| author | haftmann | 
| Mon, 03 Feb 2014 08:23:21 +0100 | |
| changeset 55293 | 42cf5802d36a | 
| parent 54868 | bab6cade3cc5 | 
| child 56020 | f92479477c52 | 
| permissions | -rw-r--r-- | 
| 28685 | 1 | (* Title: HOL/Orderings.thy | 
| 15524 | 2 | Author: Tobias Nipkow, Markus Wenzel, and Larry Paulson | 
| 3 | *) | |
| 4 | ||
| 25614 | 5 | header {* Abstract orderings *}
 | 
| 15524 | 6 | |
| 7 | theory Orderings | |
| 35301 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35115diff
changeset | 8 | imports HOL | 
| 46950 
d0181abdbdac
declare command keywords via theory header, including strict checking outside Pure;
 wenzelm parents: 
46884diff
changeset | 9 | keywords "print_orders" :: diag | 
| 15524 | 10 | begin | 
| 11 | ||
| 48891 | 12 | ML_file "~~/src/Provers/order.ML" | 
| 13 | ML_file "~~/src/Provers/quasi.ML" (* FIXME unused? *) | |
| 14 | ||
| 51487 | 15 | subsection {* Abstract ordering *}
 | 
| 16 | ||
| 17 | locale ordering = | |
| 18 | fixes less_eq :: "'a \<Rightarrow> 'a \<Rightarrow> bool" (infix "\<preceq>" 50) | |
| 19 | and less :: "'a \<Rightarrow> 'a \<Rightarrow> bool" (infix "\<prec>" 50) | |
| 20 | assumes strict_iff_order: "a \<prec> b \<longleftrightarrow> a \<preceq> b \<and> a \<noteq> b" | |
| 21 |   assumes refl: "a \<preceq> a" -- {* not @{text iff}: makes problems due to multiple (dual) interpretations *}
 | |
| 22 | and antisym: "a \<preceq> b \<Longrightarrow> b \<preceq> a \<Longrightarrow> a = b" | |
| 23 | and trans: "a \<preceq> b \<Longrightarrow> b \<preceq> c \<Longrightarrow> a \<preceq> c" | |
| 24 | begin | |
| 25 | ||
| 26 | lemma strict_implies_order: | |
| 27 | "a \<prec> b \<Longrightarrow> a \<preceq> b" | |
| 28 | by (simp add: strict_iff_order) | |
| 29 | ||
| 30 | lemma strict_implies_not_eq: | |
| 31 | "a \<prec> b \<Longrightarrow> a \<noteq> b" | |
| 32 | by (simp add: strict_iff_order) | |
| 33 | ||
| 34 | lemma not_eq_order_implies_strict: | |
| 35 | "a \<noteq> b \<Longrightarrow> a \<preceq> b \<Longrightarrow> a \<prec> b" | |
| 36 | by (simp add: strict_iff_order) | |
| 37 | ||
| 38 | lemma order_iff_strict: | |
| 39 | "a \<preceq> b \<longleftrightarrow> a \<prec> b \<or> a = b" | |
| 40 | by (auto simp add: strict_iff_order refl) | |
| 41 | ||
| 42 | lemma irrefl: -- {* not @{text iff}: makes problems due to multiple (dual) interpretations *}
 | |
| 43 | "\<not> a \<prec> a" | |
| 44 | by (simp add: strict_iff_order) | |
| 45 | ||
| 46 | lemma asym: | |
| 47 | "a \<prec> b \<Longrightarrow> b \<prec> a \<Longrightarrow> False" | |
| 48 | by (auto simp add: strict_iff_order intro: antisym) | |
| 49 | ||
| 50 | lemma strict_trans1: | |
| 51 | "a \<preceq> b \<Longrightarrow> b \<prec> c \<Longrightarrow> a \<prec> c" | |
| 52 | by (auto simp add: strict_iff_order intro: trans antisym) | |
| 53 | ||
| 54 | lemma strict_trans2: | |
| 55 | "a \<prec> b \<Longrightarrow> b \<preceq> c \<Longrightarrow> a \<prec> c" | |
| 56 | by (auto simp add: strict_iff_order intro: trans antisym) | |
| 57 | ||
| 58 | lemma strict_trans: | |
| 59 | "a \<prec> b \<Longrightarrow> b \<prec> c \<Longrightarrow> a \<prec> c" | |
| 60 | by (auto intro: strict_trans1 strict_implies_order) | |
| 61 | ||
| 62 | end | |
| 63 | ||
| 64 | locale ordering_top = ordering + | |
| 65 | fixes top :: "'a" | |
| 66 | assumes extremum [simp]: "a \<preceq> top" | |
| 67 | begin | |
| 68 | ||
| 69 | lemma extremum_uniqueI: | |
| 70 | "top \<preceq> a \<Longrightarrow> a = top" | |
| 71 | by (rule antisym) auto | |
| 72 | ||
| 73 | lemma extremum_unique: | |
| 74 | "top \<preceq> a \<longleftrightarrow> a = top" | |
| 75 | by (auto intro: antisym) | |
| 76 | ||
| 77 | lemma extremum_strict [simp]: | |
| 78 | "\<not> (top \<prec> a)" | |
| 79 | using extremum [of a] by (auto simp add: order_iff_strict intro: asym irrefl) | |
| 80 | ||
| 81 | lemma not_eq_extremum: | |
| 82 | "a \<noteq> top \<longleftrightarrow> a \<prec> top" | |
| 83 | by (auto simp add: order_iff_strict intro: not_eq_order_implies_strict extremum) | |
| 84 | ||
| 85 | end | |
| 86 | ||
| 87 | ||
| 35092 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 88 | subsection {* Syntactic orders *}
 | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 89 | |
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 90 | class ord = | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 91 | fixes less_eq :: "'a \<Rightarrow> 'a \<Rightarrow> bool" | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 92 | and less :: "'a \<Rightarrow> 'a \<Rightarrow> bool" | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 93 | begin | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 94 | |
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 95 | notation | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 96 |   less_eq  ("op <=") and
 | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 97 |   less_eq  ("(_/ <= _)" [51, 51] 50) and
 | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 98 |   less  ("op <") and
 | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 99 |   less  ("(_/ < _)"  [51, 51] 50)
 | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 100 | |
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 101 | notation (xsymbols) | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 102 |   less_eq  ("op \<le>") and
 | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 103 |   less_eq  ("(_/ \<le> _)"  [51, 51] 50)
 | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 104 | |
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 105 | notation (HTML output) | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 106 |   less_eq  ("op \<le>") and
 | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 107 |   less_eq  ("(_/ \<le> _)"  [51, 51] 50)
 | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 108 | |
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 109 | abbreviation (input) | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 110 | greater_eq (infix ">=" 50) where | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 111 | "x >= y \<equiv> y <= x" | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 112 | |
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 113 | notation (input) | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 114 | greater_eq (infix "\<ge>" 50) | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 115 | |
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 116 | abbreviation (input) | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 117 | greater (infix ">" 50) where | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 118 | "x > y \<equiv> y < x" | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 119 | |
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 120 | end | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 121 | |
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 122 | |
| 27682 | 123 | subsection {* Quasi orders *}
 | 
| 15524 | 124 | |
| 27682 | 125 | class preorder = ord + | 
| 126 | assumes less_le_not_le: "x < y \<longleftrightarrow> x \<le> y \<and> \<not> (y \<le> x)" | |
| 25062 | 127 | and order_refl [iff]: "x \<le> x" | 
| 128 | and order_trans: "x \<le> y \<Longrightarrow> y \<le> z \<Longrightarrow> x \<le> z" | |
| 21248 | 129 | begin | 
| 130 | ||
| 15524 | 131 | text {* Reflexivity. *}
 | 
| 132 | ||
| 25062 | 133 | lemma eq_refl: "x = y \<Longrightarrow> x \<le> y" | 
| 15524 | 134 |     -- {* This form is useful with the classical reasoner. *}
 | 
| 23212 | 135 | by (erule ssubst) (rule order_refl) | 
| 15524 | 136 | |
| 25062 | 137 | lemma less_irrefl [iff]: "\<not> x < x" | 
| 27682 | 138 | by (simp add: less_le_not_le) | 
| 139 | ||
| 140 | lemma less_imp_le: "x < y \<Longrightarrow> x \<le> y" | |
| 141 | unfolding less_le_not_le by blast | |
| 142 | ||
| 143 | ||
| 144 | text {* Asymmetry. *}
 | |
| 145 | ||
| 146 | lemma less_not_sym: "x < y \<Longrightarrow> \<not> (y < x)" | |
| 147 | by (simp add: less_le_not_le) | |
| 148 | ||
| 149 | lemma less_asym: "x < y \<Longrightarrow> (\<not> P \<Longrightarrow> y < x) \<Longrightarrow> P" | |
| 150 | by (drule less_not_sym, erule contrapos_np) simp | |
| 151 | ||
| 152 | ||
| 153 | text {* Transitivity. *}
 | |
| 154 | ||
| 155 | lemma less_trans: "x < y \<Longrightarrow> y < z \<Longrightarrow> x < z" | |
| 156 | by (auto simp add: less_le_not_le intro: order_trans) | |
| 157 | ||
| 158 | lemma le_less_trans: "x \<le> y \<Longrightarrow> y < z \<Longrightarrow> x < z" | |
| 159 | by (auto simp add: less_le_not_le intro: order_trans) | |
| 160 | ||
| 161 | lemma less_le_trans: "x < y \<Longrightarrow> y \<le> z \<Longrightarrow> x < z" | |
| 162 | by (auto simp add: less_le_not_le intro: order_trans) | |
| 163 | ||
| 164 | ||
| 165 | text {* Useful for simplification, but too risky to include by default. *}
 | |
| 166 | ||
| 167 | lemma less_imp_not_less: "x < y \<Longrightarrow> (\<not> y < x) \<longleftrightarrow> True" | |
| 168 | by (blast elim: less_asym) | |
| 169 | ||
| 170 | lemma less_imp_triv: "x < y \<Longrightarrow> (y < x \<longrightarrow> P) \<longleftrightarrow> True" | |
| 171 | by (blast elim: less_asym) | |
| 172 | ||
| 173 | ||
| 174 | text {* Transitivity rules for calculational reasoning *}
 | |
| 175 | ||
| 176 | lemma less_asym': "a < b \<Longrightarrow> b < a \<Longrightarrow> P" | |
| 177 | by (rule less_asym) | |
| 178 | ||
| 179 | ||
| 180 | text {* Dual order *}
 | |
| 181 | ||
| 182 | lemma dual_preorder: | |
| 36635 
080b755377c0
locale predicates of classes carry a mandatory "class" prefix
 haftmann parents: 
35828diff
changeset | 183 | "class.preorder (op \<ge>) (op >)" | 
| 28823 | 184 | proof qed (auto simp add: less_le_not_le intro: order_trans) | 
| 27682 | 185 | |
| 186 | end | |
| 187 | ||
| 188 | ||
| 189 | subsection {* Partial orders *}
 | |
| 190 | ||
| 191 | class order = preorder + | |
| 192 | assumes antisym: "x \<le> y \<Longrightarrow> y \<le> x \<Longrightarrow> x = y" | |
| 193 | begin | |
| 194 | ||
| 51487 | 195 | lemma less_le: "x < y \<longleftrightarrow> x \<le> y \<and> x \<noteq> y" | 
| 196 | by (auto simp add: less_le_not_le intro: antisym) | |
| 197 | ||
| 54868 | 198 | sublocale order!: ordering less_eq less + dual_order!: ordering greater_eq greater | 
| 51487 | 199 | by default (auto intro: antisym order_trans simp add: less_le) | 
| 200 | ||
| 201 | ||
| 202 | text {* Reflexivity. *}
 | |
| 15524 | 203 | |
| 25062 | 204 | lemma le_less: "x \<le> y \<longleftrightarrow> x < y \<or> x = y" | 
| 15524 | 205 |     -- {* NOT suitable for iff, since it can cause PROOF FAILED. *}
 | 
| 51546 
2e26df807dc7
more uniform style for interpretation and sublocale declarations
 haftmann parents: 
51487diff
changeset | 206 | by (fact order.order_iff_strict) | 
| 15524 | 207 | |
| 25062 | 208 | lemma le_imp_less_or_eq: "x \<le> y \<Longrightarrow> x < y \<or> x = y" | 
| 23212 | 209 | unfolding less_le by blast | 
| 15524 | 210 | |
| 21329 | 211 | |
| 212 | text {* Useful for simplification, but too risky to include by default. *}
 | |
| 213 | ||
| 25062 | 214 | lemma less_imp_not_eq: "x < y \<Longrightarrow> (x = y) \<longleftrightarrow> False" | 
| 23212 | 215 | by auto | 
| 21329 | 216 | |
| 25062 | 217 | lemma less_imp_not_eq2: "x < y \<Longrightarrow> (y = x) \<longleftrightarrow> False" | 
| 23212 | 218 | by auto | 
| 21329 | 219 | |
| 220 | ||
| 221 | text {* Transitivity rules for calculational reasoning *}
 | |
| 222 | ||
| 25062 | 223 | lemma neq_le_trans: "a \<noteq> b \<Longrightarrow> a \<le> b \<Longrightarrow> a < b" | 
| 51546 
2e26df807dc7
more uniform style for interpretation and sublocale declarations
 haftmann parents: 
51487diff
changeset | 224 | by (fact order.not_eq_order_implies_strict) | 
| 21329 | 225 | |
| 25062 | 226 | lemma le_neq_trans: "a \<le> b \<Longrightarrow> a \<noteq> b \<Longrightarrow> a < b" | 
