| author | wenzelm | 
| Wed, 21 Oct 2015 18:00:12 +0200 | |
| changeset 61500 | 56a167b31a7f | 
| parent 61378 | 3e04c9ca001a | 
| child 61605 | 1bf7b186542e | 
| permissions | -rw-r--r-- | 
| 28685 | 1 | (* Title: HOL/Orderings.thy | 
| 15524 | 2 | Author: Tobias Nipkow, Markus Wenzel, and Larry Paulson | 
| 3 | *) | |
| 4 | ||
| 60758 | 5 | section \<open>Abstract orderings\<close> | 
| 15524 | 6 | |
| 7 | theory Orderings | |
| 35301 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35115diff
changeset | 8 | imports HOL | 
| 46950 
d0181abdbdac
declare command keywords via theory header, including strict checking outside Pure;
 wenzelm parents: 
46884diff
changeset | 9 | keywords "print_orders" :: diag | 
| 15524 | 10 | begin | 
| 11 | ||
| 48891 | 12 | ML_file "~~/src/Provers/order.ML" | 
| 13 | ML_file "~~/src/Provers/quasi.ML" (* FIXME unused? *) | |
| 14 | ||
| 60758 | 15 | subsection \<open>Abstract ordering\<close> | 
| 51487 | 16 | |
| 17 | locale ordering = | |
| 18 | fixes less_eq :: "'a \<Rightarrow> 'a \<Rightarrow> bool" (infix "\<preceq>" 50) | |
| 19 | and less :: "'a \<Rightarrow> 'a \<Rightarrow> bool" (infix "\<prec>" 50) | |
| 20 | assumes strict_iff_order: "a \<prec> b \<longleftrightarrow> a \<preceq> b \<and> a \<noteq> b" | |
| 60758 | 21 |   assumes refl: "a \<preceq> a" -- \<open>not @{text iff}: makes problems due to multiple (dual) interpretations\<close>
 | 
| 51487 | 22 | and antisym: "a \<preceq> b \<Longrightarrow> b \<preceq> a \<Longrightarrow> a = b" | 
| 23 | and trans: "a \<preceq> b \<Longrightarrow> b \<preceq> c \<Longrightarrow> a \<preceq> c" | |
| 24 | begin | |
| 25 | ||
| 26 | lemma strict_implies_order: | |
| 27 | "a \<prec> b \<Longrightarrow> a \<preceq> b" | |
| 28 | by (simp add: strict_iff_order) | |
| 29 | ||
| 30 | lemma strict_implies_not_eq: | |
| 31 | "a \<prec> b \<Longrightarrow> a \<noteq> b" | |
| 32 | by (simp add: strict_iff_order) | |
| 33 | ||
| 34 | lemma not_eq_order_implies_strict: | |
| 35 | "a \<noteq> b \<Longrightarrow> a \<preceq> b \<Longrightarrow> a \<prec> b" | |
| 36 | by (simp add: strict_iff_order) | |
| 37 | ||
| 38 | lemma order_iff_strict: | |
| 39 | "a \<preceq> b \<longleftrightarrow> a \<prec> b \<or> a = b" | |
| 40 | by (auto simp add: strict_iff_order refl) | |
| 41 | ||
| 60758 | 42 | lemma irrefl: -- \<open>not @{text iff}: makes problems due to multiple (dual) interpretations\<close>
 | 
| 51487 | 43 | "\<not> a \<prec> a" | 
| 44 | by (simp add: strict_iff_order) | |
| 45 | ||
| 46 | lemma asym: | |
| 47 | "a \<prec> b \<Longrightarrow> b \<prec> a \<Longrightarrow> False" | |
| 48 | by (auto simp add: strict_iff_order intro: antisym) | |
| 49 | ||
| 50 | lemma strict_trans1: | |
| 51 | "a \<preceq> b \<Longrightarrow> b \<prec> c \<Longrightarrow> a \<prec> c" | |
| 52 | by (auto simp add: strict_iff_order intro: trans antisym) | |
| 53 | ||
| 54 | lemma strict_trans2: | |
| 55 | "a \<prec> b \<Longrightarrow> b \<preceq> c \<Longrightarrow> a \<prec> c" | |
| 56 | by (auto simp add: strict_iff_order intro: trans antisym) | |
| 57 | ||
| 58 | lemma strict_trans: | |
| 59 | "a \<prec> b \<Longrightarrow> b \<prec> c \<Longrightarrow> a \<prec> c" | |
| 60 | by (auto intro: strict_trans1 strict_implies_order) | |
| 61 | ||
| 62 | end | |
| 63 | ||
| 64 | locale ordering_top = ordering + | |
| 65 | fixes top :: "'a" | |
| 66 | assumes extremum [simp]: "a \<preceq> top" | |
| 67 | begin | |
| 68 | ||
| 69 | lemma extremum_uniqueI: | |
| 70 | "top \<preceq> a \<Longrightarrow> a = top" | |
| 71 | by (rule antisym) auto | |
| 72 | ||
| 73 | lemma extremum_unique: | |
| 74 | "top \<preceq> a \<longleftrightarrow> a = top" | |
| 75 | by (auto intro: antisym) | |
| 76 | ||
| 77 | lemma extremum_strict [simp]: | |
| 78 | "\<not> (top \<prec> a)" | |
| 79 | using extremum [of a] by (auto simp add: order_iff_strict intro: asym irrefl) | |
| 80 | ||
| 81 | lemma not_eq_extremum: | |
| 82 | "a \<noteq> top \<longleftrightarrow> a \<prec> top" | |
| 83 | by (auto simp add: order_iff_strict intro: not_eq_order_implies_strict extremum) | |
| 84 | ||
| 85 | end | |
| 86 | ||
| 87 | ||
| 60758 | 88 | subsection \<open>Syntactic orders\<close> | 
| 35092 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 89 | |
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 90 | class ord = | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 91 | fixes less_eq :: "'a \<Rightarrow> 'a \<Rightarrow> bool" | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 92 | and less :: "'a \<Rightarrow> 'a \<Rightarrow> bool" | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 93 | begin | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 94 | |
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 95 | notation | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 96 |   less_eq  ("op <=") and
 | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 97 |   less_eq  ("(_/ <= _)" [51, 51] 50) and
 | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 98 |   less  ("op <") and
 | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 99 |   less  ("(_/ < _)"  [51, 51] 50)
 | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 100 | |
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 101 | notation (xsymbols) | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 102 |   less_eq  ("op \<le>") and
 | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 103 |   less_eq  ("(_/ \<le> _)"  [51, 51] 50)
 | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 104 | |
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 105 | abbreviation (input) | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 106 | greater_eq (infix ">=" 50) where | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 107 | "x >= y \<equiv> y <= x" | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 108 | |
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 109 | notation (input) | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 110 | greater_eq (infix "\<ge>" 50) | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 111 | |
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 112 | abbreviation (input) | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 113 | greater (infix ">" 50) where | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 114 | "x > y \<equiv> y < x" | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 115 | |
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 116 | end | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 117 | |
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 118 | |
| 60758 | 119 | subsection \<open>Quasi orders\<close> | 
| 15524 | 120 | |
| 27682 | 121 | class preorder = ord + | 
| 122 | assumes less_le_not_le: "x < y \<longleftrightarrow> x \<le> y \<and> \<not> (y \<le> x)" | |
| 25062 | 123 | and order_refl [iff]: "x \<le> x" | 
| 124 | and order_trans: "x \<le> y \<Longrightarrow> y \<le> z \<Longrightarrow> x \<le> z" | |
| 21248 | 125 | begin | 
| 126 | ||
| 60758 | 127 | text \<open>Reflexivity.\<close> | 
| 15524 | 128 | |
| 25062 | 129 | lemma eq_refl: "x = y \<Longrightarrow> x \<le> y" | 
| 60758 | 130 | -- \<open>This form is useful with the classical reasoner.\<close> | 
| 23212 | 131 | by (erule ssubst) (rule order_refl) | 
| 15524 | 132 | |
| 25062 | 133 | lemma less_irrefl [iff]: "\<not> x < x" | 
| 27682 | 134 | by (simp add: less_le_not_le) | 
| 135 | ||
| 136 | lemma less_imp_le: "x < y \<Longrightarrow> x \<le> y" | |
| 137 | unfolding less_le_not_le by blast | |
| 138 | ||
| 139 | ||
| 60758 | 140 | text \<open>Asymmetry.\<close> | 
| 27682 | 141 | |
| 142 | lemma less_not_sym: "x < y \<Longrightarrow> \<not> (y < x)" | |
| 143 | by (simp add: less_le_not_le) | |
| 144 | ||
| 145 | lemma less_asym: "x < y \<Longrightarrow> (\<not> P \<Longrightarrow> y < x) \<Longrightarrow> P" | |
| 146 | by (drule less_not_sym, erule contrapos_np) simp | |
| 147 | ||
| 148 | ||
| 60758 | 149 | text \<open>Transitivity.\<close> | 
| 27682 | 150 | |
| 151 | lemma less_trans: "x < y \<Longrightarrow> y < z \<Longrightarrow> x < z" | |
| 152 | by (auto simp add: less_le_not_le intro: order_trans) | |
| 153 | ||
| 154 | lemma le_less_trans: "x \<le> y \<Longrightarrow> y < z \<Longrightarrow> x < z" | |
| 155 | by (auto simp add: less_le_not_le intro: order_trans) | |
| 156 | ||
| 157 | lemma less_le_trans: "x < y \<Longrightarrow> y \<le> z \<Longrightarrow> x < z" | |
| 158 | by (auto simp add: less_le_not_le intro: order_trans) | |
| 159 | ||
| 160 | ||
| 60758 | 161 | text \<open>Useful for simplification, but too risky to include by default.\<close> | 
| 27682 | 162 | |
| 163 | lemma less_imp_not_less: "x < y \<Longrightarrow> (\<not> y < x) \<longleftrightarrow> True" | |
| 164 | by (blast elim: less_asym) | |
| 165 | ||
| 166 | lemma less_imp_triv: "x < y \<Longrightarrow> (y < x \<longrightarrow> P) \<longleftrightarrow> True" | |
| 167 | by (blast elim: less_asym) | |
| 168 | ||
| 169 | ||
| 60758 | 170 | text \<open>Transitivity rules for calculational reasoning\<close> | 
| 27682 | 171 | |
| 172 | lemma less_asym': "a < b \<Longrightarrow> b < a \<Longrightarrow> P" | |
| 173 | by (rule less_asym) | |
| 174 | ||
| 175 | ||
| 60758 | 176 | text \<open>Dual order\<close> | 
| 27682 | 177 | |
| 178 | lemma dual_preorder: | |
| 36635 
080b755377c0
locale predicates of classes carry a mandatory "class" prefix
 haftmann parents: 
35828diff
changeset | 179 | "class.preorder (op \<ge>) (op >)" | 
| 28823 | 180 | proof qed (auto simp add: less_le_not_le intro: order_trans) | 
| 27682 | 181 | |
| 182 | end | |
| 183 | ||
| 184 | ||
| 60758 | 185 | subsection \<open>Partial orders\<close> | 
| 27682 | 186 | |
| 187 | class order = preorder + | |
| 188 | assumes antisym: "x \<le> y \<Longrightarrow> y \<le> x \<Longrightarrow> x = y" | |
| 189 | begin | |
| 190 | ||
| 51487 | 191 | lemma less_le: "x < y \<longleftrightarrow> x \<le> y \<and> x \<noteq> y" | 
| 192 | by (auto simp add: less_le_not_le intro: antisym) | |
| 193 | ||
| 54868 | 194 | sublocale order!: ordering less_eq less + dual_order!: ordering greater_eq greater | 
| 61169 | 195 | by standard (auto intro: antisym order_trans simp add: less_le) | 
| 51487 | 196 | |
| 197 | ||
| 60758 | 198 | text \<open>Reflexivity.\<close> | 
| 15524 | 199 | |
| 25062 | 200 | lemma le_less: "x \<le> y \<longleftrightarrow> x < y \<or> x = y" | 
| 60758 | 201 | -- \<open>NOT suitable for iff, since it can cause PROOF FAILED.\<close> | 
| 51546 
2e26df807dc7
more uniform style for interpretation and sublocale declarations
 haftmann parents: 
51487diff
changeset | 202 | by (fact order.order_iff_strict) | 
| 15524 | 203 | |
| 25062 | 204 | lemma le_imp_less_or_eq: "x \<le> y \<Longrightarrow> x < y \<or> x = y" | 
| 23212 | 205 | unfolding less_le by blast | 
| 15524 | 206 | |
| 21329 | 207 | |
| 60758 | 208 | text \<open>Useful for simplification, but too risky to include by default.\<close> | 
| 21329 | 209 | |
| 25062 | 210 | lemma less_imp_not_eq: "x < y \<Longrightarrow> (x = y) \<longleftrightarrow> False" | 
| 23212 | 211 | by auto | 
| 21329 | 212 | |
| 25062 | 213 | lemma less_imp_not_eq2: "x < y \<Longrightarrow> (y = x) \<longleftrightarrow> False" | 
| 23212 | 214 | by auto | 
| 21329 | 215 | |
| 216 | ||
| 60758 | 217 | text \<open>Transitivity rules for calculational reasoning\<close> | 
| 21329 | 218 | |
| 25062 | 219 | lemma neq_le_trans: "a \<noteq> b \<Longrightarrow> a \<le> b \<Longrightarrow> a < b" | 
| 51546 
2e26df807dc7
more uniform style for interpretation and sublocale declarations
 haftmann parents: 
51487diff
changeset | 220 | by (fact order.not_eq_order_implies_strict) | 
| 21329 | 221 | |
| 25062 | 222 | lemma le_neq_trans: "a \<le> b \<Longrightarrow> a \<noteq> b \<Longrightarrow> a < b" | 
| 51546 
2e26df807dc7
more uniform style for interpretation and sublocale declarations
 haftmann parents: 
51487diff
changeset | 223 | by (rule order.not_eq_order_implies_strict) | 
| 21329 | 224 | |
| 15524 | 225 | |
| 60758 | 226 | text \<open>Asymmetry.\<close> | 
| 15524 | 227 | |
| 25062 | 228 | lemma eq_iff: "x = y \<longleftrightarrow> x \<le> y \<and> y \<le> x" | 
| 23212 | 229 | by (blast intro: antisym) | 
| 15524 | 230 | |
| 25062 | 231 | lemma antisym_conv: "y \<le> x \<Longrightarrow> x \<le> y \<longleftrightarrow> x = y" | 
| 23212 | 232 | by (blast intro: antisym) | 
| 15524 | 233 | |
