doc-src/TutorialI/Inductive/AB.thy
author paulson
Sat, 19 May 2001 12:19:23 +0200
changeset 11310 51e70b7bc315
parent 11308 b28bbb153603
child 11494 23a118849801
permissions -rw-r--r--
spelling check
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
10225
b9fd52525b69 *** empty log message ***
nipkow
parents: 10217
diff changeset
     1
(*<*)theory AB = Main:(*>*)
b9fd52525b69 *** empty log message ***
nipkow
parents: 10217
diff changeset
     2
10884
2995639c6a09 renaming of some files
paulson
parents: 10608
diff changeset
     3
section{*Case Study: A Context Free Grammar*}
10217
e61e7e1eacaf *** empty log message ***
nipkow
parents:
diff changeset
     4
10242
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
     5
text{*\label{sec:CFG}
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
     6
Grammars are nothing but shorthands for inductive definitions of nonterminals
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
     7
which represent sets of strings. For example, the production
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
     8
$A \to B c$ is short for
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
     9
\[ w \in B \Longrightarrow wc \in A \]
10884
2995639c6a09 renaming of some files
paulson
parents: 10608
diff changeset
    10
This section demonstrates this idea with an example
2995639c6a09 renaming of some files
paulson
parents: 10608
diff changeset
    11
due to Hopcroft and Ullman, a grammar for generating all words with an
2995639c6a09 renaming of some files
paulson
parents: 10608
diff changeset
    12
equal number of $a$'s and~$b$'s:
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    13
\begin{eqnarray}
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    14
S &\to& \epsilon \mid b A \mid a B \nonumber\\
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    15
A &\to& a S \mid b A A \nonumber\\
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    16
B &\to& b S \mid a B B \nonumber
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    17
\end{eqnarray}
10884
2995639c6a09 renaming of some files
paulson
parents: 10608
diff changeset
    18
At the end we say a few words about the relationship between
2995639c6a09 renaming of some files
paulson
parents: 10608
diff changeset
    19
the original proof \cite[p.\ts81]{HopcroftUllman} and our formal version.
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    20
10287
9ab1671398a6 two spelling fixes
paulson
parents: 10283
diff changeset
    21
We start by fixing the alphabet, which consists only of @{term a}'s
10884
2995639c6a09 renaming of some files
paulson
parents: 10608
diff changeset
    22
and~@{term b}'s:
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    23
*}
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    24
10217
e61e7e1eacaf *** empty log message ***
nipkow
parents:
diff changeset
    25
datatype alfa = a | b;
e61e7e1eacaf *** empty log message ***
nipkow
parents:
diff changeset
    26
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    27
text{*\noindent
10287
9ab1671398a6 two spelling fixes
paulson
parents: 10283
diff changeset
    28
For convenience we include the following easy lemmas as simplification rules:
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    29
*}
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    30
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    31
lemma [simp]: "(x \<noteq> a) = (x = b) \<and> (x \<noteq> b) = (x = a)";
10884
2995639c6a09 renaming of some files
paulson
parents: 10608
diff changeset
    32
by (case_tac x, auto)
10217
e61e7e1eacaf *** empty log message ***
nipkow
parents:
diff changeset
    33
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    34
text{*\noindent
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    35
Words over this alphabet are of type @{typ"alfa list"}, and
10884
2995639c6a09 renaming of some files
paulson
parents: 10608
diff changeset
    36
the three nonterminals are declared as sets of such words:
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    37
*}
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    38
10217
e61e7e1eacaf *** empty log message ***
nipkow
parents:
diff changeset
    39
consts S :: "alfa list set"
e61e7e1eacaf *** empty log message ***
nipkow
parents:
diff changeset
    40
       A :: "alfa list set"
e61e7e1eacaf *** empty log message ***
nipkow
parents:
diff changeset
    41
       B :: "alfa list set";
e61e7e1eacaf *** empty log message ***
nipkow
parents:
diff changeset
    42
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    43
text{*\noindent
10884
2995639c6a09 renaming of some files
paulson
parents: 10608
diff changeset
    44
The productions above are recast as a \emph{mutual} inductive
10242
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    45
definition\index{inductive definition!simultaneous}
10884
