src/HOL/Library/While_Combinator.thy
author nipkow
Thu, 03 Oct 2013 12:34:32 +0200
changeset 54050 48c800d8ba2d
parent 54047 83fb090dae9e
child 54196 0c188a3c671a
permissions -rw-r--r--
added and generalised lemmas
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
22803
5129e02f4df2 slightly tuned
haftmann
parents: 21404
diff changeset
     1
(*  Title:      HOL/Library/While_Combinator.thy
10251
5cc44cae9590 A general ``while'' combinator (from main HOL);
wenzelm
parents:
diff changeset
     2
    Author:     Tobias Nipkow
37757
dc78d2d9e90a added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents: 30738
diff changeset
     3
    Author:     Alexander Krauss
10251
5cc44cae9590 A general ``while'' combinator (from main HOL);
wenzelm
parents:
diff changeset
     4
*)
5cc44cae9590 A general ``while'' combinator (from main HOL);
wenzelm
parents:
diff changeset
     5
14706
71590b7733b7 tuned document;
wenzelm
parents: 14589
diff changeset
     6
header {* A general ``while'' combinator *}
10251
5cc44cae9590 A general ``while'' combinator (from main HOL);
wenzelm
parents:
diff changeset
     7
15131
c69542757a4d New theory header syntax.
nipkow
parents: 14706
diff changeset
     8
theory While_Combinator
30738
0842e906300c normalized imports
haftmann
parents: 27487
diff changeset
     9
imports Main
15131
c69542757a4d New theory header syntax.
nipkow
parents: 14706
diff changeset
    10
begin
10251
5cc44cae9590 A general ``while'' combinator (from main HOL);
wenzelm
parents:
diff changeset
    11
37760
8380686be5cd moved example to its own file in HOL/ex
krauss
parents: 37757
diff changeset
    12
subsection {* Partial version *}
37757
dc78d2d9e90a added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents: 30738
diff changeset
    13
dc78d2d9e90a added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents: 30738
diff changeset
    14
definition while_option :: "('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a option" where
dc78d2d9e90a added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents: 30738
diff changeset
    15
"while_option b c s = (if (\<exists>k. ~ b ((c ^^ k) s))
dc78d2d9e90a added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents: 30738
diff changeset
    16
   then Some ((c ^^ (LEAST k. ~ b ((c ^^ k) s))) s)
dc78d2d9e90a added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents: 30738
diff changeset
    17
   else None)"
10251
5cc44cae9590 A general ``while'' combinator (from main HOL);
wenzelm
parents:
diff changeset
    18
37757
dc78d2d9e90a added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents: 30738
diff changeset
    19
theorem while_option_unfold[code]:
dc78d2d9e90a added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents: 30738
diff changeset
    20
"while_option b c s = (if b s then while_option b c (c s) else Some s)"
dc78d2d9e90a added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents: 30738
diff changeset
    21
proof cases
dc78d2d9e90a added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents: 30738
diff changeset
    22
  assume "b s"
dc78d2d9e90a added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents: 30738
diff changeset
    23
  show ?thesis
dc78d2d9e90a added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents: 30738
diff changeset
    24
  proof (cases "\<exists>k. ~ b ((c ^^ k) s)")
dc78d2d9e90a added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents: 30738
diff changeset
    25
    case True
dc78d2d9e90a added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents: 30738
diff changeset
    26
    then obtain k where 1: "~ b ((c ^^ k) s)" ..
dc78d2d9e90a added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents: 30738
diff changeset
    27
    with `b s` obtain l where "k = Suc l" by (cases k) auto
dc78d2d9e90a added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents: 30738
diff changeset
    28
    with 1 have "~ b ((c ^^ l) (c s))" by (auto simp: funpow_swap1)
dc78d2d9e90a added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents: 30738
diff changeset
    29
    then have 2: "\<exists>l. ~ b ((c ^^ l) (c s))" ..
