author | blanchet |
Tue, 10 Jun 2014 11:38:53 +0200 | |
changeset 57199 | 472360558b22 |
parent 56651 | fc105315822a |
child 57471 | 11cd462e31ec |
permissions | -rw-r--r-- |
55059 | 1 |
(* Title: HOL/BNF_LFP.thy |
48975
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
2 |
Author: Dmitriy Traytel, TU Muenchen |
53305 | 3 |
Author: Lorenz Panny, TU Muenchen |
4 |
Author: Jasmin Blanchette, TU Muenchen |
|
5 |
Copyright 2012, 2013 |
|
48975
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
6 |
|
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
7 |
Least fixed point operation on bounded natural functors. |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
8 |
*) |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
9 |
|
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
10 |
header {* Least Fixed Point Operation on Bounded Natural Functors *} |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
11 |
|
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
12 |
theory BNF_LFP |
53311 | 13 |
imports BNF_FP_Base |
48975
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
14 |
keywords |
53305 | 15 |
"datatype_new" :: thy_decl and |
55575
a5e33e18fb5c
moved 'primrec' up (for real this time) and removed temporary 'old_primrec'
blanchet
parents:
55571
diff
changeset
|
16 |
"datatype_compat" :: thy_decl |
48975
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
17 |
begin |
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
18 |
|
49312 | 19 |
lemma subset_emptyI: "(\<And>x. x \<in> A \<Longrightarrow> False) \<Longrightarrow> A \<subseteq> {}" |
20 |
by blast |
|
21 |
||
56346 | 22 |
lemma image_Collect_subsetI: "(\<And>x. P x \<Longrightarrow> f x \<in> B) \<Longrightarrow> f ` {x. P x} \<subseteq> B" |
49312 | 23 |
by blast |
24 |
||
25 |
lemma Collect_restrict: "{x. x \<in> X \<and> P x} \<subseteq> X" |
|
26 |
by auto |
|
27 |
||
28 |
lemma prop_restrict: "\<lbrakk>x \<in> Z; Z \<subseteq> {x. x \<in> X \<and> P x}\<rbrakk> \<Longrightarrow> P x" |
|
29 |
by auto |
|
30 |
||
55023
38db7814481d
get rid of 'rel' locale, to facilitate inclusion of 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54841
diff
changeset
|
31 |
lemma underS_I: "\<lbrakk>i \<noteq> j; (i, j) \<in> R\<rbrakk> \<Longrightarrow> i \<in> underS R j" |
38db7814481d
get rid of 'rel' locale, to facilitate inclusion of 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54841
diff
changeset
|
32 |
unfolding underS_def by simp |
49312 | 33 |
|
55023
38db7814481d
get rid of 'rel' locale, to facilitate inclusion of 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54841
diff
changeset
|
34 |
lemma underS_E: "i \<in> underS R j \<Longrightarrow> i \<noteq> j \<and> (i, j) \<in> R" |
38db7814481d
get rid of 'rel' locale, to facilitate inclusion of 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54841
diff
changeset
|
35 |
unfolding underS_def by simp |
49312 | 36 |
|
55023
38db7814481d
get rid of 'rel' locale, to facilitate inclusion of 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54841
