| author | wenzelm | 
| Wed, 31 Dec 2008 15:30:10 +0100 | |
| changeset 29269 | 5c25a2012975 | 
| parent 28823 | dcbef866c9e2 | 
| child 29557 | 5362cc5ee3a8 | 
| child 29667 | 53103fc8ffa3 | 
| permissions | -rw-r--r-- | 
| 14770 | 1  | 
(* Title: HOL/OrderedGroup.thy  | 
| 
29269
 
5c25a2012975
moved term order operations to structure TermOrd (cf. Pure/term_ord.ML);
 
wenzelm 
parents: 
28823 
diff
changeset
 | 
2  | 
Author: Gertrud Bauer, Steven Obua, Lawrence C Paulson, Markus Wenzel, Jeremy Avigad  | 
| 14738 | 3  | 
*)  | 
4  | 
||
5  | 
header {* Ordered Groups *}
 | 
|
6  | 
||
| 15131 | 7  | 
theory OrderedGroup  | 
| 
22452
 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 
haftmann 
parents: 
22422 
diff
changeset
 | 
8  | 
imports Lattices  | 
| 19798 | 9  | 
uses "~~/src/Provers/Arith/abel_cancel.ML"  | 
| 15131 | 10  | 
begin  | 
| 14738 | 11  | 
|
12  | 
text {*
 | 
|
13  | 
The theory of partially ordered groups is taken from the books:  | 
|
14  | 
  \begin{itemize}
 | 
|
15  | 
  \item \emph{Lattice Theory} by Garret Birkhoff, American Mathematical Society 1979 
 | 
|
16  | 
  \item \emph{Partially Ordered Algebraic Systems}, Pergamon Press 1963
 | 
|
17  | 
  \end{itemize}
 | 
|
18  | 
Most of the used notions can also be looked up in  | 
|
19  | 
  \begin{itemize}
 | 
|
| 14770 | 20  | 
  \item \url{http://www.mathworld.com} by Eric Weisstein et. al.
 | 
| 14738 | 21  | 
  \item \emph{Algebra I} by van der Waerden, Springer.
 | 
22  | 
  \end{itemize}
 | 
|
23  | 
*}  | 
|
24  | 
||
| 23085 | 25  | 
subsection {* Semigroups and Monoids *}
 | 
| 14738 | 26  | 
|
| 22390 | 27  | 
class semigroup_add = plus +  | 
| 25062 | 28  | 
assumes add_assoc: "(a + b) + c = a + (b + c)"  | 
| 22390 | 29  | 
|
30  | 
class ab_semigroup_add = semigroup_add +  | 
|
| 25062 | 31  | 
assumes add_commute: "a + b = b + a"  | 
32  | 
begin  | 
|
| 14738 | 33  | 
|
| 25062 | 34  | 
lemma add_left_commute: "a + (b + c) = b + (a + c)"  | 
35  | 
by (rule mk_left_commute [of "plus", OF add_assoc add_commute])  | 
|
36  | 
||
37  | 
theorems add_ac = add_assoc add_commute add_left_commute  | 
|
38  | 
||
39  | 
end  | 
|
| 14738 | 40  | 
|
41  | 
theorems add_ac = add_assoc add_commute add_left_commute  | 
|
42  | 
||
| 22390 | 43  | 
class semigroup_mult = times +  | 
| 25062 | 44  | 
assumes mult_assoc: "(a * b) * c = a * (b * c)"  | 
| 14738 | 45  | 
|
| 22390 | 46  | 
class ab_semigroup_mult = semigroup_mult +  | 
| 25062 | 47  | 
assumes mult_commute: "a * b = b * a"  | 
| 23181 | 48  | 
begin  | 
| 14738 | 49  | 
|
| 25062 | 50  | 
lemma mult_left_commute: "a * (b * c) = b * (a * c)"  | 
51  | 
by (rule mk_left_commute [of "times", OF mult_assoc mult_commute])  | 
|
52  | 
||
53  | 
theorems mult_ac = mult_assoc mult_commute mult_left_commute  | 
|
| 23181 | 54  | 
|
55  | 
end  | 
|
| 14738 | 56  | 
|
57  | 
theorems mult_ac = mult_assoc mult_commute mult_left_commute  | 
|
58  | 
||
| 26015 | 59  | 
class ab_semigroup_idem_mult = ab_semigroup_mult +  | 
60  | 
assumes mult_idem: "x * x = x"  | 
|
61  | 
begin  | 
|
62  | 
||
63  | 
lemma mult_left_idem: "x * (x * y) = x * y"  | 
|
64  | 
unfolding mult_assoc [symmetric, of x] mult_idem ..  | 
|
65  | 
||
66  | 
lemmas mult_ac_idem = mult_ac mult_idem mult_left_idem  | 
|
67  | 
||
68  | 
end  | 
|
69  | 
||
70  | 
lemmas mult_ac_idem = mult_ac mult_idem mult_left_idem  | 
|
71  | 
||
| 23085 | 72  | 
class monoid_add = zero + semigroup_add +  | 
| 25062 | 73  | 
assumes add_0_left [simp]: "0 + a = a"  | 
74  | 
and add_0_right [simp]: "a + 0 = a"  | 
|
| 23085 | 75  | 
|
| 26071 | 76  | 
lemma zero_reorient: "0 = x \<longleftrightarrow> x = 0"  | 
77  | 
by (rule eq_commute)  | 
|
78  | 
||
| 22390 | 79  | 
class comm_monoid_add = zero + ab_semigroup_add +  | 
| 25062 | 80  | 
assumes add_0: "0 + a = a"  | 
81  | 
begin  | 
|
| 23085 | 82  | 
|
| 25062 | 83  | 
subclass monoid_add  | 
| 28823 | 84  | 
proof qed (insert add_0, simp_all add: add_commute)  | 
| 25062 | 85  | 
|
86  | 
end  | 
|
| 14738 | 87  | 
|
| 22390 | 88  | 
class monoid_mult = one + semigroup_mult +  | 
| 25062 | 89  | 
assumes mult_1_left [simp]: "1 * a = a"  | 
90  | 
assumes mult_1_right [simp]: "a * 1 = a"  | 
|
| 14738 | 91  | 
|
| 26071 | 92  | 
lemma one_reorient: "1 = x \<longleftrightarrow> x = 1"  | 
93  | 
by (rule eq_commute)  | 
|
94  | 
||
| 22390 | 95  | 
class comm_monoid_mult = one + ab_semigroup_mult +  | 
| 25062 | 96  | 
assumes mult_1: "1 * a = a"  | 
97  | 
begin  | 
|
| 14738 | 98  | 
|
| 25062 | 99  | 
subclass monoid_mult  | 
| 28823 | 100  | 
proof qed (insert mult_1, simp_all add: mult_commute)  | 
| 25062 | 101  | 
|
102  | 
end  | 
|
| 14738 | 103  | 
|
| 22390 | 104  | 
class cancel_semigroup_add = semigroup_add +  | 
| 25062 | 105  | 
assumes add_left_imp_eq: "a + b = a + c \<Longrightarrow> b = c"  | 
106  | 
assumes add_right_imp_eq: "b + a = c + a \<Longrightarrow> b = c"  | 
|
| 
27474
 
a89d755b029d
move proofs of add_left_cancel and add_right_cancel into the correct locale
 
huffman 
parents: 
27250 
diff
changeset
 | 
107  | 
begin  | 
| 
 
a89d755b029d
move proofs of add_left_cancel and add_right_cancel into the correct locale
 
huffman 
parents: 
27250 
diff
changeset
 | 
108  | 
|
| 
 
a89d755b029d
move proofs of add_left_cancel and add_right_cancel into the correct locale
 
huffman 
parents: 
27250 
diff
changeset
 | 
109  | 
lemma add_left_cancel [simp]:  | 
| 
 
a89d755b029d
move proofs of add_left_cancel and add_right_cancel into the correct locale
 
huffman 
parents: 
27250 
diff
changeset
 | 
110  | 
"a + b = a + c \<longleftrightarrow> b = c"  | 
| 
 
a89d755b029d
move proofs of add_left_cancel and add_right_cancel into the correct locale
 
huffman 
parents: 
27250 
diff
changeset
 | 
111  | 
by (blast dest: add_left_imp_eq)  | 
| 
 
a89d755b029d
move proofs of add_left_cancel and add_right_cancel into the correct locale
 
huffman 
parents: 
27250 
diff
changeset
 | 
112  | 
|
| 
 
a89d755b029d
move proofs of add_left_cancel and add_right_cancel into the correct locale
 
huffman 
parents: 
27250 
diff
changeset
 | 
113  | 
lemma add_right_cancel [simp]:  | 
| 
 
a89d755b029d
move proofs of add_left_cancel and add_right_cancel into the correct locale
 
huffman 
parents: 
27250 
diff
changeset
 | 
114  | 
"b + a = c + a \<longleftrightarrow> b = c"  | 
| 
 
a89d755b029d
move proofs of add_left_cancel and add_right_cancel into the correct locale
 
huffman 
parents: 
27250 
diff
changeset
 | 
115  | 
by (blast dest: add_right_imp_eq)  | 
| 
 
a89d755b029d
move proofs of add_left_cancel and add_right_cancel into the correct locale
 
huffman 
parents: 
27250 
diff
changeset
 | 
116  | 
|
| 
 
a89d755b029d
move proofs of add_left_cancel and add_right_cancel into the correct locale
 
huffman 
parents: 
27250 
diff
changeset
 | 
117  | 
end  | 
| 14738 | 118  | 
|
| 22390 | 119  | 
class cancel_ab_semigroup_add = ab_semigroup_add +  | 
| 25062 | 120  | 
assumes add_imp_eq: "a + b = a + c \<Longrightarrow> b = c"  | 
| 25267 | 121  | 
begin  | 
| 14738 | 122  | 
|
| 25267 | 123  | 
subclass cancel_semigroup_add  | 
| 28823 | 124  | 
proof  | 
| 22390 | 125  | 
fix a b c :: 'a  | 
126  | 
assume "a + b = a + c"  | 
|
127  | 
then show "b = c" by (rule add_imp_eq)  | 
|
128  | 
next  | 
|
| 14738 | 129  | 
fix a b c :: 'a  | 
130  | 
assume "b + a = c + a"  | 
|
| 22390 | 131  | 
then have "a + b = a + c" by (simp only: add_commute)  | 
132  | 
then show "b = c" by (rule add_imp_eq)  | 
|
| 14738 | 133  | 
qed  | 
134  | 
||
| 25267 | 135  | 
end  | 
136  | 
||
| 23085 | 137  | 
subsection {* Groups *}
 | 
138  | 
||
| 25762 | 139  | 
class group_add = minus + uminus + monoid_add +  | 
| 25062 | 140  | 
assumes left_minus [simp]: "- a + a = 0"  | 
141  | 
assumes diff_minus: "a - b = a + (- b)"  | 
|
142  | 
begin  | 
|
| 23085 | 143  | 
|
| 25062 | 144  | 
lemma minus_add_cancel: "- a + (a + b) = b"  | 
145  | 
by (simp add: add_assoc[symmetric])  | 
|
| 14738 | 146  | 
|
| 25062 | 147  | 
lemma minus_zero [simp]: "- 0 = 0"  | 
| 14738 | 148  | 
proof -  | 
| 25062 | 149  | 
have "- 0 = - 0 + (0 + 0)" by (simp only: add_0_right)  | 
150  | 
also have "\<dots> = 0" by (rule minus_add_cancel)  | 
|
| 14738 | 151  | 
finally show ?thesis .  | 
152  | 
qed  | 
|
153  | 
||
| 25062 | 154  | 
lemma minus_minus [simp]: "- (- a) = a"  | 
| 23085 | 155  | 
proof -  | 
| 25062 | 156  | 
have "- (- a) = - (- a) + (- a + a)" by simp  | 
157  | 
also have "\<dots> = a" by (rule minus_add_cancel)  | 
|
| 23085 | 158  | 
finally show ?thesis .  | 
159  | 
qed  | 
|
| 14738 | 160  | 
|
| 25062 | 161  | 
lemma right_minus [simp]: "a + - a = 0"  | 
| 14738 | 162  | 
proof -  | 
| 25062 | 163  | 
have "a + - a = - (- a) + - a" by simp  | 
164  | 
also have "\<dots> = 0" by (rule left_minus)  | 
|
| 14738 | 165  | 
finally show ?thesis .  | 
166  | 
qed  | 
|
167  | 
||
| 25062 | 168  | 
lemma right_minus_eq: "a - b = 0 \<longleftrightarrow> a = b"  | 
| 14738 | 169  | 
proof  | 
| 23085 | 170  | 
assume "a - b = 0"  | 
171  | 
have "a = (a - b) + b" by (simp add:diff_minus add_assoc)  | 
|
172  | 
also have "\<dots> = b" using `a - b = 0` by simp  | 
|
173  | 
finally show "a = b" .  | 
|
| 14738 | 174  | 
next  | 
| 23085 | 175  | 
assume "a = b" thus "a - b = 0" by (simp add: diff_minus)  | 
| 14738 | 176  | 
qed  | 
177  | 
||
| 25062 | 178  | 
lemma equals_zero_I:  | 
179  | 
assumes "a + b = 0"  | 
|
180  | 
shows "- a = b"  | 
|
| 23085 | 181  | 
proof -  | 
| 25062 | 182  | 
have "- a = - a + (a + b)" using assms by simp  | 
183  | 
also have "\<dots> = b" by (simp add: add_assoc[symmetric])  | 
|
| 23085 | 184  | 
finally show ?thesis .  | 
185  | 
qed  | 
|
| 14738 | 186  | 
|
| 25062 | 187  | 
lemma diff_self [simp]: "a - a = 0"  | 
188  | 
by (simp add: diff_minus)  | 
|
| 14738 | 189  | 
|
| 25062 | 190  | 
lemma diff_0 [simp]: "0 - a = - a"  | 
191  | 
by (simp add: diff_minus)  | 
|
| 14738 | 192  | 
|
| 25062 | 193  | 
lemma diff_0_right [simp]: "a - 0 = a"  | 
194  | 
by (simp add: diff_minus)  | 
|
| 14738 | 195  | 
|
| 25062 | 196  | 
lemma diff_minus_eq_add [simp]: "a - - b = a + b"  | 
197  | 
by (simp add: diff_minus)  | 
|
| 14738 | 198  | 
|
| 25062 | 199  | 
lemma neg_equal_iff_equal [simp]:  | 
200  | 
"- a = - b \<longleftrightarrow> a = b"  | 
|
| 14738 | 201  | 
proof  | 
202  | 
assume "- a = - b"  | 
|
203  | 
hence "- (- a) = - (- b)"  | 
|
204  | 
by simp  | 
|
| 25062 | 205  | 
thus "a = b" by simp  | 
| 14738 | 206  | 
next  | 
| 25062 | 207  | 
assume "a = b"  | 
208  | 
thus "- a = - b" by simp  | 
|
| 14738 | 209  | 
qed  | 
210  | 
||
| 25062 | 211  | 
lemma neg_equal_0_iff_equal [simp]:  | 
212  | 
"- a = 0 \<longleftrightarrow> a = 0"  | 
|
213  | 
by (subst neg_equal_iff_equal [symmetric], simp)  | 
|
| 14738 | 214  | 
|
| 25062 | 215  | 
lemma neg_0_equal_iff_equal [simp]:  | 
216  | 
"0 = - a \<longleftrightarrow> 0 = a"  | 
|
217  | 
by (subst neg_equal_iff_equal [symmetric], simp)  | 
|
| 14738 | 218  | 
|
219  | 
text{*The next two equations can make the simplifier loop!*}
 | 
|
220  | 
||
| 25062 | 221  | 
lemma equation_minus_iff:  | 
222  | 
"a = - b \<longleftrightarrow> b = - a"  | 
|
| 14738 | 223  | 
proof -  | 
| 25062 | 224  | 
have "- (- a) = - b \<longleftrightarrow> - a = b" by (rule neg_equal_iff_equal)  | 
225  | 
thus ?thesis by (simp add: eq_commute)  | 
|
226  | 
qed  | 
|
227  | 
||
228  | 
lemma minus_equation_iff:  | 
|
229  | 
"- a = b \<longleftrightarrow> - b = a"  | 
|
230  | 
proof -  | 
|
231  | 
have "- a = - (- b) \<longleftrightarrow> a = -b" by (rule neg_equal_iff_equal)  | 
|
| 14738 | 232  | 
thus ?thesis by (simp add: eq_commute)  | 
233  | 
qed  | 
|
234  | 
||
| 
28130
 