dc78d2d9e90a added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents: 30738
diff changeset
    30
    from 1
dc78d2d9e90a added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents: 30738
diff changeset
    31
    have "(LEAST k. ~ b ((c ^^ k) s)) = Suc (LEAST l. ~ b ((c ^^ Suc l) s))"
dc78d2d9e90a added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents: 30738
diff changeset
    32
      by (rule Least_Suc) (simp add: `b s`)
dc78d2d9e90a added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents: 30738
diff changeset
    33
    also have "... = Suc (LEAST l. ~ b ((c ^^ l) (c s)))"
dc78d2d9e90a added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents: 30738
diff changeset
    34
      by (simp add: funpow_swap1)
dc78d2d9e90a added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents: 30738
diff changeset
    35
    finally
dc78d2d9e90a added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents: 30738
diff changeset
    36
    show ?thesis 
dc78d2d9e90a added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents: 30738
diff changeset
    37
      using True 2 `b s` by (simp add: funpow_swap1 while_option_def)
dc78d2d9e90a added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents: 30738
diff changeset
    38
  next
dc78d2d9e90a added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents: 30738
diff changeset
    39
    case False
dc78d2d9e90a added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents: 30738
diff changeset
    40
    then have "~ (\<exists>l. ~ b ((c ^^ Suc l) s))" by blast
dc78d2d9e90a added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents: 30738
diff changeset
    41
    then have "~ (\<exists>l. ~ b ((c ^^ l) (c s)))"
dc78d2d9e90a added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents: 30738
diff changeset
    42
      by (simp add: funpow_swap1)
dc78d2d9e90a added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents: 30738
diff changeset
    43
    with False  `b s` show ?thesis by (simp add: while_option_def)
dc78d2d9e90a added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents: 30738
diff changeset
    44
  qed
dc78d2d9e90a added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents: 30738
diff changeset
    45
next
dc78d2d9e90a added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents: 30738
diff changeset
    46
  assume [simp]: "~ b s"
dc78d2d9e90a added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents: 30738
diff changeset
    47
  have least: "(LEAST k. ~ b ((c ^^ k) s)) = 0"
dc78d2d9e90a added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents: 30738
diff changeset
    48
    by (rule Least_equality) auto
dc78d2d9e90a added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents: 30738
diff changeset
    49
  moreover 
dc78d2d9e90a added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents: 30738
diff changeset
    50
  have "\<exists>k. ~ b ((c ^^ k) s)" by (rule exI[of _ "0::nat"]) auto
dc78d2d9e90a added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents: 30738
diff changeset
    51
  ultimately show ?thesis unfolding while_option_def by auto 
dc78d2d9e90a added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents: 30738
diff changeset
    52
qed
10251
5cc44cae9590 A general ``while'' combinator (from main HOL);
wenzelm
parents:
diff changeset
    53
45834
9c232d370244 connect while_option with lfp
nipkow
parents: 41764
diff changeset
    54
lemma while_option_stop2:
9c232d370244 connect while_option with lfp
nipkow
parents: 41764
diff changeset
    55
 "while_option b c s = Some t \<Longrightarrow> EX k. t = (c^^k) s \<and> \<not> b t"
9c232d370244 connect while_option with lfp
nipkow
parents: 41764
diff changeset
    56
apply(simp add: while_option_def split: if_splits)
46365
547d1a1dcaf6 rename lambda translation schemes
blanchet
parents: 45834
diff changeset
    57
by (metis (lifting) LeastI_ex)
45834
9c232d370244 connect while_option with lfp
nipkow
parents: 41764
diff changeset
    58
9c232d370244 connect while_option with lfp
nipkow
parents: 41764
diff changeset
    59
lemma while_option_stop: "while_option b c s = Some t \<Longrightarrow> ~ b t"
9c232d370244 connect while_option with lfp
nipkow
parents: 41764
diff changeset
    60
by(metis while_option_stop2)
37757
dc78d2d9e90a added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents: 30738
diff changeset
    61
dc78d2d9e90a added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents: 30738
diff changeset
    62
theorem while_option_rule:
dc78d2d9e90a added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents: 30738
diff changeset
    63
assumes step: "!!s. P s ==> b s ==> P (c s)"
dc78d2d9e90a added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents: 30738
diff changeset
    64
and result: "while_option b c s = Some t"
dc78d2d9e90a added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents: 30738
diff changeset
    65
and init: "P s"
dc78d2d9e90a added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents: 30738
diff changeset
    66
shows "P t"
dc78d2d9e90a added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents: 30738
diff changeset
    67
proof -
dc78d2d9e90a added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents: 30738
diff changeset
    68
  def k == "LEAST k. ~ b ((c ^^ k) s)"
dc78d2d9e90a added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents: 30738
diff changeset
    69
  from assms have t: "t = (c ^^ k) s"
dc78d2d9e90a added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents: 30738
diff changeset
    70
    by (simp add: while_option_def k_def split: if_splits)    
dc78d2d9e90a added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents: 30738
diff changeset
    71
  have 1: "ALL i<k. b ((c ^^ i) s)"
dc78d2d9e90a added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents: 30738
diff changeset
    72
    by (auto simp: k_def dest: not_less_Least)
dc78d2d9e90a added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents: 30738
diff changeset
    73
dc78d2d9e90a added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents: 30738
diff changeset
    74
  { fix i assume "i <= k" then have "P ((c ^^ i) s)"
dc78d2d9e90a added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents: 30738
diff changeset
    75
      by (induct i) (auto simp: init step 1) }
dc78d2d9e90a added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents: 30738
diff changeset
    76
  thus "P t" by (auto simp: t)
dc78d2d9e90a added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents: 30738
diff changeset
    77
qed
dc78d2d9e90a added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents: 30738
diff changeset
    78
50577
cfbad2d08412 useful commutative diagram for while_option
traytel
parents: 50180
diff changeset
    79
lemma funpow_commute: 
cfbad2d08412 useful commutative diagram for while_option
traytel
parents: 50180
diff changeset
    80
  "\<lbrakk>\<forall>k' < k. f (c ((c^^k') s)) = c' (f ((c^^k') s))\<rbrakk> \<Longrightarrow> f ((c^^k) s) = (c'^^k) (f s)"
cfbad2d08412 useful commutative diagram for while_option
traytel
parents: 50180
diff changeset
    81
by (induct k arbitrary: s) auto
cfbad2d08412 useful commutative diagram for while_option
traytel
parents: 50180
