| author | haftmann | 
| Fri, 25 Sep 2020 05:26:09 +0000 | |
| changeset 72292 | 4a58c38b85ff | 
| parent 69593 | 3dda49e08b9d | 
| child 73270 | e2d03448d5b5 | 
| permissions | -rw-r--r-- | 
| 51599 | 1 | (* Title: HOL/Library/DAList_Multiset.thy | 
| 2 | Author: Lukas Bulwahn, TU Muenchen | |
| 3 | *) | |
| 4 | ||
| 58881 | 5 | section \<open>Multisets partially implemented by association lists\<close> | 
| 51599 | 6 | |
| 7 | theory DAList_Multiset | |
| 8 | imports Multiset DAList | |
| 9 | begin | |
| 10 | ||
| 58806 | 11 | text \<open>Delete prexisting code equations\<close> | 
| 51600 
197e25f13f0c
default implementation of multisets by list with reasonable coverage of operations on multisets
 haftmann parents: 
51599diff
changeset | 12 | |
| 66148 | 13 | declare [[code drop: "{#}" Multiset.is_empty add_mset
 | 
| 14 | "plus :: 'a multiset \<Rightarrow> _" "minus :: 'a multiset \<Rightarrow> _" | |
| 15 | inf_subset_mset sup_subset_mset image_mset filter_mset count | |
| 16 | "size :: _ multiset \<Rightarrow> nat" sum_mset prod_mset | |
| 17 | set_mset sorted_list_of_multiset subset_mset subseteq_mset | |
| 18 | equal_multiset_inst.equal_multiset]] | |
| 19 | ||
| 51600 
197e25f13f0c
default implementation of multisets by list with reasonable coverage of operations on multisets
 haftmann parents: 
51599diff
changeset | 20 | |
| 58806 | 21 | text \<open>Raw operations on lists\<close> | 
| 51599 | 22 | |
| 58806 | 23 | definition join_raw :: | 
| 24 |     "('key \<Rightarrow> 'val \<times> 'val \<Rightarrow> 'val) \<Rightarrow>
 | |
| 25 |       ('key \<times> 'val) list \<Rightarrow> ('key \<times> 'val) list \<Rightarrow> ('key \<times> 'val) list"
 | |
| 26 | where "join_raw f xs ys = foldr (\<lambda>(k, v). map_default k v (\<lambda>v'. f k (v', v))) ys xs" | |
| 51599 | 27 | |
| 58806 | 28 | lemma join_raw_Nil [simp]: "join_raw f xs [] = xs" | 
| 29 | by (simp add: join_raw_def) | |
| 51599 | 30 | |
| 31 | lemma join_raw_Cons [simp]: | |
| 58806 | 32 | "join_raw f xs ((k, v) # ys) = map_default k v (\<lambda>v'. f k (v', v)) (join_raw f xs ys)" | 
| 33 | by (simp add: join_raw_def) | |
| 51599 | 34 | |
| 35 | lemma map_of_join_raw: | |
| 36 | assumes "distinct (map fst ys)" | |
| 58806 | 37 | shows "map_of (join_raw f xs ys) x = | 
| 38 | (case map_of xs x of | |
| 39 | None \<Rightarrow> map_of ys x | |
| 40 | | Some v \<Rightarrow> (case map_of ys x of None \<Rightarrow> Some v | Some v' \<Rightarrow> Some (f x (v, v'))))" | |
| 41 | using assms | |
| 42 | apply (induct ys) | |
| 43 | apply (auto simp add: map_of_map_default split: option.split) | |
| 44 | apply (metis map_of_eq_None_iff option.simps(2) weak_map_of_SomeI) | |
| 45 | apply (metis Some_eq_map_of_iff map_of_eq_None_iff option.simps(2)) | |
| 46 | done | |
| 51599 | 47 | |
| 48 | lemma distinct_join_raw: | |
| 49 | assumes "distinct (map fst xs)" | |
| 50 | shows "distinct (map fst (join_raw f xs ys))" | |
| 58806 | 51 | using assms | 
| 51599 | 52 | proof (induct ys) | 
| 58806 | 53 | case Nil | 
| 54 | then show ?case by simp | |
| 55 | next | |
| 51599 | 56 | case (Cons y ys) | 
| 58806 | 57 | then show ?case by (cases y) (simp add: distinct_map_default) | 
| 58 | qed | |
| 51599 | 59 | |
| 58806 | 60 | definition "subtract_entries_raw xs ys = foldr (\<lambda>(k, v). AList.map_entry k (\<lambda>v'. v' - v)) ys xs" | 