32b4185bfdc7
move diff_add_cancel, add_diff_cancel from class ab_group_add to group_add
 
huffman 
parents: 
27516 
diff
changeset
 | 
235  | 
lemma diff_add_cancel: "a - b + b = a"  | 
| 
 
32b4185bfdc7
move diff_add_cancel, add_diff_cancel from class ab_group_add to group_add
 
huffman 
parents: 
27516 
diff
changeset
 | 
236  | 
by (simp add: diff_minus add_assoc)  | 
| 
 
32b4185bfdc7
move diff_add_cancel, add_diff_cancel from class ab_group_add to group_add
 
huffman 
parents: 
27516 
diff
changeset
 | 
237  | 
|
| 
 
32b4185bfdc7
move diff_add_cancel, add_diff_cancel from class ab_group_add to group_add
 
huffman 
parents: 
27516 
diff
changeset
 | 
238  | 
lemma add_diff_cancel: "a + b - b = a"  | 
| 
 
32b4185bfdc7
move diff_add_cancel, add_diff_cancel from class ab_group_add to group_add
 
huffman 
parents: 
27516 
diff
changeset
 | 
239  | 
by (simp add: diff_minus add_assoc)  | 
| 
 
32b4185bfdc7
move diff_add_cancel, add_diff_cancel from class ab_group_add to group_add
 
huffman 
parents: 
27516 
diff
changeset
 | 
240  | 
|
| 25062 | 241  | 
end  | 
242  | 
||
| 25762 | 243  | 
class ab_group_add = minus + uminus + comm_monoid_add +  | 
| 25062 | 244  | 
assumes ab_left_minus: "- a + a = 0"  | 
245  | 
assumes ab_diff_minus: "a - b = a + (- b)"  | 
|
| 25267 | 246  | 
begin  | 
| 25062 | 247  | 
|
| 25267 | 248  | 
subclass group_add  | 
| 28823 | 249  | 
proof qed (simp_all add: ab_left_minus ab_diff_minus)  | 
| 25062 | 250  | 
|
| 25267 | 251  | 
subclass cancel_ab_semigroup_add  | 
| 28823 | 252  | 
proof  | 
| 25062 | 253  | 
fix a b c :: 'a  | 
254  | 
assume "a + b = a + c"  | 
|
255  | 
then have "- a + a + b = - a + a + c"  | 
|
256  | 
unfolding add_assoc by simp  | 
|
257  | 
then show "b = c" by simp  | 
|
258  | 
qed  | 
|
259  | 
||
260  | 
lemma uminus_add_conv_diff:  | 
|
261  | 
"- a + b = b - a"  | 
|
262  | 
by (simp add:diff_minus add_commute)  | 
|
263  | 
||
264  | 
lemma minus_add_distrib [simp]:  | 
|
265  | 
"- (a + b) = - a + - b"  | 
|
266  | 
by (rule equals_zero_I) (simp add: add_ac)  | 
|
267  | 
||
268  | 
lemma minus_diff_eq [simp]:  | 
|
269  | 
"- (a - b) = b - a"  | 
|
270  | 
by (simp add: diff_minus add_commute)  | 
|
271  | 
||
| 25077 | 272  | 
lemma add_diff_eq: "a + (b - c) = (a + b) - c"  | 
273  | 
by (simp add: diff_minus add_ac)  | 
|
274  | 
||
275  | 
lemma diff_add_eq: "(a - b) + c = (a + c) - b"  | 
|
276  | 
by (simp add: diff_minus add_ac)  | 
|
277  | 
||
278  | 
lemma diff_eq_eq: "a - b = c \<longleftrightarrow> a = c + b"  | 
|
279  | 
by (auto simp add: diff_minus add_assoc)  | 
|
280  | 
||
281  | 
lemma eq_diff_eq: "a = c - b \<longleftrightarrow> a + b = c"  | 
|
282  | 
by (auto simp add: diff_minus add_assoc)  | 
|
283  | 
||
284  | 
lemma diff_diff_eq: "(a - b) - c = a - (b + c)"  | 
|
285  | 
by (simp add: diff_minus add_ac)  | 
|
286  | 
||
287  | 
lemma diff_diff_eq2: "a - (b - c) = (a + c) - b"  | 
|
288  | 
by (simp add: diff_minus add_ac)  | 
|
289  | 
||
290  | 
lemmas compare_rls =  | 
|
291  | 
diff_minus [symmetric]  | 
|
292  | 
add_diff_eq diff_add_eq diff_diff_eq diff_diff_eq2  | 
|
293  | 
diff_eq_eq eq_diff_eq  | 
|
294  | 
||
295  | 
lemma eq_iff_diff_eq_0: "a = b \<longleftrightarrow> a - b = 0"  | 
|
296  | 
by (simp add: compare_rls)  | 
|
297  | 
||
| 25062 | 298  | 
end  | 
| 14738 | 299  | 
|
300  | 
subsection {* (Partially) Ordered Groups *} 
 | 
|
301  | 
||
| 22390 | 302  | 
class pordered_ab_semigroup_add = order + ab_semigroup_add +  | 
| 25062 | 303  | 
assumes add_left_mono: "a \<le> b \<Longrightarrow> c + a \<le> c + b"  | 
304  | 
begin  | 
|
| 
24380
 
