author | eberlm |
Wed, 01 Jun 2016 13:48:34 +0200 | |
changeset 63195 | f3f08c0d4aaf |
parent 63040 | eb4ddd18d635 |
child 63310 | caaacf37943f |
permissions | -rw-r--r-- |
51599 | 1 |
(* Title: HOL/Library/DAList_Multiset.thy |
2 |
Author: Lukas Bulwahn, TU Muenchen |
|
3 |
*) |
|
4 |
||
58881 | 5 |
section \<open>Multisets partially implemented by association lists\<close> |
51599 | 6 |
|
7 |
theory DAList_Multiset |
|
8 |
imports Multiset DAList |
|
9 |
begin |
|
10 |
||
58806 | 11 |
text \<open>Delete prexisting code equations\<close> |
51600
197e25f13f0c
default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents:
51599
diff
changeset
|
12 |
|
58806 | 13 |
lemma [code, code del]: "{#} = {#}" .. |
51623 | 14 |
|
63195 | 15 |
lemma [code, code del]: "Multiset.is_empty = Multiset.is_empty" .. |
16 |
||
58806 | 17 |
lemma [code, code del]: "single = single" .. |
51623 | 18 |
|
58806 | 19 |
lemma [code, code del]: "plus = (plus :: 'a multiset \<Rightarrow> _)" .. |
51600
197e25f13f0c
default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents:
51599
diff
changeset
|
20 |
|
58806 | 21 |
lemma [code, code del]: "minus = (minus :: 'a multiset \<Rightarrow> _)" .. |
51600
197e25f13f0c
default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents:
51599
diff
changeset
|
22 |
|
60397
f8a513fedb31
Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
59998
diff
changeset
|
23 |
lemma [code, code del]: "inf_subset_mset = (inf_subset_mset :: 'a multiset \<Rightarrow> _)" .. |
51600
197e25f13f0c
default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents:
51599
diff
changeset
|
24 |
|
60397
f8a513fedb31
Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
59998
diff
changeset
|
25 |
lemma [code, code del]: "sup_subset_mset = (sup_subset_mset :: 'a multiset \<Rightarrow> _)" .. |
51623 | 26 |
|
58806 | 27 |
lemma [code, code del]: "image_mset = image_mset" .. |
51600
197e25f13f0c
default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents:
51599
diff
changeset
|
28 |
|
59998
c54d36be22ef
renamed Multiset.fold -> fold_mset, Multiset.filter -> filter_mset
nipkow
parents:
59949
diff
changeset
|
29 |
lemma [code, code del]: "filter_mset = filter_mset" .. |
51600
197e25f13f0c
default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents:
51599
diff
changeset
|
30 |
|
58806 | 31 |
lemma [code, code del]: "count = count" .. |
51600
197e25f13f0c
default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents:
51599
diff
changeset
|
32 |
|
59949 | 33 |
lemma [code, code del]: "size = (size :: _ multiset \<Rightarrow> nat)" .. |
51600
197e25f13f0c
default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents:
51599
diff
changeset
|
34 |
|
58806 | 35 |
lemma [code, code del]: "msetsum = msetsum" .. |
51600
197e25f13f0c
default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents:
51599
diff
changeset
|
36 |
|
58806 | 37 |
lemma [code, code del]: "msetprod = msetprod" .. |
51600
197e25f13f0c
default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents:
51599
diff
changeset
|
38 |
|
60495 | 39 |
lemma [code, code del]: "set_mset = set_mset" .. |
51600
197e25f13f0c
default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents:
51599
diff
changeset
|
40 |
|
58806 | 41 |
lemma [code, code del]: "sorted_list_of_multiset = sorted_list_of_multiset" .. |
51600
197e25f13f0c
