. i \<in> j \<Longrightarrow> x i \<in> s i" | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 461 | by metis | 
| 64910 | 462 |       with \<open>x i \<in> A\<close> have "\<exists>n\<in>Pi\<^sub>E (j-{i}) S. \<forall>i\<in>j. x i \<in> A' n i"
 | 
| 59088 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 463 |         by (intro bexI[of _ "restrict (s(i := A)) (j-{i})"]) (auto simp: A'_def split: if_splits) }
 | 
| 64910 | 464 |     then have "Z = (\<Union>n\<in>Pi\<^sub>E (j-{i}) S. {f\<in>(\<Pi>\<^sub>E i\<in>I. \<Omega> i). \<forall>i\<in>j. f i \<in> A' n i})"
 | 
| 59088 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 465 | unfolding Z_def | 
| 61808 | 466 | by (auto simp add: set_eq_iff ball_conj_distrib \<open>i\<in>j\<close> A'_i dest: bspec[OF _ \<open>i\<in>j\<close>] | 
| 59088 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 467 | cong: conj_cong) | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 468 | also have "\<dots> \<in> sigma_sets (\<Pi>\<^sub>E i\<in>I. \<Omega> i) P" | 
| 61808 | 469 | using \<open>finite j\<close> S(2) | 
| 59088 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 470 | by (intro P.countable_UN' countable_PiE) (simp_all add: image_subset_iff A'_in_P) | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 471 | finally show "Z \<in> sigma_sets (\<Pi>\<^sub>E i\<in>I. \<Omega> i) P" . | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 472 | next | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 473 | interpret F: sigma_algebra "\<Pi>\<^sub>E i\<in>I. \<Omega> i" "sigma_sets (\<Pi>\<^sub>E i\<in>I. \<Omega> i) (\<Union>i\<in>I. ?F i)" | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 474 | by (auto intro!: sigma_algebra_sigma_sets) | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 475 | |
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 476 | fix b assume "b \<in> P" | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 477 |     then obtain A j where b: "b = {f\<in>(\<Pi>\<^sub>E i\<in>I. \<Omega> i). \<forall>i\<in>j. f i \<in> A i}" "j \<in> J" "A \<in> Pi j E"
 | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 478 | by (auto simp: P_def) | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 479 | show "b \<in> sigma_sets (Pi\<^sub>E I \<Omega>) (\<Union>i\<in>I. ?F i)" | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 480 | proof cases | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 481 |       assume "j = {}"
 | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 482 | with b have "b = (\<Pi>\<^sub>E i\<in>I. \<Omega> i)" | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 483 | by auto | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 484 | then show ?thesis | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 485 | by blast | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 486 | next | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 487 |       assume "j \<noteq> {}"
 | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 488 | with J b(2,3) have eq: "b = (\<Inter>i\<in>j. ((\<lambda>x. x i) -` A i \<inter> Pi\<^sub>E I \<Omega>))" | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 489 | unfolding b(1) | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 490 | by (auto simp: PiE_def Pi_def) | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 491 | show ?thesis | 
| 61808 | 492 | unfolding eq using \<open>A \<in> Pi j E\<close> \<open>j \<in> J\<close> J(2) | 
| 493 |         by (intro F.finite_INT J \<open>j \<in> J\<close> \<open>j \<noteq> {}\<close> sigma_sets.Basic) blast
 | |
| 59088 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 494 | qed | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 495 | qed | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 496 | finally show "?thesis" . | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 497 | qed | 
| 
ff2bd4a14ddb
generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
 hoelzl parents: 
59048diff
changeset | 498 | |
| 58606 | 499 | lemma sets_PiM_in_sets: | 
| 500 | assumes space: "space N = (\<Pi>\<^sub>E i\<in>I. space (M i))" | |
| 501 |   assumes sets: "\<And>i A. i \<in> I \<Longrightarrow> A \<in> sets (M i) \<Longrightarrow> {x\<in>space N. x i \<in> A} \<in> sets N"
 | |
| 502 | shows "sets (\<Pi>\<^sub>M i \<in> I. M i) \<subseteq> sets N" | |
| 503 | unfolding sets_PiM_single space[symmetric] | |
| 504 | by (intro sets.sigma_sets_subset subsetI) (auto intro: sets) | |
| 505 | ||
| 59048 | 506 | lemma sets_PiM_cong[measurable_cong]: | 
| 507 | assumes "I = J" "\<And>i. i \<in> J \<Longrightarrow> sets (M i) = sets (N i)" shows "sets (PiM I M) = sets (PiM J N)" | |
| 58606 | 508 | using assms sets_eq_imp_space_eq[OF assms(2)] by (simp add: sets_PiM_single cong: PiE_cong conj_cong) | 
| 509 | ||
| 47694 | 510 | lemma sets_PiM_I: | 
| 511 | assumes "finite J" "J \<subseteq> I" "\<forall>i\<in>J. E i \<in> sets (M i)" | |
| 64910 | 512 | shows "prod_emb I M J (\<Pi>\<^sub>E j\<in>J. E j) \<in> sets (\<Pi>\<^sub>M i\<in>I. M i)" | 
| 47694 | 513 | proof cases | 
| 514 |   assume "J = {}"
 | |
| 64910 | 515 | then have "prod_emb I M J (\<Pi>\<^sub>E j\<in>J. E j) = (\<Pi>\<^sub>E j\<in>I. space (M j))" | 
| 47694 | 516 | by (auto simp: prod_emb_def) | 
| 517 | then show ?thesis | |
| 518 | by (auto simp add: sets_PiM intro!: sigma_sets_top) | |
| 519 | next | |
| 520 |   assume "J \<noteq> {}" with assms show ?thesis
 | |
| 50003 | 521 | by (force simp add: sets_PiM prod_algebra_def) | 
| 40859 | 522 | qed | 
| 523 | ||
| 47694 | 524 | lemma measurable_PiM: | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 525 | assumes space: "f \<in> space N \<rightarrow> (\<Pi>\<^sub>E i\<in>I. space (M i))" | 
| 47694 | 526 |   assumes sets: "\<And>X J. J \<noteq> {} \<or> I = {} \<Longrightarrow> finite J \<Longrightarrow> J \<subseteq> I \<Longrightarrow> (\<And>i. i \<in> J \<Longrightarrow> X i \<in> sets (M i)) \<Longrightarrow>
 | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 527 | f -` prod_emb I M J (Pi\<^sub>E J X) \<inter> space N \<in> sets N" | 
| 47694 | 528 | shows "f \<in> measurable N (PiM I M)" | 
| 529 | using sets_PiM prod_algebra_sets_into_space space | |
| 530 | proof (rule measurable_sigma_sets) | |
| 531 | fix A assume "A \<in> prod_algebra I M" | |
| 532 | from prod_algebraE[OF this] guess J X . | |
| 533 | with sets[of J X] show "f -` A \<inter> space N \<in> sets N" by auto | |
| 534 | qed | |
| 535 | ||
| 536 | lemma measurable_PiM_Collect: | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 537 | assumes space: "f \<in> space N \<rightarrow> (\<Pi>\<^sub>E i\<in>I. space (M i))" | 
| 47694 | 538 |   assumes sets: "\<And>X J. J \<noteq> {} \<or> I = {} \<Longrightarrow> finite J \<Longrightarrow> J \<subseteq> I \<Longrightarrow> (\<And>i. i \<in> J \<Longrightarrow> X i \<in> sets (M i)) \<Longrightarrow>
 | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 539 |     {\<omega>\<in>space N. \<forall>i\<in>J. f \<omega> i \<in> X i} \<in> sets N"
 | 
| 47694 | 540 | shows "f \<in> measurable N (PiM I M)" | 
| 541 | using sets_PiM prod_algebra_sets_into_space space | |
| 542 | proof (rule measurable_sigma_sets) | |
| 543 | fix A assume "A \<in> prod_algebra I M" | |
| 544 | from prod_algebraE[OF this] guess J X . note X = this | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 545 |   then have "f -` A \<inter> space N = {\<omega> \<in> space N. \<forall>i\<in>J. f \<omega> i \<in> X i}"
 | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 546 | using space by (auto simp: prod_emb_def del: PiE_I) | 
| 47694 | 547 | also have "\<dots> \<in> sets N" using X(3,2,4,5) by (rule sets) | 
| 548 | finally show "f -` A \<inter> space N \<in> sets N" . | |
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 549 | qed | 
| 41095 | 550 | |