| 51546 
2e26df807dc7
more uniform style for interpretation and sublocale declarations
 haftmann parents: 
51487diff
changeset | 227 | by (rule order.not_eq_order_implies_strict) | 
| 21329 | 228 | |
| 15524 | 229 | |
| 230 | text {* Asymmetry. *}
 | |
| 231 | ||
| 25062 | 232 | lemma eq_iff: "x = y \<longleftrightarrow> x \<le> y \<and> y \<le> x" | 
| 23212 | 233 | by (blast intro: antisym) | 
| 15524 | 234 | |
| 25062 | 235 | lemma antisym_conv: "y \<le> x \<Longrightarrow> x \<le> y \<longleftrightarrow> x = y" | 
| 23212 | 236 | by (blast intro: antisym) | 
| 15524 | 237 | |
| 25062 | 238 | lemma less_imp_neq: "x < y \<Longrightarrow> x \<noteq> y" | 
| 51546 
2e26df807dc7
more uniform style for interpretation and sublocale declarations
 haftmann parents: 
51487diff
changeset | 239 | by (fact order.strict_implies_not_eq) | 
| 21248 | 240 | |
| 21083 | 241 | |
| 27107 | 242 | text {* Least value operator *}
 | 
| 243 | ||
| 27299 | 244 | definition (in ord) | 
| 27107 | 245 |   Least :: "('a \<Rightarrow> bool) \<Rightarrow> 'a" (binder "LEAST " 10) where
 | 
| 246 | "Least P = (THE x. P x \<and> (\<forall>y. P y \<longrightarrow> x \<le> y))" | |
| 247 | ||
| 248 | lemma Least_equality: | |
| 249 | assumes "P x" | |
| 250 | and "\<And>y. P y \<Longrightarrow> x \<le> y" | |
| 251 | shows "Least P = x" | |
| 252 | unfolding Least_def by (rule the_equality) | |
| 253 | (blast intro: assms antisym)+ | |
| 254 | ||
| 255 | lemma LeastI2_order: | |
| 256 | assumes "P x" | |
| 257 | and "\<And>y. P y \<Longrightarrow> x \<le> y" | |
| 258 | and "\<And>x. P x \<Longrightarrow> \<forall>y. P y \<longrightarrow> x \<le> y \<Longrightarrow> Q x" | |
| 259 | shows "Q (Least P)" | |
| 260 | unfolding Least_def by (rule theI2) | |
| 261 | (blast intro: assms antisym)+ | |
| 262 | ||
| 263 | ||
| 26014 | 264 | text {* Dual order *}
 | 
| 22916 | 265 | |
| 26014 | 266 | lemma dual_order: | 
| 36635 
080b755377c0
locale predicates of classes carry a mandatory "class" prefix
 haftmann parents: 
35828diff
changeset | 267 | "class.order (op \<ge>) (op >)" | 
| 27682 | 268 | by (intro_locales, rule dual_preorder) (unfold_locales, rule antisym) | 
| 22916 | 269 | |
| 21248 | 270 | end | 
| 15524 | 271 | |
| 21329 | 272 | |
| 273 | subsection {* Linear (total) orders *}
 | |
| 274 | ||
| 22316 | 275 | class linorder = order + | 
| 25207 | 276 | assumes linear: "x \<le> y \<or> y \<le> x" | 
| 21248 | 277 | begin | 
| 278 | ||
| 25062 | 279 | lemma less_linear: "x < y \<or> x = y \<or> y < x" | 
| 23212 | 280 | unfolding less_le using less_le linear by blast | 
| 21248 | 281 | |
| 25062 | 282 | lemma le_less_linear: "x \<le> y \<or> y < x" | 
| 23212 | 283 | by (simp add: le_less less_linear) | 
| 21248 | 284 | |
| 285 | lemma le_cases [case_names le ge]: | |
| 25062 | 286 | "(x \<le> y \<Longrightarrow> P) \<Longrightarrow> (y \<le> x \<Longrightarrow> P) \<Longrightarrow> P" | 
| 23212 | 287 | using linear by blast | 
| 21248 | 288 | |
| 22384 
33a46e6c7f04
prefix of class interpretation not mandatory any longer
 haftmann parents: 
22377diff
changeset | 289 | lemma linorder_cases [case_names less equal greater]: | 
| 25062 | 290 | "(x < y \<Longrightarrow> P) \<Longrightarrow> (x = y \<Longrightarrow> P) \<Longrightarrow> (y < x \<Longrightarrow> P) \<Longrightarrow> P" | 
| 23212 | 291 | using less_linear by blast | 
| 21248 | 292 | |
| 25062 | 293 | lemma not_less: "\<not> x < y \<longleftrightarrow> y \<le> x" | 
| 23212 | 294 | apply (simp add: less_le) | 
| 295 | using linear apply (blast intro: antisym) | |
| 296 | done | |
| 297 | ||
| 298 | lemma not_less_iff_gr_or_eq: | |
| 25062 | 299 | "\<not>(x < y) \<longleftrightarrow> (x > y | x = y)" | 
| 23212 | 300 | apply(simp add:not_less le_less) | 
| 301 | apply blast | |
| 302 | done | |
| 15524 | 303 | |
| 25062 | 304 | lemma not_le: "\<not> x \<le> y \<longleftrightarrow> y < x" | 
| 23212 | 305 | apply (simp add: less_le) | 
| 306 | using linear apply (blast intro: antisym) | |
| 307 | done | |
| 15524 | 308 | |
| 25062 | 309 | lemma neq_iff: "x \<noteq> y \<longleftrightarrow> x < y \<or> y < x" | 
| 23212 | 310 | by (cut_tac x = x and y = y in less_linear, auto) | 
| 15524 | 311 | |
| 25062 | 312 | lemma neqE: "x \<noteq> y \<Longrightarrow> (x < y \<Longrightarrow> R) \<Longrightarrow> (y < x \<Longrightarrow> R) \<Longrightarrow> R" | 
| 23212 | 313 | by (simp add: neq_iff) blast | 
| 15524 | 314 | |
| 25062 | 315 | lemma antisym_conv1: "\<not> x < y \<Longrightarrow> x \<le> y \<longleftrightarrow> x = y" | 
| 23212 | 316 | by (blast intro: antisym dest: not_less [THEN iffD1]) | 
| 15524 | 317 | |
| 25062 | 318 | lemma antisym_conv2: "x \<le> y \<Longrightarrow> \<not> x < y \<longleftrightarrow> x = y" | 
| 23212 | 319 | by (blast intro: antisym dest: not_less [THEN iffD1]) | 
| 15524 | 320 | |
| 25062 | 321 | lemma antisym_conv3: "\<not> y < x \<Longrightarrow> \<not> x < y \<longleftrightarrow> x = y" | 
| 23212 | 322 | by (blast intro: antisym dest: not_less [THEN iffD1]) | 
| 15524 | 323 | |
| 25062 | 324 | lemma leI: "\<not> x < y \<Longrightarrow> y \<le> x" | 
| 23212 | 325 | unfolding not_less . | 
| 16796 | 326 | |
| 25062 | 327 | lemma leD: "y \<le> x \<Longrightarrow> \<not> x < y" | 
| 23212 | 328 | unfolding not_less . | 
| 16796 | 329 | |
| 330 | (*FIXME inappropriate name (or delete altogether)*) | |
| 25062 | 331 | lemma not_leE: "\<not> y \<le> x \<Longrightarrow> x < y" | 
| 23212 | 332 | unfolding not_le . | 
| 21248 | 333 | |
| 22916 | 334 | |
| 26014 | 335 | text {* Dual order *}
 | 
| 22916 | 336 | |
| 26014 | 337 | lemma dual_linorder: | 
| 36635 
080b755377c0
locale predicates of classes carry a mandatory "class" prefix
 haftmann parents: 
35828diff
changeset | 338 | "class.linorder (op \<ge>) (op >)" | 
| 
080b755377c0
locale predicates of classes carry a mandatory "class" prefix
 haftmann parents: 
35828diff
changeset | 339 | by (rule class.linorder.intro, rule dual_order) (unfold_locales, rule linear) | 
| 22916 | 340 | |
| 21248 | 341 | end | 
| 342 | ||
| 23948 | 343 | |
| 21083 | 344 | subsection {* Reasoning tools setup *}
 | 
| 345 | ||
| 21091 | 346 | ML {*
 | 
| 347 | ||
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 348 | signature ORDERS = | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 349 | sig | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 350 | val print_structures: Proof.context -> unit | 
| 47432 | 351 | val attrib_setup: theory -> theory | 
| 32215 | 352 | val order_tac: Proof.context -> thm list -> int -> tactic | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 353 | end; | 
| 21091 | 354 | |
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 355 | structure Orders: ORDERS = | 
| 21248 | 356 | struct | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 357 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 358 | (** Theory and context data **) | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 359 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 360 | fun struct_eq ((s1: string, ts1), (s2, ts2)) = | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 361 | (s1 = s2) andalso eq_list (op aconv) (ts1, ts2); | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 362 | |
| 33519 | 363 | structure Data = Generic_Data | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 364 | ( | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 365 | type T = ((string * term list) * Order_Tac.less_arith) list; | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 366 | (* Order structures: | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 367 | identifier of the structure, list of operations and record of theorems | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 368 | needed to set up the transitivity reasoner, | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 369 | identifier and operations identify the structure uniquely. *) | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 370 | val empty = []; | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 371 | val extend = I; | 
| 33519 | 372 | fun merge data = AList.join struct_eq (K fst) data; | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 373 | ); | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 374 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 375 | fun print_structures ctxt = | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 376 | let | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 377 | val structs = Data.get (Context.Proof ctxt); | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 378 | fun pretty_term t = Pretty.block | 
| 24920 | 379 | [Pretty.quote (Syntax.pretty_term ctxt t), Pretty.brk 1, | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 380 | Pretty.str "::", Pretty.brk 1, | 
| 24920 | 381 | Pretty.quote (Syntax.pretty_typ ctxt (type_of t))]; | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 382 | fun pretty_struct ((s, ts), _) = Pretty.block | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 383 | [Pretty.str s, Pretty.str ":", Pretty.brk 1, | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 384 |        Pretty.enclose "(" ")" (Pretty.breaks (map pretty_term ts))];
 | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 385 | in | 
| 51579 | 386 | Pretty.writeln (Pretty.big_list "order structures:" (map pretty_struct structs)) | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 387 | end; | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 388 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 389 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 390 | (** Method **) | 
| 21091 | 391 | |
| 32215 | 392 | fun struct_tac ((s, [eq, le, less]), thms) ctxt prems = | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 393 | let | 
| 30107 
f3b3b0e3d184
Fixed nonexhaustive match problem in decomp, to make it fail more gracefully
 berghofe parents: 
29823diff
changeset | 394 |     fun decomp thy (@{const Trueprop} $ t) =
 | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 395 | let | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 396 | fun excluded t = | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 397 | (* exclude numeric types: linear arithmetic subsumes transitivity *) | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 398 | let val T = type_of t | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 399 | in | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32899diff
changeset | 400 | T = HOLogic.natT orelse T = HOLogic.intT orelse T = HOLogic.realT | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 401 | end; | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32899diff
changeset | 402 | fun rel (bin_op $ t1 $ t2) = | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 403 | if excluded t1 then NONE | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 404 | else if Pattern.matches thy (eq, bin_op) then SOME (t1, "=", t2) | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 405 | else if Pattern.matches thy (le, bin_op) then SOME (t1, "<=", t2) | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 406 | else if Pattern.matches thy (less, bin_op) then SOME (t1, "<", t2) | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 407 | else NONE | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32899diff
changeset | 408 | | rel _ = NONE; | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32899diff
changeset | 409 |         fun dec (Const (@{const_name Not}, _) $ t) = (case rel t
 | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32899diff
changeset | 410 | of NONE => NONE | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32899diff
changeset | 411 | | SOME (t1, rel, t2) => SOME (t1, "~" ^ rel, t2)) | 
| 24741 
a53f5db5acbb
Fixed setup of transitivity reasoner (function decomp).