default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents:
51599
diff
changeset
|
42 |
|
60397
f8a513fedb31
Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
59998
diff
changeset
|
43 |
lemma [code, code del]: "subset_mset = subset_mset" .. |
55808
488c3e8282c8
added Rene Thiemann's patch for the nonterminating equality/subset test code for multisets
nipkow
parents:
51623
diff
changeset
|
44 |
|
60397
f8a513fedb31
Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
59998
diff
changeset
|
45 |
lemma [code, code del]: "subseteq_mset = subseteq_mset" .. |
55808
488c3e8282c8
added Rene Thiemann's patch for the nonterminating equality/subset test code for multisets
nipkow
parents:
51623
diff
changeset
|
46 |
|
58806 | 47 |
lemma [code, code del]: "equal_multiset_inst.equal_multiset = equal_multiset_inst.equal_multiset" .. |
55808
488c3e8282c8
added Rene Thiemann's patch for the nonterminating equality/subset test code for multisets
nipkow
parents:
51623
diff
changeset
|
48 |
|
51600
197e25f13f0c
default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents:
51599
diff
changeset
|
49 |
|
58806 | 50 |
text \<open>Raw operations on lists\<close> |
51599 | 51 |
|
58806 | 52 |
definition join_raw :: |
53 |
"('key \<Rightarrow> 'val \<times> 'val \<Rightarrow> 'val) \<Rightarrow> |
|
54 |
('key \<times> 'val) list \<Rightarrow> ('key \<times> 'val) list \<Rightarrow> ('key \<times> 'val) list" |
|
55 |
where "join_raw f xs ys = foldr (\<lambda>(k, v). map_default k v (\<lambda>v'. f k (v', v))) ys xs" |
|
51599 | 56 |
|
58806 | 57 |
lemma join_raw_Nil [simp]: "join_raw f xs [] = xs" |
58 |
by (simp add: join_raw_def) |
|
51599 | 59 |
|
60 |
lemma join_raw_Cons [simp]: |
|
58806 | 61 |
"join_raw f xs ((k, v) # ys) = map_default k v (\<lambda>v'. f k (v', v)) (join_raw f xs ys)" |
62 |
by (simp add: join_raw_def) |
|
51599 | 63 |
|
64 |
lemma map_of_join_raw: |
|
65 |
assumes "distinct (map fst ys)" |
|
58806 | 66 |
shows "map_of (join_raw f xs ys) x = |
67 |
(case map_of xs x of |
|
68 |
None \<Rightarrow> map_of ys x |
|
69 |
| Some v \<Rightarrow> (case map_of ys x of None \<Rightarrow> Some v | Some v' \<Rightarrow> Some (f x (v, v'))))" |
|
70 |
using assms |
|
71 |
apply (induct ys) |
|
72 |
apply (auto simp add: map_of_map_default split: option.split) |
|
73 |
apply (metis map_of_eq_None_iff option.simps(2) weak_map_of_SomeI) |
|
74 |
apply (metis Some_eq_map_of_iff map_of_eq_None_iff option.simps(2)) |
|
75 |
done |
|
51599 | 76 |
|
77 |
lemma distinct_join_raw: |
|
78 |
assumes "distinct (map fst xs)" |
|
79 |
shows "distinct (map fst (join_raw f xs ys))" |
|
58806 | 80 |
using assms |
51599 | 81 |
proof (induct ys) |
58806 | 82 |
case Nil |
83 |
then show ?case by simp |
|
84 |
next |
|
51599 | 85 |
case (Cons y ys) |
58806 | 86 |
then show ?case by (cases y) (simp add: distinct_map_default) |
87 |
qed |
|
51599 | 88 |
|
58806 | 89 |
definition "subtract_entries_raw xs ys = foldr (\<lambda>(k, v). AList.map_entry k (\<lambda>v'. v' - v)) ys xs" |
51599 | 90 |
|
91 |
lemma map_of_subtract_entries_raw: |
|
92 |
assumes "distinct (map fst ys)" |
|
58806 | 93 |
shows "map_of (subtract_entries_raw xs ys) x = |
94 |
(case map_of xs x of |
|
95 |
None \<Rightarrow> None |
|
96 |
| Some v \<Rightarrow> (case map_of ys x of None \<Rightarrow> Some v | Some v' \<Rightarrow> Some (v - v')))" |
|
97 |
using assms |
|
98 |