c215e256beca
moved ordered_ab_semigroup_add to OrderedGroup.thy
 
haftmann 
parents: 
24286 
diff
changeset
 | 
305  | 
|
| 25062 | 306  | 
lemma add_right_mono:  | 
307  | 
"a \<le> b \<Longrightarrow> a + c \<le> b + c"  | 
|
| 22390 | 308  | 
by (simp add: add_commute [of _ c] add_left_mono)  | 
| 14738 | 309  | 
|
310  | 
text {* non-strict, in both arguments *}
 | 
|
311  | 
lemma add_mono:  | 
|
| 25062 | 312  | 
"a \<le> b \<Longrightarrow> c \<le> d \<Longrightarrow> a + c \<le> b + d"  | 
| 14738 | 313  | 
apply (erule add_right_mono [THEN order_trans])  | 
314  | 
apply (simp add: add_commute add_left_mono)  | 
|
315  | 
done  | 
|
316  | 
||
| 25062 | 317  | 
end  | 
318  | 
||
319  | 
class pordered_cancel_ab_semigroup_add =  | 
|
320  | 
pordered_ab_semigroup_add + cancel_ab_semigroup_add  | 
|
321  | 
begin  | 
|
322  | 
||
| 14738 | 323  | 
lemma add_strict_left_mono:  | 
| 25062 | 324  | 
"a < b \<Longrightarrow> c + a < c + b"  | 
325  | 
by (auto simp add: less_le add_left_mono)  | 
|
| 14738 | 326  | 
|
327  | 
lemma add_strict_right_mono:  | 
|
| 25062 | 328  | 
"a < b \<Longrightarrow> a + c < b + c"  | 
329  | 
by (simp add: add_commute [of _ c] add_strict_left_mono)  | 
|
| 14738 | 330  | 
|
331  | 
text{*Strict monotonicity in both arguments*}
 | 
|
| 25062 | 332  | 
lemma add_strict_mono:  | 
333  | 
"a < b \<Longrightarrow> c < d \<Longrightarrow> a + c < b + d"  | 
|
334  | 
apply (erule add_strict_right_mono [THEN less_trans])  | 
|
| 14738 | 335  | 
apply (erule add_strict_left_mono)  | 
336  | 
done  | 
|
337  | 
||
338  | 
lemma add_less_le_mono:  | 
|
| 25062 | 339  | 
"a < b \<Longrightarrow> c \<le> d \<Longrightarrow> a + c < b + d"  | 
340  | 
apply (erule add_strict_right_mono [THEN less_le_trans])  | 
|
341  | 
apply (erule add_left_mono)  | 
|
| 14738 | 342  | 
done  | 
343  | 
||
344  | 
lemma add_le_less_mono:  | 
|
| 25062 | 345  | 
"a \<le> b \<Longrightarrow> c < d \<Longrightarrow> a + c < b + d"  | 
346  | 
apply (erule add_right_mono [THEN le_less_trans])  | 
|
| 14738 | 347  | 
apply (erule add_strict_left_mono)  | 
348  | 
done  | 
|
349  | 
||
| 25062 | 350  | 
end  | 
351  | 
||
352  | 
class pordered_ab_semigroup_add_imp_le =  | 
|
353  | 
pordered_cancel_ab_semigroup_add +  | 
|
354  | 
assumes add_le_imp_le_left: "c + a \<le> c + b \<Longrightarrow> a \<le> b"  | 
|
355  | 
begin  | 
|
356  | 
||
| 14738 | 357  | 
lemma add_less_imp_less_left:  | 
| 25062 | 358  | 
assumes less: "c + a < c + b"  | 
359  | 
shows "a < b"  | 
|
| 14738 | 360  | 
proof -  | 
361  | 
from less have le: "c + a <= c + b" by (simp add: order_le_less)  | 
|
362  | 
have "a <= b"  | 
|
363  | 
apply (insert le)  | 
|
364  | 
apply (drule add_le_imp_le_left)  | 
|
365  | 
by (insert le, drule add_le_imp_le_left, assumption)  | 
|
366  | 
moreover have "a \<noteq> b"  | 
|
367  | 
proof (rule ccontr)  | 
|
368  | 
assume "~(a \<noteq> b)"  | 
|
369  | 
then have "a = b" by simp  | 
|
370  | 
then have "c + a = c + b" by simp  | 
|
371  | 
with less show "False"by simp  | 
|
372  | 
qed  | 
|
373  | 
ultimately show "a < b" by (simp add: order_le_less)  | 
|
374  | 
qed  | 
|
375  | 
||
376  | 
lemma add_less_imp_less_right:  | 
|
| 25062 | 377  | 
"a + c < b + c \<Longrightarrow> a < b"  | 
| 14738 | 378  | 
apply (rule add_less_imp_less_left [of c])  | 
379  | 
apply (simp add: add_commute)  | 
|
380  | 
done  | 
|
381  | 
||
382  | 
lemma add_less_cancel_left [simp]:  | 
|
| 25062 | 383  | 
"c + a < c + b \<longleftrightarrow> a < b"  | 
384  | 
by (blast intro: add_less_imp_less_left add_strict_left_mono)  | 
|
| 14738 | 385  | 
|
386  | 
lemma add_less_cancel_right [simp]:  | 
|
| 25062 | 387  | 
"a + c < b + c \<longleftrightarrow> a < b"  | 
388  | 
by (blast intro: add_less_imp_less_right add_strict_right_mono)  | 
|
| 14738 | 389  | 
|
390  | 
lemma add_le_cancel_left [simp]:  | 
|
| 25062 | 391  | 
"c + a \<le> c + b \<longleftrightarrow> a \<le> b"  | 
392  | 
by (auto, drule add_le_imp_le_left, simp_all add: add_left_mono)  | 
|
| 14738 | 393  | 
|
394  | 
lemma add_le_cancel_right [simp]:  | 
|
| 25062 | 395  | 
"a + c \<le> b + c \<longleftrightarrow> a \<le> b"  | 
396  | 
by (simp add: add_commute [of a c] add_commute [of b c])  | 
|
| 14738 | 397  | 
|
398  | 
lemma add_le_imp_le_right:  | 
|
| 25062 | 399  | 
"a + c \<le> b + c \<Longrightarrow> a \<le> b"  | 
400  | 
by simp  | 
|
401  | 
||
| 25077 | 402  | 
lemma max_add_distrib_left:  | 
403  | 
"max x y + z = max (x + z) (y + z)"  | 
|
404  | 
unfolding max_def by auto  | 
|
405  | 
||
406  | 
lemma min_add_distrib_left:  | 
|
407  | 
"min x y + z = min (x + z) (y + z)"  | 
|
408  | 
unfolding min_def by auto  | 
|
409  | 
||
| 25062 | 410  | 
end  | 
411  | 
||
| 
25303
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
412  | 
subsection {* Support for reasoning about signs *}
 | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
413  | 
|
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
414  | 
class pordered_comm_monoid_add =  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
415  | 
pordered_cancel_ab_semigroup_add + comm_monoid_add  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
416  | 
begin  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
417  | 
|
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
418  | 
lemma add_pos_nonneg:  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
419  | 
assumes "0 < a" and "0 \<le> b"  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
420  | 
shows "0 < a + b"  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
421  | 
proof -  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
422  | 
have "0 + 0 < a + b"  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
423  | 
using assms by (rule add_less_le_mono)  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
424  | 
then show ?thesis by simp  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
425  | 
qed  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
426  | 
|
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
427  | 
lemma add_pos_pos:  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
428  | 
assumes "0 < a" and "0 < b"  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
429  | 
shows "0 < a + b"  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
430  | 
by (rule add_pos_nonneg) (insert assms, auto)  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
431  | 
|
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
432  | 
lemma add_nonneg_pos:  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
433  | 
assumes "0 \<le> a" and "0 < b"  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
434  | 
shows "0 < a + b"  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
435  | 
proof -  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
436  | 
have "0 + 0 < a + b"  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
437  | 
using assms by (rule add_le_less_mono)  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
438  | 
then show ?thesis by simp  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
439  | 
qed  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
440  | 
|
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
441  | 
lemma add_nonneg_nonneg:  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
442  | 
assumes "0 \<le> a" and "0 \<le> b"  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
443  | 
shows "0 \<le> a + b"  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
444  | 
proof -  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
445  | 
have "0 + 0 \<le> a + b"  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
446  | 
using assms by (rule add_mono)  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
447  | 
then show ?thesis by simp  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
448  | 
qed  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
449  | 
|
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
450  | 
lemma add_neg_nonpos:  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
451  | 
assumes "a < 0" and "b \<le> 0"  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
452  | 
shows "a + b < 0"  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
453  | 
proof -  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
454  | 
have "a + b < 0 + 0"  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
455  | 
using assms by (rule add_less_le_mono)  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
456  | 
then show ?thesis by simp  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
457  | 
qed  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
458  | 
|
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
459  | 
lemma add_neg_neg:  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
460  | 
assumes "a < 0" and "b < 0"  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
461  | 
shows "a + b < 0"  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
462  | 
by (rule add_neg_nonpos) (insert assms, auto)  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
463  | 
|
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
464  | 
lemma add_nonpos_neg:  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
465  | 
assumes "a \<le> 0" and "b < 0"  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
466  | 
shows "a + b < 0"  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
467  | 
proof -  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
468  | 
have "a + b < 0 + 0"  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
469  | 
using assms by (rule add_le_less_mono)  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
470  | 
then show ?thesis by simp  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
471  | 
qed  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
472  | 
|
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
473  | 
lemma add_nonpos_nonpos:  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
474  | 
assumes "a \<le> 0" and "b \<le> 0"  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
475  | 
shows "a + b \<le> 0"  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
476  | 
proof -  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
477  | 
have "a + b \<le> 0 + 0"  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
478  | 
using assms by (rule add_mono)  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
479  | 
then show ?thesis by simp  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
480  | 
qed  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
481  | 
|
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
482  | 
end  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
483  | 
|
| 25062 | 484  | 
class pordered_ab_group_add =  | 
485  | 
ab_group_add + pordered_ab_semigroup_add  | 
|
486  | 
begin  | 
|
487  | 
||
| 27516 | 488  | 
subclass pordered_cancel_ab_semigroup_add ..  | 
| 25062 | 489  | 
|
490  | 
subclass pordered_ab_semigroup_add_imp_le  | 
|
| 28823 | 491  | 
proof  | 
| 25062 | 492  | 
fix a b c :: 'a  | 
493  | 
assume "c + a \<le> c + b"  | 
|
494  | 
hence "(-c) + (c + a) \<le> (-c) + (c + b)" by (rule add_left_mono)  | 
|
495  | 
hence "((-c) + c) + a \<le> ((-c) + c) + b" by (simp only: add_assoc)  | 
|
496  | 
thus "a \<le> b" by simp  | 
|
497  | 
qed  | 
|
498  | 
||
| 27516 | 499  | 
subclass pordered_comm_monoid_add ..  | 
| 
25303
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
500  | 
|
| 25077 | 501  | 
lemma max_diff_distrib_left:  | 
502  | 
shows "max x y - z = max (x - z) (y - z)"  | 
|
503  | 
by (simp add: diff_minus, rule max_add_distrib_left)  | 
|
504  | 
||
505  | 
lemma min_diff_distrib_left:  | 
|
506  | 
shows "min x y - z = min (x - z) (y - z)"  | 
|
507  | 
by (simp add: diff_minus, rule min_add_distrib_left)  | 
|
508  | 
||
509  | 
lemma le_imp_neg_le:  | 
|
510  | 
assumes "a \<le> b"  | 
|
511  | 
shows "-b \<le> -a"  | 
|
512  | 
proof -  | 
|
513  | 
have "-a+a \<le> -a+b"  | 
|
514  | 
using `a \<le> b` by (rule add_left_mono)  | 
|
515  | 
hence "0 \<le> -a+b"  | 
|
516  | 
by simp  | 
|
517  | 
hence "0 + (-b) \<le> (-a + b) + (-b)"  | 
|
518  | 
by (rule add_right_mono)  | 
|
519  | 
thus ?thesis  | 
|
520  | 
by (simp add: add_assoc)  | 
|
521  | 
qed  | 
|
522  | 
||
523  | 
lemma neg_le_iff_le [simp]: "- b \<le> - a \<longleftrightarrow> a \<le> b"  | 
|
524  | 
proof  | 
|
525  | 
assume "- b \<le> - a"  | 
|
526  | 
hence "- (- a) \<le> - (- b)"  | 
|
527  | 
by (rule le_imp_neg_le)  | 
|
528  | 
thus "a\<le>b" by simp  | 
|
529  | 
next  | 
|
530  | 
assume "a\<le>b"  | 
|
531  | 
thus "-b \<le> -a" by (rule le_imp_neg_le)  | 
|
532  | 
qed  | 
|
533  | 
||
534  | 
lemma neg_le_0_iff_le [simp]: "- a \<le> 0 \<longleftrightarrow> 0 \<le> a"  | 
|
535  | 
by (subst neg_le_iff_le [symmetric], simp)  | 
|
536  | 
||
537  | 
lemma neg_0_le_iff_le [simp]: "0 \<le> - a \<longleftrightarrow> a \<le> 0"  | 
|
538  | 
by (subst neg_le_iff_le [symmetric], simp)  | 
|
539  | 
||
540  | 
lemma neg_less_iff_less [simp]: "- b < - a \<longleftrightarrow> a < b"  | 
|
541  | 
by (force simp add: less_le)  | 
|
542  | 
||
543  | 
lemma neg_less_0_iff_less [simp]: "- a < 0 \<longleftrightarrow> 0 < a"  | 
|
544  | 
by (subst neg_less_iff_less [symmetric], simp)  | 
|
545  | 
||
546  | 
lemma neg_0_less_iff_less [simp]: "0 < - a \<longleftrightarrow> a < 0"  | 
|
547  | 
by (subst neg_less_iff_less [symmetric], simp)  | 
|
548  | 
||
549  | 
text{*The next several equations can make the simplifier loop!*}
 | 
|
550  | 
||
551  | 
lemma less_minus_iff: "a < - b \<longleftrightarrow> b < - a"  | 
|
552  | 
proof -  | 
|
553  | 
have "(- (-a) < - b) = (b < - a)" by (rule neg_less_iff_less)  | 
|
554  | 
thus ?thesis by simp  | 
|
555  | 
qed  | 
|
556  | 
||
557  | 
lemma minus_less_iff: "- a < b \<longleftrightarrow> - b < a"  | 
|
558  | 
proof -  | 
|
559  | 
have "(- a < - (-b)) = (- b < a)" by (rule neg_less_iff_less)  | 
|
560  | 
thus ?thesis by simp  | 
|
561  | 
qed  | 
|
562  | 
||
563  | 
lemma le_minus_iff: "a \<le> - b \<longleftrightarrow> b \<le> - a"  | 
|
564  | 
proof -  | 
|
565  | 
have mm: "!! a (b::'a). (-(-a)) < -b \<Longrightarrow> -(-b) < -a" by (simp only: minus_less_iff)  | 
|
566  | 
have "(- (- a) <= -b) = (b <= - a)"  | 
|
567  | 
apply (auto simp only: le_less)  | 
|
568  | 
apply (drule mm)  | 
|
569  | 
apply (simp_all)  | 
|
570  | 
apply (drule mm[simplified], assumption)  | 
|
571  | 
done  | 
|
572  | 
then show ?thesis by simp  | 
|
573  | 
qed  | 
|
574  | 
||
575  | 
lemma minus_le_iff: "- a \<le> b \<longleftrightarrow> - b \<le> a"  | 
|
576  | 
by (auto simp add: le_less minus_less_iff)  | 
|
577  | 
||
578  | 
lemma less_iff_diff_less_0: "a < b \<longleftrightarrow> a - b < 0"  | 
|
579  | 
proof -  | 
|
580  | 
have "(a < b) = (a + (- b) < b + (-b))"  | 
|
581  | 
by (simp only: add_less_cancel_right)  | 
|
582  | 
also have "... = (a - b < 0)" by (simp add: diff_minus)  | 
|
583  | 
finally show ?thesis .  | 
|
584  | 
qed  | 
|
585  | 
||
586  | 
lemma diff_less_eq: "a - b < c \<longleftrightarrow> a < c + b"  | 
|
587  | 
apply (subst less_iff_diff_less_0 [of a])  | 
|
588  | 
apply (rule less_iff_diff_less_0 [of _ c, THEN ssubst])  | 
|
589  | 
apply (simp add: diff_minus add_ac)  | 
|
590  | 
done  | 
|
591  | 
||
592  | 
lemma less_diff_eq: "a < c - b \<longleftrightarrow> a + b < c"  | 
|
593  | 
apply (subst less_iff_diff_less_0 [of "plus a b"])  | 
|
594  | 
