| 62479 |      1 | (*  Title:      HOL/Nonstandard_Analysis/CStar.thy
 | 
|  |      2 |     Author:     Jacques D. Fleuriot
 | 
|  |      3 |     Copyright:  2001 University of Edinburgh
 | 
| 27468 |      4 | *)
 | 
|  |      5 | 
 | 
| 64604 |      6 | section \<open>Star-transforms in NSA, Extending Sets of Complex Numbers and Complex Functions\<close>
 | 
| 27468 |      7 | 
 | 
|  |      8 | theory CStar
 | 
| 64604 |      9 |   imports NSCA
 | 
| 27468 |     10 | begin
 | 
|  |     11 | 
 | 
| 64604 |     12 | subsection \<open>Properties of the \<open>*\<close>-Transform Applied to Sets of Reals\<close>
 | 
| 27468 |     13 | 
 | 
| 64604 |     14 | lemma STARC_hcomplex_of_complex_Int: "*s* X \<inter> SComplex = hcomplex_of_complex ` X"
 | 
|  |     15 |   by (auto simp: Standard_def)
 | 
| 27468 |     16 | 
 | 
| 64604 |     17 | lemma lemma_not_hcomplexA: "x \<notin> hcomplex_of_complex ` A \<Longrightarrow> \<forall>y \<in> A. x \<noteq> hcomplex_of_complex y"
 | 
|  |     18 |   by auto
 | 
|  |     19 | 
 | 
| 27468 |     20 | 
 | 
| 64604 |     21 | subsection \<open>Theorems about Nonstandard Extensions of Functions\<close>
 | 
| 27468 |     22 | 
 | 
| 64604 |     23 | lemma starfunC_hcpow: "\<And>Z. ( *f* (\<lambda>z. z ^ n)) Z = Z pow hypnat_of_nat n"
 | 
|  |     24 |   by transfer (rule refl)
 | 
| 27468 |     25 | 
 | 
|  |     26 | lemma starfunCR_cmod: "*f* cmod = hcmod"
 | 
| 64604 |     27 |   by transfer (rule refl)
 | 
| 27468 |     28 | 
 | 
| 64604 |     29 | 
 | 
|  |     30 | subsection \<open>Internal Functions - Some Redundancy With \<open>*f*\<close> Now\<close>
 | 
| 27468 |     31 | 
 | 
|  |     32 | (** subtraction: ( *fn) - ( *gn) = *(fn - gn) **)
 | 
|  |     33 | (*
 | 
|  |     34 | lemma starfun_n_diff:
 | 
| 64604 |     35 |    "( *fn* f) z - ( *fn* g) z = ( *fn* (\<lambda>i x. f i x - g i x)) z"
 | 
| 27468 |     36 | apply (cases z)
 | 
|  |     37 | apply (simp add: starfun_n star_n_diff)
 | 
|  |     38 | done
 | 
|  |     39 | *)
 | 
|  |     40 | (** composition: ( *fn) o ( *gn) = *(fn o gn) **)
 | 
|  |     41 | 
 | 
|  |     42 | lemma starfun_Re: "( *f* (\<lambda>x. Re (f x))) = (\<lambda>x. hRe (( *f* f) x))"
 | 
| 64604 |     43 |   by transfer (rule refl)
 | 
| 27468 |     44 | 
 | 
|  |     45 | lemma starfun_Im: "( *f* (\<lambda>x. Im (f x))) = (\<lambda>x. hIm (( *f* f) x))"
 | 
| 64604 |     46 |   by transfer (rule refl)
 | 
| 27468 |     47 | 
 | 
|  |     48 | lemma starfunC_eq_Re_Im_iff:
 | 
| 64604 |     49 |   "( *f* f) x = z \<longleftrightarrow> ( *f* (\<lambda>x. Re (f x))) x = hRe z \<and> ( *f* (\<lambda>x. Im (f x))) x = hIm z"
 | 
|  |     50 |   by (simp add: hcomplex_hRe_hIm_cancel_iff starfun_Re starfun_Im)
 | 
| 27468 |     51 | 
 | 
|  |     52 | lemma starfunC_approx_Re_Im_iff:
 | 
| 64604 |     53 |   "( *f* f) x \<approx> z \<longleftrightarrow> ( *f* (\<lambda>x. Re (f x))) x \<approx> hRe z \<and> ( *f* (\<lambda>x. Im (f x))) x \<approx> hIm z"
 | 
|  |     54 |   by (simp add: hcomplex_approx_iff starfun_Re starfun_Im)
 | 
| 27468 |     55 | 
 | 
|  |     56 | end
 |