unfolding subtract_entries_raw_def |
|
99 |
apply (induct ys) |
|
100 |
apply auto |
|
101 |
apply (simp split: option.split) |
|
102 |
apply (simp add: map_of_map_entry) |
|
103 |
apply (auto split: option.split) |
|
104 |
apply (metis map_of_eq_None_iff option.simps(3) option.simps(4)) |
|
105 |
apply (metis map_of_eq_None_iff option.simps(4) option.simps(5)) |
|
106 |
done |
|
51599 | 107 |
|
108 |
lemma distinct_subtract_entries_raw: |
|
109 |
assumes "distinct (map fst xs)" |
|
110 |
shows "distinct (map fst (subtract_entries_raw xs ys))" |
|
58806 | 111 |
using assms |
112 |
unfolding subtract_entries_raw_def |
|
113 |
by (induct ys) (auto simp add: distinct_map_entry) |
|
51599 | 114 |
|
115 |
||
58806 | 116 |
text \<open>Operations on alists with distinct keys\<close> |
51599 | 117 |
|
58806 | 118 |
lift_definition join :: "('a \<Rightarrow> 'b \<times> 'b \<Rightarrow> 'b) \<Rightarrow> ('a, 'b) alist \<Rightarrow> ('a, 'b) alist \<Rightarrow> ('a, 'b) alist" |
119 |
is join_raw |
|
120 |
by (simp add: distinct_join_raw) |
|
51599 | 121 |
|
122 |
lift_definition subtract_entries :: "('a, ('b :: minus)) alist \<Rightarrow> ('a, 'b) alist \<Rightarrow> ('a, 'b) alist" |
|
58806 | 123 |
is subtract_entries_raw |
124 |
by (simp add: distinct_subtract_entries_raw) |
|
51599 | 125 |
|
126 |
||
58806 | 127 |
text \<open>Implementing multisets by means of association lists\<close> |
51599 | 128 |
|
58806 | 129 |
definition count_of :: "('a \<times> nat) list \<Rightarrow> 'a \<Rightarrow> nat" |
130 |
where "count_of xs x = (case map_of xs x of None \<Rightarrow> 0 | Some n \<Rightarrow> n)" |
|
131 |
||
132 |
lemma count_of_multiset: "count_of xs \<in> multiset" |
|
51599 | 133 |
proof - |
58806 | 134 |
let ?A = "{x::'a. 0 < (case map_of xs x of None \<Rightarrow> 0::nat | Some n \<Rightarrow> n)}" |
51599 | 135 |
have "?A \<subseteq> dom (map_of xs)" |
136 |
proof |
|
137 |
fix x |
|
138 |
assume "x \<in> ?A" |
|
58806 | 139 |
then have "0 < (case map_of xs x of None \<Rightarrow> 0::nat | Some n \<Rightarrow> n)" |
140 |
by simp |
|
141 |
then have "map_of xs x \<noteq> None" |
|
142 |
by (cases "map_of xs x") auto |
|
143 |
then show "x \<in> dom (map_of xs)" |
|
144 |
by auto |
|
51599 | 145 |
qed |
146 |
with finite_dom_map_of [of xs] have "finite ?A" |
|
147 |
by (auto intro: finite_subset) |
|
148 |
then show ?thesis |
|
149 |
by (simp add: count_of_def fun_eq_iff multiset_def) |
|
150 |
qed |
|
151 |
||
152 |
lemma count_simps [simp]: |
|
153 |
"count_of [] = (\<lambda>_. 0)" |
|
154 |
"count_of ((x, n) # xs) = (\<lambda>y. if x = y then n else count_of xs y)" |
|
155 |
by (simp_all add: count_of_def fun_eq_iff) |
|
156 |
||
58806 | 157 |
lemma count_of_empty: "x \<notin> fst ` set xs \<Longrightarrow> count_of xs x = 0" |
51599 | 158 |
by (induct xs) (simp_all add: count_of_def) |
159 |
||
58806 | 160 |
lemma count_of_filter: "count_of (List.filter (P \<circ> fst) xs) x = (if P x then count_of xs x else 0)" |
51599 | 161 |
by (induct xs) auto |
162 |
||
163 |
lemma count_of_map_default [simp]: |
|
58806 | 164 |
"count_of (map_default x b (\<lambda>x. x + b) xs) y = |
165 |
(if x = y then count_of xs x + b else count_of xs y)" |
|
166 |
unfolding count_of_def by (simp add: map_of_map_default split: option.split) |
|
51599 | 167 |
|
168 |
lemma count_of_join_raw: |
|
58806 | 169 |
"distinct (map fst ys) \<Longrightarrow> |