| 47694 | 551 | lemma measurable_PiM_single: | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 552 | assumes space: "f \<in> space N \<rightarrow> (\<Pi>\<^sub>E i\<in>I. space (M i))" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 553 |   assumes sets: "\<And>A i. i \<in> I \<Longrightarrow> A \<in> sets (M i) \<Longrightarrow> {\<omega> \<in> space N. f \<omega> i \<in> A} \<in> sets N"
 | 
| 47694 | 554 | shows "f \<in> measurable N (PiM I M)" | 
| 555 | using sets_PiM_single | |
| 556 | proof (rule measurable_sigma_sets) | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 557 |   fix A assume "A \<in> {{f \<in> \<Pi>\<^sub>E i\<in>I. space (M i). f i \<in> A} |i A. i \<in> I \<and> A \<in> sets (M i)}"
 | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 558 |   then obtain B i where "A = {f \<in> \<Pi>\<^sub>E i\<in>I. space (M i). f i \<in> B}" and B: "i \<in> I" "B \<in> sets (M i)"
 | 
| 47694 | 559 | by auto | 
| 560 |   with space have "f -` A \<inter> space N = {\<omega> \<in> space N. f \<omega> i \<in> B}" by auto
 | |
| 561 | also have "\<dots> \<in> sets N" using B by (rule sets) | |
| 562 | finally show "f -` A \<inter> space N \<in> sets N" . | |
| 563 | qed (auto simp: space) | |
| 40859 | 564 | |
| 50099 | 565 | lemma measurable_PiM_single': | 
| 566 | assumes f: "\<And>i. i \<in> I \<Longrightarrow> f i \<in> measurable N (M i)" | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 567 | and "(\<lambda>\<omega> i. f i \<omega>) \<in> space N \<rightarrow> (\<Pi>\<^sub>E i\<in>I. space (M i))" | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 568 | shows "(\<lambda>\<omega> i. f i \<omega>) \<in> measurable N (Pi\<^sub>M I M)" | 
| 50099 | 569 | proof (rule measurable_PiM_single) | 
| 570 | fix A i assume A: "i \<in> I" "A \<in> sets (M i)" | |
| 571 |   then have "{\<omega> \<in> space N. f i \<omega> \<in> A} = f i -` A \<inter> space N"
 | |
| 572 | by auto | |
| 573 |   then show "{\<omega> \<in> space N. f i \<omega> \<in> A} \<in> sets N"
 | |
| 574 | using A f by (auto intro!: measurable_sets) | |
| 575 | qed fact | |
| 576 | ||
| 50003 | 577 | lemma sets_PiM_I_finite[measurable]: | 
| 47694 | 578 | assumes "finite I" and sets: "(\<And>i. i \<in> I \<Longrightarrow> E i \<in> sets (M i))" | 
| 64910 | 579 | shows "(\<Pi>\<^sub>E j\<in>I. E j) \<in> sets (\<Pi>\<^sub>M i\<in>I. M i)" | 
| 61808 | 580 | using sets_PiM_I[of I I E M] sets.sets_into_space[OF sets] \<open>finite I\<close> sets by auto | 
| 47694 | 581 | |
| 59353 
f0707dc3d9aa
measurability prover: removed app splitting, replaced by more powerful destruction rules
 hoelzl parents: 
59088diff
changeset | 582 | lemma measurable_component_singleton[measurable (raw)]: | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 583 | assumes "i \<in> I" shows "(\<lambda>x. x i) \<in> measurable (Pi\<^sub>M I M) (M i)" | 
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 584 | proof (unfold measurable_def, intro CollectI conjI ballI) | 
| 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 585 | fix A assume "A \<in> sets (M i)" | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 586 |   then have "(\<lambda>x. x i) -` A \<inter> space (Pi\<^sub>M I M) = prod_emb I M {i} (\<Pi>\<^sub>E j\<in>{i}. A)"
 | 
| 61808 | 587 | using sets.sets_into_space \<open>i \<in> I\<close> | 
| 62390 | 588 | by (fastforce dest: Pi_mem simp: prod_emb_def space_PiM split: if_split_asm) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 589 | then show "(\<lambda>x. x i) -` A \<inter> space (Pi\<^sub>M I M) \<in> sets (Pi\<^sub>M I M)" | 
| 61808 | 590 | using \<open>A \<in> sets (M i)\<close> \<open>i \<in> I\<close> by (auto intro!: sets_PiM_I) | 
| 591 | qed (insert \<open>i \<in> I\<close>, auto simp: space_PiM) | |
| 47694 | 592 | |
| 59353 
f0707dc3d9aa
measurability prover: removed app splitting, replaced by more powerful destruction rules
 hoelzl parents: 
59088diff
changeset | 593 | lemma measurable_component_singleton'[measurable_dest]: | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 594 | assumes f: "f \<in> measurable N (Pi\<^sub>M I M)" | 
| 59353 
f0707dc3d9aa
measurability prover: removed app splitting, replaced by more powerful destruction rules
 hoelzl parents: 
59088diff
changeset | 595 | assumes g: "g \<in> measurable L N" | 
| 50021 
d96a3f468203
add support for function application to measurability prover
 hoelzl parents: 
50003diff
changeset | 596 | assumes i: "i \<in> I" | 
| 59353 
f0707dc3d9aa
measurability prover: removed app splitting, replaced by more powerful destruction rules
 hoelzl parents: 
59088diff
changeset | 597 | shows "(\<lambda>x. (f (g x)) i) \<in> measurable L (M i)" | 
| 
f0707dc3d9aa
measurability prover: removed app splitting, replaced by more powerful destruction rules
 hoelzl parents: 
59088diff
changeset | 598 | using measurable_compose[OF measurable_compose[OF g f] measurable_component_singleton, OF i] . | 
| 50021 
d96a3f468203
add support for function application to measurability prover
 hoelzl parents: 
50003diff
changeset | 599 | |
| 59353 
f0707dc3d9aa
measurability prover: removed app splitting, replaced by more powerful destruction rules
 hoelzl parents: 
59088diff
changeset | 600 | lemma measurable_PiM_component_rev: | 
| 50099 | 601 | "i \<in> I \<Longrightarrow> f \<in> measurable (M i) N \<Longrightarrow> (\<lambda>x. f (x i)) \<in> measurable (PiM I M) N" | 
| 602 | by simp | |
| 603 | ||
| 55415 | 604 | lemma measurable_case_nat[measurable (raw)]: | 
| 50021 
d96a3f468203
add support for function application to measurability prover
 hoelzl parents: 
50003diff
changeset | 605 | assumes [measurable (raw)]: "i = 0 \<Longrightarrow> f \<in> measurable M N" | 
| 
d96a3f468203
add support for function application to measurability prover
 hoelzl parents: 
50003diff
changeset | 606 | "\<And>j. i = Suc j \<Longrightarrow> (\<lambda>x. g x j) \<in> measurable M N" | 
| 55415 | 607 | shows "(\<lambda>x. case_nat (f x) (g x) i) \<in> measurable M N" | 
| 50021 
d96a3f468203
add support for function application to measurability prover
 hoelzl parents: 
50003diff
changeset | 608 | by (cases i) simp_all | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 609 | |
| 55415 | 610 | lemma measurable_case_nat'[measurable (raw)]: | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 611 | assumes fg[measurable]: "f \<in> measurable N M" "g \<in> measurable N (\<Pi>\<^sub>M i\<in>UNIV. M)" | 
| 55415 | 612 | shows "(\<lambda>x. case_nat (f x) (g x)) \<in> measurable N (\<Pi>\<^sub>M i\<in>UNIV. M)" | 
| 50099 | 613 | using fg[THEN measurable_space] | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 614 | by (auto intro!: measurable_PiM_single' simp add: space_PiM PiE_iff split: nat.split) | 
| 50099 | 615 | |
| 50003 | 616 | lemma measurable_add_dim[measurable]: | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 617 | "(\<lambda>(f, y). f(i := y)) \<in> measurable (Pi\<^sub>M I M \<Otimes>\<^sub>M M i) (Pi\<^sub>M (insert i I) M)" | 
| 47694 | 618 | (is "?f \<in> measurable ?P ?I") | 
| 619 | proof (rule measurable_PiM_single) | |
| 620 | fix j A assume j: "j \<in> insert i I" and A: "A \<in> sets (M j)" | |
| 621 |   have "{\<omega> \<in> space ?P. (\<lambda>(f, x). fun_upd f i x) \<omega> j \<in> A} =
 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 622 | (if j = i then space (Pi\<^sub>M I M) \<times> A else ((\<lambda>x. x j) \<circ> fst) -` A \<inter> space ?P)" | 
| 50244 
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
 immler parents: 
50123diff
changeset | 623 | using sets.sets_into_space[OF A] by (auto simp add: space_pair_measure space_PiM) | 
| 47694 | 624 | also have "\<dots> \<in> sets ?P" | 
| 625 | using A j | |
| 626 | by (auto intro!: measurable_sets[OF measurable_comp, OF _ measurable_component_singleton]) | |
| 55414 
eab03e9cee8a
renamed '{prod,sum,bool,unit}_case' to 'case_...'
 blanchet parents: 
53374diff
changeset | 627 |   finally show "{\<omega> \<in> space ?P. case_prod (\<lambda>f. fun_upd f i) \<omega> j \<in> A} \<in> sets ?P" .
 | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 628 | qed (auto simp: space_pair_measure space_PiM PiE_def) | 
| 41661 | 629 | |
| 61359 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 630 | lemma measurable_fun_upd: | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 631 |   assumes I: "I = J \<union> {i}"
 | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 632 | assumes f[measurable]: "f \<in> measurable N (PiM J M)" | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 633 | assumes h[measurable]: "h \<in> measurable N (M i)" | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 634 | shows "(\<lambda>x. (f x) (i := h x)) \<in> measurable N (PiM I M)" | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 635 | proof (intro measurable_PiM_single') | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 636 | fix j assume "j \<in> I" then show "(\<lambda>\<omega>. ((f \<omega>)(i := h \<omega>)) j) \<in> measurable N (M j)" | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 637 | unfolding I by (cases "j = i") auto | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 638 | next | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 639 | show "(\<lambda>x. (f x)(i := h x)) \<in> space N \<rightarrow> (\<Pi>\<^sub>E i\<in>I. space (M i))" | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 640 | using I f[THEN measurable_space] h[THEN measurable_space] | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 641 | by (auto simp: space_PiM PiE_iff extensional_def) | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 642 | qed | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 643 | |
| 50003 | 644 | lemma measurable_component_update: | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 645 | "x \<in> space (Pi\<^sub>M I M) \<Longrightarrow> i \<notin> I \<Longrightarrow> (\<lambda>v. x(i := v)) \<in> measurable (M i) (Pi\<^sub>M (insert i I) M)" | 
| 50003 | 646 | by simp | 
| 647 | ||
| 648 | lemma measurable_merge[measurable]: | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 649 | "merge I J \<in> measurable (Pi\<^sub>M I M \<Otimes>\<^sub>M Pi\<^sub>M J M) (Pi\<^sub>M (I \<union> J) M)" | 
| 47694 | 650 | (is "?f \<in> measurable ?P ?U") | 
| 651 | proof (rule measurable_PiM_single) | |
| 652 | fix i A assume A: "A \<in> sets (M i)" "i \<in> I \<union> J" | |
| 49780 | 653 |   then have "{\<omega> \<in> space ?P. merge I J \<omega> i \<in> A} =
 | 
| 47694 | 654 | (if i \<in> I then ((\<lambda>x. x i) \<circ> fst) -` A \<inter> space ?P else ((\<lambda>x. x i) \<circ> snd) -` A \<inter> space ?P)" | 
| 49776 | 655 | by (auto simp: merge_def) | 
| 47694 | 656 | also have "\<dots> \<in> sets ?P" | 
| 657 | using A | |
| 658 | by (auto intro!: measurable_sets[OF measurable_comp, OF _ measurable_component_singleton]) | |
| 49780 | 659 |   finally show "{\<omega> \<in> space ?P. merge I J \<omega> i \<in> A} \<in> sets ?P" .
 | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 660 | qed (auto simp: space_pair_measure space_PiM PiE_iff merge_def extensional_def) | 
| 42988 | 661 | |
| 50003 | 662 | lemma measurable_restrict[measurable (raw)]: | 
| 47694 | 663 | assumes X: "\<And>i. i \<in> I \<Longrightarrow> X i \<in> measurable N (M i)" | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 664 | shows "(\<lambda>x. \<lambda>i\<in>I. X i x) \<in> measurable N (Pi\<^sub>M I M)" | 
| 47694 | 665 | proof (rule measurable_PiM_single) | 
| 666 | fix A i assume A: "i \<in> I" "A \<in> sets (M i)" | |
| 667 |   then have "{\<omega> \<in> space N. (\<lambda>i\<in>I. X i \<omega>) i \<in> A} = X i -` A \<inter> space N"
 | |
| 668 | by auto | |
| 669 |   then show "{\<omega> \<in> space N. (\<lambda>i\<in>I. X i \<omega>) i \<in> A} \<in> sets N"
 | |
| 670 | using A X by (auto intro!: measurable_sets) | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 671 | qed (insert X, auto simp add: PiE_def dest: measurable_space) | 
| 47694 | 672 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 673 | lemma measurable_abs_UNIV: | 
| 57025 | 674 | "(\<And>n. (\<lambda>\<omega>. f n \<omega>) \<in> measurable M (N n)) \<Longrightarrow> (\<lambda>\<omega> n. f n \<omega>) \<in> measurable M (PiM UNIV N)" | 
| 675 | by (intro measurable_PiM_single) (auto dest: measurable_space) | |
| 676 | ||
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 677 | lemma measurable_restrict_subset: "J \<subseteq> L \<Longrightarrow> (\<lambda>f. restrict f J) \<in> measurable (Pi\<^sub>M L M) (Pi\<^sub>M J M)" | 
| 50038 | 678 | by (intro measurable_restrict measurable_component_singleton) auto | 
| 679 | ||
| 59425 | 680 | lemma measurable_restrict_subset': | 
| 681 | assumes "J \<subseteq> L" "\<And>x. x \<in> J \<Longrightarrow> sets (M x) = sets (N x)" | |
| 682 | shows "(\<lambda>f. restrict f J) \<in> measurable (Pi\<^sub>M L M) (Pi\<^sub>M J N)" | |
| 683 | proof- | |
| 684 | from assms(1) have "(\<lambda>f. restrict f J) \<in> measurable (Pi\<^sub>M L M) (Pi\<^sub>M J M)" | |
| 685 | by (rule measurable_restrict_subset) | |
| 686 | also from assms(2) have "measurable (Pi\<^sub>M L M) (Pi\<^sub>M J M) = measurable (Pi\<^sub>M L M) (Pi\<^sub>M J N)" | |
| 687 | by (intro sets_PiM_cong measurable_cong_sets) simp_all | |
| 688 | finally show ?thesis . | |
| 689 | qed | |
| 690 | ||
| 50038 | 691 | lemma measurable_prod_emb[intro, simp]: | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 692 | "J \<subseteq> L \<Longrightarrow> X \<in> sets (Pi\<^sub>M J M) \<Longrightarrow> prod_emb L M J X \<in> sets (Pi\<^sub>M L M)" | 
| 50038 | 693 | unfolding prod_emb_def space_PiM[symmetric] | 
| 694 | by (auto intro!: measurable_sets measurable_restrict measurable_component_singleton) | |
| 695 | ||
| 61359 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 696 | lemma merge_in_prod_emb: | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 697 | assumes "y \<in> space (PiM I M)" "x \<in> X" and X: "X \<in> sets (Pi\<^sub>M J M)" and "J \<subseteq> I" | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 698 | shows "merge J I (x, y) \<in> prod_emb I M J X" | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 699 | using assms sets.sets_into_space[OF X] | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 700 | by (simp add: merge_def prod_emb_def subset_eq space_PiM PiE_def extensional_restrict Pi_iff | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 701 | cong: if_cong restrict_cong) | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 702 | (simp add: extensional_def) | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 703 | |
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 704 | lemma prod_emb_eq_emptyD: | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 705 |   assumes J: "J \<subseteq> I" and ne: "space (PiM I M) \<noteq> {}" and X: "X \<in> sets (Pi\<^sub>M J M)"
 | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 706 |     and *: "prod_emb I M J X = {}"
 | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 707 |   shows "X = {}"
 | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 708 | proof safe | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 709 | fix x assume "x \<in> X" | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 710 | obtain \<omega> where "\<omega> \<in> space (PiM I M)" | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 711 | using ne by blast | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 712 |   from merge_in_prod_emb[OF this \<open>x\<in>X\<close> X J] * show "x \<in> {}" by auto
 | 
| 61359 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 713 | qed | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 714 | |
| 50003 | 715 | lemma sets_in_Pi_aux: | 
| 716 |   "finite I \<Longrightarrow> (\<And>j. j \<in> I \<Longrightarrow> {x\<in>space (M j). x \<in> F j} \<in> sets (M j)) \<Longrightarrow>
 | |
| 717 |   {x\<in>space (PiM I M). x \<in> Pi I F} \<in> sets (PiM I M)"
 | |
| 718 | by (simp add: subset_eq Pi_iff) | |
| 719 | ||
| 720 | lemma sets_in_Pi[measurable (raw)]: | |
| 721 | "finite I \<Longrightarrow> f \<in> measurable N (PiM I M) \<Longrightarrow> | |
| 722 |   (\<And>j. j \<in> I \<Longrightarrow> {x\<in>space (M j). x \<in> F j} \<in> sets (M j)) \<Longrightarrow>
 | |
| 50387 | 723 | Measurable.pred N (\<lambda>x. f x \<in> Pi I F)" | 
| 50003 | 724 | unfolding pred_def | 
| 725 | by (rule measurable_sets_Collect[of f N "PiM I M", OF _ sets_in_Pi_aux]) auto | |
| 726 | ||
| 727 | lemma sets_in_extensional_aux: | |
| 728 |   "{x\<in>space (PiM I M). x \<in> extensional I} \<in> sets (PiM I M)"
 | |
| 729 | proof - | |
| 730 |   have "{x\<in>space (PiM I M). x \<in> extensional I} = space (PiM I M)"
 | |
| 731 | by (auto simp add: extensional_def space_PiM) | |
| 732 | then show ?thesis by simp | |
| 733 | qed | |
| 734 | ||
| 735 | lemma sets_in_extensional[measurable (raw)]: | |
| 50387 | 736 | "f \<in> measurable N (PiM I M) \<Longrightarrow> Measurable.pred N (\<lambda>x. f x \<in> extensional I)" | 