apply (subst less_iff_diff_less_0 [of a])  | 
|
595  | 
apply (simp add: diff_minus add_ac)  | 
|
596  | 
done  | 
|
597  | 
||
598  | 
lemma diff_le_eq: "a - b \<le> c \<longleftrightarrow> a \<le> c + b"  | 
|
599  | 
by (auto simp add: le_less diff_less_eq diff_add_cancel add_diff_cancel)  | 
|
600  | 
||
601  | 
lemma le_diff_eq: "a \<le> c - b \<longleftrightarrow> a + b \<le> c"  | 
|
602  | 
by (auto simp add: le_less less_diff_eq diff_add_cancel add_diff_cancel)  | 
|
603  | 
||
604  | 
lemmas compare_rls =  | 
|
605  | 
diff_minus [symmetric]  | 
|
606  | 
add_diff_eq diff_add_eq diff_diff_eq diff_diff_eq2  | 
|
607  | 
diff_less_eq less_diff_eq diff_le_eq le_diff_eq  | 
|
608  | 
diff_eq_eq eq_diff_eq  | 
|
609  | 
||
610  | 
text{*This list of rewrites simplifies (in)equalities by bringing subtractions
 | 
|
611  | 
to the top and then moving negative terms to the other side.  | 
|
612  | 
  Use with @{text add_ac}*}
 | 
|
613  | 
lemmas (in -) compare_rls =  | 
|
614  | 
diff_minus [symmetric]  | 
|
615  | 
add_diff_eq diff_add_eq diff_diff_eq diff_diff_eq2  | 
|
616  | 
diff_less_eq less_diff_eq diff_le_eq le_diff_eq  | 
|
617  | 
diff_eq_eq eq_diff_eq  | 
|
618  | 
||
619  | 
lemma le_iff_diff_le_0: "a \<le> b \<longleftrightarrow> a - b \<le> 0"  | 
|
620  | 
by (simp add: compare_rls)  | 
|
621  | 
||
| 25230 | 622  | 
lemmas group_simps =  | 
623  | 
add_ac  | 
|
624  | 
add_diff_eq diff_add_eq diff_diff_eq diff_diff_eq2  | 
|
625  | 
diff_eq_eq eq_diff_eq diff_minus [symmetric] uminus_add_conv_diff  | 
|
626  | 
diff_less_eq less_diff_eq diff_le_eq le_diff_eq  | 
|
627  | 
||
| 25077 | 628  | 
end  | 
629  | 
||
| 25230 | 630  | 
lemmas group_simps =  | 
631  | 
mult_ac  | 
|
632  | 
add_ac  | 
|
633  | 
add_diff_eq diff_add_eq diff_diff_eq diff_diff_eq2  | 
|
634  | 
diff_eq_eq eq_diff_eq diff_minus [symmetric] uminus_add_conv_diff  | 
|
635  | 
diff_less_eq less_diff_eq diff_le_eq le_diff_eq  | 
|
636  | 
||
| 25062 | 637  | 
class ordered_ab_semigroup_add =  | 
638  | 
linorder + pordered_ab_semigroup_add  | 
|
639  | 
||
640  | 
class ordered_cancel_ab_semigroup_add =  | 
|
641  | 
linorder + pordered_cancel_ab_semigroup_add  | 
|
| 25267 | 642  | 
begin  | 
| 25062 | 643  | 
|
| 27516 | 644  | 
subclass ordered_ab_semigroup_add ..  | 
| 25062 | 645  | 
|
| 25267 | 646  | 
subclass pordered_ab_semigroup_add_imp_le  | 
| 28823 | 647  | 
proof  | 
| 25062 | 648  | 
fix a b c :: 'a  | 
649  | 
assume le: "c + a <= c + b"  | 
|
650  | 
show "a <= b"  | 
|
651  | 
proof (rule ccontr)  | 
|
652  | 
assume w: "~ a \<le> b"  | 
|
653  | 
hence "b <= a" by (simp add: linorder_not_le)  | 
|
654  | 
hence le2: "c + b <= c + a" by (rule add_left_mono)  | 
|
655  | 
have "a = b"  | 
|
656  | 
apply (insert le)  | 
|
657  | 
apply (insert le2)  | 
|
658  | 
apply (drule antisym, simp_all)  | 
|
659  | 
done  | 
|
660  | 
with w show False  | 
|
661  | 
by (simp add: linorder_not_le [symmetric])  | 
|
662  | 
qed  | 
|
663  | 
qed  | 
|
664  | 
||
| 25267 | 665  | 
end  | 
666  | 
||
| 25230 | 667  | 
class ordered_ab_group_add =  | 
668  | 
linorder + pordered_ab_group_add  | 
|
| 25267 | 669  | 
begin  | 
| 25230 | 670  | 
|
| 27516 | 671  | 
subclass ordered_cancel_ab_semigroup_add ..  | 
| 25230 | 672  | 
|
| 
25303
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
673  | 
lemma neg_less_eq_nonneg:  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
674  | 
"- a \<le> a \<longleftrightarrow> 0 \<le> a"  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
675  | 
proof  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
676  | 
assume A: "- a \<le> a" show "0 \<le> a"  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
677  | 
proof (rule classical)  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
678  | 
assume "\<not> 0 \<le> a"  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
679  | 
then have "a < 0" by auto  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
680  | 
with A have "- a < 0" by (rule le_less_trans)  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
681  | 
then show ?thesis by auto  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
682  | 
qed  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
683  | 
next  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
684  | 
assume A: "0 \<le> a" show "- a \<le> a"  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
685  | 
proof (rule order_trans)  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
686  | 
show "- a \<le> 0" using A by (simp add: minus_le_iff)  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
687  | 
next  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
688  | 
show "0 \<le> a" using A .  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
689  | 
qed  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
690  | 
qed  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
691  | 
|
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
692  | 
lemma less_eq_neg_nonpos:  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
693  | 
"a \<le> - a \<longleftrightarrow> a \<le> 0"  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
694  | 
proof  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
695  | 
assume A: "a \<le> - a" show "a \<le> 0"  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
696  | 
proof (rule classical)  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
697  | 
assume "\<not> a \<le> 0"  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
698  | 
then have "0 < a" by auto  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
699  | 
then have "0 < - a" using A by (rule less_le_trans)  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
700  | 
then show ?thesis by auto  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
701  | 
qed  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
702  | 
next  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
703  | 
assume A: "a \<le> 0" show "a \<le> - a"  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
704  | 
proof (rule order_trans)  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
705  | 
show "0 \<le> - a" using A by (simp add: minus_le_iff)  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
706  | 
next  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
707  | 
show "a \<le> 0" using A .  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
708  | 
qed  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
709  | 
qed  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
710  | 
|
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
711  | 
lemma equal_neg_zero:  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
712  | 
"a = - a \<longleftrightarrow> a = 0"  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
713  | 
proof  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
714  | 
assume "a = 0" then show "a = - a" by simp  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
715  | 
next  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
716  | 
assume A: "a = - a" show "a = 0"  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
717  | 
proof (cases "0 \<le> a")  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
718  | 
case True with A have "0 \<le> - a" by auto  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
719  | 
with le_minus_iff have "a \<le> 0" by simp  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
720  | 
with True show ?thesis by (auto intro: order_trans)  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
721  | 
next  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
722  | 
case False then have B: "a \<le> 0" by auto  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
723  | 
with A have "- a \<le> 0" by auto  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
724  | 
with B show ?thesis by (auto intro: order_trans)  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
725  | 
qed  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
726  | 
qed  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
727  | 
|
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
728  | 
lemma neg_equal_zero:  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
729  | 
"- a = a \<longleftrightarrow> a = 0"  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
730  | 
unfolding equal_neg_zero [symmetric] by auto  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
731  | 
|
| 25267 | 732  | 
end  | 
733  | 
||
| 25077 | 734  | 
-- {* FIXME localize the following *}
 | 
| 14738 | 735  | 
|
| 
15234
 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 
paulson 
parents: 
15229 
diff
changeset
 | 
736  | 
lemma add_increasing:  | 
| 
 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 
paulson 
parents: 
15229 
diff
changeset
 | 
737  | 
  fixes c :: "'a::{pordered_ab_semigroup_add_imp_le, comm_monoid_add}"
 | 
| 
 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 
paulson 
parents: 
15229 
diff
changeset
 | 
738  | 
shows "[|0\<le>a; b\<le>c|] ==> b \<le> a + c"  | 
| 14738 | 739  | 
by (insert add_mono [of 0 a b c], simp)  | 
740  | 
||
| 15539 | 741  | 
lemma add_increasing2:  | 
742  | 
  fixes c :: "'a::{pordered_ab_semigroup_add_imp_le, comm_monoid_add}"
 | 
|
743  | 
shows "[|0\<le>c; b\<le>a|] ==> b \<le> a + c"  | 
|
744  | 
by (simp add:add_increasing add_commute[of a])  | 
|
745  | 
||
| 
15234
 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 
paulson 
parents: 
15229 
diff
changeset
 | 
746  | 
lemma add_strict_increasing:  | 
| 
 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 
paulson 
parents: 
15229 
diff
changeset
 | 
747  | 
  fixes c :: "'a::{pordered_ab_semigroup_add_imp_le, comm_monoid_add}"
 | 
| 
 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 
paulson 
parents: 
15229 
diff
changeset
 | 
748  | 
shows "[|0<a; b\<le>c|] ==> b < a + c"  | 
| 
 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 
paulson 
parents: 
15229 
diff
changeset
 | 
749  | 
by (insert add_less_le_mono [of 0 a b c], simp)  | 
| 
 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 
paulson 
parents: 
15229 
diff
changeset
 | 
750  | 
|
| 
 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 
paulson 
parents: 
15229 
diff
changeset
 | 
751  | 
lemma add_strict_increasing2:  | 
| 
 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 
paulson 
parents: 
15229 
diff
changeset
 | 
752  | 
  fixes c :: "'a::{pordered_ab_semigroup_add_imp_le, comm_monoid_add}"
 | 
| 
 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 
paulson 
parents: 
15229 
diff
changeset
 | 
753  | 
shows "[|0\<le>a; b<c|] ==> b < a + c"  | 
| 
 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 
paulson 
parents: 
15229 
diff
changeset
 | 
754  | 
by (insert add_le_less_mono [of 0 a b c], simp)  | 
| 
 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 
paulson 
parents: 
15229 
diff
changeset
 | 
755  | 
|
| 14738 | 756  | 
|
| 
25303
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
757  | 
class pordered_ab_group_add_abs = pordered_ab_group_add + abs +  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
758  | 
assumes abs_ge_zero [simp]: "\<bar>a\<bar> \<ge> 0"  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
759  | 
and abs_ge_self: "a \<le> \<bar>a\<bar>"  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
760  | 
and abs_leI: "a \<le> b \<Longrightarrow> - a \<le> b \<Longrightarrow> \<bar>a\<bar> \<le> b"  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
761  | 
and abs_minus_cancel [simp]: "\<bar>-a\<bar> = \<bar>a\<bar>"  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
762  | 
and abs_triangle_ineq: "\<bar>a + b\<bar> \<le> \<bar>a\<bar> + \<bar>b\<bar>"  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
763  | 
begin  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
764  | 
|
| 25307 | 765  | 
lemma abs_minus_le_zero: "- \<bar>a\<bar> \<le> 0"  | 
766  | 
unfolding neg_le_0_iff_le by simp  | 
|
767  | 
||
768  | 
lemma abs_of_nonneg [simp]:  | 
|
769  | 
assumes nonneg: "0 \<le> a"  | 
|
770  | 
shows "\<bar>a\<bar> = a"  | 
|
771  | 
proof (rule antisym)  | 
|
772  | 
from nonneg le_imp_neg_le have "- a \<le> 0" by simp  | 
|
773  | 
from this nonneg have "- a \<le> a" by (rule order_trans)  | 
|
774  | 
then show "\<bar>a\<bar> \<le> a" by (auto intro: abs_leI)  | 
|
775  | 
qed (rule abs_ge_self)  | 
|
776  | 
||
777  | 
lemma abs_idempotent [simp]: "\<bar>\<bar>a\<bar>\<bar> = \<bar>a\<bar>"  | 
|
778  | 
by (rule antisym)  | 
|
779  | 
(auto intro!: abs_ge_self abs_leI order_trans [of "uminus (abs a)" zero "abs a"])  | 
|
780  | 
||
781  | 
lemma abs_eq_0 [simp]: "\<bar>a\<bar> = 0 \<longleftrightarrow> a = 0"  | 
|
782  | 
proof -  | 
|
783  | 
have "\<bar>a\<bar> = 0 \<Longrightarrow> a = 0"  | 
|
784  | 
proof (rule antisym)  | 
|
785  | 
assume zero: "\<bar>a\<bar> = 0"  | 
|
786  | 
with abs_ge_self show "a \<le> 0" by auto  | 
|
787  | 
from zero have "\<bar>-a\<bar> = 0" by simp  | 
|
788  | 
with abs_ge_self [of "uminus a"] have "- a \<le> 0" by auto  | 
|
789  | 
with neg_le_0_iff_le show "0 \<le> a" by auto  | 
|
790  | 
qed  | 
|
791  | 
then show ?thesis by auto  | 
|
792  | 
qed  | 
|
793  | 
||
| 
25303
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
794  | 
lemma abs_zero [simp]: "\<bar>0\<bar> = 0"  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
795  | 
by simp  | 
| 
16775
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
796  | 
|
| 
25303
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
797  | 
lemma abs_0_eq [simp, noatp]: "0 = \<bar>a\<bar> \<longleftrightarrow> a = 0"  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
798  | 
proof -  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
799  | 
have "0 = \<bar>a\<bar> \<longleftrightarrow> \<bar>a\<bar> = 0" by (simp only: eq_ac)  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
800  | 
thus ?thesis by simp  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
801  | 
qed  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
802  | 
|
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
803  | 
lemma abs_le_zero_iff [simp]: "\<bar>a\<bar> \<le> 0 \<longleftrightarrow> a = 0"  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
804  | 
proof  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
805  | 
assume "\<bar>a\<bar> \<le> 0"  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
806  | 
then have "\<bar>a\<bar> = 0" by (rule antisym) simp  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
807  | 
thus "a = 0" by simp  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
808  | 
next  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
809  | 
assume "a = 0"  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
810  | 
thus "\<bar>a\<bar> \<le> 0" by simp  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
811  | 
qed  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
812  | 
|
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
813  | 
lemma zero_less_abs_iff [simp]: "0 < \<bar>a\<bar> \<longleftrightarrow> a \<noteq> 0"  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
814  | 
by (simp add: less_le)  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
815  | 
|
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
816  | 
lemma abs_not_less_zero [simp]: "\<not> \<bar>a\<bar> < 0"  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
817  | 
proof -  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