 ballarin parents: 
24704diff
changeset | 412 | | dec x = rel x; | 
| 30107 
f3b3b0e3d184
Fixed nonexhaustive match problem in decomp, to make it fail more gracefully
 berghofe parents: 
29823diff
changeset | 413 | in dec t end | 
| 
f3b3b0e3d184
Fixed nonexhaustive match problem in decomp, to make it fail more gracefully
 berghofe parents: 
29823diff
changeset | 414 | | decomp thy _ = NONE; | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 415 | in | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 416 | case s of | 
| 32215 | 417 | "order" => Order_Tac.partial_tac decomp thms ctxt prems | 
| 418 | | "linorder" => Order_Tac.linear_tac decomp thms ctxt prems | |
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 419 |     | _ => error ("Unknown kind of order `" ^ s ^ "' encountered in transitivity reasoner.")
 | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 420 | end | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 421 | |
| 32215 | 422 | fun order_tac ctxt prems = | 
| 423 | FIRST' (map (fn s => CHANGED o struct_tac s ctxt prems) (Data.get (Context.Proof ctxt))); | |
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 424 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 425 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 426 | (** Attribute **) | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 427 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 428 | fun add_struct_thm s tag = | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 429 | Thm.declaration_attribute | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 430 | (fn thm => Data.map (AList.map_default struct_eq (s, Order_Tac.empty TrueI) (Order_Tac.update tag thm))); | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 431 | fun del_struct s = | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 432 | Thm.declaration_attribute | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 433 | (fn _ => Data.map (AList.delete struct_eq s)); | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 434 | |
| 30722 
623d4831c8cf
simplified attribute and method setup: eliminating bottom-up styles makes it easier to keep things in one place, and also SML/NJ happy;
 wenzelm parents: 
30528diff
changeset | 435 | val attrib_setup = | 
| 
623d4831c8cf
simplified attribute and method setup: eliminating bottom-up styles makes it easier to keep things in one place, and also SML/NJ happy;
 wenzelm parents: 
30528diff
changeset | 436 |   Attrib.setup @{binding order}
 | 
| 
623d4831c8cf
simplified attribute and method setup: eliminating bottom-up styles makes it easier to keep things in one place, and also SML/NJ happy;
 wenzelm parents: 
30528diff
changeset | 437 | (Scan.lift ((Args.add -- Args.name >> (fn (_, s) => SOME s) || Args.del >> K NONE) --| | 
| 
623d4831c8cf
simplified attribute and method setup: eliminating bottom-up styles makes it easier to keep things in one place, and also SML/NJ happy;
 wenzelm parents: 
30528diff
changeset | 438 | Args.colon (* FIXME || Scan.succeed true *) ) -- Scan.lift Args.name -- | 
| 
623d4831c8cf
simplified attribute and method setup: eliminating bottom-up styles makes it easier to keep things in one place, and also SML/NJ happy;
 wenzelm parents: 
30528diff
changeset | 439 | Scan.repeat Args.term | 
| 
623d4831c8cf
simplified attribute and method setup: eliminating bottom-up styles makes it easier to keep things in one place, and also SML/NJ happy;
 wenzelm parents: 
30528diff
changeset | 440 | >> (fn ((SOME tag, n), ts) => add_struct_thm (n, ts) tag | 
| 
623d4831c8cf
simplified attribute and method setup: eliminating bottom-up styles makes it easier to keep things in one place, and also SML/NJ happy;
 wenzelm parents: 
30528diff
changeset | 441 | | ((NONE, n), ts) => del_struct (n, ts))) | 
| 
623d4831c8cf
simplified attribute and method setup: eliminating bottom-up styles makes it easier to keep things in one place, and also SML/NJ happy;
 wenzelm parents: 
30528diff
changeset | 442 | "theorems controlling transitivity reasoner"; | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 443 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 444 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 445 | (** Diagnostic command **) | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 446 | |
| 24867 | 447 | val _ = | 
| 46961 
5c6955f487e5
outer syntax command definitions based on formal command_spec derived from theory header declarations;
 wenzelm parents: 
46950diff
changeset | 448 |   Outer_Syntax.improper_command @{command_spec "print_orders"}
 | 
| 
5c6955f487e5
outer syntax command definitions based on formal command_spec derived from theory header declarations;
 wenzelm parents: 
46950diff
changeset | 449 | "print order structures available to transitivity reasoner" | 
| 51658 
21c10672633b
discontinued Toplevel.no_timing complication -- also recovers timing of diagnostic commands, e.g. 'find_theorems';
 wenzelm parents: 
51579diff
changeset | 450 | (Scan.succeed (Toplevel.unknown_context o | 
| 
21c10672633b
discontinued Toplevel.no_timing complication -- also recovers timing of diagnostic commands, e.g. 'find_theorems';
 wenzelm parents: 
51579diff
changeset | 451 | Toplevel.keep (print_structures o Toplevel.context_of))); | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 452 | |
| 21091 | 453 | end; | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 454 | |
| 21091 | 455 | *} | 
| 456 | ||
| 47432 | 457 | setup Orders.attrib_setup | 
| 458 | ||
| 459 | method_setup order = {*
 | |
| 460 | Scan.succeed (fn ctxt => SIMPLE_METHOD' (Orders.order_tac ctxt [])) | |
| 461 | *} "transitivity reasoner" | |
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 462 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 463 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 464 | text {* Declarations to set up transitivity reasoner of partial and linear orders. *}
 | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 465 | |
| 25076 | 466 | context order | 
| 467 | begin | |
| 468 | ||
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 469 | (* The type constraint on @{term op =} below is necessary since the operation
 | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 470 | is not a parameter of the locale. *) | 
| 25076 | 471 | |
| 27689 | 472 | declare less_irrefl [THEN notE, order add less_reflE: order "op = :: 'a \<Rightarrow> 'a \<Rightarrow> bool" "op <=" "op <"] | 
| 473 | ||
| 474 | declare order_refl [order add le_refl: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 475 | ||
| 476 | declare less_imp_le [order add less_imp_le: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 477 | ||
| 478 | declare antisym [order add eqI: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 479 | ||
| 480 | declare eq_refl [order add eqD1: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 481 | ||
| 482 | declare sym [THEN eq_refl, order add eqD2: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 483 | ||
| 484 | declare less_trans [order add less_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 485 | ||
| 486 | declare less_le_trans [order add less_le_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 487 | ||
| 488 | declare le_less_trans [order add le_less_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 489 | ||
| 490 | declare order_trans [order add le_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 491 | ||
| 492 | declare le_neq_trans [order add le_neq_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 493 | ||
| 494 | declare neq_le_trans [order add neq_le_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 495 | ||
| 496 | declare less_imp_neq [order add less_imp_neq: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 497 | ||
| 498 | declare eq_neq_eq_imp_neq [order add eq_neq_eq_imp_neq: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 499 | ||
| 500 | declare not_sym [order add not_sym: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 501 | |
| 25076 | 502 | end | 
| 503 | ||
| 504 | context linorder | |
| 505 | begin | |
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 506 | |
| 27689 | 507 | declare [[order del: order "op = :: 'a => 'a => bool" "op <=" "op <"]] | 
| 508 | ||
| 509 | declare less_irrefl [THEN notE, order add less_reflE: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 510 | ||
| 511 | declare order_refl [order add le_refl: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 512 | ||
| 513 | declare less_imp_le [order add less_imp_le: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 514 | ||
| 515 | declare not_less [THEN iffD2, order add not_lessI: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 516 | ||
| 517 | declare not_le [THEN iffD2, order add not_leI: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 518 | ||
| 519 | declare not_less [THEN iffD1, order add not_lessD: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 520 | ||
| 521 | declare not_le [THEN iffD1, order add not_leD: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 522 | ||
| 523 | declare antisym [order add eqI: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 524 | ||
| 525 | declare eq_refl [order add eqD1: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 25076 | 526 | |
| 27689 | 527 | declare sym [THEN eq_refl, order add eqD2: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | 
| 528 | ||
| 529 | declare less_trans [order add less_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 530 | ||
| 531 | declare less_le_trans [order add less_le_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 532 | ||
| 533 | declare le_less_trans [order add le_less_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 534 | ||
| 535 | declare order_trans [order add le_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 536 | ||
| 537 | declare le_neq_trans [order add le_neq_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 538 | ||
| 539 | declare neq_le_trans [order add neq_le_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 540 | ||
| 541 | declare less_imp_neq [order add less_imp_neq: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 542 | ||
| 543 | declare eq_neq_eq_imp_neq [order add eq_neq_eq_imp_neq: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 544 | ||
| 545 | declare not_sym [order add not_sym: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 546 | |
| 25076 | 547 | end | 
| 548 | ||
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 549 | |
| 21083 | 550 | setup {*
 | 
| 551 | let | |
| 552 | ||
| 44058 | 553 | fun prp t thm = Thm.prop_of thm = t; (* FIXME aconv!? *) | 
| 15524 | 554 | |
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51658diff
changeset | 555 | fun prove_antisym_le ctxt ((le as Const(_,T)) $ r $ s) = | 
| 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51658diff
changeset | 556 | let val prems = Simplifier.prems_of ctxt; | 
| 22916 | 557 |       val less = Const (@{const_name less}, T);
 | 
| 21083 | 558 | val t = HOLogic.mk_Trueprop(le $ s $ r); | 
| 559 | in case find_first (prp t) prems of | |
| 560 | NONE => | |
| 561 | let val t = HOLogic.mk_Trueprop(HOLogic.Not $ (less $ r $ s)) | |
| 562 | in case find_first (prp t) prems of | |
| 563 | NONE => NONE | |
| 24422 | 564 |             | SOME thm => SOME(mk_meta_eq(thm RS @{thm linorder_class.antisym_conv1}))
 | 
| 21083 | 565 | end | 
| 24422 | 566 |      | SOME thm => SOME(mk_meta_eq(thm RS @{thm order_class.antisym_conv}))
 | 
| 21083 | 567 | end | 
| 568 | handle THM _ => NONE; | |
| 15524 | 569 | |
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51658diff
changeset | 570 | fun prove_antisym_less ctxt (NotC $ ((less as Const(_,T)) $ r $ s)) = | 
| 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51658diff
changeset | 571 | let val prems = Simplifier.prems_of ctxt; | 
| 22916 | 572 |       val le = Const (@{const_name less_eq}, T);
 | 
| 21083 | 573 | val t = HOLogic.mk_Trueprop(le $ r $ s); | 
| 574 | in case find_first (prp t) prems of | |
| 575 | NONE => | |
| 576 | let val t = HOLogic.mk_Trueprop(NotC $ (less $ s $ r)) | |
| 577 | in case find_first (prp t) prems of | |
| 578 | NONE => NONE | |
| 24422 | 579 |             | SOME thm => SOME(mk_meta_eq(thm RS @{thm linorder_class.antisym_conv3}))
 | 
| 21083 | 580 | end | 
| 24422 | 581 |      | SOME thm => SOME(mk_meta_eq(thm RS @{thm linorder_class.antisym_conv2}))
 | 
| 21083 | 582 | end | 
| 583 | handle THM _ => NONE; | |
| 15524 | 584 | |
| 21248 | 585 | fun add_simprocs procs thy = | 
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51658diff
changeset | 586 | map_theory_simpset (fn ctxt => ctxt | 
| 21248 | 587 | addsimprocs (map (fn (name, raw_ts, proc) => | 
| 38715 
6513ea67d95d
renamed Simplifier.simproc(_i) to Simplifier.simproc_global(_i) to emphasize that this is not the real thing;
