author | wenzelm |
Thu, 15 Mar 2012 09:55:42 +0100 | |
changeset 46939 | 5b67ac48b384 |
parent 46884 | 154dc6ec0041 |
child 46981 | d54cea5b64e4 |
permissions | -rw-r--r-- |
10358 | 1 |
(* Title: HOL/Relation.thy |
46664
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents:
46638
diff
changeset
|
2 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory; Stefan Berghofer, TU Muenchen |
1128
64b30e3cc6d4
Trancl is now based on Relation which used to be in Integ.
nipkow
parents:
diff
changeset
|
3 |
*) |
64b30e3cc6d4
Trancl is now based on Relation which used to be in Integ.
nipkow
parents:
diff
changeset
|
4 |
|
46664
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents:
46638
diff
changeset
|
5 |
header {* Relations – as sets of pairs, and binary predicates *} |
12905 | 6 |
|
15131 | 7 |
theory Relation |
32850 | 8 |
imports Datatype Finite_Set |
15131 | 9 |
begin |
5978
fa2c2dd74f8c
moved diag (diagonal relation) from Univ to Relation
paulson
parents:
5608
diff
changeset
|
10 |
|
46694 | 11 |
text {* A preliminary: classical rules for reasoning on predicates *} |
46664
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents:
46638
diff
changeset
|
12 |
|
46882 | 13 |
declare predicate1I [Pure.intro!, intro!] |
14 |
declare predicate1D [Pure.dest, dest] |
|
46664
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents:
46638
diff
changeset
|
15 |
declare predicate2I [Pure.intro!, intro!] |
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents:
46638
diff
changeset
|
16 |
declare predicate2D [Pure.dest, dest] |
46767
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
17 |
declare bot1E [elim!] |
46664
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents:
46638
diff
changeset
|
18 |
declare bot2E [elim!] |
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents:
46638
diff
changeset
|
19 |
declare top1I [intro!] |
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents:
46638
diff
changeset
|
20 |
declare top2I [intro!] |
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents:
46638
diff
changeset
|
21 |
declare inf1I [intro!] |
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents:
46638
diff
changeset
|
22 |
declare inf2I [intro!] |
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents:
46638
diff
changeset
|
23 |
declare inf1E [elim!] |
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents:
46638
diff
changeset
|
24 |
declare inf2E [elim!] |
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents:
46638
diff
changeset
|
25 |
declare sup1I1 [intro?] |
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents:
46638
diff
changeset
|
26 |
declare sup2I1 [intro?] |
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents:
46638
diff
changeset
|
27 |
declare sup1I2 [intro?] |
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents:
46638
diff
changeset
|
28 |
declare sup2I2 [intro?] |
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents:
46638
diff
changeset
|
29 |
declare sup1E [elim!] |
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents:
46638
diff
changeset
|
30 |
declare sup2E [elim!] |
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents:
46638
diff
changeset
|
31 |
declare sup1CI [intro!] |
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents:
46638
diff
changeset
|
32 |
declare sup2CI [intro!] |
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents:
46638
diff
changeset
|
33 |
declare INF1_I [intro!] |
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents:
46638
diff
changeset
|
34 |
declare INF2_I [intro!] |
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents:
46638
diff
changeset
|
35 |
declare INF1_D [elim] |
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents:
46638
diff
changeset
|
36 |
declare INF2_D [elim] |
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents:
46638
diff
changeset
|
37 |
declare INF1_E [elim] |
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents:
46638
diff
changeset
|
38 |
declare INF2_E [elim] |
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents:
46638
diff
changeset
|
39 |
declare SUP1_I [intro] |
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents:
46638
diff
changeset
|
40 |
declare SUP2_I [intro] |
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents:
46638
diff
changeset
|
41 |
declare SUP1_E [elim!] |
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents:
46638
diff
changeset
|
42 |
declare SUP2_E [elim!] |
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents:
46638
diff
changeset
|
43 |
|
46694 | 44 |
subsection {* Fundamental *} |
46664
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents:
46638
diff
changeset
|
45 |
|
46694 | 46 |
subsubsection {* Relations as sets of pairs *} |
47 |
||
48 |
type_synonym 'a rel = "('a * 'a) set" |
|
49 |
||
50 |
lemma subrelI: -- {* Version of @{thm [source] subsetI} for binary relations *} |
|
51 |
"(\<And>x y. (x, y) \<in> r \<Longrightarrow> (x, y) \<in> s) \<Longrightarrow> r \<subseteq> s" |
|
52 |
by auto |
|
53 |
||
54 |
lemma lfp_induct2: -- {* Version of @{thm [source] lfp_induct} for binary relations *} |
|
55 |
"(a, b) \<in> lfp f \<Longrightarrow> mono f \<Longrightarrow> |
|
56 |
(\<And>a b. (a, b) \<in> f (lfp f \<inter> {(x, y). P x y}) \<Longrightarrow> P a b) \<Longrightarrow> P a b" |
|
57 |
using lfp_induct_set [of "(a, b)" f "prod_case P"] by auto |
|
58 |
||
59 |
||
60 |
subsubsection {* Conversions between set and predicate relations *} |
|
46664
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents:
46638
diff
changeset
|
61 |
|
46833 | 62 |
lemma pred_equals_eq [pred_set_conv]: "(\<lambda>x. x \<in> R) = (\<lambda>x. x \<in> S) \<longleftrightarrow> R = S" |
46664
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents:
46638
diff
changeset
|
63 |
by (simp add: set_eq_iff fun_eq_iff) |
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents:
46638
diff
changeset
|
64 |
|
46833 | 65 |
lemma pred_equals_eq2 [pred_set_conv]: "(\<lambda>x y. (x, y) \<in> R) = (\<lambda>x y. (x, y) \<in> S) \<longleftrightarrow> R = S" |
46664
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents:
46638
diff
changeset
|
66 |
by (simp add: set_eq_iff fun_eq_iff) |
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents:
46638
diff
changeset
|
67 |
|
46833 | 68 |
lemma pred_subset_eq [pred_set_conv]: "(\<lambda>x. x \<in> R) \<le> (\<lambda>x. x \<in> S) \<longleftrightarrow> R \<subseteq> S" |
46664
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents:
46638
diff
changeset
|
69 |
by (simp add: subset_iff le_fun_def) |
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents:
46638
diff
changeset
|
70 |
|
46833 | 71 |
lemma pred_subset_eq2 [pred_set_conv]: "(\<lambda>x y. (x, y) \<in> R) \<le> (\<lambda>x y. (x, y) \<in> S) \<longleftrightarrow> R \<subseteq> S" |
46664
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents:
46638
diff
changeset
|
72 |
by (simp add: subset_iff le_fun_def) |
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents:
46638
diff
changeset
|
73 |
|
46883
eec472dae593
tuned pred_set_conv lemmas. Skipped lemmas changing the lemmas generated by inductive_set
noschinl
parents:
46882
diff
changeset
|
74 |
lemma bot_empty_eq [pred_set_conv]: "\<bottom> = (\<lambda>x. x \<in> {})" |
46689 | 75 |
by (auto simp add: fun_eq_iff) |
76 |
||
46883
eec472dae593
tuned pred_set_conv lemmas. Skipped lemmas changing the lemmas generated by inductive_set
noschinl
parents:
46882
diff
changeset
|
77 |
lemma bot_empty_eq2 [pred_set_conv]: "\<bottom> = (\<lambda>x y. (x, y) \<in> {})" |
46664
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents:
46638
diff
changeset
|
78 |
by (auto simp add: fun_eq_iff) |
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents:
46638
diff
changeset
|
79 |
|
46883
eec472dae593
tuned pred_set_conv lemmas. Skipped lemmas changing the lemmas generated by inductive_set
noschinl
parents:
46882
diff
changeset
|
80 |
lemma top_empty_eq [pred_set_conv]: "\<top> = (\<lambda>x. x \<in> UNIV)" |
eec472dae593
tuned pred_set_conv lemmas. Skipped lemmas changing the lemmas generated by inductive_set
noschinl
parents:
46882
diff
changeset
|
81 |
by (auto simp add: fun_eq_iff) |
46689 | 82 |
|
46883
eec472dae593
tuned pred_set_conv lemmas. Skipped lemmas changing the lemmas generated by inductive_set
noschinl
parents:
46882
diff
changeset
|
83 |
lemma top_empty_eq2 [pred_set_conv]: "\<top> = (\<lambda>x y. (x, y) \<in> UNIV)" |
eec472dae593
tuned pred_set_conv lemmas. Skipped lemmas changing the lemmas generated by inductive_set
noschinl
parents:
46882
diff
changeset
|
84 |
by (auto simp add: fun_eq_iff) |
46664
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents:
46638
diff
changeset
|
85 |
|
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents:
46638
diff
changeset
|
86 |
lemma inf_Int_eq [pred_set_conv]: "(\<lambda>x. x \<in> R) \<sqinter> (\<lambda>x. x \<in> S) = (\<lambda>x. x \<in> R \<inter> S)" |
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents:
46638
diff
changeset
|
87 |
by (simp add: inf_fun_def) |
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents:
46638
diff
changeset
|
88 |
|
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents:
46638
diff
changeset
|
89 |
lemma inf_Int_eq2 [pred_set_conv]: "(\<lambda>x y. (x, y) \<in> R) \<sqinter> (\<lambda>x y. (x, y) \<in> S) = (\<lambda>x y. (x, y) \<in> R \<inter> S)" |
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents:
46638
diff
changeset
|
90 |
by (simp add: inf_fun_def) |
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents:
46638
diff
changeset
|
91 |
|
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents:
46638
diff
changeset
|
92 |
lemma sup_Un_eq [pred_set_conv]: "(\<lambda>x. x \<in> R) \<squnion> (\<lambda>x. x \<in> S) = (\<lambda>x. x \<in> R \<union> S)" |
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents:
46638
diff
changeset
|
93 |
by (simp add: sup_fun_def) |
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents:
46638
diff
changeset
|
94 |
|
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents:
46638
diff
changeset
|
95 |