818  | 
have a: "\<And>x y. x \<le> y \<Longrightarrow> \<not> y < x" by auto  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
819  | 
show ?thesis by (simp add: a)  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
820  | 
qed  | 
| 
16775
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
821  | 
|
| 
25303
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
822  | 
lemma abs_ge_minus_self: "- a \<le> \<bar>a\<bar>"  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
823  | 
proof -  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
824  | 
have "- a \<le> \<bar>-a\<bar>" by (rule abs_ge_self)  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
825  | 
then show ?thesis by simp  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
826  | 
qed  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
827  | 
|
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
828  | 
lemma abs_minus_commute:  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
829  | 
"\<bar>a - b\<bar> = \<bar>b - a\<bar>"  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
830  | 
proof -  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
831  | 
have "\<bar>a - b\<bar> = \<bar>- (a - b)\<bar>" by (simp only: abs_minus_cancel)  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
832  | 
also have "... = \<bar>b - a\<bar>" by simp  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
833  | 
finally show ?thesis .  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
834  | 
qed  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
835  | 
|
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
836  | 
lemma abs_of_pos: "0 < a \<Longrightarrow> \<bar>a\<bar> = a"  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
837  | 
by (rule abs_of_nonneg, rule less_imp_le)  | 
| 
16775
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
838  | 
|
| 
25303
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
839  | 
lemma abs_of_nonpos [simp]:  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
840  | 
assumes "a \<le> 0"  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
841  | 
shows "\<bar>a\<bar> = - a"  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
842  | 
proof -  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
843  | 
let ?b = "- a"  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
844  | 
have "- ?b \<le> 0 \<Longrightarrow> \<bar>- ?b\<bar> = - (- ?b)"  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
845  | 
unfolding abs_minus_cancel [of "?b"]  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
846  | 
unfolding neg_le_0_iff_le [of "?b"]  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
847  | 
unfolding minus_minus by (erule abs_of_nonneg)  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
848  | 
then show ?thesis using assms by auto  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
849  | 
qed  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
850  | 
|
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
851  | 
lemma abs_of_neg: "a < 0 \<Longrightarrow> \<bar>a\<bar> = - a"  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
852  | 
by (rule abs_of_nonpos, rule less_imp_le)  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
853  | 
|
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
854  | 
lemma abs_le_D1: "\<bar>a\<bar> \<le> b \<Longrightarrow> a \<le> b"  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
855  | 
by (insert abs_ge_self, blast intro: order_trans)  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
856  | 
|
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
857  | 
lemma abs_le_D2: "\<bar>a\<bar> \<le> b \<Longrightarrow> - a \<le> b"  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
858  | 
by (insert abs_le_D1 [of "uminus a"], simp)  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
859  | 
|
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
860  | 
lemma abs_le_iff: "\<bar>a\<bar> \<le> b \<longleftrightarrow> a \<le> b \<and> - a \<le> b"  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
861  | 
by (blast intro: abs_leI dest: abs_le_D1 abs_le_D2)  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
862  | 
|
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
863  | 
lemma abs_triangle_ineq2: "\<bar>a\<bar> - \<bar>b\<bar> \<le> \<bar>a - b\<bar>"  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
864  | 
apply (simp add: compare_rls)  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
865  | 
apply (subgoal_tac "abs a = abs (plus (minus a b) b)")  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
866  | 
apply (erule ssubst)  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
867  | 
apply (rule abs_triangle_ineq)  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
868  | 
apply (rule arg_cong) back  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
869  | 
apply (simp add: compare_rls)  | 
| 
16775
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
870  | 
done  | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
871  | 
|
| 
25303
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
872  | 
lemma abs_triangle_ineq3: "\<bar>\<bar>a\<bar> - \<bar>b\<bar>\<bar> \<le> \<bar>a - b\<bar>"  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
873  | 
apply (subst abs_le_iff)  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
874  | 
apply auto  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
875  | 
apply (rule abs_triangle_ineq2)  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
876  | 
apply (subst abs_minus_commute)  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
877  | 
apply (rule abs_triangle_ineq2)  | 
| 
16775
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
878  | 
done  | 
| 
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
879  | 
|
| 
25303
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
880  | 
lemma abs_triangle_ineq4: "\<bar>a - b\<bar> \<le> \<bar>a\<bar> + \<bar>b\<bar>"  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
881  | 
proof -  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
882  | 
have "abs(a - b) = abs(a + - b)"  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
883  | 
by (subst diff_minus, rule refl)  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
884  | 
also have "... <= abs a + abs (- b)"  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
885  | 
by (rule abs_triangle_ineq)  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
886  | 
finally show ?thesis  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
887  | 
by simp  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
888  | 
qed  | 
| 
16775
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
889  | 
|
| 
25303
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
890  | 
lemma abs_diff_triangle_ineq: "\<bar>a + b - (c + d)\<bar> \<le> \<bar>a - c\<bar> + \<bar>b - d\<bar>"  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
891  | 
proof -  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
892  | 
have "\<bar>a + b - (c+d)\<bar> = \<bar>(a-c) + (b-d)\<bar>" by (simp add: diff_minus add_ac)  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
893  | 
also have "... \<le> \<bar>a-c\<bar> + \<bar>b-d\<bar>" by (rule abs_triangle_ineq)  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
894  | 
finally show ?thesis .  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
895  | 
qed  | 
| 
16775
 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 
avigad 
parents: 
16417 
diff
changeset
 | 
896  | 
|
| 
25303
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
897  | 
lemma abs_add_abs [simp]:  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
898  | 
"\<bar>\<bar>a\<bar> + \<bar>b\<bar>\<bar> = \<bar>a\<bar> + \<bar>b\<bar>" (is "?L = ?R")  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
899  | 
proof (rule antisym)  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
900  | 
show "?L \<ge> ?R" by(rule abs_ge_self)  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
901  | 
next  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
902  | 
have "?L \<le> \<bar>\<bar>a\<bar>\<bar> + \<bar>\<bar>b\<bar>\<bar>" by(rule abs_triangle_ineq)  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
903  | 
also have "\<dots> = ?R" by simp  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
904  | 
finally show "?L \<le> ?R" .  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
905  | 
qed  | 
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
906  | 
|
| 
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
907  | 
end  | 
| 14738 | 908  | 
|
| 
22452
 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 
haftmann 
parents: 
22422 
diff
changeset
 | 
909  | 
|
| 14738 | 910  | 
subsection {* Lattice Ordered (Abelian) Groups *}
 | 
911  | 
||
| 
25303
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
912  | 
class lordered_ab_group_add_meet = pordered_ab_group_add + lower_semilattice  | 
| 25090 | 913  | 
begin  | 
| 14738 | 914  | 
|
| 25090 | 915  | 
lemma add_inf_distrib_left:  | 
916  | 
"a + inf b c = inf (a + b) (a + c)"  | 
|
917  | 
apply (rule antisym)  | 
|
| 
22422
 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 
haftmann 
parents: 
22390 
diff
changeset
 | 
918  | 
apply (simp_all add: le_infI)  | 
| 25090 | 919  | 
apply (rule add_le_imp_le_left [of "uminus a"])  | 
920  | 
apply (simp only: add_assoc [symmetric], simp)  | 
|
| 21312 | 921  | 
apply rule  | 
922  | 
apply (rule add_le_imp_le_left[of "a"], simp only: add_assoc[symmetric], simp)+  | 
|
| 14738 | 923  | 
done  | 
924  | 
||
| 25090 | 925  | 
lemma add_inf_distrib_right:  | 
926  | 
"inf a b + c = inf (a + c) (b + c)"  | 
|
927  | 
proof -  | 
|
928  | 
have "c + inf a b = inf (c+a) (c+b)" by (simp add: add_inf_distrib_left)  | 
|
929  | 
thus ?thesis by (simp add: add_commute)  | 
|
930  | 
qed  | 
|
931  | 
||
932  | 
end  | 
|
933  | 
||
| 
25303
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
934  | 
class lordered_ab_group_add_join = pordered_ab_group_add + upper_semilattice  | 
| 25090 | 935  | 
begin  | 
936  | 
||
937  | 
lemma add_sup_distrib_left:  | 
|
938  | 
"a + sup b c = sup (a + b) (a + c)"  | 
|
939  | 
apply (rule antisym)  | 
|
940  | 
apply (rule add_le_imp_le_left [of "uminus a"])  | 
|
| 14738 | 941  | 
apply (simp only: add_assoc[symmetric], simp)  | 
| 21312 | 942  | 
apply rule  | 
943  | 
apply (rule add_le_imp_le_left [of "a"], simp only: add_assoc[symmetric], simp)+  | 
|
| 
22422
 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 
haftmann 
parents: 
22390 
diff
changeset
 | 
944  | 
apply (rule le_supI)  | 
| 21312 | 945  | 
apply (simp_all)  | 
| 14738 | 946  | 
done  | 
947  | 
||
| 25090 | 948  | 
lemma add_sup_distrib_right:  | 
949  | 
"sup a b + c = sup (a+c) (b+c)"  | 
|
| 14738 | 950  | 
proof -  | 
| 
22452
 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 
haftmann 
parents: 
22422 
diff
changeset
 | 
951  | 
have "c + sup a b = sup (c+a) (c+b)" by (simp add: add_sup_distrib_left)  | 
| 14738 | 952  | 
thus ?thesis by (simp add: add_commute)  | 
953  | 
qed  | 
|
954  | 
||
| 25090 | 955  | 
end  | 
956  | 
||
| 
25303
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
957  | 
class lordered_ab_group_add = pordered_ab_group_add + lattice  | 
| 25090 | 958  | 
begin  | 
959  | 
||
| 27516 | 960  | 
subclass lordered_ab_group_add_meet ..  | 
961  | 
subclass lordered_ab_group_add_join ..  | 
|
| 25090 | 962  | 
|
| 
22422
 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 
haftmann 
parents: 
22390 
diff
changeset
 | 
963  | 
lemmas add_sup_inf_distribs = add_inf_distrib_right add_inf_distrib_left add_sup_distrib_right add_sup_distrib_left  | 
| 14738 | 964  | 
|
| 25090 | 965  | 
lemma inf_eq_neg_sup: "inf a b = - sup (-a) (-b)"  | 
| 
22452
 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 
haftmann 
parents: 
22422 
diff
changeset
 | 
966  | 
proof (rule inf_unique)  | 
| 
 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 
haftmann 
parents: 
22422 
diff
changeset
 | 
967  | 
fix a b :: 'a  | 
| 25090 | 968  | 
show "- sup (-a) (-b) \<le> a"  | 
969  | 
by (rule add_le_imp_le_right [of _ "sup (uminus a) (uminus b)"])  | 
|
970  | 
(simp, simp add: add_sup_distrib_left)  | 
|
| 
22452
 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 
haftmann 
parents: 
22422 
diff
changeset
 | 
971  | 
next  | 
| 
 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 
haftmann 
parents: 
22422 
diff
changeset
 | 
972  | 
fix a b :: 'a  | 
| 25090 | 973  | 
show "- sup (-a) (-b) \<le> b"  | 
974  | 
by (rule add_le_imp_le_right [of _ "sup (uminus a) (uminus b)"])  | 
|
975  | 
(simp, simp add: add_sup_distrib_left)  | 
|
| 
22452
 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 
haftmann 
parents: 
22422 
diff
changeset
 | 
976  | 
next  | 
| 
 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 
haftmann 
parents: 
22422 
diff
changeset
 | 
977  | 
fix a b c :: 'a  | 
| 
 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 
haftmann 
parents: 
22422 
diff
changeset
 | 
978  | 
assume "a \<le> b" "a \<le> c"  | 
| 
 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 
haftmann 
parents: 
22422 
diff
changeset
 | 
979  | 
then show "a \<le> - sup (-b) (-c)" by (subst neg_le_iff_le [symmetric])  | 
| 
 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 
haftmann 
parents: 
22422 
diff
changeset
 | 
980  | 
(simp add: le_supI)  | 
| 
 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 
haftmann 
parents: 
22422 
diff
changeset
 | 
981  | 
qed  | 
| 
 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 
haftmann 
parents: 
22422 
diff
changeset
 | 
982  | 
|
| 25090 | 983  | 
lemma sup_eq_neg_inf: "sup a b = - inf (-a) (-b)"  | 
| 
22452
 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 
haftmann 
parents: 
22422 
diff
changeset
 | 
984  | 
proof (rule sup_unique)  | 
| 
 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 
haftmann 
parents: 
22422 
diff
changeset
 | 
985  | 
fix a b :: 'a  | 
| 25090 | 986  | 
show "a \<le> - inf (-a) (-b)"  | 
987  | 
by (rule add_le_imp_le_right [of _ "inf (uminus a) (uminus b)"])  | 
|
988  | 
(simp, simp add: add_inf_distrib_left)  | 
|
| 
22452
 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 
haftmann 
parents: 
22422 
diff
changeset
 | 
989  | 
next  | 
| 
 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 
haftmann 
parents: 
22422 
diff
changeset
 | 
990  | 
fix a b :: 'a  | 
| 25090 | 991  | 
show "b \<le> - inf (-a) (-b)"  | 
992  | 
by (rule add_le_imp_le_right [of _ "inf (uminus a) (uminus b)"])  | 
|
993  | 
(simp, simp add: add_inf_distrib_left)  | 
|
| 
22452
 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 
haftmann 
parents: 
22422 
diff
changeset
 | 
994  | 
next  | 
| 
 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 
haftmann 
parents: 
22422 
diff
changeset
 | 
995  | 
fix a b c :: 'a  | 
| 
 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 
haftmann 
parents: 
22422 
diff
changeset
 | 
996  | 
assume "a \<le> c" "b \<le> c"  | 
| 
 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 
haftmann 
parents: 
22422 
diff
changeset
 | 
997  | 
then show "- inf (-a) (-b) \<le> c" by (subst neg_le_iff_le [symmetric])  | 
| 
 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 
haftmann 
parents: 
22422 
diff
changeset
 | 
998  | 
(simp add: le_infI)  | 
| 
 
