| author | blanchet | 
| Mon, 18 Nov 2013 18:04:45 +0100 | |
| changeset 54481 | 5c9819d7713b | 
| parent 54230 | b1d955791529 | 
| child 54489 | 03ff4d1e6784 | 
| permissions | -rw-r--r-- | 
| 3366 | 1 | (* Title: HOL/Divides.thy | 
| 2 | Author: Lawrence C Paulson, Cambridge University Computer Laboratory | |
| 6865 
5577ffe4c2f1
now div and mod are overloaded; dvd is polymorphic
 paulson parents: 
3366diff
changeset | 3 | Copyright 1999 University of Cambridge | 
| 18154 | 4 | *) | 
| 3366 | 5 | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 6 | header {* The division operators div and mod *}
 | 
| 3366 | 7 | |
| 15131 | 8 | theory Divides | 
| 47255 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 huffman parents: 
47217diff
changeset | 9 | imports Nat_Transfer | 
| 15131 | 10 | begin | 
| 3366 | 11 | |
| 25942 | 12 | subsection {* Syntactic division operations *}
 | 
| 13 | ||
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 14 | class div = dvd + | 
| 27540 | 15 | fixes div :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "div" 70) | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 16 | and mod :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "mod" 70) | 
| 27540 | 17 | |
| 18 | ||
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 19 | subsection {* Abstract division in commutative semirings. *}
 | 
| 25942 | 20 | |
| 30930 | 21 | class semiring_div = comm_semiring_1_cancel + no_zero_divisors + div + | 
| 25942 | 22 | assumes mod_div_equality: "a div b * b + a mod b = a" | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 23 | and div_by_0 [simp]: "a div 0 = 0" | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 24 | and div_0 [simp]: "0 div a = 0" | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 25 | and div_mult_self1 [simp]: "b \<noteq> 0 \<Longrightarrow> (a + c * b) div b = c + a div b" | 
| 30930 | 26 | and div_mult_mult1 [simp]: "c \<noteq> 0 \<Longrightarrow> (c * a) div (c * b) = a div b" | 
| 25942 | 27 | begin | 
| 28 | ||
| 26100 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 29 | text {* @{const div} and @{const mod} *}
 | 
| 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 30 | |
| 26062 | 31 | lemma mod_div_equality2: "b * (a div b) + a mod b = a" | 
| 32 | unfolding mult_commute [of b] | |
| 33 | by (rule mod_div_equality) | |
| 34 | ||
| 29403 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 35 | lemma mod_div_equality': "a mod b + a div b * b = a" | 
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 36 | using mod_div_equality [of a b] | 
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 37 | by (simp only: add_ac) | 
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 38 | |
| 26062 | 39 | lemma div_mod_equality: "((a div b) * b + a mod b) + c = a + c" | 
| 30934 | 40 | by (simp add: mod_div_equality) | 
| 26062 | 41 | |
| 42 | lemma div_mod_equality2: "(b * (a div b) + a mod b) + c = a + c" | |
| 30934 | 43 | by (simp add: mod_div_equality2) | 
| 26062 | 44 | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 45 | lemma mod_by_0 [simp]: "a mod 0 = a" | 
| 30934 | 46 | using mod_div_equality [of a zero] by simp | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 47 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 48 | lemma mod_0 [simp]: "0 mod a = 0" | 
| 30934 | 49 | using mod_div_equality [of zero a] div_0 by simp | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 50 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 51 | lemma div_mult_self2 [simp]: | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 52 | assumes "b \<noteq> 0" | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 53 | shows "(a + b * c) div b = c + a div b" | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 54 | using assms div_mult_self1 [of b a c] by (simp add: mult_commute) | 
| 26100 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 55 | |
| 54221 | 56 | lemma div_mult_self3 [simp]: | 
| 57 | assumes "b \<noteq> 0" | |
| 58 | shows "(c * b + a) div b = c + a div b" | |
| 59 | using assms by (simp add: add.commute) | |
| 60 | ||
| 61 | lemma div_mult_self4 [simp]: | |
| 62 | assumes "b \<noteq> 0" | |
| 63 | shows "(b * c + a) div b = c + a div b" | |
| 64 | using assms by (simp add: add.commute) | |
| 65 | ||
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 66 | lemma mod_mult_self1 [simp]: "(a + c * b) mod b = a mod b" | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 67 | proof (cases "b = 0") | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 68 | case True then show ?thesis by simp | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 69 | next | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 70 | case False | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 71 | have "a + c * b = (a + c * b) div b * b + (a + c * b) mod b" | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 72 | by (simp add: mod_div_equality) | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 73 | also from False div_mult_self1 [of b a c] have | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 74 | "\<dots> = (c + a div b) * b + (a + c * b) mod b" | 
| 29667 | 75 | by (simp add: algebra_simps) | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 76 | finally have "a = a div b * b + (a + c * b) mod b" | 
| 49962 
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
 webertj parents: 
48891diff
changeset | 77 | by (simp add: add_commute [of a] add_assoc distrib_right) | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 78 | then have "a div b * b + (a + c * b) mod b = a div b * b + a mod b" | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 79 | by (simp add: mod_div_equality) | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 80 | then show ?thesis by simp | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 81 | qed | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 82 | |
| 54221 | 83 | lemma mod_mult_self2 [simp]: | 
| 84 | "(a + b * c) mod b = a mod b" | |
| 30934 | 85 | by (simp add: mult_commute [of b]) | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 86 | |
| 54221 | 87 | lemma mod_mult_self3 [simp]: | 
| 88 | "(c * b + a) mod b = a mod b" | |
| 89 | by (simp add: add.commute) | |
| 90 | ||
| 91 | lemma mod_mult_self4 [simp]: | |
| 92 | "(b * c + a) mod b = a mod b" | |
| 93 | by (simp add: add.commute) | |
| 94 | ||
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 95 | lemma div_mult_self1_is_id [simp]: "b \<noteq> 0 \<Longrightarrow> b * a div b = a" | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 96 | using div_mult_self2 [of b 0 a] by simp | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 97 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 98 | lemma div_mult_self2_is_id [simp]: "b \<noteq> 0 \<Longrightarrow> a * b div b = a" | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 99 | using div_mult_self1 [of b 0 a] by simp | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 100 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 101 | lemma mod_mult_self1_is_0 [simp]: "b * a mod b = 0" | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 102 | using mod_mult_self2 [of 0 b a] by simp | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 103 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 104 | lemma mod_mult_self2_is_0 [simp]: "a * b mod b = 0" | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 105 | using mod_mult_self1 [of 0 a b] by simp | 
| 26062 | 106 | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 107 | lemma div_by_1 [simp]: "a div 1 = a" | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 108 | using div_mult_self2_is_id [of 1 a] zero_neq_one by simp | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 109 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 110 | lemma mod_by_1 [simp]: "a mod 1 = 0" | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 111 | proof - | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 112 | from mod_div_equality [of a one] div_by_1 have "a + a mod 1 = a" by simp | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 113 | then have "a + a mod 1 = a + 0" by simp | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 114 | then show ?thesis by (rule add_left_imp_eq) | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 115 | qed | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 116 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 117 | lemma mod_self [simp]: "a mod a = 0" | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 118 | using mod_mult_self2_is_0 [of 1] by simp | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 119 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 120 | lemma div_self [simp]: "a \<noteq> 0 \<Longrightarrow> a div a = 1" | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 121 | using div_mult_self2_is_id [of _ 1] by simp | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 122 | |