lemma sup_Un_eq2 [pred_set_conv]: "(\<lambda>x y. (x, y) \<in> R) \<squnion> (\<lambda>x y. (x, y) \<in> S) = (\<lambda>x y. (x, y) \<in> R \<union> S)" |
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents:
46638
diff
changeset
|
96 |
by (simp add: sup_fun_def) |
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents:
46638
diff
changeset
|
97 |
|
46833 | 98 |
lemma Inf_INT_eq [pred_set_conv]: "\<Sqinter>S = (\<lambda>x. x \<in> INTER S Collect)" |
46884 | 99 |
by (simp add: fun_eq_iff) |
46833 | 100 |
|
101 |
lemma INF_Int_eq [pred_set_conv]: "(\<Sqinter>i\<in>S. (\<lambda>x. x \<in> i)) = (\<lambda>x. x \<in> \<Inter>S)" |
|
46884 | 102 |
by (simp add: fun_eq_iff) |
46833 | 103 |
|
104 |
lemma Inf_INT_eq2 [pred_set_conv]: "\<Sqinter>S = (\<lambda>x y. (x, y) \<in> INTER (prod_case ` S) Collect)" |
|
46884 | 105 |
by (simp add: fun_eq_iff) |
46833 | 106 |
|
107 |
lemma INF_Int_eq2 [pred_set_conv]: "(\<Sqinter>i\<in>S. (\<lambda>x y. (x, y) \<in> i)) = (\<lambda>x y. (x, y) \<in> \<Inter>S)" |
|
46884 | 108 |
by (simp add: fun_eq_iff) |
46833 | 109 |
|
110 |
lemma Sup_SUP_eq [pred_set_conv]: "\<Squnion>S = (\<lambda>x. x \<in> UNION S Collect)" |
|
46884 | 111 |
by (simp add: fun_eq_iff) |
46833 | 112 |
|
113 |
lemma SUP_Sup_eq [pred_set_conv]: "(\<Squnion>i\<in>S. (\<lambda>x. x \<in> i)) = (\<lambda>x. x \<in> \<Union>S)" |
|
46884 | 114 |
by (simp add: fun_eq_iff) |
46833 | 115 |
|
116 |
lemma Sup_SUP_eq2 [pred_set_conv]: "\<Squnion>S = (\<lambda>x y. (x, y) \<in> UNION (prod_case ` S) Collect)" |
|
46884 | 117 |
by (simp add: fun_eq_iff) |
46833 | 118 |
|
119 |
lemma SUP_Sup_eq2 [pred_set_conv]: "(\<Squnion>i\<in>S. (\<lambda>x y. (x, y) \<in> i)) = (\<lambda>x y. (x, y) \<in> \<Union>S)" |
|
46884 | 120 |
by (simp add: fun_eq_iff) |
46833 | 121 |
|
46883
eec472dae593
tuned pred_set_conv lemmas. Skipped lemmas changing the lemmas generated by inductive_set
noschinl
parents:
46882
diff
changeset
|
122 |
lemma INF_INT_eq [pred_set_conv]: "(\<Sqinter>i. (\<lambda>x. x \<in> r i)) = (\<lambda>x. x \<in> (\<Inter>i. r i))" |
46884 | 123 |
by (simp add: fun_eq_iff) |
46833 | 124 |
|
125 |
lemma INF_INT_eq2 [pred_set_conv]: "(\<Sqinter>i\<in>S. (\<lambda>x y. (x, y) \<in> r i)) = (\<lambda>x y. (x, y) \<in> (\<Inter>i\<in>S. r i))" |
|
46884 | 126 |
by (simp add: fun_eq_iff) |
46833 | 127 |
|
46883
eec472dae593
tuned pred_set_conv lemmas. Skipped lemmas changing the lemmas generated by inductive_set
noschinl
parents:
46882
diff
changeset
|
128 |
lemma SUP_UN_eq [pred_set_conv]: "(\<Squnion>i. (\<lambda>x. x \<in> r i)) = (\<lambda>x. x \<in> (\<Union>i. r i))" |
46884 | 129 |
by (simp add: fun_eq_iff) |
46833 | 130 |
|
131 |
lemma SUP_UN_eq2 [pred_set_conv]: "(\<Squnion>i\<in>S. (\<lambda>x y. (x, y) \<in> r i)) = (\<lambda>x y. (x, y) \<in> (\<Union>i\<in>S. r i))" |
|
46884 | 132 |
by (simp add: fun_eq_iff) |
46833 | 133 |
|
46664
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents:
46638
diff
changeset
|
134 |
|
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents:
46638
diff
changeset
|
135 |
|
46694 | 136 |
subsection {* Properties of relations *} |
5978
fa2c2dd74f8c
moved diag (diagonal relation) from Univ to Relation
paulson
parents:
5608
diff
changeset
|
137 |
|
46692
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
138 |
subsubsection {* Reflexivity *} |
10786 | 139 |
|
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
140 |
definition refl_on :: "'a set \<Rightarrow> 'a rel \<Rightarrow> bool" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
141 |
where |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
142 |
"refl_on A r \<longleftrightarrow> r \<subseteq> A \<times> A \<and> (\<forall>x\<in>A. (x, x) \<in> r)" |
6806
43c081a0858d
new preficates refl, sym [from Integ/Equiv], antisym
paulson
parents:
5978
diff
changeset
|
143 |
|
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
144 |
abbreviation refl :: "'a rel \<Rightarrow> bool" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
145 |
where -- {* reflexivity over a type *} |
45137 | 146 |
"refl \<equiv> refl_on UNIV" |
26297 | 147 |
|
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
148 |
definition reflp :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
149 |
where |
46694 | 150 |
"reflp r \<longleftrightarrow> refl {(x, y). r x y}" |
151 |
||
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
152 |
lemma reflp_refl_eq [pred_set_conv]: |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
153 |
"reflp (\<lambda>x y. (x, y) \<in> r) \<longleftrightarrow> refl r" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
154 |
by (simp add: refl_on_def reflp_def) |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
155 |
|
46692
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
156 |
lemma refl_onI: "r \<subseteq> A \<times> A ==> (!!x. x : A ==> (x, x) : r) ==> refl_on A r" |
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
157 |
by (unfold refl_on_def) (iprover intro!: ballI) |
46692
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
158 |
|
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
159 |
lemma refl_onD: "refl_on A r ==> a : A ==> (a, a) : r" |
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
160 |
by (unfold refl_on_def) blast |
46692
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
161 |
|
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
162 |
lemma refl_onD1: "refl_on A r ==> (x, y) : r ==> x : A" |
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
163 |
by (unfold refl_on_def) blast |
46692
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
164 |
|
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
165 |
lemma refl_onD2: "refl_on A r ==> (x, y) : r ==> y : A" |
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
166 |
by (unfold refl_on_def) blast |
46692
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
167 |
|
46694 | 168 |
lemma reflpI: |
169 |
"(\<And>x. r x x) \<Longrightarrow> reflp r" |
|
170 |
by (auto intro: refl_onI simp add: reflp_def) |
|
171 |
||
172 |
lemma reflpE: |
|
173 |
assumes "reflp r" |
|
174 |
obtains "r x x" |
|
175 |
using assms by (auto dest: refl_onD simp add: reflp_def) |
|
176 |
||
46692
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
177 |
lemma refl_on_Int: "refl_on A r ==> refl_on B s ==> refl_on (A \<inter> B) (r \<inter> s)" |
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
178 |
by (unfold refl_on_def) blast |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
179 |
|
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
180 |
lemma reflp_inf: |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
181 |
"reflp r \<Longrightarrow> reflp s \<Longrightarrow> reflp (r \<sqinter> s)" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
182 |
by (auto intro: reflpI elim: reflpE) |
46692
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
183 |
|
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
184 |
lemma refl_on_Un: "refl_on A r ==> refl_on B s ==> refl_on (A \<union> B) (r \<union> s)" |
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
185 |
by (unfold refl_on_def) blast |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
186 |
|
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
187 |
lemma reflp_sup: |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
188 |
"reflp r \<Longrightarrow> reflp s \<Longrightarrow> reflp (r \<squnion> s)" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
189 |
by (auto intro: reflpI elim: reflpE) |
46692
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
190 |
|
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
191 |
lemma refl_on_INTER: |
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
192 |
"ALL x:S. refl_on (A x) (r x) ==> refl_on (INTER S A) (INTER S r)" |
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
193 |
by (unfold refl_on_def) fast |
46692
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
194 |
|
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
195 |
lemma refl_on_UNION: |
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
196 |
"ALL x:S. refl_on (A x) (r x) \<Longrightarrow> refl_on (UNION S A) (UNION S r)" |
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
197 |
by (unfold refl_on_def) blast |
46692
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
198 |
|
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
199 |
lemma refl_on_empty [simp]: "refl_on {} {}" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
200 |
by (simp add:refl_on_def) |
46692
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
201 |
|
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
202 |
lemma refl_on_def' [nitpick_unfold, code]: |
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
203 |
"refl_on A r \<longleftrightarrow> (\<forall>(x, y) \<in> r. x \<in> A \<and> y \<in> A) \<and> (\<forall>x \<in> A. (x, x) \<in> r)" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
204 |
by (auto intro: refl_onI dest: refl_onD refl_onD1 refl_onD2) |
46692
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
205 |
|
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
206 |
|
46694 | 207 |
subsubsection {* Irreflexivity *} |
6806
43c081a0858d
new preficates refl, sym [from Integ/Equiv], antisym
paulson
parents:
5978
diff
changeset
|
208 |
|
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
209 |
definition irrefl :: "'a rel \<Rightarrow> bool" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
210 |
where |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
211 |
"irrefl r \<longleftrightarrow> (\<forall>x. (x, x) \<notin> r)" |
46692
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
212 |
|
46694 | 213 |
lemma irrefl_distinct [code]: |
214 |
"irrefl r \<longleftrightarrow> (\<forall>(x, y) \<in> r. x \<noteq> y)" |
|
215 |
by (auto simp add: irrefl_def) |
|
46692
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
216 |
|
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
217 |
|
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
218 |
subsubsection {* Symmetry *} |
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
219 |
|
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
220 |