 wenzelm parents: 
38705diff
changeset | 588 | Simplifier.simproc_global thy name raw_ts proc) procs)) thy; | 
| 42795 
66fcc9882784
clarified map_simpset versus Simplifier.map_simpset_global;
 wenzelm parents: 
42287diff
changeset | 589 | |
| 26496 
49ae9456eba9
purely functional setup of claset/simpset/clasimpset;
 wenzelm parents: 
26324diff
changeset | 590 | fun add_solver name tac = | 
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51658diff
changeset | 591 | map_theory_simpset (fn ctxt0 => ctxt0 addSolver | 
| 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51658diff
changeset | 592 | mk_solver name (fn ctxt => tac ctxt (Simplifier.prems_of ctxt))); | 
| 21083 | 593 | |
| 594 | in | |
| 21248 | 595 | add_simprocs [ | 
| 596 |        ("antisym le", ["(x::'a::order) <= y"], prove_antisym_le),
 | |
| 597 |        ("antisym less", ["~ (x::'a::linorder) < y"], prove_antisym_less)
 | |
| 598 | ] | |
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 599 | #> add_solver "Transitivity" Orders.order_tac | 
| 21248 | 600 | (* Adding the transitivity reasoners also as safe solvers showed a slight | 
| 601 | speed up, but the reasoning strength appears to be not higher (at least | |
| 602 | no breaking of additional proofs in the entire HOL distribution, as | |
| 603 | of 5 March 2004, was observed). *) | |
| 21083 | 604 | end | 
| 605 | *} | |
| 15524 | 606 | |
| 607 | ||
| 21083 | 608 | subsection {* Bounded quantifiers *}
 | 
| 609 | ||
| 610 | syntax | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 611 |   "_All_less" :: "[idt, 'a, bool] => bool"    ("(3ALL _<_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 612 |   "_Ex_less" :: "[idt, 'a, bool] => bool"    ("(3EX _<_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 613 |   "_All_less_eq" :: "[idt, 'a, bool] => bool"    ("(3ALL _<=_./ _)" [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 614 |   "_Ex_less_eq" :: "[idt, 'a, bool] => bool"    ("(3EX _<=_./ _)" [0, 0, 10] 10)
 | 
| 21083 | 615 | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 616 |   "_All_greater" :: "[idt, 'a, bool] => bool"    ("(3ALL _>_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 617 |   "_Ex_greater" :: "[idt, 'a, bool] => bool"    ("(3EX _>_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 618 |   "_All_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3ALL _>=_./ _)" [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 619 |   "_Ex_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3EX _>=_./ _)" [0, 0, 10] 10)
 | 
| 21083 | 620 | |
| 621 | syntax (xsymbols) | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 622 |   "_All_less" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_<_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 623 |   "_Ex_less" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_<_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 624 |   "_All_less_eq" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_\<le>_./ _)" [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 625 |   "_Ex_less_eq" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_\<le>_./ _)" [0, 0, 10] 10)
 | 
| 21083 | 626 | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 627 |   "_All_greater" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_>_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 628 |   "_Ex_greater" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_>_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 629 |   "_All_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_\<ge>_./ _)" [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 630 |   "_Ex_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_\<ge>_./ _)" [0, 0, 10] 10)
 | 
| 21083 | 631 | |
| 632 | syntax (HOL) | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 633 |   "_All_less" :: "[idt, 'a, bool] => bool"    ("(3! _<_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 634 |   "_Ex_less" :: "[idt, 'a, bool] => bool"    ("(3? _<_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 635 |   "_All_less_eq" :: "[idt, 'a, bool] => bool"    ("(3! _<=_./ _)" [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 636 |   "_Ex_less_eq" :: "[idt, 'a, bool] => bool"    ("(3? _<=_./ _)" [0, 0, 10] 10)
 | 
| 21083 | 637 | |
| 638 | syntax (HTML output) | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 639 |   "_All_less" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_<_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 640 |   "_Ex_less" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_<_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 641 |   "_All_less_eq" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_\<le>_./ _)" [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 642 |   "_Ex_less_eq" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_\<le>_./ _)" [0, 0, 10] 10)
 | 
| 21083 | 643 | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 644 |   "_All_greater" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_>_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 645 |   "_Ex_greater" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_>_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 646 |   "_All_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_\<ge>_./ _)" [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 647 |   "_Ex_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_\<ge>_./ _)" [0, 0, 10] 10)
 | 
| 21083 | 648 | |
| 649 | translations | |
| 650 | "ALL x<y. P" => "ALL x. x < y \<longrightarrow> P" | |
| 651 | "EX x<y. P" => "EX x. x < y \<and> P" | |
| 652 | "ALL x<=y. P" => "ALL x. x <= y \<longrightarrow> P" | |
| 653 | "EX x<=y. P" => "EX x. x <= y \<and> P" | |
| 654 | "ALL x>y. P" => "ALL x. x > y \<longrightarrow> P" | |
| 655 | "EX x>y. P" => "EX x. x > y \<and> P" | |
| 656 | "ALL x>=y. P" => "ALL x. x >= y \<longrightarrow> P" | |
| 657 | "EX x>=y. P" => "EX x. x >= y \<and> P" | |
| 658 | ||
| 659 | print_translation {*
 | |
| 660 | let | |
| 42287 
d98eb048a2e4
discontinued special treatment of structure Mixfix;
 wenzelm parents: 
42284diff
changeset | 661 |   val All_binder = Mixfix.binder_name @{const_syntax All};
 | 
| 
d98eb048a2e4
discontinued special treatment of structure Mixfix;
 wenzelm parents: 
42284diff
changeset | 662 |   val Ex_binder = Mixfix.binder_name @{const_syntax Ex};
 | 
| 38786 
e46e7a9cb622
formerly unnamed infix impliciation now named HOL.implies
 haftmann parents: 
38715diff
changeset | 663 |   val impl = @{const_syntax HOL.implies};
 | 
| 38795 
848be46708dc
formerly unnamed infix conjunction and disjunction now named HOL.conj and HOL.disj
 haftmann parents: 
38786diff
changeset | 664 |   val conj = @{const_syntax HOL.conj};
 | 
| 22916 | 665 |   val less = @{const_syntax less};
 | 
| 666 |   val less_eq = @{const_syntax less_eq};
 | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 667 | |
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 668 | val trans = | 
| 35115 | 669 | [((All_binder, impl, less), | 
| 670 |     (@{syntax_const "_All_less"}, @{syntax_const "_All_greater"})),
 | |
| 671 | ((All_binder, impl, less_eq), | |
| 672 |     (@{syntax_const "_All_less_eq"}, @{syntax_const "_All_greater_eq"})),
 | |
| 673 | ((Ex_binder, conj, less), | |
| 674 |     (@{syntax_const "_Ex_less"}, @{syntax_const "_Ex_greater"})),
 | |
| 675 | ((Ex_binder, conj, less_eq), | |
| 676 |     (@{syntax_const "_Ex_less_eq"}, @{syntax_const "_Ex_greater_eq"}))];
 | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 677 | |
| 35115 | 678 | fun matches_bound v t = | 
| 679 | (case t of | |
| 35364 | 680 |       Const (@{syntax_const "_bound"}, _) $ Free (v', _) => v = v'
 | 
| 35115 | 681 | | _ => false); | 
| 682 | fun contains_var v = Term.exists_subterm (fn Free (x, _) => x = v | _ => false); | |
| 49660 
de49d9b4d7bc
more explicit Syntax_Trans.mark_bound_abs/mark_bound_body: preserve type information for show_markup;
 wenzelm parents: 
48891diff
changeset | 683 | fun mk x c n P = Syntax.const c $ Syntax_Trans.mark_bound_body x $ n $ P; | 
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 684 | |
| 52143 | 685 | fun tr' q = (q, fn _ => | 
| 686 |     (fn [Const (@{syntax_const "_bound"}, _) $ Free (v, T),
 | |
| 35364 | 687 | Const (c, _) $ (Const (d, _) $ t $ u) $ P] => | 
| 35115 | 688 | (case AList.lookup (op =) trans (q, c, d) of | 
| 689 | NONE => raise Match | |
| 690 | | SOME (l, g) => | |
| 49660 
de49d9b4d7bc
more explicit Syntax_Trans.mark_bound_abs/mark_bound_body: preserve type information for show_markup;
 wenzelm parents: 
48891diff
changeset | 691 | if matches_bound v t andalso not (contains_var v u) then mk (v, T) l u P | 
| 
de49d9b4d7bc
more explicit Syntax_Trans.mark_bound_abs/mark_bound_body: preserve type information for show_markup;
 wenzelm parents: 
48891diff
changeset | 692 | else if matches_bound v u andalso not (contains_var v t) then mk (v, T) g t P | 
| 35115 | 693 | else raise Match) | 
| 52143 | 694 | | _ => raise Match)); | 
| 21524 | 695 | in [tr' All_binder, tr' Ex_binder] end | 
| 21083 | 696 | *} | 
| 697 | ||
| 698 | ||
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 699 | subsection {* Transitivity reasoning *}
 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 700 | |
| 25193 | 701 | context ord | 
| 702 | begin | |
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 703 | |
| 25193 | 704 | lemma ord_le_eq_trans: "a \<le> b \<Longrightarrow> b = c \<Longrightarrow> a \<le> c" | 
| 705 | by (rule subst) | |
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 706 | |
| 25193 | 707 | lemma ord_eq_le_trans: "a = b \<Longrightarrow> b \<le> c \<Longrightarrow> a \<le> c" | 
| 708 | by (rule ssubst) | |
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 709 | |
| 25193 | 710 | lemma ord_less_eq_trans: "a < b \<Longrightarrow> b = c \<Longrightarrow> a < c" | 
| 711 | by (rule subst) | |
| 712 | ||
| 713 | lemma ord_eq_less_trans: "a = b \<Longrightarrow> b < c \<Longrightarrow> a < c" | |
| 714 | by (rule ssubst) | |
| 715 | ||
| 716 | end | |
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 717 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 718 | lemma order_less_subst2: "(a::'a::order) < b ==> f b < (c::'c::order) ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 719 | (!!x y. x < y ==> f x < f y) ==> f a < c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 720 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 721 | assume r: "!!x y. x < y ==> f x < f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 722 | assume "a < b" hence "f a < f b" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 723 | also assume "f b < c" | 
| 34250 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 724 | finally (less_trans) show ?thesis . | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 725 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 726 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 727 | lemma order_less_subst1: "(a::'a::order) < f b ==> (b::'b::order) < c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 728 | (!!x y. x < y ==> f x < f y) ==> a < f c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 729 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 730 | assume r: "!!x y. x < y ==> f x < f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 731 | assume "a < f b" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 732 | also assume "b < c" hence "f b < f c" by (rule r) | 
| 34250 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 733 | finally (less_trans) show ?thesis . | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 734 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 735 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 736 | lemma order_le_less_subst2: "(a::'a::order) <= b ==> f b < (c::'c::order) ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 737 | (!!x y. x <= y ==> f x <= f y) ==> f a < c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 738 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 739 | assume r: "!!x y. x <= y ==> f x <= f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 740 | assume "a <= b" hence "f a <= f b" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 741 | also assume "f b < c" | 
| 34250 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 742 | finally (le_less_trans) show ?thesis . | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 743 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 744 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 745 | lemma order_le_less_subst1: "(a::'a::order) <= f b ==> (b::'b::order) < c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 746 | (!!x y. x < y ==> f x < f y) ==> a < f c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 747 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 748 | assume r: "!!x y. x < y ==> f x < f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 749 | assume "a <= f b" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 750 | also assume "b < c" hence "f b < f c" by (rule r) | 