2995639c6a09 renaming of some files
paulson
parents: 10608
diff changeset
    46
of @{term S}, @{term A} and~@{term B}:
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    47
*}
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    48
10217
e61e7e1eacaf *** empty log message ***
nipkow
parents:
diff changeset
    49
inductive S A B
e61e7e1eacaf *** empty log message ***
nipkow
parents:
diff changeset
    50
intros
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    51
  "[] \<in> S"
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    52
  "w \<in> A \<Longrightarrow> b#w \<in> S"
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    53
  "w \<in> B \<Longrightarrow> a#w \<in> S"
10217
e61e7e1eacaf *** empty log message ***
nipkow
parents:
diff changeset
    54
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    55
  "w \<in> S        \<Longrightarrow> a#w   \<in> A"
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    56
  "\<lbrakk> v\<in>A; w\<in>A \<rbrakk> \<Longrightarrow> b#v@w \<in> A"
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    57
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    58
  "w \<in> S            \<Longrightarrow> b#w   \<in> B"
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    59
  "\<lbrakk> v \<in> B; w \<in> B \<rbrakk> \<Longrightarrow> a#v@w \<in> B";
10217
e61e7e1eacaf *** empty log message ***
nipkow
parents:
diff changeset
    60
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    61
text{*\noindent
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    62
First we show that all words in @{term S} contain the same number of @{term
10884
2995639c6a09 renaming of some files
paulson
parents: 10608
diff changeset
    63
a}'s and @{term b}'s. Since the definition of @{term S} is by mutual
2995639c6a09 renaming of some files
paulson
parents: 10608
diff changeset
    64
induction, so is the proof: we show at the same time that all words in
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    65
@{term A} contain one more @{term a} than @{term b} and all words in @{term
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    66
B} contains one more @{term b} than @{term a}.
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    67
*}
10217
e61e7e1eacaf *** empty log message ***
nipkow
parents:
diff changeset
    68
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    69
lemma correctness:
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    70
  "(w \<in> S \<longrightarrow> size[x\<in>w. x=a] = size[x\<in>w. x=b])     \<and>
10237
875bf54b5d74 *** empty log message ***
nipkow
parents: 10236
diff changeset
    71
   (w \<in> A \<longrightarrow> size[x\<in>w. x=a] = size[x\<in>w. x=b] + 1) \<and>
875bf54b5d74 *** empty log message ***
nipkow
parents: 10236
diff changeset
    72
   (w \<in> B \<longrightarrow> size[x\<in>w. x=b] = size[x\<in>w. x=a] + 1)"
10217
e61e7e1eacaf *** empty log message ***
nipkow
parents:
diff changeset
    73
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    74
txt{*\noindent
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    75
These propositions are expressed with the help of the predefined @{term
10283
ff003e2b790c *** empty log message ***
nipkow
parents: 10242
diff changeset
    76
filter} function on lists, which has the convenient syntax @{text"[x\<in>xs. P
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    77
x]"}, the list of all elements @{term x} in @{term xs} such that @{prop"P x"}
10884
2995639c6a09 renaming of some files
paulson
parents: 10608
diff changeset
    78
holds. Remember that on lists @{text size} and @{text length} are synonymous.
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    79
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    80
The proof itself is by rule induction and afterwards automatic:
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    81
*}
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    82
10884
2995639c6a09 renaming of some files
paulson
parents: 10608
diff changeset
    83
by (rule S_A_B.induct, auto)
10217
e61e7e1eacaf *** empty log message ***
nipkow
parents:
diff changeset
    84
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    85
text{*\noindent
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    86
This may seem surprising at first, and is indeed an indication of the power
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    87
of inductive definitions. But it is also quite straightforward. For example,
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    88
consider the production $A \to b A A$: if $v,w \in A$ and the elements of $A$
10884
2995639c6a09 renaming of some files
paulson
parents: 10608
diff changeset
    89
contain one more $a$ than~$b$'s, then $bvw$ must again contain one more $a$
2995639c6a09 renaming of some files
paulson
parents: 10608
diff changeset
    90
than~$b$'s.