definition sym :: "'a rel \<Rightarrow> bool" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
221 |
where |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
222 |
"sym r \<longleftrightarrow> (\<forall>x y. (x, y) \<in> r \<longrightarrow> (y, x) \<in> r)" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
223 |
|
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
224 |
definition symp :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
225 |
where |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
226 |
"symp r \<longleftrightarrow> (\<forall>x y. r x y \<longrightarrow> r y x)" |
46692
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
227 |
|
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
228 |
lemma symp_sym_eq [pred_set_conv]: |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
229 |
"symp (\<lambda>x y. (x, y) \<in> r) \<longleftrightarrow> sym r" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
230 |
by (simp add: sym_def symp_def) |
46692
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
231 |
|
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
232 |
lemma symI: |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
233 |
"(\<And>a b. (a, b) \<in> r \<Longrightarrow> (b, a) \<in> r) \<Longrightarrow> sym r" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
234 |
by (unfold sym_def) iprover |
46694 | 235 |
|
236 |
lemma sympI: |
|
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
237 |
"(\<And>a b. r a b \<Longrightarrow> r b a) \<Longrightarrow> symp r" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
238 |
by (fact symI [to_pred]) |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
239 |
|
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
240 |
lemma symE: |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
241 |
assumes "sym r" and "(b, a) \<in> r" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
242 |
obtains "(a, b) \<in> r" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
243 |
using assms by (simp add: sym_def) |
46694 | 244 |
|
245 |
lemma sympE: |
|
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
246 |
assumes "symp r" and "r b a" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
247 |
obtains "r a b" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
248 |
using assms by (rule symE [to_pred]) |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
249 |
|
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
250 |
lemma symD: |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
251 |
assumes "sym r" and "(b, a) \<in> r" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
252 |
shows "(a, b) \<in> r" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
253 |
using assms by (rule symE) |
46694 | 254 |
|
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
255 |
lemma sympD: |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
256 |
assumes "symp r" and "r b a" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
257 |
shows "r a b" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
258 |
using assms by (rule symD [to_pred]) |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
259 |
|
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
260 |
lemma sym_Int: |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
261 |
"sym r \<Longrightarrow> sym s \<Longrightarrow> sym (r \<inter> s)" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
262 |
by (fast intro: symI elim: symE) |
46692
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
263 |
|
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
264 |
lemma symp_inf: |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
265 |
"symp r \<Longrightarrow> symp s \<Longrightarrow> symp (r \<sqinter> s)" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
266 |
by (fact sym_Int [to_pred]) |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
267 |
|
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
268 |
lemma sym_Un: |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
269 |
"sym r \<Longrightarrow> sym s \<Longrightarrow> sym (r \<union> s)" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
270 |
by (fast intro: symI elim: symE) |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
271 |
|
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
272 |
lemma symp_sup: |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
273 |
"symp r \<Longrightarrow> symp s \<Longrightarrow> symp (r \<squnion> s)" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
274 |
by (fact sym_Un [to_pred]) |
46692
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
275 |
|
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
276 |
lemma sym_INTER: |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
277 |
"\<forall>x\<in>S. sym (r x) \<Longrightarrow> sym (INTER S r)" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
278 |
by (fast intro: symI elim: symE) |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
279 |
|
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
280 |
(* FIXME thm sym_INTER [to_pred] *) |
46692
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
281 |
|
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
282 |
lemma sym_UNION: |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
283 |
"\<forall>x\<in>S. sym (r x) \<Longrightarrow> sym (UNION S r)" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
284 |
by (fast intro: symI elim: symE) |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
285 |
|
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
286 |
(* FIXME thm sym_UNION [to_pred] *) |
46692
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
287 |
|
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
288 |
|
46694 | 289 |
subsubsection {* Antisymmetry *} |
290 |
||
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
291 |
definition antisym :: "'a rel \<Rightarrow> bool" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
292 |
where |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
293 |
"antisym r \<longleftrightarrow> (\<forall>x y. (x, y) \<in> r \<longrightarrow> (y, x) \<in> r \<longrightarrow> x = y)" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
294 |
|
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
295 |
abbreviation antisymP :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
296 |
where |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
297 |
"antisymP r \<equiv> antisym {(x, y). r x y}" |
46694 | 298 |
|
299 |
lemma antisymI: |
|
300 |
"(!!x y. (x, y) : r ==> (y, x) : r ==> x=y) ==> antisym r" |
|
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
301 |
by (unfold antisym_def) iprover |
46694 | 302 |
|
303 |
lemma antisymD: "antisym r ==> (a, b) : r ==> (b, a) : r ==> a = b" |
|
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
304 |
by (unfold antisym_def) iprover |
46694 | 305 |
|
306 |
lemma antisym_subset: "r \<subseteq> s ==> antisym s ==> antisym r" |
|
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
307 |
by (unfold antisym_def) blast |
46694 | 308 |
|
309 |
lemma antisym_empty [simp]: "antisym {}" |
|
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
310 |
by (unfold antisym_def) blast |
46694 | 311 |
|
312 |
||
46692
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
313 |
subsubsection {* Transitivity *} |
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
314 |
|
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
315 |
definition trans :: "'a rel \<Rightarrow> bool" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
316 |
where |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
317 |
"trans r \<longleftrightarrow> (\<forall>x y z. (x, y) \<in> r \<longrightarrow> (y, z) \<in> r \<longrightarrow> (x, z) \<in> r)" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
318 |
|
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
319 |
definition transp :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
320 |
where |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
321 |
"transp r \<longleftrightarrow> (\<forall>x y z. r x y \<longrightarrow> r y z \<longrightarrow> r x z)" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
322 |
|
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
323 |
lemma transp_trans_eq [pred_set_conv]: |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
324 |
"transp (\<lambda>x y. (x, y) \<in> r) \<longleftrightarrow> trans r" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
325 |
by (simp add: trans_def transp_def) |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
326 |
|
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
327 |
abbreviation transP :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
328 |
where -- {* FIXME drop *} |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
329 |
"transP r \<equiv> trans {(x, y). r x y}" |
5978
fa2c2dd74f8c
moved diag (diagonal relation) from Univ to Relation
paulson
parents:
5608
diff
changeset
|
330 |
|
46692
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
331 |
lemma transI: |
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
332 |
"(\<And>x y z. (x, y) \<in> r \<Longrightarrow> (y, z) \<in> r \<Longrightarrow> (x, z) \<in> r) \<Longrightarrow> trans r" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
333 |
by (unfold trans_def) iprover |
46694 | 334 |
|
335 |
lemma transpI: |
|
336 |
"(\<And>x y z. r x y \<Longrightarrow> r y z \<Longrightarrow> r x z) \<Longrightarrow> transp r" |
|
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
337 |
by (fact transI [to_pred]) |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
338 |
|
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
339 |
lemma transE: |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
340 |
assumes "trans r" and "(x, y) \<in> r" and "(y, z) \<in> r" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
341 |
obtains "(x, z) \<in> r" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
342 |
using assms by (unfold trans_def) iprover |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
343 |
|
46694 | 344 |
lemma transpE: |
345 |
assumes "transp r" and "r x y" and "r y z" |
|
346 |
obtains "r x z" |
|
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