| 51599 | 61 | |
| 62 | lemma map_of_subtract_entries_raw: | |
| 63 | assumes "distinct (map fst ys)" | |
| 58806 | 64 | shows "map_of (subtract_entries_raw xs ys) x = | 
| 65 | (case map_of xs x of | |
| 66 | None \<Rightarrow> None | |
| 67 | | Some v \<Rightarrow> (case map_of ys x of None \<Rightarrow> Some v | Some v' \<Rightarrow> Some (v - v')))" | |
| 68 | using assms | |
| 69 | unfolding subtract_entries_raw_def | |
| 70 | apply (induct ys) | |
| 71 | apply auto | |
| 72 | apply (simp split: option.split) | |
| 73 | apply (simp add: map_of_map_entry) | |
| 74 | apply (auto split: option.split) | |
| 75 | apply (metis map_of_eq_None_iff option.simps(3) option.simps(4)) | |
| 76 | apply (metis map_of_eq_None_iff option.simps(4) option.simps(5)) | |
| 77 | done | |
| 51599 | 78 | |
| 79 | lemma distinct_subtract_entries_raw: | |
| 80 | assumes "distinct (map fst xs)" | |
| 81 | shows "distinct (map fst (subtract_entries_raw xs ys))" | |
| 58806 | 82 | using assms | 
| 83 | unfolding subtract_entries_raw_def | |
| 84 | by (induct ys) (auto simp add: distinct_map_entry) | |
| 51599 | 85 | |
| 86 | ||
| 58806 | 87 | text \<open>Operations on alists with distinct keys\<close> | 
| 51599 | 88 | |
| 58806 | 89 | lift_definition join :: "('a \<Rightarrow> 'b \<times> 'b \<Rightarrow> 'b) \<Rightarrow> ('a, 'b) alist \<Rightarrow> ('a, 'b) alist \<Rightarrow> ('a, 'b) alist"
 | 
| 90 | is join_raw | |
| 91 | by (simp add: distinct_join_raw) | |
| 51599 | 92 | |
| 93 | lift_definition subtract_entries :: "('a, ('b :: minus)) alist \<Rightarrow> ('a, 'b) alist \<Rightarrow> ('a, 'b) alist"
 | |
| 58806 | 94 | is subtract_entries_raw | 
| 95 | by (simp add: distinct_subtract_entries_raw) | |
| 51599 | 96 | |
| 97 | ||
| 58806 | 98 | text \<open>Implementing multisets by means of association lists\<close> | 
| 51599 | 99 | |
| 58806 | 100 | definition count_of :: "('a \<times> nat) list \<Rightarrow> 'a \<Rightarrow> nat"
 | 
| 101 | where "count_of xs x = (case map_of xs x of None \<Rightarrow> 0 | Some n \<Rightarrow> n)" | |
| 102 | ||
| 103 | lemma count_of_multiset: "count_of xs \<in> multiset" | |
| 51599 | 104 | proof - | 
| 58806 | 105 |   let ?A = "{x::'a. 0 < (case map_of xs x of None \<Rightarrow> 0::nat | Some n \<Rightarrow> n)}"
 | 
| 51599 | 106 | have "?A \<subseteq> dom (map_of xs)" | 
| 107 | proof | |
| 108 | fix x | |
| 109 | assume "x \<in> ?A" | |
| 58806 | 110 | then have "0 < (case map_of xs x of None \<Rightarrow> 0::nat | Some n \<Rightarrow> n)" | 
| 111 | by simp | |
| 112 | then have "map_of xs x \<noteq> None" | |
| 113 | by (cases "map_of xs x") auto | |
| 114 | then show "x \<in> dom (map_of xs)" | |
| 115 | by auto | |
| 51599 | 116 | qed | 
| 117 | with finite_dom_map_of [of xs] have "finite ?A" | |
| 118 | by (auto intro: finite_subset) | |
| 119 | then show ?thesis | |
| 120 | by (simp add: count_of_def fun_eq_iff multiset_def) | |
| 121 | qed | |
| 122 | ||
| 123 | lemma count_simps [simp]: | |
| 124 | "count_of [] = (\<lambda>_. 0)" | |
| 125 | "count_of ((x, n) # xs) = (\<lambda>y. if x = y then n else count_of xs y)" | |
| 126 | by (simp_all add: count_of_def fun_eq_iff) | |
| 127 | ||
| 58806 | 128 | lemma count_of_empty: "x \<notin> fst ` set xs \<Longrightarrow> count_of xs x = 0" | 