| 27676 | 123 | lemma div_add_self1 [simp]: | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 124 | assumes "b \<noteq> 0" | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 125 | shows "(b + a) div b = a div b + 1" | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 126 | using assms div_mult_self1 [of b a 1] by (simp add: add_commute) | 
| 26062 | 127 | |
| 27676 | 128 | lemma div_add_self2 [simp]: | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 129 | assumes "b \<noteq> 0" | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 130 | shows "(a + b) div b = a div b + 1" | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 131 | using assms div_add_self1 [of b a] by (simp add: add_commute) | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 132 | |
| 27676 | 133 | lemma mod_add_self1 [simp]: | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 134 | "(b + a) mod b = a mod b" | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 135 | using mod_mult_self1 [of a 1 b] by (simp add: add_commute) | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 136 | |
| 27676 | 137 | lemma mod_add_self2 [simp]: | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 138 | "(a + b) mod b = a mod b" | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 139 | using mod_mult_self1 [of a 1 b] by simp | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 140 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 141 | lemma mod_div_decomp: | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 142 | fixes a b | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 143 | obtains q r where "q = a div b" and "r = a mod b" | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 144 | and "a = q * b + r" | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 145 | proof - | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 146 | from mod_div_equality have "a = a div b * b + a mod b" by simp | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 147 | moreover have "a div b = a div b" .. | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 148 | moreover have "a mod b = a mod b" .. | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 149 | note that ultimately show thesis by blast | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 150 | qed | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 151 | |
| 45231 
d85a2fdc586c
replacing code_inline by code_unfold, removing obsolete code_unfold, code_inline del now that the ancient code generator is removed
 bulwahn parents: 
44890diff
changeset | 152 | lemma dvd_eq_mod_eq_0 [code]: "a dvd b \<longleftrightarrow> b mod a = 0" | 
| 25942 | 153 | proof | 
| 154 | assume "b mod a = 0" | |
| 155 | with mod_div_equality [of b a] have "b div a * a = b" by simp | |
| 156 | then have "b = a * (b div a)" unfolding mult_commute .. | |
| 157 | then have "\<exists>c. b = a * c" .. | |
| 158 | then show "a dvd b" unfolding dvd_def . | |
| 159 | next | |
| 160 | assume "a dvd b" | |
| 161 | then have "\<exists>c. b = a * c" unfolding dvd_def . | |
| 162 | then obtain c where "b = a * c" .. | |
| 163 | then have "b mod a = a * c mod a" by simp | |
| 164 | then have "b mod a = c * a mod a" by (simp add: mult_commute) | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 165 | then show "b mod a = 0" by simp | 
| 25942 | 166 | qed | 
| 167 | ||
| 29403 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 168 | lemma mod_div_trivial [simp]: "a mod b div b = 0" | 
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 169 | proof (cases "b = 0") | 
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 170 | assume "b = 0" | 
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 171 | thus ?thesis by simp | 
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 172 | next | 
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 173 | assume "b \<noteq> 0" | 
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 174 | hence "a div b + a mod b div b = (a mod b + a div b * b) div b" | 
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 175 | by (rule div_mult_self1 [symmetric]) | 
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 176 | also have "\<dots> = a div b" | 
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 177 | by (simp only: mod_div_equality') | 
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 178 | also have "\<dots> = a div b + 0" | 
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 179 | by simp | 
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 180 | finally show ?thesis | 
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 181 | by (rule add_left_imp_eq) | 
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 182 | qed | 
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 183 | |
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 184 | lemma mod_mod_trivial [simp]: "a mod b mod b = a mod b" | 
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 185 | proof - | 
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 186 | have "a mod b mod b = (a mod b + a div b * b) mod b" | 
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 187 | by (simp only: mod_mult_self1) | 
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 188 | also have "\<dots> = a mod b" | 
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 189 | by (simp only: mod_div_equality') | 
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 190 | finally show ?thesis . | 
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 191 | qed | 
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 192 | |
| 29925 | 193 | lemma dvd_imp_mod_0: "a dvd b \<Longrightarrow> b mod a = 0" | 
| 29948 | 194 | by (rule dvd_eq_mod_eq_0[THEN iffD1]) | 
| 29925 | 195 | |
| 196 | lemma dvd_div_mult_self: "a dvd b \<Longrightarrow> (b div a) * a = b" | |
| 197 | by (subst (2) mod_div_equality [of b a, symmetric]) (simp add:dvd_imp_mod_0) | |
| 198 | ||
| 33274 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32010diff
changeset | 199 | lemma dvd_mult_div_cancel: "a dvd b \<Longrightarrow> a * (b div a) = b" | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32010diff
changeset | 200 | by (drule dvd_div_mult_self) (simp add: mult_commute) | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32010diff
changeset | 201 | |
| 30052 | 202 | lemma dvd_div_mult: "a dvd b \<Longrightarrow> (b div a) * c = b * c div a" | 
| 203 | apply (cases "a = 0") | |
| 204 | apply simp | |
| 205 | apply (auto simp: dvd_def mult_assoc) | |
| 206 | done | |
| 207 | ||
| 29925 | 208 | lemma div_dvd_div[simp]: | 
| 209 | "a dvd b \<Longrightarrow> a dvd c \<Longrightarrow> (b div a dvd c div a) = (b dvd c)" | |
| 210 | apply (cases "a = 0") | |
| 211 | apply simp | |
| 212 | apply (unfold dvd_def) | |
| 213 | apply auto | |
| 214 | apply(blast intro:mult_assoc[symmetric]) | |
| 44890 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 nipkow parents: 
44766diff
changeset | 215 | apply(fastforce simp add: mult_assoc) | 
| 29925 | 216 | done | 
| 217 | ||
| 30078 
beee83623cc9
move lemma dvd_mod_imp_dvd into class semiring_div
 huffman parents: 
30052diff
changeset | 218 | lemma dvd_mod_imp_dvd: "[| k dvd m mod n; k dvd n |] ==> k dvd m" | 
| 
beee83623cc9
move lemma dvd_mod_imp_dvd into class semiring_div
 huffman parents: 
30052diff
changeset | 219 | apply (subgoal_tac "k dvd (m div n) *n + m mod n") | 
| 
beee83623cc9
move lemma dvd_mod_imp_dvd into class semiring_div
 huffman parents: 
30052diff
changeset | 220 | apply (simp add: mod_div_equality) | 
| 
beee83623cc9
move lemma dvd_mod_imp_dvd into class semiring_div