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    91
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    92
As usual, the correctness of syntactic descriptions is easy, but completeness
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    93
is hard: does @{term S} contain \emph{all} words with an equal number of
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    94
@{term a}'s and @{term b}'s? It turns out that this proof requires the
10884
2995639c6a09 renaming of some files
paulson
parents: 10608
diff changeset
    95
following lemma: every string with two more @{term a}'s than @{term
2995639c6a09 renaming of some files
paulson
parents: 10608
diff changeset
    96
b}'s can be cut somewhere such that each half has one more @{term a} than
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    97
@{term b}. This is best seen by imagining counting the difference between the
10283
ff003e2b790c *** empty log message ***
nipkow
parents: 10242
diff changeset
    98
number of @{term a}'s and @{term b}'s starting at the left end of the
ff003e2b790c *** empty log message ***
nipkow
parents: 10242
diff changeset
    99
word. We start with 0 and end (at the right end) with 2. Since each move to the
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   100
right increases or decreases the difference by 1, we must have passed through
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   101
1 on our way from 0 to 2. Formally, we appeal to the following discrete
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   102
intermediate value theorem @{thm[source]nat0_intermed_int_val}
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   103
@{thm[display]nat0_intermed_int_val[no_vars]}
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   104
where @{term f} is of type @{typ"nat \<Rightarrow> int"}, @{typ int} are the integers,
11308
b28bbb153603 *** empty log message ***
nipkow
parents: 11257
diff changeset
   105
@{text"\<bar>.\<bar>"} is the absolute value function\footnote{See
b28bbb153603 *** empty log message ***
nipkow
parents: 11257
diff changeset
   106
Table~\ref{tab:ascii} in the Appendix for the correct \textsc{ascii}
b28bbb153603 *** empty log message ***
nipkow
parents: 11257
diff changeset
   107
syntax.}, and @{term"#1::int"} is the integer 1 (see \S\ref{sec:numbers}).
10217
e61e7e1eacaf *** empty log message ***
nipkow
parents:
diff changeset
   108
11147
d848c6693185 *** empty log message ***
nipkow
parents: 10884
diff changeset
   109
First we show that our specific function, the difference between the
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   110
numbers of @{term a}'s and @{term b}'s, does indeed only change by 1 in every
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   111
move to the right. At this point we also start generalizing from @{term a}'s
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   112
and @{term b}'s to an arbitrary property @{term P}. Otherwise we would have
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   113
to prove the desired lemma twice, once as stated above and once with the
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   114
roles of @{term a}'s and @{term b}'s interchanged.
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   115
*}
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   116
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   117
lemma step1: "\<forall>i < size w.
10608
620647438780 *** empty log message ***
nipkow
parents: 10520
diff changeset
   118
  \<bar>(int(size[x\<in>take (i+1) w. P x])-int(size[x\<in>take (i+1) w. \<not>P x]))
620647438780 *** empty log message ***
nipkow
parents: 10520
diff changeset
   119
   - (int(size[x\<in>take i w. P x])-int(size[x\<in>take i w. \<not>P x]))\<bar> \<le> #1"
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   120
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   121
txt{*\noindent
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   122
The lemma is a bit hard to read because of the coercion function
11147
d848c6693185 *** empty log message ***
nipkow
parents: 10884
diff changeset
   123
@{text"int :: nat \<Rightarrow> int"}. It is required because @{term size} returns
10884
2995639c6a09 renaming of some files
paulson
parents: 10608
diff changeset
   124
a natural number, but subtraction on type~@{typ nat} will do the wrong thing.
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   125
Function @{term take} is predefined and @{term"take i xs"} is the prefix of
10884
2995639c6a09 renaming of some files
paulson
parents: 10608
diff changeset
   126
length @{term i} of @{term xs}; below we also need @{term"drop i xs"}, which
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   127
is what remains after that prefix has been dropped from @{term xs}.