| 25062 | 234 | lemma less_imp_neq: "x < y \<Longrightarrow> x \<noteq> y" | 
| 51546 
2e26df807dc7
more uniform style for interpretation and sublocale declarations
 haftmann parents: 
51487diff
changeset | 235 | by (fact order.strict_implies_not_eq) | 
| 21248 | 236 | |
| 21083 | 237 | |
| 60758 | 238 | text \<open>Least value operator\<close> | 
| 27107 | 239 | |
| 27299 | 240 | definition (in ord) | 
| 27107 | 241 |   Least :: "('a \<Rightarrow> bool) \<Rightarrow> 'a" (binder "LEAST " 10) where
 | 
| 242 | "Least P = (THE x. P x \<and> (\<forall>y. P y \<longrightarrow> x \<le> y))" | |
| 243 | ||
| 244 | lemma Least_equality: | |
| 245 | assumes "P x" | |
| 246 | and "\<And>y. P y \<Longrightarrow> x \<le> y" | |
| 247 | shows "Least P = x" | |
| 248 | unfolding Least_def by (rule the_equality) | |
| 249 | (blast intro: assms antisym)+ | |
| 250 | ||
| 251 | lemma LeastI2_order: | |
| 252 | assumes "P x" | |
| 253 | and "\<And>y. P y \<Longrightarrow> x \<le> y" | |
| 254 | and "\<And>x. P x \<Longrightarrow> \<forall>y. P y \<longrightarrow> x \<le> y \<Longrightarrow> Q x" | |
| 255 | shows "Q (Least P)" | |
| 256 | unfolding Least_def by (rule theI2) | |
| 257 | (blast intro: assms antisym)+ | |
| 258 | ||
| 259 | ||
| 60758 | 260 | text \<open>Dual order\<close> | 
| 22916 | 261 | |
| 26014 | 262 | lemma dual_order: | 
| 36635 
080b755377c0
locale predicates of classes carry a mandatory "class" prefix
 haftmann parents: 
35828diff
changeset | 263 | "class.order (op \<ge>) (op >)" | 
| 27682 | 264 | by (intro_locales, rule dual_preorder) (unfold_locales, rule antisym) | 
| 22916 | 265 | |
| 21248 | 266 | end | 
| 15524 | 267 | |
| 21329 | 268 | |
| 60758 | 269 | text \<open>Alternative introduction rule with bias towards strict order\<close> | 
| 56545 | 270 | |
| 271 | lemma order_strictI: | |
| 272 | fixes less (infix "\<sqsubset>" 50) | |
| 273 | and less_eq (infix "\<sqsubseteq>" 50) | |
| 274 | assumes less_eq_less: "\<And>a b. a \<sqsubseteq> b \<longleftrightarrow> a \<sqsubset> b \<or> a = b" | |
| 275 | assumes asym: "\<And>a b. a \<sqsubset> b \<Longrightarrow> \<not> b \<sqsubset> a" | |
| 276 | assumes irrefl: "\<And>a. \<not> a \<sqsubset> a" | |
| 277 | assumes trans: "\<And>a b c. a \<sqsubset> b \<Longrightarrow> b \<sqsubset> c \<Longrightarrow> a \<sqsubset> c" | |
| 278 | shows "class.order less_eq less" | |
| 279 | proof | |
| 280 | fix a b | |
| 281 | show "a \<sqsubset> b \<longleftrightarrow> a \<sqsubseteq> b \<and> \<not> b \<sqsubseteq> a" | |
| 282 | by (auto simp add: less_eq_less asym irrefl) | |
| 283 | next | |
| 284 | fix a | |
| 285 | show "a \<sqsubseteq> a" | |
| 286 | by (auto simp add: less_eq_less) | |
| 287 | next | |
| 288 | fix a b c | |
| 289 | assume "a \<sqsubseteq> b" and "b \<sqsubseteq> c" then show "a \<sqsubseteq> c" | |
| 290 | by (auto simp add: less_eq_less intro: trans) | |
| 291 | next | |
| 292 | fix a b | |
| 293 | assume "a \<sqsubseteq> b" and "b \<sqsubseteq> a" then show "a = b" | |
| 294 | by (auto simp add: less_eq_less asym) | |
| 295 | qed | |
| 296 | ||
| 297 | ||
| 60758 | 298 | subsection \<open>Linear (total) orders\<close> | 
| 21329 | 299 | |
| 22316 | 300 | class linorder = order + | 
| 25207 | 301 | assumes linear: "x \<le> y \<or> y \<le> x" | 
| 21248 | 302 | begin | 
| 303 | ||
| 25062 | 304 | lemma less_linear: "x < y \<or> x = y \<or> y < x" | 
| 23212 | 305 | unfolding less_le using less_le linear by blast | 
| 21248 | 306 | |
| 25062 | 307 | lemma le_less_linear: "x \<le> y \<or> y < x" | 
| 23212 | 308 | by (simp add: le_less less_linear) | 
| 21248 | 309 | |
| 310 | lemma le_cases [case_names le ge]: | |
| 25062 | 311 | "(x \<le> y \<Longrightarrow> P) \<Longrightarrow> (y \<le> x \<Longrightarrow> P) \<Longrightarrow> P" | 
| 23212 | 312 | using linear by blast | 
| 21248 | 313 | |
| 22384 
33a46e6c7f04
prefix of class interpretation not mandatory any longer
 haftmann parents: 
22377diff
changeset | 314 | lemma linorder_cases [case_names less equal greater]: | 
| 25062 | 315 | "(x < y \<Longrightarrow> P) \<Longrightarrow> (x = y \<Longrightarrow> P) \<Longrightarrow> (y < x \<Longrightarrow> P) \<Longrightarrow> P" | 
| 23212 | 316 | using less_linear by blast | 
| 21248 | 317 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
56545diff
changeset | 318 | lemma linorder_wlog[case_names le sym]: | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
56545diff
changeset | 319 | "(\<And>a b. a \<le> b \<Longrightarrow> P a b) \<Longrightarrow> (\<And>a b. P b a \<Longrightarrow> P a b) \<Longrightarrow> P a b" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
56545diff
changeset | 320 | by (cases rule: le_cases[of a b]) blast+ | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
56545diff
changeset | 321 | |
| 25062 | 322 | lemma not_less: "\<not> x < y \<longleftrightarrow> y \<le> x" | 
| 23212 | 323 | apply (simp add: less_le) | 
| 324 | using linear apply (blast intro: antisym) | |
| 325 | done | |
| 326 | ||
| 327 | lemma not_less_iff_gr_or_eq: | |
| 25062 | 328 | "\<not>(x < y) \<longleftrightarrow> (x > y | x = y)" | 
| 23212 | 329 | apply(simp add:not_less le_less) | 
| 330 | apply blast | |
| 331 | done | |
| 15524 | 332 | |
| 25062 | 333 | lemma not_le: "\<not> x \<le> y \<longleftrightarrow> y < x" | 
| 23212 | 334 | apply (simp add: less_le) | 
| 335 | using linear apply (blast intro: antisym) | |
| 336 | done | |
| 15524 | 337 | |
| 25062 | 338 | lemma neq_iff: "x \<noteq> y \<longleftrightarrow> x < y \<or> y < x" | 
| 23212 | 339 | by (cut_tac x = x and y = y in less_linear, auto) | 
| 15524 | 340 | |
| 25062 | 341 | lemma neqE: "x \<noteq> y \<Longrightarrow> (x < y \<Longrightarrow> R) \<Longrightarrow> (y < x \<Longrightarrow> R) \<Longrightarrow> R" | 
| 23212 | 342 | by (simp add: neq_iff) blast | 
| 15524 | 343 | |
| 25062 | 344 | lemma antisym_conv1: "\<not> x < y \<Longrightarrow> x \<le> y \<longleftrightarrow> x = y" | 
| 23212 | 345 | by (blast intro: antisym dest: not_less [THEN iffD1]) | 
| 15524 | 346 | |
| 25062 | 347 | lemma antisym_conv2: "x \<le> y \<Longrightarrow> \<not> x < y \<longleftrightarrow> x = y" | 
| 23212 | 348 | by (blast intro: antisym dest: not_less [THEN iffD1]) | 
| 15524 | 349 | |
| 25062 | 350 | lemma antisym_conv3: "\<not> y < x \<Longrightarrow> \<not> x < y \<longleftrightarrow> x = y" | 
| 23212 | 351 | by (blast intro: antisym dest: not_less [THEN iffD1]) | 
| 15524 | 352 | |
| 25062 | 353 | lemma leI: "\<not> x < y \<Longrightarrow> y \<le> x" | 
| 23212 | 354 | unfolding not_less . | 
| 16796 | 355 | |
| 25062 | 356 | lemma leD: "y \<le> x \<Longrightarrow> \<not> x < y" | 
| 23212 | 357 | unfolding not_less . | 
| 16796 | 358 | |
| 359 | (*FIXME inappropriate name (or delete altogether)*) | |
| 25062 | 360 | lemma not_leE: "\<not> y \<le> x \<Longrightarrow> x < y" | 
| 23212 | 361 | unfolding not_le . | 
| 21248 | 362 | |
| 60758 | 363 | text \<open>Dual order\<close> | 
| 22916 | 364 | |
| 26014 | 365 | lemma dual_linorder: | 
| 36635 
080b755377c0
locale predicates of classes carry a mandatory "class" prefix
 haftmann parents: 
35828diff
changeset | 366 | "class.linorder (op \<ge>) (op >)" | 
| 
080b755377c0
locale predicates of classes carry a mandatory "class" prefix
 haftmann parents: 
35828diff
changeset | 367 | by (rule class.linorder.intro, rule dual_order) (unfold_locales, rule linear) | 
| 22916 | 368 | |
| 21248 | 369 | end | 
| 370 | ||
| 23948 | 371 | |
| 60758 | 372 | text \<open>Alternative introduction rule with bias towards strict order\<close> | 
| 56545 | 373 | |
| 374 | lemma linorder_strictI: | |
| 375 | fixes less (infix "\<sqsubset>" 50) | |
| 376 | and less_eq (infix "\<sqsubseteq>" 50) | |
| 377 | assumes "class.order less_eq less" | |
| 378 | assumes trichotomy: "\<And>a b. a \<sqsubset> b \<or> a = b \<or> b \<sqsubset> a" | |
| 379 | shows "class.linorder less_eq less" | |
| 380 | proof - | |
| 381 | interpret order less_eq less | |
| 60758 | 382 | by (fact \<open>class.order less_eq less\<close>) | 
| 56545 | 383 | show ?thesis | 
| 384 | proof | |
| 385 | fix a b | |
| 386 | show "a \<sqsubseteq> b \<or> b \<sqsubseteq> a" | |
| 387 | using trichotomy by (auto simp add: le_less) | |
| 388 | qed | |
| 389 | qed | |
| 390 | ||
| 391 | ||
| 60758 | 392 | subsection \<open>Reasoning tools setup\<close> | 
| 21083 | 393 | |
| 60758 | 394 | ML \<open> | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 395 | signature ORDERS = | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 396 | sig | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 397 | val print_structures: Proof.context -> unit | 
| 32215 | 398 | val order_tac: Proof.context -> thm list -> int -> tactic | 
| 58826 | 399 | val add_struct: string * term list -> string -> attribute | 
| 400 | val del_struct: string * term list -> attribute | |
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 401 | end; | 
| 21091 | 402 | |
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 403 | structure Orders: ORDERS = | 
| 21248 | 404 | struct | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 405 | |
| 56508 | 406 | (* context data *) | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 407 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 408 | fun struct_eq ((s1: string, ts1), (s2, ts2)) = | 
| 56508 | 409 | s1 = s2 andalso eq_list (op aconv) (ts1, ts2); | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 410 | |
| 33519 | 411 | structure Data = Generic_Data | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 412 | ( | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 413 | type T = ((string * term list) * Order_Tac.less_arith) list; | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 414 | (* Order structures: | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 415 | identifier of the structure, list of operations and record of theorems | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 416 | needed to set up the transitivity reasoner, | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 417 | identifier and operations identify the structure uniquely. *) | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 418 | val empty = []; | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 419 | val extend = I; | 
| 33519 | 420 | fun merge data = AList.join struct_eq (K fst) data; | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 421 | ); | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 422 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 423 | fun print_structures ctxt = | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 424 | let | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 425 | val structs = Data.get (Context.Proof ctxt); | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 426 | fun pretty_term t = Pretty.block | 
| 24920 | 427 | [Pretty.quote (Syntax.pretty_term ctxt t), Pretty.brk 1, | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 428 | Pretty.str "::", Pretty.brk 1, | 
| 24920 | 429 | Pretty.quote (Syntax.pretty_typ ctxt (type_of t))]; | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 430 | fun pretty_struct ((s, ts), _) = Pretty.block | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 431 | [Pretty.str s, Pretty.str ":", Pretty.brk 1, | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 432 |        Pretty.enclose "(" ")" (Pretty.breaks (map pretty_term ts))];
 | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 433 | in | 
| 51579 | 434 | Pretty.writeln (Pretty.big_list "order structures:" (map pretty_struct structs)) | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 435 | end; | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 436 | |
| 56508 | 437 | val _ = | 
| 59936 
b8ffc3dc9e24
@{command_spec} is superseded by @{command_keyword};
 wenzelm parents: 
59582diff
changeset | 438 |   Outer_Syntax.command @{command_keyword print_orders}
 | 
| 56508 | 439 | "print order structures available to transitivity reasoner" | 
| 60097 
d20ca79d50e4
discontinued pointless warnings: commands are only defined inside a theory context;
 wenzelm parents: 
59936diff
changeset | 440 | (Scan.succeed (Toplevel.keep (print_structures o Toplevel.context_of))); | 
| 21091 | 441 | |
| 56508 | 442 | |
| 443 | (* tactics *) | |
| 444 | ||
| 445 | fun struct_tac ((s, ops), thms) ctxt facts = | |
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 446 | let | 