 huffman parents: 
30052diff
changeset | 221 | apply (simp only: dvd_add dvd_mult) | 
| 
beee83623cc9
move lemma dvd_mod_imp_dvd into class semiring_div
 huffman parents: 
30052diff
changeset | 222 | done | 
| 
beee83623cc9
move lemma dvd_mod_imp_dvd into class semiring_div
 huffman parents: 
30052diff
changeset | 223 | |
| 29403 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 224 | text {* Addition respects modular equivalence. *}
 | 
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 225 | |
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 226 | lemma mod_add_left_eq: "(a + b) mod c = (a mod c + b) mod c" | 
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 227 | proof - | 
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 228 | have "(a + b) mod c = (a div c * c + a mod c + b) mod c" | 
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 229 | by (simp only: mod_div_equality) | 
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 230 | also have "\<dots> = (a mod c + b + a div c * c) mod c" | 
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 231 | by (simp only: add_ac) | 
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 232 | also have "\<dots> = (a mod c + b) mod c" | 
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 233 | by (rule mod_mult_self1) | 
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 234 | finally show ?thesis . | 
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 235 | qed | 
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 236 | |
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 237 | lemma mod_add_right_eq: "(a + b) mod c = (a + b mod c) mod c" | 
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 238 | proof - | 
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 239 | have "(a + b) mod c = (a + (b div c * c + b mod c)) mod c" | 
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 240 | by (simp only: mod_div_equality) | 
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 241 | also have "\<dots> = (a + b mod c + b div c * c) mod c" | 
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 242 | by (simp only: add_ac) | 
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 243 | also have "\<dots> = (a + b mod c) mod c" | 
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 244 | by (rule mod_mult_self1) | 
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 245 | finally show ?thesis . | 
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 246 | qed | 
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 247 | |
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 248 | lemma mod_add_eq: "(a + b) mod c = (a mod c + b mod c) mod c" | 
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 249 | by (rule trans [OF mod_add_left_eq mod_add_right_eq]) | 
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 250 | |
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 251 | lemma mod_add_cong: | 
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 252 | assumes "a mod c = a' mod c" | 
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 253 | assumes "b mod c = b' mod c" | 
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 254 | shows "(a + b) mod c = (a' + b') mod c" | 
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 255 | proof - | 
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 256 | have "(a mod c + b mod c) mod c = (a' mod c + b' mod c) mod c" | 
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 257 | unfolding assms .. | 
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 258 | thus ?thesis | 
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 259 | by (simp only: mod_add_eq [symmetric]) | 
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 260 | qed | 
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 261 | |
| 30923 
2697a1d1d34a
more coherent developement in Divides.thy and IntDiv.thy
 haftmann parents: 
30840diff
changeset | 262 | lemma div_add [simp]: "z dvd x \<Longrightarrow> z dvd y | 
| 30837 
3d4832d9f7e4
added strong_setprod_cong[cong] (in analogy with setsum)
 nipkow parents: 
30729diff
changeset | 263 | \<Longrightarrow> (x + y) div z = x div z + y div z" | 
| 30923 
2697a1d1d34a
more coherent developement in Divides.thy and IntDiv.thy
 haftmann parents: 
30840diff
changeset | 264 | by (cases "z = 0", simp, unfold dvd_def, auto simp add: algebra_simps) | 
| 30837 
3d4832d9f7e4
added strong_setprod_cong[cong] (in analogy with setsum)
 nipkow parents: 
30729diff
changeset | 265 | |
| 29403 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 266 | text {* Multiplication respects modular equivalence. *}
 | 
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 267 | |
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 268 | lemma mod_mult_left_eq: "(a * b) mod c = ((a mod c) * b) mod c" | 
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 269 | proof - | 
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 270 | have "(a * b) mod c = ((a div c * c + a mod c) * b) mod c" | 
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 271 | by (simp only: mod_div_equality) | 
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 272 | also have "\<dots> = (a mod c * b + a div c * b * c) mod c" | 
| 29667 | 273 | by (simp only: algebra_simps) | 
| 29403 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 274 | also have "\<dots> = (a mod c * b) mod c" | 
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 275 | by (rule mod_mult_self1) | 
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 276 | finally show ?thesis . | 
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 277 | qed | 
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 278 | |
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 279 | lemma mod_mult_right_eq: "(a * b) mod c = (a * (b mod c)) mod c" | 
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 280 | proof - | 
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 281 | have "(a * b) mod c = (a * (b div c * c + b mod c)) mod c" | 
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 282 | by (simp only: mod_div_equality) | 
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 283 | also have "\<dots> = (a * (b mod c) + a * (b div c) * c) mod c" | 
| 29667 | 284 | by (simp only: algebra_simps) | 
| 29403 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 285 | also have "\<dots> = (a * (b mod c)) mod c" | 
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 286 | by (rule mod_mult_self1) | 
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 287 | finally show ?thesis . | 
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 288 | qed | 
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 289 | |
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 290 | lemma mod_mult_eq: "(a * b) mod c = ((a mod c) * (b mod c)) mod c" | 
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 291 | by (rule trans [OF mod_mult_left_eq mod_mult_right_eq]) | 
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 292 | |
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 293 | lemma mod_mult_cong: | 
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 294 | assumes "a mod c = a' mod c" | 
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 295 | assumes "b mod c = b' mod c" | 
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 296 | shows "(a * b) mod c = (a' * b') mod c" | 
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 297 | proof - | 
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 298 | have "(a mod c * (b mod c)) mod c = (a' mod c * (b' mod c)) mod c" | 
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 299 | unfolding assms .. | 
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 300 | thus ?thesis | 
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 301 | by (simp only: mod_mult_eq [symmetric]) | 
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 302 | qed | 
| 
fe17df4e4ab3
generalize some div/mod lemmas; remove type-specific proofs
 huffman parents: 
29252diff
changeset | 303 | |
| 47164 | 304 | text {* Exponentiation respects modular equivalence. *}
 | 
| 305 | ||
| 306 | lemma power_mod: "(a mod b)^n mod b = a^n mod b" | |
| 307 | apply (induct n, simp_all) | |
