| 
30946
 | 
     1  | 
(*  Authors:  Klaus Aehlig, Tobias Nipkow *)
  | 
| 
19829
 | 
     2  | 
  | 
| 
30946
 | 
     3  | 
header {* Testing implementation of normalization by evaluation *}
 | 
| 
19829
 | 
     4  | 
  | 
| 
 | 
     5  | 
theory NormalForm
  | 
| 
35372
 | 
     6  | 
imports Complex_Main
  | 
| 
19829
 | 
     7  | 
begin
  | 
| 
 | 
     8  | 
  | 
| 
21117
 | 
     9  | 
lemma "True" by normalization
  | 
| 
19971
 | 
    10  | 
lemma "p \<longrightarrow> True" by normalization
  | 
| 
28350
 | 
    11  | 
declare disj_assoc [code nbe]
  | 
| 
 | 
    12  | 
lemma "((P | Q) | R) = (P | (Q | R))" by normalization
  | 
| 
 | 
    13  | 
lemma "0 + (n::nat) = n" by normalization
  | 
| 
 | 
    14  | 
lemma "0 + Suc n = Suc n" by normalization
  | 
| 
 | 
    15  | 
lemma "Suc n + Suc m = n + Suc (Suc m)" by normalization
  | 
| 
19971
 | 
    16  | 
lemma "~((0::nat) < (0::nat))" by normalization
  | 
| 
 | 
    17  | 
  | 
| 
19829
 | 
    18  | 
datatype n = Z | S n
  | 
| 
28350
 | 
    19  | 
  | 
| 
30946
 | 
    20  | 
primrec add :: "n \<Rightarrow> n \<Rightarrow> n" where
  | 
| 
 | 
    21  | 
   "add Z = id"
  | 
| 
 | 
    22  | 
 | "add (S m) = S o add m"
  | 
| 
 | 
    23  | 
  | 
| 
 | 
    24  | 
primrec add2 :: "n \<Rightarrow> n \<Rightarrow> n" where
  | 
| 
 | 
    25  | 
   "add2 Z n = n"
  | 
| 
 | 
    26  | 
 | "add2 (S m) n = S(add2 m n)"
  | 
| 
19829
 | 
    27  | 
  | 
| 
28143
 | 
    28  | 
declare add2.simps [code]
  | 
| 
28709
 | 
    29  | 
lemma [code nbe]: "add2 (add2 n m) k = add2 n (add2 m k)"
  | 
| 
28143
 | 
    30  | 
  by (induct n) auto
  | 
| 
20842
 | 
    31  | 
lemma [code]: "add2 n (S m) =  S (add2 n m)"
  | 
| 
 | 
    32  | 
  by(induct n) auto
  | 
| 
19829
 | 
    33  | 
lemma [code]: "add2 n Z = n"
  | 
| 
20842
 | 
    34  | 
  by(induct n) auto
  | 
| 
19971
 | 
    35  | 
  | 
| 
28350
 | 
    36  | 
lemma "add2 (add2 n m) k = add2 n (add2 m k)" by normalization
  | 
| 
 | 
    37  | 
lemma "add2 (add2 (S n) (S m)) (S k) = S(S(S(add2 n (add2 m k))))" by normalization
  | 
| 
 | 
    38  | 
lemma "add2 (add2 (S n) (add2 (S m) Z)) (S k) = S(S(S(add2 n (add2 m k))))" by normalization
  | 
| 
19829
 | 
    39  | 
  | 
| 
30946
 | 
    40  | 
primrec mul :: "n \<Rightarrow> n \<Rightarrow> n" where
  | 
| 
 | 
    41  | 
   "mul Z = (%n. Z)"
  | 
| 
 | 
    42  | 
 | "mul (S m) = (%n. add (mul m n) n)"
  | 
| 
 | 
    43  | 
  | 
| 
 | 
    44  | 
primrec mul2 :: "n \<Rightarrow> n \<Rightarrow> n" where
  | 
| 
 | 
    45  | 
   "mul2 Z n = Z"
  | 
| 
 | 
    46  | 
 | "mul2 (S m) n = add2 n (mul2 m n)"
  | 
| 
 | 
    47  | 
  | 
| 
 | 
    48  | 
primrec exp :: "n \<Rightarrow> n \<Rightarrow> n" where
  | 
| 
 | 
    49  | 
   "exp m Z = S Z"
  | 
| 
 | 
    50  | 
 | "exp m (S n) = mul (exp m n) m"
  | 
| 
19829
 | 
    51  | 
  | 
| 
19971
 | 
    52  | 
lemma "mul2 (S(S(S(S(S Z))))) (S(S(S Z))) = S(S(S(S(S(S(S(S(S(S(S(S(S(S(S Z))))))))))))))" by normalization
  | 
| 
 | 
    53  | 