| 34250 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 751 | finally (le_less_trans) show ?thesis . | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 752 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 753 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 754 | lemma order_less_le_subst2: "(a::'a::order) < b ==> f b <= (c::'c::order) ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 755 | (!!x y. x < y ==> f x < f y) ==> f a < c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 756 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 757 | assume r: "!!x y. x < y ==> f x < f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 758 | assume "a < b" hence "f a < f b" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 759 | also assume "f b <= c" | 
| 34250 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 760 | finally (less_le_trans) show ?thesis . | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 761 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 762 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 763 | lemma order_less_le_subst1: "(a::'a::order) < f b ==> (b::'b::order) <= c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 764 | (!!x y. x <= y ==> f x <= f y) ==> a < f c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 765 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 766 | assume r: "!!x y. x <= y ==> f x <= f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 767 | assume "a < f b" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 768 | also assume "b <= c" hence "f b <= f c" by (rule r) | 
| 34250 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 769 | finally (less_le_trans) show ?thesis . | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 770 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 771 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 772 | lemma order_subst1: "(a::'a::order) <= f b ==> (b::'b::order) <= c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 773 | (!!x y. x <= y ==> f x <= f y) ==> a <= f c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 774 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 775 | assume r: "!!x y. x <= y ==> f x <= f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 776 | assume "a <= f b" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 777 | also assume "b <= c" hence "f b <= f c" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 778 | finally (order_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 779 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 780 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 781 | lemma order_subst2: "(a::'a::order) <= b ==> f b <= (c::'c::order) ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 782 | (!!x y. x <= y ==> f x <= f y) ==> f a <= c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 783 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 784 | assume r: "!!x y. x <= y ==> f x <= f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 785 | assume "a <= b" hence "f a <= f b" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 786 | also assume "f b <= c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 787 | finally (order_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 788 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 789 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 790 | lemma ord_le_eq_subst: "a <= b ==> f b = c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 791 | (!!x y. x <= y ==> f x <= f y) ==> f a <= c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 792 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 793 | assume r: "!!x y. x <= y ==> f x <= f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 794 | assume "a <= b" hence "f a <= f b" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 795 | also assume "f b = c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 796 | finally (ord_le_eq_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 797 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 798 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 799 | lemma ord_eq_le_subst: "a = f b ==> b <= c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 800 | (!!x y. x <= y ==> f x <= f y) ==> a <= f c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 801 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 802 | assume r: "!!x y. x <= y ==> f x <= f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 803 | assume "a = f b" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 804 | also assume "b <= c" hence "f b <= f c" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 805 | finally (ord_eq_le_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 806 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 807 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 808 | lemma ord_less_eq_subst: "a < b ==> f b = c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 809 | (!!x y. x < y ==> f x < f y) ==> f a < c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 810 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 811 | assume r: "!!x y. x < y ==> f x < f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 812 | assume "a < b" hence "f a < f b" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 813 | also assume "f b = c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 814 | finally (ord_less_eq_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 815 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 816 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 817 | lemma ord_eq_less_subst: "a = f b ==> b < c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 818 | (!!x y. x < y ==> f x < f y) ==> a < f c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 819 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 820 | assume r: "!!x y. x < y ==> f x < f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 821 | assume "a = f b" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 822 | also assume "b < c" hence "f b < f c" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 823 | finally (ord_eq_less_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 824 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 825 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 826 | text {*
 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 827 | Note that this list of rules is in reverse order of priorities. | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 828 | *} | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 829 | |
| 27682 | 830 | lemmas [trans] = | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 831 | order_less_subst2 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 832 | order_less_subst1 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 833 | order_le_less_subst2 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 834 | order_le_less_subst1 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 835 | order_less_le_subst2 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 836 | order_less_le_subst1 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 837 | order_subst2 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 838 | order_subst1 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 839 | ord_le_eq_subst | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 840 | ord_eq_le_subst | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 841 | ord_less_eq_subst | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 842 | ord_eq_less_subst | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 843 | forw_subst | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 844 | back_subst | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 845 | rev_mp | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 846 | mp | 
| 27682 | 847 | |
| 848 | lemmas (in order) [trans] = | |
| 849 | neq_le_trans | |
| 850 | le_neq_trans | |
| 851 | ||
| 852 | lemmas (in preorder) [trans] = | |
| 853 | less_trans | |
| 854 | less_asym' | |
| 855 | le_less_trans | |
| 856 | less_le_trans | |
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 857 | order_trans | 
| 27682 | 858 | |
| 859 | lemmas (in order) [trans] = | |
| 860 | antisym | |
| 861 | ||
| 862 | lemmas (in ord) [trans] = | |
| 863 | ord_le_eq_trans | |
| 864 | ord_eq_le_trans | |
| 865 | ord_less_eq_trans | |
| 866 | ord_eq_less_trans | |
| 867 | ||
| 868 | lemmas [trans] = | |
| 869 | trans | |
| 870 | ||
| 871 | lemmas order_trans_rules = | |
| 872 | order_less_subst2 | |
| 873 | order_less_subst1 | |
| 874 | order_le_less_subst2 | |
| 875 | order_le_less_subst1 | |
| 876 | order_less_le_subst2 | |
| 877 | order_less_le_subst1 | |
| 878 | order_subst2 | |
| 879 | order_subst1 | |
| 880 | ord_le_eq_subst | |
| 881 | ord_eq_le_subst | |
| 882 | ord_less_eq_subst | |
| 883 | ord_eq_less_subst | |
| 884 | forw_subst | |
| 885 | back_subst | |
| 886 | rev_mp | |
| 887 | mp | |
| 888 | neq_le_trans | |
| 889 | le_neq_trans | |
| 890 | less_trans | |
| 891 | less_asym' | |
| 892 | le_less_trans | |
| 893 | less_le_trans | |
| 894 | order_trans | |
| 895 | antisym | |
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 896 | ord_le_eq_trans | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 897 | ord_eq_le_trans | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 898 | ord_less_eq_trans | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 899 | ord_eq_less_trans | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 900 | trans | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 901 | |
| 21083 | 902 | text {* These support proving chains of decreasing inequalities
 | 
| 903 | a >= b >= c ... in Isar proofs. *} | |
| 904 | ||
| 45221 
3eadb9b6a055
mark "xt..." rules as "no_atp", since they are easy consequences of other better named properties
 blanchet parents: 
44921diff
changeset | 905 | lemma xt1 [no_atp]: | 
| 21083 | 906 | "a = b ==> b > c ==> a > c" | 
| 907 | "a > b ==> b = c ==> a > c" | |
| 908 | "a = b ==> b >= c ==> a >= c" | |
| 909 | "a >= b ==> b = c ==> a >= c" | |
| 910 | "(x::'a::order) >= y ==> y >= x ==> x = y" | |
| 911 | "(x::'a::order) >= y ==> y >= z ==> x >= z" | |
| 912 | "(x::'a::order) > y ==> y >= z ==> x > z" | |
| 913 | "(x::'a::order) >= y ==> y > z ==> x > z" | |
| 23417 | 914 | "(a::'a::order) > b ==> b > a ==> P" | 
| 21083 | 915 | "(x::'a::order) > y ==> y > z ==> x > z" | 
| 916 | "(a::'a::order) >= b ==> a ~= b ==> a > b" | |
| 917 | "(a::'a::order) ~= b ==> a >= b ==> a > b" | |
| 918 | "a = f b ==> b > c ==> (!!x y. x > y ==> f x > f y) ==> a > f c" | |
| 919 | "a > b ==> f b = c ==> (!!x y. x > y ==> f x > f y) ==> f a > c" | |
| 920 | "a = f b ==> b >= c ==> (!!x y. x >= y ==> f x >= f y) ==> a >= f c" | |
| 921 | "a >= b ==> f b = c ==> (!! x y. x >= y ==> f x >= f y) ==> f a >= c" | |
| 25076 | 922 | by auto | 
| 21083 | 923 | |
| 45221 
3eadb9b6a055
mark "xt..." rules as "no_atp", since they are easy consequences of other better named properties
 blanchet parents: 
44921diff
changeset | 924 | lemma xt2 [no_atp]: | 
| 21083 | 925 | "(a::'a::order) >= f b ==> b >= c ==> (!!x y. x >= y ==> f x >= f y) ==> a >= f c" | 
| 926 | by (subgoal_tac "f b >= f c", force, force) | |
| 927 | ||
| 45221 
3eadb9b6a055
mark "xt..." rules as "no_atp", since they are easy consequences of other better named properties
 blanchet parents: 
44921diff
changeset | 928 | lemma xt3 [no_atp]: "(a::'a::order) >= b ==> (f b::'b::order) >= c ==> | 
| 21083 | 929 | (!!x y. x >= y ==> f x >= f y) ==> f a >= c" | 
| 930 | by (subgoal_tac "f a >= f b", force, force) | |
| 931 | ||
| 45221 
3eadb9b6a055
mark "xt..." rules as "no_atp", since they are easy consequences of other better named properties
 blanchet parents: 
44921diff
changeset | 932 | lemma xt4 [no_atp]: "(a::'a::order) > f b ==> (b::'b::order) >= c ==> | 
| 21083 | 933 | (!!x y. x >= y ==> f x >= f y) ==> a > f c" | 
| 934 | by (subgoal_tac "f b >= f c", force, force) | |
| 935 | ||
| 45221 
3eadb9b6a055
mark "xt..." rules as "no_atp", since they are easy consequences of other better named properties
 blanchet parents: 
44921diff
changeset | 936 | lemma xt5 [no_atp]: "(a::'a::order) > b ==> (f b::'b::order) >= c==> | 
| 21083 | 937 | (!!x y. x > y ==> f x > f y) ==> f a > c" | 
| 938 | by (subgoal_tac "f a > f b", force, force) | |
| 939 | ||
| 45221 
3eadb9b6a055
mark "xt..." rules as "no_atp", since they are easy consequences of other better named properties
 blanchet parents: 
44921diff
changeset | 940 | lemma xt6 [no_atp]: "(a::'a::order) >= f b ==> b > c ==> | 
| 21083 | 941 | (!!x y. x > y ==> f x > f y) ==> a > f c" | 