347 |
using assms by (rule transE [to_pred]) |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
348 |
|
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
349 |
lemma transD: |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
350 |
assumes "trans r" and "(x, y) \<in> r" and "(y, z) \<in> r" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
351 |
shows "(x, z) \<in> r" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
352 |
using assms by (rule transE) |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
353 |
|
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
354 |
lemma transpD: |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
355 |
assumes "transp r" and "r x y" and "r y z" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
356 |
shows "r x z" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
357 |
using assms by (rule transD [to_pred]) |
46694 | 358 |
|
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
359 |
lemma trans_Int: |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
360 |
"trans r \<Longrightarrow> trans s \<Longrightarrow> trans (r \<inter> s)" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
361 |
by (fast intro: transI elim: transE) |
46692
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
362 |
|
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
363 |
lemma transp_inf: |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
364 |
"transp r \<Longrightarrow> transp s \<Longrightarrow> transp (r \<sqinter> s)" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
365 |
by (fact trans_Int [to_pred]) |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
366 |
|
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
367 |
lemma trans_INTER: |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
368 |
"\<forall>x\<in>S. trans (r x) \<Longrightarrow> trans (INTER S r)" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
369 |
by (fast intro: transI elim: transD) |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
370 |
|
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
371 |
(* FIXME thm trans_INTER [to_pred] *) |
46692
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
372 |
|
46694 | 373 |
lemma trans_join [code]: |
374 |
"trans r \<longleftrightarrow> (\<forall>(x, y1) \<in> r. \<forall>(y2, z) \<in> r. y1 = y2 \<longrightarrow> (x, z) \<in> r)" |
|
375 |
by (auto simp add: trans_def) |
|
46692
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
376 |
|
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
377 |
lemma transp_trans: |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
378 |
"transp r \<longleftrightarrow> trans {(x, y). r x y}" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
379 |
by (simp add: trans_def transp_def) |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
380 |
|
46692
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
381 |
|
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
382 |
subsubsection {* Totality *} |
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
383 |
|
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
384 |
definition total_on :: "'a set \<Rightarrow> 'a rel \<Rightarrow> bool" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
385 |
where |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
386 |
"total_on A r \<longleftrightarrow> (\<forall>x\<in>A. \<forall>y\<in>A. x \<noteq> y \<longrightarrow> (x, y) \<in> r \<or> (y, x) \<in> r)" |
29859
33bff35f1335
Moved Order_Relation into Library and moved some of it into Relation.
nipkow
parents:
29609
diff
changeset
|
387 |
|
33bff35f1335
Moved Order_Relation into Library and moved some of it into Relation.
nipkow
parents:
29609
diff
changeset
|
388 |
abbreviation "total \<equiv> total_on UNIV" |
33bff35f1335
Moved Order_Relation into Library and moved some of it into Relation.
nipkow
parents:
29609
diff
changeset
|
389 |
|
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
390 |
lemma total_on_empty [simp]: "total_on {} r" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
391 |
by (simp add: total_on_def) |
46692
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
392 |
|
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
393 |
|
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
394 |
subsubsection {* Single valued relations *} |
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
395 |
|
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
396 |
definition single_valued :: "('a \<times> 'b) set \<Rightarrow> bool" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
397 |
where |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
398 |
"single_valued r \<longleftrightarrow> (\<forall>x y. (x, y) \<in> r \<longrightarrow> (\<forall>z. (x, z) \<in> r \<longrightarrow> y = z))" |
46692
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
399 |
|
46694 | 400 |
abbreviation single_valuedP :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> bool" where |
401 |
"single_valuedP r \<equiv> single_valued {(x, y). r x y}" |
|
402 |
||
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
403 |
lemma single_valuedI: |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
404 |
"ALL x y. (x,y):r --> (ALL z. (x,z):r --> y=z) ==> single_valued r" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
405 |
by (unfold single_valued_def) |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
406 |
|
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
407 |
lemma single_valuedD: |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
408 |
"single_valued r ==> (x, y) : r ==> (x, z) : r ==> y = z" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
409 |
by (simp add: single_valued_def) |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
410 |
|
46692
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
411 |
lemma single_valued_subset: |
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
412 |
"r \<subseteq> s ==> single_valued s ==> single_valued r" |
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
413 |
by (unfold single_valued_def) blast |
11136 | 414 |
|
12905 | 415 |
|
46694 | 416 |
subsection {* Relation operations *} |
417 |
||
46664
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents:
46638
diff
changeset
|
418 |
subsubsection {* The identity relation *} |
12905 | 419 |
|
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
420 |
definition Id :: "'a rel" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
421 |
where |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
422 |
"Id = {p. \<exists>x. p = (x, x)}" |
46692
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
423 |
|
12905 | 424 |
lemma IdI [intro]: "(a, a) : Id" |
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
425 |
by (simp add: Id_def) |
12905 | 426 |
|
427 |
lemma IdE [elim!]: "p : Id ==> (!!x. p = (x, x) ==> P) ==> P" |
|
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
428 |
by (unfold Id_def) (iprover elim: CollectE) |
12905 | 429 |
|
430 |
lemma pair_in_Id_conv [iff]: "((a, b) : Id) = (a = b)" |
|
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
431 |
by (unfold Id_def) blast |
12905 | 432 |
|
30198 | 433 |
lemma refl_Id: "refl Id" |
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
434 |
by (simp add: refl_on_def) |
12905 | 435 |
|
436 |
lemma antisym_Id: "antisym Id" |
|
437 |
-- {* A strange result, since @{text Id} is also symmetric. *} |
|
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
438 |
by (simp add: antisym_def) |
12905 | 439 |
|
19228 | 440 |
lemma sym_Id: "sym Id" |
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
441 |
by (simp add: sym_def) |
19228 | 442 |
|
12905 | 443 |
lemma trans_Id: "trans Id" |
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
444 |
by (simp add: trans_def) |
12905 | 445 |
|
46692
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
446 |
lemma single_valued_Id [simp]: "single_valued Id" |
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
447 |
by (unfold single_valued_def) blast |
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
448 |
|
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
449 |
lemma irrefl_diff_Id [simp]: "irrefl (r - Id)" |
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
450 |
by (simp add:irrefl_def) |
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
451 |
|
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
452 |
lemma trans_diff_Id: "trans r \<Longrightarrow> antisym r \<Longrightarrow> trans (r - Id)" |
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
453 |
unfolding antisym_def trans_def by blast |
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
454 |
|
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
455 |
lemma total_on_diff_Id [simp]: "total_on A (r - Id) = total_on A r" |
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
456 |
by (simp add: total_on_def) |
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
457 |
|
12905 | 458 |
|
46664
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents:
46638
diff
changeset
|
459 |
subsubsection {* Diagonal: identity over a set *} |
12905 | 460 |
|
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
461 |
definition Id_on :: "'a set \<Rightarrow> 'a rel" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
462 |
where |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
463 |
"Id_on A = (\<Union>x\<in>A. {(x, x)})" |
46692
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
464 |
|
30198 | 465 |
lemma Id_on_empty [simp]: "Id_on {} = {}" |
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
466 |
by (simp add: Id_on_def) |
13812
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13639
diff
changeset
|
467 |
|
30198 | 468 |
lemma Id_on_eqI: "a = b ==> a : A ==> (a, b) : Id_on A" |
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
469 |
by (simp add: Id_on_def) |
12905 | 470 |
|
35828
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents:
33218
diff
changeset
|
471 |
lemma Id_onI [intro!,no_atp]: "a : A ==> (a, a) : Id_on A" |
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
472 |
by (rule Id_on_eqI) (rule refl) |
12905 | 473 |
|
30198 | 474 |