diff changeset
    82
54050
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
    83
lemma while_option_commute_invariant:
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
    84
assumes Invariant: "\<And>s. P s \<Longrightarrow> b s \<Longrightarrow> P (c s)"
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
    85
assumes TestCommute: "\<And>s. P s \<Longrightarrow> b s = b' (f s)"
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
    86
assumes BodyCommute: "\<And>s. P s \<Longrightarrow> b s \<Longrightarrow> f (c s) = c' (f s)"
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
    87
assumes Initial: "P s"
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
    88
shows "Option.map f (while_option b c s) = while_option b' c' (f s)"
50577
cfbad2d08412 useful commutative diagram for while_option
traytel
parents: 50180
diff changeset
    89
unfolding while_option_def
cfbad2d08412 useful commutative diagram for while_option
traytel
parents: 50180
diff changeset
    90
proof (rule trans[OF if_distrib if_cong], safe, unfold option.inject)
54050
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
    91
  fix k
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
    92
  assume "\<not> b ((c ^^ k) s)"
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
    93
  with Initial show "\<exists>k. \<not> b' ((c' ^^ k) (f s))"
50577
cfbad2d08412 useful commutative diagram for while_option
traytel
parents: 50180
diff changeset
    94
  proof (induction k arbitrary: s)
54050
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
    95
    case 0 thus ?case by (auto simp: TestCommute intro: exI[of _ 0])
50577
cfbad2d08412 useful commutative diagram for while_option
traytel
parents: 50180
diff changeset
    96
  next
54050
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
    97
    case (Suc k) thus ?case
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
    98
    proof (cases "b s")
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
    99
      assume "b s"
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
   100
      with Suc.IH[of "c s"] Suc.prems show ?thesis
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
   101
        by (metis BodyCommute Invariant comp_apply funpow.simps(2) funpow_swap1)
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
   102
    next
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
   103
      assume "\<not> b s"
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
   104
      with Suc show ?thesis by (auto simp: TestCommute intro: exI [of _ 0])
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
   105
    qed
50577
cfbad2d08412 useful commutative diagram for while_option
traytel
parents: 50180
diff changeset
   106
  qed
cfbad2d08412 useful commutative diagram for while_option
traytel
parents: 50180
diff changeset
   107
next
54050
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
   108
  fix k
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
   109
  assume "\<not> b' ((c' ^^ k) (f s))"
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
   110
  with Initial show "\<exists>k. \<not> b ((c ^^ k) s)"
50577
cfbad2d08412 useful commutative diagram for while_option
traytel
parents: 50180
diff changeset
   111
  proof (induction k arbitrary: s)
54050
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
   112
    case 0 thus ?case by (auto simp: TestCommute intro: exI[of _ 0])
50577
cfbad2d08412 useful commutative diagram for while_option
traytel
parents: 50180
diff changeset
   113
  next
54050
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
   114
    case (Suc k) thus ?case
50577
cfbad2d08412 useful commutative diagram for while_option
traytel
parents: 50180
diff changeset
   115
    proof (cases "b s")
54050
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
   116
       assume "b s"
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
   117
      with Suc.IH[of "c s"] Suc.prems show ?thesis
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
   118
        by (metis BodyCommute Invariant comp_apply funpow.simps(2) funpow_swap1)
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
   119
    next
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
   120
      assume "\<not> b s"
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
   121
      with Suc show ?thesis by (auto simp: TestCommute intro: exI [of _ 0])
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
   122
    qed
50577
cfbad2d08412 useful commutative diagram for while_option
traytel
parents: 50180
diff changeset
   123
  qed
cfbad2d08412 useful commutative diagram for while_option
traytel
parents: 50180
diff changeset
   124
next
54050
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
   125
  fix k
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
   126
  assume k: "\<not> b' ((c' ^^ k) (f s))"
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
   127
  have *: "(LEAST k. \<not> b' ((c' ^^ k) (f s))) = (LEAST k. \<not> b ((c ^^ k) s))"
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
   128
          (is "?k' = ?k")
50577
cfbad2d08412 useful commutative diagram for while_option
traytel
parents: 50180
diff changeset
   129
  proof (cases ?k')
cfbad2d08412 useful commutative diagram for while_option
traytel
parents: 50180
diff changeset
   130
    case 0
54050
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
   131
    have "\<not> b' ((c' ^^ 0) (f s))"
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
   132
      unfolding 0[symmetric] by (rule LeastI[of _ k]) (rule k)
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
   133
    hence "\<not> b s" by (auto simp: TestCommute Initial)
50577
cfbad2d08412 useful commutative diagram for while_option
traytel
parents: 50180
diff changeset
   134
    hence "?k = 0" by (intro Least_equality) auto
cfbad2d08412 useful commutative diagram for while_option
traytel
parents: 50180
diff changeset
   135
    with 0 show ?thesis by auto
cfbad2d08412 useful commutative diagram for while_option
traytel
parents: 50180
diff changeset
   136
  next
cfbad2d08412 useful commutative diagram for while_option
traytel
parents: 50180
diff changeset
   137
    case (Suc k')
54050
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
   138
    have "\<not> b' ((c' ^^ Suc k') (f s))"
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
   139
      unfolding Suc[symmetric] by (rule LeastI) (rule k)
50577
cfbad2d08412 useful commutative diagram for while_option
traytel
parents: 50180
diff changeset
   140
    moreover
cfbad2d08412 useful commutative diagram for while_option
traytel
parents: 50180
diff changeset
   141
    { fix k assume "k \<le> k'"
cfbad2d08412 useful commutative diagram for while_option
traytel
parents: 50180
diff changeset
   142
      hence "k < ?k'" unfolding Suc by simp
cfbad2d08412 useful commutative diagram for while_option
traytel
parents: 50180
diff changeset
   143
      hence "b' ((c' ^^ k) (f s))" by (rule iffD1[OF not_not, OF not_less_Least])
54050
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
   144
    }
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
   145
    note b' = this
50577
cfbad2d08412 useful commutative diagram for while_option
traytel
parents: 50180