| 56508 | 447 | val [eq, le, less] = ops; | 
| 30107 
f3b3b0e3d184
Fixed nonexhaustive match problem in decomp, to make it fail more gracefully
 berghofe parents: 
29823diff
changeset | 448 |     fun decomp thy (@{const Trueprop} $ t) =
 | 
| 56508 | 449 | let | 
| 450 | fun excluded t = | |
| 451 | (* exclude numeric types: linear arithmetic subsumes transitivity *) | |
| 452 | let val T = type_of t | |
| 453 | in | |
| 454 | T = HOLogic.natT orelse T = HOLogic.intT orelse T = HOLogic.realT | |
| 455 | end; | |
| 456 | fun rel (bin_op $ t1 $ t2) = | |
| 457 | if excluded t1 then NONE | |
| 458 | else if Pattern.matches thy (eq, bin_op) then SOME (t1, "=", t2) | |
| 459 | else if Pattern.matches thy (le, bin_op) then SOME (t1, "<=", t2) | |
| 460 | else if Pattern.matches thy (less, bin_op) then SOME (t1, "<", t2) | |
| 461 | else NONE | |
| 462 | | rel _ = NONE; | |
| 463 |             fun dec (Const (@{const_name Not}, _) $ t) =
 | |
| 464 | (case rel t of NONE => | |
| 465 | NONE | |
| 466 | | SOME (t1, rel, t2) => SOME (t1, "~" ^ rel, t2)) | |
| 467 | | dec x = rel x; | |
| 468 | in dec t end | |
| 469 | | decomp _ _ = NONE; | |
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 470 | in | 
| 56508 | 471 | (case s of | 
| 472 | "order" => Order_Tac.partial_tac decomp thms ctxt facts | |
| 473 | | "linorder" => Order_Tac.linear_tac decomp thms ctxt facts | |
| 474 |     | _ => error ("Unknown order kind " ^ quote s ^ " encountered in transitivity reasoner"))
 | |
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 475 | end | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 476 | |
| 56508 | 477 | fun order_tac ctxt facts = | 
| 478 | FIRST' (map (fn s => CHANGED o struct_tac s ctxt facts) (Data.get (Context.Proof ctxt))); | |
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 479 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 480 | |
| 56508 | 481 | (* attributes *) | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 482 | |
| 58826 | 483 | fun add_struct s tag = | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 484 | Thm.declaration_attribute | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 485 | (fn thm => Data.map (AList.map_default struct_eq (s, Order_Tac.empty TrueI) (Order_Tac.update tag thm))); | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 486 | fun del_struct s = | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 487 | Thm.declaration_attribute | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 488 | (fn _ => Data.map (AList.delete struct_eq s)); | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 489 | |
| 21091 | 490 | end; | 
| 60758 | 491 | \<close> | 
| 21091 | 492 | |
| 60758 | 493 | attribute_setup order = \<open> | 
| 58826 | 494 | Scan.lift ((Args.add -- Args.name >> (fn (_, s) => SOME s) || Args.del >> K NONE) --| | 
| 495 | Args.colon (* FIXME || Scan.succeed true *) ) -- Scan.lift Args.name -- | |
| 496 | Scan.repeat Args.term | |
| 497 | >> (fn ((SOME tag, n), ts) => Orders.add_struct (n, ts) tag | |
| 498 | | ((NONE, n), ts) => Orders.del_struct (n, ts)) | |
| 60758 | 499 | \<close> "theorems controlling transitivity reasoner" | 
| 58826 | 500 | |
| 60758 | 501 | method_setup order = \<open> | 
| 47432 | 502 | Scan.succeed (fn ctxt => SIMPLE_METHOD' (Orders.order_tac ctxt [])) | 
| 60758 | 503 | \<close> "transitivity reasoner" | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 504 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 505 | |
| 60758 | 506 | text \<open>Declarations to set up transitivity reasoner of partial and linear orders.\<close> | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 507 | |
| 25076 | 508 | context order | 
| 509 | begin | |
| 510 | ||
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 511 | (* The type constraint on @{term op =} below is necessary since the operation
 | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 512 | is not a parameter of the locale. *) | 
| 25076 | 513 | |
| 27689 | 514 | declare less_irrefl [THEN notE, order add less_reflE: order "op = :: 'a \<Rightarrow> 'a \<Rightarrow> bool" "op <=" "op <"] | 
| 515 | ||
| 516 | declare order_refl [order add le_refl: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 517 | ||
| 518 | declare less_imp_le [order add less_imp_le: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 519 | ||
| 520 | declare antisym [order add eqI: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 521 | ||
| 522 | declare eq_refl [order add eqD1: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 523 | ||
| 524 | declare sym [THEN eq_refl, order add eqD2: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 525 | ||
| 526 | declare less_trans [order add less_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 527 | ||
| 528 | declare less_le_trans [order add less_le_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 529 | ||
| 530 | declare le_less_trans [order add le_less_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 531 | ||
| 532 | declare order_trans [order add le_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 533 | ||
| 534 | declare le_neq_trans [order add le_neq_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 535 | ||
| 536 | declare neq_le_trans [order add neq_le_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 537 | ||
| 538 | declare less_imp_neq [order add less_imp_neq: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 539 | ||
| 540 | declare eq_neq_eq_imp_neq [order add eq_neq_eq_imp_neq: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 541 | ||
| 542 | declare not_sym [order add not_sym: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 543 | |
| 25076 | 544 | end | 
| 545 | ||
| 546 | context linorder | |
| 547 | begin | |
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 548 | |
| 27689 | 549 | declare [[order del: order "op = :: 'a => 'a => bool" "op <=" "op <"]] | 
| 550 | ||
| 551 | declare less_irrefl [THEN notE, order add less_reflE: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 552 | ||
| 553 | declare order_refl [order add le_refl: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 554 | ||
| 555 | declare less_imp_le [order add less_imp_le: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 556 | ||
| 557 | declare not_less [THEN iffD2, order add not_lessI: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 558 | ||
| 559 | declare not_le [THEN iffD2, order add not_leI: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 560 | ||
| 561 | declare not_less [THEN iffD1, order add not_lessD: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 562 | ||
| 563 | declare not_le [THEN iffD1, order add not_leD: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 564 | ||
| 565 | declare antisym [order add eqI: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 566 | ||
| 567 | declare eq_refl [order add eqD1: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 25076 | 568 | |
| 27689 | 569 | declare sym [THEN eq_refl, order add eqD2: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | 
| 570 | ||
| 571 | declare less_trans [order add less_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 572 | ||
| 573 | declare less_le_trans [order add less_le_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 574 | ||
| 575 | declare le_less_trans [order add le_less_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 576 | ||
| 577 | declare order_trans [order add le_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 578 | ||
| 579 | declare le_neq_trans [order add le_neq_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 580 | ||
| 581 | declare neq_le_trans [order add neq_le_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 582 | ||
| 583 | declare less_imp_neq [order add less_imp_neq: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 584 | ||
| 585 | declare eq_neq_eq_imp_neq [order add eq_neq_eq_imp_neq: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 586 | ||
| 587 | declare not_sym [order add not_sym: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 588 | |
| 25076 | 589 | end | 
| 590 | ||
| 60758 | 591 | setup \<open> | 
| 56509 | 592 | map_theory_simpset (fn ctxt0 => ctxt0 addSolver | 
| 593 | mk_solver "Transitivity" (fn ctxt => Orders.order_tac ctxt (Simplifier.prems_of ctxt))) | |
| 594 | (*Adding the transitivity reasoners also as safe solvers showed a slight | |
| 595 | speed up, but the reasoning strength appears to be not higher (at least | |
| 596 | no breaking of additional proofs in the entire HOL distribution, as | |
| 597 | of 5 March 2004, was observed).*) | |
| 60758 | 598 | \<close> | 
| 15524 | 599 | |
| 60758 | 600 | ML \<open> | 
| 56509 | 601 | local | 
| 602 | fun prp t thm = Thm.prop_of thm = t; (* FIXME proper aconv!? *) | |
| 603 | in | |
| 15524 | 604 | |
| 56509 | 605 | fun antisym_le_simproc ctxt ct = | 
| 59582 | 606 | (case Thm.term_of ct of | 
| 56509 | 607 | (le as Const (_, T)) $ r $ s => | 
| 608 | (let | |
| 609 | val prems = Simplifier.prems_of ctxt; | |
| 610 |         val less = Const (@{const_name less}, T);
 | |
| 611 | val t = HOLogic.mk_Trueprop(le $ s $ r); | |
| 612 | in | |
| 613 | (case find_first (prp t) prems of | |
| 614 | NONE => | |
| 615 | let val t = HOLogic.mk_Trueprop(HOLogic.Not $ (less $ r $ s)) in | |
| 616 | (case find_first (prp t) prems of | |
| 617 | NONE => NONE | |
| 618 |               | SOME thm => SOME(mk_meta_eq(thm RS @{thm linorder_class.antisym_conv1})))
 | |
| 619 | end | |
| 620 |          | SOME thm => SOME (mk_meta_eq (thm RS @{thm order_class.antisym_conv})))
 | |
| 621 | end handle THM _ => NONE) | |
| 622 | | _ => NONE); | |
| 15524 | 623 | |
| 56509 | 624 | fun antisym_less_simproc ctxt ct = | 
| 59582 | 625 | (case Thm.term_of ct of | 
| 56509 | 626 | NotC $ ((less as Const(_,T)) $ r $ s) => | 
| 627 | (let | |
| 628 | val prems = Simplifier.prems_of ctxt; | |
| 629 |        val le = Const (@{const_name less_eq}, T);
 | |
| 630 | val t = HOLogic.mk_Trueprop(le $ r $ s); | |
| 631 | in | |
| 632 | (case find_first (prp t) prems of | |
| 633 | NONE => | |
| 634 | let val t = HOLogic.mk_Trueprop (NotC $ (less $ s $ r)) in | |
| 635 | (case find_first (prp t) prems of | |
| 636 | NONE => NONE | |
| 637 |               | SOME thm => SOME (mk_meta_eq(thm RS @{thm linorder_class.antisym_conv3})))
 | |
| 638 | end | |
| 639 |         | SOME thm => SOME (mk_meta_eq (thm RS @{thm linorder_class.antisym_conv2})))
 | |
| 640 | end handle THM _ => NONE) | |
| 641 | | _ => NONE); | |
| 21083 | 642 | |
| 56509 | 643 | end; | 
| 60758 | 644 | \<close> | 
| 15524 | 645 | |
| 56509 | 646 | simproc_setup antisym_le ("(x::'a::order) \<le> y") = "K antisym_le_simproc"
 | 
| 647 | simproc_setup antisym_less ("\<not> (x::'a::linorder) < y") = "K antisym_less_simproc"
 | |
| 648 | ||
| 15524 | 649 | |
| 60758 | 650 | subsection \<open>Bounded quantifiers\<close> | 
| 21083 | 651 | |
| 652 | syntax | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 653 |   "_All_less" :: "[idt, 'a, bool] => bool"    ("(3ALL _<_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 654 |   "_Ex_less" :: "[idt, 'a, bool] => bool"    ("(3EX _<_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 655 |   "_All_less_eq" :: "[idt, 'a, bool] => bool"    ("(3ALL _<=_./ _)" [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 656 |   "_Ex_less_eq" :: "[idt, 'a, bool] => bool"    ("(3EX _<=_./ _)" [0, 0, 10] 10)
 | 
| 21083 | 657 | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 658 |   "_All_greater" :: "[idt, 'a, bool] => bool"    ("(3ALL _>_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 659 |   "_Ex_greater" :: "[idt, 'a, bool] => bool"    ("(3EX _>_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 660 |   "_All_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3ALL _>=_./ _)" [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 661 |   "_Ex_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3EX _>=_./ _)" [0, 0, 10] 10)
 | 
| 21083 | 662 | |
| 663 | syntax (xsymbols) | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 664 |   "_All_less" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_<_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 665 |   "_Ex_less" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_<_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 666 |   "_All_less_eq" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_\<le>_./ _)" [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 667 |   "_Ex_less_eq" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_\<le>_./ _)" [0, 0, 10] 10)