diff
changeset
|
37 |
lemma underS_Field: "i \<in> underS R j \<Longrightarrow> i \<in> Field R" |
38db7814481d
get rid of 'rel' locale, to facilitate inclusion of 'Order_Relation_More_FP' into 'Order_Relation'
blanchet
parents:
54841
diff
changeset
|
38 |
unfolding underS_def Field_def by auto |
49312 | 39 |
|
40 |
lemma FieldI2: "(i, j) \<in> R \<Longrightarrow> j \<in> Field R" |
|
41 |
unfolding Field_def by auto |
|
42 |
||
43 |
lemma fst_convol': "fst (<f, g> x) = f x" |
|
44 |
using fst_convol unfolding convol_def by simp |
|
45 |
||
46 |
lemma snd_convol': "snd (<f, g> x) = g x" |
|
47 |
using snd_convol unfolding convol_def by simp |
|
48 |
||
49 |
lemma convol_expand_snd: "fst o f = g \<Longrightarrow> <g, snd o f> = f" |
|
50 |
unfolding convol_def by auto |
|
51 |
||
55811 | 52 |
lemma convol_expand_snd': |
53 |
assumes "(fst o f = g)" |
|
54 |
shows "h = snd o f \<longleftrightarrow> <g, h> = f" |
|
55 |
proof - |
|
56 |
from assms have *: "<g, snd o f> = f" by (rule convol_expand_snd) |
|
57 |
then have "h = snd o f \<longleftrightarrow> h = snd o <g, snd o f>" by simp |
|
58 |
moreover have "\<dots> \<longleftrightarrow> h = snd o f" by (simp add: snd_convol) |
|
59 |
moreover have "\<dots> \<longleftrightarrow> <g, h> = f" by (subst (2) *[symmetric]) (auto simp: convol_def fun_eq_iff) |
|
60 |
ultimately show ?thesis by simp |
|
61 |
qed |
|
49312 | 62 |
lemma bij_betwE: "bij_betw f A B \<Longrightarrow> \<forall>a\<in>A. f a \<in> B" |
63 |
unfolding bij_betw_def by auto |
|
64 |
||
65 |
lemma bij_betw_imageE: "bij_betw f A B \<Longrightarrow> f ` A = B" |
|
66 |
unfolding bij_betw_def by auto |
|
67 |
||
56237 | 68 |
lemma f_the_inv_into_f_bij_betw: "bij_betw f A B \<Longrightarrow> |
69 |
(bij_betw f A B \<Longrightarrow> x \<in> B) \<Longrightarrow> f (the_inv_into A f x) = x" |
|
70 |
unfolding bij_betw_def by (blast intro: f_the_inv_into_f) |
|
49312 | 71 |
|
56237 | 72 |
lemma ex_bij_betw: "|A| \<le>o (r :: 'b rel) \<Longrightarrow> \<exists>f B :: 'b set. bij_betw f B A" |
73 |
by (subst (asm) internalize_card_of_ordLeq) |
|
74 |
(auto dest!: iffD2[OF card_of_ordIso ordIso_symmetric]) |
|
49312 | 75 |
|
76 |
lemma bij_betwI': |
|
77 |
"\<lbrakk>\<And>x y. \<lbrakk>x \<in> X; y \<in> X\<rbrakk> \<Longrightarrow> (f x = f y) = (x = y); |
|
78 |
\<And>x. x \<in> X \<Longrightarrow> f x \<in> Y; |
|
79 |
\<And>y. y \<in> Y \<Longrightarrow> \<exists>x \<in> X. y = f x\<rbrakk> \<Longrightarrow> bij_betw f X Y" |
|
53695 | 80 |
unfolding bij_betw_def inj_on_def by blast |
49312 | 81 |
|
82 |
lemma surj_fun_eq: |
|
83 |
assumes surj_on: "f ` X = UNIV" and eq_on: "\<forall>x \<in> X. (g1 o f) x = (g2 o f) x" |
|
84 |
shows "g1 = g2" |
|
85 |
proof (rule ext) |
|
86 |
fix y |
|
87 |
from surj_on obtain x where "x \<in> X" and "y = f x" by blast |
|
88 |
thus "g1 y = g2 y" using eq_on by simp |
|
89 |
qed |
|
90 |
||
91 |
lemma Card_order_wo_rel: "Card_order r \<Longrightarrow> wo_rel r" |
|
49514 | 92 |
unfolding wo_rel_def card_order_on_def by blast |
49312 | 93 |
|
