| author | wenzelm | 
| Thu, 10 Nov 2022 11:20:37 +0100 | |
| changeset 76503 | 5944f9e70d98 | 
| parent 76055 | 8d56461f85ec | 
| child 79583 | a521c241e946 | 
| permissions | -rw-r--r-- | 
| 63627 | 1 | (* Title: HOL/Analysis/Nonnegative_Lebesgue_Integration.thy | 
| 42067 | 2 | Author: Johannes Hölzl, TU München | 
| 3 | Author: Armin Heller, TU München | |
| 4 | *) | |
| 38656 | 5 | |
| 61808 | 6 | section \<open>Lebesgue Integration for Nonnegative Functions\<close> | 
| 35582 | 7 | |
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 8 | theory Nonnegative_Lebesgue_Integration | 
| 47694 | 9 | imports Measure_Space Borel_Space | 
| 35582 | 10 | begin | 
| 11 | ||
| 70136 | 12 | subsection\<^marker>\<open>tag unimportant\<close> \<open>Approximating functions\<close> | 
| 64283 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 13 | |
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 14 | lemma AE_upper_bound_inf_ennreal: | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 15 | fixes F G::"'a \<Rightarrow> ennreal" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 16 | assumes "\<And>e. (e::real) > 0 \<Longrightarrow> AE x in M. F x \<le> G x + e" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 17 | shows "AE x in M. F x \<le> G x" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 18 | proof - | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 19 | have "AE x in M. \<forall>n::nat. F x \<le> G x + ennreal (1 / Suc n)" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 20 | using assms by (auto simp: AE_all_countable) | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 21 | then show ?thesis | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 22 | proof (eventually_elim) | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 23 | fix x assume x: "\<forall>n::nat. F x \<le> G x + ennreal (1 / Suc n)" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 24 | show "F x \<le> G x" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 25 | proof (rule ennreal_le_epsilon) | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 26 | fix e :: real assume "0 < e" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 27 | then obtain n where n: "1 / Suc n < e" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 28 | by (blast elim: nat_approx_posE) | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 29 | have "F x \<le> G x + 1 / Suc n" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 30 | using x by simp | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 31 | also have "\<dots> \<le> G x + e" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 32 | using n by (intro add_mono ennreal_leI) auto | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 33 | finally show "F x \<le> G x + ennreal e" . | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 34 | qed | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 35 | qed | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 36 | qed | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 37 | |
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 38 | lemma AE_upper_bound_inf: | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 39 | fixes F G::"'a \<Rightarrow> real" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 40 | assumes "\<And>e. e > 0 \<Longrightarrow> AE x in M. F x \<le> G x + e" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 41 | shows "AE x in M. F x \<le> G x" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 42 | proof - | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 43 | have "AE x in M. F x \<le> G x + 1/real (n+1)" for n::nat | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 44 | by (rule assms, auto) | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 45 | then have "AE x in M. \<forall>n::nat \<in> UNIV. F x \<le> G x + 1/real (n+1)" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 46 | by (rule AE_ball_countable', auto) | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 47 | moreover | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 48 |   {
 | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 49 | fix x assume i: "\<forall>n::nat \<in> UNIV. F x \<le> G x + 1/real (n+1)" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 50 | have "(\<lambda>n. G x + 1/real (n+1)) \<longlonglongrightarrow> G x + 0" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 51 | by (rule tendsto_add, simp, rule LIMSEQ_ignore_initial_segment[OF lim_1_over_n, of 1]) | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 52 | then have "F x \<le> G x" using i LIMSEQ_le_const by fastforce | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 53 | } | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 54 | ultimately show ?thesis by auto | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 55 | qed | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 56 | |
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 57 | lemma not_AE_zero_ennreal_E: | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 58 | fixes f::"'a \<Rightarrow> ennreal" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 59 | assumes "\<not> (AE x in M. f x = 0)" and [measurable]: "f \<in> borel_measurable M" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 60 | shows "\<exists>A\<in>sets M. \<exists>e::real>0. emeasure M A > 0 \<and> (\<forall>x \<in> A. f x \<ge> e)" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 61 | proof - | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 62 |   { assume "\<not> (\<exists>e::real>0. {x \<in> space M. f x \<ge> e} \<notin> null_sets M)"
 | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 63 | then have "0 < e \<Longrightarrow> AE x in M. f x \<le> e" for e :: real | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 64 | by (auto simp: not_le less_imp_le dest!: AE_not_in) | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 65 | then have "AE x in M. f x \<le> 0" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 66 | by (intro AE_upper_bound_inf_ennreal[where G="\<lambda>_. 0"]) simp | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 67 | then have False | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 68 | using assms by auto } | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 69 |   then obtain e::real where e: "e > 0" "{x \<in> space M. f x \<ge> e} \<notin> null_sets M" by auto
 | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 70 |   define A where "A = {x \<in> space M. f x \<ge> e}"
 | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 71 | have 1 [measurable]: "A \<in> sets M" unfolding A_def by auto | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 72 | have 2: "emeasure M A > 0" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 73 | using e(2) A_def \<open>A \<in> sets M\<close> by auto | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 74 | have 3: "\<And>x. x \<in> A \<Longrightarrow> f x \<ge> e" unfolding A_def by auto | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 75 | show ?thesis using e(1) 1 2 3 by blast | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 76 | qed | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 77 | |
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 78 | lemma not_AE_zero_E: | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 79 | fixes f::"'a \<Rightarrow> real" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 80 | assumes "AE x in M. f x \<ge> 0" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 81 | "\<not>(AE x in M. f x = 0)" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 82 | and [measurable]: "f \<in> borel_measurable M" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 83 | shows "\<exists>A e. A \<in> sets M \<and> e>0 \<and> emeasure M A > 0 \<and> (\<forall>x \<in> A. f x \<ge> e)" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 84 | proof - | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 85 |   have "\<exists>e. e > 0 \<and> {x \<in> space M. f x \<ge> e} \<notin> null_sets M"
 | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 86 | proof (rule ccontr) | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 87 |     assume *: "\<not>(\<exists>e. e > 0 \<and> {x \<in> space M. f x \<ge> e} \<notin> null_sets M)"
 | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 88 |     {
 | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 89 | fix e::real assume "e > 0" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 90 |       then have "{x \<in> space M. f x \<ge> e} \<in> null_sets M" using * by blast
 | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 91 |       then have "AE x in M. x \<notin> {x \<in> space M. f x \<ge> e}" using AE_not_in by blast
 | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 92 | then have "AE x in M. f x \<le> e" by auto | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 93 | } | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 94 | then have "AE x in M. f x \<le> 0" by (rule AE_upper_bound_inf, auto) | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 95 | then have "AE x in M. f x = 0" using assms(1) by auto | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 96 | then show False using assms(2) by auto | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 97 | qed | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 98 |   then obtain e where e: "e>0" "{x \<in> space M. f x \<ge> e} \<notin> null_sets M" by auto
 | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 99 |   define A where "A = {x \<in> space M. f x \<ge> e}"
 | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 100 | have 1 [measurable]: "A \<in> sets M" unfolding A_def by auto | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 101 | have 2: "emeasure M A > 0" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 102 | using e(2) A_def \<open>A \<in> sets M\<close> by auto | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 103 | have 3: "\<And>x. x \<in> A \<Longrightarrow> f x \<ge> e" unfolding A_def by auto | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 104 | show ?thesis | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 105 | using e(1) 1 2 3 by blast | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 106 | qed | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 107 | |
| 56994 | 108 | subsection "Simple function" | 
| 35582 | 109 | |
| 61808 | 110 | text \<open> | 
| 38656 | 111 | |
| 56996 | 112 | Our simple functions are not restricted to nonnegative real numbers. Instead | 
| 38656 | 113 | they are just functions with a finite range and are measurable when singleton | 
| 114 | sets are measurable. | |
| 35582 | 115 | |
| 61808 | 116 | \<close> | 
| 38656 | 117 | |
| 70136 | 118 | definition\<^marker>\<open>tag important\<close> "simple_function M g \<longleftrightarrow> | 
| 38656 | 119 | finite (g ` space M) \<and> | 
| 120 |     (\<forall>x \<in> g ` space M. g -` {x} \<inter> space M \<in> sets M)"
 | |
| 36624 | 121 | |
| 47694 | 122 | lemma simple_functionD: | 
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 123 | assumes "simple_function M g" | 
| 40875 | 124 | shows "finite (g ` space M)" and "g -` X \<inter> space M \<in> sets M" | 
| 40871 | 125 | proof - | 
| 126 | show "finite (g ` space M)" | |
| 127 | using assms unfolding simple_function_def by auto | |
| 40875 | 128 | have "g -` X \<inter> space M = g -` (X \<inter> g`space M) \<inter> space M" by auto | 
| 129 |   also have "\<dots> = (\<Union>x\<in>X \<inter> g`space M. g-`{x} \<inter> space M)" by auto
 | |
| 130 | finally show "g -` X \<inter> space M \<in> sets M" using assms | |
| 50002 
ce0d316b5b44
add measurability prover; add support for Borel sets
 hoelzl parents: 
50001diff
changeset | 131 | by (auto simp del: UN_simps simp: simple_function_def) | 
| 40871 | 132 | qed | 
| 36624 | 133 | |
| 56949 | 134 | lemma measurable_simple_function[measurable_dest]: | 
| 135 | "simple_function M f \<Longrightarrow> f \<in> measurable M (count_space UNIV)" | |
| 136 | unfolding simple_function_def measurable_def | |
| 137 | proof safe | |
| 138 |   fix A assume "finite (f ` space M)" "\<forall>x\<in>f ` space M. f -` {x} \<inter> space M \<in> sets M"
 | |
| 139 |   then have "(\<Union>x\<in>f ` space M. if x \<in> A then f -` {x} \<inter> space M else {}) \<in> sets M"
 | |
| 140 | by (intro sets.finite_UN) auto | |
| 141 |   also have "(\<Union>x\<in>f ` space M. if x \<in> A then f -` {x} \<inter> space M else {}) = f -` A \<inter> space M"
 | |
| 62390 | 142 | by (auto split: if_split_asm) | 
| 56949 | 143 | finally show "f -` A \<inter> space M \<in> sets M" . | 
| 144 | qed simp | |
| 145 | ||
| 146 | lemma borel_measurable_simple_function: | |
| 147 | "simple_function M f \<Longrightarrow> f \<in> borel_measurable M" | |
| 148 | by (auto dest!: measurable_simple_function simp: measurable_def) | |
| 149 | ||
| 47694 | 150 | lemma simple_function_measurable2[intro]: | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 151 | assumes "simple_function M f" "simple_function M g" | 
| 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 152 | shows "f -` A \<inter> g -` B \<inter> space M \<in> sets M" | 
| 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 153 | proof - | 
| 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 154 | have "f -` A \<inter> g -` B \<inter> space M = (f -` A \<inter> space M) \<inter> (g -` B \<inter> space M)" | 
| 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 155 | by auto | 
| 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 156 | then show ?thesis using assms[THEN simple_functionD(2)] by auto | 
| 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 157 | qed | 
| 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 158 | |
| 47694 | 159 | lemma simple_function_indicator_representation: | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 160 | fixes f ::"'a \<Rightarrow> ennreal" | 
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 161 | assumes f: "simple_function M f" and x: "x \<in> space M" | 
| 38656 | 162 |   shows "f x = (\<Sum>y \<in> f ` space M. y * indicator (f -` {y} \<inter> space M) x)"
 | 
| 163 | (is "?l = ?r") | |
| 164 | proof - | |
| 38705 | 165 | have "?r = (\<Sum>y \<in> f ` space M. | 
| 38656 | 166 |     (if y = f x then y * indicator (f -` {y} \<inter> space M) x else 0))"
 | 
| 64267 | 167 | by (auto intro!: sum.cong) | 
| 38656 | 168 |   also have "... =  f x *  indicator (f -` {f x} \<inter> space M) x"
 | 
| 71633 | 169 | using assms by (auto dest: simple_functionD) | 
| 38656 | 170 | also have "... = f x" using x by (auto simp: indicator_def) | 
| 171 | finally show ?thesis by auto | |
| 172 | qed | |
| 36624 | 173 | |
| 47694 | 174 | lemma simple_function_notspace: | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 175 | "simple_function M (\<lambda>x. h x * indicator (- space M) x::ennreal)" (is "simple_function M ?h") | 
| 35692 | 176 | proof - | 
| 38656 | 177 |   have "?h ` space M \<subseteq> {0}" unfolding indicator_def by auto
 | 
| 178 | hence [simp, intro]: "finite (?h ` space M)" by (auto intro: finite_subset) | |
| 179 |   have "?h -` {0} \<inter> space M = space M" by auto
 | |
| 69661 | 180 | thus ?thesis unfolding simple_function_def by (auto simp add: image_constant_conv) | 
| 38656 | 181 | qed | 
| 182 | ||
| 47694 | 183 | lemma simple_function_cong: | 
| 38656 | 184 | assumes "\<And>t. t \<in> space M \<Longrightarrow> f t = g t" | 
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 185 | shows "simple_function M f \<longleftrightarrow> simple_function M g" | 
| 38656 | 186 | proof - | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 187 |   have "\<And>x. f -` {x} \<inter> space M = g -` {x} \<inter> space M"
 | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 188 | using assms by auto | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 189 | with assms show ?thesis | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 190 | by (simp add: simple_function_def cong: image_cong) | 
| 38656 | 191 | qed | 
| 192 | ||
| 47694 | 193 | lemma simple_function_cong_algebra: | 
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 194 | assumes "sets N = sets M" "space N = space M" | 
| 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 195 | shows "simple_function M f \<longleftrightarrow> simple_function N f" | 
| 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 196 | unfolding simple_function_def assms .. | 
| 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 197 | |
| 47694 | 198 | lemma simple_function_borel_measurable: | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 199 |   fixes f :: "'a \<Rightarrow> 'x::{t2_space}"
 | 
| 38656 | 200 | assumes "f \<in> borel_measurable M" and "finite (f ` space M)" | 
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 201 | shows "simple_function M f" | 
| 38656 | 202 | using assms unfolding simple_function_def | 
| 203 | by (auto intro: borel_measurable_vimage) | |
| 204 | ||
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 205 | lemma simple_function_iff_borel_measurable: | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 206 |   fixes f :: "'a \<Rightarrow> 'x::{t2_space}"
 | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 207 | shows "simple_function M f \<longleftrightarrow> finite (f ` space M) \<and> f \<in> borel_measurable M" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 208 | by (metis borel_measurable_simple_function simple_functionD(1) simple_function_borel_measurable) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 209 | |
| 56949 | 210 | lemma simple_function_eq_measurable: | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 211 | "simple_function M f \<longleftrightarrow> finite (f`space M) \<and> f \<in> measurable M (count_space UNIV)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 212 | using measurable_simple_function[of M f] by (fastforce simp: simple_function_def) | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 213 | |
| 47694 | 214 | lemma simple_function_const[intro, simp]: | 
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 215 | "simple_function M (\<lambda>x. c)" | 
| 38656 | 216 | by (auto intro: finite_subset simp: simple_function_def) | 
| 47694 | 217 | lemma simple_function_compose[intro, simp]: | 
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 218 | assumes "simple_function M f" | 
| 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 219 | shows "simple_function M (g \<circ> f)" | 
| 38656 | 220 | unfolding simple_function_def | 
| 221 | proof safe | |
| 222 | show "finite ((g \<circ> f) ` space M)" | |
| 69661 | 223 | using assms unfolding simple_function_def image_comp [symmetric] by auto | 
| 38656 | 224 | next | 
| 225 | fix x assume "x \<in> space M" | |
| 226 |   let ?G = "g -` {g (f x)} \<inter> (f`space M)"
 | |
| 227 |   have *: "(g \<circ> f) -` {(g \<circ> f) x} \<inter> space M =
 | |
| 228 |     (\<Union>x\<in>?G. f -` {x} \<inter> space M)" by auto
 | |
| 229 |   show "(g \<circ> f) -` {(g \<circ> f) x} \<inter> space M \<in> sets M"
 | |
| 230 | using assms unfolding simple_function_def * | |
| 50244 
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
 immler parents: 
50104diff
changeset | 231 | by (rule_tac sets.finite_UN) auto | 
| 38656 | 232 | qed | 
| 233 | ||
| 47694 | 234 | lemma simple_function_indicator[intro, simp]: | 
| 38656 | 235 | assumes "A \<in> sets M" | 
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 236 | shows "simple_function M (indicator A)" | 
| 35692 | 237 | proof - | 
| 38656 | 238 |   have "indicator A ` space M \<subseteq> {0, 1}" (is "?S \<subseteq> _")
 | 
| 239 | by (auto simp: indicator_def) | |
| 240 | hence "finite ?S" by (rule finite_subset) simp | |
| 241 | moreover have "- A \<inter> space M = space M - A" by auto | |
| 242 | ultimately show ?thesis unfolding simple_function_def | |
| 46905 | 243 | using assms by (auto simp: indicator_def [abs_def]) | 
| 35692 | 244 | qed | 
| 245 | ||
| 47694 | 246 | lemma simple_function_Pair[intro, simp]: | 
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 247 | assumes "simple_function M f" | 
| 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 248 | assumes "simple_function M g" | 
| 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 249 | shows "simple_function M (\<lambda>x. (f x, g x))" (is "simple_function M ?p") | 
| 38656 | 250 | unfolding simple_function_def | 
| 251 | proof safe | |
| 252 | show "finite (?p ` space M)" | |
| 253 | using assms unfolding simple_function_def | |
| 254 | by (rule_tac finite_subset[of _ "f`space M \<times> g`space M"]) auto | |
| 255 | next | |
| 256 | fix x assume "x \<in> space M" | |
| 257 |   have "(\<lambda>x. (f x, g x)) -` {(f x, g x)} \<inter> space M =
 | |
| 258 |       (f -` {f x} \<inter> space M) \<inter> (g -` {g x} \<inter> space M)"
 | |
| 259 | by auto | |
| 61808 | 260 |   with \<open>x \<in> space M\<close> show "(\<lambda>x. (f x, g x)) -` {(f x, g x)} \<inter> space M \<in> sets M"
 | 
| 38656 | 261 | using assms unfolding simple_function_def by auto | 
| 262 | qed | |
| 35692 | 263 | |
| 47694 | 264 | lemma simple_function_compose1: | 
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 265 | assumes "simple_function M f" | 
| 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 266 | shows "simple_function M (\<lambda>x. g (f x))" | 
| 38656 | 267 | using simple_function_compose[OF assms, of g] | 
| 268 | by (simp add: comp_def) | |
| 35582 | 269 | |
| 47694 | 270 | lemma simple_function_compose2: | 
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 271 | assumes "simple_function M f" and "simple_function M g" | 
| 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 272 | shows "simple_function M (\<lambda>x. h (f x) (g x))" | 
| 38656 | 273 | proof - | 
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 274 | have "simple_function M ((\<lambda>(x, y). h x y) \<circ> (\<lambda>x. (f x, g x)))" | 
| 38656 | 275 | using assms by auto | 
| 276 | thus ?thesis by (simp_all add: comp_def) | |
| 277 | qed | |
| 35582 | 278 | |
| 67399 | 279 | lemmas simple_function_add[intro, simp] = simple_function_compose2[where h="(+)"] | 
| 280 | and simple_function_diff[intro, simp] = simple_function_compose2[where h="(-)"] | |
| 38656 | 281 | and simple_function_uminus[intro, simp] = simple_function_compose[where g="uminus"] | 
| 69064 
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
 nipkow parents: 
67399diff
changeset | 282 | and simple_function_mult[intro, simp] = simple_function_compose2[where h="(*)"] | 
| 67399 | 283 | and simple_function_div[intro, simp] = simple_function_compose2[where h="(/)"] | 
| 38656 | 284 | and simple_function_inverse[intro, simp] = simple_function_compose[where g="inverse"] | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 285 | and simple_function_max[intro, simp] = simple_function_compose2[where h=max] | 
| 38656 | 286 | |
| 64267 | 287 | lemma simple_function_sum[intro, simp]: | 
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 288 | assumes "\<And>i. i \<in> P \<Longrightarrow> simple_function M (f i)" | 
| 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 289 | shows "simple_function M (\<lambda>x. \<Sum>i\<in>P. f i x)" | 
| 38656 | 290 | proof cases | 
| 291 | assume "finite P" from this assms show ?thesis by induct auto | |
| 292 | qed auto | |
| 35582 | 293 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 294 | lemma simple_function_ennreal[intro, simp]: | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 295 | fixes f g :: "'a \<Rightarrow> real" assumes sf: "simple_function M f" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 296 | shows "simple_function M (\<lambda>x. ennreal (f x))" | 
| 59587 
8ea7b22525cb
Removed the obsolete functions "natfloor" and "natceiling"
 nipkow parents: 
59452diff
changeset | 297 | by (rule simple_function_compose1[OF sf]) | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 298 | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61359diff
changeset | 299 | lemma simple_function_real_of_nat[intro, simp]: | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 300 | fixes f g :: "'a \<Rightarrow> nat" assumes sf: "simple_function M f" | 
| 56949 | 301 | shows "simple_function M (\<lambda>x. real (f x))" | 
| 59587 
8ea7b22525cb
Removed the obsolete functions "natfloor" and "natceiling"
 nipkow parents: 
59452diff
changeset | 302 | by (rule simple_function_compose1[OF sf]) | 
| 35582 | 303 | |
| 70136 | 304 | lemma\<^marker>\<open>tag important\<close> borel_measurable_implies_simple_function_sequence: | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 305 | fixes u :: "'a \<Rightarrow> ennreal" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 306 | assumes u[measurable]: "u \<in> borel_measurable M" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 307 | shows "\<exists>f. incseq f \<and> (\<forall>i. (\<forall>x. f i x < top) \<and> simple_function M (f i)) \<and> u = (SUP i. f i)" | 
| 70136 | 308 | proof - | 
| 63040 | 309 | define f where [abs_def]: | 
| 310 | "f i x = real_of_int (floor (enn2real (min i (u x)) * 2^i)) / 2^i" for i x | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 311 | |
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 312 | have [simp]: "0 \<le> f i x" for i x | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 313 | by (auto simp: f_def intro!: divide_nonneg_nonneg mult_nonneg_nonneg enn2real_nonneg) | 
| 35582 | 314 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 315 | have *: "2^n * real_of_int x = real_of_int (2^n * x)" for n x | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 316 | by simp | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 317 | |
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 318 | have "real_of_int \<lfloor>real i * 2 ^ i\<rfloor> = real_of_int \<lfloor>i * 2 ^ i\<rfloor>" for i | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 319 | by (intro arg_cong[where f=real_of_int]) simp | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 320 | then have [simp]: "real_of_int \<lfloor>real i * 2 ^ i\<rfloor> = i * 2 ^ i" for i | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 321 | unfolding floor_of_nat by simp | 
| 35582 | 322 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 323 | have "incseq f" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 324 | proof (intro monoI le_funI) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 325 | fix m n :: nat and x assume "m \<le> n" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 326 | moreover | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 327 |     { fix d :: nat
 | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 328 | have "\<lfloor>2^d::real\<rfloor> * \<lfloor>2^m * enn2real (min (of_nat m) (u x))\<rfloor> \<le> | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 329 | \<lfloor>2^d * (2^m * enn2real (min (of_nat m) (u x)))\<rfloor>" | 
| 71633 | 330 | by (rule le_mult_floor) (auto) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 331 | also have "\<dots> \<le> \<lfloor>2^d * (2^m * enn2real (min (of_nat d + of_nat m) (u x)))\<rfloor>" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 332 | by (intro floor_mono mult_mono enn2real_mono min.mono) | 
| 71633 | 333 | (auto simp: min_less_iff_disj of_nat_less_top) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 334 | finally have "f m x \<le> f (m + d) x" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 335 | unfolding f_def | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 336 | by (auto simp: field_simps power_add * simp del: of_int_mult) } | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 337 | ultimately show "f m x \<le> f n x" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 338 | by (auto simp add: le_iff_add) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 339 | qed | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 340 | then have inc_f: "incseq (\<lambda>i. ennreal (f i x))" for x | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 341 | by (auto simp: incseq_def le_fun_def) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 342 | then have "incseq (\<lambda>i x. ennreal (f i x))" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 343 | by (auto simp: incseq_def le_fun_def) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 344 | moreover | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 345 | have "simple_function M (f i)" for i | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 346 | proof (rule simple_function_borel_measurable) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 347 | have "\<lfloor>enn2real (min (of_nat i) (u x)) * 2 ^ i\<rfloor> \<le> \<lfloor>int i * 2 ^ i\<rfloor>" for x | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 348 | by (cases "u x" rule: ennreal_cases) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 349 | (auto split: split_min intro!: floor_mono) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 350 |     then have "f i ` space M \<subseteq> (\<lambda>n. real_of_int n / 2^i) ` {0 .. of_nat i * 2^i}"
 | 
| 71633 | 351 | unfolding floor_of_int by (auto simp: f_def intro!: imageI) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 352 | then show "finite (f i ` space M)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 353 | by (rule finite_subset) auto | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 354 | show "f i \<in> borel_measurable M" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 355 | unfolding f_def enn2real_def by measurable | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 356 | qed | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 357 | moreover | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 358 |   { fix x
 | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 359 | have "(SUP i. ennreal (f i x)) = u x" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 360 | proof (cases "u x" rule: ennreal_cases) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 361 | case top then show ?thesis | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 362 | by (simp add: f_def inf_min[symmetric] ennreal_of_nat_eq_real_of_nat[symmetric] | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 363 | ennreal_SUP_of_nat_eq_top) | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 364 | next | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 365 | case (real r) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 366 | obtain n where "r \<le> of_nat n" using real_arch_simple by auto | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 367 | then have min_eq_r: "\<forall>\<^sub>F x in sequentially. min (real x) r = r" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 368 | by (auto simp: eventually_sequentially intro!: exI[of _ n] split: split_min) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 369 | |
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 370 | have "(\<lambda>i. real_of_int \<lfloor>min (real i) r * 2^i\<rfloor> / 2^i) \<longlonglongrightarrow> r" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 371 | proof (rule tendsto_sandwich) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 372 | show "(\<lambda>n. r - (1/2)^n) \<longlonglongrightarrow> r" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 373 | by (auto intro!: tendsto_eq_intros LIMSEQ_power_zero) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 374 | show "\<forall>\<^sub>F n in sequentially. real_of_int \<lfloor>min (real n) r * 2 ^ n\<rfloor> / 2 ^ n \<le> r" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 375 | using min_eq_r by eventually_elim (auto simp: field_simps) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 376 | have *: "r * (2 ^ n * 2 ^ n) \<le> 2^n + 2^n * real_of_int \<lfloor>r * 2 ^ n\<rfloor>" for n | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 377 | using real_of_int_floor_ge_diff_one[of "r * 2^n", THEN mult_left_mono, of "2^n"] | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 378 | by (auto simp: field_simps) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 379 | show "\<forall>\<^sub>F n in sequentially. r - (1/2)^n \<le> real_of_int \<lfloor>min (real n) r * 2 ^ n\<rfloor> / 2 ^ n" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 380 | using min_eq_r by eventually_elim (insert *, auto simp: field_simps) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 381 | qed auto | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 382 | then have "(\<lambda>i. ennreal (f i x)) \<longlonglongrightarrow> ennreal r" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 383 | by (simp add: real f_def ennreal_of_nat_eq_real_of_nat min_ennreal) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 384 | from LIMSEQ_unique[OF LIMSEQ_SUP[OF inc_f] this] | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 385 | show ?thesis | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 386 | by (simp add: real) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 387 | qed } | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 388 | ultimately show ?thesis | 
| 69861 
62e47f06d22c
avoid context-sensitive simp rules whose context-free form (image_comp) is not simp by default
 haftmann parents: 
69661diff
changeset | 389 | by (intro exI [of _ "\<lambda>i x. ennreal (f i x)"]) (auto simp add: image_comp) | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 390 | qed | 
| 35582 | 391 | |
| 47694 | 392 | lemma borel_measurable_implies_simple_function_sequence': | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 393 | fixes u :: "'a \<Rightarrow> ennreal" | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 394 | assumes u: "u \<in> borel_measurable M" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 395 | obtains f where | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 396 | "\<And>i. simple_function M (f i)" "incseq f" "\<And>i x. f i x < top" "\<And>x. (SUP i. f i x) = u x" | 
| 69861 
62e47f06d22c
avoid context-sensitive simp rules whose context-free form (image_comp) is not simp by default
 haftmann parents: 
69661diff
changeset | 397 | using borel_measurable_implies_simple_function_sequence [OF u] | 
| 
62e47f06d22c
avoid context-sensitive simp rules whose context-free form (image_comp) is not simp by default
 haftmann parents: 
69661diff
changeset | 398 | by (metis SUP_apply) | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 399 | |
| 70136 | 400 | lemma\<^marker>\<open>tag important\<close> simple_function_induct | 
| 69457 
bea49e443909
tagged more of HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
69313diff
changeset | 401 | [consumes 1, case_names cong set mult add, induct set: simple_function]: | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 402 | fixes u :: "'a \<Rightarrow> ennreal" | 
| 49796 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 403 | assumes u: "simple_function M u" | 
| 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 404 | assumes cong: "\<And>f g. simple_function M f \<Longrightarrow> simple_function M g \<Longrightarrow> (AE x in M. f x = g x) \<Longrightarrow> P f \<Longrightarrow> P g" | 
| 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 405 | assumes set: "\<And>A. A \<in> sets M \<Longrightarrow> P (indicator A)" | 
| 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 406 | assumes mult: "\<And>u c. P u \<Longrightarrow> P (\<lambda>x. c * u x)" | 
| 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 407 | assumes add: "\<And>u v. P u \<Longrightarrow> P v \<Longrightarrow> P (\<lambda>x. v x + u x)" | 
| 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 408 | shows "P u" | 
| 70136 | 409 | proof (rule cong) | 
| 49796 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 410 |   from AE_space show "AE x in M. (\<Sum>y\<in>u ` space M. y * indicator (u -` {y} \<inter> space M) x) = u x"
 | 
| 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 411 | proof eventually_elim | 
| 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 412 | fix x assume x: "x \<in> space M" | 
| 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 413 | from simple_function_indicator_representation[OF u x] | 
| 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 414 |     show "(\<Sum>y\<in>u ` space M. y * indicator (u -` {y} \<inter> space M) x) = u x" ..