170 |
count_of xs x + count_of ys x = count_of (join_raw (\<lambda>x (x, y). x + y) xs ys) x" |
|
171 |
unfolding count_of_def by (simp add: map_of_join_raw split: option.split) |
|
51599 | 172 |
|
173 |
lemma count_of_subtract_entries_raw: |
|
58806 | 174 |
"distinct (map fst ys) \<Longrightarrow> |
175 |
count_of xs x - count_of ys x = count_of (subtract_entries_raw xs ys) x" |
|
176 |
unfolding count_of_def by (simp add: map_of_subtract_entries_raw split: option.split) |
|
51599 | 177 |
|
178 |
||
58806 | 179 |
text \<open>Code equations for multiset operations\<close> |
51599 | 180 |
|
58806 | 181 |
definition Bag :: "('a, nat) alist \<Rightarrow> 'a multiset" |
182 |
where "Bag xs = Abs_multiset (count_of (DAList.impl_of xs))" |
|
51599 | 183 |
|
184 |
code_datatype Bag |
|
185 |
||
58806 | 186 |
lemma count_Bag [simp, code]: "count (Bag xs) = count_of (DAList.impl_of xs)" |
187 |
by (simp add: Bag_def count_of_multiset) |
|
51599 | 188 |
|
58806 | 189 |
lemma Mempty_Bag [code]: "{#} = Bag (DAList.empty)" |
51599 | 190 |
by (simp add: multiset_eq_iff alist.Alist_inverse DAList.empty_def) |
191 |
||
63195 | 192 |
lift_definition is_empty_Bag_impl :: "('a, nat) alist \<Rightarrow> bool" is |
193 |
"\<lambda>xs. list_all (\<lambda>x. snd x = 0) xs" . |
|
194 |
||
195 |
lemma is_empty_Bag [code]: "Multiset.is_empty (Bag xs) \<longleftrightarrow> is_empty_Bag_impl xs" |
|
196 |
proof - |
|
197 |
have "Multiset.is_empty (Bag xs) \<longleftrightarrow> (\<forall>x. count (Bag xs) x = 0)" |
|
198 |
unfolding Multiset.is_empty_def multiset_eq_iff by simp |
|
199 |
also have "\<dots> \<longleftrightarrow> (\<forall>x\<in>fst ` set (alist.impl_of xs). count (Bag xs) x = 0)" |
|
200 |
proof (intro iffI allI ballI) |
|
201 |
fix x assume A: "\<forall>x\<in>fst ` set (alist.impl_of xs). count (Bag xs) x = 0" |
|
202 |
thus "count (Bag xs) x = 0" |
|
203 |
proof (cases "x \<in> fst ` set (alist.impl_of xs)") |
|
204 |
case False |
|
205 |
thus ?thesis by (force simp: count_of_def split: option.splits) |
|
206 |
qed (insert A, auto) |
|
207 |
qed simp_all |
|
208 |
also have "\<dots> \<longleftrightarrow> list_all (\<lambda>x. snd x = 0) (alist.impl_of xs)" |
|
209 |
by (auto simp: count_of_def list_all_def) |
|
210 |
finally show ?thesis by (simp add: is_empty_Bag_impl.rep_eq) |
|
211 |
qed |
|
212 |
||
58806 | 213 |
lemma single_Bag [code]: "{#x#} = Bag (DAList.update x 1 DAList.empty)" |
51599 | 214 |
by (simp add: multiset_eq_iff alist.Alist_inverse update.rep_eq empty.rep_eq) |
215 |
||
58806 | 216 |
lemma union_Bag [code]: "Bag xs + Bag ys = Bag (join (\<lambda>x (n1, n2). n1 + n2) xs ys)" |
217 |
by (rule multiset_eqI) |
|
218 |
(simp add: count_of_join_raw alist.Alist_inverse distinct_join_raw join_def) |
|
51599 | 219 |
|
58806 | 220 |
lemma minus_Bag [code]: "Bag xs - Bag ys = Bag (subtract_entries xs ys)" |
221 |
by (rule multiset_eqI) |
|
222 |
(simp add: count_of_subtract_entries_raw alist.Alist_inverse |
|
223 |
distinct_subtract_entries_raw subtract_entries_def) |
|
51599 | 224 |
|
59998
c54d36be22ef
renamed Multiset.fold -> fold_mset, Multiset.filter -> filter_mset
nipkow
parents:
59949
diff
changeset
|
225 |
lemma filter_Bag [code]: "filter_mset P (Bag xs) = Bag (DAList.filter (P \<circ> fst) xs)" |
58806 | 226 |
by (rule multiset_eqI) (simp add: count_of_filter DAList.filter.rep_eq) |
51599 | 227 |