 | 
| 21083 | 668 | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 669 |   "_All_greater" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_>_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 670 |   "_Ex_greater" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_>_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 671 |   "_All_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_\<ge>_./ _)" [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 672 |   "_Ex_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_\<ge>_./ _)" [0, 0, 10] 10)
 | 
| 21083 | 673 | |
| 674 | syntax (HOL) | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 675 |   "_All_less" :: "[idt, 'a, bool] => bool"    ("(3! _<_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 676 |   "_Ex_less" :: "[idt, 'a, bool] => bool"    ("(3? _<_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 677 |   "_All_less_eq" :: "[idt, 'a, bool] => bool"    ("(3! _<=_./ _)" [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 678 |   "_Ex_less_eq" :: "[idt, 'a, bool] => bool"    ("(3? _<=_./ _)" [0, 0, 10] 10)
 | 
| 21083 | 679 | |
| 680 | translations | |
| 681 | "ALL x<y. P" => "ALL x. x < y \<longrightarrow> P" | |
| 682 | "EX x<y. P" => "EX x. x < y \<and> P" | |
| 683 | "ALL x<=y. P" => "ALL x. x <= y \<longrightarrow> P" | |
| 684 | "EX x<=y. P" => "EX x. x <= y \<and> P" | |
| 685 | "ALL x>y. P" => "ALL x. x > y \<longrightarrow> P" | |
| 686 | "EX x>y. P" => "EX x. x > y \<and> P" | |
| 687 | "ALL x>=y. P" => "ALL x. x >= y \<longrightarrow> P" | |
| 688 | "EX x>=y. P" => "EX x. x >= y \<and> P" | |
| 689 | ||
| 60758 | 690 | print_translation \<open> | 
| 21083 | 691 | let | 
| 42287 
d98eb048a2e4
discontinued special treatment of structure Mixfix;
 wenzelm parents: 
42284diff
changeset | 692 |   val All_binder = Mixfix.binder_name @{const_syntax All};
 | 
| 
d98eb048a2e4
discontinued special treatment of structure Mixfix;
 wenzelm parents: 
42284diff
changeset | 693 |   val Ex_binder = Mixfix.binder_name @{const_syntax Ex};
 | 
| 38786 
e46e7a9cb622
formerly unnamed infix impliciation now named HOL.implies
 haftmann parents: 
38715diff
changeset | 694 |   val impl = @{const_syntax HOL.implies};
 | 
| 38795 
848be46708dc
formerly unnamed infix conjunction and disjunction now named HOL.conj and HOL.disj
 haftmann parents: 
38786diff
changeset | 695 |   val conj = @{const_syntax HOL.conj};
 | 
| 22916 | 696 |   val less = @{const_syntax less};
 | 
| 697 |   val less_eq = @{const_syntax less_eq};
 | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 698 | |
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 699 | val trans = | 
| 35115 | 700 | [((All_binder, impl, less), | 
| 701 |     (@{syntax_const "_All_less"}, @{syntax_const "_All_greater"})),
 | |
| 702 | ((All_binder, impl, less_eq), | |
| 703 |     (@{syntax_const "_All_less_eq"}, @{syntax_const "_All_greater_eq"})),
 | |
| 704 | ((Ex_binder, conj, less), | |
| 705 |     (@{syntax_const "_Ex_less"}, @{syntax_const "_Ex_greater"})),
 | |
| 706 | ((Ex_binder, conj, less_eq), | |
| 707 |     (@{syntax_const "_Ex_less_eq"}, @{syntax_const "_Ex_greater_eq"}))];
 | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 708 | |
| 35115 | 709 | fun matches_bound v t = | 
| 710 | (case t of | |
| 35364 | 711 |       Const (@{syntax_const "_bound"}, _) $ Free (v', _) => v = v'
 | 
| 35115 | 712 | | _ => false); | 
| 713 | fun contains_var v = Term.exists_subterm (fn Free (x, _) => x = v | _ => false); | |
| 49660 
de49d9b4d7bc
more explicit Syntax_Trans.mark_bound_abs/mark_bound_body: preserve type information for show_markup;
 wenzelm parents: 
48891diff
changeset | 714 | fun mk x c n P = Syntax.const c $ Syntax_Trans.mark_bound_body x $ n $ P; | 
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 715 | |
| 52143 | 716 | fun tr' q = (q, fn _ => | 
| 717 |     (fn [Const (@{syntax_const "_bound"}, _) $ Free (v, T),
 | |
| 35364 | 718 | Const (c, _) $ (Const (d, _) $ t $ u) $ P] => | 
| 35115 | 719 | (case AList.lookup (op =) trans (q, c, d) of | 
| 720 | NONE => raise Match | |
| 721 | | SOME (l, g) => | |
| 49660 
de49d9b4d7bc
more explicit Syntax_Trans.mark_bound_abs/mark_bound_body: preserve type information for show_markup;
 wenzelm parents: 
48891diff
changeset | 722 | if matches_bound v t andalso not (contains_var v u) then mk (v, T) l u P | 
| 
de49d9b4d7bc
more explicit Syntax_Trans.mark_bound_abs/mark_bound_body: preserve type information for show_markup;
 wenzelm parents: 
48891diff
changeset | 723 | else if matches_bound v u andalso not (contains_var v t) then mk (v, T) g t P | 
| 35115 | 724 | else raise Match) | 
| 52143 | 725 | | _ => raise Match)); | 
| 21524 | 726 | in [tr' All_binder, tr' Ex_binder] end | 
| 60758 | 727 | \<close> | 
| 21083 | 728 | |
| 729 | ||
| 60758 | 730 | subsection \<open>Transitivity reasoning\<close> | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 731 | |
| 25193 | 732 | context ord | 
| 733 | begin | |
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 734 | |
| 25193 | 735 | lemma ord_le_eq_trans: "a \<le> b \<Longrightarrow> b = c \<Longrightarrow> a \<le> c" | 
| 736 | by (rule subst) | |
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 737 | |
| 25193 | 738 | lemma ord_eq_le_trans: "a = b \<Longrightarrow> b \<le> c \<Longrightarrow> a \<le> c" | 
| 739 | by (rule ssubst) | |
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 740 | |
| 25193 | 741 | lemma ord_less_eq_trans: "a < b \<Longrightarrow> b = c \<Longrightarrow> a < c" | 
| 742 | by (rule subst) | |
| 743 | ||
| 744 | lemma ord_eq_less_trans: "a = b \<Longrightarrow> b < c \<Longrightarrow> a < c" | |
| 745 | by (rule ssubst) | |
| 746 | ||
| 747 | end | |
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 748 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 749 | lemma order_less_subst2: "(a::'a::order) < b ==> f b < (c::'c::order) ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 750 | (!!x y. x < y ==> f x < f y) ==> f a < c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 751 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 752 | assume r: "!!x y. x < y ==> f x < f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 753 | assume "a < b" hence "f a < f b" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 754 | also assume "f b < c" | 
| 34250 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 755 | finally (less_trans) show ?thesis . | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 756 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 757 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 758 | lemma order_less_subst1: "(a::'a::order) < f b ==> (b::'b::order) < c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 759 | (!!x y. x < y ==> f x < f y) ==> a < f c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 760 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 761 | assume r: "!!x y. x < y ==> f x < f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 762 | assume "a < f b" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 763 | also assume "b < c" hence "f b < f c" by (rule r) | 
| 34250 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 764 | finally (less_trans) show ?thesis . | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 765 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 766 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 767 | lemma order_le_less_subst2: "(a::'a::order) <= b ==> f b < (c::'c::order) ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 768 | (!!x y. x <= y ==> f x <= f y) ==> f a < c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 769 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 770 | assume r: "!!x y. x <= y ==> f x <= f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 771 | assume "a <= b" hence "f a <= f b" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 772 | also assume "f b < c" | 
| 34250 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 773 | finally (le_less_trans) show ?thesis . | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 774 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 775 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 776 | lemma order_le_less_subst1: "(a::'a::order) <= f b ==> (b::'b::order) < c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 777 | (!!x y. x < y ==> f x < f y) ==> a < f c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 778 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 779 | assume r: "!!x y. x < y ==> f x < f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 780 | assume "a <= f b" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 781 | also assume "b < c" hence "f b < f c" by (rule r) | 
| 34250 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 782 | finally (le_less_trans) show ?thesis . | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 783 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 784 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 785 | lemma order_less_le_subst2: "(a::'a::order) < b ==> f b <= (c::'c::order) ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 786 | (!!x y. x < y ==> f x < f y) ==> f a < c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 787 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 788 | assume r: "!!x y. x < y ==> f x < f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 789 | assume "a < b" hence "f a < f b" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 790 | also assume "f b <= c" | 
| 34250 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 791 | finally (less_le_trans) show ?thesis . | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 792 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 793 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 794 | lemma order_less_le_subst1: "(a::'a::order) < f b ==> (b::'b::order) <= c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 795 | (!!x y. x <= y ==> f x <= f y) ==> a < f c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 796 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 797 | assume r: "!!x y. x <= y ==> f x <= f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 798 | assume "a < f b" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 799 | also assume "b <= c" hence "f b <= f c" by (rule r) | 
| 34250 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 800 | finally (less_le_trans) show ?thesis . | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 801 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 802 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 803 | lemma order_subst1: "(a::'a::order) <= f b ==> (b::'b::order) <= c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 804 | (!!x y. x <= y ==> f x <= f y) ==> a <= f c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 805 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 806 | assume r: "!!x y. x <= y ==> f x <= f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 807 | assume "a <= f b" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 808 | also assume "b <= c" hence "f b <= f c" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 809 | finally (order_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 810 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 811 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 812 | lemma order_subst2: "(a::'a::order) <= b ==> f b <= (c::'c::order) ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 813 | (!!x y. x <= y ==> f x <= f y) ==> f a <= c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 814 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 815 | assume r: "!!x y. x <= y ==> f x <= f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 816 | assume "a <= b" hence "f a <= f b" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 817 | also assume "f b <= c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 818 | finally (order_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 819 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 820 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 821 | lemma ord_le_eq_subst: "a <= b ==> f b = c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 