diff changeset
   146
    { fix k assume "k \<le> k'"
54050
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
   147
      hence "f ((c ^^ k) s) = (c' ^^ k) (f s)"
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
   148
      and "b ((c ^^ k) s) = b' ((c' ^^ k) (f s))"
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
   149
      and "P ((c ^^ k) s)"
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
   150
        by (induct k) (auto simp: b' assms)
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
   151
      with `k \<le> k'`
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
   152
      have "b ((c ^^ k) s)"
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
   153
      and "f ((c ^^ k) s) = (c' ^^ k) (f s)"
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
   154
      and "P ((c ^^ k) s)"
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
   155
        by (auto simp: b')
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
   156
    }
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
   157
    note b = this(1) and body = this(2) and inv = this(3)
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
   158
    hence k': "f ((c ^^ k') s) = (c' ^^ k') (f s)" by auto
50577
cfbad2d08412 useful commutative diagram for while_option
traytel
parents: 50180
diff changeset
   159
    ultimately show ?thesis unfolding Suc using b
54050
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
   160
    proof (intro Least_equality[symmetric])
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
   161
      case goal1
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
   162
      hence Test: "\<not> b' (f ((c ^^ Suc k') s))"
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
   163
        by (auto simp: BodyCommute inv b)
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
   164
      have "P ((c ^^ Suc k') s)" by (auto simp: Invariant inv b)
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
   165
      with Test show ?case by (auto simp: TestCommute)
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
   166
    next
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
   167
      case goal2 thus ?case by (metis not_less_eq_eq)
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
   168
    qed
50577
cfbad2d08412 useful commutative diagram for while_option
traytel
parents: 50180
diff changeset
   169
  qed
cfbad2d08412 useful commutative diagram for while_option
traytel
parents: 50180
diff changeset
   170
  have "f ((c ^^ ?k) s) = (c' ^^ ?k') (f s)" unfolding *
54050
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
   171
  proof (rule funpow_commute, clarify)
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
   172
    fix k assume "k < ?k"
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
   173
    hence TestTrue: "b ((c ^^ k) s)" by (auto dest: not_less_Least)
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
   174
    from `k < ?k` have "P ((c ^^ k) s)"
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
   175
    proof (induct k)
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
   176
      case 0 thus ?case by (auto simp: assms)
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
   177
    next
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
   178
      case (Suc h)
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
   179
      hence "P ((c ^^ h) s)" by auto
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
   180
      with Suc show ?case
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
   181
        by (auto, metis (lifting, no_types) Invariant Suc_lessD not_less_Least)
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
   182
    qed
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
   183
    with TestTrue show "f (c ((c ^^ k) s)) = c' (f ((c ^^ k) s))"
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
   184
      by (metis BodyCommute)
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
   185
  qed
50577
cfbad2d08412 useful commutative diagram for while_option
traytel
parents: 50180
diff changeset
   186
  thus "\<exists>z. (c ^^ ?k) s = z \<and> f z = (c' ^^ ?k') (f s)" by blast
cfbad2d08412 useful commutative diagram for while_option
traytel
parents: 50180
diff changeset
   187
qed
37757
dc78d2d9e90a added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents: 30738
diff changeset
   188
54050
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
   189
lemma while_option_commute:
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
   190
  assumes "\<And>s. b s = b' (f s)" "\<And>s. \<lbrakk>b s\<rbrakk> \<Longrightarrow> f (c s) = c' (f s)" 
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
   191
  shows "Option.map f (while_option b c s) = while_option b' c' (f s)"
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
   192
by(rule while_option_commute_invariant[where P = "\<lambda>_. True"])
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
   193
  (auto simp add: assms)
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
   194
37760
8380686be5cd moved example to its own file in HOL/ex
krauss
parents: 37757
diff changeset
   195
subsection {* Total version *}
37757
dc78d2d9e90a added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents: 30738
diff changeset
   196
dc78d2d9e90a added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents: 30738
diff changeset
   197
definition while :: "('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a"
dc78d2d9e90a added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents: 30738
diff changeset
   198
where "while b c s = the (while_option b c s)"
dc78d2d9e90a added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents: 30738
diff changeset
   199
50008
eb7f574d0303 code for while directly, not via while_option
nipkow
parents: 46365
diff changeset
   200
lemma while_unfold [code]:
37757
dc78d2d9e90a added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents: 30738
diff changeset
   201
  "while b c s = (if b s then while b c (c s) else s)"
dc78d2d9e90a added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents: 30738
diff changeset
   202
unfolding while_def by (subst while_option_unfold) simp
10984
8f49dcbec859 Merged Example into While_Combi
nipkow
parents: 10774
diff changeset
   203
18372
2bffdf62fe7f tuned proofs;
wenzelm
parents: 15197
diff changeset
   204
lemma def_while_unfold:
2bffdf62fe7f tuned proofs;
wenzelm
parents: 15197
diff changeset
   205
  assumes fdef: "f == while test do"
2bffdf62fe7f tuned proofs;
wenzelm
parents: 15197
diff changeset
   206
  shows "f x = (if test x then f(do x) else x)"
37757
dc78d2d9e90a added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents: 30738
diff changeset
   207
unfolding fdef by (fact while_unfold)
14300
bf8b8c9425c3 *** empty log message ***
nipkow
parents: 12791
diff changeset
   208
bf8b8c9425c3 *** empty log message ***
nipkow
parents: 12791
diff changeset
   209
10251
5cc44cae9590 A general ``while'' combinator (from main HOL);
wenzelm
parents:
diff changeset
   210
text {*
5cc44cae9590 A general ``while'' combinator (from main HOL);
wenzelm
parents:
diff changeset
   211
 The proof rule for @{term while}, where @{term P} is the invariant.