|
55808
488c3e8282c8
added Rene Thiemann's patch for the nonterminating equality/subset test code for multisets
nipkow
parents:
51623
diff
changeset
|
228 |
|
60397
f8a513fedb31
Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
59998
diff
changeset
|
229 |
lemma mset_eq [code]: "HOL.equal (m1::'a::equal multiset) m2 \<longleftrightarrow> m1 \<le># m2 \<and> m2 \<le># m1" |
f8a513fedb31
Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
59998
diff
changeset
|
230 |
by (metis equal_multiset_def subset_mset.eq_iff) |
55808
488c3e8282c8
added Rene Thiemann's patch for the nonterminating equality/subset test code for multisets
nipkow
parents:
51623
diff
changeset
|
231 |
|
61585 | 232 |
text \<open>By default the code for \<open><\<close> is @{prop"xs < ys \<longleftrightarrow> xs \<le> ys \<and> \<not> xs = ys"}. |
233 |
With equality implemented by \<open>\<le>\<close>, this leads to three calls of \<open>\<le>\<close>. |
|
58806 | 234 |
Here is a more efficient version:\<close> |
60397
f8a513fedb31
Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
59998
diff
changeset
|
235 |
lemma mset_less[code]: "xs <# (ys :: 'a multiset) \<longleftrightarrow> xs \<le># ys \<and> \<not> ys \<le># xs" |
f8a513fedb31
Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
59998
diff
changeset
|
236 |
by (rule subset_mset.less_le_not_le) |
55887 | 237 |
|
238 |
lemma mset_less_eq_Bag0: |
|
60397
f8a513fedb31
Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
59998
diff
changeset
|
239 |
"Bag xs \<le># A \<longleftrightarrow> (\<forall>(x, n) \<in> set (DAList.impl_of xs). count_of (DAList.impl_of xs) x \<le> count A x)" |
51599 | 240 |
(is "?lhs \<longleftrightarrow> ?rhs") |
241 |
proof |
|
58806 | 242 |
assume ?lhs |
60397
f8a513fedb31
Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
59998
diff
changeset
|
243 |
then show ?rhs by (auto simp add: subseteq_mset_def) |
51599 | 244 |
next |
245 |
assume ?rhs |
|
246 |
show ?lhs |
|
247 |
proof (rule mset_less_eqI) |
|
248 |
fix x |
|
58806 | 249 |
from \<open>?rhs\<close> have "count_of (DAList.impl_of xs) x \<le> count A x" |
51599 | 250 |
by (cases "x \<in> fst ` set (DAList.impl_of xs)") (auto simp add: count_of_empty) |
60397
f8a513fedb31
Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
59998
diff
changeset
|
251 |
then show "count (Bag xs) x \<le> count A x" by (simp add: subset_mset_def) |
51599 | 252 |
qed |
253 |
qed |
|
254 |
||
55887 | 255 |
lemma mset_less_eq_Bag [code]: |
60397
f8a513fedb31
Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
59998
diff
changeset
|
256 |
"Bag xs \<le># (A :: 'a multiset) \<longleftrightarrow> (\<forall>(x, n) \<in> set (DAList.impl_of xs). n \<le> count A x)" |
55887 | 257 |
proof - |
258 |
{ |
|
259 |
fix x n |
|
260 |
assume "(x,n) \<in> set (DAList.impl_of xs)" |
|
58806 | 261 |
then have "count_of (DAList.impl_of xs) x = n" |
262 |
proof transfer |
|
263 |
fix x n |
|
264 |
fix xs :: "('a \<times> nat) list" |
|
55887 | 265 |
show "(distinct \<circ> map fst) xs \<Longrightarrow> (x, n) \<in> set xs \<Longrightarrow> count_of xs x = n" |
58806 | 266 |
proof (induct xs) |
267 |
case Nil |
|
268 |
then show ?case by simp |
|
269 |
next |
|
270 |
case (Cons ym ys) |
|
55887 | 271 |
obtain y m where ym: "ym = (y,m)" by force |
272 |
note Cons = Cons[unfolded ym] |
|
273 |
show ?case |
|
274 |
proof (cases "x = y") |