lemma Id_onE [elim!]: |
475 |
"c : Id_on A ==> (!!x. x : A ==> c = (x, x) ==> P) ==> P" |
|
12913 | 476 |
-- {* The general elimination rule. *} |
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
477 |
by (unfold Id_on_def) (iprover elim!: UN_E singletonE) |
12905 | 478 |
|
30198 | 479 |
lemma Id_on_iff: "((x, y) : Id_on A) = (x = y & x : A)" |
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
480 |
by blast |
12905 | 481 |
|
45967 | 482 |
lemma Id_on_def' [nitpick_unfold]: |
44278
1220ecb81e8f
observe distinction between sets and predicates more properly
haftmann
parents:
41792
diff
changeset
|
483 |
"Id_on {x. A x} = Collect (\<lambda>(x, y). x = y \<and> A x)" |
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
484 |
by auto |
40923
be80c93ac0a2
adding a nice definition of Id_on for quickcheck and nitpick
bulwahn
parents:
36772
diff
changeset
|
485 |
|
30198 | 486 |
lemma Id_on_subset_Times: "Id_on A \<subseteq> A \<times> A" |
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
487 |
by blast |
12905 | 488 |
|
46692
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
489 |
lemma refl_on_Id_on: "refl_on A (Id_on A)" |
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
490 |
by (rule refl_onI [OF Id_on_subset_Times Id_onI]) |
46692
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
491 |
|
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
492 |
lemma antisym_Id_on [simp]: "antisym (Id_on A)" |
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
493 |
by (unfold antisym_def) blast |
46692
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
494 |
|
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
495 |
lemma sym_Id_on [simp]: "sym (Id_on A)" |
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
496 |
by (rule symI) clarify |
46692
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
497 |
|
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
498 |
lemma trans_Id_on [simp]: "trans (Id_on A)" |
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
499 |
by (fast intro: transI elim: transD) |
46692
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
500 |
|
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
501 |
lemma single_valued_Id_on [simp]: "single_valued (Id_on A)" |
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
502 |
by (unfold single_valued_def) blast |
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
503 |
|
12905 | 504 |
|
46694 | 505 |
subsubsection {* Composition *} |
12905 | 506 |
|
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
507 |
inductive_set rel_comp :: "('a \<times> 'b) set \<Rightarrow> ('b \<times> 'c) set \<Rightarrow> ('a \<times> 'c) set" (infixr "O" 75) |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
508 |
for r :: "('a \<times> 'b) set" and s :: "('b \<times> 'c) set" |
46694 | 509 |
where |
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
510 |
rel_compI [intro]: "(a, b) \<in> r \<Longrightarrow> (b, c) \<in> s \<Longrightarrow> (a, c) \<in> r O s" |
46692
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
511 |
|
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
512 |
abbreviation pred_comp (infixr "OO" 75) where |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
513 |
"pred_comp \<equiv> rel_compp" |
12905 | 514 |
|
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
515 |
lemmas pred_compI = rel_compp.intros |
12905 | 516 |
|
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
517 |
text {* |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
518 |
For historic reasons, the elimination rules are not wholly corresponding. |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
519 |
Feel free to consolidate this. |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
520 |
*} |
46694 | 521 |
|
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
522 |
inductive_cases rel_compEpair: "(a, c) \<in> r O s" |
46694 | 523 |
inductive_cases pred_compE [elim!]: "(r OO s) a c" |
524 |
||
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
525 |
lemma rel_compE [elim!]: "xz \<in> r O s \<Longrightarrow> |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
526 |
(\<And>x y z. xz = (x, z) \<Longrightarrow> (x, y) \<in> r \<Longrightarrow> (y, z) \<in> s \<Longrightarrow> P) \<Longrightarrow> P" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
527 |
by (cases xz) (simp, erule rel_compEpair, iprover) |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
528 |
|
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
529 |
lemmas pred_comp_rel_comp_eq = rel_compp_rel_comp_eq |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
530 |
|
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
531 |
lemma R_O_Id [simp]: |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
532 |
"R O Id = R" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
533 |
by fast |
46694 | 534 |
|
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
535 |
lemma Id_O_R [simp]: |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
536 |
"Id O R = R" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
537 |
by fast |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
538 |
|
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
539 |
lemma rel_comp_empty1 [simp]: |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
540 |
"{} O R = {}" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
541 |
by blast |
12905 | 542 |
|
46883
eec472dae593
tuned pred_set_conv lemmas. Skipped lemmas changing the lemmas generated by inductive_set
noschinl
parents:
46882
diff
changeset
|
543 |
lemma prod_comp_bot1 [simp]: |
eec472dae593
tuned pred_set_conv lemmas. Skipped lemmas changing the lemmas generated by inductive_set
noschinl
parents:
46882
diff
changeset
|
544 |
"\<bottom> OO R = \<bottom>" |
eec472dae593
tuned pred_set_conv lemmas. Skipped lemmas changing the lemmas generated by inductive_set
noschinl
parents:
46882
diff
changeset
|
545 |
by (fact rel_comp_empty1 [to_pred]) |
12905 | 546 |
|
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
547 |
lemma rel_comp_empty2 [simp]: |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
548 |
"R O {} = {}" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
549 |
by blast |
12905 | 550 |
|
46883
eec472dae593
tuned pred_set_conv lemmas. Skipped lemmas changing the lemmas generated by inductive_set
noschinl
parents:
46882
diff
changeset
|
551 |
lemma pred_comp_bot2 [simp]: |
eec472dae593
tuned pred_set_conv lemmas. Skipped lemmas changing the lemmas generated by inductive_set
noschinl
parents:
46882
diff
changeset
|
552 |
"R OO \<bottom> = \<bottom>" |
eec472dae593
tuned pred_set_conv lemmas. Skipped lemmas changing the lemmas generated by inductive_set
noschinl
parents:
46882
diff
changeset
|
553 |
by (fact rel_comp_empty2 [to_pred]) |
23185 | 554 |
|
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
555 |
lemma O_assoc: |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
556 |
"(R O S) O T = R O (S O T)" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
557 |
by blast |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
558 |
|
46883
eec472dae593
tuned pred_set_conv lemmas. Skipped lemmas changing the lemmas generated by inductive_set
noschinl
parents:
46882
diff
changeset
|
559 |
|
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
560 |
lemma pred_comp_assoc: |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
561 |
"(r OO s) OO t = r OO (s OO t)" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
562 |
by (fact O_assoc [to_pred]) |
23185 | 563 |
|
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
564 |
lemma trans_O_subset: |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
565 |
"trans r \<Longrightarrow> r O r \<subseteq> r" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
566 |
by (unfold trans_def) blast |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
567 |
|
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
568 |
lemma transp_pred_comp_less_eq: |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
569 |
"transp r \<Longrightarrow> r OO r \<le> r " |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
570 |
by (fact trans_O_subset [to_pred]) |
12905 | 571 |
|
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
572 |
lemma rel_comp_mono: |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
573 |
"r' \<subseteq> r \<Longrightarrow> s' \<subseteq> s \<Longrightarrow> r' O s' \<subseteq> r O s" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
574 |
by blast |
12905 | 575 |
|
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
576 |
lemma pred_comp_mono: |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
577 |
"r' \<le> r \<Longrightarrow> s' \<le> s \<Longrightarrow> r' OO s' \<le> r OO s " |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
578 |
by (fact rel_comp_mono [to_pred]) |
12905 | 579 |
|
580 |
lemma rel_comp_subset_Sigma: |
|
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
581 |
"r \<subseteq> A \<times> B \<Longrightarrow> s \<subseteq> B \<times> C \<Longrightarrow> r O s \<subseteq> A \<times> C" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
582 |
by blast |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
583 |
|
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
584 |
lemma rel_comp_distrib [simp]: |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
585 |
"R O (S \<union> T) = (R O S) \<union> (R O T)" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
586 |
by auto |
12905 | 587 |
|
46882 | 588 |
lemma pred_comp_distrib [simp]: |
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
589 |
"R OO (S \<squnion> T) = R OO S \<squnion> R OO T" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
590 |
by (fact rel_comp_distrib [to_pred]) |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
591 |
|
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
592 |
lemma rel_comp_distrib2 [simp]: |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
593 |
"(S \<union> T) O R = (S O R) \<union> (T O R)" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
594 |
by auto |
28008
f945f8d9ad4d
added distributivity of relation composition over union [simp]