lemma "mul (S(S(S(S(S Z))))) (S(S(S Z))) = S(S(S(S(S(S(S(S(S(S(S(S(S(S(S Z))))))))))))))" by normalization
  | 
| 
 | 
    54  | 
lemma "exp (S(S Z)) (S(S(S(S Z)))) = exp (S(S(S(S Z)))) (S(S Z))" by normalization
  | 
| 
 | 
    55  | 
  | 
| 
 | 
    56  | 
lemma "(let ((x,y),(u,v)) = ((Z,Z),(Z,Z)) in add (add x y) (add u v)) = Z" by normalization
  | 
| 
28350
 | 
    57  | 
lemma "split (%x y. x) (a, b) = a" by normalization
  | 
| 
19971
 | 
    58  | 
lemma "(%((x,y),(u,v)). add (add x y) (add u v)) ((Z,Z),(Z,Z)) = Z" by normalization
  | 
| 
 | 
    59  | 
  | 
| 
 | 
    60  | 
lemma "case Z of Z \<Rightarrow> True | S x \<Rightarrow> False" by normalization
  | 
| 
19829
 | 
    61  | 
  | 
| 
20842
 | 
    62  | 
lemma "[] @ [] = []" by normalization
  | 
| 
28350
 | 
    63  | 
lemma "map f [x,y,z::'x] = [f x, f y, f z]" by normalization
  | 
| 
 | 
    64  | 
lemma "[a, b, c] @ xs = a # b # c # xs" by normalization
  | 
| 
 | 
    65  | 
lemma "[] @ xs = xs" by normalization
  | 
| 
 | 
    66  | 
lemma "map (%f. f True) [id, g, Not] = [True, g True, False]" by normalization
  | 
| 
 | 
    67  | 
  | 
| 
28422
 | 
    68  | 
lemma "map (%f. f True) ([id, g, Not] @ fs) = [True, g True, False] @ map (%f. f True) fs"
  | 
| 
 | 
    69  | 
  by normalization rule+
  | 
| 
28350
 | 
    70  | 
lemma "rev [a, b, c] = [c, b, a]" by normalization
  | 
| 
26739
 | 
    71  | 
normal_form "rev (a#b#cs) = rev cs @ [b, a]"
  | 
| 
19829
 | 
    72  | 
normal_form "map (%F. F [a,b,c::'x]) (map map [f,g,h])"
  | 
| 
 | 
    73  | 
normal_form "map (%F. F ([a,b,c] @ ds)) (map map ([f,g,h]@fs))"
  | 
| 
 | 
    74  | 
normal_form "map (%F. F [Z,S Z,S(S Z)]) (map map [S,add (S Z),mul (S(S Z)),id])"
  | 
| 
25934
 | 
    75  | 
lemma "map (%x. case x of None \<Rightarrow> False | Some y \<Rightarrow> True) [None, Some ()] = [False, True]" 
  | 
| 
 | 
    76  | 
  by normalization
  | 
| 
19829
 | 
    77  | 
normal_form "case xs of [] \<Rightarrow> True | x#xs \<Rightarrow> False"
  | 
| 
25934
 | 
    78  | 
normal_form "map (%x. case x of None \<Rightarrow> False | Some y \<Rightarrow> True) xs = P"
  | 
| 
28350
 | 
    79  | 
lemma "let x = y in [x, x] = [y, y]" by normalization
  | 
| 
 | 
    80  | 
lemma "Let y (%x. [x,x]) = [y, y]" by normalization
  | 
| 
19829
 | 
    81  | 
normal_form "case n of Z \<Rightarrow> True | S x \<Rightarrow> False"
  | 
| 
28350
 | 
    82  | 
lemma "(%(x,y). add x y) (S z,S z) = S (add z (S z))" by normalization
  | 
| 
19829
 | 
    83  | 
normal_form "filter (%x. x) ([True,False,x]@xs)"
  | 
| 
 | 
    84  | 
normal_form "filter Not ([True,False,x]@xs)"
  | 
| 
 | 
    85  | 
  | 
| 
28350
 | 
    86  | 
lemma "[x,y,z] @ [a,b,c] = [x, y, z, a, b, c]" by normalization
  | 
| 
 | 
    87  | 
lemma "(%(xs, ys). xs @ ys) ([a, b, c], [d, e, f]) = [a, b, c, d, e, f]" by normalization
  | 
| 
25100
 | 
    88  | 
lemma "map (%x. case x of None \<Rightarrow> False | Some y \<Rightarrow> True) [None, Some ()] = [False, True]" by normalization