|
275 |
case False |
|
58806 | 276 |
with Cons show ?thesis |
277 |
unfolding ym by auto |
|
55887 | 278 |
next |
279 |
case True |
|
280 |
with Cons(2-3) have "m = n" by force |
|
58806 | 281 |
with True show ?thesis |
282 |
unfolding ym by auto |
|
55887 | 283 |
qed |
58806 | 284 |
qed |
55887 | 285 |
qed |
286 |
} |
|
58806 | 287 |
then show ?thesis |
288 |
unfolding mset_less_eq_Bag0 by auto |
|
55887 | 289 |
qed |
290 |
||
51600
197e25f13f0c
default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents:
51599
diff
changeset
|
291 |
declare multiset_inter_def [code] |
60397
f8a513fedb31
Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
59998
diff
changeset
|
292 |
declare sup_subset_mset_def [code] |
60515 | 293 |
declare mset.simps [code] |
51600
197e25f13f0c
default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents:
51599
diff
changeset
|
294 |
|
55887 | 295 |
|
58806 | 296 |
fun fold_impl :: "('a \<Rightarrow> nat \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'b \<Rightarrow> ('a \<times> nat) list \<Rightarrow> 'b" |
297 |
where |
|
55887 | 298 |
"fold_impl fn e ((a,n) # ms) = (fold_impl fn ((fn a n) e) ms)" |
299 |
| "fold_impl fn e [] = e" |
|
300 |
||
61115
3a4400985780
modernized name space management -- more uniform qualification;
wenzelm
parents:
60679
diff
changeset
|
301 |
context |
3a4400985780
modernized name space management -- more uniform qualification;
wenzelm
parents:
60679
diff
changeset
|
302 |
begin |
3a4400985780
modernized name space management -- more uniform qualification;
wenzelm
parents:
60679
diff
changeset
|
303 |
|
3a4400985780
modernized name space management -- more uniform qualification;
wenzelm
parents:
60679
diff
changeset
|
304 |
qualified definition fold :: "('a \<Rightarrow> nat \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'b \<Rightarrow> ('a, nat) alist \<Rightarrow> 'b" |
58806 | 305 |
where "fold f e al = fold_impl f e (DAList.impl_of al)" |
55887 | 306 |
|
61115
3a4400985780
modernized name space management -- more uniform qualification;
wenzelm
parents:
60679
diff
changeset
|
307 |
end |
55887 | 308 |
|
309 |
context comp_fun_commute |
|
310 |
begin |
|
311 |
||
58806 | 312 |
lemma DAList_Multiset_fold: |
313 |
assumes fn: "\<And>a n x. fn a n x = (f a ^^ n) x" |
|
59998
c54d36be22ef
renamed Multiset.fold -> fold_mset, Multiset.filter -> filter_mset
nipkow
parents:
59949
diff
changeset
|
314 |
shows "fold_mset f e (Bag al) = DAList_Multiset.fold fn e al" |
58806 | 315 |
unfolding DAList_Multiset.fold_def |
55887 | 316 |
proof (induct al) |
317 |
fix ys |
|
58806 | 318 |
let ?inv = "{xs :: ('a \<times> nat) list. (distinct \<circ> map fst) xs}" |
55887 | 319 |
note cs[simp del] = count_simps |
58806 | 320 |
have count[simp]: "\<And>x. count (Abs_multiset (count_of x)) = count_of x" |
55887 | 321 |
by (rule Abs_multiset_inverse[OF count_of_multiset]) |
322 |
assume ys: "ys \<in> ?inv" |
|
59998
c54d36be22ef
renamed Multiset.fold -> fold_mset, Multiset.filter -> filter_mset
nipkow
parents:
59949
diff
changeset
|
323 |
then show "fold_mset f e (Bag (Alist ys)) = fold_impl fn e (DAList.impl_of (Alist ys))" |
55887 | 324 |
unfolding Bag_def unfolding Alist_inverse[OF ys] |
325 |
proof (induct ys arbitrary: e rule: list.induct) |
|
326 |
case Nil |
|
327 |
show ?case |
|
59998
c54d36be22ef
renamed Multiset.fold -> fold_mset, Multiset.filter -> filter_mset