| 942 | by (subgoal_tac "f b > f c", force, force) | |
| 943 | ||
| 45221 
3eadb9b6a055
mark "xt..." rules as "no_atp", since they are easy consequences of other better named properties
 blanchet parents: 
44921diff
changeset | 944 | lemma xt7 [no_atp]: "(a::'a::order) >= b ==> (f b::'b::order) > c ==> | 
| 21083 | 945 | (!!x y. x >= y ==> f x >= f y) ==> f a > c" | 
| 946 | by (subgoal_tac "f a >= f b", force, force) | |
| 947 | ||
| 45221 
3eadb9b6a055
mark "xt..." rules as "no_atp", since they are easy consequences of other better named properties
 blanchet parents: 
44921diff
changeset | 948 | lemma xt8 [no_atp]: "(a::'a::order) > f b ==> (b::'b::order) > c ==> | 
| 21083 | 949 | (!!x y. x > y ==> f x > f y) ==> a > f c" | 
| 950 | by (subgoal_tac "f b > f c", force, force) | |
| 951 | ||
| 45221 
3eadb9b6a055
mark "xt..." rules as "no_atp", since they are easy consequences of other better named properties
 blanchet parents: 
44921diff
changeset | 952 | lemma xt9 [no_atp]: "(a::'a::order) > b ==> (f b::'b::order) > c ==> | 
| 21083 | 953 | (!!x y. x > y ==> f x > f y) ==> f a > c" | 
| 954 | by (subgoal_tac "f a > f b", force, force) | |
| 955 | ||
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
53216diff
changeset | 956 | lemmas xtrans = xt1 xt2 xt3 xt4 xt5 xt6 xt7 xt8 xt9 | 
| 21083 | 957 | |
| 958 | (* | |
| 959 | Since "a >= b" abbreviates "b <= a", the abbreviation "..." stands | |
| 960 | for the wrong thing in an Isar proof. | |
| 961 | ||
| 962 | The extra transitivity rules can be used as follows: | |
| 963 | ||
| 964 | lemma "(a::'a::order) > z" | |
| 965 | proof - | |
| 966 | have "a >= b" (is "_ >= ?rhs") | |
| 967 | sorry | |
| 968 | also have "?rhs >= c" (is "_ >= ?rhs") | |
| 969 | sorry | |
| 970 | also (xtrans) have "?rhs = d" (is "_ = ?rhs") | |
| 971 | sorry | |
| 972 | also (xtrans) have "?rhs >= e" (is "_ >= ?rhs") | |
| 973 | sorry | |
| 974 | also (xtrans) have "?rhs > f" (is "_ > ?rhs") | |
| 975 | sorry | |
| 976 | also (xtrans) have "?rhs > z" | |
| 977 | sorry | |
| 978 | finally (xtrans) show ?thesis . | |
| 979 | qed | |
| 980 | ||
| 981 | Alternatively, one can use "declare xtrans [trans]" and then | |
| 982 | leave out the "(xtrans)" above. | |
| 983 | *) | |
| 984 | ||
| 23881 | 985 | |
| 54860 | 986 | subsection {* Monotonicity *}
 | 
| 21083 | 987 | |
| 25076 | 988 | context order | 
| 989 | begin | |
| 990 | ||
| 30298 | 991 | definition mono :: "('a \<Rightarrow> 'b\<Colon>order) \<Rightarrow> bool" where
 | 
| 25076 | 992 | "mono f \<longleftrightarrow> (\<forall>x y. x \<le> y \<longrightarrow> f x \<le> f y)" | 
| 993 | ||
| 994 | lemma monoI [intro?]: | |
| 995 | fixes f :: "'a \<Rightarrow> 'b\<Colon>order" | |
| 996 | shows "(\<And>x y. x \<le> y \<Longrightarrow> f x \<le> f y) \<Longrightarrow> mono f" | |
| 997 | unfolding mono_def by iprover | |
| 21216 
1c8580913738
made locale partial_order compatible with axclass order; changed import order; consecutive changes
 haftmann parents: 
21204diff
changeset | 998 | |
| 25076 | 999 | lemma monoD [dest?]: | 
| 1000 | fixes f :: "'a \<Rightarrow> 'b\<Colon>order" | |
| 1001 | shows "mono f \<Longrightarrow> x \<le> y \<Longrightarrow> f x \<le> f y" | |
| 1002 | unfolding mono_def by iprover | |
| 1003 | ||
| 51263 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1004 | lemma monoE: | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1005 | fixes f :: "'a \<Rightarrow> 'b\<Colon>order" | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1006 | assumes "mono f" | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1007 | assumes "x \<le> y" | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1008 | obtains "f x \<le> f y" | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1009 | proof | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1010 | from assms show "f x \<le> f y" by (simp add: mono_def) | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1011 | qed | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1012 | |
| 30298 | 1013 | definition strict_mono :: "('a \<Rightarrow> 'b\<Colon>order) \<Rightarrow> bool" where
 | 
| 1014 | "strict_mono f \<longleftrightarrow> (\<forall>x y. x < y \<longrightarrow> f x < f y)" | |
| 1015 | ||
| 1016 | lemma strict_monoI [intro?]: | |
| 1017 | assumes "\<And>x y. x < y \<Longrightarrow> f x < f y" | |
| 1018 | shows "strict_mono f" | |
| 1019 | using assms unfolding strict_mono_def by auto | |
| 1020 | ||
| 1021 | lemma strict_monoD [dest?]: | |
| 1022 | "strict_mono f \<Longrightarrow> x < y \<Longrightarrow> f x < f y" | |
| 1023 | unfolding strict_mono_def by auto | |
| 1024 | ||
| 1025 | lemma strict_mono_mono [dest?]: | |
| 1026 | assumes "strict_mono f" | |
| 1027 | shows "mono f" | |
| 1028 | proof (rule monoI) | |
| 1029 | fix x y | |
| 1030 | assume "x \<le> y" | |
| 1031 | show "f x \<le> f y" | |
| 1032 | proof (cases "x = y") | |
| 1033 | case True then show ?thesis by simp | |
| 1034 | next | |
| 1035 | case False with `x \<le> y` have "x < y" by simp | |
| 1036 | with assms strict_monoD have "f x < f y" by auto | |
| 1037 | then show ?thesis by simp | |
| 1038 | qed | |
| 1039 | qed | |
| 1040 | ||
| 25076 | 1041 | end | 
| 1042 | ||
| 1043 | context linorder | |
| 1044 | begin | |
| 1045 | ||
| 51263 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1046 | lemma mono_invE: | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1047 | fixes f :: "'a \<Rightarrow> 'b\<Colon>order" | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1048 | assumes "mono f" | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1049 | assumes "f x < f y" | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1050 | obtains "x \<le> y" | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1051 | proof | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1052 | show "x \<le> y" | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1053 | proof (rule ccontr) | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1054 | assume "\<not> x \<le> y" | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1055 | then have "y \<le> x" by simp | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1056 | with `mono f` obtain "f y \<le> f x" by (rule monoE) | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1057 | with `f x < f y` show False by simp | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1058 | qed | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1059 | qed | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1060 | |
| 30298 | 1061 | lemma strict_mono_eq: | 
| 1062 | assumes "strict_mono f" | |
| 1063 | shows "f x = f y \<longleftrightarrow> x = y" | |
| 1064 | proof | |
| 1065 | assume "f x = f y" | |
| 1066 | show "x = y" proof (cases x y rule: linorder_cases) | |
| 1067 | case less with assms strict_monoD have "f x < f y" by auto | |
| 1068 | with `f x = f y` show ?thesis by simp | |
| 1069 | next | |
| 1070 | case equal then show ?thesis . | |
| 1071 | next | |
| 1072 | case greater with assms strict_monoD have "f y < f x" by auto | |
| 1073 | with `f x = f y` show ?thesis by simp | |
| 1074 | qed | |
| 1075 | qed simp | |
| 1076 | ||
| 1077 | lemma strict_mono_less_eq: | |
| 1078 | assumes "strict_mono f" | |
| 1079 | shows "f x \<le> f y \<longleftrightarrow> x \<le> y" | |
| 1080 | proof | |
| 1081 | assume "x \<le> y" | |
| 1082 | with assms strict_mono_mono monoD show "f x \<le> f y" by auto | |
| 1083 | next | |
| 1084 | assume "f x \<le> f y" | |
| 1085 | show "x \<le> y" proof (rule ccontr) | |
| 1086 | assume "\<not> x \<le> y" then have "y < x" by simp | |
| 1087 | with assms strict_monoD have "f y < f x" by auto | |
| 1088 | with `f x \<le> f y` show False by simp | |
| 1089 | qed | |
| 1090 | qed | |
| 1091 | ||
| 1092 | lemma strict_mono_less: | |
| 1093 | assumes "strict_mono f" | |
| 1094 | shows "f x < f y \<longleftrightarrow> x < y" | |
| 1095 | using assms | |
| 1096 | by (auto simp add: less_le Orderings.less_le strict_mono_eq strict_mono_less_eq) | |
| 1097 | ||
| 54860 | 1098 | end | 
| 1099 | ||
| 1100 | ||
| 54861 
00d551179872
postponed min/max lemmas until abstract lattice is available
 haftmann parents: 
54860diff
changeset | 1101 | subsection {* min and max -- fundamental *}
 | 
| 54860 | 1102 | |
| 1103 | definition (in ord) min :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" where | |
| 1104 | "min a b = (if a \<le> b then a else b)" | |
| 1105 | ||
| 1106 | definition (in ord) max :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" where | |
| 1107 | "max a b = (if a \<le> b then b else a)" | |
| 1108 | ||
| 45931 | 1109 | lemma min_absorb1: "x \<le> y \<Longrightarrow> min x y = x" | 
| 54861 
00d551179872
postponed min/max lemmas until abstract lattice is available
 haftmann parents: 
54860diff
changeset | 1110 | by (simp add: min_def) | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 1111 | |
| 54857 | 1112 | lemma max_absorb2: "x \<le> y \<Longrightarrow> max x y = y" | 
| 54861 
00d551179872
postponed min/max lemmas until abstract lattice is available
 haftmann parents: 
54860diff
changeset | 1113 | by (simp add: max_def) | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 1114 | |
| 45931 | 1115 | lemma min_absorb2: "(y\<Colon>'a\<Colon>order) \<le> x \<Longrightarrow> min x y = y" | 
| 54861 
00d551179872
postponed min/max lemmas until abstract lattice is available
 haftmann parents: 
54860diff
changeset | 1116 | by (simp add:min_def) | 
| 45893 | 1117 | |
| 45931 | 1118 | lemma max_absorb1: "(y\<Colon>'a\<Colon>order) \<le> x \<Longrightarrow> max x y = x" | 
| 54861 
00d551179872
postponed min/max lemmas until abstract lattice is available
 haftmann parents: 
54860diff
changeset | 1119 | by (simp add: max_def) | 
| 45893 | 1120 | |
| 1121 | ||
| 43813 
07f0650146f2
tightened specification of classes bot and top: uniqueness of top and bot elements
 haftmann parents: 
43597diff
changeset | 1122 | subsection {* (Unique) top and bottom elements *}
 | 
| 28685 | 1123 | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1124 | class bot = | 
| 43853 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1125 |   fixes bot :: 'a ("\<bottom>")
 | 
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1126 | |
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1127 | class order_bot = order + bot + | 
| 51487 | 1128 | assumes bot_least: "\<bottom> \<le> a" | 
| 54868 | 1129 | begin | 
| 51487 | 1130 | |
| 54868 | 1131 | sublocale bot!: ordering_top greater_eq greater bot | 
| 51546 
2e26df807dc7
more uniform style for interpretation and sublocale declarations
 haftmann parents: 
51487diff
changeset | 1132 | by default (fact bot_least) | 
| 51487 | 1133 | |
| 43853 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1134 | lemma le_bot: | 
| 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1135 | "a \<le> \<bottom> \<Longrightarrow> a = \<bottom>" | 
| 51487 | 1136 | by (fact bot.extremum_uniqueI) | 
| 43853 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1137 | |
| 43816 | 1138 | lemma bot_unique: | 
| 43853 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1139 | "a \<le> \<bottom> \<longleftrightarrow> a = \<bottom>" | 
| 51487 | 1140 | by (fact bot.extremum_unique) | 
| 43853 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1141 | |
| 51487 | 1142 | lemma not_less_bot: | 
| 1143 | "\<not> a < \<bottom>" | |
| 1144 | by (fact bot.extremum_strict) | |
| 43816 | 1145 | |
| 43814 
58791b75cf1f
moved lemmas bot_less and less_top to classes bot and top respectively
 haftmann parents: 
43813diff
changeset | 1146 | lemma bot_less: | 
| 43853 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1147 | "a \<noteq> \<bottom> \<longleftrightarrow> \<bottom> < a" | 
| 51487 | 1148 | by (fact bot.not_eq_extremum) | 
| 43814 
58791b75cf1f
moved lemmas bot_less and less_top to classes bot and top respectively
 haftmann parents: 
43813diff
changeset | 1149 | |
| 
58791b75cf1f
moved lemmas bot_less and less_top to classes bot and top respectively
 haftmann parents: 
43813diff
changeset | 1150 | end | 
| 41082 | 1151 | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1152 | class top = | 
| 43853 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1153 |   fixes top :: 'a ("\<top>")
 | 
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1154 | |
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1155 | class order_top = order + top + | 
| 51487 | 1156 | assumes top_greatest: "a \<le> \<top>" | 
| 54868 | 1157 | begin | 
| 51487 | 1158 | |
| 54868 | 1159 | sublocale top!: ordering_top less_eq less top | 
| 51546 
2e26df807dc7
more uniform style for interpretation and sublocale declarations
 haftmann parents: 
51487diff
changeset | 1160 | by default (fact top_greatest) | 
| 51487 | 1161 | |
| 43853 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1162 | lemma top_le: | 