| 50003 | 737 | unfolding pred_def | 
| 738 | by (rule measurable_sets_Collect[of f N "PiM I M", OF _ sets_in_extensional_aux]) auto | |
| 739 | ||
| 61363 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 740 | lemma sets_PiM_I_countable: | 
| 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 741 | assumes I: "countable I" and E: "\<And>i. i \<in> I \<Longrightarrow> E i \<in> sets (M i)" shows "Pi\<^sub>E I E \<in> sets (Pi\<^sub>M I M)" | 
| 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 742 | proof cases | 
| 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 743 |   assume "I \<noteq> {}"
 | 
| 64910 | 744 |   then have "Pi\<^sub>E I E = (\<Inter>i\<in>I. prod_emb I M {i} (Pi\<^sub>E {i} E))"
 | 
| 61363 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 745 | using E[THEN sets.sets_into_space] by (auto simp: PiE_iff prod_emb_def fun_eq_iff) | 
| 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 746 | also have "\<dots> \<in> sets (PiM I M)" | 
| 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 747 |     using I \<open>I \<noteq> {}\<close> by (safe intro!: sets.countable_INT' measurable_prod_emb sets_PiM_I_finite E)
 | 
| 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 748 | finally show ?thesis . | 
| 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 749 | qed (simp add: sets_PiM_empty) | 
| 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 750 | |
| 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 751 | lemma sets_PiM_D_countable: | 
| 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 752 | assumes A: "A \<in> PiM I M" | 
| 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 753 | shows "\<exists>J\<subseteq>I. \<exists>X\<in>PiM J M. countable J \<and> A = prod_emb I M J X" | 
| 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 754 | using A[unfolded sets_PiM_single] | 
| 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 755 | proof induction | 
| 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 756 | case (Basic A) | 
| 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 757 |   then obtain i X where *: "i \<in> I" "X \<in> sets (M i)" and "A = {f \<in> \<Pi>\<^sub>E i\<in>I. space (M i). f i \<in> X}"
 | 
| 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 758 | by auto | 
| 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 759 |   then have A: "A = prod_emb I M {i} (\<Pi>\<^sub>E _\<in>{i}. X)"
 | 
| 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 760 | by (auto simp: prod_emb_def) | 
| 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 761 | then show ?case | 
| 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 762 |     by (intro exI[of _ "{i}"] conjI bexI[of _ "\<Pi>\<^sub>E _\<in>{i}. X"])
 | 
| 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 763 | (auto intro: countable_finite * sets_PiM_I_finite) | 
| 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 764 | next | 
| 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 765 | case Empty then show ?case | 
| 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 766 |     by (intro exI[of _ "{}"] conjI bexI[of _ "{}"]) auto
 | 
| 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 767 | next | 
| 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 768 | case (Compl A) | 
| 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 769 | then obtain J X where "J \<subseteq> I" "X \<in> sets (Pi\<^sub>M J M)" "countable J" "A = prod_emb I M J X" | 
| 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 770 | by auto | 
| 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 771 | then show ?case | 
| 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 772 | by (intro exI[of _ J] bexI[of _ "space (PiM J M) - X"] conjI) | 
| 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 773 | (auto simp add: space_PiM prod_emb_PiE intro!: sets_PiM_I_countable) | 
| 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 774 | next | 
| 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 775 | case (Union K) | 
| 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 776 | obtain J X where J: "\<And>i. J i \<subseteq> I" "\<And>i. countable (J i)" and X: "\<And>i. X i \<in> sets (Pi\<^sub>M (J i) M)" | 
| 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 777 | and K: "\<And>i. K i = prod_emb I M (J i) (X i)" | 
| 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 778 | by (metis Union.IH) | 
| 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 779 | show ?case | 
| 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 780 | proof (intro exI[of _ "\<Union>i. J i"] bexI[of _ "\<Union>i. prod_emb (\<Union>i. J i) M (J i) (X i)"] conjI) | 
| 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 781 | show "(\<Union>i. J i) \<subseteq> I" "countable (\<Union>i. J i)" using J by auto | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 782 | with J show "UNION UNIV K = prod_emb I M (\<Union>i. J i) (\<Union>i. prod_emb (\<Union>i. J i) M (J i) (X i))" | 
| 61363 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 783 | by (simp add: K[abs_def] SUP_upper) | 
| 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 784 | qed(auto intro: X) | 
| 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 785 | qed | 
| 
76ac925927aa
measurable sets on product spaces are embeddings of countable products
 hoelzl parents: 
61362diff
changeset | 786 | |
| 61362 | 787 | lemma measure_eqI_PiM_finite: | 
| 788 | assumes [simp]: "finite I" "sets P = PiM I M" "sets Q = PiM I M" | |
| 789 | assumes eq: "\<And>A. (\<And>i. i \<in> I \<Longrightarrow> A i \<in> sets (M i)) \<Longrightarrow> P (Pi\<^sub>E I A) = Q (Pi\<^sub>E I A)" | |
| 790 | assumes A: "range A \<subseteq> prod_algebra I M" "(\<Union>i. A i) = space (PiM I M)" "\<And>i::nat. P (A i) \<noteq> \<infinity>" | |
| 791 | shows "P = Q" | |
| 792 | proof (rule measure_eqI_generator_eq[OF Int_stable_prod_algebra prod_algebra_sets_into_space]) | |
| 793 | show "range A \<subseteq> prod_algebra I M" "(\<Union>i. A i) = (\<Pi>\<^sub>E i\<in>I. space (M i))" "\<And>i. P (A i) \<noteq> \<infinity>" | |
| 794 | unfolding space_PiM[symmetric] by fact+ | |
| 795 | fix X assume "X \<in> prod_algebra I M" | |
| 64910 | 796 | then obtain J E where X: "X = prod_emb I M J (\<Pi>\<^sub>E j\<in>J. E j)" | 
| 61362 | 797 | and J: "finite J" "J \<subseteq> I" "\<And>j. j \<in> J \<Longrightarrow> E j \<in> sets (M j)" | 
| 798 | by (force elim!: prod_algebraE) | |
| 799 | then show "emeasure P X = emeasure Q X" | |
| 800 | unfolding X by (subst (1 2) prod_emb_Pi) (auto simp: eq) | |
| 801 | qed (simp_all add: sets_PiM) | |
| 802 | ||
| 803 | lemma measure_eqI_PiM_infinite: | |
| 804 | assumes [simp]: "sets P = PiM I M" "sets Q = PiM I M" | |
| 805 | assumes eq: "\<And>A J. finite J \<Longrightarrow> J \<subseteq> I \<Longrightarrow> (\<And>i. i \<in> J \<Longrightarrow> A i \<in> sets (M i)) \<Longrightarrow> | |
| 806 | P (prod_emb I M J (Pi\<^sub>E J A)) = Q (prod_emb I M J (Pi\<^sub>E J A))" | |
| 807 | assumes A: "finite_measure P" | |
| 808 | shows "P = Q" | |
| 809 | proof (rule measure_eqI_generator_eq[OF Int_stable_prod_algebra prod_algebra_sets_into_space]) | |
| 810 | interpret finite_measure P by fact | |
| 63040 | 811 | define i where "i = (SOME i. i \<in> I)" | 
| 61362 | 812 |   have i: "I \<noteq> {} \<Longrightarrow> i \<in> I"
 | 
| 813 | unfolding i_def by (rule someI_ex) auto | |
| 63040 | 814 | define A where "A n = | 
| 815 |     (if I = {} then prod_emb I M {} (\<Pi>\<^sub>E i\<in>{}. {}) else prod_emb I M {i} (\<Pi>\<^sub>E i\<in>{i}. space (M i)))"
 | |
| 816 | for n :: nat | |
| 61362 | 817 | then show "range A \<subseteq> prod_algebra I M" | 
| 818 |     using prod_algebraI[of "{}" I "\<lambda>i. space (M i)" M] by (auto intro!: prod_algebraI i)
 | |
| 819 | have "\<And>i. A i = space (PiM I M)" | |
| 820 | by (auto simp: prod_emb_def space_PiM PiE_iff A_def i ex_in_conv[symmetric] exI) | |
| 821 | then show "(\<Union>i. A i) = (\<Pi>\<^sub>E i\<in>I. space (M i))" "\<And>i. emeasure P (A i) \<noteq> \<infinity>" | |
| 822 | by (auto simp: space_PiM) | |
| 823 | next | |
| 824 | fix X assume X: "X \<in> prod_algebra I M" | |
| 64910 | 825 | then obtain J E where X: "X = prod_emb I M J (\<Pi>\<^sub>E j\<in>J. E j)" | 
| 61362 | 826 | and J: "finite J" "J \<subseteq> I" "\<And>j. j \<in> J \<Longrightarrow> E j \<in> sets (M j)" | 
| 827 | by (force elim!: prod_algebraE) | |
| 828 | then show "emeasure P X = emeasure Q X" | |
| 829 | by (auto intro!: eq) | |
| 830 | qed (auto simp: sets_PiM) | |
| 831 | ||
| 47694 | 832 | locale product_sigma_finite = | 
| 833 | fixes M :: "'i \<Rightarrow> 'a measure" | |
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 834 | assumes sigma_finite_measures: "\<And>i. sigma_finite_measure (M i)" | 
| 40859 | 835 | |
| 61565 
352c73a689da
Qualifiers in locale expressions default to mandatory regardless of the command.