 | 
| 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 415 | qed | 
| 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 416 | next | 
| 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 417 | from u have "finite (u ` space M)" | 
| 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 418 | unfolding simple_function_def by auto | 
| 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 419 |   then show "P (\<lambda>x. \<Sum>y\<in>u ` space M. y * indicator (u -` {y} \<inter> space M) x)"
 | 
| 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 420 | proof induct | 
| 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 421 | case empty show ?case | 
| 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 422 |       using set[of "{}"] by (simp add: indicator_def[abs_def])
 | 
| 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 423 | qed (auto intro!: add mult set simple_functionD u) | 
| 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 424 | next | 
| 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 425 |   show "simple_function M (\<lambda>x. (\<Sum>y\<in>u ` space M. y * indicator (u -` {y} \<inter> space M) x))"
 | 
| 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 426 | apply (subst simple_function_cong) | 
| 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 427 | apply (rule simple_function_indicator_representation[symmetric]) | 
| 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 428 | apply (auto intro: u) | 
| 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 429 | done | 
| 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 430 | qed fact | 
| 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 431 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 432 | lemma simple_function_induct_nn[consumes 1, case_names cong set mult add]: | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 433 | fixes u :: "'a \<Rightarrow> ennreal" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 434 | assumes u: "simple_function M u" | 
| 49799 
15ea98537c76
strong nonnegativ (instead of ae nn) for induction rule
 hoelzl parents: 
49798diff
changeset | 435 | assumes cong: "\<And>f g. simple_function M f \<Longrightarrow> simple_function M g \<Longrightarrow> (\<And>x. x \<in> space M \<Longrightarrow> f x = g x) \<Longrightarrow> P f \<Longrightarrow> P g" | 
| 49796 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 436 | assumes set: "\<And>A. A \<in> sets M \<Longrightarrow> P (indicator A)" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 437 | assumes mult: "\<And>u c. simple_function M u \<Longrightarrow> P u \<Longrightarrow> P (\<lambda>x. c * u x)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 438 | assumes add: "\<And>u v. simple_function M u \<Longrightarrow> P u \<Longrightarrow> simple_function M v \<Longrightarrow> (\<And>x. x \<in> space M \<Longrightarrow> u x = 0 \<or> v x = 0) \<Longrightarrow> P v \<Longrightarrow> P (\<lambda>x. v x + u x)" | 
| 49796 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 439 | shows "P u" | 
| 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 440 | proof - | 
| 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 441 | show ?thesis | 
| 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 442 | proof (rule cong) | 
| 49799 
15ea98537c76
strong nonnegativ (instead of ae nn) for induction rule
 hoelzl parents: 
49798diff
changeset | 443 | fix x assume x: "x \<in> space M" | 
| 
15ea98537c76
strong nonnegativ (instead of ae nn) for induction rule
 hoelzl parents: 
49798diff
changeset | 444 | from simple_function_indicator_representation[OF u x] | 
| 
15ea98537c76
strong nonnegativ (instead of ae nn) for induction rule
 hoelzl parents: 
49798diff
changeset | 445 |     show "(\<Sum>y\<in>u ` space M. y * indicator (u -` {y} \<inter> space M) x) = u x" ..
 | 
| 49796 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 446 | next | 
| 49799 
15ea98537c76
strong nonnegativ (instead of ae nn) for induction rule
 hoelzl parents: 
49798diff
changeset | 447 |     show "simple_function M (\<lambda>x. (\<Sum>y\<in>u ` space M. y * indicator (u -` {y} \<inter> space M) x))"
 | 
| 49796 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 448 | apply (subst simple_function_cong) | 
| 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 449 | apply (rule simple_function_indicator_representation[symmetric]) | 
| 49799 
15ea98537c76
strong nonnegativ (instead of ae nn) for induction rule
 hoelzl parents: 
49798diff
changeset | 450 | apply (auto intro: u) | 
| 49796 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 451 | done | 
| 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 452 | next | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 453 | from u have "finite (u ` space M)" | 
| 49796 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 454 | unfolding simple_function_def by auto | 
| 49799 
15ea98537c76
strong nonnegativ (instead of ae nn) for induction rule
 hoelzl parents: 
49798diff
changeset | 455 |     then show "P (\<lambda>x. \<Sum>y\<in>u ` space M. y * indicator (u -` {y} \<inter> space M) x)"
 | 
| 49796 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 456 | proof induct | 
| 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 457 | case empty show ?case | 
| 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 458 |         using set[of "{}"] by (simp add: indicator_def[abs_def])
 | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 459 | next | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 460 | case (insert x S) | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 461 |       { fix z have "(\<Sum>y\<in>S. y * indicator (u -` {y} \<inter> space M) z) = 0 \<or>
 | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 462 |           x * indicator (u -` {x} \<inter> space M) z = 0"
 | 
| 64267 | 463 | using insert by (subst sum_eq_0_iff) (auto simp: indicator_def) } | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 464 | note disj = this | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 465 | from insert show ?case | 
| 64267 | 466 | by (auto intro!: add mult set simple_functionD u simple_function_sum disj) | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 467 | qed | 
| 49796 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 468 | qed fact | 
| 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 469 | qed | 
| 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 470 | |
| 70136 | 471 | lemma\<^marker>\<open>tag important\<close> borel_measurable_induct | 
| 69457 
bea49e443909
tagged more of HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
69313diff
changeset | 472 | [consumes 1, case_names cong set mult add seq, induct set: borel_measurable]: | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 473 | fixes u :: "'a \<Rightarrow> ennreal" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 474 | assumes u: "u \<in> borel_measurable M" | 
| 49799 
15ea98537c76
strong nonnegativ (instead of ae nn) for induction rule
 hoelzl parents: 
49798diff
changeset | 475 | assumes cong: "\<And>f g. f \<in> borel_measurable M \<Longrightarrow> g \<in> borel_measurable M \<Longrightarrow> (\<And>x. x \<in> space M \<Longrightarrow> f x = g x) \<Longrightarrow> P g \<Longrightarrow> P f" | 
| 49796 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 476 | assumes set: "\<And>A. A \<in> sets M \<Longrightarrow> P (indicator A)" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 477 | assumes mult': "\<And>u c. c < top \<Longrightarrow> u \<in> borel_measurable M \<Longrightarrow> (\<And>x. x \<in> space M \<Longrightarrow> u x < top) \<Longrightarrow> P u \<Longrightarrow> P (\<lambda>x. c * u x)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 478 | assumes add: "\<And>u v. u \<in> borel_measurable M\<Longrightarrow> (\<And>x. x \<in> space M \<Longrightarrow> u x < top) \<Longrightarrow> P u \<Longrightarrow> v \<in> borel_measurable M \<Longrightarrow> (\<And>x. x \<in> space M \<Longrightarrow> v x < top) \<Longrightarrow> (\<And>x. x \<in> space M \<Longrightarrow> u x = 0 \<or> v x = 0) \<Longrightarrow> P v \<Longrightarrow> P (\<lambda>x. v x + u x)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 479 | assumes seq: "\<And>U. (\<And>i. U i \<in> borel_measurable M) \<Longrightarrow> (\<And>i x. x \<in> space M \<Longrightarrow> U i x < top) \<Longrightarrow> (\<And>i. P (U i)) \<Longrightarrow> incseq U \<Longrightarrow> u = (SUP i. U i) \<Longrightarrow> P (SUP i. U i)" | 
| 49796 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 480 | shows "P u" | 
| 70136 | 481 | using u | 
| 482 | proof (induct rule: borel_measurable_implies_simple_function_sequence') | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 483 | fix U assume U: "\<And>i. simple_function M (U i)" "incseq U" "\<And>i x. U i x < top" and sup: "\<And>x. (SUP i. U i x) = u x" | 
| 49799 
15ea98537c76
strong nonnegativ (instead of ae nn) for induction rule
 hoelzl parents: 
49798diff
changeset | 484 | have u_eq: "u = (SUP i. U i)" | 
| 69861 
62e47f06d22c
avoid context-sensitive simp rules whose context-free form (image_comp) is not simp by default
 haftmann parents: 
69661diff
changeset | 485 | using u by (auto simp add: image_comp sup) | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 486 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 487 | have not_inf: "\<And>x i. x \<in> space M \<Longrightarrow> U i x < top" | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 488 | using U by (auto simp: image_iff eq_commute) | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61359diff
changeset | 489 | |
| 49797 
28066863284c
add induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49796diff
changeset | 490 | from U have "\<And>i. U i \<in> borel_measurable M" | 
| 
28066863284c
add induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49796diff
changeset | 491 | by (simp add: borel_measurable_simple_function) | 
| 
28066863284c
add induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49796diff
changeset | 492 | |
| 49799 
15ea98537c76
strong nonnegativ (instead of ae nn) for induction rule
 hoelzl parents: 
49798diff
changeset | 493 | show "P u" | 
| 49796 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 494 | unfolding u_eq | 
| 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 495 | proof (rule seq) | 
| 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 496 | fix i show "P (U i)" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 497 | using \<open>simple_function M (U i)\<close> not_inf[of _ i] | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 498 | proof (induct rule: simple_function_induct_nn) | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 499 | case (mult u c) | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 500 | show ?case | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 501 | proof cases | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 502 |         assume "c = 0 \<or> space M = {} \<or> (\<forall>x\<in>space M. u x = 0)"
 | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 503 | with mult(1) show ?thesis | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 504 |           by (intro cong[of "\<lambda>x. c * u x" "indicator {}"] set)
 | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 505 | (auto dest!: borel_measurable_simple_function) | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 506 | next | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 507 |         assume "\<not> (c = 0 \<or> space M = {} \<or> (\<forall>x\<in>space M. u x = 0))"
 | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 508 |         then obtain x where "space M \<noteq> {}" and x: "x \<in> space M" "u x \<noteq> 0" "c \<noteq> 0"
 | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 509 | by auto | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 510 | with mult(3)[of x] have "c < top" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 511 | by (auto simp: ennreal_mult_less_top) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 512 | then have u_fin: "x' \<in> space M \<Longrightarrow> u x' < top" for x' | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 513 | using mult(3)[of x'] \<open>c \<noteq> 0\<close> by (auto simp: ennreal_mult_less_top) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 514 | then have "P u" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 515 | by (rule mult) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 516 | with u_fin \<open>c < top\<close> mult(1) show ?thesis | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 517 | by (intro mult') (auto dest!: borel_measurable_simple_function) | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 518 | qed | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 519 | qed (auto intro: cong intro!: set add dest!: borel_measurable_simple_function) | 
| 49797 
28066863284c
add induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49796diff
changeset | 520 | qed fact+ | 
| 49796 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 521 | qed | 
| 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 522 | |
| 47694 | 523 | lemma simple_function_If_set: | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 524 | assumes sf: "simple_function M f" "simple_function M g" and A: "A \<inter> space M \<in> sets M" | 
| 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 525 | shows "simple_function M (\<lambda>x. if x \<in> A then f x else g x)" (is "simple_function M ?IF") | 
| 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 526 | proof - | 
| 63040 | 527 |   define F where "F x = f -` {x} \<inter> space M" for x
 | 
| 528 |   define G where "G x = g -` {x} \<inter> space M" for x
 | |
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 529 | show ?thesis unfolding simple_function_def | 
| 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 530 | proof safe | 
| 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 531 | have "?IF ` space M \<subseteq> f ` space M \<union> g ` space M" by auto | 
| 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 532 | from finite_subset[OF this] assms | 
| 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 533 | show "finite (?IF ` space M)" unfolding simple_function_def by auto | 
| 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 534 | next | 
| 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 535 | fix x assume "x \<in> space M" | 
| 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 536 |     then have *: "?IF -` {?IF x} \<inter> space M = (if x \<in> A
 | 
| 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 537 | then ((F (f x) \<inter> (A \<inter> space M)) \<union> (G (f x) - (G (f x) \<inter> (A \<inter> space M)))) | 
| 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 538 | else ((F (g x) \<inter> (A \<inter> space M)) \<union> (G (g x) - (G (g x) \<inter> (A \<inter> space M)))))" | 
| 62390 | 539 | using sets.sets_into_space[OF A] by (auto split: if_split_asm simp: G_def F_def) | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 540 | have [intro]: "\<And>x. F x \<in> sets M" "\<And>x. G x \<in> sets M" | 
| 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 541 | unfolding F_def G_def using sf[THEN simple_functionD(2)] by auto | 
| 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 542 |     show "?IF -` {?IF x} \<inter> space M \<in> sets M" unfolding * using A by auto
 | 
| 35582 | 543 | qed | 
| 544 | qed | |
| 545 | ||
| 47694 | 546 | lemma simple_function_If: | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 547 |   assumes sf: "simple_function M f" "simple_function M g" and P: "{x\<in>space M. P x} \<in> sets M"
 | 
| 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 548 | shows "simple_function M (\<lambda>x. if P x then f x else g x)" | 
| 35582 | 549 | proof - | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 550 |   have "{x\<in>space M. P x} = {x. P x} \<inter> space M" by auto
 | 
| 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 551 |   with simple_function_If_set[OF sf, of "{x. P x}"] P show ?thesis by simp
 | 
| 38656 | 552 | qed | 
| 553 | ||
| 47694 | 554 | lemma simple_function_subalgebra: | 
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 555 | assumes "simple_function N f" | 
| 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 556 | and N_subalgebra: "sets N \<subseteq> sets M" "space N = space M" | 
| 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 557 | shows "simple_function M f" | 
| 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 558 | using assms unfolding simple_function_def by auto | 
| 39092 | 559 | |
| 47694 | 560 | lemma simple_function_comp: | 
| 561 | assumes T: "T \<in> measurable M M'" | |
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 562 | and f: "simple_function M' f" | 
| 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 563 | shows "simple_function M (\<lambda>x. f (T x))" | 
| 41661 | 564 | proof (intro simple_function_def[THEN iffD2] conjI ballI) | 
| 565 | have "(\<lambda>x. f (T x)) ` space M \<subseteq> f ` space M'" | |
| 566 | using T unfolding measurable_def by auto | |
| 567 | then show "finite ((\<lambda>x. f (T x)) ` space M)" | |
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 568 | using f unfolding simple_function_def by (auto intro: finite_subset) | 
| 41661 | 569 | fix i assume i: "i \<in> (\<lambda>x. f (T x)) ` space M" | 
| 570 | then have "i \<in> f ` space M'" | |
| 571 | using T unfolding measurable_def by auto | |
| 572 |   then have "f -` {i} \<inter> space M' \<in> sets M'"
 | |
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 573 | using f unfolding simple_function_def by auto | 
| 41661 | 574 |   then have "T -` (f -` {i} \<inter> space M') \<inter> space M \<in> sets M"
 | 
| 575 | using T unfolding measurable_def by auto | |
| 576 |   also have "T -` (f -` {i} \<inter> space M') \<inter> space M = (\<lambda>x. f (T x)) -` {i} \<inter> space M"
 | |
| 577 | using T unfolding measurable_def by auto | |
| 578 |   finally show "(\<lambda>x. f (T x)) -` {i} \<inter> space M \<in> sets M" .
 | |
| 40859 | 579 | qed | 
| 580 | ||
| 56994 | 581 | subsection "Simple integral" | 
| 38656 | 582 | |
| 70136 | 583 | definition\<^marker>\<open>tag important\<close> simple_integral :: "'a measure \<Rightarrow> ('a \<Rightarrow> ennreal) \<Rightarrow> ennreal" ("integral\<^sup>S") where
 | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51340diff
changeset | 584 |   "integral\<^sup>S M f = (\<Sum>x \<in> f ` space M. x * emeasure M (f -` {x} \<inter> space M))"
 | 
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 585 | |
| 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 586 | syntax | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 587 |   "_simple_integral" :: "pttrn \<Rightarrow> ennreal \<Rightarrow> 'a measure \<Rightarrow> ennreal" ("\<integral>\<^sup>S _. _ \<partial>_" [60,61] 110)
 | 
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 588 | |
| 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 589 | translations | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51340diff
changeset | 590 | "\<integral>\<^sup>S x. f \<partial>M" == "CONST simple_integral M (%x. f)" | 
| 35582 | 591 | |
| 47694 | 592 | lemma simple_integral_cong: | 
| 38656 | 593 | assumes "\<And>t. t \<in> space M \<Longrightarrow> f t = g t" | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51340diff
changeset | 594 | shows "integral\<^sup>S M f = integral\<^sup>S M g" | 
| 38656 | 595 | proof - | 
| 596 | have "f ` space M = g ` space M" | |
| 597 |     "\<And>x. f -` {x} \<inter> space M = g -` {x} \<inter> space M"
 | |
| 598 | using assms by (auto intro!: image_eqI) | |
| 599 | thus ?thesis unfolding simple_integral_def by simp | |
| 600 | qed | |
| 601 | ||
| 47694 | 602 | lemma simple_integral_const[simp]: | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51340diff
changeset | 603 | "(\<integral>\<^sup>Sx. c \<partial>M) = c * (emeasure M) (space M)" | 
| 38656 | 604 | proof (cases "space M = {}")
 | 
| 605 | case True thus ?thesis unfolding simple_integral_def by simp | |
| 606 | next | |
| 607 |   case False hence "(\<lambda>x. c) ` space M = {c}" by auto
 | |
| 608 | thus ?thesis unfolding simple_integral_def by simp | |
| 35582 | 609 | qed | 
| 610 | ||
| 47694 | 611 | lemma simple_function_partition: | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 612 | assumes f: "simple_function M f" and g: "simple_function M g" | 
| 56949 | 613 | assumes sub: "\<And>x y. x \<in> space M \<Longrightarrow> y \<in> space M \<Longrightarrow> g x = g y \<Longrightarrow> f x = f y" | 
| 614 | assumes v: "\<And>x. x \<in> space M \<Longrightarrow> f x = v (g x)" | |
| 615 |   shows "integral\<^sup>S M f = (\<Sum>y\<in>g ` space M. v y * emeasure M {x\<in>space M. g x = y})"
 | |
| 616 | (is "_ = ?r") | |
| 617 | proof - | |
| 618 | from f g have [simp]: "finite (f`space M)" "finite (g`space M)" | |
| 619 | by (auto simp: simple_function_def) | |
| 620 | from f g have [measurable]: "f \<in> measurable M (count_space UNIV)" "g \<in> measurable M (count_space UNIV)" | |
| 621 | by (auto intro: measurable_simple_function) | |
| 35582 | 622 | |
| 56949 | 623 |   { fix y assume "y \<in> space M"
 | 
| 624 |     then have "f ` space M \<inter> {i. \<exists>x\<in>space M. i = f x \<and> g y = g x} = {v (g y)}"
 | |
| 625 | by (auto cong: sub simp: v[symmetric]) } | |
| 626 | note eq = this | |
| 35582 | 627 | |
| 56949 | 628 | have "integral\<^sup>S M f = | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61359diff
changeset | 629 | (\<Sum>y\<in>f`space M. y * (\<Sum>z\<in>g`space M. | 
| 56949 | 630 |       if \<exists>x\<in>space M. y = f x \<and> z = g x then emeasure M {x\<in>space M. g x = z} else 0))"
 | 
| 631 | unfolding simple_integral_def | |
| 64267 | 632 | proof (safe intro!: sum.cong ennreal_mult_left_cong) | 
| 56949 | 633 | fix y assume y: "y \<in> space M" "f y \<noteq> 0" | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61359diff
changeset | 634 |     have [simp]: "g ` space M \<inter> {z. \<exists>x\<in>space M. f y = f x \<and> z = g x} =
 | 
| 56949 | 635 |         {z. \<exists>x\<in>space M. f y = f x \<and> z = g x}"
 | 
| 636 | by auto | |
| 637 |     have eq:"(\<Union>i\<in>{z. \<exists>x\<in>space M. f y = f x \<and> z = g x}. {x \<in> space M. g x = i}) =
 | |
| 638 |         f -` {f y} \<inter> space M"
 | |
| 639 | by (auto simp: eq_commute cong: sub rev_conj_cong) | |
| 640 | have "finite (g`space M)" by simp | |
| 641 |     then have "finite {z. \<exists>x\<in>space M. f y = f x \<and> z = g x}"
 | |
| 642 | by (rule rev_finite_subset) auto | |
| 643 |     then show "emeasure M (f -` {f y} \<inter> space M) =
 | |
| 644 |       (\<Sum>z\<in>g ` space M. if \<exists>x\<in>space M. f y = f x \<and> z = g x then emeasure M {x \<in> space M. g x = z} else 0)"
 | |
| 64267 | 645 | apply (simp add: sum.If_cases) | 
| 646 | apply (subst sum_emeasure) | |
| 56949 | 647 | apply (auto simp: disjoint_family_on_def eq) | 
| 648 | done | |
| 38656 | 649 | qed | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61359diff
changeset | 650 | also have "\<dots> = (\<Sum>y\<in>f`space M. (\<Sum>z\<in>g`space M. | 
| 56949 | 651 |       if \<exists>x\<in>space M. y = f x \<and> z = g x then y * emeasure M {x\<in>space M. g x = z} else 0))"
 | 
| 64267 | 652 | by (auto intro!: sum.cong simp: sum_distrib_left) | 
| 56949 | 653 | also have "\<dots> = ?r" | 
| 66804 
3f9bb52082c4
avoid name clashes on interpretation of abstract locales
 haftmann parents: 
65680diff
changeset | 654 | by (subst sum.swap) | 
| 64267 | 655 | (auto intro!: sum.cong simp: sum.If_cases scaleR_sum_right[symmetric] eq) | 
| 56949 | 656 | finally show "integral\<^sup>S M f = ?r" . | 
| 35582 | 657 | qed | 
| 658 | ||
| 47694 | 659 | lemma simple_integral_add[simp]: | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 660 | assumes f: "simple_function M f" and "\<And>x. 0 \<le> f x" and g: "simple_function M g" and "\<And>x. 0 \<le> g x" | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51340diff
changeset | 661 | shows "(\<integral>\<^sup>Sx. f x + g x \<partial>M) = integral\<^sup>S M f + integral\<^sup>S M g" | 
| 35582 | 662 | proof - | 
| 56949 | 663 | have "(\<integral>\<^sup>Sx. f x + g x \<partial>M) = | 
| 664 |     (\<Sum>y\<in>(\<lambda>x. (f x, g x))`space M. (fst y + snd y) * emeasure M {x\<in>space M. (f x, g x) = y})"
 | |
| 665 | by (intro simple_function_partition) (auto intro: f g) | |
| 666 |   also have "\<dots> = (\<Sum>y\<in>(\<lambda>x. (f x, g x))`space M. fst y * emeasure M {x\<in>space M. (f x, g x) = y}) +
 | |
| 667 |     (\<Sum>y\<in>(\<lambda>x. (f x, g x))`space M. snd y * emeasure M {x\<in>space M. (f x, g x) = y})"
 | |
| 64267 | 668 | using assms(2,4) by (auto intro!: sum.cong distrib_right simp: sum.distrib[symmetric]) | 
| 56949 | 669 |   also have "(\<Sum>y\<in>(\<lambda>x. (f x, g x))`space M. fst y * emeasure M {x\<in>space M. (f x, g x) = y}) = (\<integral>\<^sup>Sx. f x \<partial>M)"
 | 
| 670 | by (intro simple_function_partition[symmetric]) (auto intro: f g) | |
| 671 |   also have "(\<Sum>y\<in>(\<lambda>x. (f x, g x))`space M. snd y * emeasure M {x\<in>space M. (f x, g x) = y}) = (\<integral>\<^sup>Sx. g x \<partial>M)"
 | |
| 672 | by (intro simple_function_partition[symmetric]) (auto intro: f g) | |
| 673 | finally show ?thesis . | |
| 35582 | 674 | qed | 
| 675 | ||
| 64267 | 676 | lemma simple_integral_sum[simp]: | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 677 | assumes "\<And>i x. i \<in> P \<Longrightarrow> 0 \<le> f i x" | 
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 678 | assumes "\<And>i. i \<in> P \<Longrightarrow> simple_function M (f i)" | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51340diff
changeset | 679 | shows "(\<integral>\<^sup>Sx. (\<Sum>i\<in>P. f i x) \<partial>M) = (\<Sum>i\<in>P. integral\<^sup>S M (f i))" | 
| 38656 | 680 | proof cases | 
| 681 | assume "finite P" | |
| 682 | from this assms show ?thesis | |
| 71633 | 683 | by induct (auto) | 
| 38656 | 684 | qed auto | 
| 685 | ||
| 47694 | 686 | lemma simple_integral_mult[simp]: | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 687 | assumes f: "simple_function M f" | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51340diff
changeset | 688 | shows "(\<integral>\<^sup>Sx. c * f x \<partial>M) = c * integral\<^sup>S M f" | 
| 38656 | 689 | proof - | 
| 56949 | 690 |   have "(\<integral>\<^sup>Sx. c * f x \<partial>M) = (\<Sum>y\<in>f ` space M. (c * y) * emeasure M {x\<in>space M. f x = y})"
 | 
| 691 | using f by (intro simple_function_partition) auto | |
| 692 | also have "\<dots> = c * integral\<^sup>S M f" | |
| 693 | using f unfolding simple_integral_def | |
| 64267 | 694 | by (subst sum_distrib_left) (auto simp: mult.assoc Int_def conj_commute) | 
| 56949 | 695 | finally show ?thesis . | 
| 40871 | 696 | qed | 
| 697 | ||
| 47694 | 698 | lemma simple_integral_mono_AE: | 
| 56949 | 699 | assumes f[measurable]: "simple_function M f" and g[measurable]: "simple_function M g" | 
| 47694 | 700 | and mono: "AE x in M. f x \<le> g x" | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51340diff
changeset | 701 | shows "integral\<^sup>S M f \<le> integral\<^sup>S M g" | 
| 40859 | 702 | proof - | 
| 56949 | 703 |   let ?\<mu> = "\<lambda>P. emeasure M {x\<in>space M. P x}"
 | 
| 704 | have "integral\<^sup>S M f = (\<Sum>y\<in>(\<lambda>x. (f x, g x))`space M. fst y * ?\<mu> (\<lambda>x. (f x, g x) = y))" | |
| 705 | using f g by (intro simple_function_partition) auto | |
| 706 | also have "\<dots> \<le> (\<Sum>y\<in>(\<lambda>x. (f x, g x))`space M. snd y * ?\<mu> (\<lambda>x. (f x, g x) = y))" | |
| 64267 | 707 | proof (clarsimp intro!: sum_mono) | 
| 40859 | 708 | fix x assume "x \<in> space M" | 
| 56949 | 709 | let ?M = "?\<mu> (\<lambda>y. f y = f x \<and> g y = g x)" | 
| 710 | show "f x * ?M \<le> g x * ?M" | |
| 711 | proof cases | |
| 712 | assume "?M \<noteq> 0" | |
| 713 | then have "0 < ?M" | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 714 | by (simp add: less_le) | 
| 56949 | 715 | also have "\<dots> \<le> ?\<mu> (\<lambda>y. f x \<le> g x)" | 
| 716 | using mono by (intro emeasure_mono_AE) auto | |
| 717 | finally have "\<not> \<not> f x \<le> g x" | |
| 718 | by (intro notI) auto | |
| 719 | then show ?thesis | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 720 | by (intro mult_right_mono) auto | 
| 56949 | 721 | qed simp | 
| 40859 | 722 | qed | 
| 56949 | 723 | also have "\<dots> = integral\<^sup>S M g" | 
| 724 | using f g by (intro simple_function_partition[symmetric]) auto | |
| 725 | finally show ?thesis . | |
| 40859 | 726 | qed | 
| 727 | ||
| 47694 | 728 | lemma simple_integral_mono: | 
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 729 | assumes "simple_function M f" and "simple_function M g" | 
| 38656 | 730 | and mono: "\<And> x. x \<in> space M \<Longrightarrow> f x \<le> g x" | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51340diff
changeset | 731 | shows "integral\<^sup>S M f \<le> integral\<^sup>S M g" | 
| 41705 | 732 | using assms by (intro simple_integral_mono_AE) auto | 
| 35582 | 733 | |
| 47694 | 734 | lemma simple_integral_cong_AE: | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 735 | assumes "simple_function M f" and "simple_function M g" | 
| 47694 | 736 | and "AE x in M. f x = g x" | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51340diff
changeset | 737 | shows "integral\<^sup>S M f = integral\<^sup>S M g" | 
| 40859 | 738 | using assms by (auto simp: eq_iff intro!: simple_integral_mono_AE) | 
| 739 | ||
| 47694 | 740 | lemma simple_integral_cong': | 
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 741 | assumes sf: "simple_function M f" "simple_function M g" | 
| 47694 | 742 |   and mea: "(emeasure M) {x\<in>space M. f x \<noteq> g x} = 0"
 | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51340diff
changeset | 743 | shows "integral\<^sup>S M f = integral\<^sup>S M g" | 
| 40859 | 744 | proof (intro simple_integral_cong_AE sf AE_I) | 
| 47694 | 745 |   show "(emeasure M) {x\<in>space M. f x \<noteq> g x} = 0" by fact
 | 
| 40859 | 746 |   show "{x \<in> space M. f x \<noteq> g x} \<in> sets M"
 | 
| 747 | using sf[THEN borel_measurable_simple_function] by auto | |
| 748 | qed simp | |
| 749 | ||
| 47694 | 750 | lemma simple_integral_indicator: | 
| 56949 | 751 | assumes A: "A \<in> sets M" | 
| 49796 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 752 | assumes f: "simple_function M f" | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51340diff
changeset | 753 | shows "(\<integral>\<^sup>Sx. f x * indicator A x \<partial>M) = | 
| 56949 | 754 |     (\<Sum>x \<in> f ` space M. x * emeasure M (f -` {x} \<inter> space M \<inter> A))"
 | 
| 755 | proof - | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 756 |   have eq: "(\<lambda>x. (f x, indicator A x)) ` space M \<inter> {x. snd x = 1} = (\<lambda>x. (f x, 1::ennreal))`A"
 | 
| 62390 | 757 | using A[THEN sets.sets_into_space] by (auto simp: indicator_def image_iff split: if_split_asm) | 
| 56949 | 758 |   have eq2: "\<And>x. f x \<notin> f ` A \<Longrightarrow> f -` {f x} \<inter> space M \<inter> A = {}"
 | 
| 759 | by (auto simp: image_iff) | |
| 760 | ||
| 761 | have "(\<integral>\<^sup>Sx. f x * indicator A x \<partial>M) = | |
| 762 |     (\<Sum>y\<in>(\<lambda>x. (f x, indicator A x))`space M. (fst y * snd y) * emeasure M {x\<in>space M. (f x, indicator A x) = y})"
 | |
| 763 | using assms by (intro simple_function_partition) auto | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 764 | also have "\<dots> = (\<Sum>y\<in>(\<lambda>x. (f x, indicator A x::ennreal))`space M. | 
| 56949 | 765 |     if snd y = 1 then fst y * emeasure M (f -` {fst y} \<inter> space M \<inter> A) else 0)"
 | 
| 69064 
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
 nipkow parents: 
67399diff
changeset | 766 | by (auto simp: indicator_def split: if_split_asm intro!: arg_cong2[where f="(*)"] arg_cong2[where f=emeasure] sum.cong) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 767 |   also have "\<dots> = (\<Sum>y\<in>(\<lambda>x. (f x, 1::ennreal))`A. fst y * emeasure M (f -` {fst y} \<inter> space M \<inter> A))"
 | 
| 64267 | 768 | using assms by (subst sum.If_cases) (auto intro!: simple_functionD(1) simp: eq) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 769 |   also have "\<dots> = (\<Sum>y\<in>fst`(\<lambda>x. (f x, 1::ennreal))`A. y * emeasure M (f -` {y} \<inter> space M \<inter> A))"
 | 
| 64267 | 770 | by (subst sum.reindex [of fst]) (auto simp: inj_on_def) | 
| 56949 | 771 |   also have "\<dots> = (\<Sum>x \<in> f ` space M. x * emeasure M (f -` {x} \<inter> space M \<inter> A))"
 | 
| 772 | using A[THEN sets.sets_into_space] | |
| 64267 | 773 | by (intro sum.mono_neutral_cong_left simple_functionD f) (auto simp: image_comp comp_def eq2) | 
| 56949 | 774 | finally show ?thesis . | 
| 38656 | 775 | qed | 
| 35582 | 776 | |
| 47694 | 777 | lemma simple_integral_indicator_only[simp]: | 
| 38656 | 778 | assumes "A \<in> sets M" | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51340diff
changeset | 779 | shows "integral\<^sup>S M (indicator A) = emeasure M A" | 
| 56949 | 780 | using simple_integral_indicator[OF assms, of "\<lambda>x. 1"] sets.sets_into_space[OF assms] | 
| 62390 | 781 | by (simp_all add: image_constant_conv Int_absorb1 split: if_split_asm) | 
| 35582 | 782 | |
| 47694 | 783 | lemma simple_integral_null_set: | 
| 784 | assumes "simple_function M u" "\<And>x. 0 \<le> u x" and "N \<in> null_sets M" | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51340diff
changeset | 785 | shows "(\<integral>\<^sup>Sx. u x * indicator N x \<partial>M) = 0" | 
| 38656 | 786 | proof - | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 787 | have "AE x in M. indicator N x = (0 :: ennreal)" | 