| 308 | apply (rule mod_mult_right_eq [THEN trans]) | |
| 309 | apply (simp (no_asm_simp)) | |
| 310 | apply (rule mod_mult_eq [symmetric]) | |
| 311 | done | |
| 312 | ||
| 29404 | 313 | lemma mod_mod_cancel: | 
| 314 | assumes "c dvd b" | |
| 315 | shows "a mod b mod c = a mod c" | |
| 316 | proof - | |
| 317 | from `c dvd b` obtain k where "b = c * k" | |
| 318 | by (rule dvdE) | |
| 319 | have "a mod b mod c = a mod (c * k) mod c" | |
| 320 | by (simp only: `b = c * k`) | |
| 321 | also have "\<dots> = (a mod (c * k) + a div (c * k) * k * c) mod c" | |
| 322 | by (simp only: mod_mult_self1) | |
| 323 | also have "\<dots> = (a div (c * k) * (c * k) + a mod (c * k)) mod c" | |
| 324 | by (simp only: add_ac mult_ac) | |
| 325 | also have "\<dots> = a mod c" | |
| 326 | by (simp only: mod_div_equality) | |
| 327 | finally show ?thesis . | |
| 328 | qed | |
| 329 | ||
| 30930 | 330 | lemma div_mult_div_if_dvd: | 
| 331 | "y dvd x \<Longrightarrow> z dvd w \<Longrightarrow> (x div y) * (w div z) = (x * w) div (y * z)" | |
| 332 | apply (cases "y = 0", simp) | |
| 333 | apply (cases "z = 0", simp) | |
| 334 | apply (auto elim!: dvdE simp add: algebra_simps) | |
| 30476 | 335 | apply (subst mult_assoc [symmetric]) | 
| 336 | apply (simp add: no_zero_divisors) | |
| 30930 | 337 | done | 
| 338 | ||
| 35367 
45a193f0ed0c
lemma div_mult_swap, dvd_div_eq_mult, dvd_div_div_eq_mult
 haftmann parents: 
35216diff
changeset | 339 | lemma div_mult_swap: | 
| 
45a193f0ed0c
lemma div_mult_swap, dvd_div_eq_mult, dvd_div_div_eq_mult
 haftmann parents: 
35216diff
changeset | 340 | assumes "c dvd b" | 
| 
45a193f0ed0c
lemma div_mult_swap, dvd_div_eq_mult, dvd_div_div_eq_mult
 haftmann parents: 
35216diff
changeset | 341 | shows "a * (b div c) = (a * b) div c" | 
| 
45a193f0ed0c
lemma div_mult_swap, dvd_div_eq_mult, dvd_div_div_eq_mult
 haftmann parents: 
35216diff
changeset | 342 | proof - | 
| 
45a193f0ed0c
lemma div_mult_swap, dvd_div_eq_mult, dvd_div_div_eq_mult
 haftmann parents: 
35216diff
changeset | 343 | from assms have "b div c * (a div 1) = b * a div (c * 1)" | 
| 
45a193f0ed0c
lemma div_mult_swap, dvd_div_eq_mult, dvd_div_div_eq_mult
 haftmann parents: 
35216diff
changeset | 344 | by (simp only: div_mult_div_if_dvd one_dvd) | 
| 
45a193f0ed0c
lemma div_mult_swap, dvd_div_eq_mult, dvd_div_div_eq_mult
 haftmann parents: 
35216diff
changeset | 345 | then show ?thesis by (simp add: mult_commute) | 
| 
45a193f0ed0c
lemma div_mult_swap, dvd_div_eq_mult, dvd_div_div_eq_mult
 haftmann parents: 
35216diff
changeset | 346 | qed | 
| 
45a193f0ed0c
lemma div_mult_swap, dvd_div_eq_mult, dvd_div_div_eq_mult
 haftmann parents: 
35216diff
changeset | 347 | |
| 30930 | 348 | lemma div_mult_mult2 [simp]: | 
| 349 | "c \<noteq> 0 \<Longrightarrow> (a * c) div (b * c) = a div b" | |
| 350 | by (drule div_mult_mult1) (simp add: mult_commute) | |
| 351 | ||
| 352 | lemma div_mult_mult1_if [simp]: | |
| 353 | "(c * a) div (c * b) = (if c = 0 then 0 else a div b)" | |
| 354 | by simp_all | |
| 30476 | 355 | |
| 30930 | 356 | lemma mod_mult_mult1: | 
| 357 | "(c * a) mod (c * b) = c * (a mod b)" | |
| 358 | proof (cases "c = 0") | |
| 359 | case True then show ?thesis by simp | |
| 360 | next | |
| 361 | case False | |
| 362 | from mod_div_equality | |
| 363 | have "((c * a) div (c * b)) * (c * b) + (c * a) mod (c * b) = c * a" . | |
| 364 | with False have "c * ((a div b) * b + a mod b) + (c * a) mod (c * b) | |
| 365 | = c * a + c * (a mod b)" by (simp add: algebra_simps) | |
| 366 | with mod_div_equality show ?thesis by simp | |
| 367 | qed | |
| 368 | ||
| 369 | lemma mod_mult_mult2: | |
| 370 | "(a * c) mod (b * c) = (a mod b) * c" | |
| 371 | using mod_mult_mult1 [of c a b] by (simp add: mult_commute) | |
| 372 | ||
| 47159 | 373 | lemma mult_mod_left: "(a mod b) * c = (a * c) mod (b * c)" | 
| 374 | by (fact mod_mult_mult2 [symmetric]) | |
| 375 | ||
| 376 | lemma mult_mod_right: "c * (a mod b) = (c * a) mod (c * b)" | |
| 377 | by (fact mod_mult_mult1 [symmetric]) | |
| 378 | ||
| 31662 
57f7ef0dba8e
generalize lemmas dvd_mod and dvd_mod_iff to class semiring_div
 huffman parents: 
31661diff
changeset | 379 | lemma dvd_mod: "k dvd m \<Longrightarrow> k dvd n \<Longrightarrow> k dvd (m mod n)" | 
| 
57f7ef0dba8e
generalize lemmas dvd_mod and dvd_mod_iff to class semiring_div
 huffman parents: 
31661diff
changeset | 380 | unfolding dvd_def by (auto simp add: mod_mult_mult1) | 
| 
57f7ef0dba8e
generalize lemmas dvd_mod and dvd_mod_iff to class semiring_div
 huffman parents: 
31661diff
changeset | 381 | |
| 
57f7ef0dba8e
generalize lemmas dvd_mod and dvd_mod_iff to class semiring_div
 huffman parents: 
31661diff
changeset | 382 | lemma dvd_mod_iff: "k dvd n \<Longrightarrow> k dvd (m mod n) \<longleftrightarrow> k dvd m" | 
| 
57f7ef0dba8e
generalize lemmas dvd_mod and dvd_mod_iff to class semiring_div
 huffman parents: 
31661diff
changeset | 383 | by (blast intro: dvd_mod_imp_dvd dvd_mod) | 
| 
57f7ef0dba8e
generalize lemmas dvd_mod and dvd_mod_iff to class semiring_div
 huffman parents: 
31661diff
changeset | 384 | |
| 31009 
41fd307cab30
dropped reference to class recpower and lemma duplicate
 haftmann parents: 
30934diff
changeset | 385 | lemma div_power: | 
| 31661 
1e252b8b2334
move lemma div_power into semiring_div context; class ring_div inherits from idom
 huffman parents: 
31009diff
changeset | 386 | "y dvd x \<Longrightarrow> (x div y) ^ n = x ^ n div y ^ n" | 
| 30476 | 387 | apply (induct n) | 
| 388 | apply simp | |
| 389 | apply(simp add: div_mult_div_if_dvd dvd_power_same) | |
| 390 | done | |
| 391 | ||
| 35367 
45a193f0ed0c
lemma div_mult_swap, dvd_div_eq_mult, dvd_div_div_eq_mult
 haftmann parents: 
35216diff
changeset | 392 | lemma dvd_div_eq_mult: | 
| 
45a193f0ed0c
lemma div_mult_swap, dvd_div_eq_mult, dvd_div_div_eq_mult
 haftmann parents: 
35216diff
changeset | 393 | assumes "a \<noteq> 0" and "a dvd b" | 
| 
45a193f0ed0c
lemma div_mult_swap, dvd_div_eq_mult, dvd_div_div_eq_mult
 haftmann parents: 
35216diff
changeset | 394 | shows "b div a = c \<longleftrightarrow> b = c * a" | 
| 
45a193f0ed0c
lemma div_mult_swap, dvd_div_eq_mult, dvd_div_div_eq_mult
 haftmann parents: 
35216diff
changeset | 395 | proof | 
| 
45a193f0ed0c
lemma div_mult_swap, dvd_div_eq_mult, dvd_div_div_eq_mult
 haftmann parents: 
35216diff
changeset | 396 | assume "b = c * a" | 
| 
45a193f0ed0c
lemma div_mult_swap, dvd_div_eq_mult, dvd_div_div_eq_mult
 haftmann parents: 
35216diff
changeset | 397 | then show "b div a = c" by (simp add: assms) | 
| 
45a193f0ed0c
lemma div_mult_swap, dvd_div_eq_mult, dvd_div_div_eq_mult
 haftmann parents: 
35216diff
changeset | 398 | next | 
| 
45a193f0ed0c
lemma div_mult_swap, dvd_div_eq_mult, dvd_div_div_eq_mult
 haftmann parents: 
35216diff
changeset | 399 | assume "b div a = c" | 
| 
45a193f0ed0c
lemma div_mult_swap, dvd_div_eq_mult, dvd_div_div_eq_mult
 haftmann parents: 
35216diff
changeset | 400 | then have "b div a * a = c * a" by simp | 
| 
45a193f0ed0c
lemma div_mult_swap, dvd_div_eq_mult, dvd_div_div_eq_mult
 haftmann parents: 
35216diff
changeset | 401 | moreover from `a dvd b` have "b div a * a = b" by (simp add: dvd_div_mult_self) | 
| 
45a193f0ed0c
lemma div_mult_swap, dvd_div_eq_mult, dvd_div_div_eq_mult
 haftmann parents: 
35216diff
changeset | 402 | ultimately show "b = c * a" by simp | 
| 
45a193f0ed0c
lemma div_mult_swap, dvd_div_eq_mult, dvd_div_div_eq_mult
 haftmann parents: 
35216diff
changeset | 403 | qed | 
| 
45a193f0ed0c
lemma div_mult_swap, dvd_div_eq_mult, dvd_div_div_eq_mult
 haftmann parents: 
35216diff
changeset | 404 | |
| 
45a193f0ed0c
lemma div_mult_swap, dvd_div_eq_mult, dvd_div_div_eq_mult
 haftmann parents: 
35216diff
changeset | 405 | lemma dvd_div_div_eq_mult: | 
| 
45a193f0ed0c
lemma div_mult_swap, dvd_div_eq_mult, dvd_div_div_eq_mult
 haftmann parents: 
35216diff
changeset | 406 | assumes "a \<noteq> 0" "c \<noteq> 0" and "a dvd b" "c dvd d" | 
| 
45a193f0ed0c
lemma div_mult_swap, dvd_div_eq_mult, dvd_div_div_eq_mult
 haftmann parents: 
35216diff
changeset | 407 | shows "b div a = d div c \<longleftrightarrow> b * c = a * d" | 
| 
45a193f0ed0c
lemma div_mult_swap, dvd_div_eq_mult, dvd_div_div_eq_mult
 haftmann parents: 
35216diff