 ballarin parents: 
61424diff
changeset | 836 | sublocale product_sigma_finite \<subseteq> M?: sigma_finite_measure "M i" for i | 
| 40859 | 837 | by (rule sigma_finite_measures) | 
| 838 | ||
| 47694 | 839 | locale finite_product_sigma_finite = product_sigma_finite M for M :: "'i \<Rightarrow> 'a measure" + | 
| 840 | fixes I :: "'i set" | |
| 841 | assumes finite_index: "finite I" | |
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 842 | |
| 40859 | 843 | lemma (in finite_product_sigma_finite) sigma_finite_pairs: | 
| 844 | "\<exists>F::'i \<Rightarrow> nat \<Rightarrow> 'a set. | |
| 845 | (\<forall>i\<in>I. range (F i) \<subseteq> sets (M i)) \<and> | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 846 | (\<forall>k. \<forall>i\<in>I. emeasure (M i) (F i k) \<noteq> \<infinity>) \<and> incseq (\<lambda>k. \<Pi>\<^sub>E i\<in>I. F i k) \<and> | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 847 | (\<Union>k. \<Pi>\<^sub>E i\<in>I. F i k) = space (PiM I M)" | 
| 40859 | 848 | proof - | 
| 47694 | 849 | have "\<forall>i::'i. \<exists>F::nat \<Rightarrow> 'a set. range F \<subseteq> sets (M i) \<and> incseq F \<and> (\<Union>i. F i) = space (M i) \<and> (\<forall>k. emeasure (M i) (F k) \<noteq> \<infinity>)" | 
| 850 | using M.sigma_finite_incseq by metis | |
| 40859 | 851 | from choice[OF this] guess F :: "'i \<Rightarrow> nat \<Rightarrow> 'a set" .. | 
| 47694 | 852 | then have F: "\<And>i. range (F i) \<subseteq> sets (M i)" "\<And>i. incseq (F i)" "\<And>i. (\<Union>j. F i j) = space (M i)" "\<And>i k. emeasure (M i) (F i k) \<noteq> \<infinity>" | 
| 40859 | 853 | by auto | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 854 | let ?F = "\<lambda>k. \<Pi>\<^sub>E i\<in>I. F i k" | 
| 47694 | 855 | note space_PiM[simp] | 
| 40859 | 856 | show ?thesis | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 857 | proof (intro exI[of _ F] conjI allI incseq_SucI set_eqI iffI ballI) | 
| 40859 | 858 | fix i show "range (F i) \<subseteq> sets (M i)" by fact | 
| 859 | next | |
| 47694 | 860 | fix i k show "emeasure (M i) (F i k) \<noteq> \<infinity>" by fact | 
| 40859 | 861 | next | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 862 | fix x assume "x \<in> (\<Union>i. ?F i)" with F(1) show "x \<in> space (PiM I M)" | 
| 50244 
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
 immler parents: 
50123diff
changeset | 863 | by (auto simp: PiE_def dest!: sets.sets_into_space) | 
| 40859 | 864 | next | 
| 47694 | 865 | fix f assume "f \<in> space (PiM I M)" | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 866 | with Pi_UN[OF finite_index, of "\<lambda>k i. F i k"] F | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 867 | show "f \<in> (\<Union>i. ?F i)" by (auto simp: incseq_def PiE_def) | 
| 40859 | 868 | next | 
| 869 | fix i show "?F i \<subseteq> ?F (Suc i)" | |
| 61808 | 870 | using \<open>\<And>i. incseq (F i)\<close>[THEN incseq_SucD] by auto | 
| 40859 | 871 | qed | 
| 872 | qed | |
| 873 | ||
| 49780 | 874 | lemma emeasure_PiM_empty[simp]: "emeasure (PiM {} M) {\<lambda>_. undefined} = 1"
 | 
| 875 | proof - | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 876 |   let ?\<mu> = "\<lambda>A. if A = {} then 0 else (1::ennreal)"
 | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 877 |   have "emeasure (Pi\<^sub>M {} M) (prod_emb {} M {} (\<Pi>\<^sub>E i\<in>{}. {})) = 1"
 | 
| 49780 | 878 | proof (subst emeasure_extend_measure_Pair[OF PiM_def]) | 
| 879 |     show "positive (PiM {} M) ?\<mu>"
 | |
| 880 | by (auto simp: positive_def) | |
| 881 |     show "countably_additive (PiM {} M) ?\<mu>"
 | |
| 50244 
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
 immler parents: 
50123diff
changeset | 882 | by (rule sets.countably_additiveI_finite) | 
| 49780 | 883 | (auto simp: additive_def positive_def sets_PiM_empty space_PiM_empty intro!: ) | 
| 884 | qed (auto simp: prod_emb_def) | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 885 |   also have "(prod_emb {} M {} (\<Pi>\<^sub>E i\<in>{}. {})) = {\<lambda>_. undefined}"
 | 
| 49780 | 886 | by (auto simp: prod_emb_def) | 
| 887 | finally show ?thesis | |
| 888 | by simp | |
| 889 | qed | |
| 890 | ||
| 891 | lemma PiM_empty: "PiM {} M = count_space {\<lambda>_. undefined}"
 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 892 | by (rule measure_eqI) (auto simp add: sets_PiM_empty) | 
| 49780 | 893 | |
| 49776 | 894 | lemma (in product_sigma_finite) emeasure_PiM: | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 895 | "finite I \<Longrightarrow> (\<And>i. i\<in>I \<Longrightarrow> A i \<in> sets (M i)) \<Longrightarrow> emeasure (PiM I M) (Pi\<^sub>E I A) = (\<Prod>i\<in>I. emeasure (M i) (A i))" | 
| 49776 | 896 | proof (induct I arbitrary: A rule: finite_induct) | 
| 40859 | 897 | case (insert i I) | 
| 61169 | 898 | interpret finite_product_sigma_finite M I by standard fact | 
| 61808 | 899 | have "finite (insert i I)" using \<open>finite I\<close> by auto | 
| 61169 | 900 | interpret I': finite_product_sigma_finite M "insert i I" by standard fact | 
| 41661 | 901 | let ?h = "(\<lambda>(f, y). f(i := y))" | 
| 47694 | 902 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 903 | let ?P = "distr (Pi\<^sub>M I M \<Otimes>\<^sub>M M i) (Pi\<^sub>M (insert i I) M) ?h" | 
| 47694 | 904 | let ?\<mu> = "emeasure ?P" | 
| 905 |   let ?I = "{j \<in> insert i I. emeasure (M j) (space (M j)) \<noteq> 1}"
 | |
| 906 | let ?f = "\<lambda>J E j. if j \<in> J then emeasure (M j) (E j) else emeasure (M j) (space (M j))" | |
| 907 | ||
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 908 | have "emeasure (Pi\<^sub>M (insert i I) M) (prod_emb (insert i I) M (insert i I) (Pi\<^sub>E (insert i I) A)) = | 
| 49776 | 909 | (\<Prod>i\<in>insert i I. emeasure (M i) (A i))" | 
| 910 | proof (subst emeasure_extend_measure_Pair[OF PiM_def]) | |
| 911 |     fix J E assume "(J \<noteq> {} \<or> insert i I = {}) \<and> finite J \<and> J \<subseteq> insert i I \<and> E \<in> (\<Pi> j\<in>J. sets (M j))"
 | |
| 912 |     then have J: "J \<noteq> {}" "finite J" "J \<subseteq> insert i I" and E: "\<forall>j\<in>J. E j \<in> sets (M j)" by auto
 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 913 | let ?p = "prod_emb (insert i I) M J (Pi\<^sub>E J E)" | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 914 |     let ?p' = "prod_emb I M (J - {i}) (\<Pi>\<^sub>E j\<in>J-{i}. E j)"
 | 
| 49776 | 915 | have "?\<mu> ?p = | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 916 | emeasure (Pi\<^sub>M I M \<Otimes>\<^sub>M (M i)) (?h -` ?p \<inter> space (Pi\<^sub>M I M \<Otimes>\<^sub>M M i))" | 
| 49776 | 917 | by (intro emeasure_distr measurable_add_dim sets_PiM_I) fact+ | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 918 | also have "?h -` ?p \<inter> space (Pi\<^sub>M I M \<Otimes>\<^sub>M M i) = ?p' \<times> (if i \<in> J then E i else space (M i))" | 
| 50244 
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
 immler parents: 
50123diff
changeset | 919 | using J E[rule_format, THEN sets.sets_into_space] | 
| 62390 | 920 | by (force simp: space_pair_measure space_PiM prod_emb_iff PiE_def Pi_iff split: if_split_asm) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 921 | also have "emeasure (Pi\<^sub>M I M \<Otimes>\<^sub>M (M i)) (?p' \<times> (if i \<in> J then E i else space (M i))) = | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 922 | emeasure (Pi\<^sub>M I M) ?p' * emeasure (M i) (if i \<in> J then (E i) else space (M i))" | 
| 49776 | 923 | using J E by (intro M.emeasure_pair_measure_Times sets_PiM_I) auto | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 924 |     also have "?p' = (\<Pi>\<^sub>E j\<in>I. if j \<in> J-{i} then E j else space (M j))"
 | 
| 50244 
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
 immler parents: 
50123diff
changeset | 925 | using J E[rule_format, THEN sets.sets_into_space] | 
| 62390 | 926 | by (auto simp: prod_emb_iff PiE_def Pi_iff split: if_split_asm) blast+ | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 927 |     also have "emeasure (Pi\<^sub>M I M) (\<Pi>\<^sub>E j\<in>I. if j \<in> J-{i} then E j else space (M j)) =
 | 
| 49776 | 928 |       (\<Prod> j\<in>I. if j \<in> J-{i} then emeasure (M j) (E j) else emeasure (M j) (space (M j)))"
 | 
| 64272 | 929 | using E by (subst insert) (auto intro!: prod.cong) | 
| 49776 | 930 |     also have "(\<Prod>j\<in>I. if j \<in> J - {i} then emeasure (M j) (E j) else emeasure (M j) (space (M j))) *
 | 