| 61808 | 788 | using \<open>N \<in> null_sets M\<close> by (auto simp: indicator_def intro!: AE_I[of _ _ N]) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51340diff
changeset | 789 | then have "(\<integral>\<^sup>Sx. u x * indicator N x \<partial>M) = (\<integral>\<^sup>Sx. 0 \<partial>M)" | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 790 | using assms apply (intro simple_integral_cong_AE) by auto | 
| 40859 | 791 | then show ?thesis by simp | 
| 38656 | 792 | qed | 
| 35582 | 793 | |
| 47694 | 794 | lemma simple_integral_cong_AE_mult_indicator: | 
| 795 | assumes sf: "simple_function M f" and eq: "AE x in M. x \<in> S" and "S \<in> sets M" | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51340diff
changeset | 796 | shows "integral\<^sup>S M f = (\<integral>\<^sup>Sx. f x * indicator S x \<partial>M)" | 
| 41705 | 797 | using assms by (intro simple_integral_cong_AE) auto | 
| 35582 | 798 | |
| 47694 | 799 | lemma simple_integral_cmult_indicator: | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 800 | assumes A: "A \<in> sets M" | 
| 56949 | 801 | shows "(\<integral>\<^sup>Sx. c * indicator A x \<partial>M) = c * emeasure M A" | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 802 | using simple_integral_mult[OF simple_function_indicator[OF A]] | 
| 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 803 | unfolding simple_integral_indicator_only[OF A] by simp | 
| 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 804 | |
| 56996 | 805 | lemma simple_integral_nonneg: | 
| 47694 | 806 | assumes f: "simple_function M f" and ae: "AE x in M. 0 \<le> f x" | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51340diff
changeset | 807 | shows "0 \<le> integral\<^sup>S M f" | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 808 | proof - | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51340diff
changeset | 809 | have "integral\<^sup>S M (\<lambda>x. 0) \<le> integral\<^sup>S M f" | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 810 | using simple_integral_mono_AE[OF _ f ae] by auto | 
| 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 811 | then show ?thesis by simp | 
| 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 812 | qed | 
| 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 813 | |
| 61808 | 814 | subsection \<open>Integral on nonnegative functions\<close> | 
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 815 | |
| 70136 | 816 | definition\<^marker>\<open>tag important\<close> nn_integral :: "'a measure \<Rightarrow> ('a \<Rightarrow> ennreal) \<Rightarrow> ennreal" ("integral\<^sup>N") where
 | 
| 69260 
0a9688695a1b
removed relics of ASCII syntax for indexed big operators
 haftmann parents: 
69164diff
changeset | 817 |   "integral\<^sup>N M f = (SUP g \<in> {g. simple_function M g \<and> g \<le> f}. integral\<^sup>S M g)"
 | 
| 35692 | 818 | |
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 819 | syntax | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 820 |   "_nn_integral" :: "pttrn \<Rightarrow> ennreal \<Rightarrow> 'a measure \<Rightarrow> ennreal" ("\<integral>\<^sup>+((2 _./ _)/ \<partial>_)" [60,61] 110)
 | 
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 821 | |
| 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 822 | translations | 
| 56996 | 823 | "\<integral>\<^sup>+x. f \<partial>M" == "CONST nn_integral M (\<lambda>x. f)" | 
| 40872 | 824 | |
| 56996 | 825 | lemma nn_integral_def_finite: | 
| 69260 
0a9688695a1b
removed relics of ASCII syntax for indexed big operators
 haftmann parents: 
69164diff
changeset | 826 |   "integral\<^sup>N M f = (SUP g \<in> {g. simple_function M g \<and> g \<le> f \<and> (\<forall>x. g x < top)}. integral\<^sup>S M g)"
 | 
| 69313 | 827 | (is "_ = Sup (?A ` ?f)") | 
| 56996 | 828 | unfolding nn_integral_def | 
| 44928 
7ef6505bde7f
renamed Complete_Lattices lemmas, removed legacy names
 hoelzl parents: 
44890diff
changeset | 829 | proof (safe intro!: antisym SUP_least) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 830 | fix g assume g[measurable]: "simple_function M g" "g \<le> f" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 831 | |
| 69313 | 832 | show "integral\<^sup>S M g \<le> Sup (?A ` ?f)" | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 833 | proof cases | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 834 | assume ae: "AE x in M. g x \<noteq> top" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 835 |     let ?G = "{x \<in> space M. g x \<noteq> top}"
 | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 836 | have "integral\<^sup>S M g = integral\<^sup>S M (\<lambda>x. g x * indicator ?G x)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 837 | proof (rule simple_integral_cong_AE) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 838 | show "AE x in M. g x = g x * indicator ?G x" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 839 | using ae AE_space by eventually_elim auto | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 840 | qed (insert g, auto) | 
| 69313 | 841 | also have "\<dots> \<le> Sup (?A ` ?f)" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 842 | using g by (intro SUP_upper) (auto simp: le_fun_def less_top split: split_indicator) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 843 | finally show ?thesis . | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 844 | next | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 845 | assume nAE: "\<not> (AE x in M. g x \<noteq> top)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 846 |     then have "emeasure M {x\<in>space M. g x = top} \<noteq> 0" (is "emeasure M ?G \<noteq> 0")
 | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 847 | by (subst (asm) AE_iff_measurable[OF _ refl]) auto | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 848 | then have "top = (SUP n. (\<integral>\<^sup>Sx. of_nat n * indicator ?G x \<partial>M))" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 849 | by (simp add: ennreal_SUP_of_nat_eq_top ennreal_top_eq_mult_iff SUP_mult_right_ennreal[symmetric]) | 
| 69313 | 850 | also have "\<dots> \<le> Sup (?A ` ?f)" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 851 | using g | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 852 | by (safe intro!: SUP_least SUP_upper) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 853 | (auto simp: le_fun_def of_nat_less_top top_unique[symmetric] split: split_indicator | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 854 | intro: order_trans[of _ "g x" "f x" for x, OF order_trans[of _ top]]) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 855 | finally show ?thesis | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 856 | by (simp add: top_unique del: SUP_eq_top_iff Sup_eq_top_iff) | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 857 | qed | 
| 44928 
7ef6505bde7f
renamed Complete_Lattices lemmas, removed legacy names
 hoelzl parents: 
44890diff
changeset | 858 | qed (auto intro: SUP_upper) | 
| 40873 | 859 | |
| 56996 | 860 | lemma nn_integral_mono_AE: | 
| 861 | assumes ae: "AE x in M. u x \<le> v x" shows "integral\<^sup>N M u \<le> integral\<^sup>N M v" | |
| 862 | unfolding nn_integral_def | |
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 863 | proof (safe intro!: SUP_mono) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 864 | fix n assume n: "simple_function M n" "n \<le> u" | 
| 74362 | 865 | from ae[THEN AE_E] obtain N | 
| 866 |     where N: "{x \<in> space M. \<not> u x \<le> v x} \<subseteq> N" "emeasure M N = 0" "N \<in> sets M"
 | |
| 867 | by auto | |
| 47694 | 868 | then have ae_N: "AE x in M. x \<notin> N" by (auto intro: AE_not_in) | 
| 46731 | 869 | let ?n = "\<lambda>x. n x * indicator (space M - N) x" | 
| 47694 | 870 | have "AE x in M. n x \<le> ?n x" "simple_function M ?n" | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 871 | using n N ae_N by auto | 
| 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 872 | moreover | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 873 |   { fix x have "?n x \<le> v x"
 | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 874 | proof cases | 
| 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 875 | assume x: "x \<in> space M - N" | 
| 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 876 | with N have "u x \<le> v x" by auto | 
| 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 877 | with n(2)[THEN le_funD, of x] x show ?thesis | 
| 62390 | 878 | by (auto simp: max_def split: if_split_asm) | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 879 | qed simp } | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 880 | then have "?n \<le> v" by (auto simp: le_funI) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51340diff
changeset | 881 | moreover have "integral\<^sup>S M n \<le> integral\<^sup>S M ?n" | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 882 | using ae_N N n by (auto intro!: simple_integral_mono_AE) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 883 |   ultimately show "\<exists>m\<in>{g. simple_function M g \<and> g \<le> v}. integral\<^sup>S M n \<le> integral\<^sup>S M m"
 | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 884 | by force | 
| 38656 | 885 | qed | 
| 886 | ||
| 56996 | 887 | lemma nn_integral_mono: | 
| 888 | "(\<And>x. x \<in> space M \<Longrightarrow> u x \<le> v x) \<Longrightarrow> integral\<^sup>N M u \<le> integral\<^sup>N M v" | |
| 889 | by (auto intro: nn_integral_mono_AE) | |
| 40859 | 890 | |
| 60175 | 891 | lemma mono_nn_integral: "mono F \<Longrightarrow> mono (\<lambda>x. integral\<^sup>N M (F x))" | 
| 892 | by (auto simp add: mono_def le_fun_def intro!: nn_integral_mono) | |
| 893 | ||
| 56996 | 894 | lemma nn_integral_cong_AE: | 
| 895 | "AE x in M. u x = v x \<Longrightarrow> integral\<^sup>N M u = integral\<^sup>N M v" | |
| 896 | by (auto simp: eq_iff intro!: nn_integral_mono_AE) | |
| 40859 | 897 | |
| 56996 | 898 | lemma nn_integral_cong: | 
| 899 | "(\<And>x. x \<in> space M \<Longrightarrow> u x = v x) \<Longrightarrow> integral\<^sup>N M u = integral\<^sup>N M v" | |
| 900 | by (auto intro: nn_integral_cong_AE) | |
| 40859 | 901 | |
| 59426 
6fca83e88417
integral of the product of count spaces equals the integral of the count space of the product type
 hoelzl parents: 
59425diff
changeset | 902 | lemma nn_integral_cong_simp: | 
| 
6fca83e88417
integral of the product of count spaces equals the integral of the count space of the product type
 hoelzl parents: 
59425diff
changeset | 903 | "(\<And>x. x \<in> space M =simp=> u x = v x) \<Longrightarrow> integral\<^sup>N M u = integral\<^sup>N M v" | 
| 
6fca83e88417
integral of the product of count spaces equals the integral of the count space of the product type
 hoelzl parents: 
59425diff
changeset | 904 | by (auto intro: nn_integral_cong simp: simp_implies_def) | 
| 
6fca83e88417
integral of the product of count spaces equals the integral of the count space of the product type
 hoelzl parents: 
59425diff
changeset | 905 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 906 | lemma incseq_nn_integral: | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 907 | assumes "incseq f" shows "incseq (\<lambda>i. integral\<^sup>N M (f i))" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 908 | proof - | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 909 | have "\<And>i x. f i x \<le> f (Suc i) x" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 910 | using assms by (auto dest!: incseq_SucD simp: le_fun_def) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 911 | then show ?thesis | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 912 | by (auto intro!: incseq_SucI nn_integral_mono) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 913 | qed | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 914 | |
| 56996 | 915 | lemma nn_integral_eq_simple_integral: | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 916 | assumes f: "simple_function M f" shows "integral\<^sup>N M f = integral\<^sup>S M f" | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 917 | proof - | 
| 46731 | 918 | let ?f = "\<lambda>x. f x * indicator (space M) x" | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 919 | have f': "simple_function M ?f" using f by auto | 
| 56996 | 920 | have "integral\<^sup>N M ?f \<le> integral\<^sup>S M ?f" using f' | 
| 921 | by (force intro!: SUP_least simple_integral_mono simp: le_fun_def nn_integral_def) | |
| 922 | moreover have "integral\<^sup>S M ?f \<le> integral\<^sup>N M ?f" | |
| 923 | unfolding nn_integral_def | |
| 44928 
7ef6505bde7f
renamed Complete_Lattices lemmas, removed legacy names
 hoelzl parents: 
44890diff
changeset | 924 | using f' by (auto intro!: SUP_upper) | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 925 | ultimately show ?thesis | 
| 56996 | 926 | by (simp cong: nn_integral_cong simple_integral_cong) | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 927 | qed | 
| 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 928 | |
| 61808 | 929 | text \<open>Beppo-Levi monotone convergence theorem\<close> | 
| 56996 | 930 | lemma nn_integral_monotone_convergence_SUP: | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 931 | assumes f: "incseq f" and [measurable]: "\<And>i. f i \<in> borel_measurable M" | 
| 56996 | 932 | shows "(\<integral>\<^sup>+ x. (SUP i. f i x) \<partial>M) = (SUP i. integral\<^sup>N M (f i))" | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 933 | proof (rule antisym) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 934 | show "(\<integral>\<^sup>+ x. (SUP i. f i x) \<partial>M) \<le> (SUP i. (\<integral>\<^sup>+ x. f i x \<partial>M))" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 935 | unfolding nn_integral_def_finite[of _ "\<lambda>x. SUP i. f i x"] | 
| 44928 
7ef6505bde7f
renamed Complete_Lattices lemmas, removed legacy names
 hoelzl parents: 
44890diff
changeset | 936 | proof (safe intro!: SUP_least) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 937 | fix u assume sf_u[simp]: "simple_function M u" and | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 938 | u: "u \<le> (\<lambda>x. SUP i. f i x)" and u_range: "\<forall>x. u x < top" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 939 | note sf_u[THEN borel_measurable_simple_function, measurable] | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 940 | show "integral\<^sup>S M u \<le> (SUP j. \<integral>\<^sup>+x. f j x \<partial>M)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 941 | proof (rule ennreal_approx_unit) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 942 | fix a :: ennreal assume "a < 1" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 943 | let ?au = "\<lambda>x. a * u x" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 944 | |
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 945 |       let ?B = "\<lambda>c i. {x\<in>space M. ?au x = c \<and> c \<le> f i x}"
 | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 946 | have "integral\<^sup>S M ?au = (\<Sum>c\<in>?au`space M. c * (SUP i. emeasure M (?B c i)))" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 947 | unfolding simple_integral_def | 
| 64267 | 948 | proof (intro sum.cong ennreal_mult_left_cong refl) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 949 | fix c assume "c \<in> ?au ` space M" "c \<noteq> 0" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 950 |         { fix x' assume x': "x' \<in> space M" "?au x' = c"
 | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 951 | with \<open>c \<noteq> 0\<close> u_range have "?au x' < 1 * u x'" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 952 | by (intro ennreal_mult_strict_right_mono \<open>a < 1\<close>) (auto simp: less_le) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 953 | also have "\<dots> \<le> (SUP i. f i x')" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 954 | using u by (auto simp: le_fun_def) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 955 | finally have "\<exists>i. ?au x' \<le> f i x'" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 956 | by (auto simp: less_SUP_iff intro: less_imp_le) } | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 957 |         then have *: "?au -` {c} \<inter> space M = (\<Union>i. ?B c i)"
 | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 958 | by auto | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 959 |         show "emeasure M (?au -` {c} \<inter> space M) = (SUP i. emeasure M (?B c i))"
 | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 960 | unfolding * using f | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 961 | by (intro SUP_emeasure_incseq[symmetric]) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 962 | (auto simp: incseq_def le_fun_def intro: order_trans) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 963 | qed | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 964 | also have "\<dots> = (SUP i. \<Sum>c\<in>?au`space M. c * emeasure M (?B c i))" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 965 | unfolding SUP_mult_left_ennreal using f | 
| 64267 | 966 | by (intro ennreal_SUP_sum[symmetric]) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 967 | (auto intro!: mult_mono emeasure_mono simp: incseq_def le_fun_def intro: order_trans) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 968 | also have "\<dots> \<le> (SUP i. integral\<^sup>N M (f i))" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 969 | proof (intro SUP_subset_mono order_refl) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 970 | fix i | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 971 | have "(\<Sum>c\<in>?au`space M. c * emeasure M (?B c i)) = | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 972 |           (\<integral>\<^sup>Sx. (a * u x) * indicator {x\<in>space M. a * u x \<le> f i x} x \<partial>M)"
 | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 973 | by (subst simple_integral_indicator) | 
| 64267 | 974 | (auto intro!: sum.cong ennreal_mult_left_cong arg_cong2[where f=emeasure]) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 975 |         also have "\<dots> = (\<integral>\<^sup>+x. (a * u x) * indicator {x\<in>space M. a * u x \<le> f i x} x \<partial>M)"
 | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 976 | by (rule nn_integral_eq_simple_integral[symmetric]) simp | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 977 | also have "\<dots> \<le> (\<integral>\<^sup>+x. f i x \<partial>M)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 978 | by (intro nn_integral_mono) (auto split: split_indicator) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 979 | finally show "(\<Sum>c\<in>?au`space M. c * emeasure M (?B c i)) \<le> (\<integral>\<^sup>+x. f i x \<partial>M)" . | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 980 | qed | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 981 | finally show "a * integral\<^sup>S M u \<le> (SUP i. integral\<^sup>N M (f i))" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 982 | by simp | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 983 | qed | 
| 35582 | 984 | qed | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 985 | qed (auto intro!: SUP_least SUP_upper nn_integral_mono) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 986 | |
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 987 | lemma sup_continuous_nn_integral[order_continuous_intros]: | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 988 | assumes f: "\<And>y. sup_continuous (f y)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 989 | assumes [measurable]: "\<And>x. (\<lambda>y. f y x) \<in> borel_measurable M" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 990 | shows "sup_continuous (\<lambda>x. (\<integral>\<^sup>+y. f y x \<partial>M))" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 991 | unfolding sup_continuous_def | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 992 | proof safe | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 993 | fix C :: "nat \<Rightarrow> 'b" assume C: "incseq C" | 
| 69313 | 994 | with sup_continuous_mono[OF f] show "(\<integral>\<^sup>+ y. f y (Sup (C ` UNIV)) \<partial>M) = (SUP i. \<integral>\<^sup>+ y. f y (C i) \<partial>M)" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 995 | unfolding sup_continuousD[OF f C] | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 996 | by (subst nn_integral_monotone_convergence_SUP) (auto simp: mono_def le_fun_def) | 
| 35582 | 997 | qed | 
| 998 | ||
| 69457 
bea49e443909
tagged more of HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
69313diff
changeset | 999 | theorem nn_integral_monotone_convergence_SUP_AE: | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1000 | assumes f: "\<And>i. AE x in M. f i x \<le> f (Suc i) x" "\<And>i. f i \<in> borel_measurable M" | 
| 56996 | 1001 | shows "(\<integral>\<^sup>+ x. (SUP i. f i x) \<partial>M) = (SUP i. integral\<^sup>N M (f i))" | 
| 40859 | 1002 | proof - | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1003 | from f have "AE x in M. \<forall>i. f i x \<le> f (Suc i) x" | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 1004 | by (simp add: AE_all_countable) | 
| 74362 | 1005 | from this[THEN AE_E] obtain N | 
| 1006 |     where N: "{x \<in> space M. \<not> (\<forall>i. f i x \<le> f (Suc i) x)} \<subseteq> N" "emeasure M N = 0" "N \<in> sets M"
 | |
| 1007 | by auto | |
| 46731 | 1008 | let ?f = "\<lambda>i x. if x \<in> space M - N then f i x else 0" | 
| 47694 | 1009 | have f_eq: "AE x in M. \<forall>i. ?f i x = f i x" using N by (auto intro!: AE_I[of _ _ N]) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51340diff
changeset | 1010 | then have "(\<integral>\<^sup>+ x. (SUP i. f i x) \<partial>M) = (\<integral>\<^sup>+ x. (SUP i. ?f i x) \<partial>M)" | 
| 56996 | 1011 | by (auto intro!: nn_integral_cong_AE) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51340diff
changeset | 1012 | also have "\<dots> = (SUP i. (\<integral>\<^sup>+ x. ?f i x \<partial>M))" | 
| 56996 | 1013 | proof (rule nn_integral_monotone_convergence_SUP) | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 1014 | show "incseq ?f" using N(1) by (force intro!: incseq_SucI le_funI) | 
| 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 1015 |     { fix i show "(\<lambda>x. if x \<in> space M - N then f i x else 0) \<in> borel_measurable M"
 | 
| 59000 | 1016 | using f N(3) by (intro measurable_If_set) auto } | 
| 40859 | 1017 | qed | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51340diff
changeset | 1018 | also have "\<dots> = (SUP i. (\<integral>\<^sup>+ x. f i x \<partial>M))" | 
| 69313 | 1019 | using f_eq by (force intro!: arg_cong[where f = "\<lambda>f. Sup (range f)"] nn_integral_cong_AE ext) | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 1020 | finally show ?thesis . | 
| 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 1021 | qed | 
| 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 1022 | |
| 56996 | 1023 | lemma nn_integral_monotone_convergence_simple: | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1024 | "incseq f \<Longrightarrow> (\<And>i. simple_function M (f i)) \<Longrightarrow> (SUP i. \<integral>\<^sup>S x. f i x \<partial>M) = (\<integral>\<^sup>+x. (SUP i. f i x) \<partial>M)" | 
| 63092 | 1025 | using nn_integral_monotone_convergence_SUP[of f M] | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1026 | by (simp add: nn_integral_eq_simple_integral[symmetric] borel_measurable_simple_function) | 
| 40859 | 1027 | |
| 47694 | 1028 | lemma SUP_simple_integral_sequences: | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1029 | assumes f: "incseq f" "\<And>i. simple_function M (f i)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1030 | and g: "incseq g" "\<And>i. simple_function M (g i)" | 
| 47694 | 1031 | and eq: "AE x in M. (SUP i. f i x) = (SUP i. g i x)" | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51340diff
changeset | 1032 | shows "(SUP i. integral\<^sup>S M (f i)) = (SUP i. integral\<^sup>S M (g i))" | 
| 69313 | 1033 | (is "Sup (?F ` _) = Sup (?G ` _)") | 
| 38656 | 1034 | proof - | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51340diff
changeset | 1035 | have "(SUP i. integral\<^sup>S M (f i)) = (\<integral>\<^sup>+x. (SUP i. f i x) \<partial>M)" | 
| 56996 | 1036 | using f by (rule nn_integral_monotone_convergence_simple) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51340diff
changeset | 1037 | also have "\<dots> = (\<integral>\<^sup>+x. (SUP i. g i x) \<partial>M)" | 
| 56996 | 1038 | unfolding eq[THEN nn_integral_cong_AE] .. | 
| 38656 | 1039 | also have "\<dots> = (SUP i. ?G i)" | 
| 56996 | 1040 | using g by (rule nn_integral_monotone_convergence_simple[symmetric]) | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 1041 | finally show ?thesis by simp | 
| 38656 | 1042 | qed | 
| 1043 | ||
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1044 | lemma nn_integral_const[simp]: "(\<integral>\<^sup>+ x. c \<partial>M) = c * emeasure M (space M)" | 
| 56996 | 1045 | by (subst nn_integral_eq_simple_integral) auto | 
| 38656 | 1046 | |
| 56996 | 1047 | lemma nn_integral_linear: | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1048 | assumes f: "f \<in> borel_measurable M" and g: "g \<in> borel_measurable M" | 
| 56996 | 1049 | shows "(\<integral>\<^sup>+ x. a * f x + g x \<partial>M) = a * integral\<^sup>N M f + integral\<^sup>N M g" | 
| 1050 | (is "integral\<^sup>N M ?L = _") | |
| 35582 | 1051 | proof - | 
| 74362 | 1052 | obtain u | 
| 1053 | where "\<And>i. simple_function M (u i)" "incseq u" "\<And>i x. u i x < top" "\<And>x. (SUP i. u i x) = f x" | |
| 1054 | using borel_measurable_implies_simple_function_sequence' f(1) | |
| 1055 | by auto | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1056 | note u = nn_integral_monotone_convergence_simple[OF this(2,1)] this | 
| 74362 | 1057 | |
| 1058 | obtain v where | |
| 1059 | "\<And>i. simple_function M (v i)" "incseq v" "\<And>i x. v i x < top" "\<And>x. (SUP i. v i x) = g x" | |
| 1060 | using borel_measurable_implies_simple_function_sequence' g(1) | |
| 1061 | by auto | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1062 | note v = nn_integral_monotone_convergence_simple[OF this(2,1)] this | 
| 74362 | 1063 | |
| 46731 | 1064 | let ?L' = "\<lambda>i x. a * u i x + v i x" | 
| 38656 | 1065 | |
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 1066 | have "?L \<in> borel_measurable M" using assms by auto | 
| 74362 | 1067 | from borel_measurable_implies_simple_function_sequence'[OF this] | 
| 1068 | obtain l where "\<And>i. simple_function M (l i)" "incseq l" "\<And>i x. l i x < top" "\<And>x. (SUP i. l i x) = a * f x + g x" | |
| 1069 | by auto | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1070 | note l = nn_integral_monotone_convergence_simple[OF this(2,1)] this | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 1071 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51340diff
changeset | 1072 | have inc: "incseq (\<lambda>i. a * integral\<^sup>S M (u i))" "incseq (\<lambda>i. integral\<^sup>S M (v i))" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1073 | using u v by (auto simp: incseq_Suc_iff le_fun_def intro!: add_mono mult_left_mono simple_integral_mono) | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 1074 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51340diff
changeset | 1075 | have l': "(SUP i. integral\<^sup>S M (l i)) = (SUP i. integral\<^sup>S M (?L' i))" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1076 | proof (rule SUP_simple_integral_sequences[OF l(3,2)]) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1077 | show "incseq ?L'" "\<And>i. simple_function M (?L' i)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1078 | using u v unfolding incseq_Suc_iff le_fun_def | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1079 | by (auto intro!: add_mono mult_left_mono) | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 1080 |     { fix x
 | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1081 | have "(SUP i. a * u i x + v i x) = a * (SUP i. u i x) + (SUP i. v i x)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1082 | using u(3) v(3) u(4)[of _ x] v(4)[of _ x] unfolding SUP_mult_left_ennreal | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1083 | by (auto intro!: ennreal_SUP_add simp: incseq_Suc_iff le_fun_def add_mono mult_left_mono) } | 
| 47694 | 1084 | then show "AE x in M. (SUP i. l i x) = (SUP i. ?L' i x)" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1085 | unfolding l(5) using u(5) v(5) by (intro AE_I2) auto | 
| 38656 | 1086 | qed | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51340diff
changeset | 1087 | also have "\<dots> = (SUP i. a * integral\<^sup>S M (u i) + integral\<^sup>S M (v i))" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1088 | using u(2) v(2) by auto | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1089 | finally show ?thesis | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1090 | unfolding l(5)[symmetric] l(1)[symmetric] | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1091 | by (simp add: ennreal_SUP_add[OF inc] v u SUP_mult_left_ennreal[symmetric]) | 
| 38656 | 1092 | qed | 
| 1093 | ||
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1094 | lemma nn_integral_cmult: "f \<in> borel_measurable M \<Longrightarrow> (\<integral>\<^sup>+ x. c * f x \<partial>M) = c * integral\<^sup>N M f" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1095 | using nn_integral_linear[of f M "\<lambda>x. 0" c] by simp | 
| 38656 | 1096 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1097 | lemma nn_integral_multc: "f \<in> borel_measurable M \<Longrightarrow> (\<integral>\<^sup>+ x. f x * c \<partial>M) = integral\<^sup>N M f * c" | 
| 63092 | 1098 | unfolding mult.commute[of _ c] nn_integral_cmult by simp | 
| 41096 | 1099 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1100 | lemma nn_integral_divide: "f \<in> borel_measurable M \<Longrightarrow> (\<integral>\<^sup>+ x. f x / c \<partial>M) = (\<integral>\<^sup>+ x. f x \<partial>M) / c" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1101 | unfolding divide_ennreal_def by (rule nn_integral_multc) | 
| 59000 | 1102 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1103 | lemma nn_integral_indicator[simp]: "A \<in> sets M \<Longrightarrow> (\<integral>\<^sup>+ x. indicator A x\<partial>M) = (emeasure M) A" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1104 | by (subst nn_integral_eq_simple_integral) (auto simp: simple_integral_indicator) | 
| 38656 | 1105 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1106 | lemma nn_integral_cmult_indicator: "A \<in> sets M \<Longrightarrow> (\<integral>\<^sup>+ x. c * indicator A x \<partial>M) = c * emeasure M A" | 
| 71633 | 1107 | by (subst nn_integral_eq_simple_integral) (auto) | 
| 38656 | 1108 | |
| 56996 | 1109 | lemma nn_integral_indicator': | 
| 50097 
32973da2d4f7
rules for intergration: integrating nat-functions, integrals on finite measures, constant multiplication
 hoelzl parents: 
50027diff
changeset | 1110 | assumes [measurable]: "A \<inter> space M \<in> sets M" | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51340diff
changeset | 1111 | shows "(\<integral>\<^sup>+ x. indicator A x \<partial>M) = emeasure M (A \<inter> space M)" | 
| 50097 
32973da2d4f7
rules for intergration: integrating nat-functions, integrals on finite measures, constant multiplication
 hoelzl parents: 
50027diff
changeset | 1112 | proof - | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51340diff
changeset | 1113 | have "(\<integral>\<^sup>+ x. indicator A x \<partial>M) = (\<integral>\<^sup>+ x. indicator (A \<inter> space M) x \<partial>M)" | 
| 56996 | 1114 | by (intro nn_integral_cong) (simp split: split_indicator) | 
| 50097 
32973da2d4f7
rules for intergration: integrating nat-functions, integrals on finite measures, constant multiplication
 hoelzl parents: 
50027diff
changeset | 1115 | also have "\<dots> = emeasure M (A \<inter> space M)" | 
| 
32973da2d4f7
rules for intergration: integrating nat-functions, integrals on finite measures, constant multiplication
 hoelzl parents: 
50027diff
changeset | 1116 | by simp | 
| 
32973da2d4f7
rules for intergration: integrating nat-functions, integrals on finite measures, constant multiplication
 hoelzl parents: 
50027diff
changeset | 1117 | finally show ?thesis . | 
| 
32973da2d4f7
rules for intergration: integrating nat-functions, integrals on finite measures, constant multiplication
 hoelzl parents: 
50027diff
changeset | 1118 | qed | 
| 
32973da2d4f7
rules for intergration: integrating nat-functions, integrals on finite measures, constant multiplication
 hoelzl parents: 
50027diff
changeset | 1119 | |
| 62083 | 1120 | lemma nn_integral_indicator_singleton[simp]: | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1121 |   assumes [measurable]: "{y} \<in> sets M" shows "(\<integral>\<^sup>+x. f x * indicator {y} x \<partial>M) = f y * emeasure M {y}"
 | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1122 | proof - | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1123 |   have "(\<integral>\<^sup>+x. f x * indicator {y} x \<partial>M) = (\<integral>\<^sup>+x. f y * indicator {y} x \<partial>M)"
 | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1124 | by (auto intro!: nn_integral_cong split: split_indicator) | 
| 62083 | 1125 | then show ?thesis | 
| 1126 | by (simp add: nn_integral_cmult) | |
| 1127 | qed | |
| 1128 | ||
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1129 | lemma nn_integral_set_ennreal: | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1130 | "(\<integral>\<^sup>+x. ennreal (f x) * indicator A x \<partial>M) = (\<integral>\<^sup>+x. ennreal (f x * indicator A x) \<partial>M)" | 
| 62083 | 1131 | by (rule nn_integral_cong) (simp split: split_indicator) | 