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   128
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   129
The proof is by induction on @{term w}, with a trivial base case, and a not
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   130
so trivial induction step. Since it is essentially just arithmetic, we do not
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   131
discuss it.
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   132
*}
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   133
10217
e61e7e1eacaf *** empty log message ***
nipkow
parents:
diff changeset
   134
apply(induct w);
e61e7e1eacaf *** empty log message ***
nipkow
parents:
diff changeset
   135
 apply(simp);
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   136
by(force simp add:zabs_def take_Cons split:nat.split if_splits); 
10217
e61e7e1eacaf *** empty log message ***
nipkow
parents:
diff changeset
   137
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   138
text{*
10884
2995639c6a09 renaming of some files
paulson
parents: 10608
diff changeset
   139
Finally we come to the above mentioned lemma about cutting in half a word with two
2995639c6a09 renaming of some files
paulson
parents: 10608
diff changeset
   140
more elements of one sort than of the other sort:
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   141
*}
10217
e61e7e1eacaf *** empty log message ***
nipkow
parents:
diff changeset
   142
e61e7e1eacaf *** empty log message ***
nipkow
parents:
diff changeset
   143
lemma part1:
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   144
 "size[x\<in>w. P x] = size[x\<in>w. \<not>P x]+2 \<Longrightarrow>
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   145
  \<exists>i\<le>size w. size[x\<in>take i w. P x] = size[x\<in>take i w. \<not>P x]+1";
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   146
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   147
txt{*\noindent
10884
2995639c6a09 renaming of some files
paulson
parents: 10608
diff changeset
   148
This is proved by @{text force} with the help of the intermediate value theorem,
10608
620647438780 *** empty log message ***
nipkow
parents: 10520
diff changeset
   149
instantiated appropriately and with its first premise disposed of by lemma
620647438780 *** empty log message ***
nipkow
parents: 10520
diff changeset
   150
@{thm[source]step1}:
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   151
*}
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   152
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   153
apply(insert nat0_intermed_int_val[OF step1, of "P" "w" "#1"]);
10608
620647438780 *** empty log message ***
nipkow
parents: 10520
diff changeset
   154
by force;
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   155
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   156
text{*\noindent
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   157
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   158
Lemma @{thm[source]part1} tells us only about the prefix @{term"take i w"}.
10884
2995639c6a09 renaming of some files
paulson
parents: 10608
diff changeset
   159
An easy lemma deals with the suffix @{term"drop i w"}:
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   160
*}
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   161
10217
e61e7e1eacaf *** empty log message ***
nipkow
parents:
diff changeset
   162
e61e7e1eacaf *** empty log message ***
nipkow
parents:
diff changeset
   163
lemma part2:
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   164
  "\<lbrakk>size[x\<in>take i w @ drop i w. P x] =
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   165
    size[x\<in>take i w @ drop i w. \<not>P x]+2;
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   166
    size[x\<in>take i w. P x] = size[x\<in>take i w. \<not>P x]+1\<rbrakk>
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   167
   \<Longrightarrow> size[x\<in>drop i w. P x] = size[x\<in>drop i w. \<not>P x]+1";
10217
e61e7e1eacaf *** empty log message ***
nipkow
parents:
diff changeset
   168
by(simp del:append_take_drop_id);
e61e7e1eacaf *** empty log message ***
nipkow
parents:
diff changeset
   169
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   170
text{*\noindent
11257
622331bbdb7f *** empty log message ***
nipkow
parents: 11147
diff changeset
   171
In the proof we have disabled the normally useful lemma
10884
2995639c6a09 renaming of some files
paulson
parents: 10608
diff changeset
   172
\begin{isabelle}
2995639c6a09 renaming of some files
paulson
parents: 10608
diff changeset
   173
@{thm append_take_drop_id[no_vars]}
2995639c6a09 renaming of some files
paulson
parents: 10608
diff changeset
   174
\rulename{append_take_drop_id}
2995639c6a09 renaming of some files
paulson
parents: 10608
diff changeset
   175
\end{isabelle}
11257
622331bbdb7f *** empty log message ***
nipkow
parents: 11147
diff changeset
   176
to allow the simplifier to apply the following lemma instead:
622331bbdb7f *** empty log message ***
nipkow
parents: 11147
diff changeset
   177
@{text[display]"[x\<in>xs@ys. P x] = [x\<in>xs. P x] @ [x\<in>ys. P x]"}
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   178
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   179
To dispose of trivial cases automatically, the rules of the inductive
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   180
definition are declared simplification rules:
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   181
*}
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   182
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   183
declare S_A_B.intros[simp];
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   184
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   185
text{*\noindent
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   186
This could have been done earlier but was not necessary so far.