| 931 | emeasure (M i) (if i \<in> J then E i else space (M i)) = (\<Prod>j\<in>insert i I. ?f J E j)" | |
| 64272 | 932 | using insert by (auto simp: mult.commute intro!: arg_cong2[where f="op *"] prod.cong) | 
| 49776 | 933 | also have "\<dots> = (\<Prod>j\<in>J \<union> ?I. ?f J E j)" | 
| 64272 | 934 | using insert(1,2) J E by (intro prod.mono_neutral_right) auto | 
| 49776 | 935 | finally show "?\<mu> ?p = \<dots>" . | 
| 47694 | 936 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 937 | show "prod_emb (insert i I) M J (Pi\<^sub>E J E) \<in> Pow (\<Pi>\<^sub>E i\<in>insert i I. space (M i))" | 
| 50244 
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
 immler parents: 
50123diff
changeset | 938 | using J E[rule_format, THEN sets.sets_into_space] by (auto simp: prod_emb_iff PiE_def) | 
| 49776 | 939 | next | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 940 | show "positive (sets (Pi\<^sub>M (insert i I) M)) ?\<mu>" "countably_additive (sets (Pi\<^sub>M (insert i I) M)) ?\<mu>" | 
| 49776 | 941 | using emeasure_positive[of ?P] emeasure_countably_additive[of ?P] by simp_all | 
| 942 | next | |
| 943 |     show "(insert i I \<noteq> {} \<or> insert i I = {}) \<and> finite (insert i I) \<and>
 | |
| 944 | insert i I \<subseteq> insert i I \<and> A \<in> (\<Pi> j\<in>insert i I. sets (M j))" | |
| 945 | using insert by auto | |
| 64272 | 946 | qed (auto intro!: prod.cong) | 
| 49776 | 947 | with insert show ?case | 
| 50244 
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
 immler parents: 
50123diff
changeset | 948 | by (subst (asm) prod_emb_PiE_same_index) (auto intro!: sets.sets_into_space) | 
| 50003 | 949 | qed simp | 
| 47694 | 950 | |
| 61359 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 951 | lemma (in product_sigma_finite) PiM_eqI: | 
| 61362 | 952 | assumes I[simp]: "finite I" and P: "sets P = PiM I M" | 
| 61359 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 953 | assumes eq: "\<And>A. (\<And>i. i \<in> I \<Longrightarrow> A i \<in> sets (M i)) \<Longrightarrow> P (Pi\<^sub>E I A) = (\<Prod>i\<in>I. emeasure (M i) (A i))" | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 954 | shows "P = PiM I M" | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 955 | proof - | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 956 | interpret finite_product_sigma_finite M I | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 957 | proof qed fact | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 958 | from sigma_finite_pairs guess C .. note C = this | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 959 | show ?thesis | 
| 61362 | 960 | proof (rule measure_eqI_PiM_finite[OF I refl P, symmetric]) | 
| 961 | show "(\<And>i. i \<in> I \<Longrightarrow> A i \<in> sets (M i)) \<Longrightarrow> (Pi\<^sub>M I M) (Pi\<^sub>E I A) = P (Pi\<^sub>E I A)" for A | |
| 962 | by (simp add: eq emeasure_PiM) | |
| 63040 | 963 | define A where "A n = (\<Pi>\<^sub>E i\<in>I. C i n)" for n | 
| 61362 | 964 | with C show "range A \<subseteq> prod_algebra I M" "\<And>i. emeasure (Pi\<^sub>M I M) (A i) \<noteq> \<infinity>" "(\<Union>i. A i) = space (PiM I M)" | 
| 64272 | 965 | by (auto intro!: prod_algebraI_finite simp: emeasure_PiM subset_eq ennreal_prod_eq_top) | 
| 61359 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 966 | qed | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 967 | qed | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 968 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 969 | lemma (in product_sigma_finite) sigma_finite: | 
| 49776 | 970 | assumes "finite I" | 
| 971 | shows "sigma_finite_measure (PiM I M)" | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 972 | proof | 
| 61169 | 973 | interpret finite_product_sigma_finite M I by standard fact | 
| 49776 | 974 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 975 | obtain F where F: "\<And>j. countable (F j)" "\<And>j f. f \<in> F j \<Longrightarrow> f \<in> sets (M j)" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 976 | "\<And>j f. f \<in> F j \<Longrightarrow> emeasure (M j) f \<noteq> \<infinity>" and | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 977 | in_space: "\<And>j. space (M j) = (\<Union>F j)" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 978 | using sigma_finite_countable by (metis subset_eq) | 
| 64910 | 979 | moreover have "(\<Union>(Pi\<^sub>E I ` Pi\<^sub>E I F)) = space (Pi\<^sub>M I M)" | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 980 | using in_space by (auto simp: space_PiM PiE_iff intro!: PiE_choice[THEN iffD2]) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 981 | ultimately show "\<exists>A. countable A \<and> A \<subseteq> sets (Pi\<^sub>M I M) \<and> \<Union>A = space (Pi\<^sub>M I M) \<and> (\<forall>a\<in>A. emeasure (Pi\<^sub>M I M) a \<noteq> \<infinity>)" | 
| 64910 | 982 | by (intro exI[of _ "Pi\<^sub>E I ` Pi\<^sub>E I F"]) | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 983 | (auto intro!: countable_PiE sets_PiM_I_finite | 
| 64272 | 984 | simp: PiE_iff emeasure_PiM finite_index ennreal_prod_eq_top) | 
| 40859 | 985 | qed | 
| 986 | ||
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 987 | sublocale finite_product_sigma_finite \<subseteq> sigma_finite_measure "Pi\<^sub>M I M" | 
| 47694 | 988 | using sigma_finite[OF finite_index] . | 
| 40859 | 989 | |
| 990 | lemma (in finite_product_sigma_finite) measure_times: | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 991 | "(\<And>i. i \<in> I \<Longrightarrow> A i \<in> sets (M i)) \<Longrightarrow> emeasure (Pi\<^sub>M I M) (Pi\<^sub>E I A) = (\<Prod>i\<in>I. emeasure (M i) (A i))" | 
| 47694 | 992 | using emeasure_PiM[OF finite_index] by auto | 
| 41096 | 993 | |
| 56996 | 994 | lemma (in product_sigma_finite) nn_integral_empty: | 
| 61359 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 995 |   "0 \<le> f (\<lambda>k. undefined) \<Longrightarrow> integral\<^sup>N (Pi\<^sub>M {} M) f = f (\<lambda>k. undefined)"
 | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 996 | by (simp add: PiM_empty nn_integral_count_space_finite max.absorb2) | 
| 40859 | 997 | |
| 47694 | 998 | lemma (in product_sigma_finite) distr_merge: | 
| 40859 | 999 |   assumes IJ[simp]: "I \<inter> J = {}" and fin: "finite I" "finite J"
 | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 1000 | shows "distr (Pi\<^sub>M I M \<Otimes>\<^sub>M Pi\<^sub>M J M) (Pi\<^sub>M (I \<union> J) M) (merge I J) = Pi\<^sub>M (I \<union> J) M" | 
| 47694 | 1001 | (is "?D = ?P") | 
| 61359 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 1002 | proof (rule PiM_eqI) | 
| 61169 | 1003 | interpret I: finite_product_sigma_finite M I by standard fact | 
| 1004 | interpret J: finite_product_sigma_finite M J by standard fact | |
| 61359 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 1005 | fix A assume A: "\<And>i. i \<in> I \<union> J \<Longrightarrow> A i \<in> sets (M i)" | 
| 64910 | 1006 | have *: "(merge I J -` Pi\<^sub>E (I \<union> J) A \<inter> space (Pi\<^sub>M I M \<Otimes>\<^sub>M Pi\<^sub>M J M)) = Pi\<^sub>E I A \<times> Pi\<^sub>E J A" | 
| 61359 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 1007 | using A[THEN sets.sets_into_space] by (auto simp: space_PiM space_pair_measure) | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 1008 | from A fin show "emeasure (distr (Pi\<^sub>M I M \<Otimes>\<^sub>M Pi\<^sub>M J M) (Pi\<^sub>M (I \<union> J) M) (merge I J)) (Pi\<^sub>E (I \<union> J) A) = | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 1009 | (\<Prod>i\<in>I \<union> J. emeasure (M i) (A i))" | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 1010 | by (subst emeasure_distr) | 
| 64272 | 1011 | (auto simp: * J.emeasure_pair_measure_Times I.measure_times J.measure_times prod.union_disjoint) | 
| 61359 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 1012 | qed (insert fin, simp_all) | 
| 41026 
bea75746dc9d
folding on arbitrary Lebesgue integrable functions
 hoelzl parents: 
41023diff
changeset | 1013 | |
| 56996 | 1014 | lemma (in product_sigma_finite) product_nn_integral_fold: | 
| 47694 | 1015 |   assumes IJ: "I \<inter> J = {}" "finite I" "finite J"
 | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1016 | and f[measurable]: "f \<in> borel_measurable (Pi\<^sub>M (I \<union> J) M)" | 
| 56996 | 1017 | shows "integral\<^sup>N (Pi\<^sub>M (I \<union> J) M) f = | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 1018 | (\<integral>\<^sup>+ x. (\<integral>\<^sup>+ y. f (merge I J (x, y)) \<partial>(Pi\<^sub>M J M)) \<partial>(Pi\<^sub>M I M))" | 