| 1132 | ||
| 1133 | lemma nn_integral_indicator_singleton'[simp]: | |
| 1134 |   assumes [measurable]: "{y} \<in> sets M"
 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1135 |   shows "(\<integral>\<^sup>+x. ennreal (f x * indicator {y} x) \<partial>M) = f y * emeasure M {y}"
 | 
| 71633 | 1136 | by (subst nn_integral_set_ennreal[symmetric]) (simp) | 
| 62083 | 1137 | |
| 56996 | 1138 | lemma nn_integral_add: | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1139 | "f \<in> borel_measurable M \<Longrightarrow> g \<in> borel_measurable M \<Longrightarrow> (\<integral>\<^sup>+ x. f x + g x \<partial>M) = integral\<^sup>N M f + integral\<^sup>N M g" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1140 | using nn_integral_linear[of f M g 1] by simp | 
| 38656 | 1141 | |
| 64267 | 1142 | lemma nn_integral_sum: | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1143 | "(\<And>i. i \<in> P \<Longrightarrow> f i \<in> borel_measurable M) \<Longrightarrow> (\<integral>\<^sup>+ x. (\<Sum>i\<in>P. f i x) \<partial>M) = (\<Sum>i\<in>P. integral\<^sup>N M (f i))" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1144 | by (induction P rule: infinite_finite_induct) (auto simp: nn_integral_add) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1145 | |
| 69457 
bea49e443909
tagged more of HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
69313diff
changeset | 1146 | theorem nn_integral_suminf: | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1147 | assumes f: "\<And>i. f i \<in> borel_measurable M" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1148 | shows "(\<integral>\<^sup>+ x. (\<Sum>i. f i x) \<partial>M) = (\<Sum>i. integral\<^sup>N M (f i))" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1149 | proof - | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1150 | have all_pos: "AE x in M. \<forall>i. 0 \<le> f i x" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1151 | using assms by (auto simp: AE_all_countable) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1152 | have "(\<Sum>i. integral\<^sup>N M (f i)) = (SUP n. \<Sum>i<n. integral\<^sup>N M (f i))" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1153 | by (rule suminf_eq_SUP) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1154 | also have "\<dots> = (SUP n. \<integral>\<^sup>+x. (\<Sum>i<n. f i x) \<partial>M)" | 
| 64267 | 1155 | unfolding nn_integral_sum[OF f] .. | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1156 | also have "\<dots> = \<integral>\<^sup>+x. (SUP n. \<Sum>i<n. f i x) \<partial>M" using f all_pos | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1157 | by (intro nn_integral_monotone_convergence_SUP_AE[symmetric]) | 
| 70097 
4005298550a6
The last big tranche of Homology material: invariance of domain; renamings to use generic sum/prod lemmas from their locale
 paulson <lp15@cam.ac.uk> parents: 
69861diff
changeset | 1158 | (elim AE_mp, auto simp: sum_nonneg simp del: sum.lessThan_Suc intro!: AE_I2 sum_mono2) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1159 | also have "\<dots> = \<integral>\<^sup>+x. (\<Sum>i. f i x) \<partial>M" using all_pos | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1160 | by (intro nn_integral_cong_AE) (auto simp: suminf_eq_SUP) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1161 | finally show ?thesis by simp | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1162 | qed | 
| 38656 | 1163 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 1164 | lemma nn_integral_bound_simple_function: | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1165 | assumes bnd: "\<And>x. x \<in> space M \<Longrightarrow> f x < \<infinity>" | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 1166 | assumes f[measurable]: "simple_function M f" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 1167 |   assumes supp: "emeasure M {x\<in>space M. f x \<noteq> 0} < \<infinity>"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 1168 | shows "nn_integral M f < \<infinity>" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 1169 | proof cases | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 1170 |   assume "space M = {}"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 1171 | then have "nn_integral M f = (\<integral>\<^sup>+x. 0 \<partial>M)" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 1172 | by (intro nn_integral_cong) auto | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 1173 | then show ?thesis by simp | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 1174 | next | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 1175 |   assume "space M \<noteq> {}"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 1176 | with simple_functionD(1)[OF f] bnd have bnd: "0 \<le> Max (f`space M) \<and> Max (f`space M) < \<infinity>" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 1177 | by (subst Max_less_iff) (auto simp: Max_ge_iff) | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61359diff
changeset | 1178 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 1179 |   have "nn_integral M f \<le> (\<integral>\<^sup>+x. Max (f`space M) * indicator {x\<in>space M. f x \<noteq> 0} x \<partial>M)"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 1180 | proof (rule nn_integral_mono) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 1181 | fix x assume "x \<in> space M" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 1182 |     with f show "f x \<le> Max (f ` space M) * indicator {x \<in> space M. f x \<noteq> 0} x"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 1183 | by (auto split: split_indicator intro!: Max_ge simple_functionD) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 1184 | qed | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 1185 | also have "\<dots> < \<infinity>" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1186 | using bnd supp by (subst nn_integral_cmult) (auto simp: ennreal_mult_less_top) | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 1187 | finally show ?thesis . | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 1188 | qed | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 1189 | |
| 69457 
bea49e443909
tagged more of HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
69313diff
changeset | 1190 | theorem nn_integral_Markov_inequality: | 
| 73253 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1191 | assumes u: "(\<lambda>x. u x * indicator A x) \<in> borel_measurable M" and "A \<in> sets M" | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1192 |   shows "(emeasure M) ({x\<in>A. 1 \<le> c * u x}) \<le> c * (\<integral>\<^sup>+ x. u x * indicator A x \<partial>M)"
 | 
| 47694 | 1193 | (is "(emeasure M) ?A \<le> _ * ?PI") | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 1194 | proof - | 
| 73253 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1195 | define u' where "u' = (\<lambda>x. u x * indicator A x)" | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1196 | have [measurable]: "u' \<in> borel_measurable M" | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1197 | using u unfolding u'_def . | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1198 |   have "{x\<in>space M. c * u' x \<ge> 1} \<in> sets M"
 | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1199 | by measurable | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1200 |   also have "{x\<in>space M. c * u' x \<ge> 1} = ?A"
 | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1201 | using sets.sets_into_space[OF \<open>A \<in> sets M\<close>] by (auto simp: u'_def indicator_def) | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1202 | finally have "(emeasure M) ?A = (\<integral>\<^sup>+ x. indicator ?A x \<partial>M)" | 
| 56996 | 1203 | using nn_integral_indicator by simp | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1204 | also have "\<dots> \<le> (\<integral>\<^sup>+ x. c * (u x * indicator A x) \<partial>M)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1205 | using u by (auto intro!: nn_integral_mono_AE simp: indicator_def) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51340diff
changeset | 1206 | also have "\<dots> = c * (\<integral>\<^sup>+ x. u x * indicator A x \<partial>M)" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1207 | using assms by (auto intro!: nn_integral_cmult) | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 1208 | finally show ?thesis . | 
| 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 1209 | qed | 
| 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 1210 | |
| 73253 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1211 | lemma Chernoff_ineq_nn_integral_ge: | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1212 | assumes s: "s > 0" and [measurable]: "A \<in> sets M" | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1213 | assumes [measurable]: "(\<lambda>x. f x * indicator A x) \<in> borel_measurable M" | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1214 |   shows   "emeasure M {x\<in>A. f x \<ge> a} \<le>
 | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1215 | ennreal (exp (-s * a)) * nn_integral M (\<lambda>x. ennreal (exp (s * f x)) * indicator A x)" | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1216 | proof - | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1217 | define f' where "f' = (\<lambda>x. f x * indicator A x)" | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1218 | have [measurable]: "f' \<in> borel_measurable M" | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1219 | using assms(3) unfolding f'_def by assumption | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1220 | have "(\<lambda>x. ennreal (exp (s * f' x)) * indicator A x) \<in> borel_measurable M" | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1221 | by simp | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1222 | also have "(\<lambda>x. ennreal (exp (s * f' x)) * indicator A x) = | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1223 | (\<lambda>x. ennreal (exp (s * f x)) * indicator A x)" | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1224 | by (auto simp: f'_def indicator_def fun_eq_iff) | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1225 | finally have meas: "\<dots> \<in> borel_measurable M" . | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1226 | |
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1227 |   have "{x\<in>A. f x \<ge> a} = {x\<in>A. ennreal (exp (-s * a)) * ennreal (exp (s * f x)) \<ge> 1}"
 | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1228 | using s by (auto simp: exp_minus field_simps simp flip: ennreal_mult) | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1229 | also have "emeasure M \<dots> \<le> ennreal (exp (-s * a)) * | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1230 | (\<integral>\<^sup>+x. ennreal (exp (s * f x)) * indicator A x \<partial>M)" | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1231 | by (intro order.trans[OF nn_integral_Markov_inequality] meas) auto | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1232 | finally show ?thesis . | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1233 | qed | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1234 | |
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1235 | lemma Chernoff_ineq_nn_integral_le: | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1236 | assumes s: "s > 0" and [measurable]: "A \<in> sets M" | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1237 | assumes [measurable]: "f \<in> borel_measurable M" | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1238 |   shows   "emeasure M {x\<in>A. f x \<le> a} \<le>
 | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1239 | ennreal (exp (s * a)) * nn_integral M (\<lambda>x. ennreal (exp (-s * f x)) * indicator A x)" | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1240 | using Chernoff_ineq_nn_integral_ge[of s A M "\<lambda>x. -f x" "-a"] assms by simp | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1241 | |
| 56996 | 1242 | lemma nn_integral_noteq_infinite: | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1243 | assumes g: "g \<in> borel_measurable M" and "integral\<^sup>N M g \<noteq> \<infinity>" | 
| 47694 | 1244 | shows "AE x in M. g x \<noteq> \<infinity>" | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 1245 | proof (rule ccontr) | 
| 47694 | 1246 | assume c: "\<not> (AE x in M. g x \<noteq> \<infinity>)" | 
| 1247 |   have "(emeasure M) {x\<in>space M. g x = \<infinity>} \<noteq> 0"
 | |
| 1248 | using c g by (auto simp add: AE_iff_null) | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1249 |   then have "0 < (emeasure M) {x\<in>space M. g x = \<infinity>}"
 | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1250 | by (auto simp: zero_less_iff_neq_zero) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1251 |   then have "\<infinity> = \<infinity> * (emeasure M) {x\<in>space M. g x = \<infinity>}"
 | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1252 | by (auto simp: ennreal_top_eq_mult_iff) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51340diff
changeset | 1253 |   also have "\<dots> \<le> (\<integral>\<^sup>+x. \<infinity> * indicator {x\<in>space M. g x = \<infinity>} x \<partial>M)"
 | 
| 56996 | 1254 | using g by (subst nn_integral_cmult_indicator) auto | 
| 1255 | also have "\<dots> \<le> integral\<^sup>N M g" | |
| 1256 | using assms by (auto intro!: nn_integral_mono_AE simp: indicator_def) | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1257 | finally show False | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1258 | using \<open>integral\<^sup>N M g \<noteq> \<infinity>\<close> by (auto simp: top_unique) | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 1259 | qed | 
| 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 1260 | |
| 56996 | 1261 | lemma nn_integral_PInf: | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1262 | assumes f: "f \<in> borel_measurable M" and not_Inf: "integral\<^sup>N M f \<noteq> \<infinity>" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1263 |   shows "emeasure M (f -` {\<infinity>} \<inter> space M) = 0"
 | 
| 56949 | 1264 | proof - | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1265 |   have "\<infinity> * emeasure M (f -` {\<infinity>} \<inter> space M) = (\<integral>\<^sup>+ x. \<infinity> * indicator (f -` {\<infinity>} \<inter> space M) x \<partial>M)"
 | 
| 56996 | 1266 | using f by (subst nn_integral_cmult_indicator) (auto simp: measurable_sets) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1267 | also have "\<dots> \<le> integral\<^sup>N M f" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1268 | by (auto intro!: nn_integral_mono simp: indicator_def) | 
| 56996 | 1269 |   finally have "\<infinity> * (emeasure M) (f -` {\<infinity>} \<inter> space M) \<le> integral\<^sup>N M f"
 | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1270 | by simp | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1271 | then show ?thesis | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1272 | using assms by (auto simp: ennreal_top_mult top_unique split: if_split_asm) | 
| 56949 | 1273 | qed | 
| 1274 | ||
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1275 | lemma simple_integral_PInf: | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1276 |   "simple_function M f \<Longrightarrow> integral\<^sup>S M f \<noteq> \<infinity> \<Longrightarrow> emeasure M (f -` {\<infinity>} \<inter> space M) = 0"
 | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1277 | by (rule nn_integral_PInf) (auto simp: nn_integral_eq_simple_integral borel_measurable_simple_function) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1278 | |
| 56996 | 1279 | lemma nn_integral_PInf_AE: | 
| 1280 | assumes "f \<in> borel_measurable M" "integral\<^sup>N M f \<noteq> \<infinity>" shows "AE x in M. f x \<noteq> \<infinity>" | |
| 56949 | 1281 | proof (rule AE_I) | 
| 1282 |   show "(emeasure M) (f -` {\<infinity>} \<inter> space M) = 0"
 | |
| 56996 | 1283 | by (rule nn_integral_PInf[OF assms]) | 
| 56949 | 1284 |   show "f -` {\<infinity>} \<inter> space M \<in> sets M"
 | 
| 1285 | using assms by (auto intro: borel_measurable_vimage) | |
| 1286 | qed auto | |
| 1287 | ||
| 56996 | 1288 | lemma nn_integral_diff: | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 1289 | assumes f: "f \<in> borel_measurable M" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1290 | and g: "g \<in> borel_measurable M" | 
| 56996 | 1291 | and fin: "integral\<^sup>N M g \<noteq> \<infinity>" | 
| 47694 | 1292 | and mono: "AE x in M. g x \<le> f x" | 
| 56996 | 1293 | shows "(\<integral>\<^sup>+ x. f x - g x \<partial>M) = integral\<^sup>N M f - integral\<^sup>N M g" | 
| 38656 | 1294 | proof - | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1295 | have diff: "(\<lambda>x. f x - g x) \<in> borel_measurable M" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1296 | using assms by auto | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1297 | have "AE x in M. f x = f x - g x + g x" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1298 | using diff_add_cancel_ennreal mono nn_integral_noteq_infinite[OF g fin] assms by auto | 
| 56996 | 1299 | then have **: "integral\<^sup>N M f = (\<integral>\<^sup>+x. f x - g x \<partial>M) + integral\<^sup>N M g" | 
| 1300 | unfolding nn_integral_add[OF diff g, symmetric] | |
| 1301 | by (rule nn_integral_cong_AE) | |
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 1302 | show ?thesis unfolding ** | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1303 | using fin | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1304 | by (cases rule: ennreal2_cases[of "\<integral>\<^sup>+ x. f x - g x \<partial>M" "integral\<^sup>N M g"]) auto | 
| 38656 | 1305 | qed | 
| 1306 | ||
| 56996 | 1307 | lemma nn_integral_mult_bounded_inf: | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1308 | assumes f: "f \<in> borel_measurable M" "(\<integral>\<^sup>+x. f x \<partial>M) < \<infinity>" and c: "c \<noteq> \<infinity>" and ae: "AE x in M. g x \<le> c * f x" | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 1309 | shows "(\<integral>\<^sup>+x. g x \<partial>M) < \<infinity>" | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 1310 | proof - | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 1311 | have "(\<integral>\<^sup>+x. g x \<partial>M) \<le> (\<integral>\<^sup>+x. c * f x \<partial>M)" | 
| 56996 | 1312 | by (intro nn_integral_mono_AE ae) | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 1313 | also have "(\<integral>\<^sup>+x. c * f x \<partial>M) < \<infinity>" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1314 | using c f by (subst nn_integral_cmult) (auto simp: ennreal_mult_less_top top_unique not_less) | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 1315 | finally show ?thesis . | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 1316 | qed | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 1317 | |
| 61808 | 1318 | text \<open>Fatou's lemma: convergence theorem on limes inferior\<close> | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 1319 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1320 | lemma nn_integral_monotone_convergence_INF_AE': | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1321 | assumes f: "\<And>i. AE x in M. f (Suc i) x \<le> f i x" and [measurable]: "\<And>i. f i \<in> borel_measurable M" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1322 | and *: "(\<integral>\<^sup>+ x. f 0 x \<partial>M) < \<infinity>" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1323 | shows "(\<integral>\<^sup>+ x. (INF i. f i x) \<partial>M) = (INF i. integral\<^sup>N M (f i))" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1324 | proof (rule ennreal_minus_cancel) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1325 | have "integral\<^sup>N M (f 0) - (\<integral>\<^sup>+ x. (INF i. f i x) \<partial>M) = (\<integral>\<^sup>+x. f 0 x - (INF i. f i x) \<partial>M)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1326 | proof (rule nn_integral_diff[symmetric]) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1327 | have "(\<integral>\<^sup>+ x. (INF i. f i x) \<partial>M) \<le> (\<integral>\<^sup>+ x. f 0 x \<partial>M)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1328 | by (intro nn_integral_mono INF_lower) simp | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1329 | with * show "(\<integral>\<^sup>+ x. (INF i. f i x) \<partial>M) \<noteq> \<infinity>" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1330 | by simp | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1331 | qed (auto intro: INF_lower) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1332 | also have "\<dots> = (\<integral>\<^sup>+x. (SUP i. f 0 x - f i x) \<partial>M)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1333 | by (simp add: ennreal_INF_const_minus) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1334 | also have "\<dots> = (SUP i. (\<integral>\<^sup>+x. f 0 x - f i x \<partial>M))" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1335 | proof (intro nn_integral_monotone_convergence_SUP_AE) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1336 | show "AE x in M. f 0 x - f i x \<le> f 0 x - f (Suc i) x" for i | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1337 | using f[of i] by eventually_elim (auto simp: ennreal_mono_minus) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1338 | qed simp | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1339 | also have "\<dots> = (SUP i. nn_integral M (f 0) - (\<integral>\<^sup>+x. f i x \<partial>M))" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1340 | proof (subst nn_integral_diff[symmetric]) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1341 | fix i | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1342 | have dec: "AE x in M. \<forall>i. f (Suc i) x \<le> f i x" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1343 | unfolding AE_all_countable using f by auto | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1344 | then show "AE x in M. f i x \<le> f 0 x" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1345 | using dec by eventually_elim (auto intro: lift_Suc_antimono_le[of "\<lambda>i. f i x" 0 i for x]) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1346 | then have "(\<integral>\<^sup>+ x. f i x \<partial>M) \<le> (\<integral>\<^sup>+ x. f 0 x \<partial>M)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1347 | by (rule nn_integral_mono_AE) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1348 | with * show "(\<integral>\<^sup>+ x. f i x \<partial>M) \<noteq> \<infinity>" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1349 | by simp | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1350 | qed (insert f, auto simp: decseq_def le_fun_def) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1351 | finally show "integral\<^sup>N M (f 0) - (\<integral>\<^sup>+ x. (INF i. f i x) \<partial>M) = | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1352 | integral\<^sup>N M (f 0) - (INF i. \<integral>\<^sup>+ x. f i x \<partial>M)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1353 | by (simp add: ennreal_INF_const_minus) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1354 | qed (insert *, auto intro!: nn_integral_mono intro: INF_lower) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1355 | |
| 69457 
bea49e443909
tagged more of HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
69313diff
changeset | 1356 | theorem nn_integral_monotone_convergence_INF_AE: | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1357 | fixes f :: "nat \<Rightarrow> 'a \<Rightarrow> ennreal" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1358 | assumes f: "\<And>i. AE x in M. f (Suc i) x \<le> f i x" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1359 | and [measurable]: "\<And>i. f i \<in> borel_measurable M" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1360 | and fin: "(\<integral>\<^sup>+ x. f i x \<partial>M) < \<infinity>" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1361 | shows "(\<integral>\<^sup>+ x. (INF i. f i x) \<partial>M) = (INF i. integral\<^sup>N M (f i))" | 
| 38656 | 1362 | proof - | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1363 |   { fix f :: "nat \<Rightarrow> ennreal" and j assume "decseq f"
 | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1364 | then have "(INF i. f i) = (INF i. f (i + j))" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1365 | apply (intro INF_eq) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1366 | apply (rule_tac x="i" in bexI) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1367 | apply (auto simp: decseq_def le_fun_def) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1368 | done } | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1369 | note INF_shift = this | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1370 | have mono: "AE x in M. \<forall>i. f (Suc i) x \<le> f i x" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1371 | using f by (auto simp: AE_all_countable) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1372 | then have "AE x in M. (INF i. f i x) = (INF n. f (n + i) x)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1373 | by eventually_elim (auto intro!: decseq_SucI INF_shift) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1374 | then have "(\<integral>\<^sup>+ x. (INF i. f i x) \<partial>M) = (\<integral>\<^sup>+ x. (INF n. f (n + i) x) \<partial>M)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1375 | by (rule nn_integral_cong_AE) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1376 | also have "\<dots> = (INF n. (\<integral>\<^sup>+ x. f (n + i) x \<partial>M))" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1377 | by (rule nn_integral_monotone_convergence_INF_AE') (insert assms, auto) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1378 | also have "\<dots> = (INF n. (\<integral>\<^sup>+ x. f n x \<partial>M))" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1379 | by (intro INF_shift[symmetric] decseq_SucI nn_integral_mono_AE f) | 
| 38656 | 1380 | finally show ?thesis . | 
| 35582 | 1381 | qed | 
| 1382 | ||
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1383 | lemma nn_integral_monotone_convergence_INF_decseq: | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1384 | assumes f: "decseq f" and *: "\<And>i. f i \<in> borel_measurable M" "(\<integral>\<^sup>+ x. f i x \<partial>M) < \<infinity>" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1385 | shows "(\<integral>\<^sup>+ x. (INF i. f i x) \<partial>M) = (INF i. integral\<^sup>N M (f i))" | 
| 76055 
8d56461f85ec
moved antimono to Fun and redefined it as an abbreviation
 desharna parents: 
74362diff
changeset | 1386 | using nn_integral_monotone_convergence_INF_AE[of f M i, OF _ *] f by (simp add: decseq_SucD le_funD) | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 1387 | |
| 69457 
bea49e443909
tagged more of HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
69313diff
changeset | 1388 | theorem nn_integral_liminf: | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1389 | fixes u :: "nat \<Rightarrow> 'a \<Rightarrow> ennreal" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1390 | assumes u: "\<And>i. u i \<in> borel_measurable M" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1391 | shows "(\<integral>\<^sup>+ x. liminf (\<lambda>n. u n x) \<partial>M) \<le> liminf (\<lambda>n. integral\<^sup>N M (u n))" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1392 | proof - | 
| 69260 
0a9688695a1b
removed relics of ASCII syntax for indexed big operators
 haftmann parents: 
69164diff
changeset | 1393 |   have "(\<integral>\<^sup>+ x. liminf (\<lambda>n. u n x) \<partial>M) = (SUP n. \<integral>\<^sup>+ x. (INF i\<in>{n..}. u i x) \<partial>M)"
 | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1394 | unfolding liminf_SUP_INF using u | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1395 | by (intro nn_integral_monotone_convergence_SUP_AE) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1396 | (auto intro!: AE_I2 intro: INF_greatest INF_superset_mono) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1397 | also have "\<dots> \<le> liminf (\<lambda>n. integral\<^sup>N M (u n))" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1398 | by (auto simp: liminf_SUP_INF intro!: SUP_mono INF_greatest nn_integral_mono INF_lower) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1399 | finally show ?thesis . | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1400 | qed | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 1401 | |
| 69457 
bea49e443909
tagged more of HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
69313diff
changeset | 1402 | theorem nn_integral_limsup: | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1403 | fixes u :: "nat \<Rightarrow> 'a \<Rightarrow> ennreal" | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 1404 | assumes [measurable]: "\<And>i. u i \<in> borel_measurable M" "w \<in> borel_measurable M" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1405 | assumes bounds: "\<And>i. AE x in M. u i x \<le> w x" and w: "(\<integral>\<^sup>+x. w x \<partial>M) < \<infinity>" | 
| 56996 | 1406 | shows "limsup (\<lambda>n. integral\<^sup>N M (u n)) \<le> (\<integral>\<^sup>+ x. limsup (\<lambda>n. u n x) \<partial>M)" | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 1407 | proof - | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1408 | have bnd: "AE x in M. \<forall>i. u i x \<le> w x" | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 1409 | using bounds by (auto simp: AE_all_countable) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1410 | then have "(\<integral>\<^sup>+ x. (SUP n. u n x) \<partial>M) \<le> (\<integral>\<^sup>+ x. w x \<partial>M)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1411 | by (auto intro!: nn_integral_mono_AE elim: eventually_mono intro: SUP_least) | 
| 69260 
0a9688695a1b
removed relics of ASCII syntax for indexed big operators
 haftmann parents: 
69164diff
changeset | 1412 |   then have "(\<integral>\<^sup>+ x. limsup (\<lambda>n. u n x) \<partial>M) = (INF n. \<integral>\<^sup>+ x. (SUP i\<in>{n..}. u i x) \<partial>M)"
 | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1413 | unfolding limsup_INF_SUP using bnd w | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1414 | by (intro nn_integral_monotone_convergence_INF_AE') | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1415 | (auto intro!: AE_I2 intro: SUP_least SUP_subset_mono) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1416 | also have "\<dots> \<ge> limsup (\<lambda>n. integral\<^sup>N M (u n))" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1417 | by (auto simp: limsup_INF_SUP intro!: INF_mono SUP_least exI nn_integral_mono SUP_upper) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1418 | finally (xtrans) show ?thesis . | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 1419 | qed | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 1420 | |
| 57025 | 1421 | lemma nn_integral_LIMSEQ: | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1422 | assumes f: "incseq f" "\<And>i. f i \<in> borel_measurable M" | 
| 61969 | 1423 | and u: "\<And>x. (\<lambda>i. f i x) \<longlonglongrightarrow> u x" | 
| 1424 | shows "(\<lambda>n. integral\<^sup>N M (f n)) \<longlonglongrightarrow> integral\<^sup>N M u" | |
| 57025 | 1425 | proof - | 
| 61969 | 1426 | have "(\<lambda>n. integral\<^sup>N M (f n)) \<longlonglongrightarrow> (SUP n. integral\<^sup>N M (f n))" | 
| 57025 | 1427 | using f by (intro LIMSEQ_SUP[of "\<lambda>n. integral\<^sup>N M (f n)"] incseq_nn_integral) | 
| 1428 | also have "(SUP n. integral\<^sup>N M (f n)) = integral\<^sup>N M (\<lambda>x. SUP n. f n x)" | |
| 1429 | using f by (intro nn_integral_monotone_convergence_SUP[symmetric]) | |
| 1430 | also have "integral\<^sup>N M (\<lambda>x. SUP n. f n x) = integral\<^sup>N M (\<lambda>x. u x)" | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1431 | using f by (subst LIMSEQ_SUP[THEN LIMSEQ_unique, OF _ u]) (auto simp: incseq_def le_fun_def) | 
| 57025 | 1432 | finally show ?thesis . | 
| 1433 | qed | |
| 1434 | ||
| 69457 
bea49e443909
tagged more of HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
69313diff
changeset | 1435 | theorem nn_integral_dominated_convergence: | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 1436 | assumes [measurable]: | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 1437 | "\<And>i. u i \<in> borel_measurable M" "u' \<in> borel_measurable M" "w \<in> borel_measurable M" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1438 | and bound: "\<And>j. AE x in M. u j x \<le> w x" | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 1439 | and w: "(\<integral>\<^sup>+x. w x \<partial>M) < \<infinity>" | 
| 61969 | 1440 | and u': "AE x in M. (\<lambda>i. u i x) \<longlonglongrightarrow> u' x" | 
| 1441 | shows "(\<lambda>i. (\<integral>\<^sup>+x. u i x \<partial>M)) \<longlonglongrightarrow> (\<integral>\<^sup>+x. u' x \<partial>M)" | |
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 1442 | proof - | 
| 56996 | 1443 | have "limsup (\<lambda>n. integral\<^sup>N M (u n)) \<le> (\<integral>\<^sup>+ x. limsup (\<lambda>n. u n x) \<partial>M)" | 
| 1444 | by (intro nn_integral_limsup[OF _ _ bound w]) auto | |
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 1445 | moreover have "(\<integral>\<^sup>+ x. limsup (\<lambda>n. u n x) \<partial>M) = (\<integral>\<^sup>+ x. u' x \<partial>M)" | 
| 56996 | 1446 | using u' by (intro nn_integral_cong_AE, eventually_elim) (metis tendsto_iff_Liminf_eq_Limsup sequentially_bot) | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 1447 | moreover have "(\<integral>\<^sup>+ x. liminf (\<lambda>n. u n x) \<partial>M) = (\<integral>\<^sup>+ x. u' x \<partial>M)" | 