| 51599 | 129 | by (induct xs) (simp_all add: count_of_def) | 
| 130 | ||
| 58806 | 131 | lemma count_of_filter: "count_of (List.filter (P \<circ> fst) xs) x = (if P x then count_of xs x else 0)" | 
| 51599 | 132 | by (induct xs) auto | 
| 133 | ||
| 134 | lemma count_of_map_default [simp]: | |
| 58806 | 135 | "count_of (map_default x b (\<lambda>x. x + b) xs) y = | 
| 136 | (if x = y then count_of xs x + b else count_of xs y)" | |
| 137 | unfolding count_of_def by (simp add: map_of_map_default split: option.split) | |
| 51599 | 138 | |
| 139 | lemma count_of_join_raw: | |
| 58806 | 140 | "distinct (map fst ys) \<Longrightarrow> | 
| 141 | count_of xs x + count_of ys x = count_of (join_raw (\<lambda>x (x, y). x + y) xs ys) x" | |
| 142 | unfolding count_of_def by (simp add: map_of_join_raw split: option.split) | |
| 51599 | 143 | |
| 144 | lemma count_of_subtract_entries_raw: | |
| 58806 | 145 | "distinct (map fst ys) \<Longrightarrow> | 
| 146 | count_of xs x - count_of ys x = count_of (subtract_entries_raw xs ys) x" | |
| 147 | unfolding count_of_def by (simp add: map_of_subtract_entries_raw split: option.split) | |
| 51599 | 148 | |
| 149 | ||
| 58806 | 150 | text \<open>Code equations for multiset operations\<close> | 
| 51599 | 151 | |
| 58806 | 152 | definition Bag :: "('a, nat) alist \<Rightarrow> 'a multiset"
 | 
| 153 | where "Bag xs = Abs_multiset (count_of (DAList.impl_of xs))" | |
| 51599 | 154 | |
| 155 | code_datatype Bag | |
| 156 | ||
| 58806 | 157 | lemma count_Bag [simp, code]: "count (Bag xs) = count_of (DAList.impl_of xs)" | 
| 158 | by (simp add: Bag_def count_of_multiset) | |
| 51599 | 159 | |
| 58806 | 160 | lemma Mempty_Bag [code]: "{#} = Bag (DAList.empty)"
 | 
| 51599 | 161 | by (simp add: multiset_eq_iff alist.Alist_inverse DAList.empty_def) | 
| 162 | ||
| 63195 | 163 | lift_definition is_empty_Bag_impl :: "('a, nat) alist \<Rightarrow> bool" is
 | 
| 164 | "\<lambda>xs. list_all (\<lambda>x. snd x = 0) xs" . | |
| 165 | ||
| 166 | lemma is_empty_Bag [code]: "Multiset.is_empty (Bag xs) \<longleftrightarrow> is_empty_Bag_impl xs" | |
| 167 | proof - | |
| 168 | have "Multiset.is_empty (Bag xs) \<longleftrightarrow> (\<forall>x. count (Bag xs) x = 0)" | |
| 169 | unfolding Multiset.is_empty_def multiset_eq_iff by simp | |
| 170 | also have "\<dots> \<longleftrightarrow> (\<forall>x\<in>fst ` set (alist.impl_of xs). count (Bag xs) x = 0)" | |
| 171 | proof (intro iffI allI ballI) | |
| 172 | fix x assume A: "\<forall>x\<in>fst ` set (alist.impl_of xs). count (Bag xs) x = 0" | |
| 173 | thus "count (Bag xs) x = 0" | |
| 174 | proof (cases "x \<in> fst ` set (alist.impl_of xs)") | |
| 175 | case False | |
| 176 | thus ?thesis by (force simp: count_of_def split: option.splits) | |
| 177 | qed (insert A, auto) | |
| 178 | qed simp_all | |
| 179 | also have "\<dots> \<longleftrightarrow> list_all (\<lambda>x. snd x = 0) (alist.impl_of xs)" | |
| 180 | by (auto simp: count_of_def list_all_def) | |
| 181 | finally show ?thesis by (simp add: is_empty_Bag_impl.rep_eq) | |
| 182 | qed | |
| 183 | ||
| 58806 | 184 | lemma union_Bag [code]: "Bag xs + Bag ys = Bag (join (\<lambda>x (n1, n2). n1 + n2) xs ys)" | 
| 185 | by (rule multiset_eqI) | |
| 186 | (simp add: count_of_join_raw alist.Alist_inverse distinct_join_raw join_def) | |