changeset | 408 | using assms by (auto simp add: mult_commute [of _ a] dvd_div_mult_self dvd_div_eq_mult div_mult_swap intro: sym) | 
| 
45a193f0ed0c
lemma div_mult_swap, dvd_div_eq_mult, dvd_div_div_eq_mult
 haftmann parents: 
35216diff
changeset | 409 | |
| 31661 
1e252b8b2334
move lemma div_power into semiring_div context; class ring_div inherits from idom
 huffman parents: 
31009diff
changeset | 410 | end | 
| 
1e252b8b2334
move lemma div_power into semiring_div context; class ring_div inherits from idom
 huffman parents: 
31009diff
changeset | 411 | |
| 35673 | 412 | class ring_div = semiring_div + comm_ring_1 | 
| 29405 
98ab21b14f09
add class ring_div; generalize mod/diff/minus proofs for class ring_div
 huffman parents: 
29404diff
changeset | 413 | begin | 
| 
98ab21b14f09
add class ring_div; generalize mod/diff/minus proofs for class ring_div
 huffman parents: 
29404diff
changeset | 414 | |
| 36634 | 415 | subclass ring_1_no_zero_divisors .. | 
| 416 | ||
| 29405 
98ab21b14f09
add class ring_div; generalize mod/diff/minus proofs for class ring_div
 huffman parents: 
29404diff
changeset | 417 | text {* Negation respects modular equivalence. *}
 | 
| 
98ab21b14f09
add class ring_div; generalize mod/diff/minus proofs for class ring_div
 huffman parents: 
29404diff
changeset | 418 | |
| 
98ab21b14f09
add class ring_div; generalize mod/diff/minus proofs for class ring_div
 huffman parents: 
29404diff
changeset | 419 | lemma mod_minus_eq: "(- a) mod b = (- (a mod b)) mod b" | 
| 
98ab21b14f09
add class ring_div; generalize mod/diff/minus proofs for class ring_div
 huffman parents: 
29404diff
changeset | 420 | proof - | 
| 
98ab21b14f09
add class ring_div; generalize mod/diff/minus proofs for class ring_div
 huffman parents: 
29404diff
changeset | 421 | have "(- a) mod b = (- (a div b * b + a mod b)) mod b" | 
| 
98ab21b14f09
add class ring_div; generalize mod/diff/minus proofs for class ring_div
 huffman parents: 
29404diff
changeset | 422 | by (simp only: mod_div_equality) | 
| 
98ab21b14f09
add class ring_div; generalize mod/diff/minus proofs for class ring_div
 huffman parents: 
29404diff
changeset | 423 | also have "\<dots> = (- (a mod b) + - (a div b) * b) mod b" | 
| 
98ab21b14f09
add class ring_div; generalize mod/diff/minus proofs for class ring_div
 huffman parents: 
29404diff
changeset | 424 | by (simp only: minus_add_distrib minus_mult_left add_ac) | 
| 
98ab21b14f09
add class ring_div; generalize mod/diff/minus proofs for class ring_div
 huffman parents: 
29404diff
changeset | 425 | also have "\<dots> = (- (a mod b)) mod b" | 
| 
98ab21b14f09
add class ring_div; generalize mod/diff/minus proofs for class ring_div
 huffman parents: 
29404diff
changeset | 426 | by (rule mod_mult_self1) | 
| 
98ab21b14f09
add class ring_div; generalize mod/diff/minus proofs for class ring_div
 huffman parents: 
29404diff
changeset | 427 | finally show ?thesis . | 
| 
98ab21b14f09
add class ring_div; generalize mod/diff/minus proofs for class ring_div
 huffman parents: 
29404diff
changeset | 428 | qed | 
| 
98ab21b14f09
add class ring_div; generalize mod/diff/minus proofs for class ring_div
 huffman parents: 
29404diff
changeset | 429 | |
| 
98ab21b14f09
add class ring_div; generalize mod/diff/minus proofs for class ring_div
 huffman parents: 
29404diff
changeset | 430 | lemma mod_minus_cong: | 
| 
98ab21b14f09
add class ring_div; generalize mod/diff/minus proofs for class ring_div
 huffman parents: 
29404diff
changeset | 431 | assumes "a mod b = a' mod b" | 
| 
98ab21b14f09
add class ring_div; generalize mod/diff/minus proofs for class ring_div
 huffman parents: 
29404diff
changeset | 432 | shows "(- a) mod b = (- a') mod b" | 
| 
98ab21b14f09
add class ring_div; generalize mod/diff/minus proofs for class ring_div
 huffman parents: 
29404diff
changeset | 433 | proof - | 
| 
98ab21b14f09
add class ring_div; generalize mod/diff/minus proofs for class ring_div
 huffman parents: 
29404diff
changeset | 434 | have "(- (a mod b)) mod b = (- (a' mod b)) mod b" | 
| 
98ab21b14f09
add class ring_div; generalize mod/diff/minus proofs for class ring_div
 huffman parents: 
29404diff
changeset | 435 | unfolding assms .. | 
| 
98ab21b14f09
add class ring_div; generalize mod/diff/minus proofs for class ring_div
 huffman parents: 
29404diff
changeset | 436 | thus ?thesis | 
| 
98ab21b14f09
add class ring_div; generalize mod/diff/minus proofs for class ring_div
 huffman parents: 
29404diff
changeset | 437 | by (simp only: mod_minus_eq [symmetric]) | 
| 
98ab21b14f09
add class ring_div; generalize mod/diff/minus proofs for class ring_div
 huffman parents: 
29404diff
changeset | 438 | qed | 
| 
98ab21b14f09
add class ring_div; generalize mod/diff/minus proofs for class ring_div
 huffman parents: 
29404diff
changeset | 439 | |
| 
98ab21b14f09
add class ring_div; generalize mod/diff/minus proofs for class ring_div
 huffman parents: 
29404diff
changeset | 440 | text {* Subtraction respects modular equivalence. *}
 | 
| 
98ab21b14f09
add class ring_div; generalize mod/diff/minus proofs for class ring_div
 huffman parents: 
29404diff
changeset | 441 | |
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54227diff
changeset | 442 | lemma mod_diff_left_eq: | 
| 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54227diff
changeset | 443 | "(a - b) mod c = (a mod c - b) mod c" | 
| 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54227diff
changeset | 444 | using mod_add_cong [of a c "a mod c" "- b" "- b"] by simp | 
| 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54227diff
changeset | 445 | |
| 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54227diff
changeset | 446 | lemma mod_diff_right_eq: | 
| 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54227diff
changeset | 447 | "(a - b) mod c = (a - b mod c) mod c" | 
| 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54227diff
changeset | 448 | using mod_add_cong [of a c a "- b" "- (b mod c)"] mod_minus_cong [of "b mod c" c b] by simp | 
| 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54227diff
changeset | 449 | |
| 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54227diff
changeset | 450 | lemma mod_diff_eq: | 
| 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54227diff
changeset | 451 | "(a - b) mod c = (a mod c - b mod c) mod c" | 
| 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54227diff
changeset | 452 | using mod_add_cong [of a c "a mod c" "- b" "- (b mod c)"] mod_minus_cong [of "b mod c" c b] by simp | 
| 29405 
98ab21b14f09
add class ring_div; generalize mod/diff/minus proofs for class ring_div
 huffman parents: 
29404diff
changeset | 453 | |
| 
98ab21b14f09
add class ring_div; generalize mod/diff/minus proofs for class ring_div
 huffman parents: 
29404diff
changeset | 454 | lemma mod_diff_cong: | 
| 
98ab21b14f09
add class ring_div; generalize mod/diff/minus proofs for class ring_div
 huffman parents: 
29404diff
changeset | 455 | assumes "a mod c = a' mod c" | 
| 
98ab21b14f09
add class ring_div; generalize mod/diff/minus proofs for class ring_div
 huffman parents: 
29404diff
changeset | 456 | assumes "b mod c = b' mod c" | 
| 
98ab21b14f09
add class ring_div; generalize mod/diff/minus proofs for class ring_div
 huffman parents: 
29404diff
changeset | 457 | shows "(a - b) mod c = (a' - b') mod c" | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54227diff
changeset | 458 | using assms mod_add_cong [of a c a' "- b" "- b'"] mod_minus_cong [of b c "b'"] by simp | 
| 29405 
98ab21b14f09
add class ring_div; generalize mod/diff/minus proofs for class ring_div
 huffman parents: 
29404diff
changeset | 459 | |
| 30180 | 460 | lemma dvd_neg_div: "y dvd x \<Longrightarrow> -x div y = - (x div y)" | 
| 461 | apply (case_tac "y = 0") apply simp | |
| 462 | apply (auto simp add: dvd_def) | |
| 463 | apply (subgoal_tac "-(y * k) = y * - k") | |
| 464 | apply (erule ssubst) | |
| 465 | apply (erule div_mult_self1_is_id) | |
| 466 | apply simp | |
| 467 | done | |
| 468 | ||
| 469 | lemma dvd_div_neg: "y dvd x \<Longrightarrow> x div -y = - (x div y)" | |
| 470 | apply (case_tac "y = 0") apply simp | |
| 471 | apply (auto simp add: dvd_def) | |
| 472 | apply (subgoal_tac "y * k = -y * -k") | |
| 473 | apply (erule ssubst) | |