94 |
lemma Cinfinite_limit: "\<lbrakk>x \<in> Field r; Cinfinite r\<rbrakk> \<Longrightarrow> |
|
95 |
\<exists>y \<in> Field r. x \<noteq> y \<and> (x, y) \<in> r" |
|
96 |
unfolding cinfinite_def by (auto simp add: infinite_Card_order_limit) |
|
97 |
||
98 |
lemma Card_order_trans: |
|
99 |
"\<lbrakk>Card_order r; x \<noteq> y; (x, y) \<in> r; y \<noteq> z; (y, z) \<in> r\<rbrakk> \<Longrightarrow> x \<noteq> z \<and> (x, z) \<in> r" |
|
100 |
unfolding card_order_on_def well_order_on_def linear_order_on_def |
|
101 |
partial_order_on_def preorder_on_def trans_def antisym_def by blast |
|
102 |
||
103 |
lemma Cinfinite_limit2: |
|
104 |
assumes x1: "x1 \<in> Field r" and x2: "x2 \<in> Field r" and r: "Cinfinite r" |
|
105 |
shows "\<exists>y \<in> Field r. (x1 \<noteq> y \<and> (x1, y) \<in> r) \<and> (x2 \<noteq> y \<and> (x2, y) \<in> r)" |
|
106 |
proof - |
|
107 |
from r have trans: "trans r" and total: "Total r" and antisym: "antisym r" |
|
108 |
unfolding card_order_on_def well_order_on_def linear_order_on_def |
|
109 |
partial_order_on_def preorder_on_def by auto |
|
110 |
obtain y1 where y1: "y1 \<in> Field r" "x1 \<noteq> y1" "(x1, y1) \<in> r" |
|
111 |
using Cinfinite_limit[OF x1 r] by blast |
|
112 |
obtain y2 where y2: "y2 \<in> Field r" "x2 \<noteq> y2" "(x2, y2) \<in> r" |
|
113 |
using Cinfinite_limit[OF x2 r] by blast |
|
114 |
show ?thesis |
|
115 |
proof (cases "y1 = y2") |
|
116 |
case True with y1 y2 show ?thesis by blast |
|
117 |
next |
|
118 |
case False |
|
119 |
with y1(1) y2(1) total have "(y1, y2) \<in> r \<or> (y2, y1) \<in> r" |
|
120 |
unfolding total_on_def by auto |
|
121 |
thus ?thesis |
|
122 |
proof |
|
123 |
assume *: "(y1, y2) \<in> r" |
|
124 |
with trans y1(3) have "(x1, y2) \<in> r" unfolding trans_def by blast |
|
125 |
with False y1 y2 * antisym show ?thesis by (cases "x1 = y2") (auto simp: antisym_def) |
|
126 |
next |
|
127 |
assume *: "(y2, y1) \<in> r" |
|
128 |
with trans y2(3) have "(x2, y1) \<in> r" unfolding trans_def by blast |
|
129 |
with False y1 y2 * antisym show ?thesis by (cases "x2 = y1") (auto simp: antisym_def) |
|
130 |
qed |
|
131 |
qed |
|
132 |
qed |
|
133 |
||
134 |
lemma Cinfinite_limit_finite: "\<lbrakk>finite X; X \<subseteq> Field r; Cinfinite r\<rbrakk> |
|
135 |
\<Longrightarrow> \<exists>y \<in> Field r. \<forall>x \<in> X. (x \<noteq> y \<and> (x, y) \<in> r)" |
|
136 |
proof (induct X rule: finite_induct) |
|
137 |
case empty thus ?case unfolding cinfinite_def using ex_in_conv[of "Field r"] finite.emptyI by auto |
|
138 |
next |
|
139 |
case (insert x X) |
|
140 |
then obtain y where y: "y \<in> Field r" "\<forall>x \<in> X. (x \<noteq> y \<and> (x, y) \<in> r)" by blast |
|
141 |
then obtain z where z: "z \<in> Field r" "x \<noteq> z \<and> (x, z) \<in> r" "y \<noteq> z \<and> (y, z) \<in> r" |
|
142 |
using Cinfinite_limit2[OF _ y(1) insert(5), of x] insert(4) by blast |
|
49326 | 143 |
show ?case |
144 |
apply (intro bexI ballI) |
|
145 |
apply (erule insertE) |
|
146 |
apply hypsubst |
|
147 |
apply (rule z(2)) |