8a86fd2a1bf0
adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
 
haftmann 
parents: 
22422 
diff
changeset
 | 
999  | 
qed  | 
| 14738 | 1000  | 
|
| 25230 | 1001  | 
lemma neg_inf_eq_sup: "- inf a b = sup (-a) (-b)"  | 
1002  | 
by (simp add: inf_eq_neg_sup)  | 
|
1003  | 
||
1004  | 
lemma neg_sup_eq_inf: "- sup a b = inf (-a) (-b)"  | 
|
1005  | 
by (simp add: sup_eq_neg_inf)  | 
|
1006  | 
||
| 25090 | 1007  | 
lemma add_eq_inf_sup: "a + b = sup a b + inf a b"  | 
| 14738 | 1008  | 
proof -  | 
| 
22422
 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 
haftmann 
parents: 
22390 
diff
changeset
 | 
1009  | 
have "0 = - inf 0 (a-b) + inf (a-b) 0" by (simp add: inf_commute)  | 
| 
 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 
haftmann 
parents: 
22390 
diff
changeset
 | 
1010  | 
hence "0 = sup 0 (b-a) + inf (a-b) 0" by (simp add: inf_eq_neg_sup)  | 
| 
 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 
haftmann 
parents: 
22390 
diff
changeset
 | 
1011  | 
hence "0 = (-a + sup a b) + (inf a b + (-b))"  | 
| 
 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 
haftmann 
parents: 
22390 
diff
changeset
 | 
1012  | 
apply (simp add: add_sup_distrib_left add_inf_distrib_right)  | 
| 14738 | 1013  | 
by (simp add: diff_minus add_commute)  | 
1014  | 
thus ?thesis  | 
|
1015  | 
apply (simp add: compare_rls)  | 
|
| 25090 | 1016  | 
apply (subst add_left_cancel [symmetric, of "plus a b" "plus (sup a b) (inf a b)" "uminus a"])  | 
| 14738 | 1017  | 
apply (simp only: add_assoc, simp add: add_assoc[symmetric])  | 
1018  | 
done  | 
|
1019  | 
qed  | 
|
1020  | 
||
1021  | 
subsection {* Positive Part, Negative Part, Absolute Value *}
 | 
|
1022  | 
||
| 
22422
 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 
haftmann 
parents: 
22390 
diff
changeset
 | 
1023  | 
definition  | 
| 25090 | 1024  | 
nprt :: "'a \<Rightarrow> 'a" where  | 
| 
22422
 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 
haftmann 
parents: 
22390 
diff
changeset
 | 
1025  | 
"nprt x = inf x 0"  | 
| 
 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 
haftmann 
parents: 
22390 
diff
changeset
 | 
1026  | 
|
| 
 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 
haftmann 
parents: 
22390 
diff
changeset
 | 
1027  | 
definition  | 
| 25090 | 1028  | 
pprt :: "'a \<Rightarrow> 'a" where  | 
| 
22422
 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 
haftmann 
parents: 
22390 
diff
changeset
 | 
1029  | 
"pprt x = sup x 0"  | 
| 14738 | 1030  | 
|
| 25230 | 1031  | 
lemma pprt_neg: "pprt (- x) = - nprt x"  | 
1032  | 
proof -  | 
|
1033  | 
have "sup (- x) 0 = sup (- x) (- 0)" unfolding minus_zero ..  | 
|
1034  | 
also have "\<dots> = - inf x 0" unfolding neg_inf_eq_sup ..  | 
|
1035  | 
finally have "sup (- x) 0 = - inf x 0" .  | 
|
1036  | 
then show ?thesis unfolding pprt_def nprt_def .  | 
|
1037  | 
qed  | 
|
1038  | 
||
1039  | 
lemma nprt_neg: "nprt (- x) = - pprt x"  | 
|
1040  | 
proof -  | 
|
1041  | 
from pprt_neg have "pprt (- (- x)) = - nprt (- x)" .  | 
|
1042  | 
then have "pprt x = - nprt (- x)" by simp  | 
|
1043  | 
then show ?thesis by simp  | 
|
1044  | 
qed  | 
|
1045  | 
||
| 14738 | 1046  | 
lemma prts: "a = pprt a + nprt a"  | 
| 25090 | 1047  | 
by (simp add: pprt_def nprt_def add_eq_inf_sup[symmetric])  | 
| 14738 | 1048  | 
|
1049  | 
lemma zero_le_pprt[simp]: "0 \<le> pprt a"  | 
|
| 25090 | 1050  | 
by (simp add: pprt_def)  | 
| 14738 | 1051  | 
|
1052  | 
lemma nprt_le_zero[simp]: "nprt a \<le> 0"  | 
|
| 25090 | 1053  | 
by (simp add: nprt_def)  | 
| 14738 | 1054  | 
|
| 25090 | 1055  | 
lemma le_eq_neg: "a \<le> - b \<longleftrightarrow> a + b \<le> 0" (is "?l = ?r")  | 
| 14738 | 1056  | 
proof -  | 
1057  | 
have a: "?l \<longrightarrow> ?r"  | 
|
1058  | 
apply (auto)  | 
|
| 25090 | 1059  | 
apply (rule add_le_imp_le_right[of _ "uminus b" _])  | 
| 14738 | 1060  | 
apply (simp add: add_assoc)  | 
1061  | 
done  | 
|
1062  | 
have b: "?r \<longrightarrow> ?l"  | 
|
1063  | 
apply (auto)  | 
|
1064  | 
apply (rule add_le_imp_le_right[of _ "b" _])  | 
|
1065  | 
apply (simp)  | 
|
1066  | 
done  | 
|
1067  | 
from a b show ?thesis by blast  | 
|
1068  | 
qed  | 
|
1069  | 
||
| 15580 | 1070  | 
lemma pprt_0[simp]: "pprt 0 = 0" by (simp add: pprt_def)  | 
1071  | 
lemma nprt_0[simp]: "nprt 0 = 0" by (simp add: nprt_def)  | 
|
1072  | 
||
| 25090 | 1073  | 
lemma pprt_eq_id [simp, noatp]: "0 \<le> x \<Longrightarrow> pprt x = x"  | 
1074  | 
by (simp add: pprt_def le_iff_sup sup_ACI)  | 
|
| 15580 | 1075  | 
|
| 25090 | 1076  | 
lemma nprt_eq_id [simp, noatp]: "x \<le> 0 \<Longrightarrow> nprt x = x"  | 
1077  | 
by (simp add: nprt_def le_iff_inf inf_ACI)  | 
|
| 15580 | 1078  | 
|
| 25090 | 1079  | 
lemma pprt_eq_0 [simp, noatp]: "x \<le> 0 \<Longrightarrow> pprt x = 0"  | 
1080  | 
by (simp add: pprt_def le_iff_sup sup_ACI)  | 
|
| 15580 | 1081  | 
|
| 25090 | 1082  | 
lemma nprt_eq_0 [simp, noatp]: "0 \<le> x \<Longrightarrow> nprt x = 0"  | 
1083  | 
by (simp add: nprt_def le_iff_inf inf_ACI)  | 
|
| 15580 | 1084  | 
|
| 25090 | 1085  | 
lemma sup_0_imp_0: "sup a (- a) = 0 \<Longrightarrow> a = 0"  | 
| 14738 | 1086  | 
proof -  | 
1087  | 
  {
 | 
|
1088  | 
fix a::'a  | 
|
| 
22422
 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 
haftmann 
parents: 
22390 
diff
changeset
 | 
1089  | 
assume hyp: "sup a (-a) = 0"  | 
| 
 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 
haftmann 
parents: 
22390 
diff
changeset
 | 
1090  | 
hence "sup a (-a) + a = a" by (simp)  | 
| 
 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 
haftmann 
parents: 
22390 
diff
changeset
 | 
1091  | 
hence "sup (a+a) 0 = a" by (simp add: add_sup_distrib_right)  | 
| 
 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 
haftmann 
parents: 
22390 
diff
changeset
 | 
1092  | 
hence "sup (a+a) 0 <= a" by (simp)  | 
| 
 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 
haftmann 
parents: 
22390 
diff
changeset
 | 
1093  | 
hence "0 <= a" by (blast intro: order_trans inf_sup_ord)  | 
| 14738 | 1094  | 
}  | 
1095  | 
note p = this  | 
|
| 
22422
 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 
haftmann 
parents: 
22390 
diff
changeset
 | 
1096  | 
assume hyp:"sup a (-a) = 0"  | 
| 
 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 
haftmann 
parents: 
22390 
diff
changeset
 | 
1097  | 
hence hyp2:"sup (-a) (-(-a)) = 0" by (simp add: sup_commute)  | 
| 14738 | 1098  | 
from p[OF hyp] p[OF hyp2] show "a = 0" by simp  | 
1099  | 
qed  | 
|
1100  | 
||
| 25090 | 1101  | 
lemma inf_0_imp_0: "inf a (-a) = 0 \<Longrightarrow> a = 0"  | 
| 
22422
 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 
haftmann 
parents: 
22390 
diff
changeset
 | 
1102  | 
apply (simp add: inf_eq_neg_sup)  | 
| 
 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 
haftmann 
parents: 
22390 
diff
changeset
 | 
1103  | 
apply (simp add: sup_commute)  | 
| 
 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 
haftmann 
parents: 
22390 
diff
changeset
 | 
1104  | 
apply (erule sup_0_imp_0)  | 
| 15481 | 1105  | 
done  | 
| 14738 | 1106  | 
|
| 25090 | 1107  | 
lemma inf_0_eq_0 [simp, noatp]: "inf a (- a) = 0 \<longleftrightarrow> a = 0"  | 
1108  | 
by (rule, erule inf_0_imp_0) simp  | 
|
| 14738 | 1109  | 
|
| 25090 | 1110  | 
lemma sup_0_eq_0 [simp, noatp]: "sup a (- a) = 0 \<longleftrightarrow> a = 0"  | 
1111  | 
by (rule, erule sup_0_imp_0) simp  | 
|
| 14738 | 1112  | 
|
| 25090 | 1113  | 
lemma zero_le_double_add_iff_zero_le_single_add [simp]:  | 
1114  | 
"0 \<le> a + a \<longleftrightarrow> 0 \<le> a"  | 
|
| 14738 | 1115  | 
proof  | 
1116  | 
assume "0 <= a + a"  | 
|
| 
22422
 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 
haftmann 
parents: 
22390 
diff
changeset
 | 
1117  | 
hence a:"inf (a+a) 0 = 0" by (simp add: le_iff_inf inf_commute)  | 
| 25090 | 1118  | 
have "(inf a 0)+(inf a 0) = inf (inf (a+a) 0) a" (is "?l=_")  | 
1119  | 
by (simp add: add_sup_inf_distribs inf_ACI)  | 
|
| 
22422
 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 
haftmann 
parents: 
22390 
diff
changeset
 | 
1120  | 
hence "?l = 0 + inf a 0" by (simp add: a, simp add: inf_commute)  | 
| 
 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 
haftmann 
parents: 
22390 
diff
changeset
 | 
1121  | 
hence "inf a 0 = 0" by (simp only: add_right_cancel)  | 
| 
 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 
haftmann 
parents: 
22390 
diff
changeset
 | 
1122  | 
then show "0 <= a" by (simp add: le_iff_inf inf_commute)  | 
| 14738 | 1123  | 
next  | 
1124  | 
assume a: "0 <= a"  | 
|
1125  | 
show "0 <= a + a" by (simp add: add_mono[OF a a, simplified])  | 
|
1126  | 
qed  | 
|
1127  | 
||
| 25090 | 1128  | 
lemma double_zero: "a + a = 0 \<longleftrightarrow> a = 0"  | 
1129  | 
proof  | 
|
1130  | 
assume assm: "a + a = 0"  | 
|
1131  | 
then have "a + a + - a = - a" by simp  | 
|
1132  | 
then have "a + (a + - a) = - a" by (simp only: add_assoc)  | 
|
1133  | 
then have a: "- a = a" by simp (*FIXME tune proof*)  | 
|
| 
25102
 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 
haftmann 
parents: 
25090 
diff
changeset
 | 
1134  | 
show "a = 0" apply (rule antisym)  | 
| 25090 | 1135  | 
apply (unfold neg_le_iff_le [symmetric, of a])  | 
1136  | 
unfolding a apply simp  | 
|
1137  | 
unfolding zero_le_double_add_iff_zero_le_single_add [symmetric, of a]  | 
|
1138  | 
unfolding assm unfolding le_less apply simp_all done  | 
|
1139  | 
next  | 
|
1140  | 
assume "a = 0" then show "a + a = 0" by simp  | 
|
1141  | 
qed  | 
|
1142  | 
||
1143  | 
lemma zero_less_double_add_iff_zero_less_single_add:  | 
|
1144  | 
"0 < a + a \<longleftrightarrow> 0 < a"  | 
|
1145  | 
proof (cases "a = 0")  | 
|
1146  | 
case True then show ?thesis by auto  | 
|
1147  | 
next  | 
|
1148  | 
case False then show ?thesis (*FIXME tune proof*)  | 
|
1149  | 
unfolding less_le apply simp apply rule  | 
|
1150  | 
apply clarify  | 
|
1151  | 
apply rule  | 
|
1152  | 
apply assumption  | 
|
1153  | 
apply (rule notI)  | 
|
1154  | 
unfolding double_zero [symmetric, of a] apply simp  | 
|
1155  | 
done  | 
|
1156  | 
qed  | 
|
1157  | 
||
1158  | 
lemma double_add_le_zero_iff_single_add_le_zero [simp]:  | 
|
1159  | 
"a + a \<le> 0 \<longleftrightarrow> a \<le> 0"  | 
|
| 14738 | 1160  | 
proof -  | 
| 25090 | 1161  | 
have "a + a \<le> 0 \<longleftrightarrow> 0 \<le> - (a + a)" by (subst le_minus_iff, simp)  | 
1162  | 
moreover have "\<dots> \<longleftrightarrow> a \<le> 0" by (simp add: zero_le_double_add_iff_zero_le_single_add)  | 
|
| 14738 | 1163  | 
ultimately show ?thesis by blast  | 
1164  | 
qed  | 
|
1165  | 
||
| 25090 | 1166  | 
lemma double_add_less_zero_iff_single_less_zero [simp]:  | 
1167  | 
"a + a < 0 \<longleftrightarrow> a < 0"  | 
|
1168  | 
proof -  | 
|
1169  | 
have "a + a < 0 \<longleftrightarrow> 0 < - (a + a)" by (subst less_minus_iff, simp)  | 
|
1170  | 
moreover have "\<dots> \<longleftrightarrow> a < 0" by (simp add: zero_less_double_add_iff_zero_less_single_add)  | 
|
1171  | 
ultimately show ?thesis by blast  | 
|
| 14738 | 1172  | 
qed  | 
1173  | 
||
| 25230 | 1174  | 
declare neg_inf_eq_sup [simp] neg_sup_eq_inf [simp]  | 
1175  | 
||
1176  | 
lemma le_minus_self_iff: "a \<le> - a \<longleftrightarrow> a \<le> 0"  | 
|
1177  | 
proof -  | 
|
1178  | 
from add_le_cancel_left [of "uminus a" "plus a a" zero]  | 
|
1179  | 
have "(a <= -a) = (a+a <= 0)"  | 
|
1180  | 
by (simp add: add_assoc[symmetric])  | 
|
1181  | 
thus ?thesis by simp  | 
|
1182  | 
qed  | 
|
1183  | 
||
1184  | 
lemma minus_le_self_iff: "- a \<le> a \<longleftrightarrow> 0 \<le> a"  | 
|
1185  | 
proof -  | 
|
1186  | 
from add_le_cancel_left [of "uminus a" zero "plus a a"]  | 
|
1187  | 
have "(-a <= a) = (0 <= a+a)"  | 
|
1188  | 
by (simp add: add_assoc[symmetric])  | 
|
1189  | 
thus ?thesis by simp  | 
|
1190  | 
qed  | 
|
1191  | 
||
1192  | 
lemma zero_le_iff_zero_nprt: "0 \<le> a \<longleftrightarrow> nprt a = 0"  | 