krauss
parents:
26297
diff
changeset
|
595 |
|
46882 | 596 |
lemma pred_comp_distrib2 [simp]: |
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
597 |
"(S \<squnion> T) OO R = S OO R \<squnion> T OO R" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
598 |
by (fact rel_comp_distrib2 [to_pred]) |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
599 |
|
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
600 |
lemma rel_comp_UNION_distrib: |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
601 |
"s O UNION I r = (\<Union>i\<in>I. s O r i) " |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
602 |
by auto |
28008
f945f8d9ad4d
added distributivity of relation composition over union [simp]
krauss
parents:
26297
diff
changeset
|
603 |
|
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
604 |
(* FIXME thm rel_comp_UNION_distrib [to_pred] *) |
36772 | 605 |
|
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
606 |
lemma rel_comp_UNION_distrib2: |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
607 |
"UNION I r O s = (\<Union>i\<in>I. r i O s) " |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
608 |
by auto |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
609 |
|
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
610 |
(* FIXME thm rel_comp_UNION_distrib2 [to_pred] *) |
36772 | 611 |
|
46692
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
612 |
lemma single_valued_rel_comp: |
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
613 |
"single_valued r \<Longrightarrow> single_valued s \<Longrightarrow> single_valued (r O s)" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
614 |
by (unfold single_valued_def) blast |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
615 |
|
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
616 |
lemma rel_comp_unfold: |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
617 |
"r O s = {(x, z). \<exists>y. (x, y) \<in> r \<and> (y, z) \<in> s}" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
618 |
by (auto simp add: set_eq_iff) |
12905 | 619 |
|
46664
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents:
46638
diff
changeset
|
620 |
|
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents:
46638
diff
changeset
|
621 |
subsubsection {* Converse *} |
12913 | 622 |
|
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
623 |
inductive_set converse :: "('a \<times> 'b) set \<Rightarrow> ('b \<times> 'a) set" ("(_^-1)" [1000] 999) |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
624 |
for r :: "('a \<times> 'b) set" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
625 |
where |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
626 |
"(a, b) \<in> r \<Longrightarrow> (b, a) \<in> r^-1" |
46692
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
627 |
|
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
628 |
notation (xsymbols) |
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
629 |
converse ("(_\<inverse>)" [1000] 999) |
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
630 |
|
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
631 |
notation |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
632 |
conversep ("(_^--1)" [1000] 1000) |
46694 | 633 |
|
634 |
notation (xsymbols) |
|
635 |
conversep ("(_\<inverse>\<inverse>)" [1000] 1000) |
|
636 |
||
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
637 |
lemma converseI [sym]: |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
638 |
"(a, b) \<in> r \<Longrightarrow> (b, a) \<in> r\<inverse>" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
639 |
by (fact converse.intros) |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
640 |
|
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
641 |
lemma conversepI (* CANDIDATE [sym] *): |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
642 |
"r a b \<Longrightarrow> r\<inverse>\<inverse> b a" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
643 |
by (fact conversep.intros) |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
644 |
|
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
645 |
lemma converseD [sym]: |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
646 |
"(a, b) \<in> r\<inverse> \<Longrightarrow> (b, a) \<in> r" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
647 |
by (erule converse.cases) iprover |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
648 |
|
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
649 |
lemma conversepD (* CANDIDATE [sym] *): |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
650 |
"r\<inverse>\<inverse> b a \<Longrightarrow> r a b" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
651 |
by (fact converseD [to_pred]) |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
652 |
|
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
653 |
lemma converseE [elim!]: |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
654 |
-- {* More general than @{text converseD}, as it ``splits'' the member of the relation. *} |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
655 |
"yx \<in> r\<inverse> \<Longrightarrow> (\<And>x y. yx = (y, x) \<Longrightarrow> (x, y) \<in> r \<Longrightarrow> P) \<Longrightarrow> P" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
656 |
by (cases yx) (simp, erule converse.cases, iprover) |
46694 | 657 |
|
46882 | 658 |
lemmas conversepE [elim!] = conversep.cases |
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
659 |
|
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
660 |
lemma converse_iff [iff]: |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
661 |
"(a, b) \<in> r\<inverse> \<longleftrightarrow> (b, a) \<in> r" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
662 |
by (auto intro: converseI) |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
663 |
|
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
664 |
lemma conversep_iff [iff]: |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
665 |
"r\<inverse>\<inverse> a b = r b a" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
666 |
by (fact converse_iff [to_pred]) |
46694 | 667 |
|
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
668 |
lemma converse_converse [simp]: |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
669 |
"(r\<inverse>)\<inverse> = r" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
670 |
by (simp add: set_eq_iff) |
46694 | 671 |
|
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
672 |
lemma conversep_conversep [simp]: |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
673 |
"(r\<inverse>\<inverse>)\<inverse>\<inverse> = r" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
674 |
by (fact converse_converse [to_pred]) |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
675 |
|
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
676 |
lemma converse_rel_comp: "(r O s)^-1 = s^-1 O r^-1" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
677 |
by blast |
46694 | 678 |
|
679 |
lemma converse_pred_comp: "(r OO s)^--1 = s^--1 OO r^--1" |
|
680 |
by (iprover intro: order_antisym conversepI pred_compI |
|
681 |
elim: pred_compE dest: conversepD) |
|
682 |
||
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
683 |
lemma converse_Int: "(r \<inter> s)^-1 = r^-1 \<inter> s^-1" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
684 |
by blast |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
685 |
|
46694 | 686 |
lemma converse_meet: "(r \<sqinter> s)^--1 = r^--1 \<sqinter> s^--1" |
687 |
by (simp add: inf_fun_def) (iprover intro: conversepI ext dest: conversepD) |
|
688 |
||
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
689 |
lemma converse_Un: "(r \<union> s)^-1 = r^-1 \<union> s^-1" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
690 |
by blast |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
691 |
|
46694 | 692 |
lemma converse_join: "(r \<squnion> s)^--1 = r^--1 \<squnion> s^--1" |
693 |
by (simp add: sup_fun_def) (iprover intro: conversepI ext dest: conversepD) |
|
694 |
||
19228 | 695 |
lemma converse_INTER: "(INTER S r)^-1 = (INT x:S. (r x)^-1)" |
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
696 |
by fast |
19228 | 697 |
|
698 |
lemma converse_UNION: "(UNION S r)^-1 = (UN x:S. (r x)^-1)" |
|
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
699 |
by blast |
19228 | 700 |
|
12905 | 701 |
lemma converse_Id [simp]: "Id^-1 = Id" |
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
702 |
by blast |
12905 | 703 |
|
30198 | 704 |
lemma converse_Id_on [simp]: "(Id_on A)^-1 = Id_on A" |
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
705 |
by blast |
12905 | 706 |
|
30198 | 707 |
lemma refl_on_converse [simp]: "refl_on A (converse r) = refl_on A r" |
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
708 |
by (unfold refl_on_def) auto |
12905 | 709 |
|
19228 | 710 |
lemma sym_converse [simp]: "sym (converse r) = sym r" |
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
711 |
by (unfold sym_def) blast |
19228 | 712 |
|
713 |
lemma antisym_converse [simp]: "antisym (converse r) = antisym r" |
|
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
714 |
by (unfold antisym_def) blast |
12905 | 715 |
|
19228 | 716 |
lemma trans_converse [simp]: "trans (converse r) = trans r" |
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
717 |
by (unfold trans_def) blast |
12905 | 718 |
|
19228 | 719 |
lemma sym_conv_converse_eq: "sym r = (r^-1 = r)" |
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
720 |
by (unfold sym_def) fast |
19228 | 721 |
|
722 |
lemma sym_Un_converse: "sym (r \<union> r^-1)" |
|
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
723 |
by (unfold sym_def) blast |
19228 | 724 |
|
725 |
lemma sym_Int_converse: "sym (r \<inter> r^-1)" |
|
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
726 |
by (unfold sym_def) blast |
19228 | 727 |
|
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
728 |
lemma total_on_converse [simp]: "total_on A (r^-1) = total_on A r" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
729 |
by (auto simp: total_on_def) |
29859
33bff35f1335
Moved Order_Relation into Library and moved some of it into Relation.