| 474 | apply (rule div_mult_self1_is_id) | |
| 475 | apply simp | |
| 476 | apply simp | |
| 477 | done | |
| 478 | ||
| 47159 | 479 | lemma div_minus_minus [simp]: "(-a) div (-b) = a div b" | 
| 480 | using div_mult_mult1 [of "- 1" a b] | |
| 481 | unfolding neg_equal_0_iff_equal by simp | |
| 482 | ||
| 483 | lemma mod_minus_minus [simp]: "(-a) mod (-b) = - (a mod b)" | |
| 484 | using mod_mult_mult1 [of "- 1" a b] by simp | |
| 485 | ||
| 486 | lemma div_minus_right: "a div (-b) = (-a) div b" | |
| 487 | using div_minus_minus [of "-a" b] by simp | |
| 488 | ||
| 489 | lemma mod_minus_right: "a mod (-b) = - ((-a) mod b)" | |
| 490 | using mod_minus_minus [of "-a" b] by simp | |
| 491 | ||
| 47160 | 492 | lemma div_minus1_right [simp]: "a div (-1) = -a" | 
| 493 | using div_minus_right [of a 1] by simp | |
| 494 | ||
| 495 | lemma mod_minus1_right [simp]: "a mod (-1) = 0" | |
| 496 | using mod_minus_right [of a 1] by simp | |
| 497 | ||
| 54221 | 498 | lemma minus_mod_self2 [simp]: | 
| 499 | "(a - b) mod b = a mod b" | |
| 500 | by (simp add: mod_diff_right_eq) | |
| 501 | ||
| 502 | lemma minus_mod_self1 [simp]: | |
| 503 | "(b - a) mod b = - a mod b" | |
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54227diff
changeset | 504 | using mod_add_self2 [of "- a" b] by simp | 
| 54221 | 505 | |
| 29405 
98ab21b14f09
add class ring_div; generalize mod/diff/minus proofs for class ring_div
 huffman parents: 
29404diff
changeset | 506 | end | 
| 
98ab21b14f09
add class ring_div; generalize mod/diff/minus proofs for class ring_div
 huffman parents: 
29404diff
changeset | 507 | |
| 54226 
e3df2a4e02fc
explicit type class for modelling even/odd parity
 haftmann parents: 
54221diff
changeset | 508 | class semiring_div_parity = semiring_div + semiring_numeral + | 
| 
e3df2a4e02fc
explicit type class for modelling even/odd parity
 haftmann parents: 
54221diff
changeset | 509 | assumes parity: "a mod 2 = 0 \<or> a mod 2 = 1" | 
| 
e3df2a4e02fc
explicit type class for modelling even/odd parity
 haftmann parents: 
54221diff
changeset | 510 | begin | 
| 
e3df2a4e02fc
explicit type class for modelling even/odd parity
 haftmann parents: 
54221diff
changeset | 511 | |
| 
e3df2a4e02fc
explicit type class for modelling even/odd parity
 haftmann parents: 
54221diff
changeset | 512 | lemma parity_cases [case_names even odd]: | 
| 
e3df2a4e02fc
explicit type class for modelling even/odd parity
 haftmann parents: 
54221diff
changeset | 513 | assumes "a mod 2 = 0 \<Longrightarrow> P" | 
| 
e3df2a4e02fc
explicit type class for modelling even/odd parity
 haftmann parents: 
54221diff
changeset | 514 | assumes "a mod 2 = 1 \<Longrightarrow> P" | 
| 
e3df2a4e02fc
explicit type class for modelling even/odd parity
 haftmann parents: 
54221diff
changeset | 515 | shows P | 
| 
e3df2a4e02fc
explicit type class for modelling even/odd parity
 haftmann parents: 
54221diff
changeset | 516 | using assms parity by blast | 
| 
e3df2a4e02fc
explicit type class for modelling even/odd parity
 haftmann parents: 
54221diff
changeset | 517 | |
| 
e3df2a4e02fc
explicit type class for modelling even/odd parity
 haftmann parents: 
54221diff
changeset | 518 | lemma not_mod_2_eq_0_eq_1 [simp]: | 
| 
e3df2a4e02fc
explicit type class for modelling even/odd parity
 haftmann parents: 
54221diff
changeset | 519 | "a mod 2 \<noteq> 0 \<longleftrightarrow> a mod 2 = 1" | 
| 
e3df2a4e02fc
explicit type class for modelling even/odd parity
 haftmann parents: 
54221diff
changeset | 520 | by (cases a rule: parity_cases) simp_all | 
| 
e3df2a4e02fc
explicit type class for modelling even/odd parity
 haftmann parents: 
54221diff
changeset | 521 | |
| 
e3df2a4e02fc
explicit type class for modelling even/odd parity
 haftmann parents: 
54221diff
changeset | 522 | lemma not_mod_2_eq_1_eq_0 [simp]: | 
| 
e3df2a4e02fc
explicit type class for modelling even/odd parity
 haftmann parents: 
54221diff
changeset | 523 | "a mod 2 \<noteq> 1 \<longleftrightarrow> a mod 2 = 0" | 
| 
e3df2a4e02fc
explicit type class for modelling even/odd parity
 haftmann parents: 
54221diff
changeset | 524 | by (cases a rule: parity_cases) simp_all | 
| 
e3df2a4e02fc
explicit type class for modelling even/odd parity
 haftmann parents: 
54221diff
changeset | 525 | |
| 
e3df2a4e02fc
explicit type class for modelling even/odd parity
 haftmann parents: 
54221diff
changeset | 526 | end | 
| 
e3df2a4e02fc
explicit type class for modelling even/odd parity
 haftmann parents: 
54221diff
changeset | 527 | |
| 25942 | 528 | |
| 53067 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 529 | subsection {* Generic numeral division with a pragmatic type class *}
 | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 530 | |
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 531 | text {*
 | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 532 | The following type class contains everything necessary to formulate | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 533 | a division algorithm in ring structures with numerals, restricted | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 534 | to its positive segments. This is its primary motiviation, and it | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 535 | could surely be formulated using a more fine-grained, more algebraic | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 536 | and less technical class hierarchy. | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 537 | *} | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 538 | |
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 539 | class semiring_numeral_div = linordered_semidom + minus + semiring_div + | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 540 | assumes diff_invert_add1: "a + b = c \<Longrightarrow> a = c - b" | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 541 | and le_add_diff_inverse2: "b \<le> a \<Longrightarrow> a - b + b = a" | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 542 | assumes mult_div_cancel: "b * (a div b) = a - a mod b" | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 543 | and div_less: "0 \<le> a \<Longrightarrow> a < b \<Longrightarrow> a div b = 0" | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 544 | and mod_less: " 0 \<le> a \<Longrightarrow> a < b \<Longrightarrow> a mod b = a" | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 545 | and div_positive: "0 < b \<Longrightarrow> b \<le> a \<Longrightarrow> a div b > 0" | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 546 | and mod_less_eq_dividend: "0 \<le> a \<Longrightarrow> a mod b \<le> a" | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 547 | and pos_mod_bound: "0 < b \<Longrightarrow> a mod b < b" | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 548 | and pos_mod_sign: "0 < b \<Longrightarrow> 0 \<le> a mod b" | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 549 | and mod_mult2_eq: "0 \<le> c \<Longrightarrow> a mod (b * c) = b * (a div b mod c) + a mod b" | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 550 | and div_mult2_eq: "0 \<le> c \<Longrightarrow> a div (b * c) = a div b div c" | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 551 | assumes discrete: "a < b \<longleftrightarrow> a + 1 \<le> b" | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 552 | begin | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 553 | |
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 554 | lemma diff_zero [simp]: | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 555 | "a - 0 = a" | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 556 | by (rule diff_invert_add1 [symmetric]) simp | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 557 | |
| 54226 
e3df2a4e02fc
explicit type class for modelling even/odd parity
 haftmann parents: 
54221diff
changeset | 558 | subclass semiring_div_parity | 
| 
e3df2a4e02fc
explicit type class for modelling even/odd parity
 haftmann parents: 
54221diff
changeset | 559 | proof | 
| 
e3df2a4e02fc
explicit type class for modelling even/odd parity
 haftmann parents: 
54221diff
changeset | 560 | fix a | 
| 
e3df2a4e02fc
explicit type class for modelling even/odd parity
 haftmann parents: 
54221diff
changeset | 561 | show "a mod 2 = 0 \<or> a mod 2 = 1" | 
| 
e3df2a4e02fc