|
1193  | 
by (simp add: le_iff_inf nprt_def inf_commute)  | 
|
1194  | 
||
1195  | 
lemma le_zero_iff_zero_pprt: "a \<le> 0 \<longleftrightarrow> pprt a = 0"  | 
|
1196  | 
by (simp add: le_iff_sup pprt_def sup_commute)  | 
|
1197  | 
||
1198  | 
lemma le_zero_iff_pprt_id: "0 \<le> a \<longleftrightarrow> pprt a = a"  | 
|
1199  | 
by (simp add: le_iff_sup pprt_def sup_commute)  | 
|
1200  | 
||
1201  | 
lemma zero_le_iff_nprt_id: "a \<le> 0 \<longleftrightarrow> nprt a = a"  | 
|
1202  | 
by (simp add: le_iff_inf nprt_def inf_commute)  | 
|
1203  | 
||
1204  | 
lemma pprt_mono [simp, noatp]: "a \<le> b \<Longrightarrow> pprt a \<le> pprt b"  | 
|
1205  | 
by (simp add: le_iff_sup pprt_def sup_ACI sup_assoc [symmetric, of a])  | 
|
1206  | 
||
1207  | 
lemma nprt_mono [simp, noatp]: "a \<le> b \<Longrightarrow> nprt a \<le> nprt b"  | 
|
1208  | 
by (simp add: le_iff_inf nprt_def inf_ACI inf_assoc [symmetric, of a])  | 
|
1209  | 
||
| 25090 | 1210  | 
end  | 
1211  | 
||
1212  | 
lemmas add_sup_inf_distribs = add_inf_distrib_right add_inf_distrib_left add_sup_distrib_right add_sup_distrib_left  | 
|
1213  | 
||
| 25230 | 1214  | 
|
| 
25303
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
1215  | 
class lordered_ab_group_add_abs = lordered_ab_group_add + abs +  | 
| 25230 | 1216  | 
assumes abs_lattice: "\<bar>a\<bar> = sup a (- a)"  | 
1217  | 
begin  | 
|
1218  | 
||
1219  | 
lemma abs_prts: "\<bar>a\<bar> = pprt a - nprt a"  | 
|
1220  | 
proof -  | 
|
1221  | 
have "0 \<le> \<bar>a\<bar>"  | 
|
1222  | 
proof -  | 
|
1223  | 
have a: "a \<le> \<bar>a\<bar>" and b: "- a \<le> \<bar>a\<bar>" by (auto simp add: abs_lattice)  | 
|
1224  | 
show ?thesis by (rule add_mono [OF a b, simplified])  | 
|
1225  | 
qed  | 
|
1226  | 
then have "0 \<le> sup a (- a)" unfolding abs_lattice .  | 
|
1227  | 
then have "sup (sup a (- a)) 0 = sup a (- a)" by (rule sup_absorb1)  | 
|
1228  | 
then show ?thesis  | 
|
1229  | 
by (simp add: add_sup_inf_distribs sup_ACI  | 
|
1230  | 
pprt_def nprt_def diff_minus abs_lattice)  | 
|
1231  | 
qed  | 
|
1232  | 
||
1233  | 
subclass pordered_ab_group_add_abs  | 
|
1234  | 
proof -  | 
|
1235  | 
have abs_ge_zero [simp]: "\<And>a. 0 \<le> \<bar>a\<bar>"  | 
|
1236  | 
proof -  | 
|
1237  | 
fix a b  | 
|
1238  | 
have a: "a \<le> \<bar>a\<bar>" and b: "- a \<le> \<bar>a\<bar>" by (auto simp add: abs_lattice)  | 
|
1239  | 
show "0 \<le> \<bar>a\<bar>" by (rule add_mono [OF a b, simplified])  | 
|
1240  | 
qed  | 
|
1241  | 
have abs_leI: "\<And>a b. a \<le> b \<Longrightarrow> - a \<le> b \<Longrightarrow> \<bar>a\<bar> \<le> b"  | 
|
1242  | 
by (simp add: abs_lattice le_supI)  | 
|
1243  | 
show ?thesis  | 
|
| 28823 | 1244  | 
proof  | 
| 25230 | 1245  | 
fix a  | 
1246  | 
show "0 \<le> \<bar>a\<bar>" by simp  | 
|
1247  | 
next  | 
|
1248  | 
fix a  | 
|
1249  | 
show "a \<le> \<bar>a\<bar>"  | 
|
1250  | 
by (auto simp add: abs_lattice)  | 
|
1251  | 
next  | 
|
1252  | 
fix a  | 
|
1253  | 
show "\<bar>-a\<bar> = \<bar>a\<bar>"  | 
|
1254  | 
by (simp add: abs_lattice sup_commute)  | 
|
1255  | 
next  | 
|
1256  | 
fix a b  | 
|
1257  | 
show "a \<le> b \<Longrightarrow> - a \<le> b \<Longrightarrow> \<bar>a\<bar> \<le> b" by (erule abs_leI)  | 
|
1258  | 
next  | 
|
1259  | 
fix a b  | 
|
1260  | 
show "\<bar>a + b\<bar> \<le> \<bar>a\<bar> + \<bar>b\<bar>"  | 
|
1261  | 
proof -  | 
|
1262  | 
have g:"abs a + abs b = sup (a+b) (sup (-a-b) (sup (-a+b) (a + (-b))))" (is "_=sup ?m ?n")  | 
|
1263  | 
by (simp add: abs_lattice add_sup_inf_distribs sup_ACI diff_minus)  | 
|
1264  | 
have a:"a+b <= sup ?m ?n" by (simp)  | 
|
1265  | 
have b:"-a-b <= ?n" by (simp)  | 
|
1266  | 
have c:"?n <= sup ?m ?n" by (simp)  | 
|
1267  | 
from b c have d: "-a-b <= sup ?m ?n" by(rule order_trans)  | 
|
1268  | 
have e:"-a-b = -(a+b)" by (simp add: diff_minus)  | 
|
1269  | 
from a d e have "abs(a+b) <= sup ?m ?n"  | 
|
1270  | 
by (drule_tac abs_leI, auto)  | 
|
1271  | 
with g[symmetric] show ?thesis by simp  | 
|
1272  | 
qed  | 
|
1273  | 
qed auto  | 
|
1274  | 
qed  | 
|
1275  | 
||
1276  | 
end  | 
|
1277  | 
||
| 25090 | 1278  | 
lemma sup_eq_if:  | 
| 
25303
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
1279  | 
  fixes a :: "'a\<Colon>{lordered_ab_group_add, linorder}"
 | 
| 25090 | 1280  | 
shows "sup a (- a) = (if a < 0 then - a else a)"  | 
1281  | 
proof -  | 
|
1282  | 
note add_le_cancel_right [of a a "- a", symmetric, simplified]  | 
|
1283  | 
moreover note add_le_cancel_right [of "-a" a a, symmetric, simplified]  | 
|
1284  | 
then show ?thesis by (auto simp: sup_max max_def)  | 
|
1285  | 
qed  | 
|
1286  | 
||
1287  | 
lemma abs_if_lattice:  | 
|
| 
25303
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
1288  | 
  fixes a :: "'a\<Colon>{lordered_ab_group_add_abs, linorder}"
 | 
| 25090 | 1289  | 
shows "\<bar>a\<bar> = (if a < 0 then - a else a)"  | 
1290  | 
by auto  | 
|
1291  | 
||
1292  | 
||
| 
14754
 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 
obua 
parents: 
14738 
diff
changeset
 | 
1293  | 
text {* Needed for abelian cancellation simprocs: *}
 | 
| 
 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 
obua 
parents: 
14738 
diff
changeset
 | 
1294  | 
|
| 
 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 
obua 
parents: 
14738 
diff
changeset
 | 
1295  | 
lemma add_cancel_21: "((x::'a::ab_group_add) + (y + z) = y + u) = (x + z = u)"  | 
| 
 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 
obua 
parents: 
14738 
diff
changeset
 | 
1296  | 
apply (subst add_left_commute)  | 
| 
 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 
obua 
parents: 
14738 
diff
changeset
 | 
1297  | 
apply (subst add_left_cancel)  | 
| 
 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 
obua 
parents: 
14738 
diff
changeset
 | 
1298  | 
apply simp  | 
| 
 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 
obua 
parents: 
14738 
diff
changeset
 | 
1299  | 
done  | 
| 
 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 
obua 
parents: 
14738 
diff
changeset
 | 
1300  | 
|
| 
 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 
obua 
parents: 
14738 
diff
changeset
 | 
1301  | 
lemma add_cancel_end: "(x + (y + z) = y) = (x = - (z::'a::ab_group_add))"  | 
| 
 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 
obua 
parents: 
14738 
diff
changeset
 | 
1302  | 
apply (subst add_cancel_21[of _ _ _ 0, simplified])  | 
| 
 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 
obua 
parents: 
14738 
diff
changeset
 | 
1303  | 
apply (simp add: add_right_cancel[symmetric, of "x" "-z" "z", simplified])  | 
| 
 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 
obua 
parents: 
14738 
diff
changeset
 | 
1304  | 
done  | 
| 
 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 
obua 
parents: 
14738 
diff
changeset
 | 
1305  | 
|
| 
 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 
obua 
parents: 
14738 
diff
changeset
 | 
1306  | 
lemma less_eqI: "(x::'a::pordered_ab_group_add) - y = x' - y' \<Longrightarrow> (x < y) = (x' < y')"  | 
| 
 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 
obua 
parents: 
14738 
diff
changeset
 | 
1307  | 
by (simp add: less_iff_diff_less_0[of x y] less_iff_diff_less_0[of x' y'])  | 
| 
 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 
obua 
parents: 
14738 
diff
changeset
 | 
1308  | 
|
| 
 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 
obua 
parents: 
14738 
diff
changeset
 | 
1309  | 
lemma le_eqI: "(x::'a::pordered_ab_group_add) - y = x' - y' \<Longrightarrow> (y <= x) = (y' <= x')"  | 
| 
 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 
obua 
parents: 
14738 
diff
changeset
 | 
1310  | 
apply (simp add: le_iff_diff_le_0[of y x] le_iff_diff_le_0[of y' x'])  | 
| 
 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 
obua 
parents: 
14738 
diff
changeset
 | 
1311  | 
apply (simp add: neg_le_iff_le[symmetric, of "y-x" 0] neg_le_iff_le[symmetric, of "y'-x'" 0])  | 
| 
 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 
obua 
parents: 
14738 
diff
changeset
 | 
1312  | 
done  | 
| 
 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 
obua 
parents: 
14738 
diff
changeset
 | 
1313  | 
|
| 
 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 
obua 
parents: 
14738 
diff
changeset
 | 
1314  | 
lemma eq_eqI: "(x::'a::ab_group_add) - y = x' - y' \<Longrightarrow> (x = y) = (x' = y')"  | 
| 
 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 
obua 
parents: 
14738 
diff
changeset
 | 
1315  | 
by (simp add: eq_iff_diff_eq_0[of x y] eq_iff_diff_eq_0[of x' y'])  | 
| 
 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 
obua 
parents: 
14738 
diff
changeset
 | 
1316  | 
|
| 
 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 
obua 
parents: 
14738 
diff
changeset
 | 
1317  | 
lemma diff_def: "(x::'a::ab_group_add) - y == x + (-y)"  | 
| 
 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 
obua 
parents: 
14738 
diff
changeset
 | 
1318  | 
by (simp add: diff_minus)  | 
| 
 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 
obua 
parents: 
14738 
diff
changeset
 | 
1319  | 
|
| 
 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 
obua 
parents: 
14738 
diff
changeset
 | 
1320  | 
lemma add_minus_cancel: "(a::'a::ab_group_add) + (-a + b) = b"  | 
| 
 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 
obua 
parents: 
14738 
diff
changeset
 | 
1321  | 
by (simp add: add_assoc[symmetric])  | 
| 
 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 
obua 
parents: 
14738 
diff
changeset
 | 
1322  | 
|
| 25090 | 1323  | 
lemma le_add_right_mono:  | 
| 15178 | 1324  | 
assumes  | 
1325  | 
"a <= b + (c::'a::pordered_ab_group_add)"  | 
|
1326  | 
"c <= d"  | 
|
1327  | 
shows "a <= b + d"  | 
|
1328  | 
apply (rule_tac order_trans[where y = "b+c"])  | 
|
1329  | 
apply (simp_all add: prems)  | 
|
1330  | 
done  | 
|
1331  | 
||
1332  | 
lemma estimate_by_abs:  | 
|
| 
25303
 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 
haftmann 
parents: 
25267 
diff
changeset
 | 
1333  | 
"a + b <= (c::'a::lordered_ab_group_add_abs) \<Longrightarrow> a <= c + abs b"  | 
| 15178 | 1334  | 
proof -  | 
| 
23477
 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 
nipkow 
parents: 
23389 
diff
changeset
 | 
1335  | 
assume "a+b <= c"  | 
| 
 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 
nipkow 
parents: 
23389 
diff
changeset
 | 
1336  | 
hence 2: "a <= c+(-b)" by (simp add: group_simps)  | 
| 15178 | 1337  | 
have 3: "(-b) <= abs b" by (rule abs_ge_minus_self)  | 
1338  | 
show ?thesis by (rule le_add_right_mono[OF 2 3])  | 
|
1339  | 
qed  | 
|
1340  | 
||
| 25090 | 1341  | 
subsection {* Tools setup *}
 | 
1342  | 
||
| 25077 | 1343  | 
lemma add_mono_thms_ordered_semiring [noatp]:  | 
1344  | 
fixes i j k :: "'a\<Colon>pordered_ab_semigroup_add"  | 
|
1345  | 
shows "i \<le> j \<and> k \<le> l \<Longrightarrow> i + k \<le> j + l"  | 
|
1346  | 
and "i = j \<and> k \<le> l \<Longrightarrow> i + k \<le> j + l"  | 
|
1347  | 
and "i \<le> j \<and> k = l \<Longrightarrow> i + k \<le> j + l"  | 
|
1348  | 
and "i = j \<and> k = l \<Longrightarrow> i + k = j + l"  | 
|
1349  | 
by (rule add_mono, clarify+)+  | 
|
1350  | 
||
1351  | 
lemma add_mono_thms_ordered_field [noatp]:  | 
|
1352  | 
fixes i j k :: "'a\<Colon>pordered_cancel_ab_semigroup_add"  | 
|
1353  | 
shows "i < j \<and> k = l \<Longrightarrow> i + k < j + l"  | 
|
1354  | 
and "i = j \<and> k < l \<Longrightarrow> i + k < j + l"  | 
|
1355  | 
and "i < j \<and> k \<le> l \<Longrightarrow> i + k < j + l"  | 
|
1356  | 
and "i \<le> j \<and> k < l \<Longrightarrow> i + k < j + l"  | 
|
1357  | 
and "i < j \<and> k < l \<Longrightarrow> i + k < j + l"  | 
|
1358  | 
by (auto intro: add_strict_right_mono add_strict_left_mono  | 
|
1359  | 
add_less_le_mono add_le_less_mono add_strict_mono)  | 
|
1360  | 
||
| 17085 | 1361  | 
text{*Simplification of @{term "x-y < 0"}, etc.*}
 | 
| 
24380
 