| 51599 | 187 | |
| 63793 
e68a0b651eb5
add_mset constructor in multisets
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63310diff
changeset | 188 | lemma add_mset_Bag [code]: "add_mset x (Bag xs) = | 
| 
e68a0b651eb5
add_mset constructor in multisets
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63310diff
changeset | 189 | Bag (join (\<lambda>x (n1, n2). n1 + n2) (DAList.update x 1 DAList.empty) xs)" | 
| 
e68a0b651eb5
add_mset constructor in multisets
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63310diff
changeset | 190 | unfolding add_mset_add_single[of x "Bag xs"] union_Bag[symmetric] | 
| 
e68a0b651eb5
add_mset constructor in multisets
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63310diff
changeset | 191 | by (simp add: multiset_eq_iff update.rep_eq empty.rep_eq) | 
| 
e68a0b651eb5
add_mset constructor in multisets
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63310diff
changeset | 192 | |
| 58806 | 193 | lemma minus_Bag [code]: "Bag xs - Bag ys = Bag (subtract_entries xs ys)" | 
| 194 | by (rule multiset_eqI) | |
| 195 | (simp add: count_of_subtract_entries_raw alist.Alist_inverse | |
| 196 | distinct_subtract_entries_raw subtract_entries_def) | |
| 51599 | 197 | |
| 59998 
c54d36be22ef
renamed Multiset.fold -> fold_mset, Multiset.filter -> filter_mset
 nipkow parents: 
59949diff
changeset | 198 | lemma filter_Bag [code]: "filter_mset P (Bag xs) = Bag (DAList.filter (P \<circ> fst) xs)" | 
| 58806 | 199 | by (rule multiset_eqI) (simp add: count_of_filter DAList.filter.rep_eq) | 
| 51599 | 200 | |
| 55808 
488c3e8282c8
added Rene Thiemann's patch for the nonterminating equality/subset test code for multisets
 nipkow parents: 
51623diff
changeset | 201 | |
| 64587 | 202 | lemma mset_eq [code]: "HOL.equal (m1::'a::equal multiset) m2 \<longleftrightarrow> m1 \<subseteq># m2 \<and> m2 \<subseteq># m1" | 
| 60397 
f8a513fedb31
Renaming multiset operators < ~> <#,...
 Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
59998diff
changeset | 203 | by (metis equal_multiset_def subset_mset.eq_iff) | 
| 55808 
488c3e8282c8
added Rene Thiemann's patch for the nonterminating equality/subset test code for multisets
 nipkow parents: 
51623diff
changeset | 204 | |
| 69593 | 205 | text \<open>By default the code for \<open><\<close> is \<^prop>\<open>xs < ys \<longleftrightarrow> xs \<le> ys \<and> \<not> xs = ys\<close>. | 
| 61585 | 206 | With equality implemented by \<open>\<le>\<close>, this leads to three calls of \<open>\<le>\<close>. | 
| 58806 | 207 | Here is a more efficient version:\<close> | 
| 64587 | 208 | lemma mset_less[code]: "xs \<subset># (ys :: 'a multiset) \<longleftrightarrow> xs \<subseteq># ys \<and> \<not> ys \<subseteq># xs" | 
| 60397 
f8a513fedb31
Renaming multiset operators < ~> <#,...
 Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
59998diff
changeset | 209 | by (rule subset_mset.less_le_not_le) | 
| 55887 | 210 | |
| 211 | lemma mset_less_eq_Bag0: | |
| 64587 | 212 | "Bag xs \<subseteq># A \<longleftrightarrow> (\<forall>(x, n) \<in> set (DAList.impl_of xs). count_of (DAList.impl_of xs) x \<le> count A x)" | 
| 51599 | 213 | (is "?lhs \<longleftrightarrow> ?rhs") | 
| 214 | proof | |
| 58806 | 215 | assume ?lhs | 
| 60397 
f8a513fedb31
Renaming multiset operators < ~> <#,...
 Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
59998diff
changeset | 216 | then show ?rhs by (auto simp add: subseteq_mset_def) | 
| 51599 | 217 | next | 
| 218 | assume ?rhs | |
| 219 | show ?lhs | |
| 63310 
caaacf37943f
normalising multiset theorem names
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63195diff
changeset | 220 | proof (rule mset_subset_eqI) | 
| 51599 | 221 | fix x | 
| 58806 | 222 | from \<open>?rhs\<close> have "count_of (DAList.impl_of xs) x \<le> count A x" | 
| 51599 | 223 | by (cases "x \<in> fst ` set (DAList.impl_of xs)") (auto simp add: count_of_empty) | 
| 60397 
f8a513fedb31
Renaming multiset operators < ~> <#,...
 Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
59998diff
changeset | 224 | then show "count (Bag xs) x \<le> count A x" by (simp add: subset_mset_def) | 
| 51599 | 225 | qed | 
| 226 | qed | |
| 227 | ||
| 55887 | 228 | lemma mset_less_eq_Bag [code]: | 
| 64587 | 229 | "Bag xs \<subseteq># (A :: 'a multiset) \<longleftrightarrow> (\<forall>(x, n) \<in> set (DAList.impl_of xs). n \<le> count A x)" | 
| 55887 | 230 | proof - | 
| 231 |   {
 | |
| 232 | fix x n | |
| 233 | assume "(x,n) \<in> set (DAList.impl_of xs)" | |
| 58806 | 234 | then have "count_of (DAList.impl_of xs) x = n" | 
| 235 | proof transfer | |
| 236 | fix x n | |
| 237 |       fix xs :: "('a \<times> nat) list"
 | |
| 55887 | 238 | show "(distinct \<circ> map fst) xs \<Longrightarrow> (x, n) \<in> set xs \<Longrightarrow> count_of xs x = n" | 
| 58806 | 239 | proof (induct xs) | 
| 240 | case Nil | |
| 241 | then show ?case by simp | |
| 242 | next | |
| 243 | case (Cons ym ys) | |
| 55887 | 244 | obtain y m where ym: "ym = (y,m)" by force | 
| 245 | note Cons = Cons[unfolded ym] | |
| 246 | show ?case | |
| 247 | proof (cases "x = y") | |
| 248 | case False | |
| 58806 | 249 | with Cons show ?thesis | 
| 250 | unfolding ym by auto | |
| 55887 | 251 | next | 
| 252 | case True | |
| 253 | with Cons(2-3) have "m = n" by force | |
| 58806 | 254 | with True show ?thesis | 
| 255 | unfolding ym by auto | |
| 55887 | 256 | qed | 
| 58806 | 257 | qed | 
| 55887 | 258 | qed | 
| 259 | } | |
| 58806 | 260 | then show ?thesis | 
| 261 | unfolding mset_less_eq_Bag0 by auto | |
| 55887 | 262 | qed | 
| 263 | ||
| 51600 
197e25f13f0c
default implementation of multisets by list with reasonable coverage of operations on multisets
 haftmann parents: 
51599diff
changeset | 264 | declare multiset_inter_def [code] | 
| 60397 
f8a513fedb31
Renaming multiset operators < ~> <#,...
 Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
59998diff
changeset | 265 | declare sup_subset_mset_def [code] | 
| 60515 | 266 | declare mset.simps [code] | 
| 51600 
197e25f13f0c
default implementation of multisets by list with reasonable coverage of operations on multisets
 haftmann parents: 
51599diff
changeset | 267 | |
| 55887 | 268 | |
| 58806 | 269 | fun fold_impl :: "('a \<Rightarrow> nat \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'b \<Rightarrow> ('a \<times> nat) list \<Rightarrow> 'b"
 | 
| 270 | where | |
| 55887 | 271 | "fold_impl fn e ((a,n) # ms) = (fold_impl fn ((fn a n) e) ms)" | 
| 272 | | "fold_impl fn e [] = e" | |
| 273 | ||
| 61115 
3a4400985780
modernized name space management -- more uniform qualification;
 wenzelm parents: 
60679diff
changeset | 274 | context | 
| 
3a4400985780
modernized name space management -- more uniform qualification;
 wenzelm parents: 
60679diff
changeset | 275 | begin | 
| 
3a4400985780
modernized name space management -- more uniform qualification;
 wenzelm parents: 
60679diff
changeset | 276 | |
| 
3a4400985780
modernized name space management -- more uniform qualification;
 wenzelm parents: 
60679diff
changeset | 277 | qualified definition fold :: "('a \<Rightarrow> nat \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'b \<Rightarrow> ('a, nat) alist \<Rightarrow> 'b"
 | 
| 58806 | 278 | where "fold f e al = fold_impl f e (DAList.impl_of al)" | 
| 55887 | 279 | |
| 61115 
3a4400985780
modernized name space management -- more uniform qualification;
 wenzelm parents: 
60679diff
changeset | 280 | end | 
| 55887 | 281 | |
| 282 | context comp_fun_commute | |
| 283 | begin | |
| 284 | ||
| 58806 | 285 | lemma DAList_Multiset_fold: | 
| 286 | assumes fn: "\<And>a n x. fn a n x = (f a ^^ n) x" | |
| 59998 
c54d36be22ef
renamed Multiset.fold -> fold_mset, Multiset.filter -> filter_mset
 nipkow parents: 
59949diff
changeset | 287 | shows "fold_mset f e (Bag al) = DAList_Multiset.fold fn e al" | 
| 58806 | 288 | unfolding DAList_Multiset.fold_def | 
| 55887 | 289 | proof (induct al) | 
| 290 | fix ys | |
| 58806 | 291 |   let ?inv = "{xs :: ('a \<times> nat) list. (distinct \<circ> map fst) xs}"
 | 
| 55887 | 292 | note cs[simp del] = count_simps | 
| 58806 | 293 | have count[simp]: "\<And>x. count (Abs_multiset (count_of x)) = count_of x" | 
| 55887 | 294 | by (rule Abs_multiset_inverse[OF count_of_multiset]) | 
| 295 | assume ys: "ys \<in> ?inv" | |
| 59998 
c54d36be22ef
renamed Multiset.fold -> fold_mset, Multiset.filter -> filter_mset
 nipkow parents: 
59949diff
changeset | 296 | then show "fold_mset f e (Bag (Alist ys)) = fold_impl fn e (DAList.impl_of (Alist ys))" | 
| 55887 | 297 | unfolding Bag_def unfolding Alist_inverse[OF ys] | 
| 298 | proof (induct ys arbitrary: e rule: list.induct) | |
| 299 | case Nil | |
| 300 | show ?case | |
| 59998 
c54d36be22ef
renamed Multiset.fold -> fold_mset, Multiset.filter -> filter_mset
 nipkow parents: 
59949diff
changeset | 301 |       by (rule trans[OF arg_cong[of _ "{#}" "fold_mset f e", OF multiset_eqI]])
 | 
| 55887 | 302 | (auto, simp add: cs) | 
| 303 | next | |
| 304 | case (Cons pair ys e) | |
| 58806 | 305 | obtain a n where pair: "pair = (a,n)" | 
| 306 | by force | |
| 307 | from fn[of a n] have [simp]: "fn a n = (f a ^^ n)" | |
| 308 | by auto | |
| 309 | have inv: "ys \<in> ?inv" | |
| 310 | using Cons(2) by auto | |
| 55887 | 311 | note IH = Cons(1)[OF inv] | 
| 63040 | 312 | define Ys where "Ys = Abs_multiset (count_of ys)" | 