822 | (!!x y. x <= y ==> f x <= f y) ==> f a <= c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 823 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 824 | assume r: "!!x y. x <= y ==> f x <= f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 825 | assume "a <= b" hence "f a <= f b" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 826 | also assume "f b = c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 827 | finally (ord_le_eq_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 828 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 829 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 830 | lemma ord_eq_le_subst: "a = f b ==> b <= c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 831 | (!!x y. x <= y ==> f x <= f y) ==> a <= f c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 832 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 833 | assume r: "!!x y. x <= y ==> f x <= f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 834 | assume "a = f b" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 835 | also assume "b <= c" hence "f b <= f c" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 836 | finally (ord_eq_le_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 837 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 838 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 839 | lemma ord_less_eq_subst: "a < b ==> f b = c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 840 | (!!x y. x < y ==> f x < f y) ==> f a < c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 841 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 842 | assume r: "!!x y. x < y ==> f x < f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 843 | assume "a < b" hence "f a < f b" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 844 | also assume "f b = c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 845 | finally (ord_less_eq_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 846 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 847 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 848 | lemma ord_eq_less_subst: "a = f b ==> b < c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 849 | (!!x y. x < y ==> f x < f y) ==> a < f c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 850 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 851 | assume r: "!!x y. x < y ==> f x < f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 852 | assume "a = f b" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 853 | also assume "b < c" hence "f b < f c" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 854 | finally (ord_eq_less_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 855 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 856 | |
| 60758 | 857 | text \<open> | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 858 | Note that this list of rules is in reverse order of priorities. | 
| 60758 | 859 | \<close> | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 860 | |
| 27682 | 861 | lemmas [trans] = | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 862 | order_less_subst2 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 863 | order_less_subst1 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 864 | order_le_less_subst2 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 865 | order_le_less_subst1 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 866 | order_less_le_subst2 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 867 | order_less_le_subst1 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 868 | order_subst2 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 869 | order_subst1 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 870 | ord_le_eq_subst | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 871 | ord_eq_le_subst | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 872 | ord_less_eq_subst | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 873 | ord_eq_less_subst | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 874 | forw_subst | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 875 | back_subst | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 876 | rev_mp | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 877 | mp | 
| 27682 | 878 | |
| 879 | lemmas (in order) [trans] = | |
| 880 | neq_le_trans | |
| 881 | le_neq_trans | |
| 882 | ||
| 883 | lemmas (in preorder) [trans] = | |
| 884 | less_trans | |
| 885 | less_asym' | |
| 886 | le_less_trans | |
| 887 | less_le_trans | |
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 888 | order_trans | 
| 27682 | 889 | |
| 890 | lemmas (in order) [trans] = | |
| 891 | antisym | |
| 892 | ||
| 893 | lemmas (in ord) [trans] = | |
| 894 | ord_le_eq_trans | |
| 895 | ord_eq_le_trans | |
| 896 | ord_less_eq_trans | |
| 897 | ord_eq_less_trans | |
| 898 | ||
| 899 | lemmas [trans] = | |
| 900 | trans | |
| 901 | ||
| 902 | lemmas order_trans_rules = | |
| 903 | order_less_subst2 | |
| 904 | order_less_subst1 | |
| 905 | order_le_less_subst2 | |
| 906 | order_le_less_subst1 | |
| 907 | order_less_le_subst2 | |
| 908 | order_less_le_subst1 | |
| 909 | order_subst2 | |
| 910 | order_subst1 | |
| 911 | ord_le_eq_subst | |
| 912 | ord_eq_le_subst | |
| 913 | ord_less_eq_subst | |
| 914 | ord_eq_less_subst | |
| 915 | forw_subst | |
| 916 | back_subst | |
| 917 | rev_mp | |
| 918 | mp | |
| 919 | neq_le_trans | |
| 920 | le_neq_trans | |
| 921 | less_trans | |
| 922 | less_asym' | |
| 923 | le_less_trans | |
| 924 | less_le_trans | |
| 925 | order_trans | |
| 926 | antisym | |
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 927 | ord_le_eq_trans | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 928 | ord_eq_le_trans | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 929 | ord_less_eq_trans | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 930 | ord_eq_less_trans | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 931 | trans | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 932 | |
| 60758 | 933 | text \<open>These support proving chains of decreasing inequalities | 
| 934 | a >= b >= c ... in Isar proofs.\<close> | |
| 21083 | 935 | |
| 45221 
3eadb9b6a055
mark "xt..." rules as "no_atp", since they are easy consequences of other better named properties
 blanchet parents: 
44921diff
changeset | 936 | lemma xt1 [no_atp]: | 
| 21083 | 937 | "a = b ==> b > c ==> a > c" | 
| 938 | "a > b ==> b = c ==> a > c" | |
| 939 | "a = b ==> b >= c ==> a >= c" | |
| 940 | "a >= b ==> b = c ==> a >= c" | |
| 941 | "(x::'a::order) >= y ==> y >= x ==> x = y" | |
| 942 | "(x::'a::order) >= y ==> y >= z ==> x >= z" | |
| 943 | "(x::'a::order) > y ==> y >= z ==> x > z" | |
| 944 | "(x::'a::order) >= y ==> y > z ==> x > z" | |
| 23417 | 945 | "(a::'a::order) > b ==> b > a ==> P" | 
| 21083 | 946 | "(x::'a::order) > y ==> y > z ==> x > z" | 
| 947 | "(a::'a::order) >= b ==> a ~= b ==> a > b" | |
| 948 | "(a::'a::order) ~= b ==> a >= b ==> a > b" | |
| 949 | "a = f b ==> b > c ==> (!!x y. x > y ==> f x > f y) ==> a > f c" | |
| 950 | "a > b ==> f b = c ==> (!!x y. x > y ==> f x > f y) ==> f a > c" | |
| 951 | "a = f b ==> b >= c ==> (!!x y. x >= y ==> f x >= f y) ==> a >= f c" | |
| 952 | "a >= b ==> f b = c ==> (!! x y. x >= y ==> f x >= f y) ==> f a >= c" | |
| 25076 | 953 | by auto | 
| 21083 | 954 | |
| 45221 
3eadb9b6a055
mark "xt..." rules as "no_atp", since they are easy consequences of other better named properties
 blanchet parents: 
44921diff
changeset | 955 | lemma xt2 [no_atp]: | 
| 21083 | 956 | "(a::'a::order) >= f b ==> b >= c ==> (!!x y. x >= y ==> f x >= f y) ==> a >= f c" | 
| 957 | by (subgoal_tac "f b >= f c", force, force) | |
| 958 | ||
| 45221 
3eadb9b6a055
mark "xt..." rules as "no_atp", since they are easy consequences of other better named properties
 blanchet parents: 
44921diff
changeset | 959 | lemma xt3 [no_atp]: "(a::'a::order) >= b ==> (f b::'b::order) >= c ==> | 
| 21083 | 960 | (!!x y. x >= y ==> f x >= f y) ==> f a >= c" | 
| 961 | by (subgoal_tac "f a >= f b", force, force) | |
| 962 | ||
| 45221 
3eadb9b6a055
mark "xt..." rules as "no_atp", since they are easy consequences of other better named properties
 blanchet parents: 
44921diff
changeset | 963 | lemma xt4 [no_atp]: "(a::'a::order) > f b ==> (b::'b::order) >= c ==> | 
| 21083 | 964 | (!!x y. x >= y ==> f x >= f y) ==> a > f c" | 
| 965 | by (subgoal_tac "f b >= f c", force, force) | |
| 966 | ||
| 45221 
3eadb9b6a055
mark "xt..." rules as "no_atp", since they are easy consequences of other better named properties
 blanchet parents: 
44921diff
changeset | 967 | lemma xt5 [no_atp]: "(a::'a::order) > b ==> (f b::'b::order) >= c==> | 
| 21083 | 968 | (!!x y. x > y ==> f x > f y) ==> f a > c" | 
| 969 | by (subgoal_tac "f a > f b", force, force) | |
| 970 | ||
| 45221 
3eadb9b6a055
mark "xt..." rules as "no_atp", since they are easy consequences of other better named properties
 blanchet parents: 
44921diff
changeset | 971 | lemma xt6 [no_atp]: "(a::'a::order) >= f b ==> b > c ==> | 
| 21083 | 972 | (!!x y. x > y ==> f x > f y) ==> a > f c" | 
| 973 | by (subgoal_tac "f b > f c", force, force) | |
| 974 | ||
| 45221 
3eadb9b6a055
mark "xt..." rules as "no_atp", since they are easy consequences of other better named properties
 blanchet parents: 
44921diff
changeset | 975 | lemma xt7 [no_atp]: "(a::'a::order) >= b ==> (f b::'b::order) > c ==> | 
| 21083 | 976 | (!!x y. x >= y ==> f x >= f y) ==> f a > c" | 
| 977 | by (subgoal_tac "f a >= f b", force, force) | |
| 978 | ||
| 45221 
3eadb9b6a055
mark "xt..." rules as "no_atp", since they are easy consequences of other better named properties
 blanchet parents: 
44921diff
changeset | 979 | lemma xt8 [no_atp]: "(a::'a::order) > f b ==> (b::'b::order) > c ==> | 
| 21083 | 980 | (!!x y. x > y ==> f x > f y) ==> a > f c" | 
| 981 | by (subgoal_tac "f b > f c", force, force) | |
| 982 | ||
| 45221 
3eadb9b6a055
mark "xt..." rules as "no_atp", since they are easy consequences of other better named properties
 blanchet parents: 
44921diff
changeset | 983 | lemma xt9 [no_atp]: "(a::'a::order) > b ==> (f b::'b::order) > c ==> | 
| 21083 | 984 | (!!x y. x > y ==> f x > f y) ==> f a > c" | 
| 985 | by (subgoal_tac "f a > f b", force, force) | |
| 986 | ||
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
53216diff
changeset | 987 | lemmas xtrans = xt1 xt2 xt3 xt4 xt5 xt6 xt7 xt8 xt9 | 
| 21083 | 988 | |
| 989 | (* | |
| 990 | Since "a >= b" abbreviates "b <= a", the abbreviation "..." stands | |
| 991 | for the wrong thing in an Isar proof. | |
| 992 | ||
| 993 | The extra transitivity rules can be used as follows: | |
| 994 | ||
| 995 | lemma "(a::'a::order) > z" | |
| 996 | proof - | |
| 997 | have "a >= b" (is "_ >= ?rhs") | |
| 998 | sorry | |
| 999 | also have "?rhs >= c" (is "_ >= ?rhs") | |
| 1000 | sorry | |
| 1001 | also (xtrans) have "?rhs = d" (is "_ = ?rhs") | |
| 1002 | sorry | |
| 1003 | also (xtrans) have "?rhs >= e" (is "_ >= ?rhs") | |
| 1004 | sorry | |
| 1005 | also (xtrans) have "?rhs > f" (is "_ > ?rhs") | |
| 1006 | sorry | |
| 1007 | also (xtrans) have "?rhs > z" | |
| 1008 | sorry | |
| 1009 | finally (xtrans) show ?thesis . | |
| 1010 | qed | |
| 1011 | ||
| 1012 | Alternatively, one can use "declare xtrans [trans]" and then | |
| 1013 | leave out the "(xtrans)" above. | |
| 1014 | *) | |
| 1015 | ||
| 23881 | 1016 | |
| 60758 | 1017 | subsection \<open>Monotonicity\<close> | 
| 21083 | 1018 | |
| 25076 | 1019 | context order | 
| 1020 | begin | |
| 1021 | ||
| 61076 | 1022 | definition mono :: "('a \<Rightarrow> 'b::order) \<Rightarrow> bool" where
 | 
| 25076 | 1023 | "mono f \<longleftrightarrow> (\<forall>x y. x \<le> y \<longrightarrow> f x \<le> f y)" | 
| 1024 | ||
| 1025 | lemma monoI [intro?]: | |
| 61076 | 1026 | fixes f :: "'a \<Rightarrow> 'b::order" | 
| 25076 | 1027 | shows "(\<And>x y. x \<le> y \<Longrightarrow> f x \<le> f y) \<Longrightarrow> mono f" | 
| 1028 | unfolding mono_def by iprover | |
| 21216 
1c8580913738
made locale partial_order compatible with axclass order; changed import order; consecutive changes
 haftmann parents: 
21204diff
changeset | 1029 | |
| 25076 | 1030 | lemma monoD [dest?]: | 
| 61076 | 1031 | fixes f :: "'a \<Rightarrow> 'b::order" | 
| 25076 | 1032 | shows "mono f \<Longrightarrow> x \<le> y \<Longrightarrow> f x \<le> f y" | 
| 1033 | unfolding mono_def by iprover | |
| 1034 | ||