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   187
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   188
The completeness theorem tells us that if a word has the same number of
10884
2995639c6a09 renaming of some files
paulson
parents: 10608
diff changeset
   189
@{term a}'s and @{term b}'s, then it is in @{term S}, and similarly 
2995639c6a09 renaming of some files
paulson
parents: 10608
diff changeset
   190
for @{term A} and @{term B}:
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   191
*}
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   192
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   193
theorem completeness:
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   194
  "(size[x\<in>w. x=a] = size[x\<in>w. x=b]     \<longrightarrow> w \<in> S) \<and>
10237
875bf54b5d74 *** empty log message ***
nipkow
parents: 10236
diff changeset
   195
   (size[x\<in>w. x=a] = size[x\<in>w. x=b] + 1 \<longrightarrow> w \<in> A) \<and>
875bf54b5d74 *** empty log message ***
nipkow
parents: 10236
diff changeset
   196
   (size[x\<in>w. x=b] = size[x\<in>w. x=a] + 1 \<longrightarrow> w \<in> B)";
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   197
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   198
txt{*\noindent
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   199
The proof is by induction on @{term w}. Structural induction would fail here
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   200
because, as we can see from the grammar, we need to make bigger steps than
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   201
merely appending a single letter at the front. Hence we induct on the length
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   202
of @{term w}, using the induction rule @{thm[source]length_induct}:
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   203
*}
10217
e61e7e1eacaf *** empty log message ***
nipkow
parents:
diff changeset
   204
e61e7e1eacaf *** empty log message ***
nipkow
parents:
diff changeset
   205
apply(induct_tac w rule: length_induct);
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   206
(*<*)apply(rename_tac w)(*>*)
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   207
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   208
txt{*\noindent
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   209
The @{text rule} parameter tells @{text induct_tac} explicitly which induction
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   210
rule to use. For details see \S\ref{sec:complete-ind} below.
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   211
In this case the result is that we may assume the lemma already
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   212
holds for all words shorter than @{term w}.
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   213
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   214
The proof continues with a case distinction on @{term w},
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   215
i.e.\ if @{term w} is empty or not.
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   216
*}
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   217
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   218
apply(case_tac w);
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   219
 apply(simp_all);
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   220
(*<*)apply(rename_tac x v)(*>*)
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   221
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   222
txt{*\noindent
11257
622331bbdb7f *** empty log message ***
nipkow
parents: 11147
diff changeset
   223
Simplification disposes of the base case and leaves only a conjunction
622331bbdb7f *** empty log message ***
nipkow
parents: 11147
diff changeset
   224
of two step cases to be proved:
10884
2995639c6a09 renaming of some files
paulson
parents: 10608
diff changeset
   225
if @{prop"w = a#v"} and @{prop[display]"size[x\<in>v. x=a] = size[x\<in>v. x=b]+2"} then
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   226
@{prop"b#v \<in> A"}, and similarly for @{prop"w = b#v"}.
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   227
We only consider the first case in detail.
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   228
11257
622331bbdb7f *** empty log message ***
nipkow
parents: 11147
diff changeset
   229
After breaking the conjunction up into two cases, we can apply
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   230
@{thm[source]part1} to the assumption that @{term w} contains two more @{term
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   231
a}'s than @{term b}'s.