explicit type class for modelling even/odd parity
 haftmann parents: 
54221diff
changeset | 562 | proof (rule ccontr) | 
| 
e3df2a4e02fc
explicit type class for modelling even/odd parity
 haftmann parents: 
54221diff
changeset | 563 | assume "\<not> (a mod 2 = 0 \<or> a mod 2 = 1)" | 
| 
e3df2a4e02fc
explicit type class for modelling even/odd parity
 haftmann parents: 
54221diff
changeset | 564 | then have "a mod 2 \<noteq> 0" and "a mod 2 \<noteq> 1" by simp_all | 
| 
e3df2a4e02fc
explicit type class for modelling even/odd parity
 haftmann parents: 
54221diff
changeset | 565 | have "0 < 2" by simp | 
| 
e3df2a4e02fc
explicit type class for modelling even/odd parity
 haftmann parents: 
54221diff
changeset | 566 | with pos_mod_bound pos_mod_sign have "0 \<le> a mod 2" "a mod 2 < 2" by simp_all | 
| 
e3df2a4e02fc
explicit type class for modelling even/odd parity
 haftmann parents: 
54221diff
changeset | 567 | with `a mod 2 \<noteq> 0` have "0 < a mod 2" by simp | 
| 
e3df2a4e02fc
explicit type class for modelling even/odd parity
 haftmann parents: 
54221diff
changeset | 568 | with discrete have "1 \<le> a mod 2" by simp | 
| 
e3df2a4e02fc
explicit type class for modelling even/odd parity
 haftmann parents: 
54221diff
changeset | 569 | with `a mod 2 \<noteq> 1` have "1 < a mod 2" by simp | 
| 
e3df2a4e02fc
explicit type class for modelling even/odd parity
 haftmann parents: 
54221diff
changeset | 570 | with discrete have "2 \<le> a mod 2" by simp | 
| 
e3df2a4e02fc
explicit type class for modelling even/odd parity
 haftmann parents: 
54221diff
changeset | 571 | with `a mod 2 < 2` show False by simp | 
| 
e3df2a4e02fc
explicit type class for modelling even/odd parity
 haftmann parents: 
54221diff
changeset | 572 | qed | 
| 53067 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 573 | qed | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 574 | |
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 575 | lemma divmod_digit_1: | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 576 | assumes "0 \<le> a" "0 < b" and "b \<le> a mod (2 * b)" | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 577 | shows "2 * (a div (2 * b)) + 1 = a div b" (is "?P") | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 578 | and "a mod (2 * b) - b = a mod b" (is "?Q") | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 579 | proof - | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 580 | from assms mod_less_eq_dividend [of a "2 * b"] have "b \<le> a" | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 581 | by (auto intro: trans) | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 582 | with `0 < b` have "0 < a div b" by (auto intro: div_positive) | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 583 | then have [simp]: "1 \<le> a div b" by (simp add: discrete) | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 584 | with `0 < b` have mod_less: "a mod b < b" by (simp add: pos_mod_bound) | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 585 | def w \<equiv> "a div b mod 2" with parity have w_exhaust: "w = 0 \<or> w = 1" by auto | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 586 | have mod_w: "a mod (2 * b) = a mod b + b * w" | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 587 | by (simp add: w_def mod_mult2_eq ac_simps) | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 588 | from assms w_exhaust have "w = 1" | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 589 | by (auto simp add: mod_w) (insert mod_less, auto) | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 590 | with mod_w have mod: "a mod (2 * b) = a mod b + b" by simp | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 591 | have "2 * (a div (2 * b)) = a div b - w" | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 592 | by (simp add: w_def div_mult2_eq mult_div_cancel ac_simps) | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 593 | with `w = 1` have div: "2 * (a div (2 * b)) = a div b - 1" by simp | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 594 | then show ?P and ?Q | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 595 | by (simp_all add: div mod diff_invert_add1 [symmetric] le_add_diff_inverse2) | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 596 | qed | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 597 | |
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 598 | lemma divmod_digit_0: | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 599 | assumes "0 < b" and "a mod (2 * b) < b" | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 600 | shows "2 * (a div (2 * b)) = a div b" (is "?P") | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 601 | and "a mod (2 * b) = a mod b" (is "?Q") | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 602 | proof - | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 603 | def w \<equiv> "a div b mod 2" with parity have w_exhaust: "w = 0 \<or> w = 1" by auto | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 604 | have mod_w: "a mod (2 * b) = a mod b + b * w" | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 605 | by (simp add: w_def mod_mult2_eq ac_simps) | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 606 | moreover have "b \<le> a mod b + b" | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 607 | proof - | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 608 | from `0 < b` pos_mod_sign have "0 \<le> a mod b" by blast | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 609 | then have "0 + b \<le> a mod b + b" by (rule add_right_mono) | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 610 | then show ?thesis by simp | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 611 | qed | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 612 | moreover note assms w_exhaust | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 613 | ultimately have "w = 0" by auto | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 614 | with mod_w have mod: "a mod (2 * b) = a mod b" by simp | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 615 | have "2 * (a div (2 * b)) = a div b - w" | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 616 | by (simp add: w_def div_mult2_eq mult_div_cancel ac_simps) | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 617 | with `w = 0` have div: "2 * (a div (2 * b)) = a div b" by simp | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 618 | then show ?P and ?Q | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 619 | by (simp_all add: div mod) | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 620 | qed | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 621 | |
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 622 | definition divmod :: "num \<Rightarrow> num \<Rightarrow> 'a \<times> 'a" | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 623 | where | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 624 | "divmod m n = (numeral m div numeral n, numeral m mod numeral n)" | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 625 | |
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 626 | lemma fst_divmod [simp]: | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 627 | "fst (divmod m n) = numeral m div numeral n" | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 628 | by (simp add: divmod_def) | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 629 | |
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 630 | lemma snd_divmod [simp]: | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 631 | "snd (divmod m n) = numeral m mod numeral n" | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 632 | by (simp add: divmod_def) | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 633 | |
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 634 | definition divmod_step :: "num \<Rightarrow> 'a \<times> 'a \<Rightarrow> 'a \<times> 'a" | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 635 | where | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 636 | "divmod_step l qr = (let (q, r) = qr | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 637 | in if r \<ge> numeral l then (2 * q + 1, r - numeral l) | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 638 | else (2 * q, r))" | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 639 | |