nipkow
parents:
59949
diff
changeset
|
328 |
by (rule trans[OF arg_cong[of _ "{#}" "fold_mset f e", OF multiset_eqI]]) |
55887 | 329 |
(auto, simp add: cs) |
330 |
next |
|
331 |
case (Cons pair ys e) |
|
58806 | 332 |
obtain a n where pair: "pair = (a,n)" |
333 |
by force |
|
334 |
from fn[of a n] have [simp]: "fn a n = (f a ^^ n)" |
|
335 |
by auto |
|
336 |
have inv: "ys \<in> ?inv" |
|
337 |
using Cons(2) by auto |
|
55887 | 338 |
note IH = Cons(1)[OF inv] |
63040 | 339 |
define Ys where "Ys = Abs_multiset (count_of ys)" |
55887 | 340 |
have id: "Abs_multiset (count_of ((a, n) # ys)) = ((op + {# a #}) ^^ n) Ys" |
341 |
unfolding Ys_def |
|
342 |
proof (rule multiset_eqI, unfold count) |
|
58806 | 343 |
fix c |
344 |
show "count_of ((a, n) # ys) c = |
|
345 |
count ((op + {#a#} ^^ n) (Abs_multiset (count_of ys))) c" (is "?l = ?r") |
|
55887 | 346 |
proof (cases "c = a") |
58806 | 347 |
case False |
348 |
then show ?thesis |
|
349 |
unfolding cs by (induct n) auto |
|
55887 | 350 |
next |
351 |
case True |
|
58806 | 352 |
then have "?l = n" by (simp add: cs) |
55887 | 353 |
also have "n = ?r" unfolding True |
354 |
proof (induct n) |
|
355 |
case 0 |
|
356 |
from Cons(2)[unfolded pair] have "a \<notin> fst ` set ys" by auto |
|
58806 | 357 |
then show ?case by (induct ys) (simp, auto simp: cs) |
358 |
next |
|
359 |
case Suc |
|
360 |
then show ?case by simp |
|
361 |
qed |
|
55887 | 362 |
finally show ?thesis . |
363 |
qed |
|
364 |
qed |
|
58806 | 365 |
show ?case |
366 |
unfolding pair |
|
367 |
apply (simp add: IH[symmetric]) |
|
368 |
unfolding id Ys_def[symmetric] |
|
369 |
apply (induct n) |
|
370 |
apply (auto simp: fold_mset_fun_left_comm[symmetric]) |
|
371 |
done |
|
55887 | 372 |
qed |
373 |
qed |
|
374 |
||
58806 | 375 |
end |
55887 | 376 |
|
61115
3a4400985780
modernized name space management -- more uniform qualification;
wenzelm
parents:
60679
diff
changeset
|
377 |
context |
3a4400985780
modernized name space management -- more uniform qualification;
wenzelm
parents:
60679
diff
changeset
|
378 |
begin |
3a4400985780
modernized name space management -- more uniform qualification;
wenzelm
parents:
60679
diff
changeset
|
379 |
|
3a4400985780
modernized name space management -- more uniform qualification;
wenzelm
parents:
60679
diff
changeset
|
380 |
private lift_definition single_alist_entry :: "'a \<Rightarrow> 'b \<Rightarrow> ('a, 'b) alist" is "\<lambda>a b. [(a, b)]" |
58806 | 381 |
by auto |
55887 | 382 |
|
58806 | 383 |
lemma image_mset_Bag [code]: |
55887 | 384 |
"image_mset f (Bag ms) = |
58806 | 385 |
DAList_Multiset.fold (\<lambda>a n m. Bag (single_alist_entry (f a) n) + m) {#} ms" |
386 |
unfolding image_mset_def |
|
55887 | 387 |
proof (rule comp_fun_commute.DAList_Multiset_fold, unfold_locales, (auto simp: ac_simps)[1]) |
388 |
fix a n m |
|
389 |
show "Bag (single_alist_entry (f a) n) + m = ((op + \<circ> single \<circ> f) a ^^ n) m" (is "?l = ?r") |
|
390 |
proof (rule multiset_eqI) |
|
391 |
fix x |
|
392 |
have "count ?r x = (if x = f a then n + count m x else count m x)" |
|
58806 | 393 |
by (induct n) auto |
394 |
also have "\<dots> = count ?l x" |
|
395 |
by (simp add: single_alist_entry.rep_eq) |
|
55887 | 396 |
finally show "count ?l x = count ?r x" .. |
397 |
qed |
|
398 |
qed |
|
399 |
||
61115
3a4400985780
modernized name space management -- more uniform qualification;