5cc44cae9590 A general ``while'' combinator (from main HOL);
wenzelm
parents:
diff changeset
   212
*}
5cc44cae9590 A general ``while'' combinator (from main HOL);
wenzelm
parents:
diff changeset
   213
18372
2bffdf62fe7f tuned proofs;
wenzelm
parents: 15197
diff changeset
   214
theorem while_rule_lemma:
2bffdf62fe7f tuned proofs;
wenzelm
parents: 15197
diff changeset
   215
  assumes invariant: "!!s. P s ==> b s ==> P (c s)"
2bffdf62fe7f tuned proofs;
wenzelm
parents: 15197
diff changeset
   216
    and terminate: "!!s. P s ==> \<not> b s ==> Q s"
2bffdf62fe7f tuned proofs;
wenzelm
parents: 15197
diff changeset
   217
    and wf: "wf {(t, s). P s \<and> b s \<and> t = c s}"
2bffdf62fe7f tuned proofs;
wenzelm
parents: 15197
diff changeset
   218
  shows "P s \<Longrightarrow> Q (while b c s)"
19736
wenzelm
parents: 18372
diff changeset
   219
  using wf
wenzelm
parents: 18372
diff changeset
   220
  apply (induct s)
18372
2bffdf62fe7f tuned proofs;
wenzelm
parents: 15197
diff changeset
   221
  apply simp
2bffdf62fe7f tuned proofs;
wenzelm
parents: 15197
diff changeset
   222
  apply (subst while_unfold)
2bffdf62fe7f tuned proofs;
wenzelm
parents: 15197
diff changeset
   223
  apply (simp add: invariant terminate)
2bffdf62fe7f tuned proofs;
wenzelm
parents: 15197
diff changeset
   224
  done
10251
5cc44cae9590 A general ``while'' combinator (from main HOL);
wenzelm
parents:
diff changeset
   225
10653
55f33da63366 small mods.
nipkow
parents: 10269
diff changeset
   226
theorem while_rule:
10984
8f49dcbec859 Merged Example into While_Combi
nipkow
parents: 10774
diff changeset
   227
  "[| P s;
8f49dcbec859 Merged Example into While_Combi
nipkow
parents: 10774
diff changeset
   228
      !!s. [| P s; b s  |] ==> P (c s);
8f49dcbec859 Merged Example into While_Combi
nipkow
parents: 10774
diff changeset
   229
      !!s. [| P s; \<not> b s  |] ==> Q s;
10997
e14029f92770 avoid dead code;
wenzelm
parents: 10984
diff changeset
   230
      wf r;
10984
8f49dcbec859 Merged Example into While_Combi
nipkow
parents: 10774
diff changeset
   231
      !!s. [| P s; b s  |] ==> (c s, s) \<in> r |] ==>
8f49dcbec859 Merged Example into While_Combi
nipkow
parents: 10774
diff changeset
   232
   Q (while b c s)"
19736
wenzelm
parents: 18372
diff changeset
   233
  apply (rule while_rule_lemma)
wenzelm
parents: 18372
diff changeset
   234
     prefer 4 apply assumption
wenzelm
parents: 18372
diff changeset
   235
    apply blast
wenzelm
parents: 18372
diff changeset
   236
   apply blast
wenzelm
parents: 18372
diff changeset
   237
  apply (erule wf_subset)
wenzelm
parents: 18372
diff changeset
   238
  apply blast
wenzelm
parents: 18372
diff changeset
   239
  done
10653
55f33da63366 small mods.