|
148 |
using Card_order_trans[OF insert(5)[THEN conjunct2]] y(2) z(3) |
|
149 |
apply blast |
|
150 |
apply (rule z(1)) |
|
151 |
done |
|
49312 | 152 |
qed |
153 |
||
154 |
lemma insert_subsetI: "\<lbrakk>x \<in> A; X \<subseteq> A\<rbrakk> \<Longrightarrow> insert x X \<subseteq> A" |
|
155 |
by auto |
|
156 |
||
157 |
(*helps resolution*) |
|
158 |
lemma well_order_induct_imp: |
|
159 |
"wo_rel r \<Longrightarrow> (\<And>x. \<forall>y. y \<noteq> x \<and> (y, x) \<in> r \<longrightarrow> y \<in> Field r \<longrightarrow> P y \<Longrightarrow> x \<in> Field r \<longrightarrow> P x) \<Longrightarrow> |
|
160 |
x \<in> Field r \<longrightarrow> P x" |
|
161 |
by (erule wo_rel.well_order_induct) |
|
162 |
||
163 |
lemma meta_spec2: |
|
164 |
assumes "(\<And>x y. PROP P x y)" |
|
165 |
shows "PROP P x y" |
|
55084 | 166 |
by (rule assms) |
49312 | 167 |
|
54841
af71b753c459
express weak pullback property of bnfs only in terms of the relator
traytel
parents:
54246
diff
changeset
|
168 |
lemma nchotomy_relcomppE: |
55811 | 169 |
assumes "\<And>y. \<exists>x. y = f x" "(r OO s) a c" "\<And>b. r a (f b) \<Longrightarrow> s (f b) c \<Longrightarrow> P" |
170 |
shows P |
|
171 |
proof (rule relcompp.cases[OF assms(2)], hypsubst) |
|
172 |
fix b assume "r a b" "s b c" |
|
173 |
moreover from assms(1) obtain b' where "b = f b'" by blast |
|
174 |
ultimately show P by (blast intro: assms(3)) |
|
175 |
qed |
|
54841
af71b753c459
express weak pullback property of bnfs only in terms of the relator
traytel
parents:
54246
diff
changeset
|
176 |
|
55945 | 177 |
lemma vimage2p_rel_fun: "rel_fun (vimage2p f g R) R f g" |
178 |
unfolding rel_fun_def vimage2p_def by auto |
|
52731 | 179 |
|
180 |
lemma predicate2D_vimage2p: "\<lbrakk>R \<le> vimage2p f g S; R x y\<rbrakk> \<Longrightarrow> S (f x) (g y)" |
|
181 |
unfolding vimage2p_def by auto |
|
182 |
||
55945 | 183 |
lemma id_transfer: "rel_fun A A id id" |
184 |
unfolding rel_fun_def by simp |
|
55084 | 185 |
|
55770
f2cf7f92c9ac
intermediate typedef for the type of the bound (local to lfp)
traytel
parents:
55575
diff
changeset
|
186 |
lemma ssubst_Pair_rhs: "\<lbrakk>(r, s) \<in> R; s' = s\<rbrakk> \<Longrightarrow> (r, s') \<in> R" |
55851
3d40cf74726c
optimize cardinal bounds involving natLeq (omega)
blanchet
parents:
55811
diff
changeset
|
187 |
by (rule ssubst) |
55770
f2cf7f92c9ac
intermediate typedef for the type of the bound (local to lfp)
traytel
parents:
55575
diff
changeset
|
188 |
|
55062 | 189 |
ML_file "Tools/BNF/bnf_lfp_util.ML" |
190 |
ML_file "Tools/BNF/bnf_lfp_tactics.ML" |
|
191 |
ML_file "Tools/BNF/bnf_lfp.ML" |
|
192 |
ML_file "Tools/BNF/bnf_lfp_compat.ML" |
|
55571 | 193 |
ML_file "Tools/BNF/bnf_lfp_rec_sugar_more.ML" |
56643
41d3596d8a64
move size hooks together, with new one preceding old one and sharing same theory data
blanchet
parents:
56642
diff
changeset
|
194 |
|
55084 | 195 |
hide_fact (open) id_transfer |
196 |
||
48975
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
blanchet
parents:
diff
changeset
|
197 |
end |