| 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1163 | "\<top> \<le> a \<Longrightarrow> a = \<top>" | 
| 51487 | 1164 | by (fact top.extremum_uniqueI) | 
| 43853 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1165 | |
| 43816 | 1166 | lemma top_unique: | 
| 43853 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1167 | "\<top> \<le> a \<longleftrightarrow> a = \<top>" | 
| 51487 | 1168 | by (fact top.extremum_unique) | 
| 43853 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1169 | |
| 51487 | 1170 | lemma not_top_less: | 
| 1171 | "\<not> \<top> < a" | |
| 1172 | by (fact top.extremum_strict) | |
| 43816 | 1173 | |
| 43814 
58791b75cf1f
moved lemmas bot_less and less_top to classes bot and top respectively
 haftmann parents: 
43813diff
changeset | 1174 | lemma less_top: | 
| 43853 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1175 | "a \<noteq> \<top> \<longleftrightarrow> a < \<top>" | 
| 51487 | 1176 | by (fact top.not_eq_extremum) | 
| 43814 
58791b75cf1f
moved lemmas bot_less and less_top to classes bot and top respectively
 haftmann parents: 
43813diff
changeset | 1177 | |
| 
58791b75cf1f
moved lemmas bot_less and less_top to classes bot and top respectively
 haftmann parents: 
43813diff
changeset | 1178 | end | 
| 28685 | 1179 | |
| 1180 | ||
| 27823 | 1181 | subsection {* Dense orders *}
 | 
| 1182 | ||
| 53216 | 1183 | class dense_order = order + | 
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1184 | assumes dense: "x < y \<Longrightarrow> (\<exists>z. x < z \<and> z < y)" | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1185 | |
| 53216 | 1186 | class dense_linorder = linorder + dense_order | 
| 35579 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1187 | begin | 
| 27823 | 1188 | |
| 35579 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1189 | lemma dense_le: | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1190 | fixes y z :: 'a | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1191 | assumes "\<And>x. x < y \<Longrightarrow> x \<le> z" | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1192 | shows "y \<le> z" | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1193 | proof (rule ccontr) | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1194 | assume "\<not> ?thesis" | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1195 | hence "z < y" by simp | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1196 | from dense[OF this] | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1197 | obtain x where "x < y" and "z < x" by safe | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1198 | moreover have "x \<le> z" using assms[OF `x < y`] . | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1199 | ultimately show False by auto | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1200 | qed | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1201 | |
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1202 | lemma dense_le_bounded: | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1203 | fixes x y z :: 'a | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1204 | assumes "x < y" | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1205 | assumes *: "\<And>w. \<lbrakk> x < w ; w < y \<rbrakk> \<Longrightarrow> w \<le> z" | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1206 | shows "y \<le> z" | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1207 | proof (rule dense_le) | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1208 | fix w assume "w < y" | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1209 | from dense[OF `x < y`] obtain u where "x < u" "u < y" by safe | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1210 | from linear[of u w] | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1211 | show "w \<le> z" | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1212 | proof (rule disjE) | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1213 | assume "u \<le> w" | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1214 | from less_le_trans[OF `x < u` `u \<le> w`] `w < y` | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1215 | show "w \<le> z" by (rule *) | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1216 | next | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1217 | assume "w \<le> u" | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1218 | from `w \<le> u` *[OF `x < u` `u < y`] | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1219 | show "w \<le> z" by (rule order_trans) | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1220 | qed | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1221 | qed | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1222 | |
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1223 | lemma dense_ge: | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1224 | fixes y z :: 'a | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1225 | assumes "\<And>x. z < x \<Longrightarrow> y \<le> x" | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1226 | shows "y \<le> z" | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1227 | proof (rule ccontr) | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1228 | assume "\<not> ?thesis" | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1229 | hence "z < y" by simp | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1230 | from dense[OF this] | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1231 | obtain x where "x < y" and "z < x" by safe | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1232 | moreover have "y \<le> x" using assms[OF `z < x`] . | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1233 | ultimately show False by auto | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1234 | qed | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1235 | |
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1236 | lemma dense_ge_bounded: | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1237 | fixes x y z :: 'a | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1238 | assumes "z < x" | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1239 | assumes *: "\<And>w. \<lbrakk> z < w ; w < x \<rbrakk> \<Longrightarrow> y \<le> w" | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1240 | shows "y \<le> z" | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1241 | proof (rule dense_ge) | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1242 | fix w assume "z < w" | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1243 | from dense[OF `z < x`] obtain u where "z < u" "u < x" by safe | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1244 | from linear[of u w] | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1245 | show "y \<le> w" | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1246 | proof (rule disjE) | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1247 | assume "w \<le> u" | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1248 | from `z < w` le_less_trans[OF `w \<le> u` `u < x`] | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1249 | show "y \<le> w" by (rule *) | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1250 | next | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1251 | assume "u \<le> w" | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1252 | from *[OF `z < u` `u < x`] `u \<le> w` | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1253 | show "y \<le> w" by (rule order_trans) | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1254 | qed | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1255 | qed | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1256 | |
| 35579 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1257 | end | 
| 27823 | 1258 | |
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1259 | class no_top = order + | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1260 | assumes gt_ex: "\<exists>y. x < y" | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1261 | |
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1262 | class no_bot = order + | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1263 | assumes lt_ex: "\<exists>y. y < x" | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1264 | |
| 53216 | 1265 | class unbounded_dense_linorder = dense_linorder + no_top + no_bot | 
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1266 | |
| 51546 
2e26df807dc7
more uniform style for interpretation and sublocale declarations
 haftmann parents: 
51487diff
changeset | 1267 | |
| 27823 | 1268 | subsection {* Wellorders *}
 | 
| 1269 | ||
| 1270 | class wellorder = linorder + | |
| 1271 | assumes less_induct [case_names less]: "(\<And>x. (\<And>y. y < x \<Longrightarrow> P y) \<Longrightarrow> P x) \<Longrightarrow> P a" | |
| 1272 | begin | |
| 1273 | ||
| 1274 | lemma wellorder_Least_lemma: | |
| 1275 | fixes k :: 'a | |
| 1276 | assumes "P k" | |
| 34250 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1277 | shows LeastI: "P (LEAST x. P x)" and Least_le: "(LEAST x. P x) \<le> k" | 
| 27823 | 1278 | proof - | 
| 1279 | have "P (LEAST x. P x) \<and> (LEAST x. P x) \<le> k" | |
| 1280 | using assms proof (induct k rule: less_induct) | |
| 1281 | case (less x) then have "P x" by simp | |
| 1282 | show ?case proof (rule classical) | |
| 1283 | assume assm: "\<not> (P (LEAST a. P a) \<and> (LEAST a. P a) \<le> x)" | |
| 1284 | have "\<And>y. P y \<Longrightarrow> x \<le> y" | |
| 1285 | proof (rule classical) | |
| 1286 | fix y | |
| 38705 | 1287 | assume "P y" and "\<not> x \<le> y" | 
| 27823 | 1288 | with less have "P (LEAST a. P a)" and "(LEAST a. P a) \<le> y" | 
| 1289 | by (auto simp add: not_le) | |
| 1290 | with assm have "x < (LEAST a. P a)" and "(LEAST a. P a) \<le> y" | |
| 1291 | by auto | |
| 1292 | then show "x \<le> y" by auto | |
| 1293 | qed | |
| 1294 | with `P x` have Least: "(LEAST a. P a) = x" | |
| 1295 | by (rule Least_equality) | |
| 1296 | with `P x` show ?thesis by simp | |
| 1297 | qed | |
| 1298 | qed | |
| 1299 | then show "P (LEAST x. P x)" and "(LEAST x. P x) \<le> k" by auto | |
| 1300 | qed | |
| 1301 | ||
| 1302 | -- "The following 3 lemmas are due to Brian Huffman" | |
| 1303 | lemma LeastI_ex: "\<exists>x. P x \<Longrightarrow> P (Least P)" | |
| 1304 | by (erule exE) (erule LeastI) | |
| 1305 | ||
| 1306 | lemma LeastI2: | |
| 1307 | "P a \<Longrightarrow> (\<And>x. P x \<Longrightarrow> Q x) \<Longrightarrow> Q (Least P)" | |
| 1308 | by (blast intro: LeastI) | |
| 1309 | ||
| 1310 | lemma LeastI2_ex: | |
| 1311 | "\<exists>a. P a \<Longrightarrow> (\<And>x. P x \<Longrightarrow> Q x) \<Longrightarrow> Q (Least P)" | |
| 1312 | by (blast intro: LeastI_ex) | |
| 1313 | ||
| 38705 | 1314 | lemma LeastI2_wellorder: | 
| 1315 | assumes "P a" | |
| 1316 | and "\<And>a. \<lbrakk> P a; \<forall>b. P b \<longrightarrow> a \<le> b \<rbrakk> \<Longrightarrow> Q a" | |
| 1317 | shows "Q (Least P)" | |
| 1318 | proof (rule LeastI2_order) | |
| 1319 | show "P (Least P)" using `P a` by (rule LeastI) | |
| 1320 | next | |
| 1321 | fix y assume "P y" thus "Least P \<le> y" by (rule Least_le) | |
| 1322 | next | |
| 1323 | fix x assume "P x" "\<forall>y. P y \<longrightarrow> x \<le> y" thus "Q x" by (rule assms(2)) | |
| 1324 | qed | |
| 1325 | ||
| 27823 | 1326 | lemma not_less_Least: "k < (LEAST x. P x) \<Longrightarrow> \<not> P k" | 
| 1327 | apply (simp (no_asm_use) add: not_le [symmetric]) | |
| 1328 | apply (erule contrapos_nn) | |
| 1329 | apply (erule Least_le) | |
| 1330 | done | |
| 1331 | ||
| 38705 | 1332 | end | 
| 27823 | 1333 | |
| 28685 | 1334 | |
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1335 | subsection {* Order on @{typ bool} *}
 | 
| 28685 | 1336 | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1337 | instantiation bool :: "{order_bot, order_top, linorder}"
 | 
| 28685 | 1338 | begin | 
| 1339 | ||
| 1340 | definition | |
| 41080 | 1341 | le_bool_def [simp]: "P \<le> Q \<longleftrightarrow> P \<longrightarrow> Q" | 
| 28685 | 1342 | |
| 1343 | definition | |
| 41080 | 1344 | [simp]: "(P\<Colon>bool) < Q \<longleftrightarrow> \<not> P \<and> Q" | 
| 28685 | 1345 | |
| 1346 | definition | |
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1347 | [simp]: "\<bottom> \<longleftrightarrow> False" | 
| 28685 | 1348 | |
| 1349 | definition | |
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1350 | [simp]: "\<top> \<longleftrightarrow> True" | 
| 28685 | 1351 | |
| 1352 | instance proof | |
| 41080 | 1353 | qed auto | 
| 28685 | 1354 | |
| 15524 | 1355 | end | 
| 28685 | 1356 | |
| 1357 | lemma le_boolI: "(P \<Longrightarrow> Q) \<Longrightarrow> P \<le> Q" | |
| 41080 | 1358 | by simp | 
| 28685 | 1359 | |
| 1360 | lemma le_boolI': "P \<longrightarrow> Q \<Longrightarrow> P \<le> Q" | |
| 41080 | 1361 | by simp | 
| 28685 | 1362 | |