nipkow
parents:
29609
diff
changeset
|
730 |
|
46692
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
731 |
lemma finite_converse [iff]: "finite (r^-1) = finite r" |
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
732 |
apply (subgoal_tac "r^-1 = (%(x,y). (y,x))`r") |
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
733 |
apply simp |
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
734 |
apply (rule iffI) |
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
735 |
apply (erule finite_imageD [unfolded inj_on_def]) |
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
736 |
apply (simp split add: split_split) |
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
737 |
apply (erule finite_imageI) |
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
738 |
apply (simp add: set_eq_iff image_def, auto) |
46692
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
739 |
apply (rule bexI) |
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
740 |
prefer 2 apply assumption |
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
741 |
apply simp |
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
742 |
done |
12913 | 743 |
|
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
744 |
lemma conversep_noteq [simp]: "(op \<noteq>)^--1 = op \<noteq>" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
745 |
by (auto simp add: fun_eq_iff) |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
746 |
|
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
747 |
lemma conversep_eq [simp]: "(op =)^--1 = op =" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
748 |
by (auto simp add: fun_eq_iff) |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
749 |
|
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
750 |
lemma converse_unfold: |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
751 |
"r\<inverse> = {(y, x). (x, y) \<in> r}" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
752 |
by (simp add: set_eq_iff) |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
753 |
|
46692
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
754 |
|
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
755 |
subsubsection {* Domain, range and field *} |
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
756 |
|
46767
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
757 |
inductive_set Domain :: "('a \<times> 'b) set \<Rightarrow> 'a set" |
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
758 |
for r :: "('a \<times> 'b) set" |
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
759 |
where |
46767
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
760 |
DomainI [intro]: "(a, b) \<in> r \<Longrightarrow> a \<in> Domain r" |
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
761 |
|
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
762 |
abbreviation (input) "DomainP \<equiv> Domainp" |
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
763 |
|
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
764 |
lemmas DomainPI = Domainp.DomainI |
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
765 |
|
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
766 |
inductive_cases DomainE [elim!]: "a \<in> Domain r" |
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
767 |
inductive_cases DomainpE [elim!]: "Domainp r a" |
46692
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
768 |
|
46767
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
769 |
inductive_set Range :: "('a \<times> 'b) set \<Rightarrow> 'b set" |
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
770 |
for r :: "('a \<times> 'b) set" |
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
771 |
where |
46767
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
772 |
RangeI [intro]: "(a, b) \<in> r \<Longrightarrow> b \<in> Range r" |
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
773 |
|
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
774 |
abbreviation (input) "RangeP \<equiv> Rangep" |
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
775 |
|
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
776 |
lemmas RangePI = Rangep.RangeI |
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
777 |
|
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
778 |
inductive_cases RangeE [elim!]: "b \<in> Range r" |
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
779 |
inductive_cases RangepE [elim!]: "Rangep r b" |
46692
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
780 |
|
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
781 |
definition Field :: "'a rel \<Rightarrow> 'a set" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
782 |
where |
46692
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
783 |
"Field r = Domain r \<union> Range r" |
12905 | 784 |
|
46694 | 785 |
lemma Domain_fst [code]: |
786 |
"Domain r = fst ` r" |
|
46767
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
787 |
by force |
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
788 |
|
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
789 |
lemma Range_snd [code]: |
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
790 |
"Range r = snd ` r" |
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
791 |
by force |
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
792 |
|
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
793 |
lemma fst_eq_Domain: "fst ` R = Domain R" |
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
794 |
by force |
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
795 |
|
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
796 |
lemma snd_eq_Range: "snd ` R = Range R" |
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
797 |
by force |
46694 | 798 |
|
799 |
lemma Domain_empty [simp]: "Domain {} = {}" |
|
46767
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
800 |
by auto |
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
801 |
|
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
802 |
lemma Range_empty [simp]: "Range {} = {}" |
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
803 |
by auto |
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
804 |
|
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
805 |
lemma Field_empty [simp]: "Field {} = {}" |
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
806 |
by (simp add: Field_def) |
46694 | 807 |
|
808 |
lemma Domain_empty_iff: "Domain r = {} \<longleftrightarrow> r = {}" |
|
809 |
by auto |
|
810 |
||
46767
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
811 |
lemma Range_empty_iff: "Range r = {} \<longleftrightarrow> r = {}" |
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
812 |
by auto |
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
813 |
|
46882 | 814 |
lemma Domain_insert [simp]: "Domain (insert (a, b) r) = insert a (Domain r)" |
46767
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
815 |
by blast |
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
816 |
|
46882 | 817 |
lemma Range_insert [simp]: "Range (insert (a, b) r) = insert b (Range r)" |
46767
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
818 |
by blast |
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
819 |
|
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
820 |
lemma Field_insert [simp]: "Field (insert (a, b) r) = {a, b} \<union> Field r" |
46884 | 821 |
by (auto simp add: Field_def) |
46767
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
822 |
|
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
823 |
lemma Domain_iff: "a \<in> Domain r \<longleftrightarrow> (\<exists>y. (a, y) \<in> r)" |
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
824 |
by blast |
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
825 |
|
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
826 |
lemma Range_iff: "a \<in> Range r \<longleftrightarrow> (\<exists>y. (y, a) \<in> r)" |
46694 | 827 |
by blast |
828 |
||
829 |
lemma Domain_Id [simp]: "Domain Id = UNIV" |
|
830 |
by blast |
|
831 |
||
46767
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
832 |
lemma Range_Id [simp]: "Range Id = UNIV" |
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
833 |
by blast |
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
834 |
|
46694 | 835 |
lemma Domain_Id_on [simp]: "Domain (Id_on A) = A" |
836 |
by blast |
|
837 |
||
46767
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
838 |
lemma Range_Id_on [simp]: "Range (Id_on A) = A" |
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
839 |
by blast |
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
840 |
|
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
841 |
lemma Domain_Un_eq: "Domain (A \<union> B) = Domain A \<union> Domain B" |
46694 | 842 |
by blast |
843 |
||
46767
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
844 |
lemma Range_Un_eq: "Range (A \<union> B) = Range A \<union> Range B" |
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
845 |
by blast |
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
846 |
|
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
847 |
lemma Field_Un [simp]: "Field (r \<union> s) = Field r \<union> Field s" |
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
848 |
by (auto simp: Field_def) |
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
849 |
|
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
850 |
lemma Domain_Int_subset: "Domain (A \<inter> B) \<subseteq> Domain A \<inter> Domain B" |
46694 | 851 |
by blast |
852 |
||
46767
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
853 |
lemma Range_Int_subset: "Range (A \<inter> B) \<subseteq> Range A \<inter> Range B" |
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
854 |
by blast |
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
855 |
|
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
856 |
lemma Domain_Diff_subset: "Domain A - Domain B \<subseteq> Domain (A - B)" |
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
857 |
by blast |
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
858 |
|
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
859 |
lemma Range_Diff_subset: "Range A - Range B \<subseteq> Range (A - B)" |
46694 | 860 |
by blast |
861 |
||
46767
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
862 |
lemma Domain_Union: "Domain (\<Union>S) = (\<Union>A\<in>S. Domain A)" |
46694 | 863 |
by blast |
864 |
||
46767
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
865 |
lemma Range_Union: "Range (\<Union>S) = (\<Union>A\<in>S. Range A)" |
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
866 |
by blast |
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
867 |
|
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
868 |
lemma Field_Union [simp]: "Field (\<Union>R) = \<Union>(Field ` R)" |
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
869 |
by (auto simp: Field_def) |
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
870 |
|
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
871 |
lemma Domain_converse [simp]: "Domain (r\<inverse>) = Range r" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
872 |
by auto |
46694 | 873 |
|
46767
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
874 |
lemma Range_converse [simp]: "Range (r\<inverse>) = Domain r" |
46694 | 875 |
by blast |
876 |
||
46767
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
877 |
lemma Field_converse [simp]: "Field (r\<inverse>) = Field r" |
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
878 |
by (auto simp: Field_def) |
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
879 |
|
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
880 |
lemma Domain_Collect_split [simp]: "Domain {(x, y). P x y} = {x. EX y. P x y}" |
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
881 |
by auto |
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
882 |
|