| 67399 | 313 |     have id: "Abs_multiset (count_of ((a, n) # ys)) = (((+) {# a #}) ^^ n) Ys"
 | 
| 55887 | 314 | unfolding Ys_def | 
| 315 | proof (rule multiset_eqI, unfold count) | |
| 58806 | 316 | fix c | 
| 317 | show "count_of ((a, n) # ys) c = | |
| 67399 | 318 |         count (((+) {#a#} ^^ n) (Abs_multiset (count_of ys))) c" (is "?l = ?r")
 | 
| 55887 | 319 | proof (cases "c = a") | 
| 58806 | 320 | case False | 
| 321 | then show ?thesis | |
| 322 | unfolding cs by (induct n) auto | |
| 55887 | 323 | next | 
| 324 | case True | |
| 58806 | 325 | then have "?l = n" by (simp add: cs) | 
| 55887 | 326 | also have "n = ?r" unfolding True | 
| 327 | proof (induct n) | |
| 328 | case 0 | |
| 329 | from Cons(2)[unfolded pair] have "a \<notin> fst ` set ys" by auto | |
| 58806 | 330 | then show ?case by (induct ys) (simp, auto simp: cs) | 
| 331 | next | |
| 332 | case Suc | |
| 333 | then show ?case by simp | |
| 334 | qed | |
| 55887 | 335 | finally show ?thesis . | 
| 336 | qed | |
| 337 | qed | |
| 58806 | 338 | show ?case | 
| 339 | unfolding pair | |
| 340 | apply (simp add: IH[symmetric]) | |
| 341 | unfolding id Ys_def[symmetric] | |
| 342 | apply (induct n) | |
| 343 | apply (auto simp: fold_mset_fun_left_comm[symmetric]) | |
| 344 | done | |
| 55887 | 345 | qed | 
| 346 | qed | |
| 347 | ||
| 58806 | 348 | end | 
| 55887 | 349 | |
| 61115 
3a4400985780
modernized name space management -- more uniform qualification;
 wenzelm parents: 
60679diff
changeset | 350 | context | 
| 
3a4400985780
modernized name space management -- more uniform qualification;
 wenzelm parents: 
60679diff
changeset | 351 | begin | 
| 
3a4400985780
modernized name space management -- more uniform qualification;
 wenzelm parents: 
60679diff
changeset | 352 | |
| 
3a4400985780
modernized name space management -- more uniform qualification;
 wenzelm parents: 
60679diff
changeset | 353 | private lift_definition single_alist_entry :: "'a \<Rightarrow> 'b \<Rightarrow> ('a, 'b) alist" is "\<lambda>a b. [(a, b)]"
 | 
| 58806 | 354 | by auto | 
| 55887 | 355 | |
| 58806 | 356 | lemma image_mset_Bag [code]: | 
| 55887 | 357 | "image_mset f (Bag ms) = | 
| 58806 | 358 |     DAList_Multiset.fold (\<lambda>a n m. Bag (single_alist_entry (f a) n) + m) {#} ms"
 | 
| 359 | unfolding image_mset_def | |
| 55887 | 360 | proof (rule comp_fun_commute.DAList_Multiset_fold, unfold_locales, (auto simp: ac_simps)[1]) | 
| 361 | fix a n m | |
| 63793 
e68a0b651eb5
add_mset constructor in multisets
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63310diff
changeset | 362 | show "Bag (single_alist_entry (f a) n) + m = ((add_mset \<circ> f) a ^^ n) m" (is "?l = ?r") | 
| 55887 | 363 | proof (rule multiset_eqI) | 
| 364 | fix x | |
| 365 | have "count ?r x = (if x = f a then n + count m x else count m x)" | |
| 58806 | 366 | by (induct n) auto | 
| 367 | also have "\<dots> = count ?l x" | |
| 368 | by (simp add: single_alist_entry.rep_eq) | |
| 55887 | 369 | finally show "count ?l x = count ?r x" .. | 
| 370 | qed | |
| 371 | qed | |
| 372 | ||
| 61115 
3a4400985780
modernized name space management -- more uniform qualification;
 wenzelm parents: 
60679diff
changeset | 373 | end | 
| 55887 | 374 | |
| 69064 
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
 nipkow parents: 
67408diff
changeset | 375 | \<comment> \<open>we cannot use \<open>\<lambda>a n. (+) (a * n)\<close> for folding, since \<open>(*)\<close> is not defined in \<open>comm_monoid_add\<close>\<close> | 
| 67399 | 376 | lemma sum_mset_Bag[code]: "sum_mset (Bag ms) = DAList_Multiset.fold (\<lambda>a n. (((+) a) ^^ n)) 0 ms" | 