| 51263 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1035 | lemma monoE: | 
| 61076 | 1036 | fixes f :: "'a \<Rightarrow> 'b::order" | 
| 51263 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1037 | assumes "mono f" | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1038 | assumes "x \<le> y" | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1039 | obtains "f x \<le> f y" | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1040 | proof | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1041 | from assms show "f x \<le> f y" by (simp add: mono_def) | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1042 | qed | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1043 | |
| 61076 | 1044 | definition antimono :: "('a \<Rightarrow> 'b::order) \<Rightarrow> bool" where
 | 
| 56020 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
54868diff
changeset | 1045 | "antimono f \<longleftrightarrow> (\<forall>x y. x \<le> y \<longrightarrow> f x \<ge> f y)" | 
| 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
54868diff
changeset | 1046 | |
| 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
54868diff
changeset | 1047 | lemma antimonoI [intro?]: | 
| 61076 | 1048 | fixes f :: "'a \<Rightarrow> 'b::order" | 
| 56020 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
54868diff
changeset | 1049 | shows "(\<And>x y. x \<le> y \<Longrightarrow> f x \<ge> f y) \<Longrightarrow> antimono f" | 
| 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
54868diff
changeset | 1050 | unfolding antimono_def by iprover | 
| 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
54868diff
changeset | 1051 | |
| 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
54868diff
changeset | 1052 | lemma antimonoD [dest?]: | 
| 61076 | 1053 | fixes f :: "'a \<Rightarrow> 'b::order" | 
| 56020 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
54868diff
changeset | 1054 | shows "antimono f \<Longrightarrow> x \<le> y \<Longrightarrow> f x \<ge> f y" | 
| 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
54868diff
changeset | 1055 | unfolding antimono_def by iprover | 
| 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
54868diff
changeset | 1056 | |
| 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
54868diff
changeset | 1057 | lemma antimonoE: | 
| 61076 | 1058 | fixes f :: "'a \<Rightarrow> 'b::order" | 
| 56020 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
54868diff
changeset | 1059 | assumes "antimono f" | 
| 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
54868diff
changeset | 1060 | assumes "x \<le> y" | 
| 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
54868diff
changeset | 1061 | obtains "f x \<ge> f y" | 
| 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
54868diff
changeset | 1062 | proof | 
| 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
54868diff
changeset | 1063 | from assms show "f x \<ge> f y" by (simp add: antimono_def) | 
| 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
54868diff
changeset | 1064 | qed | 
| 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
54868diff
changeset | 1065 | |
| 61076 | 1066 | definition strict_mono :: "('a \<Rightarrow> 'b::order) \<Rightarrow> bool" where
 | 
| 30298 | 1067 | "strict_mono f \<longleftrightarrow> (\<forall>x y. x < y \<longrightarrow> f x < f y)" | 
| 1068 | ||
| 1069 | lemma strict_monoI [intro?]: | |
| 1070 | assumes "\<And>x y. x < y \<Longrightarrow> f x < f y" | |
| 1071 | shows "strict_mono f" | |
| 1072 | using assms unfolding strict_mono_def by auto | |
| 1073 | ||
| 1074 | lemma strict_monoD [dest?]: | |
| 1075 | "strict_mono f \<Longrightarrow> x < y \<Longrightarrow> f x < f y" | |
| 1076 | unfolding strict_mono_def by auto | |
| 1077 | ||
| 1078 | lemma strict_mono_mono [dest?]: | |
| 1079 | assumes "strict_mono f" | |
| 1080 | shows "mono f" | |
| 1081 | proof (rule monoI) | |
| 1082 | fix x y | |
| 1083 | assume "x \<le> y" | |
| 1084 | show "f x \<le> f y" | |
| 1085 | proof (cases "x = y") | |
| 1086 | case True then show ?thesis by simp | |
| 1087 | next | |
| 60758 | 1088 | case False with \<open>x \<le> y\<close> have "x < y" by simp | 
| 30298 | 1089 | with assms strict_monoD have "f x < f y" by auto | 
| 1090 | then show ?thesis by simp | |
| 1091 | qed | |
| 1092 | qed | |
| 1093 | ||
| 25076 | 1094 | end | 
| 1095 | ||
| 1096 | context linorder | |
| 1097 | begin | |
| 1098 | ||
| 51263 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1099 | lemma mono_invE: | 
| 61076 | 1100 | fixes f :: "'a \<Rightarrow> 'b::order" | 
| 51263 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1101 | assumes "mono f" | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1102 | assumes "f x < f y" | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1103 | obtains "x \<le> y" | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1104 | proof | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1105 | show "x \<le> y" | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1106 | proof (rule ccontr) | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1107 | assume "\<not> x \<le> y" | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1108 | then have "y \<le> x" by simp | 
| 60758 | 1109 | with \<open>mono f\<close> obtain "f y \<le> f x" by (rule monoE) | 
| 1110 | with \<open>f x < f y\<close> show False by simp | |
| 51263 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1111 | qed | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1112 | qed | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1113 | |
| 30298 | 1114 | lemma strict_mono_eq: | 
| 1115 | assumes "strict_mono f" | |
| 1116 | shows "f x = f y \<longleftrightarrow> x = y" | |
| 1117 | proof | |
| 1118 | assume "f x = f y" | |
| 1119 | show "x = y" proof (cases x y rule: linorder_cases) | |
| 1120 | case less with assms strict_monoD have "f x < f y" by auto | |
| 60758 | 1121 | with \<open>f x = f y\<close> show ?thesis by simp | 
| 30298 | 1122 | next | 
| 1123 | case equal then show ?thesis . | |
| 1124 | next | |
| 1125 | case greater with assms strict_monoD have "f y < f x" by auto | |
| 60758 | 1126 | with \<open>f x = f y\<close> show ?thesis by simp | 
| 30298 | 1127 | qed | 
| 1128 | qed simp | |
| 1129 | ||
| 1130 | lemma strict_mono_less_eq: | |
| 1131 | assumes "strict_mono f" | |
| 1132 | shows "f x \<le> f y \<longleftrightarrow> x \<le> y" | |
| 1133 | proof | |
| 1134 | assume "x \<le> y" | |
| 1135 | with assms strict_mono_mono monoD show "f x \<le> f y" by auto | |
| 1136 | next | |
| 1137 | assume "f x \<le> f y" | |
| 1138 | show "x \<le> y" proof (rule ccontr) | |
| 1139 | assume "\<not> x \<le> y" then have "y < x" by simp | |
| 1140 | with assms strict_monoD have "f y < f x" by auto | |
| 60758 | 1141 | with \<open>f x \<le> f y\<close> show False by simp | 
| 30298 | 1142 | qed | 
| 1143 | qed | |
| 1144 | ||
| 1145 | lemma strict_mono_less: | |
| 1146 | assumes "strict_mono f" | |
| 1147 | shows "f x < f y \<longleftrightarrow> x < y" | |
| 1148 | using assms | |
| 1149 | by (auto simp add: less_le Orderings.less_le strict_mono_eq strict_mono_less_eq) | |
| 1150 | ||
| 54860 | 1151 | end | 
| 1152 | ||
| 1153 | ||
| 60758 | 1154 | subsection \<open>min and max -- fundamental\<close> | 
| 54860 | 1155 | |
| 1156 | definition (in ord) min :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" where | |
| 1157 | "min a b = (if a \<le> b then a else b)" | |
| 1158 | ||
| 1159 | definition (in ord) max :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" where | |
| 1160 | "max a b = (if a \<le> b then b else a)" | |
| 1161 | ||
| 45931 | 1162 | lemma min_absorb1: "x \<le> y \<Longrightarrow> min x y = x" | 
| 54861 
00d551179872
postponed min/max lemmas until abstract lattice is available
 haftmann parents: 
54860diff
changeset | 1163 | by (simp add: min_def) | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 1164 | |
| 54857 | 1165 | lemma max_absorb2: "x \<le> y \<Longrightarrow> max x y = y" | 
| 54861 
00d551179872
postponed min/max lemmas until abstract lattice is available
 haftmann parents: 
54860diff
changeset | 1166 | by (simp add: max_def) | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 1167 | |
| 61076 | 1168 | lemma min_absorb2: "(y::'a::order) \<le> x \<Longrightarrow> min x y = y" | 
| 54861 
00d551179872
postponed min/max lemmas until abstract lattice is available
 haftmann parents: 
54860diff
changeset | 1169 | by (simp add:min_def) | 
| 45893 | 1170 | |
| 61076 | 1171 | lemma max_absorb1: "(y::'a::order) \<le> x \<Longrightarrow> max x y = x" | 
| 54861 
00d551179872
postponed min/max lemmas until abstract lattice is available
 haftmann parents: 
54860diff
changeset | 1172 | by (simp add: max_def) | 
| 45893 | 1173 | |
| 1174 | ||
| 60758 | 1175 | subsection \<open>(Unique) top and bottom elements\<close> | 
| 28685 | 1176 | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1177 | class bot = | 
| 43853 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1178 |   fixes bot :: 'a ("\<bottom>")
 | 
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1179 | |
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1180 | class order_bot = order + bot + | 
| 51487 | 1181 | assumes bot_least: "\<bottom> \<le> a" | 
| 54868 | 1182 | begin | 
| 51487 | 1183 | |
| 54868 | 1184 | sublocale bot!: ordering_top greater_eq greater bot | 
| 61169 | 1185 | by standard (fact bot_least) | 
| 51487 | 1186 | |
| 43853 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1187 | lemma le_bot: | 
| 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1188 | "a \<le> \<bottom> \<Longrightarrow> a = \<bottom>" | 
| 51487 | 1189 | by (fact bot.extremum_uniqueI) | 
| 43853 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1190 | |
| 43816 | 1191 | lemma bot_unique: | 
| 43853 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1192 | "a \<le> \<bottom> \<longleftrightarrow> a = \<bottom>" | 
| 51487 | 1193 | by (fact bot.extremum_unique) | 
| 43853 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1194 | |
| 51487 | 1195 | lemma not_less_bot: | 
| 1196 | "\<not> a < \<bottom>" | |
| 1197 | by (fact bot.extremum_strict) | |
| 43816 | 1198 | |
| 43814 
58791b75cf1f
moved lemmas bot_less and less_top to classes bot and top respectively
 haftmann parents: 
43813diff
changeset | 1199 | lemma bot_less: | 
| 43853 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1200 | "a \<noteq> \<bottom> \<longleftrightarrow> \<bottom> < a" | 
| 51487 | 1201 | by (fact bot.not_eq_extremum) | 
| 43814 
58791b75cf1f
moved lemmas bot_less and less_top to classes bot and top respectively
 haftmann parents: 
43813diff
changeset | 1202 | |
| 
58791b75cf1f
moved lemmas bot_less and less_top to classes bot and top respectively
 haftmann parents: 
43813diff
changeset | 1203 | end | 
| 41082 | 1204 | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1205 | class top = | 
| 43853 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1206 |   fixes top :: 'a ("\<top>")
 | 
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1207 | |
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1208 | class order_top = order + top + | 
| 51487 | 1209 | assumes top_greatest: "a \<le> \<top>" | 
| 54868 | 1210 | begin | 
| 51487 | 1211 | |
| 54868 | 1212 | sublocale top!: ordering_top less_eq less top | 
| 61169 | 1213 | by standard (fact top_greatest) | 
| 51487 | 1214 | |
| 43853 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1215 | lemma top_le: | 
| 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1216 | "\<top> \<le> a \<Longrightarrow> a = \<top>" | 
| 51487 | 1217 | by (fact top.extremum_uniqueI) | 
| 43853 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1218 | |
| 43816 | 1219 | lemma top_unique: | 
| 43853 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1220 | "\<top> \<le> a \<longleftrightarrow> a = \<top>" | 
| 51487 | 1221 | by (fact top.extremum_unique) | 
| 43853 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1222 | |
| 51487 | 1223 | lemma not_top_less: | 
| 1224 | "\<not> \<top> < a" | |
| 1225 | by (fact top.extremum_strict) | |
| 43816 | 1226 | |
| 43814 
58791b75cf1f
moved lemmas bot_less and less_top to classes bot and top respectively
 haftmann parents: 
43813diff
changeset | 1227 | lemma less_top: | 
| 43853 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1228 | "a \<noteq> \<top> \<longleftrightarrow> a < \<top>" | 