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   232
*}
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   233
11257
622331bbdb7f *** empty log message ***
nipkow
parents: 11147
diff changeset
   234
apply(rule conjI)
622331bbdb7f *** empty log message ***
nipkow
parents: 11147
diff changeset
   235
 apply(clarify)
622331bbdb7f *** empty log message ***
nipkow
parents: 11147
diff changeset
   236
 apply(frule part1[of "\<lambda>x. x=a", simplified])
622331bbdb7f *** empty log message ***
nipkow
parents: 11147
diff changeset
   237
 apply(clarify)
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   238
txt{*\noindent
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   239
This yields an index @{prop"i \<le> length v"} such that
10884
2995639c6a09 renaming of some files
paulson
parents: 10608
diff changeset
   240
@{prop[display]"length [x\<in>take i v . x = a] = length [x\<in>take i v . x = b] + 1"}
11147
d848c6693185 *** empty log message ***
nipkow
parents: 10884
diff changeset
   241
With the help of @{thm[source]part2} it follows that
10884
2995639c6a09 renaming of some files
paulson
parents: 10608
diff changeset
   242
@{prop[display]"length [x\<in>drop i v . x = a] = length [x\<in>drop i v . x = b] + 1"}
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   243
*}
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   244
11257
622331bbdb7f *** empty log message ***
nipkow
parents: 11147
diff changeset
   245
 apply(drule part2[of "\<lambda>x. x=a", simplified])
622331bbdb7f *** empty log message ***
nipkow
parents: 11147
diff changeset
   246
  apply(assumption)
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   247
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   248
txt{*\noindent
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   249
Now it is time to decompose @{term v} in the conclusion @{prop"b#v \<in> A"}
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   250
into @{term"take i v @ drop i v"},
11257
622331bbdb7f *** empty log message ***
nipkow
parents: 11147
diff changeset
   251
*}
622331bbdb7f *** empty log message ***
nipkow
parents: 11147
diff changeset
   252
622331bbdb7f *** empty log message ***
nipkow
parents: 11147
diff changeset
   253
 apply(rule_tac n1=i and t=v in subst[OF append_take_drop_id])
622331bbdb7f *** empty log message ***
nipkow
parents: 11147
diff changeset
   254
622331bbdb7f *** empty log message ***
nipkow
parents: 11147
diff changeset
   255
txt{*\noindent
622331bbdb7f *** empty log message ***
nipkow
parents: 11147
diff changeset
   256
(the variables @{term n1} and @{term t} are the result of composing the
622331bbdb7f *** empty log message ***
nipkow
parents: 11147
diff changeset
   257
theorems @{thm[source]subst} and @{thm[source]append_take_drop_id})
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   258
after which the appropriate rule of the grammar reduces the goal
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   259
to the two subgoals @{prop"take i v \<in> A"} and @{prop"drop i v \<in> A"}:
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   260
*}
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   261
11257
622331bbdb7f *** empty log message ***
nipkow
parents: 11147
diff changeset
   262
 apply(rule S_A_B.intros)
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   263
11257
622331bbdb7f *** empty log message ***
nipkow
parents: 11147
diff changeset
   264
txt{*
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   265
Both subgoals follow from the induction hypothesis because both @{term"take i
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   266
v"} and @{term"drop i v"} are shorter than @{term w}:
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   267
*}
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   268
11257
622331bbdb7f *** empty log message ***
nipkow
parents: 11147
diff changeset
   269
  apply(force simp add: min_less_iff_disj)
622331bbdb7f *** empty log message ***
nipkow
parents: 11147
diff changeset
   270
 apply(force split add: nat_diff_split)
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   271
11257
622331bbdb7f *** empty log message ***
nipkow
parents: 11147
diff changeset
   272
txt{*
10884
2995639c6a09 renaming of some files
paulson
parents: 10608
diff changeset
   273
The case @{prop"w = b#v"} is proved analogously:
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   274
*}
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   275
11257
622331bbdb7f *** empty log message ***
nipkow
parents: 11147
diff changeset
   276
apply(clarify)
622331bbdb7f *** empty log message ***
nipkow
parents: 11147
diff changeset
   277
apply(frule part1[of "\<lambda>x. x=b", simplified])
622331bbdb7f *** empty log message ***
nipkow
parents: 11147
diff changeset
   278
apply(clarify)
622331bbdb7f *** empty log message ***
nipkow
parents: 11147
diff changeset
   279
apply(drule part2[of "\<lambda>x. x=b", simplified])
622331bbdb7f *** empty log message ***
nipkow
parents: 11147
diff changeset
   280
 apply(assumption)
622331bbdb7f *** empty log message ***
nipkow
parents: 11147
diff changeset
   281
apply(rule_tac n1=i and t=v in subst[OF append_take_drop_id])
622331bbdb7f *** empty log message ***
nipkow
parents: 11147
diff changeset
   282
apply(rule S_A_B.intros)
622331bbdb7f *** empty log message ***
nipkow
parents: 11147
diff changeset
   283
 apply(force simp add:min_less_iff_disj)
622331bbdb7f *** empty log message ***
nipkow
parents: 11147
diff changeset
   284
by(force simp add:min_less_iff_disj split add: nat_diff_split)
10217
e61e7e1eacaf *** empty log message ***
nipkow
parents:
diff changeset
   285
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   286
text{*
10884
2995639c6a09 renaming of some files
paulson
parents: 10608
diff changeset
   287
We conclude this section with a comparison of our proof with 
11310
51e70b7bc315 spelling check
paulson
parents: 11308
diff changeset
   288
Hopcroft and Ullman's \cite[p.\ts81]{HopcroftUllman}. For a start, the textbook
11257
622331bbdb7f *** empty log message ***
nipkow
parents: 11147
diff changeset
   289
grammar, for no good reason, excludes the empty word, thus complicating
622331bbdb7f *** empty log message ***
nipkow
parents: 11147
diff changeset
   290
matters just a little bit: they have 8 instead of our 7 productions.
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   291
11147
d848c6693185 *** empty log message ***
nipkow
parents: 10884
diff changeset
   292
More importantly, the proof itself is different: rather than
d848c6693185 *** empty log message ***
nipkow
parents: 10884
diff changeset
   293
separating the two directions, they perform one induction on the
d848c6693185 *** empty log message ***
nipkow
parents: 10884
diff changeset
   294
length of a word. This deprives them of the beauty of rule induction,
d848c6693185 *** empty log message ***
nipkow
parents: 10884
diff changeset
   295
and in the easy direction (correctness) their reasoning is more
d848c6693185 *** empty log message ***
nipkow
parents: 10884
diff changeset
   296
detailed than our @{text auto}. For the hard part (completeness), they
d848c6693185 *** empty log message ***
nipkow
parents: 10884
diff changeset
   297
consider just one of the cases that our @{text simp_all} disposes of
d848c6693185 *** empty log message ***
nipkow
parents: 10884
diff changeset
   298
automatically. Then they conclude the proof by saying about the
d848c6693185 *** empty log message ***
nipkow
parents: 10884
diff changeset
   299
remaining cases: ``We do this in a manner similar to our method of
d848c6693185 *** empty log message ***
nipkow
parents: 10884
diff changeset
   300
proof for part (1); this part is left to the reader''. But this is
d848c6693185 *** empty log message ***
nipkow
parents: 10884
diff changeset
   301
precisely the part that requires the intermediate value theorem and
d848c6693185 *** empty log message ***
nipkow
parents: 10884
diff changeset
   302
thus is not at all similar to the other cases (which are automatic in
d848c6693185 *** empty log message ***
nipkow
parents: 10884
diff changeset
   303
Isabelle). The authors are at least cavalier about this point and may
d848c6693185 *** empty log message ***
nipkow
parents: 10884
diff changeset
   304
even have overlooked the slight difficulty lurking in the omitted
d848c6693185 *** empty log message ***
nipkow
parents: 10884
diff changeset
   305
cases. This is not atypical for pen-and-paper proofs, once analysed in
d848c6693185 *** empty log message ***
nipkow
parents: 10884
diff changeset
   306
detail.  *}
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   307
10225
b9fd52525b69 *** empty log message ***
nipkow
parents: 10217
diff changeset
   308
(*<*)end(*>*)