wenzelm
parents:
60679
diff
changeset
|
400 |
end |
55887 | 401 |
|
58806 | 402 |
(* we cannot use (\<lambda>a n. op + (a * n)) for folding, since * is not defined |
55887 | 403 |
in comm_monoid_add *) |
58806 | 404 |
lemma msetsum_Bag[code]: "msetsum (Bag ms) = DAList_Multiset.fold (\<lambda>a n. ((op + a) ^^ n)) 0 ms" |
405 |
unfolding msetsum.eq_fold |
|
406 |
apply (rule comp_fun_commute.DAList_Multiset_fold) |
|
407 |
apply unfold_locales |
|
408 |
apply (auto simp: ac_simps) |
|
409 |
done |
|
55887 | 410 |
|
58806 | 411 |
(* we cannot use (\<lambda>a n. op * (a ^ n)) for folding, since ^ is not defined |
55887 | 412 |
in comm_monoid_mult *) |
58806 | 413 |
lemma msetprod_Bag[code]: "msetprod (Bag ms) = DAList_Multiset.fold (\<lambda>a n. ((op * a) ^^ n)) 1 ms" |
414 |
unfolding msetprod.eq_fold |
|
415 |
apply (rule comp_fun_commute.DAList_Multiset_fold) |
|
416 |
apply unfold_locales |
|
417 |
apply (auto simp: ac_simps) |
|
418 |
done |
|
55887 | 419 |
|
59998
c54d36be22ef
renamed Multiset.fold -> fold_mset, Multiset.filter -> filter_mset
nipkow
parents:
59949
diff
changeset
|
420 |
lemma size_fold: "size A = fold_mset (\<lambda>_. Suc) 0 A" (is "_ = fold_mset ?f _ _") |
55887 | 421 |
proof - |
60679 | 422 |
interpret comp_fun_commute ?f by standard auto |
55887 | 423 |
show ?thesis by (induct A) auto |
424 |
qed |
|
425 |
||
59949 | 426 |
lemma size_Bag[code]: "size (Bag ms) = DAList_Multiset.fold (\<lambda>a n. op + n) 0 ms" |
427 |
unfolding size_fold |
|
55887 | 428 |
proof (rule comp_fun_commute.DAList_Multiset_fold, unfold_locales, simp) |
429 |
fix a n x |
|
58806 | 430 |
show "n + x = (Suc ^^ n) x" |
431 |
by (induct n) auto |
|
55887 | 432 |
qed |
433 |
||
434 |
||
60495 | 435 |
lemma set_mset_fold: "set_mset A = fold_mset insert {} A" (is "_ = fold_mset ?f _ _") |
55887 | 436 |
proof - |
60679 | 437 |
interpret comp_fun_commute ?f by standard auto |
58806 | 438 |
show ?thesis by (induct A) auto |
55887 | 439 |
qed |
440 |
||
60495 | 441 |
lemma set_mset_Bag[code]: |
442 |
"set_mset (Bag ms) = DAList_Multiset.fold (\<lambda>a n. (if n = 0 then (\<lambda>m. m) else insert a)) {} ms" |
|
443 |
unfolding set_mset_fold |
|
55887 | 444 |
proof (rule comp_fun_commute.DAList_Multiset_fold, unfold_locales, (auto simp: ac_simps)[1]) |
445 |
fix a n x |
|
446 |
show "(if n = 0 then \<lambda>m. m else insert a) x = (insert a ^^ n) x" (is "?l n = ?r n") |
|
447 |
proof (cases n) |
|
58806 | 448 |
case 0 |
449 |
then show ?thesis by simp |
|
450 |
next |
|
55887 | 451 |
case (Suc m) |
58806 | 452 |
then have "?l n = insert a x" by simp |
55887 | 453 |
moreover have "?r n = insert a x" unfolding Suc by (induct m) auto |
454 |
ultimately show ?thesis by auto |
|
58806 | 455 |
qed |
55887 | 456 |
qed |
457 |
||
458 |
||
51600
197e25f13f0c
default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents:
51599
diff
changeset
|
459 |
instantiation multiset :: (exhaustive) exhaustive |
51599 | 460 |
begin |
461 |
||
58806 | 462 |
definition exhaustive_multiset :: |
463 |
"('a multiset \<Rightarrow> (bool \<times> term list) option) \<Rightarrow> natural \<Rightarrow> (bool \<times> term list) option" |
|
464 |
where "exhaustive_multiset f i = Quickcheck_Exhaustive.exhaustive (\<lambda>xs. f (Bag xs)) i" |
|
51599 | 465 |
|
466 |
instance .. |
|
467 |
||
468 |
end |
|
469 |
||
470 |
end |
|
471 |