| 41026 
bea75746dc9d
folding on arbitrary Lebesgue integrable functions
 hoelzl parents: 
41023diff
changeset | 1019 | proof - | 
| 61169 | 1020 | interpret I: finite_product_sigma_finite M I by standard fact | 
| 1021 | interpret J: finite_product_sigma_finite M J by standard fact | |
| 1022 | interpret P: pair_sigma_finite "Pi\<^sub>M I M" "Pi\<^sub>M J M" by standard | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 1023 | have P_borel: "(\<lambda>x. f (merge I J x)) \<in> borel_measurable (Pi\<^sub>M I M \<Otimes>\<^sub>M Pi\<^sub>M J M)" | 
| 49776 | 1024 | using measurable_comp[OF measurable_merge f] by (simp add: comp_def) | 
| 41661 | 1025 | show ?thesis | 
| 47694 | 1026 | apply (subst distr_merge[OF IJ, symmetric]) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1027 | apply (subst nn_integral_distr[OF measurable_merge]) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1028 | apply measurable [] | 
| 56996 | 1029 | apply (subst J.nn_integral_fst[symmetric, OF P_borel]) | 
| 47694 | 1030 | apply simp | 
| 1031 | done | |
| 40859 | 1032 | qed | 
| 1033 | ||
| 47694 | 1034 | lemma (in product_sigma_finite) distr_singleton: | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 1035 |   "distr (Pi\<^sub>M {i} M) (M i) (\<lambda>x. x i) = M i" (is "?D = _")
 | 
| 47694 | 1036 | proof (intro measure_eqI[symmetric]) | 
| 61169 | 1037 |   interpret I: finite_product_sigma_finite M "{i}" by standard simp
 | 
| 47694 | 1038 | fix A assume A: "A \<in> sets (M i)" | 
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53015diff
changeset | 1039 |   then have "(\<lambda>x. x i) -` A \<inter> space (Pi\<^sub>M {i} M) = (\<Pi>\<^sub>E i\<in>{i}. A)"
 | 
| 50244 
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
 immler parents: 
50123diff
changeset | 1040 | using sets.sets_into_space by (auto simp: space_PiM) | 
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53015diff
changeset | 1041 | then show "emeasure (M i) A = emeasure ?D A" | 
| 47694 | 1042 | using A I.measure_times[of "\<lambda>_. A"] | 
| 1043 | by (simp add: emeasure_distr measurable_component_singleton) | |
| 1044 | qed simp | |
| 41831 | 1045 | |
| 56996 | 1046 | lemma (in product_sigma_finite) product_nn_integral_singleton: | 
| 40859 | 1047 | assumes f: "f \<in> borel_measurable (M i)" | 
| 56996 | 1048 |   shows "integral\<^sup>N (Pi\<^sub>M {i} M) (\<lambda>x. f (x i)) = integral\<^sup>N (M i) f"
 | 
| 40859 | 1049 | proof - | 
| 61169 | 1050 |   interpret I: finite_product_sigma_finite M "{i}" by standard simp
 | 
| 47694 | 1051 | from f show ?thesis | 
| 1052 | apply (subst distr_singleton[symmetric]) | |
| 56996 | 1053 | apply (subst nn_integral_distr[OF measurable_component_singleton]) | 
| 47694 | 1054 | apply simp_all | 
| 1055 | done | |
| 40859 | 1056 | qed | 
| 1057 | ||
| 56996 | 1058 | lemma (in product_sigma_finite) product_nn_integral_insert: | 
| 49780 | 1059 | assumes I[simp]: "finite I" "i \<notin> I" | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 1060 | and f: "f \<in> borel_measurable (Pi\<^sub>M (insert i I) M)" | 
| 56996 | 1061 | shows "integral\<^sup>N (Pi\<^sub>M (insert i I) M) f = (\<integral>\<^sup>+ x. (\<integral>\<^sup>+ y. f (x(i := y)) \<partial>(M i)) \<partial>(Pi\<^sub>M I M))" | 
| 41096 | 1062 | proof - | 
| 61169 | 1063 | interpret I: finite_product_sigma_finite M I by standard auto | 
| 1064 |   interpret i: finite_product_sigma_finite M "{i}" by standard auto
 | |
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 1065 |   have IJ: "I \<inter> {i} = {}" and insert: "I \<union> {i} = insert i I"
 | 
| 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 1066 | using f by auto | 
| 41096 | 1067 | show ?thesis | 
| 56996 | 1068 | unfolding product_nn_integral_fold[OF IJ, unfolded insert, OF I(1) i.finite_index f] | 
| 1069 | proof (rule nn_integral_cong, subst product_nn_integral_singleton[symmetric]) | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 1070 | fix x assume x: "x \<in> space (Pi\<^sub>M I M)" | 
| 49780 | 1071 | let ?f = "\<lambda>y. f (x(i := y))" | 
| 1072 | show "?f \<in> borel_measurable (M i)" | |
| 61808 | 1073 | using measurable_comp[OF measurable_component_update f, OF x \<open>i \<notin> I\<close>] | 
| 47694 | 1074 | unfolding comp_def . | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 1075 |     show "(\<integral>\<^sup>+ y. f (merge I {i} (x, y)) \<partial>Pi\<^sub>M {i} M) = (\<integral>\<^sup>+ y. f (x(i := y i)) \<partial>Pi\<^sub>M {i} M)"
 | 
| 49780 | 1076 | using x | 
| 56996 | 1077 | by (auto intro!: nn_integral_cong arg_cong[where f=f] | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 1078 | simp add: space_PiM extensional_def PiE_def) | 
| 41096 | 1079 | qed | 
| 1080 | qed | |
| 1081 | ||
| 59425 | 1082 | lemma (in product_sigma_finite) product_nn_integral_insert_rev: | 
| 1083 | assumes I[simp]: "finite I" "i \<notin> I" | |
| 1084 | and [measurable]: "f \<in> borel_measurable (Pi\<^sub>M (insert i I) M)" | |
| 1085 | shows "integral\<^sup>N (Pi\<^sub>M (insert i I) M) f = (\<integral>\<^sup>+ y. (\<integral>\<^sup>+ x. f (x(i := y)) \<partial>(Pi\<^sub>M I M)) \<partial>(M i))" | |
| 1086 | apply (subst product_nn_integral_insert[OF assms]) | |
| 1087 | apply (rule pair_sigma_finite.Fubini') | |
| 1088 | apply intro_locales [] | |
| 1089 | apply (rule sigma_finite[OF I(1)]) | |
| 1090 | apply measurable | |
| 1091 | done | |
| 1092 | ||
| 64272 | 1093 | lemma (in product_sigma_finite) product_nn_integral_prod: | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1094 | assumes "finite I" "\<And>i. i \<in> I \<Longrightarrow> f i \<in> borel_measurable (M i)" | 
| 56996 | 1095 | shows "(\<integral>\<^sup>+ x. (\<Prod>i\<in>I. f i (x i)) \<partial>Pi\<^sub>M I M) = (\<Prod>i\<in>I. integral\<^sup>N (M i) (f i))" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1096 | using assms proof (induction I) | 
| 41096 | 1097 | case (insert i I) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1098 | note insert.prems[measurable] | 
| 61808 | 1099 | note \<open>finite I\<close>[intro, simp] | 
| 61169 | 1100 | interpret I: finite_product_sigma_finite M I by standard auto | 
| 41096 | 1101 | have *: "\<And>x y. (\<Prod>j\<in>I. f j (if j = i then y else x j)) = (\<Prod>j\<in>I. f j (x j))" | 
| 64272 | 1102 | using insert by (auto intro!: prod.cong) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 1103 | have prod: "\<And>J. J \<subseteq> insert i I \<Longrightarrow> (\<lambda>x. (\<Prod>i\<in>J. f i (x i))) \<in> borel_measurable (Pi\<^sub>M J M)" | 
| 50244 
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
 immler parents: 
50123diff
changeset | 1104 | using sets.sets_into_space insert | 
| 64272 | 1105 | by (intro borel_measurable_prod_ennreal | 
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 1106 | measurable_comp[OF measurable_component_singleton, unfolded comp_def]) | 
| 41096 | 1107 | auto | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 1108 | then show ?case | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1109 | apply (simp add: product_nn_integral_insert[OF insert(1,2)]) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1110 | apply (simp add: insert(2-) * nn_integral_multc) | 
| 56996 | 1111 | apply (subst nn_integral_cmult) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1112 | apply (auto simp add: insert(2-)) | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 1113 | done | 
| 47694 | 1114 | qed (simp add: space_PiM) | 
| 41096 | 1115 | |
| 59425 | 1116 | lemma (in product_sigma_finite) product_nn_integral_pair: | 
| 61424 
c3658c18b7bc
prod_case as canonical name for product type eliminator
 haftmann parents: 
61378diff
changeset | 1117 | assumes [measurable]: "case_prod f \<in> borel_measurable (M x \<Otimes>\<^sub>M M y)" | 
| 59425 | 1118 | assumes xy: "x \<noteq> y" | 
| 1119 |   shows "(\<integral>\<^sup>+\<sigma>. f (\<sigma> x) (\<sigma> y) \<partial>PiM {x, y} M) = (\<integral>\<^sup>+z. f (fst z) (snd z) \<partial>(M x \<Otimes>\<^sub>M M y))"
 | |
| 1120 | proof- | |
| 1121 | interpret psm: pair_sigma_finite "M x" "M y" | |
| 1122 | unfolding pair_sigma_finite_def using sigma_finite_measures by simp_all | |
| 1123 |   have "{x, y} = {y, x}" by auto
 | |
| 1124 |   also have "(\<integral>\<^sup>+\<sigma>. f (\<sigma> x) (\<sigma> y) \<partial>PiM {y, x} M) = (\<integral>\<^sup>+y. \<integral>\<^sup>+\<sigma>. f (\<sigma> x) y \<partial>PiM {x} M \<partial>M y)"