  | 
| 
19829
 | 
    89  | 
  | 
| 
28350
 | 
    90  | 
lemma "last [a, b, c] = c" by normalization
  | 
| 
 | 
    91  | 
lemma "last ([a, b, c] @ xs) = last (c # xs)" by normalization
  | 
| 
19829
 | 
    92  | 
  | 
| 
28350
 | 
    93  | 
lemma "(2::int) + 3 - 1 + (- k) * 2 = 4 + - k * 2" by normalization
  | 
| 
20842
 | 
    94  | 
lemma "(-4::int) * 2 = -8" by normalization
  | 
| 
 | 
    95  | 
lemma "abs ((-4::int) + 2 * 1) = 2" by normalization
  | 
| 
 | 
    96  | 
lemma "(2::int) + 3 = 5" by normalization
  | 
| 
 | 
    97  | 
lemma "(2::int) + 3 * (- 4) * (- 1) = 14" by normalization
  | 
| 
 | 
    98  | 
lemma "(2::int) + 3 * (- 4) * 1 + 0 = -10" by normalization
  | 
| 
 | 
    99  | 
lemma "(2::int) < 3" by normalization
  | 
| 
 | 
   100  | 
lemma "(2::int) <= 3" by normalization
  | 
| 
 | 
   101  | 
lemma "abs ((-4::int) + 2 * 1) = 2" by normalization
  | 
| 
 | 
   102  | 
lemma "4 - 42 * abs (3 + (-7\<Colon>int)) = -164" by normalization
  | 
| 
 | 
   103  | 
lemma "(if (0\<Colon>nat) \<le> (x\<Colon>nat) then 0\<Colon>nat else x) = 0" by normalization
  | 
| 
22394
 | 
   104  | 
lemma "4 = Suc (Suc (Suc (Suc 0)))" by normalization
  | 
| 
 | 
   105  | 
lemma "nat 4 = Suc (Suc (Suc (Suc 0)))" by normalization
  | 
| 
25100
 | 
   106  | 
lemma "[Suc 0, 0] = [Suc 0, 0]" by normalization
  | 
| 
 | 
   107  | 
lemma "max (Suc 0) 0 = Suc 0" by normalization
  | 
| 
25187
 | 
   108  | 
lemma "(42::rat) / 1704 = 1 / 284 + 3 / 142" by normalization
  | 
| 
21059
 | 
   109  | 
normal_form "Suc 0 \<in> set ms"
  | 
| 
20922
 | 
   110  | 
  | 
| 
28350
 | 
   111  | 
lemma "f = f" by normalization
  | 
| 
 | 
   112  | 
lemma "f x = f x" by normalization
  | 
| 
 | 
   113  | 
lemma "(f o g) x = f (g x)" by normalization
  | 
| 
 | 
   114  | 
lemma "(f o id) x = f x" by normalization
  | 
| 
25934
 | 
   115  | 
normal_form "(\<lambda>x. x)"
  | 
| 
21987
 | 
   116  | 
  | 
| 
23396
 | 
   117  | 
(* Church numerals: *)
  | 
| 
 | 
   118  | 
  | 
| 
 | 
   119  | 
normal_form "(%m n f x. m f (n f x)) (%f x. f(f(f(x)))) (%f x. f(f(f(x))))"
  | 
| 
 | 
   120  | 
normal_form "(%m n f x. m (n f) x) (%f x. f(f(f(x)))) (%f x. f(f(f(x))))"
  | 
| 
 | 
   121  | 
normal_form "(%m n. n m) (%f x. f(f(f(x)))) (%f x. f(f(f(x))))"
  | 
| 
 | 
   122  | 
  | 
| 
32544
 | 
   123  | 
(* handling of type classes in connection with equality *)
  | 
| 
 | 
   124  | 
  | 
| 
 | 
   125  | 
lemma "map f [x, y] = [f x, f y]" by normalization
  | 
| 
 | 
   126  | 
lemma "(map f [x, y], w) = ([f x, f y], w)" by normalization
  | 
| 
 | 
   127  | 
lemma "map f [x, y] = [f x \<Colon> 'a\<Colon>semigroup_add, f y]" by normalization
  | 
| 
 | 
   128  | 
lemma "map f [x \<Colon> 'a\<Colon>semigroup_add, y] = [f x, f y]" by normalization
  | 
| 
 | 
   129  | 
lemma "(map f [x \<Colon> 'a\<Colon>semigroup_add, y], w \<Colon> 'b\<Colon>finite) = ([f x, f y], w)" by normalization
  | 
| 
 | 
   130  | 
  | 
| 
19829
 | 
   131  | 
end
  |