| 56996 | 1448 | using u' by (intro nn_integral_cong_AE, eventually_elim) (metis tendsto_iff_Liminf_eq_Limsup sequentially_bot) | 
| 1449 | moreover have "(\<integral>\<^sup>+x. liminf (\<lambda>n. u n x) \<partial>M) \<le> liminf (\<lambda>n. integral\<^sup>N M (u n))" | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1450 | by (intro nn_integral_liminf) auto | 
| 56996 | 1451 | moreover have "liminf (\<lambda>n. integral\<^sup>N M (u n)) \<le> limsup (\<lambda>n. integral\<^sup>N M (u n))" | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 1452 | by (intro Liminf_le_Limsup sequentially_bot) | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 1453 | ultimately show ?thesis | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 1454 | by (intro Liminf_eq_Limsup) auto | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 1455 | qed | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 1456 | |
| 60636 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60614diff
changeset | 1457 | lemma inf_continuous_nn_integral[order_continuous_intros]: | 
| 60175 | 1458 | assumes f: "\<And>y. inf_continuous (f y)" | 
| 60614 
e39e6881985c
generalized inf and sup_continuous; added intro rules
 hoelzl parents: 
60175diff
changeset | 1459 | assumes [measurable]: "\<And>x. (\<lambda>y. f y x) \<in> borel_measurable M" | 
| 
e39e6881985c
generalized inf and sup_continuous; added intro rules
 hoelzl parents: 
60175diff
changeset | 1460 | assumes bnd: "\<And>x. (\<integral>\<^sup>+ y. f y x \<partial>M) \<noteq> \<infinity>" | 
| 
e39e6881985c
generalized inf and sup_continuous; added intro rules
 hoelzl parents: 
60175diff
changeset | 1461 | shows "inf_continuous (\<lambda>x. (\<integral>\<^sup>+y. f y x \<partial>M))" | 
| 60175 | 1462 | unfolding inf_continuous_def | 
| 1463 | proof safe | |
| 60614 
e39e6881985c
generalized inf and sup_continuous; added intro rules
 hoelzl parents: 
60175diff
changeset | 1464 | fix C :: "nat \<Rightarrow> 'b" assume C: "decseq C" | 
| 69313 | 1465 | then show "(\<integral>\<^sup>+ y. f y (Inf (C ` UNIV)) \<partial>M) = (INF i. \<integral>\<^sup>+ y. f y (C i) \<partial>M)" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1466 | using inf_continuous_mono[OF f] bnd | 
| 76055 
8d56461f85ec
moved antimono to Fun and redefined it as an abbreviation
 desharna parents: 
74362diff
changeset | 1467 | by (auto simp add: inf_continuousD[OF f C] fun_eq_iff monotone_def le_fun_def less_top | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1468 | intro!: nn_integral_monotone_convergence_INF_decseq) | 
| 60175 | 1469 | qed | 
| 1470 | ||
| 56996 | 1471 | lemma nn_integral_null_set: | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51340diff
changeset | 1472 | assumes "N \<in> null_sets M" shows "(\<integral>\<^sup>+ x. u x * indicator N x \<partial>M) = 0" | 
| 38656 | 1473 | proof - | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51340diff
changeset | 1474 | have "(\<integral>\<^sup>+ x. u x * indicator N x \<partial>M) = (\<integral>\<^sup>+ x. 0 \<partial>M)" | 
| 56996 | 1475 | proof (intro nn_integral_cong_AE AE_I) | 
| 40859 | 1476 |     show "{x \<in> space M. u x * indicator N x \<noteq> 0} \<subseteq> N"
 | 
| 1477 | by (auto simp: indicator_def) | |
| 47694 | 1478 | show "(emeasure M) N = 0" "N \<in> sets M" | 
| 40859 | 1479 | using assms by auto | 
| 35582 | 1480 | qed | 
| 40859 | 1481 | then show ?thesis by simp | 
| 38656 | 1482 | qed | 
| 35582 | 1483 | |
| 56996 | 1484 | lemma nn_integral_0_iff: | 
| 73253 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1485 | assumes u [measurable]: "u \<in> borel_measurable M" | 
| 56996 | 1486 |   shows "integral\<^sup>N M u = 0 \<longleftrightarrow> emeasure M {x\<in>space M. u x \<noteq> 0} = 0"
 | 
| 47694 | 1487 | (is "_ \<longleftrightarrow> (emeasure M) ?A = 0") | 
| 35582 | 1488 | proof - | 
| 56996 | 1489 | have u_eq: "(\<integral>\<^sup>+ x. u x * indicator ?A x \<partial>M) = integral\<^sup>N M u" | 
| 1490 | by (auto intro!: nn_integral_cong simp: indicator_def) | |
| 38656 | 1491 | show ?thesis | 
| 1492 | proof | |
| 47694 | 1493 | assume "(emeasure M) ?A = 0" | 
| 56996 | 1494 | with nn_integral_null_set[of ?A M u] u | 
| 1495 | show "integral\<^sup>N M u = 0" by (simp add: u_eq null_sets_def) | |
| 38656 | 1496 | next | 
| 56996 | 1497 | assume *: "integral\<^sup>N M u = 0" | 
| 46731 | 1498 |     let ?M = "\<lambda>n. {x \<in> space M. 1 \<le> real (n::nat) * u x}"
 | 
| 47694 | 1499 | have "0 = (SUP n. (emeasure M) (?M n \<inter> ?A))" | 
| 38656 | 1500 | proof - | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 1501 |       { fix n :: nat
 | 
| 73253 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1502 |         have "emeasure M {x \<in> ?A. 1 \<le> of_nat n * u x} \<le>
 | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1503 | of_nat n * \<integral>\<^sup>+ x. u x * indicator ?A x \<partial>M" | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1504 | by (intro nn_integral_Markov_inequality) auto | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1505 |         also have "{x \<in> ?A. 1 \<le> of_nat n * u x} = (?M n \<inter> ?A)"
 | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1506 | by (auto simp: ennreal_of_nat_eq_real_of_nat u_eq * ) | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1507 | finally have "emeasure M (?M n \<inter> ?A) \<le> 0" | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1508 | by (simp add: ennreal_of_nat_eq_real_of_nat u_eq * ) | 
| 47694 | 1509 | moreover have "0 \<le> (emeasure M) (?M n \<inter> ?A)" using u by auto | 
| 1510 | ultimately have "(emeasure M) (?M n \<inter> ?A) = 0" by auto } | |
| 38656 | 1511 | thus ?thesis by simp | 
| 35582 | 1512 | qed | 
| 47694 | 1513 | also have "\<dots> = (emeasure M) (\<Union>n. ?M n \<inter> ?A)" | 
| 1514 | proof (safe intro!: SUP_emeasure_incseq) | |
| 38656 | 1515 | fix n show "?M n \<inter> ?A \<in> sets M" | 
| 50244 
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
 immler parents: 
50104diff
changeset | 1516 | using u by (auto intro!: sets.Int) | 
| 38656 | 1517 | next | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 1518 |       show "incseq (\<lambda>n. {x \<in> space M. 1 \<le> real n * u x} \<inter> {x \<in> space M. u x \<noteq> 0})"
 | 
| 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 1519 | proof (safe intro!: incseq_SucI) | 
| 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 1520 | fix n :: nat and x | 
| 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 1521 | assume *: "1 \<le> real n * u x" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1522 | also have "real n * u x \<le> real (Suc n) * u x" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1523 | by (auto intro!: mult_right_mono) | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 1524 | finally show "1 \<le> real (Suc n) * u x" by auto | 
| 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 1525 | qed | 
| 38656 | 1526 | qed | 
| 47694 | 1527 |     also have "\<dots> = (emeasure M) {x\<in>space M. 0 < u x}"
 | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1528 | proof (safe intro!: arg_cong[where f="(emeasure M)"]) | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 1529 | fix x assume "0 < u x" and [simp, intro]: "x \<in> space M" | 
| 38656 | 1530 | show "x \<in> (\<Union>n. ?M n \<inter> ?A)" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1531 | proof (cases "u x" rule: ennreal_cases) | 
| 61808 | 1532 | case (real r) with \<open>0 < u x\<close> have "0 < r" by auto | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 1533 | obtain j :: nat where "1 / r \<le> real j" using real_arch_simple .. | 
| 61808 | 1534 | hence "1 / r * r \<le> real j * r" unfolding mult_le_cancel_right using \<open>0 < r\<close> by auto | 
| 1535 | hence "1 \<le> real j * r" using real \<open>0 < r\<close> by auto | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1536 | thus ?thesis using \<open>0 < r\<close> real | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1537 | by (auto simp: ennreal_of_nat_eq_real_of_nat ennreal_1[symmetric] ennreal_mult[symmetric] | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1538 | simp del: ennreal_1) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1539 | qed (insert \<open>0 < u x\<close>, auto simp: ennreal_mult_top) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1540 | qed (auto simp: zero_less_iff_neq_zero) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1541 | finally show "emeasure M ?A = 0" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1542 | by (simp add: zero_less_iff_neq_zero) | 
| 35582 | 1543 | qed | 
| 1544 | qed | |
| 1545 | ||
| 56996 | 1546 | lemma nn_integral_0_iff_AE: | 
| 41705 | 1547 | assumes u: "u \<in> borel_measurable M" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1548 | shows "integral\<^sup>N M u = 0 \<longleftrightarrow> (AE x in M. u x = 0)" | 
| 41705 | 1549 | proof - | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1550 |   have sets: "{x\<in>space M. u x \<noteq> 0} \<in> sets M"
 | 
| 41705 | 1551 | using u by auto | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1552 | show "integral\<^sup>N M u = 0 \<longleftrightarrow> (AE x in M. u x = 0)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1553 | using nn_integral_0_iff[of u] AE_iff_null[OF sets] u by auto | 
| 41705 | 1554 | qed | 
| 1555 | ||
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61359diff
changeset | 1556 | lemma AE_iff_nn_integral: | 
| 56996 | 1557 |   "{x\<in>space M. P x} \<in> sets M \<Longrightarrow> (AE x in M. P x) \<longleftrightarrow> integral\<^sup>N M (indicator {x. \<not> P x}) = 0"
 | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1558 | by (subst nn_integral_0_iff_AE) (auto simp: indicator_def[abs_def]) | 
| 50001 
382bd3173584
add syntax and a.e.-rules for (conditional) probability on predicates
 hoelzl parents: 
49800diff
changeset | 1559 | |
| 59000 | 1560 | lemma nn_integral_less: | 
| 1561 | assumes [measurable]: "f \<in> borel_measurable M" "g \<in> borel_measurable M" | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1562 | assumes f: "(\<integral>\<^sup>+x. f x \<partial>M) \<noteq> \<infinity>" | 
| 59000 | 1563 | assumes ord: "AE x in M. f x \<le> g x" "\<not> (AE x in M. g x \<le> f x)" | 
| 1564 | shows "(\<integral>\<^sup>+x. f x \<partial>M) < (\<integral>\<^sup>+x. g x \<partial>M)" | |
| 1565 | proof - | |
| 1566 | have "0 < (\<integral>\<^sup>+x. g x - f x \<partial>M)" | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1567 | proof (intro order_le_neq_trans notI) | 
| 59000 | 1568 | assume "0 = (\<integral>\<^sup>+x. g x - f x \<partial>M)" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1569 | then have "AE x in M. g x - f x = 0" | 
| 59000 | 1570 | using nn_integral_0_iff_AE[of "\<lambda>x. g x - f x" M] by simp | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1571 | with ord(1) have "AE x in M. g x \<le> f x" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1572 | by eventually_elim (auto simp: ennreal_minus_eq_0) | 
| 59000 | 1573 | with ord show False | 
| 1574 | by simp | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1575 | qed simp | 
| 59000 | 1576 | also have "\<dots> = (\<integral>\<^sup>+x. g x \<partial>M) - (\<integral>\<^sup>+x. f x \<partial>M)" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1577 | using f by (subst nn_integral_diff) (auto simp: ord) | 
| 59000 | 1578 | finally show ?thesis | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1579 | using f by (auto dest!: ennreal_minus_pos_iff[rotated] simp: less_top) | 
| 59000 | 1580 | qed | 
| 1581 | ||
| 56996 | 1582 | lemma nn_integral_subalgebra: | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1583 | assumes f: "f \<in> borel_measurable N" | 
| 47694 | 1584 | and N: "sets N \<subseteq> sets M" "space N = space M" "\<And>A. A \<in> sets N \<Longrightarrow> emeasure N A = emeasure M A" | 
| 56996 | 1585 | shows "integral\<^sup>N N f = integral\<^sup>N M f" | 
| 39092 | 1586 | proof - | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1587 | have [simp]: "\<And>f :: 'a \<Rightarrow> ennreal. f \<in> borel_measurable N \<Longrightarrow> f \<in> borel_measurable M" | 
| 49799 
15ea98537c76
strong nonnegativ (instead of ae nn) for induction rule
 hoelzl parents: 
49798diff
changeset | 1588 | using N by (auto simp: measurable_def) | 
| 
15ea98537c76
strong nonnegativ (instead of ae nn) for induction rule
 hoelzl parents: 
49798diff
changeset | 1589 | have [simp]: "\<And>P. (AE x in N. P x) \<Longrightarrow> (AE x in M. P x)" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1590 | using N by (auto simp add: eventually_ae_filter null_sets_def subset_eq) | 
| 49799 
15ea98537c76
strong nonnegativ (instead of ae nn) for induction rule
 hoelzl parents: 
49798diff
changeset | 1591 | have [simp]: "\<And>A. A \<in> sets N \<Longrightarrow> A \<in> sets M" | 
| 
15ea98537c76
strong nonnegativ (instead of ae nn) for induction rule
 hoelzl parents: 
49798diff
changeset | 1592 | using N by auto | 
| 
15ea98537c76
strong nonnegativ (instead of ae nn) for induction rule
 hoelzl parents: 
49798diff
changeset | 1593 | from f show ?thesis | 
| 
15ea98537c76
strong nonnegativ (instead of ae nn) for induction rule
 hoelzl parents: 
49798diff
changeset | 1594 | apply induct | 
| 69861 
62e47f06d22c
avoid context-sensitive simp rules whose context-free form (image_comp) is not simp by default
 haftmann parents: 
69661diff
changeset | 1595 | apply (simp_all add: nn_integral_add nn_integral_cmult nn_integral_monotone_convergence_SUP N image_comp) | 
| 56996 | 1596 | apply (auto intro!: nn_integral_cong cong: nn_integral_cong simp: N(2)[symmetric]) | 
| 49799 
15ea98537c76
strong nonnegativ (instead of ae nn) for induction rule
 hoelzl parents: 
49798diff
changeset | 1597 | done | 
| 39092 | 1598 | qed | 
| 1599 | ||
| 56996 | 1600 | lemma nn_integral_nat_function: | 
| 50097 
32973da2d4f7
rules for intergration: integrating nat-functions, integrals on finite measures, constant multiplication
 hoelzl parents: 
50027diff
changeset | 1601 | fixes f :: "'a \<Rightarrow> nat" | 
| 
32973da2d4f7
rules for intergration: integrating nat-functions, integrals on finite measures, constant multiplication
 hoelzl parents: 
50027diff
changeset | 1602 | assumes "f \<in> measurable M (count_space UNIV)" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1603 |   shows "(\<integral>\<^sup>+x. of_nat (f x) \<partial>M) = (\<Sum>t. emeasure M {x\<in>space M. t < f x})"
 | 
| 50097 
32973da2d4f7
rules for intergration: integrating nat-functions, integrals on finite measures, constant multiplication
 hoelzl parents: 
50027diff
changeset | 1604 | proof - | 
| 63040 | 1605 |   define F where "F i = {x\<in>space M. i < f x}" for i
 | 
| 50097 
32973da2d4f7
rules for intergration: integrating nat-functions, integrals on finite measures, constant multiplication
 hoelzl parents: 
50027diff
changeset | 1606 | with assms have [measurable]: "\<And>i. F i \<in> sets M" | 
| 
32973da2d4f7
rules for intergration: integrating nat-functions, integrals on finite measures, constant multiplication
 hoelzl parents: 
50027diff
changeset | 1607 | by auto | 
| 
32973da2d4f7
rules for intergration: integrating nat-functions, integrals on finite measures, constant multiplication
 hoelzl parents: 
50027diff
changeset | 1608 | |
| 
32973da2d4f7
rules for intergration: integrating nat-functions, integrals on finite measures, constant multiplication
 hoelzl parents: 
50027diff
changeset | 1609 |   { fix x assume "x \<in> space M"
 | 
| 
32973da2d4f7
rules for intergration: integrating nat-functions, integrals on finite measures, constant multiplication
 hoelzl parents: 
50027diff
changeset | 1610 | have "(\<lambda>i. if i < f x then 1 else 0) sums (of_nat (f x)::real)" | 
| 
32973da2d4f7
rules for intergration: integrating nat-functions, integrals on finite measures, constant multiplication
 hoelzl parents: 
50027diff
changeset | 1611 | using sums_If_finite[of "\<lambda>i. i < f x" "\<lambda>_. 1::real"] by simp | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1612 | then have "(\<lambda>i. ennreal (if i < f x then 1 else 0)) sums of_nat(f x)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1613 | unfolding ennreal_of_nat_eq_real_of_nat | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1614 | by (subst sums_ennreal) auto | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1615 | moreover have "\<And>i. ennreal (if i < f x then 1 else 0) = indicator (F i) x" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1616 | using \<open>x \<in> space M\<close> by (simp add: one_ennreal_def F_def) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1617 | ultimately have "of_nat (f x) = (\<Sum>i. indicator (F i) x :: ennreal)" | 
| 50097 
32973da2d4f7
rules for intergration: integrating nat-functions, integrals on finite measures, constant multiplication
 hoelzl parents: 
50027diff
changeset | 1618 | by (simp add: sums_iff) } | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1619 | then have "(\<integral>\<^sup>+x. of_nat (f x) \<partial>M) = (\<integral>\<^sup>+x. (\<Sum>i. indicator (F i) x) \<partial>M)" | 
| 56996 | 1620 | by (simp cong: nn_integral_cong) | 
| 50097 
32973da2d4f7
rules for intergration: integrating nat-functions, integrals on finite measures, constant multiplication
 hoelzl parents: 
50027diff
changeset | 1621 | also have "\<dots> = (\<Sum>i. emeasure M (F i))" | 
| 56996 | 1622 | by (simp add: nn_integral_suminf) | 
| 50097 
32973da2d4f7
rules for intergration: integrating nat-functions, integrals on finite measures, constant multiplication
 hoelzl parents: 
50027diff
changeset | 1623 | finally show ?thesis | 
| 
32973da2d4f7
rules for intergration: integrating nat-functions, integrals on finite measures, constant multiplication
 hoelzl parents: 
50027diff
changeset | 1624 | by (simp add: F_def) | 
| 
32973da2d4f7
rules for intergration: integrating nat-functions, integrals on finite measures, constant multiplication
 hoelzl parents: 
50027diff
changeset | 1625 | qed | 
| 
32973da2d4f7
rules for intergration: integrating nat-functions, integrals on finite measures, constant multiplication
 hoelzl parents: 
50027diff
changeset | 1626 | |
| 69457 
bea49e443909
tagged more of HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
69313diff
changeset | 1627 | theorem nn_integral_lfp: | 
| 60636 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60614diff
changeset | 1628 | assumes sets[simp]: "\<And>s. sets (M s) = sets N" | 
| 60175 | 1629 | assumes f: "sup_continuous f" | 
| 60636 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60614diff
changeset | 1630 | assumes g: "sup_continuous g" | 
| 60175 | 1631 | assumes meas: "\<And>F. F \<in> borel_measurable N \<Longrightarrow> f F \<in> borel_measurable N" | 
| 1632 | assumes step: "\<And>F s. F \<in> borel_measurable N \<Longrightarrow> integral\<^sup>N (M s) (f F) = g (\<lambda>s. integral\<^sup>N (M s) F) s" | |
| 1633 | shows "(\<integral>\<^sup>+\<omega>. lfp f \<omega> \<partial>M s) = lfp g s" | |
| 60636 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60614diff
changeset | 1634 | proof (subst lfp_transfer_bounded[where \<alpha>="\<lambda>F s. \<integral>\<^sup>+x. F x \<partial>M s" and g=g and f=f and P="\<lambda>f. f \<in> borel_measurable N", symmetric]) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1635 | fix C :: "nat \<Rightarrow> 'b \<Rightarrow> ennreal" assume "incseq C" "\<And>i. C i \<in> borel_measurable N" | 
| 60636 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60614diff
changeset | 1636 | then show "(\<lambda>s. \<integral>\<^sup>+x. (SUP i. C i) x \<partial>M s) = (SUP i. (\<lambda>s. \<integral>\<^sup>+x. C i x \<partial>M s))" | 
| 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60614diff
changeset | 1637 | unfolding SUP_apply[abs_def] | 
| 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60614diff
changeset | 1638 | by (subst nn_integral_monotone_convergence_SUP) | 
| 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60614diff
changeset | 1639 | (auto simp: mono_def fun_eq_iff intro!: arg_cong2[where f=emeasure] cong: measurable_cong_sets) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1640 | qed (auto simp add: step le_fun_def SUP_apply[abs_def] bot_fun_def bot_ennreal intro!: meas f g) | 
| 60175 | 1641 | |
| 69457 
bea49e443909
tagged more of HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
69313diff
changeset | 1642 | theorem nn_integral_gfp: | 
| 60636 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60614diff
changeset | 1643 | assumes sets[simp]: "\<And>s. sets (M s) = sets N" | 
| 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60614diff
changeset | 1644 | assumes f: "inf_continuous f" and g: "inf_continuous g" | 
| 60175 | 1645 | assumes meas: "\<And>F. F \<in> borel_measurable N \<Longrightarrow> f F \<in> borel_measurable N" | 
| 60636 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60614diff
changeset | 1646 | assumes bound: "\<And>F s. F \<in> borel_measurable N \<Longrightarrow> (\<integral>\<^sup>+x. f F x \<partial>M s) < \<infinity>" | 
| 60175 | 1647 | assumes non_zero: "\<And>s. emeasure (M s) (space (M s)) \<noteq> 0" | 
| 1648 | assumes step: "\<And>F s. F \<in> borel_measurable N \<Longrightarrow> integral\<^sup>N (M s) (f F) = g (\<lambda>s. integral\<^sup>N (M s) F) s" | |
| 1649 | shows "(\<integral>\<^sup>+\<omega>. gfp f \<omega> \<partial>M s) = gfp g s" | |
| 60636 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60614diff
changeset | 1650 | proof (subst gfp_transfer_bounded[where \<alpha>="\<lambda>F s. \<integral>\<^sup>+x. F x \<partial>M s" and g=g and f=f | 
| 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60614diff
changeset | 1651 | and P="\<lambda>F. F \<in> borel_measurable N \<and> (\<forall>s. (\<integral>\<^sup>+x. F x \<partial>M s) < \<infinity>)", symmetric]) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1652 | fix C :: "nat \<Rightarrow> 'b \<Rightarrow> ennreal" assume "decseq C" "\<And>i. C i \<in> borel_measurable N \<and> (\<forall>s. integral\<^sup>N (M s) (C i) < \<infinity>)" | 
| 60636 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60614diff
changeset | 1653 | then show "(\<lambda>s. \<integral>\<^sup>+x. (INF i. C i) x \<partial>M s) = (INF i. (\<lambda>s. \<integral>\<^sup>+x. C i x \<partial>M s))" | 
| 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60614diff
changeset | 1654 | unfolding INF_apply[abs_def] | 
| 61359 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 1655 | by (subst nn_integral_monotone_convergence_INF_decseq) | 
| 60636 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60614diff
changeset | 1656 | (auto simp: mono_def fun_eq_iff intro!: arg_cong2[where f=emeasure] cong: measurable_cong_sets) | 
| 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60614diff
changeset | 1657 | next | 
| 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60614diff
changeset | 1658 | show "\<And>x. g x \<le> (\<lambda>s. integral\<^sup>N (M s) (f top))" | 
| 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60614diff
changeset | 1659 | by (subst step) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1660 | (auto simp add: top_fun_def less_le non_zero le_fun_def ennreal_top_mult | 
| 63566 | 1661 | cong del: if_weak_cong intro!: monoD[OF inf_continuous_mono[OF g], THEN le_funD]) | 
| 60636 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60614diff
changeset | 1662 | next | 
| 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60614diff
changeset | 1663 | fix C assume "\<And>i::nat. C i \<in> borel_measurable N \<and> (\<forall>s. integral\<^sup>N (M s) (C i) < \<infinity>)" "decseq C" | 
| 69313 | 1664 | with bound show "Inf (C ` UNIV) \<in> borel_measurable N \<and> (\<forall>s. integral\<^sup>N (M s) (Inf (C ` UNIV)) < \<infinity>)" | 
| 60636 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60614diff
changeset | 1665 | unfolding INF_apply[abs_def] | 
| 61359 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 1666 | by (subst nn_integral_monotone_convergence_INF_decseq) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1667 | (auto simp: INF_less_iff cong: measurable_cong_sets intro!: borel_measurable_INF) | 
| 60636 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60614diff
changeset | 1668 | next | 
| 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60614diff
changeset | 1669 | show "\<And>x. x \<in> borel_measurable N \<and> (\<forall>s. integral\<^sup>N (M s) x < \<infinity>) \<Longrightarrow> | 
| 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60614diff
changeset | 1670 | (\<lambda>s. integral\<^sup>N (M s) (f x)) = g (\<lambda>s. integral\<^sup>N (M s) x)" | 
| 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60614diff
changeset | 1671 | by (subst step) auto | 
| 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60614diff
changeset | 1672 | qed (insert bound, auto simp add: le_fun_def INF_apply[abs_def] top_fun_def intro!: meas f g) | 
| 60175 | 1673 | |
| 73253 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1674 | |
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1675 | text \<open>Cauchy--Schwarz inequality for \<^const>\<open>nn_integral\<close>\<close> | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1676 | |
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1677 | lemma sum_of_squares_ge_ennreal: | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1678 | fixes a b :: ennreal | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1679 | shows "2 * a * b \<le> a\<^sup>2 + b\<^sup>2" | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1680 | proof (cases a; cases b) | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1681 | fix x y | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1682 | assume xy: "x \<ge> 0" "y \<ge> 0" and [simp]: "a = ennreal x" "b = ennreal y" | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1683 | have "0 \<le> (x - y)\<^sup>2" | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1684 | by simp | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1685 | also have "\<dots> = x\<^sup>2 + y\<^sup>2 - 2 * x * y" | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1686 | by (simp add: algebra_simps power2_eq_square) | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1687 | finally have "2 * x * y \<le> x\<^sup>2 + y\<^sup>2" | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1688 | by simp | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1689 | hence "ennreal (2 * x * y) \<le> ennreal (x\<^sup>2 + y\<^sup>2)" | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1690 | by (intro ennreal_leI) | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1691 | thus ?thesis using xy | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1692 | by (simp add: ennreal_mult ennreal_power) | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1693 | qed auto | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1694 | |
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1695 | lemma Cauchy_Schwarz_nn_integral: | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1696 | assumes [measurable]: "f \<in> borel_measurable M" "g \<in> borel_measurable M" | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1697 | shows "(\<integral>\<^sup>+x. f x * g x \<partial>M)\<^sup>2 \<le> (\<integral>\<^sup>+x. f x ^ 2 \<partial>M) * (\<integral>\<^sup>+x. g x ^ 2 \<partial>M)" | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1698 | proof (cases "(\<integral>\<^sup>+x. f x * g x \<partial>M) = 0") | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1699 | case False | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1700 | define F where "F = nn_integral M (\<lambda>x. f x ^ 2)" | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1701 | define G where "G = nn_integral M (\<lambda>x. g x ^ 2)" | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1702 | from False have "\<not>(AE x in M. f x = 0 \<or> g x = 0)" | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1703 | by (auto simp: nn_integral_0_iff_AE) | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1704 | hence "\<not>(AE x in M. f x = 0)" and "\<not>(AE x in M. g x = 0)" | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1705 | by (auto intro: AE_disjI1 AE_disjI2) | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1706 | hence nz: "F \<noteq> 0" "G \<noteq> 0" | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1707 | by (auto simp: nn_integral_0_iff_AE F_def G_def) | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1708 | |
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1709 | show ?thesis | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1710 | proof (cases "F = \<infinity> \<or> G = \<infinity>") | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1711 | case True | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1712 | thus ?thesis using nz | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1713 | by (auto simp: F_def G_def) | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1714 | next | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1715 | case False | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1716 | define F' where "F' = ennreal (sqrt (enn2real F))" | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1717 | define G' where "G' = ennreal (sqrt (enn2real G))" | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1718 | from False have fin: "F < top" "G < top" | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1719 | by (simp_all add: top.not_eq_extremum) | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1720 | have F'_sqr: "F'\<^sup>2 = F" | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1721 | using False by (cases F) (auto simp: F'_def ennreal_power) | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1722 | have G'_sqr: "G'\<^sup>2 = G" | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1723 | using False by (cases G) (auto simp: G'_def ennreal_power) | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1724 | have nz': "F' \<noteq> 0" "G' \<noteq> 0" and fin': "F' \<noteq> \<infinity>" "G' \<noteq> \<infinity>" | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1725 | using F'_sqr G'_sqr nz fin by auto | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1726 | from fin' have fin'': "F' < top" "G' < top" | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1727 | by (auto simp: top.not_eq_extremum) | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1728 | |
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1729 | have "2 * (F' / F') * (G' / G') * (\<integral>\<^sup>+x. f x * g x \<partial>M) = | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1730 | F' * G' * (\<integral>\<^sup>+x. 2 * (f x / F') * (g x / G') \<partial>M)" | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1731 | using nz' fin'' | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1732 | by (simp add: divide_ennreal_def algebra_simps ennreal_inverse_mult flip: nn_integral_cmult) | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1733 | also have "F'/ F' = 1" | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1734 | using nz' fin'' by simp | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1735 | also have "G'/ G' = 1" | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1736 | using nz' fin'' by simp | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1737 | also have "2 * 1 * 1 = (2 :: ennreal)" by simp | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1738 | also have "F' * G' * (\<integral>\<^sup>+ x. 2 * (f x / F') * (g x / G') \<partial>M) \<le> | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1739 | F' * G' * (\<integral>\<^sup>+x. (f x / F')\<^sup>2 + (g x / G')\<^sup>2 \<partial>M)" | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1740 | by (intro mult_left_mono nn_integral_mono sum_of_squares_ge_ennreal) auto | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1741 | also have "\<dots> = F' * G' * (F / F'\<^sup>2 + G / G'\<^sup>2)" using nz | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1742 | by (auto simp: nn_integral_add algebra_simps nn_integral_divide F_def G_def) | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1743 | also have "F / F'\<^sup>2 = 1" | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1744 | using nz F'_sqr fin by simp | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1745 | also have "G / G'\<^sup>2 = 1" | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1746 | using nz G'_sqr fin by simp | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1747 | also have "F' * G' * (1 + 1) = 2 * (F' * G')" | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1748 | by (simp add: mult_ac) | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1749 | finally have "(\<integral>\<^sup>+x. f x * g x \<partial>M) \<le> F' * G'" | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1750 | by (subst (asm) ennreal_mult_le_mult_iff) auto | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1751 | hence "(\<integral>\<^sup>+x. f x * g x \<partial>M)\<^sup>2 \<le> (F' * G')\<^sup>2" | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1752 | by (intro power_mono_ennreal) | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1753 | also have "\<dots> = F * G" | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1754 | by (simp add: algebra_simps F'_sqr G'_sqr) | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1755 | finally show ?thesis | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1756 | by (simp add: F_def G_def) | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1757 | qed | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1758 | qed auto | 
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1759 | |
| 
f6bb31879698
HOL-Analysis/Probability: Hoeffding's inequality, negative binomial distribution, etc.