| 51487 | 1229 | by (fact top.not_eq_extremum) | 
| 43814 
58791b75cf1f
moved lemmas bot_less and less_top to classes bot and top respectively
 haftmann parents: 
43813diff
changeset | 1230 | |
| 
58791b75cf1f
moved lemmas bot_less and less_top to classes bot and top respectively
 haftmann parents: 
43813diff
changeset | 1231 | end | 
| 28685 | 1232 | |
| 1233 | ||
| 60758 | 1234 | subsection \<open>Dense orders\<close> | 
| 27823 | 1235 | |
| 53216 | 1236 | class dense_order = order + | 
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1237 | assumes dense: "x < y \<Longrightarrow> (\<exists>z. x < z \<and> z < y)" | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1238 | |
| 53216 | 1239 | class dense_linorder = linorder + dense_order | 
| 35579 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1240 | begin | 
| 27823 | 1241 | |
| 35579 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1242 | lemma dense_le: | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1243 | fixes y z :: 'a | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1244 | assumes "\<And>x. x < y \<Longrightarrow> x \<le> z" | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1245 | shows "y \<le> z" | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1246 | proof (rule ccontr) | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1247 | assume "\<not> ?thesis" | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1248 | hence "z < y" by simp | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1249 | from dense[OF this] | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1250 | obtain x where "x < y" and "z < x" by safe | 
| 60758 | 1251 | moreover have "x \<le> z" using assms[OF \<open>x < y\<close>] . | 
| 35579 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1252 | ultimately show False by auto | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1253 | qed | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1254 | |
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1255 | lemma dense_le_bounded: | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1256 | fixes x y z :: 'a | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1257 | assumes "x < y" | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1258 | assumes *: "\<And>w. \<lbrakk> x < w ; w < y \<rbrakk> \<Longrightarrow> w \<le> z" | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1259 | shows "y \<le> z" | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1260 | proof (rule dense_le) | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1261 | fix w assume "w < y" | 
| 60758 | 1262 | from dense[OF \<open>x < y\<close>] obtain u where "x < u" "u < y" by safe | 
| 35579 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1263 | from linear[of u w] | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1264 | show "w \<le> z" | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1265 | proof (rule disjE) | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1266 | assume "u \<le> w" | 
| 60758 | 1267 | from less_le_trans[OF \<open>x < u\<close> \<open>u \<le> w\<close>] \<open>w < y\<close> | 
| 35579 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1268 | show "w \<le> z" by (rule *) | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1269 | next | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1270 | assume "w \<le> u" | 
| 60758 | 1271 | from \<open>w \<le> u\<close> *[OF \<open>x < u\<close> \<open>u < y\<close>] | 
| 35579 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1272 | show "w \<le> z" by (rule order_trans) | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1273 | qed | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1274 | qed | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1275 | |
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1276 | lemma dense_ge: | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1277 | fixes y z :: 'a | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1278 | assumes "\<And>x. z < x \<Longrightarrow> y \<le> x" | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1279 | shows "y \<le> z" | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1280 | proof (rule ccontr) | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1281 | assume "\<not> ?thesis" | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1282 | hence "z < y" by simp | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1283 | from dense[OF this] | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1284 | obtain x where "x < y" and "z < x" by safe | 
| 60758 | 1285 | moreover have "y \<le> x" using assms[OF \<open>z < x\<close>] . | 
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1286 | ultimately show False by auto | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1287 | qed | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1288 | |
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1289 | lemma dense_ge_bounded: | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1290 | fixes x y z :: 'a | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1291 | assumes "z < x" | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1292 | assumes *: "\<And>w. \<lbrakk> z < w ; w < x \<rbrakk> \<Longrightarrow> y \<le> w" | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1293 | shows "y \<le> z" | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1294 | proof (rule dense_ge) | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1295 | fix w assume "z < w" | 
| 60758 | 1296 | from dense[OF \<open>z < x\<close>] obtain u where "z < u" "u < x" by safe | 
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1297 | from linear[of u w] | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1298 | show "y \<le> w" | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1299 | proof (rule disjE) | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1300 | assume "w \<le> u" | 
| 60758 | 1301 | from \<open>z < w\<close> le_less_trans[OF \<open>w \<le> u\<close> \<open>u < x\<close>] | 
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1302 | show "y \<le> w" by (rule *) | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1303 | next | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1304 | assume "u \<le> w" | 
| 60758 | 1305 | from *[OF \<open>z < u\<close> \<open>u < x\<close>] \<open>u \<le> w\<close> | 
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1306 | show "y \<le> w" by (rule order_trans) | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1307 | qed | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1308 | qed | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1309 | |
| 35579 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1310 | end | 
| 27823 | 1311 | |
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1312 | class no_top = order + | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1313 | assumes gt_ex: "\<exists>y. x < y" | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1314 | |
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1315 | class no_bot = order + | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1316 | assumes lt_ex: "\<exists>y. y < x" | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1317 | |
| 53216 | 1318 | class unbounded_dense_linorder = dense_linorder + no_top + no_bot | 
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1319 | |
| 51546 
2e26df807dc7
more uniform style for interpretation and sublocale declarations
 haftmann parents: 
51487diff
changeset | 1320 | |
| 60758 | 1321 | subsection \<open>Wellorders\<close> | 
| 27823 | 1322 | |
| 1323 | class wellorder = linorder + | |
| 1324 | assumes less_induct [case_names less]: "(\<And>x. (\<And>y. y < x \<Longrightarrow> P y) \<Longrightarrow> P x) \<Longrightarrow> P a" | |
| 1325 | begin | |
| 1326 | ||
| 1327 | lemma wellorder_Least_lemma: | |
| 1328 | fixes k :: 'a | |
| 1329 | assumes "P k" | |
| 34250 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1330 | shows LeastI: "P (LEAST x. P x)" and Least_le: "(LEAST x. P x) \<le> k" | 
| 27823 | 1331 | proof - | 
| 1332 | have "P (LEAST x. P x) \<and> (LEAST x. P x) \<le> k" | |
| 1333 | using assms proof (induct k rule: less_induct) | |
| 1334 | case (less x) then have "P x" by simp | |
| 1335 | show ?case proof (rule classical) | |
| 1336 | assume assm: "\<not> (P (LEAST a. P a) \<and> (LEAST a. P a) \<le> x)" | |
| 1337 | have "\<And>y. P y \<Longrightarrow> x \<le> y" | |
| 1338 | proof (rule classical) | |
| 1339 | fix y | |
| 38705 | 1340 | assume "P y" and "\<not> x \<le> y" | 
| 27823 | 1341 | with less have "P (LEAST a. P a)" and "(LEAST a. P a) \<le> y" | 
| 1342 | by (auto simp add: not_le) | |
| 1343 | with assm have "x < (LEAST a. P a)" and "(LEAST a. P a) \<le> y" | |
| 1344 | by auto | |
| 1345 | then show "x \<le> y" by auto | |
| 1346 | qed | |
| 60758 | 1347 | with \<open>P x\<close> have Least: "(LEAST a. P a) = x" | 
| 27823 | 1348 | by (rule Least_equality) | 
| 60758 | 1349 | with \<open>P x\<close> show ?thesis by simp | 
| 27823 | 1350 | qed | 
| 1351 | qed | |
| 1352 | then show "P (LEAST x. P x)" and "(LEAST x. P x) \<le> k" by auto | |
| 1353 | qed | |
| 1354 | ||
| 1355 | -- "The following 3 lemmas are due to Brian Huffman" | |
| 1356 | lemma LeastI_ex: "\<exists>x. P x \<Longrightarrow> P (Least P)" | |
| 1357 | by (erule exE) (erule LeastI) | |
| 1358 | ||
| 1359 | lemma LeastI2: | |
| 1360 | "P a \<Longrightarrow> (\<And>x. P x \<Longrightarrow> Q x) \<Longrightarrow> Q (Least P)" | |
| 1361 | by (blast intro: LeastI) | |
| 1362 | ||
| 1363 | lemma LeastI2_ex: | |
| 1364 | "\<exists>a. P a \<Longrightarrow> (\<And>x. P x \<Longrightarrow> Q x) \<Longrightarrow> Q (Least P)" | |
| 1365 | by (blast intro: LeastI_ex) | |
| 1366 | ||
| 38705 | 1367 | lemma LeastI2_wellorder: | 
| 1368 | assumes "P a" | |
| 1369 | and "\<And>a. \<lbrakk> P a; \<forall>b. P b \<longrightarrow> a \<le> b \<rbrakk> \<Longrightarrow> Q a" | |
| 1370 | shows "Q (Least P)" | |
| 1371 | proof (rule LeastI2_order) | |
| 60758 | 1372 | show "P (Least P)" using \<open>P a\<close> by (rule LeastI) | 
| 38705 | 1373 | next | 
| 1374 | fix y assume "P y" thus "Least P \<le> y" by (rule Least_le) | |
| 1375 | next | |
| 1376 | fix x assume "P x" "\<forall>y. P y \<longrightarrow> x \<le> y" thus "Q x" by (rule assms(2)) | |
| 1377 | qed | |
| 1378 | ||
| 27823 | 1379 | lemma not_less_Least: "k < (LEAST x. P x) \<Longrightarrow> \<not> P k" | 
| 1380 | apply (simp (no_asm_use) add: not_le [symmetric]) | |
| 1381 | apply (erule contrapos_nn) | |
| 1382 | apply (erule Least_le) | |
| 1383 | done | |
| 1384 | ||
| 38705 | 1385 | end | 
| 27823 | 1386 | |
| 28685 | 1387 | |
| 60758 | 1388 | subsection \<open>Order on @{typ bool}\<close>
 | 
| 28685 | 1389 | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1390 | instantiation bool :: "{order_bot, order_top, linorder}"
 | 
| 28685 | 1391 | begin | 
| 1392 | ||
| 1393 | definition | |
| 41080 | 1394 | le_bool_def [simp]: "P \<le> Q \<longleftrightarrow> P \<longrightarrow> Q" | 
| 28685 | 1395 | |
| 1396 | definition | |
| 61076 | 1397 | [simp]: "(P::bool) < Q \<longleftrightarrow> \<not> P \<and> Q" | 
| 28685 | 1398 | |
| 1399 | definition | |
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1400 | [simp]: "\<bottom> \<longleftrightarrow> False" | 
| 28685 | 1401 | |
| 1402 | definition | |
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1403 | [simp]: "\<top> \<longleftrightarrow> True" | 
| 28685 | 1404 | |
| 1405 | instance proof | |
| 41080 | 1406 | qed auto | 
| 28685 | 1407 | |
| 15524 | 1408 | end | 
| 28685 | 1409 | |
| 1410 | lemma le_boolI: "(P \<Longrightarrow> Q) \<Longrightarrow> P \<le> Q" | |
| 41080 | 1411 | by simp | 
| 28685 | 1412 | |
| 1413 | lemma le_boolI': "P \<longrightarrow> Q \<Longrightarrow> P \<le> Q" | |
| 41080 | 1414 | by simp | 
| 28685 | 1415 | |
| 1416 | lemma le_boolE: "P \<le> Q \<Longrightarrow> P \<Longrightarrow> (Q \<Longrightarrow> R) \<Longrightarrow> R" | |
| 41080 | 1417 | by simp | 
| 28685 | 1418 | |
| 1419 | lemma le_boolD: "P \<le> Q \<Longrightarrow> P \<longrightarrow> Q" | |
| 41080 | 1420 | by simp | 
| 32899 | 1421 | |
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1422 | lemma bot_boolE: "\<bottom> \<Longrightarrow> P" | 
| 41080 | 1423 | by simp | 
| 32899 | 1424 | |
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1425 | lemma top_boolI: \<top> | 