 | |
| 1125 | using xy by (subst product_nn_integral_insert_rev) simp_all | |
| 1126 | also have "... = (\<integral>\<^sup>+y. \<integral>\<^sup>+x. f x y \<partial>M x \<partial>M y)" | |
| 1127 | by (intro nn_integral_cong, subst product_nn_integral_singleton) simp_all | |
| 1128 | also have "... = (\<integral>\<^sup>+z. f (fst z) (snd z) \<partial>(M x \<Otimes>\<^sub>M M y))" | |
| 1129 | by (subst psm.nn_integral_snd[symmetric]) simp_all | |
| 1130 | finally show ?thesis . | |
| 1131 | qed | |
| 1132 | ||
| 50104 | 1133 | lemma (in product_sigma_finite) distr_component: | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 1134 |   "distr (M i) (Pi\<^sub>M {i} M) (\<lambda>x. \<lambda>i\<in>{i}. x) = Pi\<^sub>M {i} M" (is "?D = ?P")
 | 
| 61359 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 1135 | proof (intro PiM_eqI) | 
| 63540 | 1136 |   fix A assume A: "\<And>ia. ia \<in> {i} \<Longrightarrow> A ia \<in> sets (M ia)"
 | 
| 1137 |   then have "(\<lambda>x. \<lambda>i\<in>{i}. x) -` Pi\<^sub>E {i} A \<inter> space (M i) = A i"
 | |
| 65036 
ab7e11730ad8
Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
 paulson <lp15@cam.ac.uk> parents: 
64910diff
changeset | 1138 | by (fastforce dest: sets.sets_into_space) | 
| 63540 | 1139 |   with A show "emeasure (distr (M i) (Pi\<^sub>M {i} M) (\<lambda>x. \<lambda>i\<in>{i}. x)) (Pi\<^sub>E {i} A) = (\<Prod>i\<in>{i}. emeasure (M i) (A i))"
 | 
| 61359 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 1140 | by (subst emeasure_distr) (auto intro!: sets_PiM_I_finite measurable_restrict) | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 1141 | qed simp_all | 
| 41026 
bea75746dc9d
folding on arbitrary Lebesgue integrable functions
 hoelzl parents: 
41023diff
changeset | 1142 | |
| 49776 | 1143 | lemma (in product_sigma_finite) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 1144 |   assumes IJ: "I \<inter> J = {}" "finite I" "finite J" and A: "A \<in> sets (Pi\<^sub>M (I \<union> J) M)"
 | 
| 49776 | 1145 | shows emeasure_fold_integral: | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 1146 | "emeasure (Pi\<^sub>M (I \<union> J) M) A = (\<integral>\<^sup>+x. emeasure (Pi\<^sub>M J M) ((\<lambda>y. merge I J (x, y)) -` A \<inter> space (Pi\<^sub>M J M)) \<partial>Pi\<^sub>M I M)" (is ?I) | 
| 49776 | 1147 | and emeasure_fold_measurable: | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 1148 | "(\<lambda>x. emeasure (Pi\<^sub>M J M) ((\<lambda>y. merge I J (x, y)) -` A \<inter> space (Pi\<^sub>M J M))) \<in> borel_measurable (Pi\<^sub>M I M)" (is ?B) | 
| 49776 | 1149 | proof - | 
| 61169 | 1150 | interpret I: finite_product_sigma_finite M I by standard fact | 
| 1151 | interpret J: finite_product_sigma_finite M J by standard fact | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 1152 | interpret IJ: pair_sigma_finite "Pi\<^sub>M I M" "Pi\<^sub>M J M" .. | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 1153 | have merge: "merge I J -` A \<inter> space (Pi\<^sub>M I M \<Otimes>\<^sub>M Pi\<^sub>M J M) \<in> sets (Pi\<^sub>M I M \<Otimes>\<^sub>M Pi\<^sub>M J M)" | 
| 49776 | 1154 | by (intro measurable_sets[OF _ A] measurable_merge assms) | 
| 1155 | ||
| 1156 | show ?I | |
| 1157 | apply (subst distr_merge[symmetric, OF IJ]) | |
| 1158 | apply (subst emeasure_distr[OF measurable_merge A]) | |
| 1159 | apply (subst J.emeasure_pair_measure_alt[OF merge]) | |
| 56996 | 1160 | apply (auto intro!: nn_integral_cong arg_cong2[where f=emeasure] simp: space_pair_measure) | 
| 49776 | 1161 | done | 
| 1162 | ||
| 1163 | show ?B | |
| 1164 | using IJ.measurable_emeasure_Pair1[OF merge] | |
| 56154 
f0a927235162
more complete set of lemmas wrt. image and composition
 haftmann parents: 
55415diff
changeset | 1165 | by (simp add: vimage_comp comp_def space_pair_measure cong: measurable_cong) | 
| 49776 | 1166 | qed | 
| 1167 | ||
| 1168 | lemma sets_Collect_single: | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50387diff
changeset | 1169 |   "i \<in> I \<Longrightarrow> A \<in> sets (M i) \<Longrightarrow> { x \<in> space (Pi\<^sub>M I M). x i \<in> A } \<in> sets (Pi\<^sub>M I M)"
 | 
| 50003 | 1170 | by simp | 
| 49776 | 1171 | |
| 50104 | 1172 | lemma pair_measure_eq_distr_PiM: | 
| 1173 | fixes M1 :: "'a measure" and M2 :: "'a measure" | |
| 1174 | assumes "sigma_finite_measure M1" "sigma_finite_measure M2" | |
| 55414 
eab03e9cee8a
renamed '{prod,sum,bool,unit}_case' to 'case_...'
 blanchet parents: 
53374diff
changeset | 1175 | shows "(M1 \<Otimes>\<^sub>M M2) = distr (Pi\<^sub>M UNIV (case_bool M1 M2)) (M1 \<Otimes>\<^sub>M M2) (\<lambda>x. (x True, x False))" | 
| 50104 | 1176 | (is "?P = ?D") | 
| 1177 | proof (rule pair_measure_eqI[OF assms]) | |
| 55414 
eab03e9cee8a
renamed '{prod,sum,bool,unit}_case' to 'case_...'
 blanchet parents: 
53374diff
changeset | 1178 | interpret B: product_sigma_finite "case_bool M1 M2" | 
| 50104 | 1179 | unfolding product_sigma_finite_def using assms by (auto split: bool.split) | 
| 55414 
eab03e9cee8a
renamed '{prod,sum,bool,unit}_case' to 'case_...'
 blanchet parents: 
53374diff
changeset | 1180 | let ?B = "Pi\<^sub>M UNIV (case_bool M1 M2)" | 
| 50104 | 1181 | |
| 1182 | have [simp]: "fst \<circ> (\<lambda>x. (x True, x False)) = (\<lambda>x. x True)" "snd \<circ> (\<lambda>x. (x True, x False)) = (\<lambda>x. x False)" | |
| 1183 | by auto | |
| 1184 | fix A B assume A: "A \<in> sets M1" and B: "B \<in> sets M2" | |
| 55414 
eab03e9cee8a
renamed '{prod,sum,bool,unit}_case' to 'case_...'
 blanchet parents: 
53374diff
changeset | 1185 | have "emeasure M1 A * emeasure M2 B = (\<Prod> i\<in>UNIV. emeasure (case_bool M1 M2 i) (case_bool A B i))" | 
| 50104 | 1186 | by (simp add: UNIV_bool ac_simps) | 
| 55414 
eab03e9cee8a
renamed '{prod,sum,bool,unit}_case' to 'case_...'
 blanchet parents: 
53374diff
changeset | 1187 | also have "\<dots> = emeasure ?B (Pi\<^sub>E UNIV (case_bool A B))" | 
| 50104 | 1188 | using A B by (subst B.emeasure_PiM) (auto split: bool.split) | 
| 55414 
eab03e9cee8a
renamed '{prod,sum,bool,unit}_case' to 'case_...'
 blanchet parents: 
53374diff
changeset | 1189 | also have "Pi\<^sub>E UNIV (case_bool A B) = (\<lambda>x. (x True, x False)) -` (A \<times> B) \<inter> space ?B" | 
| 50244 
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
 immler parents: 
50123diff
changeset | 1190 | using A[THEN sets.sets_into_space] B[THEN sets.sets_into_space] | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 1191 | by (auto simp: PiE_iff all_bool_eq space_PiM split: bool.split) | 
| 50104 | 1192 | finally show "emeasure M1 A * emeasure M2 B = emeasure ?D (A \<times> B)" | 
| 1193 | using A B | |
| 55414 
eab03e9cee8a
renamed '{prod,sum,bool,unit}_case' to 'case_...'
 blanchet parents: 
53374diff
changeset | 1194 | measurable_component_singleton[of True UNIV "case_bool M1 M2"] | 
| 
eab03e9cee8a
renamed '{prod,sum,bool,unit}_case' to 'case_...'
 blanchet parents: 
53374diff
changeset | 1195 | measurable_component_singleton[of False UNIV "case_bool M1 M2"] | 
| 50104 | 1196 | by (subst emeasure_distr) (auto simp: measurable_pair_iff) | 
| 1197 | qed simp | |
| 1198 | ||
| 64008 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63627diff
changeset | 1199 | lemma infprod_in_sets[intro]: | 
| 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63627diff
changeset | 1200 | fixes E :: "nat \<Rightarrow> 'a set" assumes E: "\<And>i. E i \<in> sets (M i)" | 
| 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63627diff
changeset | 1201 | shows "Pi UNIV E \<in> sets (\<Pi>\<^sub>M i\<in>UNIV::nat set. M i)" | 
| 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63627diff
changeset | 1202 | proof - | 
| 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63627diff
changeset | 1203 |   have "Pi UNIV E = (\<Inter>i. prod_emb UNIV M {..i} (\<Pi>\<^sub>E j\<in>{..i}. E j))"
 | 
| 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63627diff
changeset | 1204 | using E E[THEN sets.sets_into_space] | 
| 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63627diff
changeset | 1205 | by (auto simp: prod_emb_def Pi_iff extensional_def) | 
| 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63627diff
changeset | 1206 | with E show ?thesis by auto | 
| 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63627diff
changeset | 1207 | qed | 
| 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63627diff
changeset | 1208 | |
| 47694 | 1209 | end |