c215e256beca
moved ordered_ab_semigroup_add to OrderedGroup.thy
 
haftmann 
parents: 
24286 
diff
changeset
 | 
1362  | 
lemmas diff_less_0_iff_less [simp] = less_iff_diff_less_0 [symmetric]  | 
| 
 
c215e256beca
moved ordered_ab_semigroup_add to OrderedGroup.thy
 
haftmann 
parents: 
24286 
diff
changeset
 | 
1363  | 
lemmas diff_eq_0_iff_eq [simp, noatp] = eq_iff_diff_eq_0 [symmetric]  | 
| 
 
c215e256beca
moved ordered_ab_semigroup_add to OrderedGroup.thy
 
haftmann 
parents: 
24286 
diff
changeset
 | 
1364  | 
lemmas diff_le_0_iff_le [simp] = le_iff_diff_le_0 [symmetric]  | 
| 17085 | 1365  | 
|
| 22482 | 1366  | 
ML {*
 | 
| 27250 | 1367  | 
structure ab_group_add_cancel = Abel_Cancel  | 
1368  | 
(  | 
|
| 22482 | 1369  | 
|
1370  | 
(* term order for abelian groups *)  | 
|
1371  | 
||
1372  | 
fun agrp_ord (Const (a, _)) = find_index (fn a' => a = a')  | 
|
| 22997 | 1373  | 
      [@{const_name HOL.zero}, @{const_name HOL.plus},
 | 
1374  | 
        @{const_name HOL.uminus}, @{const_name HOL.minus}]
 | 
|
| 22482 | 1375  | 
| agrp_ord _ = ~1;  | 
1376  | 
||
| 
29269
 
5c25a2012975
moved term order operations to structure TermOrd (cf. Pure/term_ord.ML);
 
wenzelm 
parents: 
28823 
diff
changeset
 | 
1377  | 
fun termless_agrp (a, b) = (TermOrd.term_lpo agrp_ord (a, b) = LESS);  | 
| 22482 | 1378  | 
|
1379  | 
local  | 
|
1380  | 
  val ac1 = mk_meta_eq @{thm add_assoc};
 | 
|
1381  | 
  val ac2 = mk_meta_eq @{thm add_commute};
 | 
|
1382  | 
  val ac3 = mk_meta_eq @{thm add_left_commute};
 | 
|
| 22997 | 1383  | 
  fun solve_add_ac thy _ (_ $ (Const (@{const_name HOL.plus},_) $ _ $ _) $ _) =
 | 
| 22482 | 1384  | 
SOME ac1  | 
| 22997 | 1385  | 
    | solve_add_ac thy _ (_ $ x $ (Const (@{const_name HOL.plus},_) $ y $ z)) =
 | 
| 22482 | 1386  | 
if termless_agrp (y, x) then SOME ac3 else NONE  | 
1387  | 
| solve_add_ac thy _ (_ $ x $ y) =  | 
|
1388  | 
if termless_agrp (y, x) then SOME ac2 else NONE  | 
|
1389  | 
| solve_add_ac thy _ _ = NONE  | 
|
1390  | 
in  | 
|
| 
28262
 
aa7ca36d67fd
back to dynamic the_context(), because static @{theory} is invalidated if ML environment changes within the same code block;
 
wenzelm 
parents: 
28130 
diff
changeset
 | 
1391  | 
val add_ac_proc = Simplifier.simproc (the_context ())  | 
| 22482 | 1392  | 
"add_ac_proc" ["x + y::'a::ab_semigroup_add"] solve_add_ac;  | 
1393  | 
end;  | 
|
1394  | 
||
| 27250 | 1395  | 
val eq_reflection = @{thm eq_reflection};
 | 
1396  | 
||
1397  | 
val T = @{typ "'a::ab_group_add"};
 | 
|
1398  | 
||
| 22482 | 1399  | 
val cancel_ss = HOL_basic_ss settermless termless_agrp  | 
1400  | 
addsimprocs [add_ac_proc] addsimps  | 
|
| 23085 | 1401  | 
  [@{thm add_0_left}, @{thm add_0_right}, @{thm diff_def},
 | 
| 22482 | 1402  | 
   @{thm minus_add_distrib}, @{thm minus_minus}, @{thm minus_zero},
 | 
1403  | 
   @{thm right_minus}, @{thm left_minus}, @{thm add_minus_cancel},
 | 
|
1404  | 
   @{thm minus_add_cancel}];
 | 
|
| 27250 | 1405  | 
|
1406  | 
val sum_pats = [@{cterm "x + y::'a::ab_group_add"}, @{cterm "x - y::'a::ab_group_add"}];
 | 
|
| 22482 | 1407  | 
|
| 22548 | 1408  | 
val eqI_rules = [@{thm less_eqI}, @{thm le_eqI}, @{thm eq_eqI}];
 | 
| 22482 | 1409  | 
|
1410  | 
val dest_eqI =  | 
|
1411  | 
fst o HOLogic.dest_bin "op =" HOLogic.boolT o HOLogic.dest_Trueprop o concl_of;  | 
|
1412  | 
||
| 27250 | 1413  | 
);  | 
| 22482 | 1414  | 
*}  | 
1415  | 
||
| 26480 | 1416  | 
ML {*
 | 
| 22482 | 1417  | 
Addsimprocs [ab_group_add_cancel.sum_conv, ab_group_add_cancel.rel_conv];  | 
1418  | 
*}  | 
|
| 17085 | 1419  | 
|
| 14738 | 1420  | 
end  |