 Manuel Eberl <eberlm@in.tum.de> parents: 
71633diff
changeset | 1760 | |
| 69457 
bea49e443909
tagged more of HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
69313diff
changeset | 1761 | (* TODO: rename? *) | 
| 61808 | 1762 | subsection \<open>Integral under concrete measures\<close> | 
| 56994 | 1763 | |
| 63333 
158ab2239496
Probability: show that measures form a complete lattice
 hoelzl parents: 
63167diff
changeset | 1764 | lemma nn_integral_mono_measure: | 
| 
158ab2239496
Probability: show that measures form a complete lattice
 hoelzl parents: 
63167diff
changeset | 1765 | assumes "sets M = sets N" "M \<le> N" shows "nn_integral M f \<le> nn_integral N f" | 
| 
158ab2239496
Probability: show that measures form a complete lattice
 hoelzl parents: 
63167diff
changeset | 1766 | unfolding nn_integral_def | 
| 
158ab2239496
Probability: show that measures form a complete lattice
 hoelzl parents: 
63167diff
changeset | 1767 | proof (intro SUP_subset_mono) | 
| 
158ab2239496
Probability: show that measures form a complete lattice
 hoelzl parents: 
63167diff
changeset | 1768 | note \<open>sets M = sets N\<close>[simp] \<open>sets M = sets N\<close>[THEN sets_eq_imp_space_eq, simp] | 
| 
158ab2239496
Probability: show that measures form a complete lattice
 hoelzl parents: 
63167diff
changeset | 1769 |   show "{g. simple_function M g \<and> g \<le> f} \<subseteq> {g. simple_function N g \<and> g \<le> f}"
 | 
| 
158ab2239496
Probability: show that measures form a complete lattice
 hoelzl parents: 
63167diff
changeset | 1770 | by (simp add: simple_function_def) | 
| 
158ab2239496
Probability: show that measures form a complete lattice
 hoelzl parents: 
63167diff
changeset | 1771 | show "integral\<^sup>S M x \<le> integral\<^sup>S N x" for x | 
| 
158ab2239496
Probability: show that measures form a complete lattice
 hoelzl parents: 
63167diff
changeset | 1772 | using le_measureD3[OF \<open>M \<le> N\<close>] | 
| 64267 | 1773 | by (auto simp add: simple_integral_def intro!: sum_mono mult_mono) | 
| 63333 
158ab2239496
Probability: show that measures form a complete lattice
 hoelzl parents: 
63167diff
changeset | 1774 | qed | 
| 
158ab2239496
Probability: show that measures form a complete lattice
 hoelzl parents: 
63167diff
changeset | 1775 | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61359diff
changeset | 1776 | lemma nn_integral_empty: | 
| 60064 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 1777 |   assumes "space M = {}"
 | 
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 1778 | shows "nn_integral M f = 0" | 
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 1779 | proof - | 
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 1780 | have "(\<integral>\<^sup>+ x. f x \<partial>M) = (\<integral>\<^sup>+ x. 0 \<partial>M)" | 
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 1781 | by(rule nn_integral_cong)(simp add: assms) | 
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 1782 | thus ?thesis by simp | 
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 1783 | qed | 
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 1784 | |
| 63333 
158ab2239496
Probability: show that measures form a complete lattice
 hoelzl parents: 
63167diff
changeset | 1785 | lemma nn_integral_bot[simp]: "nn_integral bot f = 0" | 
| 
158ab2239496
Probability: show that measures form a complete lattice
 hoelzl parents: 
63167diff
changeset | 1786 | by (simp add: nn_integral_empty) | 
| 
158ab2239496
Probability: show that measures form a complete lattice
 hoelzl parents: 
63167diff
changeset | 1787 | |
| 70136 | 1788 | subsubsection\<^marker>\<open>tag unimportant\<close> \<open>Distributions\<close> | 
| 47694 | 1789 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1790 | lemma nn_integral_distr: | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1791 | assumes T: "T \<in> measurable M M'" and f: "f \<in> borel_measurable (distr M M' T)" | 
| 56996 | 1792 | shows "integral\<^sup>N (distr M M' T) f = (\<integral>\<^sup>+ x. f (T x) \<partial>M)" | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61359diff
changeset | 1793 | using f | 
| 49797 
28066863284c
add induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49796diff
changeset | 1794 | proof induct | 
| 
28066863284c
add induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49796diff
changeset | 1795 | case (cong f g) | 
| 49799 
15ea98537c76
strong nonnegativ (instead of ae nn) for induction rule
 hoelzl parents: 
49798diff
changeset | 1796 | with T show ?case | 
| 56996 | 1797 | apply (subst nn_integral_cong[of _ f g]) | 
| 49799 
15ea98537c76
strong nonnegativ (instead of ae nn) for induction rule
 hoelzl parents: 
49798diff
changeset | 1798 | apply simp | 
| 56996 | 1799 | apply (subst nn_integral_cong[of _ "\<lambda>x. f (T x)" "\<lambda>x. g (T x)"]) | 
| 49799 
15ea98537c76
strong nonnegativ (instead of ae nn) for induction rule
 hoelzl parents: 
49798diff
changeset | 1800 | apply (simp add: measurable_def Pi_iff) | 
| 
15ea98537c76
strong nonnegativ (instead of ae nn) for induction rule
 hoelzl parents: 
49798diff
changeset | 1801 | apply simp | 
| 49797 
28066863284c
add induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49796diff
changeset | 1802 | done | 
| 
28066863284c
add induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49796diff
changeset | 1803 | next | 
| 
28066863284c
add induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49796diff
changeset | 1804 | case (set A) | 
| 
28066863284c
add induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49796diff
changeset | 1805 | then have eq: "\<And>x. x \<in> space M \<Longrightarrow> indicator A (T x) = indicator (T -` A \<inter> space M) x" | 
| 
28066863284c
add induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49796diff
changeset | 1806 | by (auto simp: indicator_def) | 
| 
28066863284c
add induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49796diff
changeset | 1807 | from set T show ?case | 
| 56996 | 1808 | by (subst nn_integral_cong[OF eq]) | 
| 1809 | (auto simp add: emeasure_distr intro!: nn_integral_indicator[symmetric] measurable_sets) | |
| 1810 | qed (simp_all add: measurable_compose[OF T] T nn_integral_cmult nn_integral_add | |
| 69861 
62e47f06d22c
avoid context-sensitive simp rules whose context-free form (image_comp) is not simp by default
 haftmann parents: 
69661diff
changeset | 1811 | nn_integral_monotone_convergence_SUP le_fun_def incseq_def image_comp) | 
| 47694 | 1812 | |
| 70136 | 1813 | subsubsection\<^marker>\<open>tag unimportant\<close> \<open>Counting space\<close> | 
| 47694 | 1814 | |
| 1815 | lemma simple_function_count_space[simp]: | |
| 1816 | "simple_function (count_space A) f \<longleftrightarrow> finite (f ` A)" | |
| 1817 | unfolding simple_function_def by simp | |
| 1818 | ||
| 56996 | 1819 | lemma nn_integral_count_space: | 
| 47694 | 1820 |   assumes A: "finite {a\<in>A. 0 < f a}"
 | 
| 56996 | 1821 | shows "integral\<^sup>N (count_space A) f = (\<Sum>a|a\<in>A \<and> 0 < f a. f a)" | 
| 35582 | 1822 | proof - | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51340diff
changeset | 1823 | have *: "(\<integral>\<^sup>+x. max 0 (f x) \<partial>count_space A) = | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51340diff
changeset | 1824 |     (\<integral>\<^sup>+ x. (\<Sum>a|a\<in>A \<and> 0 < f a. f a * indicator {a} x) \<partial>count_space A)"
 | 
| 56996 | 1825 | by (auto intro!: nn_integral_cong | 
| 73536 | 1826 | simp add: indicator_def of_bool_def if_distrib sum.If_cases[OF A] max_def le_less) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51340diff
changeset | 1827 |   also have "\<dots> = (\<Sum>a|a\<in>A \<and> 0 < f a. \<integral>\<^sup>+ x. f a * indicator {a} x \<partial>count_space A)"
 | 
| 64267 | 1828 | by (subst nn_integral_sum) (simp_all add: AE_count_space less_imp_le) | 
| 47694 | 1829 | also have "\<dots> = (\<Sum>a|a\<in>A \<and> 0 < f a. f a)" | 
| 64267 | 1830 | by (auto intro!: sum.cong simp: one_ennreal_def[symmetric] max_def) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1831 | finally show ?thesis by (simp add: max.absorb2) | 
| 47694 | 1832 | qed | 
| 1833 | ||
| 56996 | 1834 | lemma nn_integral_count_space_finite: | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1835 | "finite A \<Longrightarrow> (\<integral>\<^sup>+x. f x \<partial>count_space A) = (\<Sum>a\<in>A. f a)" | 
| 64267 | 1836 | by (auto intro!: sum.mono_neutral_left simp: nn_integral_count_space less_le) | 
| 47694 | 1837 | |
| 59000 | 1838 | lemma nn_integral_count_space': | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1839 | assumes "finite A" "\<And>x. x \<in> B \<Longrightarrow> x \<notin> A \<Longrightarrow> f x = 0" "A \<subseteq> B" | 
| 59000 | 1840 | shows "(\<integral>\<^sup>+x. f x \<partial>count_space B) = (\<Sum>x\<in>A. f x)" | 
| 1841 | proof - | |
| 1842 | have "(\<integral>\<^sup>+x. f x \<partial>count_space B) = (\<Sum>a | a \<in> B \<and> 0 < f a. f a)" | |
| 1843 | using assms(2,3) | |
| 61808 | 1844 | by (intro nn_integral_count_space finite_subset[OF _ \<open>finite A\<close>]) (auto simp: less_le) | 
| 59000 | 1845 | also have "\<dots> = (\<Sum>a\<in>A. f a)" | 
| 64267 | 1846 | using assms by (intro sum.mono_neutral_cong_left) (auto simp: less_le) | 
| 59000 | 1847 | finally show ?thesis . | 
| 1848 | qed | |
| 1849 | ||
| 59011 
4902a2fec434
add reindex rules for distr and nn_integral on count_space
 hoelzl parents: 
59002diff
changeset | 1850 | lemma nn_integral_bij_count_space: | 
| 
4902a2fec434
add reindex rules for distr and nn_integral on count_space
 hoelzl parents: 
59002diff
changeset | 1851 | assumes g: "bij_betw g A B" | 
| 
4902a2fec434
add reindex rules for distr and nn_integral on count_space
 hoelzl parents: 
59002diff
changeset | 1852 | shows "(\<integral>\<^sup>+x. f (g x) \<partial>count_space A) = (\<integral>\<^sup>+x. f x \<partial>count_space B)" | 
| 
4902a2fec434
add reindex rules for distr and nn_integral on count_space
 hoelzl parents: 
59002diff
changeset | 1853 | using g[THEN bij_betw_imp_funcset] | 
| 
4902a2fec434
add reindex rules for distr and nn_integral on count_space
 hoelzl parents: 
59002diff
changeset | 1854 | by (subst distr_bij_count_space[OF g, symmetric]) | 
| 
4902a2fec434
add reindex rules for distr and nn_integral on count_space
 hoelzl parents: 
59002diff
changeset | 1855 | (auto intro!: nn_integral_distr[symmetric]) | 
| 
4902a2fec434
add reindex rules for distr and nn_integral on count_space
 hoelzl parents: 
59002diff
changeset | 1856 | |
| 59000 | 1857 | lemma nn_integral_indicator_finite: | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1858 | fixes f :: "'a \<Rightarrow> ennreal" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1859 |   assumes f: "finite A" and [measurable]: "\<And>a. a \<in> A \<Longrightarrow> {a} \<in> sets M"
 | 
| 59000 | 1860 |   shows "(\<integral>\<^sup>+x. f x * indicator A x \<partial>M) = (\<Sum>x\<in>A. f x * emeasure M {x})"
 | 
| 1861 | proof - | |
| 1862 |   from f have "(\<integral>\<^sup>+x. f x * indicator A x \<partial>M) = (\<integral>\<^sup>+x. (\<Sum>a\<in>A. f a * indicator {a} x) \<partial>M)"
 | |
| 64267 | 1863 | by (intro nn_integral_cong) (auto simp: indicator_def if_distrib[where f="\<lambda>a. x * a" for x] sum.If_cases) | 
| 59000 | 1864 |   also have "\<dots> = (\<Sum>a\<in>A. f a * emeasure M {a})"
 | 
| 64267 | 1865 | by (subst nn_integral_sum) auto | 
| 59000 | 1866 | finally show ?thesis . | 
| 1867 | qed | |
| 1868 | ||
| 57025 | 1869 | lemma nn_integral_count_space_nat: | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1870 | fixes f :: "nat \<Rightarrow> ennreal" | 
| 57025 | 1871 | shows "(\<integral>\<^sup>+i. f i \<partial>count_space UNIV) = (\<Sum>i. f i)" | 
| 1872 | proof - | |
| 1873 | have "(\<integral>\<^sup>+i. f i \<partial>count_space UNIV) = | |
| 1874 |     (\<integral>\<^sup>+i. (\<Sum>j. f j * indicator {j} i) \<partial>count_space UNIV)"
 | |
| 1875 | proof (intro nn_integral_cong) | |
| 1876 | fix i | |
| 1877 |     have "f i = (\<Sum>j\<in>{i}. f j * indicator {j} i)"
 | |
| 1878 | by simp | |
| 1879 |     also have "\<dots> = (\<Sum>j. f j * indicator {j} i)"
 | |
| 1880 | by (rule suminf_finite[symmetric]) auto | |
| 1881 |     finally show "f i = (\<Sum>j. f j * indicator {j} i)" .
 | |
| 1882 | qed | |
| 1883 |   also have "\<dots> = (\<Sum>j. (\<integral>\<^sup>+i. f j * indicator {j} i \<partial>count_space UNIV))"
 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1884 | by (rule nn_integral_suminf) auto | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1885 | finally show ?thesis | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1886 | by simp | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1887 | qed | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1888 | |
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1889 | lemma nn_integral_enat_function: | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1890 | assumes f: "f \<in> measurable M (count_space UNIV)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1891 |   shows "(\<integral>\<^sup>+ x. ennreal_of_enat (f x) \<partial>M) = (\<Sum>t. emeasure M {x \<in> space M. t < f x})"
 | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1892 | proof - | 
| 63040 | 1893 |   define F where "F i = {x\<in>space M. i < f x}" for i :: nat
 | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1894 | with assms have [measurable]: "\<And>i. F i \<in> sets M" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1895 | by auto | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1896 | |
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1897 |   { fix x assume "x \<in> space M"
 | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1898 | have "(\<lambda>i::nat. if i < f x then 1 else 0) sums ennreal_of_enat (f x)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1899 | using sums_If_finite[of "\<lambda>r. r < f x" "\<lambda>_. 1 :: ennreal"] | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1900 | by (cases "f x") (simp_all add: sums_def of_nat_tendsto_top_ennreal) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1901 | also have "(\<lambda>i. (if i < f x then 1 else 0)) = (\<lambda>i. indicator (F i) x)" | 
| 63167 | 1902 | using \<open>x \<in> space M\<close> by (simp add: one_ennreal_def F_def fun_eq_iff) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1903 | finally have "ennreal_of_enat (f x) = (\<Sum>i. indicator (F i) x)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1904 | by (simp add: sums_iff) } | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1905 | then have "(\<integral>\<^sup>+x. ennreal_of_enat (f x) \<partial>M) = (\<integral>\<^sup>+x. (\<Sum>i. indicator (F i) x) \<partial>M)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1906 | by (simp cong: nn_integral_cong) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1907 | also have "\<dots> = (\<Sum>i. emeasure M (F i))" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1908 | by (simp add: nn_integral_suminf) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1909 | finally show ?thesis | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1910 | by (simp add: F_def) | 
| 57025 | 1911 | qed | 
| 1912 | ||
| 59426 
6fca83e88417
integral of the product of count spaces equals the integral of the count space of the product type
 hoelzl parents: 
59425diff
changeset | 1913 | lemma nn_integral_count_space_nn_integral: | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1914 | fixes f :: "'i \<Rightarrow> 'a \<Rightarrow> ennreal" | 
| 59426 
6fca83e88417
integral of the product of count spaces equals the integral of the count space of the product type
 hoelzl parents: 
59425diff
changeset | 1915 | assumes "countable I" and [measurable]: "\<And>i. i \<in> I \<Longrightarrow> f i \<in> borel_measurable M" | 
| 
6fca83e88417
integral of the product of count spaces equals the integral of the count space of the product type
 hoelzl parents: 
59425diff
changeset | 1916 | shows "(\<integral>\<^sup>+x. \<integral>\<^sup>+i. f i x \<partial>count_space I \<partial>M) = (\<integral>\<^sup>+i. \<integral>\<^sup>+x. f i x \<partial>M \<partial>count_space I)" | 
| 
6fca83e88417
integral of the product of count spaces equals the integral of the count space of the product type
 hoelzl parents: 
59425diff
changeset | 1917 | proof cases | 
| 
6fca83e88417
integral of the product of count spaces equals the integral of the count space of the product type
 hoelzl parents: 
59425diff
changeset | 1918 | assume "finite I" then show ?thesis | 
| 64267 | 1919 | by (simp add: nn_integral_count_space_finite nn_integral_sum) | 
| 59426 
6fca83e88417
integral of the product of count spaces equals the integral of the count space of the product type
 hoelzl parents: 
59425diff
changeset | 1920 | next | 
| 
6fca83e88417
integral of the product of count spaces equals the integral of the count space of the product type
 hoelzl parents: 
59425diff
changeset | 1921 | assume "infinite I" | 
| 
6fca83e88417
integral of the product of count spaces equals the integral of the count space of the product type
 hoelzl parents: 
59425diff
changeset | 1922 |   then have [simp]: "I \<noteq> {}"
 | 
| 
6fca83e88417
integral of the product of count spaces equals the integral of the count space of the product type
 hoelzl parents: 
59425diff
changeset | 1923 | by auto | 
| 61808 | 1924 | note * = bij_betw_from_nat_into[OF \<open>countable I\<close> \<open>infinite I\<close>] | 
| 59426 
6fca83e88417
integral of the product of count spaces equals the integral of the count space of the product type
 hoelzl parents: 
59425diff
changeset | 1925 | have **: "\<And>f. (\<And>i. 0 \<le> f i) \<Longrightarrow> (\<integral>\<^sup>+i. f i \<partial>count_space I) = (\<Sum>n. f (from_nat_into I n))" | 
| 
6fca83e88417
integral of the product of count spaces equals the integral of the count space of the product type
 hoelzl parents: 
59425diff
changeset | 1926 | by (simp add: nn_integral_bij_count_space[symmetric, OF *] nn_integral_count_space_nat) | 
| 
6fca83e88417
integral of the product of count spaces equals the integral of the count space of the product type
 hoelzl parents: 
59425diff
changeset | 1927 | show ?thesis | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1928 | by (simp add: ** nn_integral_suminf from_nat_into) | 
| 59426 
6fca83e88417
integral of the product of count spaces equals the integral of the count space of the product type
 hoelzl parents: 
59425diff
changeset | 1929 | qed | 
| 
6fca83e88417
integral of the product of count spaces equals the integral of the count space of the product type
 hoelzl parents: 
59425diff
changeset | 1930 | |
| 64008 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63918diff
changeset | 1931 | lemma of_bool_Bex_eq_nn_integral: | 
| 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63918diff
changeset | 1932 | assumes unique: "\<And>x y. x \<in> X \<Longrightarrow> y \<in> X \<Longrightarrow> P x \<Longrightarrow> P y \<Longrightarrow> x = y" | 
| 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63918diff
changeset | 1933 | shows "of_bool (\<exists>y\<in>X. P y) = (\<integral>\<^sup>+y. of_bool (P y) \<partial>count_space X)" | 
| 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63918diff
changeset | 1934 | proof cases | 
| 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63918diff
changeset | 1935 | assume "\<exists>y\<in>X. P y" | 
| 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63918diff
changeset | 1936 | then obtain y where "P y" "y \<in> X" by auto | 
| 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63918diff
changeset | 1937 | then show ?thesis | 
| 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63918diff
changeset | 1938 |     by (subst nn_integral_count_space'[where A="{y}"]) (auto dest: unique)
 | 
| 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63918diff
changeset | 1939 | qed (auto cong: nn_integral_cong_simp) | 
| 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63918diff
changeset | 1940 | |
| 59426 
6fca83e88417
integral of the product of count spaces equals the integral of the count space of the product type
 hoelzl parents: 
59425diff
changeset | 1941 | lemma emeasure_UN_countable: | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61359diff
changeset | 1942 | assumes sets[measurable]: "\<And>i. i \<in> I \<Longrightarrow> X i \<in> sets M" and I[simp]: "countable I" | 
| 59426 
6fca83e88417
integral of the product of count spaces equals the integral of the count space of the product type
 hoelzl parents: 
59425diff
changeset | 1943 | assumes disj: "disjoint_family_on X I" | 
| 69313 | 1944 | shows "emeasure M (\<Union>(X ` I)) = (\<integral>\<^sup>+i. emeasure M (X i) \<partial>count_space I)" | 
| 59426 
6fca83e88417
integral of the product of count spaces equals the integral of the count space of the product type
 hoelzl parents: 
59425diff
changeset | 1945 | proof - | 
| 69313 | 1946 | have eq: "\<And>x. indicator (\<Union>(X ` I)) x = \<integral>\<^sup>+ i. indicator (X i) x \<partial>count_space I" | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61359diff
changeset | 1947 | proof cases | 
| 69313 | 1948 | fix x assume x: "x \<in> \<Union>(X ` I)" | 
| 59426 
6fca83e88417
integral of the product of count spaces equals the integral of the count space of the product type
 hoelzl parents: 
59425diff
changeset | 1949 | then obtain j where j: "x \<in> X j" "j \<in> I" | 
| 
6fca83e88417
integral of the product of count spaces equals the integral of the count space of the product type
 hoelzl parents: 
59425diff
changeset | 1950 | by auto | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1951 |     with disj have "\<And>i. i \<in> I \<Longrightarrow> indicator (X i) x = (indicator {j} i::ennreal)"
 | 
| 59426 
6fca83e88417
integral of the product of count spaces equals the integral of the count space of the product type
 hoelzl parents: 
59425diff
changeset | 1952 | by (auto simp: disjoint_family_on_def split: split_indicator) | 
| 
6fca83e88417
integral of the product of count spaces equals the integral of the count space of the product type
 hoelzl parents: 
59425diff
changeset | 1953 | with x j show "?thesis x" | 
| 
6fca83e88417
integral of the product of count spaces equals the integral of the count space of the product type
 hoelzl parents: 
59425diff
changeset | 1954 | by (simp cong: nn_integral_cong_simp) | 
| 
6fca83e88417
integral of the product of count spaces equals the integral of the count space of the product type
 hoelzl parents: 
59425diff
changeset | 1955 | qed (auto simp: nn_integral_0_iff_AE) | 
| 
6fca83e88417
integral of the product of count spaces equals the integral of the count space of the product type
 hoelzl parents: 
59425diff
changeset | 1956 | |
| 
6fca83e88417
integral of the product of count spaces equals the integral of the count space of the product type
 hoelzl parents: 
59425diff
changeset | 1957 | note sets.countable_UN'[unfolded subset_eq, measurable] | 
| 69313 | 1958 | have "emeasure M (\<Union>(X ` I)) = (\<integral>\<^sup>+x. indicator (\<Union>(X ` I)) x \<partial>M)" | 
| 59426 
6fca83e88417
integral of the product of count spaces equals the integral of the count space of the product type
 hoelzl parents: 
59425diff
changeset | 1959 | by simp | 
| 
6fca83e88417
integral of the product of count spaces equals the integral of the count space of the product type
 hoelzl parents: 
59425diff
changeset | 1960 | also have "\<dots> = (\<integral>\<^sup>+i. \<integral>\<^sup>+x. indicator (X i) x \<partial>M \<partial>count_space I)" | 
| 
6fca83e88417
integral of the product of count spaces equals the integral of the count space of the product type
 hoelzl parents: 
59425diff
changeset | 1961 | by (simp add: eq nn_integral_count_space_nn_integral) | 
| 
6fca83e88417
integral of the product of count spaces equals the integral of the count space of the product type
 hoelzl parents: 
59425diff
changeset | 1962 | finally show ?thesis | 
| 
6fca83e88417
integral of the product of count spaces equals the integral of the count space of the product type
 hoelzl parents: 
59425diff
changeset | 1963 | by (simp cong: nn_integral_cong_simp) | 
| 
6fca83e88417
integral of the product of count spaces equals the integral of the count space of the product type
 hoelzl parents: 
59425diff
changeset | 1964 | qed | 
| 
6fca83e88417
integral of the product of count spaces equals the integral of the count space of the product type
 hoelzl parents: 
59425diff
changeset | 1965 | |
| 57025 | 1966 | lemma emeasure_countable_singleton: | 
| 1967 |   assumes sets: "\<And>x. x \<in> X \<Longrightarrow> {x} \<in> sets M" and X: "countable X"
 | |
| 1968 |   shows "emeasure M X = (\<integral>\<^sup>+x. emeasure M {x} \<partial>count_space X)"
 | |
| 1969 | proof - | |
| 1970 |   have "emeasure M (\<Union>i\<in>X. {i}) = (\<integral>\<^sup>+x. emeasure M {x} \<partial>count_space X)"
 | |
| 1971 | using assms by (intro emeasure_UN_countable) (auto simp: disjoint_family_on_def) | |
| 1972 |   also have "(\<Union>i\<in>X. {i}) = X" by auto
 | |
| 1973 | finally show ?thesis . | |
| 1974 | qed | |
| 1975 | ||
| 1976 | lemma measure_eqI_countable: | |
| 1977 | assumes [simp]: "sets M = Pow A" "sets N = Pow A" and A: "countable A" | |
| 1978 |   assumes eq: "\<And>a. a \<in> A \<Longrightarrow> emeasure M {a} = emeasure N {a}"
 | |
| 1979 | shows "M = N" | |
| 1980 | proof (rule measure_eqI) | |
| 1981 | fix X assume "X \<in> sets M" | |
| 1982 | then have X: "X \<subseteq> A" by auto | |
| 63540 | 1983 | moreover from A X have "countable X" by (auto dest: countable_subset) | 
| 57025 | 1984 | ultimately have | 
| 1985 |     "emeasure M X = (\<integral>\<^sup>+a. emeasure M {a} \<partial>count_space X)"
 | |
| 1986 |     "emeasure N X = (\<integral>\<^sup>+a. emeasure N {a} \<partial>count_space X)"
 | |
| 1987 | by (auto intro!: emeasure_countable_singleton) | |
| 1988 |   moreover have "(\<integral>\<^sup>+a. emeasure M {a} \<partial>count_space X) = (\<integral>\<^sup>+a. emeasure N {a} \<partial>count_space X)"
 | |
| 1989 | using X by (intro nn_integral_cong eq) auto | |
| 1990 | ultimately show "emeasure M X = emeasure N X" | |
| 1991 | by simp | |
| 1992 | qed simp | |
| 1993 | ||
| 59000 | 1994 | lemma measure_eqI_countable_AE: | 
| 1995 | assumes [simp]: "sets M = UNIV" "sets N = UNIV" | |
| 1996 | assumes ae: "AE x in M. x \<in> \<Omega>" "AE x in N. x \<in> \<Omega>" and [simp]: "countable \<Omega>" | |