| 1363 | lemma le_boolE: "P \<le> Q \<Longrightarrow> P \<Longrightarrow> (Q \<Longrightarrow> R) \<Longrightarrow> R" | |
| 41080 | 1364 | by simp | 
| 28685 | 1365 | |
| 1366 | lemma le_boolD: "P \<le> Q \<Longrightarrow> P \<longrightarrow> Q" | |
| 41080 | 1367 | by simp | 
| 32899 | 1368 | |
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1369 | lemma bot_boolE: "\<bottom> \<Longrightarrow> P" | 
| 41080 | 1370 | by simp | 
| 32899 | 1371 | |
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1372 | lemma top_boolI: \<top> | 
| 41080 | 1373 | by simp | 
| 28685 | 1374 | |
| 1375 | lemma [code]: | |
| 1376 | "False \<le> b \<longleftrightarrow> True" | |
| 1377 | "True \<le> b \<longleftrightarrow> b" | |
| 1378 | "False < b \<longleftrightarrow> b" | |
| 1379 | "True < b \<longleftrightarrow> False" | |
| 41080 | 1380 | by simp_all | 
| 28685 | 1381 | |
| 1382 | ||
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1383 | subsection {* Order on @{typ "_ \<Rightarrow> _"} *}
 | 
| 28685 | 1384 | |
| 1385 | instantiation "fun" :: (type, ord) ord | |
| 1386 | begin | |
| 1387 | ||
| 1388 | definition | |
| 37767 | 1389 | le_fun_def: "f \<le> g \<longleftrightarrow> (\<forall>x. f x \<le> g x)" | 
| 28685 | 1390 | |
| 1391 | definition | |
| 41080 | 1392 | "(f\<Colon>'a \<Rightarrow> 'b) < g \<longleftrightarrow> f \<le> g \<and> \<not> (g \<le> f)" | 
| 28685 | 1393 | |
| 1394 | instance .. | |
| 1395 | ||
| 1396 | end | |
| 1397 | ||
| 1398 | instance "fun" :: (type, preorder) preorder proof | |
| 1399 | qed (auto simp add: le_fun_def less_fun_def | |
| 44921 | 1400 | intro: order_trans antisym) | 
| 28685 | 1401 | |
| 1402 | instance "fun" :: (type, order) order proof | |
| 44921 | 1403 | qed (auto simp add: le_fun_def intro: antisym) | 
| 28685 | 1404 | |
| 41082 | 1405 | instantiation "fun" :: (type, bot) bot | 
| 1406 | begin | |
| 1407 | ||
| 1408 | definition | |
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1409 | "\<bottom> = (\<lambda>x. \<bottom>)" | 
| 41082 | 1410 | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1411 | instance .. | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1412 | |
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1413 | end | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1414 | |
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1415 | instantiation "fun" :: (type, order_bot) order_bot | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1416 | begin | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1417 | |
| 49769 | 1418 | lemma bot_apply [simp, code]: | 
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1419 | "\<bottom> x = \<bottom>" | 
| 41082 | 1420 | by (simp add: bot_fun_def) | 
| 1421 | ||
| 1422 | instance proof | |
| 46884 | 1423 | qed (simp add: le_fun_def) | 
| 41082 | 1424 | |
| 1425 | end | |
| 1426 | ||
| 28685 | 1427 | instantiation "fun" :: (type, top) top | 
| 1428 | begin | |
| 1429 | ||
| 1430 | definition | |
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1431 | [no_atp]: "\<top> = (\<lambda>x. \<top>)" | 
| 28685 | 1432 | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1433 | instance .. | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1434 | |
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1435 | end | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1436 | |
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1437 | instantiation "fun" :: (type, order_top) order_top | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1438 | begin | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1439 | |
| 49769 | 1440 | lemma top_apply [simp, code]: | 
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1441 | "\<top> x = \<top>" | 
| 41080 | 1442 | by (simp add: top_fun_def) | 
| 1443 | ||
| 28685 | 1444 | instance proof | 
| 46884 | 1445 | qed (simp add: le_fun_def) | 
| 28685 | 1446 | |
| 1447 | end | |
| 1448 | ||
| 1449 | lemma le_funI: "(\<And>x. f x \<le> g x) \<Longrightarrow> f \<le> g" | |
| 1450 | unfolding le_fun_def by simp | |
| 1451 | ||
| 1452 | lemma le_funE: "f \<le> g \<Longrightarrow> (f x \<le> g x \<Longrightarrow> P) \<Longrightarrow> P" | |
| 1453 | unfolding le_fun_def by simp | |
| 1454 | ||
| 1455 | lemma le_funD: "f \<le> g \<Longrightarrow> f x \<le> g x" | |
| 54860 | 1456 | by (rule le_funE) | 
| 28685 | 1457 | |
| 34250 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1458 | |
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1459 | subsection {* Order on unary and binary predicates *}
 | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1460 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1461 | lemma predicate1I: | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1462 | assumes PQ: "\<And>x. P x \<Longrightarrow> Q x" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1463 | shows "P \<le> Q" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1464 | apply (rule le_funI) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1465 | apply (rule le_boolI) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1466 | apply (rule PQ) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1467 | apply assumption | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1468 | done | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1469 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1470 | lemma predicate1D: | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1471 | "P \<le> Q \<Longrightarrow> P x \<Longrightarrow> Q x" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1472 | apply (erule le_funE) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1473 | apply (erule le_boolE) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1474 | apply assumption+ | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1475 | done | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1476 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1477 | lemma rev_predicate1D: | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1478 | "P x \<Longrightarrow> P \<le> Q \<Longrightarrow> Q x" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1479 | by (rule predicate1D) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1480 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1481 | lemma predicate2I: | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1482 | assumes PQ: "\<And>x y. P x y \<Longrightarrow> Q x y" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1483 | shows "P \<le> Q" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1484 | apply (rule le_funI)+ | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1485 | apply (rule le_boolI) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1486 | apply (rule PQ) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1487 | apply assumption | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1488 | done | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1489 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1490 | lemma predicate2D: | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1491 | "P \<le> Q \<Longrightarrow> P x y \<Longrightarrow> Q x y" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1492 | apply (erule le_funE)+ | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1493 | apply (erule le_boolE) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1494 | apply assumption+ | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1495 | done | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1496 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1497 | lemma rev_predicate2D: | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1498 | "P x y \<Longrightarrow> P \<le> Q \<Longrightarrow> Q x y" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1499 | by (rule predicate2D) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1500 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1501 | lemma bot1E [no_atp]: "\<bottom> x \<Longrightarrow> P" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1502 | by (simp add: bot_fun_def) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1503 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1504 | lemma bot2E: "\<bottom> x y \<Longrightarrow> P" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1505 | by (simp add: bot_fun_def) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1506 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1507 | lemma top1I: "\<top> x" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1508 | by (simp add: top_fun_def) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1509 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1510 | lemma top2I: "\<top> x y" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1511 | by (simp add: top_fun_def) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1512 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1513 | |
| 34250 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1514 | subsection {* Name duplicates *}
 | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1515 | |
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1516 | lemmas order_eq_refl = preorder_class.eq_refl | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1517 | lemmas order_less_irrefl = preorder_class.less_irrefl | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1518 | lemmas order_less_imp_le = preorder_class.less_imp_le | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1519 | lemmas order_less_not_sym = preorder_class.less_not_sym | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1520 | lemmas order_less_asym = preorder_class.less_asym | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1521 | lemmas order_less_trans = preorder_class.less_trans | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1522 | lemmas order_le_less_trans = preorder_class.le_less_trans | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1523 | lemmas order_less_le_trans = preorder_class.less_le_trans | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1524 | lemmas order_less_imp_not_less = preorder_class.less_imp_not_less | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1525 | lemmas order_less_imp_triv = preorder_class.less_imp_triv | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1526 | lemmas order_less_asym' = preorder_class.less_asym' | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1527 | |
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1528 | lemmas order_less_le = order_class.less_le | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1529 | lemmas order_le_less = order_class.le_less | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1530 | lemmas order_le_imp_less_or_eq = order_class.le_imp_less_or_eq | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1531 | lemmas order_less_imp_not_eq = order_class.less_imp_not_eq | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1532 | lemmas order_less_imp_not_eq2 = order_class.less_imp_not_eq2 | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1533 | lemmas order_neq_le_trans = order_class.neq_le_trans | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1534 | lemmas order_le_neq_trans = order_class.le_neq_trans | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1535 | lemmas order_antisym = order_class.antisym | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1536 | lemmas order_eq_iff = order_class.eq_iff | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1537 | lemmas order_antisym_conv = order_class.antisym_conv | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1538 | |
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1539 | lemmas linorder_linear = linorder_class.linear | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1540 | lemmas linorder_less_linear = linorder_class.less_linear | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1541 | lemmas linorder_le_less_linear = linorder_class.le_less_linear | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1542 | lemmas linorder_le_cases = linorder_class.le_cases | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1543 | lemmas linorder_not_less = linorder_class.not_less | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1544 | lemmas linorder_not_le = linorder_class.not_le | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1545 | lemmas linorder_neq_iff = linorder_class.neq_iff | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1546 | lemmas linorder_neqE = linorder_class.neqE | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1547 | lemmas linorder_antisym_conv1 = linorder_class.antisym_conv1 | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1548 | lemmas linorder_antisym_conv2 = linorder_class.antisym_conv2 | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1549 | lemmas linorder_antisym_conv3 = linorder_class.antisym_conv3 | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1550 | |
| 28685 | 1551 | end | 
| 51487 | 1552 |