nipkow
parents: 10269
diff changeset
   240
41720
f749155883d7 added termination lemmas
nipkow
parents: 37760
diff changeset
   241
text{* Proving termination: *}
f749155883d7 added termination lemmas
nipkow
parents: 37760
diff changeset
   242
f749155883d7 added termination lemmas
nipkow
parents: 37760
diff changeset
   243
theorem wf_while_option_Some:
41764
5268aef2fe83 generalized termination lemmas
nipkow
parents: 41720
diff changeset
   244
  assumes "wf {(t, s). (P s \<and> b s) \<and> t = c s}"
5268aef2fe83 generalized termination lemmas
nipkow
parents: 41720
diff changeset
   245
  and "!!s. P s \<Longrightarrow> b s \<Longrightarrow> P(c s)" and "P s"
41720
f749155883d7 added termination lemmas
nipkow
parents: 37760
diff changeset
   246
  shows "EX t. while_option b c s = Some t"
41764
5268aef2fe83 generalized termination lemmas
nipkow
parents: 41720
diff changeset
   247
using assms(1,3)
54050
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
   248
proof (induction s)
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
   249
  case less thus ?case using assms(2)
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
   250
    by (subst while_option_unfold) simp
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
   251
qed
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
   252
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
   253
lemma wf_rel_while_option_Some:
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
   254
assumes wf: "wf R"
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
   255
assumes smaller: "\<And>s. P s \<and> b s \<Longrightarrow> (c s, s) \<in> R"
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
   256
assumes inv: "\<And>s. P s \<and> b s \<Longrightarrow> P(c s)"
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
   257
assumes init: "P s"
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
   258
shows "\<exists>t. while_option b c s = Some t"
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
   259
proof -
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
   260
 from smaller have "{(t,s). P s \<and> b s \<and> t = c s} \<subseteq> R" by auto
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
   261
 with wf have "wf {(t,s). P s \<and> b s \<and> t = c s}" by (auto simp: wf_subset)
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
   262
 with inv init show ?thesis by (auto simp: wf_while_option_Some)
48c800d8ba2d added and generalised lemmas
nipkow
parents: 54047
diff changeset
   263
qed
41720
f749155883d7 added termination lemmas
nipkow
parents: 37760
diff changeset
   264
f749155883d7 added termination lemmas
nipkow
parents: 37760
diff changeset
   265
theorem measure_while_option_Some: fixes f :: "'s \<Rightarrow> nat"
41764
5268aef2fe83 generalized termination lemmas
nipkow
parents: 41720
diff changeset
   266
shows "(!!s. P s \<Longrightarrow> b s \<Longrightarrow> P(c s) \<and> f(c s) < f s)
5268aef2fe83 generalized termination lemmas
nipkow
parents: 41720
diff changeset
   267
  \<Longrightarrow> P s \<Longrightarrow> EX t. while_option b c s = Some t"
5268aef2fe83 generalized termination lemmas
nipkow
parents: 41720
diff changeset
   268
by(blast intro: wf_while_option_Some[OF wf_if_measure, of P b f])
10251
5cc44cae9590 A general ``while'' combinator (from main HOL);
wenzelm
parents:
diff changeset
   269
45834
9c232d370244 connect while_option with lfp
nipkow
parents: 41764
diff changeset
   270
text{* Kleene iteration starting from the empty set and assuming some finite
9c232d370244 connect while_option with lfp
nipkow
parents: 41764
diff changeset
   271
bounding set: *}
9c232d370244 connect while_option with lfp
nipkow
parents: 41764
diff changeset
   272
9c232d370244 connect while_option with lfp
nipkow
parents: 41764
diff changeset
   273
lemma while_option_finite_subset_Some: fixes C :: "'a set"
9c232d370244 connect while_option with lfp
nipkow
parents: 41764
diff changeset
   274
  assumes "mono f" and "!!X. X \<subseteq> C \<Longrightarrow> f X \<subseteq> C" and "finite C"
9c232d370244 connect while_option with lfp
nipkow
parents: 41764
diff changeset
   275
  shows "\<exists>P. while_option (\<lambda>A. f A \<noteq> A) f {} = Some P"
9c232d370244 connect while_option with lfp
nipkow
parents: 41764
diff changeset
   276
proof(rule measure_while_option_Some[where
9c232d370244 connect while_option with lfp
nipkow
parents: 41764
diff changeset
   277
    f= "%A::'a set. card C - card A" and P= "%A. A \<subseteq> C \<and> A \<subseteq> f A" and s= "{}"])
9c232d370244 connect while_option with lfp
nipkow
parents: 41764
diff changeset