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
883 |
lemma Range_Collect_split [simp]: "Range {(x, y). P x y} = {y. EX x. P x y}" |
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
884 |
by auto |
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
885 |
|
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
886 |
lemma finite_Domain: "finite r \<Longrightarrow> finite (Domain r)" |
46884 | 887 |
by (induct set: finite) auto |
46767
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
888 |
|
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
889 |
lemma finite_Range: "finite r \<Longrightarrow> finite (Range r)" |
46884 | 890 |
by (induct set: finite) auto |
46767
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
891 |
|
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
892 |
lemma finite_Field: "finite r \<Longrightarrow> finite (Field r)" |
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
893 |
by (simp add: Field_def finite_Domain finite_Range) |
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
894 |
|
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
895 |
lemma Domain_mono: "r \<subseteq> s \<Longrightarrow> Domain r \<subseteq> Domain s" |
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
896 |
by blast |
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
897 |
|
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
898 |
lemma Range_mono: "r \<subseteq> s \<Longrightarrow> Range r \<subseteq> Range s" |
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
899 |
by blast |
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
900 |
|
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
901 |
lemma mono_Field: "r \<subseteq> s \<Longrightarrow> Field r \<subseteq> Field s" |
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
902 |
by (auto simp: Field_def Domain_def Range_def) |
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
903 |
|
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
904 |
lemma Domain_unfold: |
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
905 |
"Domain r = {x. \<exists>y. (x, y) \<in> r}" |
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
906 |
by blast |
46694 | 907 |
|
908 |
lemma Domain_dprod [simp]: "Domain (dprod r s) = uprod (Domain r) (Domain s)" |
|
909 |
by auto |
|
910 |
||
911 |
lemma Domain_dsum [simp]: "Domain (dsum r s) = usum (Domain r) (Domain s)" |
|
912 |
by auto |
|
913 |
||
12905 | 914 |
|
46664
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents:
46638
diff
changeset
|
915 |
subsubsection {* Image of a set under a relation *} |
12905 | 916 |
|
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
917 |
definition Image :: "('a \<times> 'b) set \<Rightarrow> 'a set \<Rightarrow> 'b set" (infixl "``" 90) |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
918 |
where |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
919 |
"r `` s = {y. \<exists>x\<in>s. (x, y) \<in> r}" |
46692
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
920 |
|
35828
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents:
33218
diff
changeset
|
921 |
declare Image_def [no_atp] |
24286
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
paulson
parents:
23709
diff
changeset
|
922 |
|
12913 | 923 |
lemma Image_iff: "(b : r``A) = (EX x:A. (x, b) : r)" |
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
924 |
by (simp add: Image_def) |
12905 | 925 |
|
12913 | 926 |
lemma Image_singleton: "r``{a} = {b. (a, b) : r}" |
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
927 |
by (simp add: Image_def) |
12905 | 928 |
|
12913 | 929 |
lemma Image_singleton_iff [iff]: "(b : r``{a}) = ((a, b) : r)" |
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
930 |
by (rule Image_iff [THEN trans]) simp |
12905 | 931 |
|
35828
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents:
33218
diff
changeset
|
932 |
lemma ImageI [intro,no_atp]: "(a, b) : r ==> a : A ==> b : r``A" |
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
933 |
by (unfold Image_def) blast |
12905 | 934 |
|
935 |
lemma ImageE [elim!]: |
|
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
936 |
"b : r `` A ==> (!!x. (x, b) : r ==> x : A ==> P) ==> P" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
937 |
by (unfold Image_def) (iprover elim!: CollectE bexE) |
12905 | 938 |
|
939 |
lemma rev_ImageI: "a : A ==> (a, b) : r ==> b : r `` A" |
|
940 |
-- {* This version's more effective when we already have the required @{text a} *} |
|
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
941 |
by blast |
12905 | 942 |
|
943 |
lemma Image_empty [simp]: "R``{} = {}" |
|
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
944 |
by blast |
12905 | 945 |
|
946 |
lemma Image_Id [simp]: "Id `` A = A" |
|
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
947 |
by blast |
12905 | 948 |
|
30198 | 949 |
lemma Image_Id_on [simp]: "Id_on A `` B = A \<inter> B" |
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
950 |
by blast |
13830 | 951 |
|
952 |
lemma Image_Int_subset: "R `` (A \<inter> B) \<subseteq> R `` A \<inter> R `` B" |
|
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
953 |
by blast |
12905 | 954 |
|
13830 | 955 |
lemma Image_Int_eq: |
46767
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
956 |
"single_valued (converse R) ==> R `` (A \<inter> B) = R `` A \<inter> R `` B" |
807a5d219c23
more fundamental pred-to-set conversions for range and domain by means of inductive_set
haftmann
parents:
46752
diff
changeset
|
957 |
by (simp add: single_valued_def, blast) |
12905 | 958 |
|
13830 | 959 |
lemma Image_Un: "R `` (A \<union> B) = R `` A \<union> R `` B" |
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
960 |
by blast |
12905 | 961 |
|
13812
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13639
diff
changeset
|
962 |
lemma Un_Image: "(R \<union> S) `` A = R `` A \<union> S `` A" |
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
963 |
by blast |
13812
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13639
diff
changeset
|
964 |
|
12913 | 965 |
lemma Image_subset: "r \<subseteq> A \<times> B ==> r``C \<subseteq> B" |
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
966 |
by (iprover intro!: subsetI elim!: ImageE dest!: subsetD SigmaD2) |
12905 | 967 |
|
13830 | 968 |
lemma Image_eq_UN: "r``B = (\<Union>y\<in> B. r``{y})" |
12905 | 969 |
-- {* NOT suitable for rewriting *} |
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
970 |
by blast |
12905 | 971 |
|
12913 | 972 |
lemma Image_mono: "r' \<subseteq> r ==> A' \<subseteq> A ==> (r' `` A') \<subseteq> (r `` A)" |
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
973 |
by blast |
12905 | 974 |
|
13830 | 975 |
lemma Image_UN: "(r `` (UNION A B)) = (\<Union>x\<in>A. r `` (B x))" |
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
976 |
by blast |
13830 | 977 |
|
978 |
lemma Image_INT_subset: "(r `` INTER A B) \<subseteq> (\<Inter>x\<in>A. r `` (B x))" |
|
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
979 |
by blast |
12905 | 980 |
|
13830 | 981 |
text{*Converse inclusion requires some assumptions*} |
982 |
lemma Image_INT_eq: |
|
983 |
"[|single_valued (r\<inverse>); A\<noteq>{}|] ==> r `` INTER A B = (\<Inter>x\<in>A. r `` B x)" |
|
984 |
apply (rule equalityI) |
|
985 |
apply (rule Image_INT_subset) |
|
986 |
apply (simp add: single_valued_def, blast) |
|
987 |
done |
|
12905 | 988 |
|
12913 | 989 |
lemma Image_subset_eq: "(r``A \<subseteq> B) = (A \<subseteq> - ((r^-1) `` (-B)))" |
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
990 |
by blast |
12905 | 991 |
|
46692
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
992 |
lemma Image_Collect_split [simp]: "{(x, y). P x y} `` A = {y. EX x:A. P x y}" |
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
993 |
by auto |
12905 | 994 |
|
995 |
||
46664
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents:
46638
diff
changeset
|
996 |
subsubsection {* Inverse image *} |
12905 | 997 |
|
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
998 |
definition inv_image :: "'b rel \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a rel" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
999 |
where |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
1000 |
"inv_image r f = {(x, y). (f x, f y) \<in> r}" |
46692
1f8b766224f6
tuned structure; dropped already existing syntax declarations
haftmann
parents:
46691
diff
changeset
|
1001 |
|
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
1002 |
definition inv_imagep :: "('b \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
1003 |
where |
46694 | 1004 |
"inv_imagep r f = (\<lambda>x y. r (f x) (f y))" |
1005 |
||
1006 |
lemma [pred_set_conv]: "inv_imagep (\<lambda>x y. (x, y) \<in> r) f = (\<lambda>x y. (x, y) \<in> inv_image r f)" |
|
1007 |
by (simp add: inv_image_def inv_imagep_def) |
|
1008 |
||
19228 | 1009 |
lemma sym_inv_image: "sym r ==> sym (inv_image r f)" |
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
1010 |
by (unfold sym_def inv_image_def) blast |
19228 | 1011 |
|
12913 | 1012 |
lemma trans_inv_image: "trans r ==> trans (inv_image r f)" |
12905 | 1013 |
apply (unfold trans_def inv_image_def) |
1014 |
apply (simp (no_asm)) |
|
1015 |
apply blast |
|
1016 |
done |
|
1017 |
||
32463
3a0a65ca2261
moved lemma Wellfounded.in_inv_image to Relation.thy
krauss
parents:
32235
diff
changeset
|
1018 |
lemma in_inv_image[simp]: "((x,y) : inv_image r f) = ((f x, f y) : r)" |
3a0a65ca2261
moved lemma Wellfounded.in_inv_image to Relation.thy
krauss
parents:
32235
diff
changeset
|
1019 |
by (auto simp:inv_image_def) |
3a0a65ca2261
moved lemma Wellfounded.in_inv_image to Relation.thy
krauss
parents:
32235
diff
changeset
|
1020 |
|
33218 | 1021 |
lemma converse_inv_image[simp]: "(inv_image R f)^-1 = inv_image (R^-1) f" |
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
1022 |
unfolding inv_image_def converse_unfold by auto |
33218 | 1023 |
|
46664
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents:
46638
diff
changeset
|
1024 |
lemma in_inv_imagep [simp]: "inv_imagep r f x y = r (f x) (f y)" |
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents:
46638
diff
changeset
|
1025 |
by (simp add: inv_imagep_def) |
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents:
46638
diff
changeset
|
1026 |
|
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents:
46638
diff
changeset
|
1027 |
|
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents:
46638
diff
changeset
|
1028 |
subsubsection {* Powerset *} |
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents:
46638
diff
changeset
|
1029 |
|
46752
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
1030 |
definition Powp :: "('a \<Rightarrow> bool) \<Rightarrow> 'a set \<Rightarrow> bool" |
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
haftmann
parents:
46696
diff
changeset
|
1031 |
where |
46664
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents:
46638
diff
changeset
|
1032 |
"Powp A = (\<lambda>B. \<forall>x \<in> B. A x)" |
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents:
46638
diff
changeset
|
1033 |
|
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents:
46638
diff
changeset
|
1034 |
lemma Powp_Pow_eq [pred_set_conv]: "Powp (\<lambda>x. x \<in> A) = (\<lambda>x. x \<in> Pow A)" |
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents:
46638
diff
changeset
|
1035 |
by (auto simp add: Powp_def fun_eq_iff) |
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents:
46638
diff
changeset
|
1036 |
|
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents:
46638
diff
changeset
|
1037 |
lemmas Powp_mono [mono] = Pow_mono [to_pred] |
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
haftmann
parents:
46638
diff
changeset
|
1038 |
|
1128
64b30e3cc6d4
Trancl is now based on Relation which used to be in Integ.
nipkow
parents:
diff
changeset
|
1039 |
end |
46689 | 1040 |