| 1997 |   assumes eq: "\<And>x. x \<in> \<Omega> \<Longrightarrow> emeasure M {x} = emeasure N {x}"
 | |
| 1998 | shows "M = N" | |
| 1999 | proof (rule measure_eqI) | |
| 2000 | fix A | |
| 2001 |   have "emeasure N A = emeasure N {x\<in>\<Omega>. x \<in> A}"
 | |
| 2002 | using ae by (intro emeasure_eq_AE) auto | |
| 2003 |   also have "\<dots> = (\<integral>\<^sup>+x. emeasure N {x} \<partial>count_space {x\<in>\<Omega>. x \<in> A})"
 | |
| 2004 | by (intro emeasure_countable_singleton) auto | |
| 2005 |   also have "\<dots> = (\<integral>\<^sup>+x. emeasure M {x} \<partial>count_space {x\<in>\<Omega>. x \<in> A})"
 | |
| 2006 | by (intro nn_integral_cong eq[symmetric]) auto | |
| 2007 |   also have "\<dots> = emeasure M {x\<in>\<Omega>. x \<in> A}"
 | |
| 2008 | by (intro emeasure_countable_singleton[symmetric]) auto | |
| 2009 | also have "\<dots> = emeasure M A" | |
| 2010 | using ae by (intro emeasure_eq_AE) auto | |
| 2011 | finally show "emeasure M A = emeasure N A" .. | |
| 2012 | qed simp | |
| 2013 | ||
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2014 | lemma nn_integral_monotone_convergence_SUP_nat: | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2015 | fixes f :: "'a \<Rightarrow> nat \<Rightarrow> ennreal" | 
| 67399 | 2016 | assumes chain: "Complete_Partial_Order.chain (\<le>) (f ` Y)" | 
| 60064 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 2017 |   and nonempty: "Y \<noteq> {}"
 | 
| 69260 
0a9688695a1b
removed relics of ASCII syntax for indexed big operators
 haftmann parents: 
69164diff
changeset | 2018 | shows "(\<integral>\<^sup>+ x. (SUP i\<in>Y. f i x) \<partial>count_space UNIV) = (SUP i\<in>Y. (\<integral>\<^sup>+ x. f i x \<partial>count_space UNIV))" | 
| 60064 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 2019 | (is "?lhs = ?rhs" is "integral\<^sup>N ?M _ = _") | 
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 2020 | proof (rule order_class.order.antisym) | 
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 2021 | show "?rhs \<le> ?lhs" | 
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 2022 | by (auto intro!: SUP_least SUP_upper nn_integral_mono) | 
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 2023 | next | 
| 69260 
0a9688695a1b
removed relics of ASCII syntax for indexed big operators
 haftmann parents: 
69164diff
changeset | 2024 | have "\<exists>g. incseq g \<and> range g \<subseteq> (\<lambda>i. f i x) ` Y \<and> (SUP i\<in>Y. f i x) = (SUP i. g i)" for x | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2025 | by (rule ennreal_Sup_countable_SUP) (simp add: nonempty) | 
| 60064 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 2026 | then obtain g where incseq: "\<And>x. incseq (g x)" | 
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 2027 | and range: "\<And>x. range (g x) \<subseteq> (\<lambda>i. f i x) ` Y" | 
| 69260 
0a9688695a1b
removed relics of ASCII syntax for indexed big operators
 haftmann parents: 
69164diff
changeset | 2028 | and sup: "\<And>x. (SUP i\<in>Y. f i x) = (SUP i. g x i)" by moura | 
| 60064 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 2029 | from incseq have incseq': "incseq (\<lambda>i x. g x i)" | 
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 2030 | by(blast intro: incseq_SucI le_funI dest: incseq_SucD) | 
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 2031 | |
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 2032 | have "?lhs = \<integral>\<^sup>+ x. (SUP i. g x i) \<partial>?M" by(simp add: sup) | 
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 2033 | also have "\<dots> = (SUP i. \<integral>\<^sup>+ x. g x i \<partial>?M)" using incseq' | 
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 2034 | by(rule nn_integral_monotone_convergence_SUP) simp | 
| 69260 
0a9688695a1b
removed relics of ASCII syntax for indexed big operators
 haftmann parents: 
69164diff
changeset | 2035 | also have "\<dots> \<le> (SUP i\<in>Y. \<integral>\<^sup>+ x. f i x \<partial>?M)" | 
| 60064 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 2036 | proof(rule SUP_least) | 
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 2037 | fix n | 
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 2038 | have "\<And>x. \<exists>i. g x n = f i x \<and> i \<in> Y" using range by blast | 
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 2039 | then obtain I where I: "\<And>x. g x n = f (I x) x" "\<And>x. I x \<in> Y" by moura | 
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 2040 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2041 | have "(\<integral>\<^sup>+ x. g x n \<partial>count_space UNIV) = (\<Sum>x. g x n)" | 
| 60064 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 2042 | by(rule nn_integral_count_space_nat) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2043 | also have "\<dots> = (SUP m. \<Sum>x<m. g x n)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2044 | by(rule suminf_eq_SUP) | 
| 69260 
0a9688695a1b
removed relics of ASCII syntax for indexed big operators
 haftmann parents: 
69164diff
changeset | 2045 | also have "\<dots> \<le> (SUP i\<in>Y. \<integral>\<^sup>+ x. f i x \<partial>?M)" | 
| 60064 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 2046 | proof(rule SUP_mono) | 
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 2047 | fix m | 
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 2048 | show "\<exists>m'\<in>Y. (\<Sum>x<m. g x n) \<le> (\<integral>\<^sup>+ x. f m' x \<partial>?M)" | 
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 2049 | proof(cases "m > 0") | 
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 2050 | case False | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2051 | thus ?thesis using nonempty by auto | 
| 60064 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 2052 | next | 
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 2053 | case True | 
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 2054 |         let ?Y = "I ` {..<m}"
 | 
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 2055 | have "f ` ?Y \<subseteq> f ` Y" using I by auto | 
| 67399 | 2056 | with chain have chain': "Complete_Partial_Order.chain (\<le>) (f ` ?Y)" by(rule chain_subset) | 
| 60064 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 2057 | hence "Sup (f ` ?Y) \<in> f ` ?Y" | 
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 2058 | by(rule ccpo_class.in_chain_finite)(auto simp add: True lessThan_empty_iff) | 
| 69260 
0a9688695a1b
removed relics of ASCII syntax for indexed big operators
 haftmann parents: 
69164diff
changeset | 2059 | then obtain m' where "m' < m" and m': "(SUP i\<in>?Y. f i) = f (I m')" by auto | 
| 60064 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 2060 | have "I m' \<in> Y" using I by blast | 
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 2061 | have "(\<Sum>x<m. g x n) \<le> (\<Sum>x<m. f (I m') x)" | 
| 64267 | 2062 | proof(rule sum_mono) | 
| 60064 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 2063 | fix x | 
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 2064 |           assume "x \<in> {..<m}"
 | 
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 2065 | hence "x < m" by simp | 
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 2066 | have "g x n = f (I x) x" by(simp add: I) | 
| 69260 
0a9688695a1b
removed relics of ASCII syntax for indexed big operators
 haftmann parents: 
69164diff
changeset | 2067 | also have "\<dots> \<le> (SUP i\<in>?Y. f i) x" unfolding Sup_fun_def image_image | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62083diff
changeset | 2068 |             using \<open>x \<in> {..<m}\<close> by (rule Sup_upper [OF imageI])
 | 
| 60064 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 2069 | also have "\<dots> = f (I m') x" unfolding m' by simp | 
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 2070 | finally show "g x n \<le> f (I m') x" . | 
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 2071 | qed | 
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 2072 | also have "\<dots> \<le> (SUP m. (\<Sum>x<m. f (I m') x))" | 
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 2073 | by(rule SUP_upper) simp | 
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 2074 | also have "\<dots> = (\<Sum>x. f (I m') x)" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2075 | by(rule suminf_eq_SUP[symmetric]) | 
| 60064 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 2076 | also have "\<dots> = (\<integral>\<^sup>+ x. f (I m') x \<partial>?M)" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2077 | by(rule nn_integral_count_space_nat[symmetric]) | 
| 60064 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 2078 | finally show ?thesis using \<open>I m' \<in> Y\<close> by blast | 
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 2079 | qed | 
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 2080 | qed | 
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 2081 | finally show "(\<integral>\<^sup>+ x. g x n \<partial>count_space UNIV) \<le> \<dots>" . | 
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 2082 | qed | 
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 2083 | finally show "?lhs \<le> ?rhs" . | 
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 2084 | qed | 
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 2085 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2086 | lemma power_series_tendsto_at_left: | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2087 | assumes nonneg: "\<And>i. 0 \<le> f i" and summable: "\<And>z. 0 \<le> z \<Longrightarrow> z < 1 \<Longrightarrow> summable (\<lambda>n. f n * z^n)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2088 | shows "((\<lambda>z. ennreal (\<Sum>n. f n * z^n)) \<longlongrightarrow> (\<Sum>n. ennreal (f n))) (at_left (1::real))" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2089 | proof (intro tendsto_at_left_sequentially) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2090 | show "0 < (1::real)" by simp | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2091 | fix S :: "nat \<Rightarrow> real" assume S: "\<And>n. S n < 1" "\<And>n. 0 < S n" "S \<longlonglongrightarrow> 1" "incseq S" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2092 | then have S_nonneg: "\<And>i. 0 \<le> S i" by (auto intro: less_imp_le) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2093 | |
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2094 | have "(\<lambda>i. (\<integral>\<^sup>+n. f n * S i^n \<partial>count_space UNIV)) \<longlonglongrightarrow> (\<integral>\<^sup>+n. ennreal (f n) \<partial>count_space UNIV)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2095 | proof (rule nn_integral_LIMSEQ) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2096 | show "incseq (\<lambda>i n. ennreal (f n * S i^n))" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2097 | using S by (auto intro!: mult_mono power_mono nonneg ennreal_leI | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2098 | simp: incseq_def le_fun_def less_imp_le) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2099 | fix n have "(\<lambda>i. ennreal (f n * S i^n)) \<longlonglongrightarrow> ennreal (f n * 1^n)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2100 | by (intro tendsto_intros tendsto_ennrealI S) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2101 | then show "(\<lambda>i. ennreal (f n * S i^n)) \<longlonglongrightarrow> ennreal (f n)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2102 | by simp | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2103 | qed (auto simp: S_nonneg intro!: mult_nonneg_nonneg nonneg) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2104 | also have "(\<lambda>i. (\<integral>\<^sup>+n. f n * S i^n \<partial>count_space UNIV)) = (\<lambda>i. \<Sum>n. f n * S i^n)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2105 | by (subst nn_integral_count_space_nat) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2106 | (intro ext suminf_ennreal2 mult_nonneg_nonneg nonneg S_nonneg | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2107 | zero_le_power summable S)+ | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2108 | also have "(\<integral>\<^sup>+n. ennreal (f n) \<partial>count_space UNIV) = (\<Sum>n. ennreal (f n))" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2109 | by (simp add: nn_integral_count_space_nat nonneg) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2110 | finally show "(\<lambda>n. ennreal (\<Sum>na. f na * S n ^ na)) \<longlonglongrightarrow> (\<Sum>n. ennreal (f n))" . | 
| 60064 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 2111 | qed | 
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 2112 | |
| 61808 | 2113 | subsubsection \<open>Measures with Restricted Space\<close> | 
| 54417 | 2114 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2115 | lemma simple_function_restrict_space_ennreal: | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2116 | fixes f :: "'a \<Rightarrow> ennreal" | 
| 57137 | 2117 | assumes "\<Omega> \<inter> space M \<in> sets M" | 
| 2118 | shows "simple_function (restrict_space M \<Omega>) f \<longleftrightarrow> simple_function M (\<lambda>x. f x * indicator \<Omega> x)" | |
| 2119 | proof - | |
| 2120 |   { assume "finite (f ` space (restrict_space M \<Omega>))"
 | |
| 2121 |     then have "finite (f ` space (restrict_space M \<Omega>) \<union> {0})" by simp
 | |
| 2122 | then have "finite ((\<lambda>x. f x * indicator \<Omega> x) ` space M)" | |
| 2123 | by (rule rev_finite_subset) (auto split: split_indicator simp: space_restrict_space) } | |
| 2124 | moreover | |
| 2125 |   { assume "finite ((\<lambda>x. f x * indicator \<Omega> x) ` space M)"
 | |
| 2126 | then have "finite (f ` space (restrict_space M \<Omega>))" | |
| 2127 | by (rule rev_finite_subset) (auto split: split_indicator simp: space_restrict_space) } | |
| 2128 | ultimately show ?thesis | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2129 | unfolding | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2130 | simple_function_iff_borel_measurable borel_measurable_restrict_space_iff_ennreal[OF assms] | 
| 57137 | 2131 | by auto | 
| 2132 | qed | |
| 2133 | ||
| 2134 | lemma simple_function_restrict_space: | |
| 2135 | fixes f :: "'a \<Rightarrow> 'b::real_normed_vector" | |
| 2136 | assumes "\<Omega> \<inter> space M \<in> sets M" | |
| 2137 | shows "simple_function (restrict_space M \<Omega>) f \<longleftrightarrow> simple_function M (\<lambda>x. indicator \<Omega> x *\<^sub>R f x)" | |
| 2138 | proof - | |
| 2139 |   { assume "finite (f ` space (restrict_space M \<Omega>))"
 | |
| 2140 |     then have "finite (f ` space (restrict_space M \<Omega>) \<union> {0})" by simp
 | |
| 2141 | then have "finite ((\<lambda>x. indicator \<Omega> x *\<^sub>R f x) ` space M)" | |
| 2142 | by (rule rev_finite_subset) (auto split: split_indicator simp: space_restrict_space) } | |
| 2143 | moreover | |
| 2144 |   { assume "finite ((\<lambda>x. indicator \<Omega> x *\<^sub>R f x) ` space M)"
 | |
| 2145 | then have "finite (f ` space (restrict_space M \<Omega>))" | |
| 2146 | by (rule rev_finite_subset) (auto split: split_indicator simp: space_restrict_space) } | |
| 2147 | ultimately show ?thesis | |
| 2148 | unfolding simple_function_iff_borel_measurable | |
| 2149 | borel_measurable_restrict_space_iff[OF assms] | |
| 2150 | by auto | |
| 2151 | qed | |
| 2152 | ||
| 2153 | lemma simple_integral_restrict_space: | |
| 2154 | assumes \<Omega>: "\<Omega> \<inter> space M \<in> sets M" "simple_function (restrict_space M \<Omega>) f" | |
| 2155 | shows "simple_integral (restrict_space M \<Omega>) f = simple_integral M (\<lambda>x. f x * indicator \<Omega> x)" | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2156 | using simple_function_restrict_space_ennreal[THEN iffD1, OF \<Omega>, THEN simple_functionD(1)] | 
| 57137 | 2157 | by (auto simp add: space_restrict_space emeasure_restrict_space[OF \<Omega>(1)] le_infI2 simple_integral_def | 
| 2158 | split: split_indicator split_indicator_asm | |
| 64267 | 2159 | intro!: sum.mono_neutral_cong_left ennreal_mult_left_cong arg_cong2[where f=emeasure]) | 
| 57137 | 2160 | |
| 56996 | 2161 | lemma nn_integral_restrict_space: | 
| 57137 | 2162 | assumes \<Omega>[simp]: "\<Omega> \<inter> space M \<in> sets M" | 
| 2163 | shows "nn_integral (restrict_space M \<Omega>) f = nn_integral M (\<lambda>x. f x * indicator \<Omega> x)" | |
| 2164 | proof - | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2165 |   let ?R = "restrict_space M \<Omega>" and ?X = "\<lambda>M f. {s. simple_function M s \<and> s \<le> f \<and> (\<forall>x. s x < top)}"
 | 
| 57137 | 2166 | have "integral\<^sup>S ?R ` ?X ?R f = integral\<^sup>S M ` ?X M (\<lambda>x. f x * indicator \<Omega> x)" | 
| 2167 | proof (safe intro!: image_eqI) | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2168 | fix s assume s: "simple_function ?R s" "s \<le> f" "\<forall>x. s x < top" | 
| 57137 | 2169 | from s show "integral\<^sup>S (restrict_space M \<Omega>) s = integral\<^sup>S M (\<lambda>x. s x * indicator \<Omega> x)" | 
| 2170 | by (intro simple_integral_restrict_space) auto | |
| 2171 | from s show "simple_function M (\<lambda>x. s x * indicator \<Omega> x)" | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2172 | by (simp add: simple_function_restrict_space_ennreal) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2173 | from s show "(\<lambda>x. s x * indicator \<Omega> x) \<le> (\<lambda>x. f x * indicator \<Omega> x)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2174 | "\<And>x. s x * indicator \<Omega> x < top" | 
| 57137 | 2175 | by (auto split: split_indicator simp: le_fun_def image_subset_iff) | 
| 2176 | next | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2177 | fix s assume s: "simple_function M s" "s \<le> (\<lambda>x. f x * indicator \<Omega> x)" "\<forall>x. s x < top" | 
| 57137 | 2178 | then have "simple_function M (\<lambda>x. s x * indicator (\<Omega> \<inter> space M) x)" (is ?s') | 
| 2179 | by (intro simple_function_mult simple_function_indicator) auto | |
| 2180 | also have "?s' \<longleftrightarrow> simple_function M (\<lambda>x. s x * indicator \<Omega> x)" | |
| 2181 | by (rule simple_function_cong) (auto split: split_indicator) | |
| 2182 | finally show sf: "simple_function (restrict_space M \<Omega>) s" | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2183 | by (simp add: simple_function_restrict_space_ennreal) | 
| 57137 | 2184 | |
| 2185 | from s have s_eq: "s = (\<lambda>x. s x * indicator \<Omega> x)" | |
| 2186 | by (auto simp add: fun_eq_iff le_fun_def image_subset_iff | |
| 2187 | split: split_indicator split_indicator_asm | |
| 2188 | intro: antisym) | |
| 2189 | ||
| 2190 | show "integral\<^sup>S M s = integral\<^sup>S (restrict_space M \<Omega>) s" | |
| 2191 | by (subst s_eq) (rule simple_integral_restrict_space[symmetric, OF \<Omega> sf]) | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2192 | show "\<And>x. s x < top" | 
| 57137 | 2193 | using s by (auto simp: image_subset_iff) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2194 | from s show "s \<le> f" | 
| 57137 | 2195 | by (subst s_eq) (auto simp: image_subset_iff le_fun_def split: split_indicator split_indicator_asm) | 
| 2196 | qed | |
| 2197 | then show ?thesis | |
| 69546 
27dae626822b
prefer naming convention from datatype package for strong congruence rules
 haftmann parents: 
69457diff
changeset | 2198 | unfolding nn_integral_def_finite by (simp cong del: SUP_cong_simp) | 
| 54417 | 2199 | qed | 
| 2200 | ||
| 59000 | 2201 | lemma nn_integral_count_space_indicator: | 
| 59779 | 2202 | assumes "NO_MATCH (UNIV::'a set) (X::'a set)" | 
| 59000 | 2203 | shows "(\<integral>\<^sup>+x. f x \<partial>count_space X) = (\<integral>\<^sup>+x. f x * indicator X x \<partial>count_space UNIV)" | 
| 2204 | by (simp add: nn_integral_restrict_space[symmetric] restrict_count_space) | |
| 2205 | ||
| 59425 | 2206 | lemma nn_integral_count_space_eq: | 
| 2207 | "(\<And>x. x \<in> A - B \<Longrightarrow> f x = 0) \<Longrightarrow> (\<And>x. x \<in> B - A \<Longrightarrow> f x = 0) \<Longrightarrow> | |
| 2208 | (\<integral>\<^sup>+x. f x \<partial>count_space A) = (\<integral>\<^sup>+x. f x \<partial>count_space B)" | |
| 2209 | by (auto simp: nn_integral_count_space_indicator intro!: nn_integral_cong split: split_indicator) | |
| 2210 | ||
| 59023 | 2211 | lemma nn_integral_ge_point: | 
| 2212 | assumes "x \<in> A" | |
| 2213 | shows "p x \<le> \<integral>\<^sup>+ x. p x \<partial>count_space A" | |
| 2214 | proof - | |
| 2215 |   from assms have "p x \<le> \<integral>\<^sup>+ x. p x \<partial>count_space {x}"
 | |
| 2216 | by(auto simp add: nn_integral_count_space_finite max_def) | |
| 2217 |   also have "\<dots> = \<integral>\<^sup>+ x'. p x' * indicator {x} x' \<partial>count_space A"
 | |
| 2218 | using assms by(auto simp add: nn_integral_count_space_indicator indicator_def intro!: nn_integral_cong) | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2219 | also have "\<dots> \<le> \<integral>\<^sup>+ x. p x \<partial>count_space A" | 
| 59023 | 2220 | by(rule nn_integral_mono)(simp add: indicator_def) | 
| 2221 | finally show ?thesis . | |
| 2222 | qed | |
| 2223 | ||
| 61808 | 2224 | subsubsection \<open>Measure spaces with an associated density\<close> | 
| 47694 | 2225 | |
| 70136 | 2226 | definition\<^marker>\<open>tag important\<close> density :: "'a measure \<Rightarrow> ('a \<Rightarrow> ennreal) \<Rightarrow> 'a measure" where
 | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51340diff
changeset | 2227 | "density M f = measure_of (space M) (sets M) (\<lambda>A. \<integral>\<^sup>+ x. f x * indicator A x \<partial>M)" | 
| 35582 | 2228 | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61359diff
changeset | 2229 | lemma | 
| 59048 | 2230 | shows sets_density[simp, measurable_cong]: "sets (density M f) = sets M" | 
| 47694 | 2231 | and space_density[simp]: "space (density M f) = space M" | 
| 2232 | by (auto simp: density_def) | |
| 2233 | ||
| 50003 | 2234 | (* FIXME: add conversion to simplify space, sets and measurable *) | 
| 2235 | lemma space_density_imp[measurable_dest]: | |
| 2236 | "\<And>x M f. x \<in> space (density M f) \<Longrightarrow> x \<in> space M" by auto | |
| 2237 | ||
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61359diff
changeset | 2238 | lemma | 
| 47694 | 2239 | shows measurable_density_eq1[simp]: "g \<in> measurable (density Mg f) Mg' \<longleftrightarrow> g \<in> measurable Mg Mg'" | 
| 2240 | and measurable_density_eq2[simp]: "h \<in> measurable Mh (density Mh' f) \<longleftrightarrow> h \<in> measurable Mh Mh'" | |
| 2241 | and simple_function_density_eq[simp]: "simple_function (density Mu f) u \<longleftrightarrow> simple_function Mu u" | |
| 2242 | unfolding measurable_def simple_function_def by simp_all | |
| 2243 | ||
| 2244 | lemma density_cong: "f \<in> borel_measurable M \<Longrightarrow> f' \<in> borel_measurable M \<Longrightarrow> | |
| 2245 | (AE x in M. f x = f' x) \<Longrightarrow> density M f = density M f'" | |
| 56996 | 2246 | unfolding density_def by (auto intro!: measure_of_eq nn_integral_cong_AE sets.space_closed) | 
| 47694 | 2247 | |
| 2248 | lemma emeasure_density: | |
| 50002 
ce0d316b5b44
add measurability prover; add support for Borel sets
 hoelzl parents: 
50001diff
changeset | 2249 | assumes f[measurable]: "f \<in> borel_measurable M" and A[measurable]: "A \<in> sets M" | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51340diff
changeset | 2250 | shows "emeasure (density M f) A = (\<integral>\<^sup>+ x. f x * indicator A x \<partial>M)" | 
| 47694 | 2251 | (is "_ = ?\<mu> A") | 
| 2252 | unfolding density_def | |
| 2253 | proof (rule emeasure_measure_of_sigma) | |
| 2254 | show "sigma_algebra (space M) (sets M)" .. | |
| 2255 | show "positive (sets M) ?\<mu>" | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2256 | using f by (auto simp: positive_def) | 
| 47694 | 2257 | show "countably_additive (sets M) ?\<mu>" | 
| 2258 | proof (intro countably_additiveI) | |
| 2259 | fix A :: "nat \<Rightarrow> 'a set" assume "range A \<subseteq> sets M" | |
| 50002 
ce0d316b5b44
add measurability prover; add support for Borel sets
 hoelzl parents: 
50001diff
changeset | 2260 | then have "\<And>i. A i \<in> sets M" by auto | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2261 | then have *: "\<And>i. (\<lambda>x. f x * indicator (A i) x) \<in> borel_measurable M" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2262 | by auto | 
| 47694 | 2263 | assume disj: "disjoint_family A" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2264 | then have "(\<Sum>n. ?\<mu> (A n)) = (\<integral>\<^sup>+ x. (\<Sum>n. f x * indicator (A n) x) \<partial>M)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2265 | using f * by (subst nn_integral_suminf) auto | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2266 | also have "(\<integral>\<^sup>+ x. (\<Sum>n. f x * indicator (A n) x) \<partial>M) = (\<integral>\<^sup>+ x. f x * (\<Sum>n. indicator (A n) x) \<partial>M)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2267 | using f by (auto intro!: ennreal_suminf_cmult nn_integral_cong_AE) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2268 | also have "\<dots> = (\<integral>\<^sup>+ x. f x * indicator (\<Union>n. A n) x \<partial>M)" | 
| 47694 | 2269 | unfolding suminf_indicator[OF disj] .. | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2270 | finally show "(\<Sum>i. \<integral>\<^sup>+ x. f x * indicator (A i) x \<partial>M) = \<integral>\<^sup>+ x. f x * indicator (\<Union>i. A i) x \<partial>M" . | 
| 47694 | 2271 | qed | 
| 2272 | qed fact | |
| 38656 | 2273 | |
| 47694 | 2274 | lemma null_sets_density_iff: | 
| 2275 | assumes f: "f \<in> borel_measurable M" | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2276 | shows "A \<in> null_sets (density M f) \<longleftrightarrow> A \<in> sets M \<and> (AE x in M. x \<in> A \<longrightarrow> f x = 0)" | 
| 47694 | 2277 | proof - | 
| 2278 |   { assume "A \<in> sets M"
 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2279 |     have "(\<integral>\<^sup>+x. f x * indicator A x \<partial>M) = 0 \<longleftrightarrow> emeasure M {x \<in> space M. f x * indicator A x \<noteq> 0} = 0"
 | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2280 | using f \<open>A \<in> sets M\<close> by (intro nn_integral_0_iff) auto | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2281 | also have "\<dots> \<longleftrightarrow> (AE x in M. f x * indicator A x = 0)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2282 | using f \<open>A \<in> sets M\<close> by (intro AE_iff_measurable[OF _ refl, symmetric]) auto | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2283 | also have "(AE x in M. f x * indicator A x = 0) \<longleftrightarrow> (AE x in M. x \<in> A \<longrightarrow> f x \<le> 0)" | 
| 62390 | 2284 | by (auto simp add: indicator_def max_def split: if_split_asm) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51340diff
changeset | 2285 | finally have "(\<integral>\<^sup>+x. f x * indicator A x \<partial>M) = 0 \<longleftrightarrow> (AE x in M. x \<in> A \<longrightarrow> f x \<le> 0)" . } | 
| 47694 | 2286 | with f show ?thesis | 
| 2287 | by (simp add: null_sets_def emeasure_density cong: conj_cong) | |
| 2288 | qed | |
| 2289 | ||
| 2290 | lemma AE_density: | |
| 2291 | assumes f: "f \<in> borel_measurable M" | |
| 2292 | shows "(AE x in density M f. P x) \<longleftrightarrow> (AE x in M. 0 < f x \<longrightarrow> P x)" | |
| 2293 | proof | |
| 2294 | assume "AE x in density M f. P x" | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2295 |   with f obtain N where "{x \<in> space M. \<not> P x} \<subseteq> N" "N \<in> sets M" and ae: "AE x in M. x \<in> N \<longrightarrow> f x = 0"
 | 
| 47694 | 2296 | by (auto simp: eventually_ae_filter null_sets_density_iff) | 
| 2297 | then have "AE x in M. x \<notin> N \<longrightarrow> P x" by auto | |
| 2298 | with ae show "AE x in M. 0 < f x \<longrightarrow> P x" | |
| 2299 | by (rule eventually_elim2) auto | |
| 2300 | next | |
| 2301 | fix N assume ae: "AE x in M. 0 < f x \<longrightarrow> P x" | |
| 2302 |   then obtain N where "{x \<in> space M. \<not> (0 < f x \<longrightarrow> P x)} \<subseteq> N" "N \<in> null_sets M"
 | |
| 2303 | by (auto simp: eventually_ae_filter) | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2304 |   then have *: "{x \<in> space (density M f). \<not> P x} \<subseteq> N \<union> {x\<in>space M. f x = 0}"
 | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2305 |     "N \<union> {x\<in>space M. f x = 0} \<in> sets M" and ae2: "AE x in M. x \<notin> N"
 | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2306 | using f by (auto simp: subset_eq zero_less_iff_neq_zero intro!: AE_not_in) | 
| 47694 | 2307 | show "AE x in density M f. P x" | 
| 2308 | using ae2 | |
| 2309 | unfolding eventually_ae_filter[of _ "density M f"] Bex_def null_sets_density_iff[OF f] | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2310 |     by (intro exI[of _ "N \<union> {x\<in>space M. f x = 0}"] conjI *) (auto elim: eventually_elim2)
 | 
| 35582 | 2311 | qed | 
| 2312 | ||
| 70136 | 2313 | lemma\<^marker>\<open>tag important\<close> nn_integral_density: | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2314 | assumes f: "f \<in> borel_measurable M" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2315 | assumes g: "g \<in> borel_measurable M" | 
| 56996 | 2316 | shows "integral\<^sup>N (density M f) g = (\<integral>\<^sup>+ x. f x * g x \<partial>M)" | 
| 70136 | 2317 | using g proof induct | 
| 49798 | 2318 | case (cong u v) | 
| 49799 
15ea98537c76
strong nonnegativ (instead of ae nn) for induction rule
 hoelzl parents: 
49798diff
changeset | 2319 | then show ?case | 
| 56996 | 2320 | apply (subst nn_integral_cong[OF cong(3)]) | 
| 2321 | apply (simp_all cong: nn_integral_cong) | |
| 49798 | 2322 | done | 
| 2323 | next | |
| 2324 | case (set A) then show ?case | |
| 2325 | by (simp add: emeasure_density f) | |
| 2326 | next | |
| 2327 | case (mult u c) | |
| 2328 | moreover have "\<And>x. f x * (c * u x) = c * (f x * u x)" by (simp add: field_simps) | |
| 2329 | ultimately show ?case | |
| 56996 | 2330 | using f by (simp add: nn_integral_cmult) | 
| 49798 | 2331 | next | 
| 2332 | case (add u v) | |
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53015diff
changeset | 2333 | then have "\<And>x. f x * (v x + u x) = f x * v x + f x * u x" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2334 | by (simp add: distrib_left) | 
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53015diff
changeset | 2335 | with add f show ?case | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2336 | by (auto simp add: nn_integral_add intro!: nn_integral_add[symmetric]) | 
| 49798 | 2337 | next | 
| 2338 | case (seq U) | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2339 | have eq: "AE x in M. f x * (SUP i. U i x) = (SUP i. f x * U i x)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2340 | by eventually_elim (simp add: SUP_mult_left_ennreal seq) | 
| 49798 | 2341 | from seq f show ?case | 
| 69861 
62e47f06d22c
avoid context-sensitive simp rules whose context-free form (image_comp) is not simp by default
 haftmann parents: 
69661diff
changeset | 2342 | apply (simp add: nn_integral_monotone_convergence_SUP image_comp) | 
| 56996 | 2343 | apply (subst nn_integral_cong_AE[OF eq]) | 
| 2344 | apply (subst nn_integral_monotone_convergence_SUP_AE) | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2345 | apply (auto simp: incseq_def le_fun_def intro!: mult_left_mono) | 
| 49798 | 2346 | done | 
| 47694 | 2347 | qed | 
| 38705 | 2348 | |
| 57275 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
57137diff
changeset | 2349 | lemma density_distr: | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
57137diff
changeset | 2350 | assumes [measurable]: "f \<in> borel_measurable N" "X \<in> measurable M N" | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
57137diff
changeset | 2351 | shows "density (distr M N X) f = distr (density M (\<lambda>x. f (X x))) N X" | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
57137diff
changeset | 2352 | by (intro measure_eqI) | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
57137diff
changeset | 2353 | (auto simp add: emeasure_density nn_integral_distr emeasure_distr | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
57137diff
changeset | 2354 | split: split_indicator intro!: nn_integral_cong) | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
57137diff
changeset | 2355 | |
| 47694 | 2356 | lemma emeasure_restricted: | 
| 2357 | assumes S: "S \<in> sets M" and X: "X \<in> sets M" | |
| 2358 | shows "emeasure (density M (indicator S)) X = emeasure M (S \<inter> X)" | |
| 38705 | 2359 | proof - | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51340diff
changeset | 2360 | have "emeasure (density M (indicator S)) X = (\<integral>\<^sup>+x. indicator S x * indicator X x \<partial>M)" | 
| 47694 | 2361 | using S X by (simp add: emeasure_density) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51340diff
changeset | 2362 | also have "\<dots> = (\<integral>\<^sup>+x. indicator (S \<inter> X) x \<partial>M)" | 
| 56996 | 2363 | by (auto intro!: nn_integral_cong simp: indicator_def) | 
| 47694 | 2364 | also have "\<dots> = emeasure M (S \<inter> X)" | 
| 50244 
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
 immler parents: 
50104diff
changeset | 2365 | using S X by (simp add: sets.Int) | 
| 47694 | 2366 | finally show ?thesis . | 
| 2367 | qed | |
| 2368 | ||
| 2369 | lemma measure_restricted: | |
| 2370 | "S \<in> sets M \<Longrightarrow> X \<in> sets M \<Longrightarrow> measure (density M (indicator S)) X = measure M (S \<inter> X)" | |
| 2371 | by (simp add: emeasure_restricted measure_def) | |
| 2372 | ||
| 2373 | lemma (in finite_measure) finite_measure_restricted: | |
| 2374 | "S \<in> sets M \<Longrightarrow> finite_measure (density M (indicator S))" | |
| 61169 | 2375 | by standard (simp add: emeasure_restricted) | 
| 47694 | 2376 | |
| 2377 | lemma emeasure_density_const: | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2378 | "A \<in> sets M \<Longrightarrow> emeasure (density M (\<lambda>_. c)) A = c * emeasure M A" | 
| 56996 | 2379 | by (auto simp: nn_integral_cmult_indicator emeasure_density) | 
| 47694 | 2380 | |
| 2381 | lemma measure_density_const: | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2382 | "A \<in> sets M \<Longrightarrow> c \<noteq> \<infinity> \<Longrightarrow> measure (density M (\<lambda>_. c)) A = enn2real c * measure M A" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2383 | by (auto simp: emeasure_density_const measure_def enn2real_mult) | 
| 47694 | 2384 | |
| 2385 | lemma density_density_eq: | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2386 | "f \<in> borel_measurable M \<Longrightarrow> g \<in> borel_measurable M \<Longrightarrow> | 
| 47694 | 2387 | density (density M f) g = density M (\<lambda>x. f x * g x)" | 
| 56996 | 2388 | by (auto intro!: measure_eqI simp: emeasure_density nn_integral_density ac_simps) | 
| 47694 | 2389 | |
| 2390 | lemma distr_density_distr: | |
| 2391 | assumes T: "T \<in> measurable M M'" and T': "T' \<in> measurable M' M" | |
| 2392 | and inv: "\<forall>x\<in>space M. T' (T x) = x" | |
| 2393 | assumes f: "f \<in> borel_measurable M'" | |
| 2394 | shows "distr (density (distr M M' T) f) M T' = density M (f \<circ> T)" (is "?R = ?L") | |
| 2395 | proof (rule measure_eqI) | |
| 2396 | fix A assume A: "A \<in> sets ?R" | |
| 2397 |   { fix x assume "x \<in> space M"
 | |
| 50244 
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
 immler parents: 
50104diff
changeset | 2398 | with sets.sets_into_space[OF A] | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2399 | have "indicator (T' -` A \<inter> space M') (T x) = (indicator A x :: ennreal)" | 
| 47694 | 2400 | using T inv by (auto simp: indicator_def measurable_space) } | 
| 2401 | with A T T' f show "emeasure ?R A = emeasure ?L A" | |
| 2402 | by (simp add: measurable_comp emeasure_density emeasure_distr | |
| 56996 | 2403 | nn_integral_distr measurable_sets cong: nn_integral_cong) | 
| 47694 | 2404 | qed simp | 
| 2405 | ||
| 2406 | lemma density_density_divide: | |
| 2407 | fixes f g :: "'a \<Rightarrow> real" | |
| 2408 | assumes f: "f \<in> borel_measurable M" "AE x in M. 0 \<le> f x" | |
| 2409 | assumes g: "g \<in> borel_measurable M" "AE x in M. 0 \<le> g x" | |
| 2410 | assumes ac: "AE x in M. f x = 0 \<longrightarrow> g x = 0" | |
| 2411 | shows "density (density M f) (\<lambda>x. g x / f x) = density M g" | |
| 2412 | proof - | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2413 | have "density M g = density M (\<lambda>x. ennreal (f x) * ennreal (g x / f x))" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2414 | using f g ac by (auto intro!: density_cong measurable_If simp: ennreal_mult[symmetric]) | 
| 47694 | 2415 | then show ?thesis | 
| 2416 | using f g by (subst density_density_eq) auto | |
| 38705 | 2417 | qed | 
| 2418 | ||
| 59425 | 2419 | lemma density_1: "density M (\<lambda>_. 1) = M" | 
| 2420 | by (intro measure_eqI) (auto simp: emeasure_density) | |
| 2421 | ||
| 2422 | lemma emeasure_density_add: | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61359diff
changeset | 2423 | assumes X: "X \<in> sets M" | 
| 59425 | 2424 | assumes Mf[measurable]: "f \<in> borel_measurable M" | 
| 2425 | assumes Mg[measurable]: "g \<in> borel_measurable M" | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61359diff
changeset | 2426 | shows "emeasure (density M f) X + emeasure (density M g) X = | 
| 59425 | 2427 | emeasure (density M (\<lambda>x. f x + g x)) X" | 
| 2428 | using assms | |
| 2429 | apply (subst (1 2 3) emeasure_density, simp_all) [] | |
| 2430 | apply (subst nn_integral_add[symmetric], simp_all) [] | |
| 2431 | apply (intro nn_integral_cong, simp split: split_indicator) | |
| 2432 | done | |
| 2433 | ||
| 61808 | 2434 | subsubsection \<open>Point measure\<close> | 
| 47694 | 2435 | |
| 70136 | 2436 | definition\<^marker>\<open>tag important\<close> point_measure :: "'a set \<Rightarrow> ('a \<Rightarrow> ennreal) \<Rightarrow> 'a measure" where
 | 
| 47694 | 2437 | "point_measure A f = density (count_space A) f" | 
| 2438 | ||
| 2439 | lemma | |
| 2440 | shows space_point_measure: "space (point_measure A f) = A" | |
| 2441 | and sets_point_measure: "sets (point_measure A f) = Pow A" | |
| 2442 | by (auto simp: point_measure_def) | |
| 2443 | ||
| 59048 | 2444 | lemma sets_point_measure_count_space[measurable_cong]: "sets (point_measure A f) = sets (count_space A)" | 
| 2445 | by (simp add: sets_point_measure) | |
| 2446 | ||
| 47694 | 2447 | lemma measurable_point_measure_eq1[simp]: | 
| 2448 | "g \<in> measurable (point_measure A f) M \<longleftrightarrow> g \<in> A \<rightarrow> space M" | |
| 2449 | unfolding point_measure_def by simp | |
| 2450 | ||
| 2451 | lemma measurable_point_measure_eq2_finite[simp]: | |
| 2452 | "finite A \<Longrightarrow> | |
| 2453 | g \<in> measurable M (point_measure A f) \<longleftrightarrow> | |
| 2454 |     (g \<in> space M \<rightarrow> A \<and> (\<forall>a\<in>A. g -` {a} \<inter> space M \<in> sets M))"
 | |
| 50002 
ce0d316b5b44
add measurability prover; add support for Borel sets
 hoelzl parents: 
50001diff
changeset | 2455 | unfolding point_measure_def by (simp add: measurable_count_space_eq2) | 
| 47694 | 2456 | |
| 2457 | lemma simple_function_point_measure[simp]: | |
| 2458 | "simple_function (point_measure A f) g \<longleftrightarrow> finite (g ` A)" | |
| 2459 | by (simp add: point_measure_def) | |
| 2460 | ||
| 2461 | lemma emeasure_point_measure: | |
| 2462 |   assumes A: "finite {a\<in>X. 0 < f a}" "X \<subseteq> A"
 | |
| 2463 | shows "emeasure (point_measure A f) X = (\<Sum>a|a\<in>X \<and> 0 < f a. f a)" | |
| 35977 | 2464 | proof - | 
| 47694 | 2465 |   have "{a. (a \<in> X \<longrightarrow> a \<in> A \<and> 0 < f a) \<and> a \<in> X} = {a\<in>X. 0 < f a}"
 | 
| 61808 | 2466 | using \<open>X \<subseteq> A\<close> by auto | 
| 47694 | 2467 | with A show ?thesis | 
| 73536 | 2468 | by (simp add: emeasure_density nn_integral_count_space point_measure_def indicator_def of_bool_def) | 
| 35977 | 2469 | qed | 
| 2470 | ||
| 47694 | 2471 | lemma emeasure_point_measure_finite: | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2472 | "finite A \<Longrightarrow> X \<subseteq> A \<Longrightarrow> emeasure (point_measure A f) X = (\<Sum>a\<in>X. f a)" | 
| 64267 | 2473 | by (subst emeasure_point_measure) (auto dest: finite_subset intro!: sum.mono_neutral_left simp: less_le) | 
| 47694 | 2474 | |
| 49795 | 2475 | lemma emeasure_point_measure_finite2: | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2476 | "X \<subseteq> A \<Longrightarrow> finite X \<Longrightarrow> emeasure (point_measure A f) X = (\<Sum>a\<in>X. f a)" | 
| 49795 | 2477 | by (subst emeasure_point_measure) | 
| 64267 | 2478 | (auto dest: finite_subset intro!: sum.mono_neutral_left simp: less_le) | 
| 49795 | 2479 | |
| 47694 | 2480 | lemma null_sets_point_measure_iff: | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2481 | "X \<in> null_sets (point_measure A f) \<longleftrightarrow> X \<subseteq> A \<and> (\<forall>x\<in>X. f x = 0)" | 
| 47694 | 2482 | by (auto simp: AE_count_space null_sets_density_iff point_measure_def) | 
| 2483 | ||
| 2484 | lemma AE_point_measure: | |
| 2485 | "(AE x in point_measure A f. P x) \<longleftrightarrow> (\<forall>x\<in>A. 0 < f x \<longrightarrow> P x)" | |
| 2486 | unfolding point_measure_def | |
| 2487 | by (subst AE_density) (auto simp: AE_density AE_count_space point_measure_def) | |
| 2488 | ||
| 56996 | 2489 | lemma nn_integral_point_measure: | 
| 47694 | 2490 |   "finite {a\<in>A. 0 < f a \<and> 0 < g a} \<Longrightarrow>
 | 
| 56996 | 2491 | integral\<^sup>N (point_measure A f) g = (\<Sum>a|a\<in>A \<and> 0 < f a \<and> 0 < g a. f a * g a)" | 
| 47694 | 2492 | unfolding point_measure_def | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2493 | by (subst nn_integral_density) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2494 | (simp_all add: nn_integral_density nn_integral_count_space ennreal_zero_less_mult_iff) | 
| 47694 | 2495 | |
| 56996 | 2496 | lemma nn_integral_point_measure_finite: | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2497 | "finite A \<Longrightarrow> integral\<^sup>N (point_measure A f) g = (\<Sum>a\<in>A. f a * g a)" | 
| 64267 | 2498 | by (subst nn_integral_point_measure) (auto intro!: sum.mono_neutral_left simp: less_le) | 
| 47694 | 2499 | |
| 61808 | 2500 | subsubsection \<open>Uniform measure\<close> | 
| 47694 | 2501 | |
| 70136 | 2502 | definition\<^marker>\<open>tag important\<close> "uniform_measure M A = density M (\<lambda>x. indicator A x / emeasure M A)" | 
| 47694 | 2503 | |
| 2504 | lemma | |
| 59048 | 2505 | shows sets_uniform_measure[simp, measurable_cong]: "sets (uniform_measure M A) = sets M" | 
| 47694 | 2506 | and space_uniform_measure[simp]: "space (uniform_measure M A) = space M" | 
| 2507 | by (auto simp: uniform_measure_def) | |
| 2508 | ||
| 2509 | lemma emeasure_uniform_measure[simp]: | |
| 2510 | assumes A: "A \<in> sets M" and B: "B \<in> sets M" | |
| 2511 | shows "emeasure (uniform_measure M A) B = emeasure M (A \<inter> B) / emeasure M A" | |
| 2512 | proof - | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51340diff
changeset | 2513 | from A B have "emeasure (uniform_measure M A) B = (\<integral>\<^sup>+x. (1 / emeasure M A) * indicator (A \<inter> B) x \<partial>M)" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2514 | by (auto simp add: uniform_measure_def emeasure_density divide_ennreal_def split: split_indicator | 
| 56996 | 2515 | intro!: nn_integral_cong) | 
| 47694 | 2516 | also have "\<dots> = emeasure M (A \<inter> B) / emeasure M A" | 
| 2517 | using A B | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2518 | by (subst nn_integral_cmult_indicator) (simp_all add: sets.Int divide_ennreal_def mult.commute) | 
| 47694 | 2519 | finally show ?thesis . | 
| 2520 | qed | |
| 2521 | ||
| 2522 | lemma measure_uniform_measure[simp]: | |
| 2523 | assumes A: "emeasure M A \<noteq> 0" "emeasure M A \<noteq> \<infinity>" and B: "B \<in> sets M" | |
| 2524 | shows "measure (uniform_measure M A) B = measure M (A \<inter> B) / measure M A" | |
| 2525 | using emeasure_uniform_measure[OF emeasure_neq_0_sets[OF A(1)] B] A | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2526 | by (cases "emeasure M A" "emeasure M (A \<inter> B)" rule: ennreal2_cases) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2527 | (simp_all add: measure_def divide_ennreal top_ennreal.rep_eq top_ereal_def ennreal_top_divide) | 
| 47694 | 2528 | |
| 58606 | 2529 | lemma AE_uniform_measureI: | 
| 2530 | "A \<in> sets M \<Longrightarrow> (AE x in M. x \<in> A \<longrightarrow> P x) \<Longrightarrow> (AE x in uniform_measure M A. P x)" | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2531 | unfolding uniform_measure_def by (auto simp: AE_density divide_ennreal_def) | 
| 58606 | 2532 | |
| 59000 | 2533 | lemma emeasure_uniform_measure_1: | 
| 2534 | "emeasure M S \<noteq> 0 \<Longrightarrow> emeasure M S \<noteq> \<infinity> \<Longrightarrow> emeasure (uniform_measure M S) S = 1" | |
| 2535 | by (subst emeasure_uniform_measure) | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2536 | (simp_all add: emeasure_neq_0_sets emeasure_eq_ennreal_measure divide_ennreal | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2537 | zero_less_iff_neq_zero[symmetric]) | 
| 59000 | 2538 | |
| 2539 | lemma nn_integral_uniform_measure: | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2540 | assumes f[measurable]: "f \<in> borel_measurable M" and S[measurable]: "S \<in> sets M" | 
| 59000 | 2541 | shows "(\<integral>\<^sup>+x. f x \<partial>uniform_measure M S) = (\<integral>\<^sup>+x. f x * indicator S x \<partial>M) / emeasure M S" | 
| 2542 | proof - | |
| 2543 |   { assume "emeasure M S = \<infinity>"
 | |
| 2544 | then have ?thesis | |
| 2545 | by (simp add: uniform_measure_def nn_integral_density f) } | |
| 2546 | moreover | |
| 2547 |   { assume [simp]: "emeasure M S = 0"
 | |
| 2548 | then have ae: "AE x in M. x \<notin> S" | |
| 2549 | using sets.sets_into_space[OF S] | |
| 2550 | by (subst AE_iff_measurable[OF _ refl]) (simp_all add: subset_eq cong: rev_conj_cong) | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2551 | from ae have "(\<integral>\<^sup>+ x. indicator S x / 0 * f x \<partial>M) = 0" | 
| 59000 | 2552 | by (subst nn_integral_0_iff_AE) auto | 
| 2553 | moreover from ae have "(\<integral>\<^sup>+ x. f x * indicator S x \<partial>M) = 0" | |
| 2554 | by (subst nn_integral_0_iff_AE) auto | |
| 2555 | ultimately have ?thesis | |
| 2556 | by (simp add: uniform_measure_def nn_integral_density f) } | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2557 | moreover have "emeasure M S \<noteq> 0 \<Longrightarrow> emeasure M S \<noteq> \<infinity> \<Longrightarrow> ?thesis" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2558 | unfolding uniform_measure_def | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2559 | by (subst nn_integral_density) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2560 | (auto simp: ennreal_times_divide f nn_integral_divide[symmetric] mult.commute) | 
| 59000 | 2561 | ultimately show ?thesis by blast | 
| 2562 | qed | |
| 2563 | ||
| 2564 | lemma AE_uniform_measure: | |
| 2565 | assumes "emeasure M A \<noteq> 0" "emeasure M A < \<infinity>" | |
| 2566 | shows "(AE x in uniform_measure M A. P x) \<longleftrightarrow> (AE x in M. x \<in> A \<longrightarrow> P x)" | |
| 2567 | proof - | |
| 2568 | have "A \<in> sets M" | |
| 61808 | 2569 | using \<open>emeasure M A \<noteq> 0\<close> by (metis emeasure_notin_sets) | 
| 59000 | 2570 | moreover have "\<And>x. 0 < indicator A x / emeasure M A \<longleftrightarrow> x \<in> A" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2571 | using assms | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2572 | by (cases "emeasure M A") (auto split: split_indicator simp: ennreal_zero_less_divide) | 
| 59000 | 2573 | ultimately show ?thesis | 
| 2574 | unfolding uniform_measure_def by (simp add: AE_density) | |
| 2575 | qed | |
| 2576 | ||
| 70136 | 2577 | subsubsection\<^marker>\<open>tag unimportant\<close> \<open>Null measure\<close> | 
| 59425 | 2578 | |
| 2579 | lemma null_measure_eq_density: "null_measure M = density M (\<lambda>_. 0)" | |
| 2580 | by (intro measure_eqI) (simp_all add: emeasure_density) | |
| 2581 | ||
| 2582 | lemma nn_integral_null_measure[simp]: "(\<integral>\<^sup>+x. f x \<partial>null_measure M) = 0" | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2583 | by (auto simp add: nn_integral_def simple_integral_def SUP_constant bot_ennreal_def le_fun_def | 
| 59425 | 2584 | intro!: exI[of _ "\<lambda>x. 0"]) | 
| 2585 | ||
| 2586 | lemma density_null_measure[simp]: "density (null_measure M) f = null_measure M" | |
| 2587 | proof (intro measure_eqI) | |
| 2588 | fix A show "emeasure (density (null_measure M) f) A = emeasure (null_measure M) A" | |
| 2589 | by (simp add: density_def) (simp only: null_measure_def[symmetric] emeasure_null_measure) | |
| 2590 | qed simp | |
| 2591 | ||
| 61808 | 2592 | subsubsection \<open>Uniform count measure\<close> | 
| 47694 | 2593 | |
| 70136 | 2594 | definition\<^marker>\<open>tag important\<close> "uniform_count_measure A = point_measure A (\<lambda>x. 1 / card A)" | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61359diff
changeset | 2595 | |
| 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61359diff
changeset | 2596 | lemma | 
| 47694 | 2597 | shows space_uniform_count_measure: "space (uniform_count_measure A) = A" | 
| 2598 | and sets_uniform_count_measure: "sets (uniform_count_measure A) = Pow A" | |
| 2599 | unfolding uniform_count_measure_def by (auto simp: space_point_measure sets_point_measure) | |
| 59048 | 2600 | |
| 2601 | lemma sets_uniform_count_measure_count_space[measurable_cong]: | |
| 2602 | "sets (uniform_count_measure A) = sets (count_space A)" | |
| 2603 | by (simp add: sets_uniform_count_measure) | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61359diff
changeset | 2604 | |
| 47694 | 2605 | lemma emeasure_uniform_count_measure: | 
| 2606 | "finite A \<Longrightarrow> X \<subseteq> A \<Longrightarrow> emeasure (uniform_count_measure A) X = card X / card A" | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2607 | by (simp add: emeasure_point_measure_finite uniform_count_measure_def divide_inverse ennreal_mult | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2608 | ennreal_of_nat_eq_real_of_nat) | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61359diff
changeset | 2609 | |
| 47694 | 2610 | lemma measure_uniform_count_measure: | 
| 2611 | "finite A \<Longrightarrow> X \<subseteq> A \<Longrightarrow> measure (uniform_count_measure A) X = card X / card A" | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2612 | by (simp add: emeasure_point_measure_finite uniform_count_measure_def measure_def enn2real_mult) | 
| 47694 | 2613 | |
| 61633 | 2614 | lemma space_uniform_count_measure_empty_iff [simp]: | 
| 2615 |   "space (uniform_count_measure X) = {} \<longleftrightarrow> X = {}"
 | |
| 2616 | by(simp add: space_uniform_count_measure) | |
| 2617 | ||
| 2618 | lemma sets_uniform_count_measure_eq_UNIV [simp]: | |
| 2619 | "sets (uniform_count_measure UNIV) = UNIV \<longleftrightarrow> True" | |
| 2620 | "UNIV = sets (uniform_count_measure UNIV) \<longleftrightarrow> True" | |
| 2621 | by(simp_all add: sets_uniform_count_measure) | |
| 2622 | ||
| 70136 | 2623 | subsubsection\<^marker>\<open>tag unimportant\<close> \<open>Scaled measure\<close> | 
| 61634 | 2624 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2625 | lemma nn_integral_scale_measure: | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2626 | assumes f: "f \<in> borel_measurable M" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2627 | shows "nn_integral (scale_measure r M) f = r * nn_integral M f" | 
| 61634 | 2628 | using f | 
| 2629 | proof induction | |
| 2630 | case (cong f g) | |
| 2631 | thus ?case | |
| 2632 | by(simp add: cong.hyps space_scale_measure cong: nn_integral_cong_simp) | |
| 2633 | next | |
| 2634 | case (mult f c) | |
| 2635 | thus ?case | |
| 2636 | by(simp add: nn_integral_cmult max_def mult.assoc mult.left_commute) | |
| 2637 | next | |
| 2638 | case (add f g) | |
| 2639 | thus ?case | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2640 | by(simp add: nn_integral_add distrib_left) | 
| 61634 | 2641 | next | 
| 2642 | case (seq U) | |
| 2643 | thus ?case | |
| 69861 
62e47f06d22c
avoid context-sensitive simp rules whose context-free form (image_comp) is not simp by default
 haftmann parents: 
69661diff
changeset | 2644 | by(simp add: nn_integral_monotone_convergence_SUP SUP_mult_left_ennreal image_comp) | 
| 61634 | 2645 | qed simp | 
| 2646 | ||
| 35748 | 2647 | end |