   278
  fix A assume A: "A \<subseteq> C \<and> A \<subseteq> f A" "f A \<noteq> A"
9c232d370244 connect while_option with lfp
nipkow
parents: 41764
diff changeset
   279
  show "(f A \<subseteq> C \<and> f A \<subseteq> f (f A)) \<and> card C - card (f A) < card C - card A"
9c232d370244 connect while_option with lfp
nipkow
parents: 41764
diff changeset
   280
    (is "?L \<and> ?R")
9c232d370244 connect while_option with lfp
nipkow
parents: 41764
diff changeset
   281
  proof
9c232d370244 connect while_option with lfp
nipkow
parents: 41764
diff changeset
   282
    show ?L by(metis A(1) assms(2) monoD[OF `mono f`])
9c232d370244 connect while_option with lfp
nipkow
parents: 41764
diff changeset
   283
    show ?R by (metis A assms(2,3) card_seteq diff_less_mono2 equalityI linorder_le_less_linear rev_finite_subset)
9c232d370244 connect while_option with lfp
nipkow
parents: 41764
diff changeset
   284
  qed
9c232d370244 connect while_option with lfp
nipkow
parents: 41764
diff changeset
   285
qed simp
9c232d370244 connect while_option with lfp
nipkow
parents: 41764
diff changeset
   286
9c232d370244 connect while_option with lfp
nipkow
parents: 41764
diff changeset
   287
lemma lfp_the_while_option:
9c232d370244 connect while_option with lfp
nipkow
parents: 41764
diff changeset
   288
  assumes "mono f" and "!!X. X \<subseteq> C \<Longrightarrow> f X \<subseteq> C" and "finite C"
9c232d370244 connect while_option with lfp
nipkow
parents: 41764
diff changeset
   289
  shows "lfp f = the(while_option (\<lambda>A. f A \<noteq> A) f {})"
9c232d370244 connect while_option with lfp
nipkow
parents: 41764
diff changeset
   290
proof-
9c232d370244 connect while_option with lfp
nipkow
parents: 41764
diff changeset
   291
  obtain P where "while_option (\<lambda>A. f A \<noteq> A) f {} = Some P"
9c232d370244 connect while_option with lfp
nipkow
parents: 41764
diff changeset
   292
    using while_option_finite_subset_Some[OF assms] by blast
9c232d370244 connect while_option with lfp
nipkow
parents: 41764
diff changeset
   293
  with while_option_stop2[OF this] lfp_Kleene_iter[OF assms(1)]
9c232d370244 connect while_option with lfp
nipkow
parents: 41764
diff changeset
   294
  show ?thesis by auto
9c232d370244 connect while_option with lfp
nipkow
parents: 41764
diff changeset
   295
qed
9c232d370244 connect while_option with lfp
nipkow
parents: 41764
diff changeset
   296
50180
c6626861c31a moved lemma
nipkow
parents: 50008
diff changeset
   297
lemma lfp_while:
c6626861c31a moved lemma
nipkow
parents: 50008
diff changeset
   298
  assumes "mono f" and "!!X. X \<subseteq> C \<Longrightarrow> f X \<subseteq> C" and "finite C"
c6626861c31a moved lemma
nipkow
parents: 50008
diff changeset
   299
  shows "lfp f = while (\<lambda>A. f A \<noteq> A) f {}"
c6626861c31a moved lemma
nipkow
parents: 50008
diff changeset
   300
unfolding while_def using assms by (rule lfp_the_while_option) blast
c6626861c31a moved lemma
nipkow
parents: 50008
diff changeset
   301
53217
1a8673a6d669 added rtrancl_while
nipkow
parents: 50577
diff changeset
   302
1a8673a6d669 added rtrancl_while
nipkow
parents: 50577
diff changeset
   303
text{* Computing the reflexive, transitive closure by iterating a successor
1a8673a6d669 added rtrancl_while
nipkow
parents: 50577
diff changeset
   304
function. Stops when an element is found that dos not satisfy the test.
1a8673a6d669 added rtrancl_while
nipkow
parents: 50577
diff changeset
   305
1a8673a6d669 added rtrancl_while
nipkow
parents: 50577
diff changeset
   306
More refined (and hence more efficient) versions can be found in ITP 2011 paper
1a8673a6d669 added rtrancl_while
nipkow
parents: 50577
diff changeset
   307
by Nipkow (the theories are in the AFP entry Flyspeck by Nipkow)
1a8673a6d669 added rtrancl_while
nipkow
parents: 50577
diff changeset
   308
and the AFP article Executable Transitive Closures by René Thiemann. *}
1a8673a6d669 added rtrancl_while
nipkow
parents: 50577
diff changeset
   309
1a8673a6d669 added rtrancl_while
nipkow
parents: 50577
diff changeset
   310
definition rtrancl_while :: "('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'a list) \<Rightarrow> 'a
1a8673a6d669 added rtrancl_while
nipkow
parents: 50577
diff changeset
   311
  \<Rightarrow> ('a list * 'a set) option"
1a8673a6d669 added rtrancl_while
nipkow
parents: 50577
diff changeset
   312
where "rtrancl_while p f x =
1a8673a6d669 added rtrancl_while
nipkow
parents: 50577
diff changeset
   313
  while_option (%(ws,_). ws \<noteq> [] \<and> p(hd ws))
1a8673a6d669 added rtrancl_while
nipkow
parents: 50577
diff changeset
   314
    ((%(ws,Z).