| 41080 | 1426 | by simp | 
| 28685 | 1427 | |
| 1428 | lemma [code]: | |
| 1429 | "False \<le> b \<longleftrightarrow> True" | |
| 1430 | "True \<le> b \<longleftrightarrow> b" | |
| 1431 | "False < b \<longleftrightarrow> b" | |
| 1432 | "True < b \<longleftrightarrow> False" | |
| 41080 | 1433 | by simp_all | 
| 28685 | 1434 | |
| 1435 | ||
| 60758 | 1436 | subsection \<open>Order on @{typ "_ \<Rightarrow> _"}\<close>
 | 
| 28685 | 1437 | |
| 1438 | instantiation "fun" :: (type, ord) ord | |
| 1439 | begin | |
| 1440 | ||
| 1441 | definition | |
| 37767 | 1442 | le_fun_def: "f \<le> g \<longleftrightarrow> (\<forall>x. f x \<le> g x)" | 
| 28685 | 1443 | |
| 1444 | definition | |
| 61076 | 1445 | "(f::'a \<Rightarrow> 'b) < g \<longleftrightarrow> f \<le> g \<and> \<not> (g \<le> f)" | 
| 28685 | 1446 | |
| 1447 | instance .. | |
| 1448 | ||
| 1449 | end | |
| 1450 | ||
| 1451 | instance "fun" :: (type, preorder) preorder proof | |
| 1452 | qed (auto simp add: le_fun_def less_fun_def | |
| 44921 | 1453 | intro: order_trans antisym) | 
| 28685 | 1454 | |
| 1455 | instance "fun" :: (type, order) order proof | |
| 44921 | 1456 | qed (auto simp add: le_fun_def intro: antisym) | 
| 28685 | 1457 | |
| 41082 | 1458 | instantiation "fun" :: (type, bot) bot | 
| 1459 | begin | |
| 1460 | ||
| 1461 | definition | |
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1462 | "\<bottom> = (\<lambda>x. \<bottom>)" | 
| 41082 | 1463 | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1464 | instance .. | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1465 | |
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1466 | end | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1467 | |
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1468 | instantiation "fun" :: (type, order_bot) order_bot | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1469 | begin | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1470 | |
| 49769 | 1471 | lemma bot_apply [simp, code]: | 
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1472 | "\<bottom> x = \<bottom>" | 
| 41082 | 1473 | by (simp add: bot_fun_def) | 
| 1474 | ||
| 1475 | instance proof | |
| 46884 | 1476 | qed (simp add: le_fun_def) | 
| 41082 | 1477 | |
| 1478 | end | |
| 1479 | ||
| 28685 | 1480 | instantiation "fun" :: (type, top) top | 
| 1481 | begin | |
| 1482 | ||
| 1483 | definition | |
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1484 | [no_atp]: "\<top> = (\<lambda>x. \<top>)" | 
| 28685 | 1485 | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1486 | instance .. | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1487 | |
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1488 | end | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1489 | |
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1490 | instantiation "fun" :: (type, order_top) order_top | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1491 | begin | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1492 | |
| 49769 | 1493 | lemma top_apply [simp, code]: | 
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1494 | "\<top> x = \<top>" | 
| 41080 | 1495 | by (simp add: top_fun_def) | 
| 1496 | ||
| 28685 | 1497 | instance proof | 
| 46884 | 1498 | qed (simp add: le_fun_def) | 
| 28685 | 1499 | |
| 1500 | end | |
| 1501 | ||
| 1502 | lemma le_funI: "(\<And>x. f x \<le> g x) \<Longrightarrow> f \<le> g" | |
| 1503 | unfolding le_fun_def by simp | |
| 1504 | ||
| 1505 | lemma le_funE: "f \<le> g \<Longrightarrow> (f x \<le> g x \<Longrightarrow> P) \<Longrightarrow> P" | |
| 1506 | unfolding le_fun_def by simp | |
| 1507 | ||
| 1508 | lemma le_funD: "f \<le> g \<Longrightarrow> f x \<le> g x" | |
| 54860 | 1509 | by (rule le_funE) | 
| 28685 | 1510 | |
| 59000 | 1511 | lemma mono_compose: "mono Q \<Longrightarrow> mono (\<lambda>i x. Q i (f x))" | 
| 1512 | unfolding mono_def le_fun_def by auto | |
| 1513 | ||
| 34250 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1514 | |
| 60758 | 1515 | subsection \<open>Order on unary and binary predicates\<close> | 
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1516 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1517 | lemma predicate1I: | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1518 | assumes PQ: "\<And>x. P x \<Longrightarrow> Q x" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1519 | shows "P \<le> Q" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1520 | apply (rule le_funI) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1521 | apply (rule le_boolI) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1522 | apply (rule PQ) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1523 | apply assumption | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1524 | done | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1525 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1526 | lemma predicate1D: | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1527 | "P \<le> Q \<Longrightarrow> P x \<Longrightarrow> Q x" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1528 | apply (erule le_funE) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1529 | apply (erule le_boolE) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1530 | apply assumption+ | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1531 | done | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1532 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1533 | lemma rev_predicate1D: | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1534 | "P x \<Longrightarrow> P \<le> Q \<Longrightarrow> Q x" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1535 | by (rule predicate1D) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1536 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1537 | lemma predicate2I: | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1538 | assumes PQ: "\<And>x y. P x y \<Longrightarrow> Q x y" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1539 | shows "P \<le> Q" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1540 | apply (rule le_funI)+ | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1541 | apply (rule le_boolI) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1542 | apply (rule PQ) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1543 | apply assumption | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1544 | done | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1545 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1546 | lemma predicate2D: | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1547 | "P \<le> Q \<Longrightarrow> P x y \<Longrightarrow> Q x y" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1548 | apply (erule le_funE)+ | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1549 | apply (erule le_boolE) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1550 | apply assumption+ | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1551 | done | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1552 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1553 | lemma rev_predicate2D: | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1554 | "P x y \<Longrightarrow> P \<le> Q \<Longrightarrow> Q x y" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1555 | by (rule predicate2D) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1556 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1557 | lemma bot1E [no_atp]: "\<bottom> x \<Longrightarrow> P" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1558 | by (simp add: bot_fun_def) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1559 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1560 | lemma bot2E: "\<bottom> x y \<Longrightarrow> P" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1561 | by (simp add: bot_fun_def) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1562 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1563 | lemma top1I: "\<top> x" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1564 | by (simp add: top_fun_def) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1565 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1566 | lemma top2I: "\<top> x y" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1567 | by (simp add: top_fun_def) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1568 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1569 | |
| 60758 | 1570 | subsection \<open>Name duplicates\<close> | 
| 34250 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1571 | |
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1572 | lemmas order_eq_refl = preorder_class.eq_refl | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1573 | lemmas order_less_irrefl = preorder_class.less_irrefl | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1574 | lemmas order_less_imp_le = preorder_class.less_imp_le | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1575 | lemmas order_less_not_sym = preorder_class.less_not_sym | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1576 | lemmas order_less_asym = preorder_class.less_asym | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1577 | lemmas order_less_trans = preorder_class.less_trans | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1578 | lemmas order_le_less_trans = preorder_class.le_less_trans | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1579 | lemmas order_less_le_trans = preorder_class.less_le_trans | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1580 | lemmas order_less_imp_not_less = preorder_class.less_imp_not_less | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1581 | lemmas order_less_imp_triv = preorder_class.less_imp_triv | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1582 | lemmas order_less_asym' = preorder_class.less_asym' | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1583 | |
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1584 | lemmas order_less_le = order_class.less_le | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1585 | lemmas order_le_less = order_class.le_less | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1586 | lemmas order_le_imp_less_or_eq = order_class.le_imp_less_or_eq | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1587 | lemmas order_less_imp_not_eq = order_class.less_imp_not_eq | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1588 | lemmas order_less_imp_not_eq2 = order_class.less_imp_not_eq2 | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1589 | lemmas order_neq_le_trans = order_class.neq_le_trans | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1590 | lemmas order_le_neq_trans = order_class.le_neq_trans | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1591 | lemmas order_antisym = order_class.antisym | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1592 | lemmas order_eq_iff = order_class.eq_iff | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1593 | lemmas order_antisym_conv = order_class.antisym_conv | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1594 | |
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1595 | lemmas linorder_linear = linorder_class.linear | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1596 | lemmas linorder_less_linear = linorder_class.less_linear | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1597 | lemmas linorder_le_less_linear = linorder_class.le_less_linear | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1598 | lemmas linorder_le_cases = linorder_class.le_cases | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1599 | lemmas linorder_not_less = linorder_class.not_less | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1600 | lemmas linorder_not_le = linorder_class.not_le | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1601 | lemmas linorder_neq_iff = linorder_class.neq_iff | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1602 | lemmas linorder_neqE = linorder_class.neqE | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1603 | lemmas linorder_antisym_conv1 = linorder_class.antisym_conv1 | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1604 | lemmas linorder_antisym_conv2 = linorder_class.antisym_conv2 | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1605 | lemmas linorder_antisym_conv3 = linorder_class.antisym_conv3 | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1606 | |
| 28685 | 1607 | end |