| 63830 | 377 | unfolding sum_mset.eq_fold | 
| 58806 | 378 | apply (rule comp_fun_commute.DAList_Multiset_fold) | 
| 379 | apply unfold_locales | |
| 380 | apply (auto simp: ac_simps) | |
| 381 | done | |
| 55887 | 382 | |
| 69064 
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
 nipkow parents: 
67408diff
changeset | 383 | \<comment> \<open>we cannot use \<open>\<lambda>a n. (*) (a ^ n)\<close> for folding, since \<open>(^)\<close> is not defined in \<open>comm_monoid_mult\<close>\<close> | 
| 
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
 nipkow parents: 
67408diff
changeset | 384 | lemma prod_mset_Bag[code]: "prod_mset (Bag ms) = DAList_Multiset.fold (\<lambda>a n. (((*) a) ^^ n)) 1 ms" | 
| 63830 | 385 | unfolding prod_mset.eq_fold | 
| 58806 | 386 | apply (rule comp_fun_commute.DAList_Multiset_fold) | 
| 387 | apply unfold_locales | |
| 388 | apply (auto simp: ac_simps) | |
| 389 | done | |
| 55887 | 390 | |
| 59998 
c54d36be22ef
renamed Multiset.fold -> fold_mset, Multiset.filter -> filter_mset
 nipkow parents: 
59949diff
changeset | 391 | lemma size_fold: "size A = fold_mset (\<lambda>_. Suc) 0 A" (is "_ = fold_mset ?f _ _") | 
| 55887 | 392 | proof - | 
| 60679 | 393 | interpret comp_fun_commute ?f by standard auto | 
| 55887 | 394 | show ?thesis by (induct A) auto | 
| 395 | qed | |
| 396 | ||
| 67399 | 397 | lemma size_Bag[code]: "size (Bag ms) = DAList_Multiset.fold (\<lambda>a n. (+) n) 0 ms" | 
| 59949 | 398 | unfolding size_fold | 
| 55887 | 399 | proof (rule comp_fun_commute.DAList_Multiset_fold, unfold_locales, simp) | 
| 400 | fix a n x | |
| 58806 | 401 | show "n + x = (Suc ^^ n) x" | 
| 402 | by (induct n) auto | |
| 55887 | 403 | qed | 
| 404 | ||
| 405 | ||
| 60495 | 406 | lemma set_mset_fold: "set_mset A = fold_mset insert {} A" (is "_ = fold_mset ?f _ _")
 | 
| 55887 | 407 | proof - | 
| 60679 | 408 | interpret comp_fun_commute ?f by standard auto | 
| 58806 | 409 | show ?thesis by (induct A) auto | 
| 55887 | 410 | qed | 
| 411 | ||
| 60495 | 412 | lemma set_mset_Bag[code]: | 
| 413 |   "set_mset (Bag ms) = DAList_Multiset.fold (\<lambda>a n. (if n = 0 then (\<lambda>m. m) else insert a)) {} ms"
 | |
| 414 | unfolding set_mset_fold | |
| 55887 | 415 | proof (rule comp_fun_commute.DAList_Multiset_fold, unfold_locales, (auto simp: ac_simps)[1]) | 
| 416 | fix a n x | |
| 417 | show "(if n = 0 then \<lambda>m. m else insert a) x = (insert a ^^ n) x" (is "?l n = ?r n") | |
| 418 | proof (cases n) | |
| 58806 | 419 | case 0 | 
| 420 | then show ?thesis by simp | |
| 421 | next | |
| 55887 | 422 | case (Suc m) | 
| 58806 | 423 | then have "?l n = insert a x" by simp | 
| 55887 | 424 | moreover have "?r n = insert a x" unfolding Suc by (induct m) auto | 
| 425 | ultimately show ?thesis by auto | |
| 58806 | 426 | qed | 
| 55887 | 427 | qed | 
| 428 | ||
| 429 | ||
| 51600 
197e25f13f0c
default implementation of multisets by list with reasonable coverage of operations on multisets
 haftmann parents: 
51599diff
changeset | 430 | instantiation multiset :: (exhaustive) exhaustive | 
| 51599 | 431 | begin | 
| 432 | ||
| 58806 | 433 | definition exhaustive_multiset :: | 
| 434 |   "('a multiset \<Rightarrow> (bool \<times> term list) option) \<Rightarrow> natural \<Rightarrow> (bool \<times> term list) option"
 | |
| 435 | where "exhaustive_multiset f i = Quickcheck_Exhaustive.exhaustive (\<lambda>xs. f (Bag xs)) i" | |
| 51599 | 436 | |
| 437 | instance .. | |
| 438 | ||
| 439 | end | |
| 440 | ||
| 441 | end | |
| 442 |