1a8673a6d669 added rtrancl_while
nipkow
parents: 50577
diff changeset
   315
     let x = hd ws; new = filter (\<lambda>y. y \<notin> Z) (f x)
54047
nipkow
parents: 53381
diff changeset
   316
     in (new @ tl ws, set new \<union> Z)))
53220
nipkow
parents: 53217
diff changeset
   317
    ([x],{x})"
53217
1a8673a6d669 added rtrancl_while
nipkow
parents: 50577
diff changeset
   318
1a8673a6d669 added rtrancl_while
nipkow
parents: 50577
diff changeset
   319
lemma rtrancl_while_Some: assumes "rtrancl_while p f x = Some(ws,Z)"
1a8673a6d669 added rtrancl_while
nipkow
parents: 50577
diff changeset
   320
shows "if ws = []
1a8673a6d669 added rtrancl_while
nipkow
parents: 50577
diff changeset
   321
       then Z = {(x,y). y \<in> set(f x)}^* `` {x} \<and> (\<forall>z\<in>Z. p z)
1a8673a6d669 added rtrancl_while
nipkow
parents: 50577
diff changeset
   322
       else \<not>p(hd ws) \<and> hd ws \<in> {(x,y). y \<in> set(f x)}^* `` {x}"
1a8673a6d669 added rtrancl_while
nipkow
parents: 50577
diff changeset
   323
proof-
1a8673a6d669 added rtrancl_while
nipkow
parents: 50577
diff changeset
   324
  let ?test = "(%(ws,_). ws \<noteq> [] \<and> p(hd ws))"
1a8673a6d669 added rtrancl_while
nipkow
parents: 50577
diff changeset
   325
  let ?step = "(%(ws,Z).
1a8673a6d669 added rtrancl_while
nipkow
parents: 50577
diff changeset
   326
     let x = hd ws; new = filter (\<lambda>y. y \<notin> Z) (f x)
54047
nipkow
parents: 53381
diff changeset
   327
     in (new @ tl ws, set new \<union> Z))"
53217
1a8673a6d669 added rtrancl_while
nipkow
parents: 50577
diff changeset
   328
  let ?R = "{(x,y). y \<in> set(f x)}"
53220
nipkow
parents: 53217
diff changeset
   329
  let ?Inv = "%(ws,Z). x \<in> Z \<and> set ws \<subseteq> Z \<and> ?R `` (Z - set ws) \<subseteq> Z \<and>
nipkow
parents: 53217
diff changeset
   330
                       Z \<subseteq> ?R^* `` {x} \<and> (\<forall>z\<in>Z - set ws. p z)"
53217
1a8673a6d669 added rtrancl_while
nipkow
parents: 50577
diff changeset
   331
  { fix ws Z assume 1: "?Inv(ws,Z)" and 2: "?test(ws,Z)"
1a8673a6d669 added rtrancl_while
nipkow
parents: 50577
diff changeset
   332
    from 2 obtain v vs where [simp]: "ws = v#vs" by (auto simp: neq_Nil_conv)
1a8673a6d669 added rtrancl_while
nipkow
parents: 50577
diff changeset
   333
    have "?Inv(?step (ws,Z))" using 1 2
1a8673a6d669 added rtrancl_while
nipkow
parents: 50577
diff changeset
   334
      by (auto intro: rtrancl.rtrancl_into_rtrancl)
1a8673a6d669 added rtrancl_while
nipkow
parents: 50577
diff changeset
   335
  } note inv = this
1a8673a6d669 added rtrancl_while
nipkow
parents: 50577
diff changeset
   336
  hence "!!p. ?Inv p \<Longrightarrow> ?test p \<Longrightarrow> ?Inv(?step p)"
1a8673a6d669 added rtrancl_while
nipkow
parents: 50577
diff changeset
   337
    apply(tactic {* split_all_tac @{context} 1 *})
1a8673a6d669 added rtrancl_while
nipkow
parents: 50577
diff changeset
   338
    using inv by iprover
53220
nipkow
parents: 53217
diff changeset
   339
  moreover have "?Inv ([x],{x})" by (simp)
53217
1a8673a6d669 added rtrancl_while
nipkow
parents: 50577
diff changeset
   340
  ultimately have I: "?Inv (ws,Z)"
1a8673a6d669 added rtrancl_while
nipkow
parents: 50577
diff changeset
   341
    by (rule while_option_rule[OF _ assms[unfolded rtrancl_while_def]])
1a8673a6d669 added rtrancl_while
nipkow
parents: 50577
diff changeset
   342
  { assume "ws = []"
1a8673a6d669 added rtrancl_while
nipkow
parents: 50577
diff changeset
   343
    hence ?thesis using I
1a8673a6d669 added rtrancl_while
nipkow
parents: 50577
diff changeset
   344
      by (auto simp del:Image_Collect_split dest: Image_closed_trancl)
1a8673a6d669 added rtrancl_while
nipkow
parents: 50577
diff changeset
   345
  } moreover
1a8673a6d669 added rtrancl_while
nipkow
parents: 50577
diff changeset
   346
  { assume "ws \<noteq> []"
1a8673a6d669 added rtrancl_while
nipkow
parents: 50577
diff changeset
   347
    hence ?thesis using I while_option_stop[OF assms[unfolded rtrancl_while_def]]
1a8673a6d669 added rtrancl_while
nipkow
parents: 50577
diff changeset
   348
      by (simp add: subset_iff)
1a8673a6d669 added rtrancl_while
nipkow
parents: 50577
diff changeset
   349
  }
1a8673a6d669 added rtrancl_while
nipkow
parents: 50577
diff changeset
   350
  ultimately show ?thesis by simp
1a8673a6d669 added rtrancl_while
nipkow
parents: 50577
diff changeset
   351
qed
1a8673a6d669 added rtrancl_while
nipkow
parents: 50577
diff changeset
   352
10251
5cc44cae9590 A general ``while'' combinator (from main HOL);
wenzelm
parents:
diff changeset
   353
end