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 640 | text {*
 | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 641 | This is a formulation of one step (referring to one digit position) | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 642 | in school-method division: compare the dividend at the current | 
| 53070 | 643 | digit position with the remainder from previous division steps | 
| 53067 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 644 | and evaluate accordingly. | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 645 | *} | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 646 | |
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 647 | lemma divmod_step_eq [code]: | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 648 | "divmod_step l (q, r) = (if numeral l \<le> r | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 649 | then (2 * q + 1, r - numeral l) else (2 * q, r))" | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 650 | by (simp add: divmod_step_def) | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 651 | |
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 652 | lemma divmod_step_simps [simp]: | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 653 | "r < numeral l \<Longrightarrow> divmod_step l (q, r) = (2 * q, r)" | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 654 | "numeral l \<le> r \<Longrightarrow> divmod_step l (q, r) = (2 * q + 1, r - numeral l)" | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 655 | by (auto simp add: divmod_step_eq not_le) | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 656 | |
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 657 | text {*
 | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 658 | This is a formulation of school-method division. | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 659 | If the divisor is smaller than the dividend, terminate. | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 660 | If not, shift the dividend to the right until termination | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 661 | occurs and then reiterate single division steps in the | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 662 | opposite direction. | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 663 | *} | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 664 | |
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 665 | lemma divmod_divmod_step [code]: | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 666 | "divmod m n = (if m < n then (0, numeral m) | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 667 | else divmod_step n (divmod m (Num.Bit0 n)))" | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 668 | proof (cases "m < n") | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 669 | case True then have "numeral m < numeral n" by simp | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 670 | then show ?thesis | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 671 | by (simp add: prod_eq_iff div_less mod_less) | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 672 | next | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 673 | case False | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 674 | have "divmod m n = | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 675 | divmod_step n (numeral m div (2 * numeral n), | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 676 | numeral m mod (2 * numeral n))" | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 677 | proof (cases "numeral n \<le> numeral m mod (2 * numeral n)") | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 678 | case True | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 679 | with divmod_step_simps | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 680 | have "divmod_step n (numeral m div (2 * numeral n), numeral m mod (2 * numeral n)) = | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 681 | (2 * (numeral m div (2 * numeral n)) + 1, numeral m mod (2 * numeral n) - numeral n)" | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 682 | by blast | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 683 | moreover from True divmod_digit_1 [of "numeral m" "numeral n"] | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 684 | have "2 * (numeral m div (2 * numeral n)) + 1 = numeral m div numeral n" | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 685 | and "numeral m mod (2 * numeral n) - numeral n = numeral m mod numeral n" | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 686 | by simp_all | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 687 | ultimately show ?thesis by (simp only: divmod_def) | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 688 | next | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 689 | case False then have *: "numeral m mod (2 * numeral n) < numeral n" | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 690 | by (simp add: not_le) | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 691 | with divmod_step_simps | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 692 | have "divmod_step n (numeral m div (2 * numeral n), numeral m mod (2 * numeral n)) = | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 693 | (2 * (numeral m div (2 * numeral n)), numeral m mod (2 * numeral n))" | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 694 | by blast | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 695 | moreover from * divmod_digit_0 [of "numeral n" "numeral m"] | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 696 | have "2 * (numeral m div (2 * numeral n)) = numeral m div numeral n" | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 697 | and "numeral m mod (2 * numeral n) = numeral m mod numeral n" | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 698 | by (simp_all only: zero_less_numeral) | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 699 | ultimately show ?thesis by (simp only: divmod_def) | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 700 | qed | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 701 | then have "divmod m n = | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 702 | divmod_step n (numeral m div numeral (Num.Bit0 n), | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 703 | numeral m mod numeral (Num.Bit0 n))" | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 704 | by (simp only: numeral.simps distrib mult_1) | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 705 | then have "divmod m n = divmod_step n (divmod m (Num.Bit0 n))" | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 706 | by (simp add: divmod_def) | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 707 | with False show ?thesis by simp | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 708 | qed | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 709 | |
| 53069 
d165213e3924
execution of int division by class semiring_numeral_div, replacing pdivmod by divmod_abs
 haftmann parents: 
53068diff
changeset | 710 | lemma divmod_cancel [code]: | 
| 
d165213e3924
execution of int division by class semiring_numeral_div, replacing pdivmod by divmod_abs
 haftmann parents: 
53068diff
changeset | 711 | "divmod (Num.Bit0 m) (Num.Bit0 n) = (case divmod m n of (q, r) \<Rightarrow> (q, 2 * r))" (is ?P) | 
| 
d165213e3924
execution of int division by class semiring_numeral_div, replacing pdivmod by divmod_abs
 haftmann parents: 
53068diff
changeset | 712 | "divmod (Num.Bit1 m) (Num.Bit0 n) = (case divmod m n of (q, r) \<Rightarrow> (q, 2 * r + 1))" (is ?Q) | 
| 
d165213e3924
execution of int division by class semiring_numeral_div, replacing pdivmod by divmod_abs
 haftmann parents: 
53068diff
changeset | 713 | proof - | 
| 
d165213e3924
execution of int division by class semiring_numeral_div, replacing pdivmod by divmod_abs
 haftmann parents: 
53068diff
changeset | 714 | have *: "\<And>q. numeral (Num.Bit0 q) = 2 * numeral q" | 
| 
d165213e3924
execution of int division by class semiring_numeral_div, replacing pdivmod by divmod_abs
 haftmann parents: 
53068diff
changeset | 715 | "\<And>q. numeral (Num.Bit1 q) = 2 * numeral q + 1" | 
| 
d165213e3924
execution of int division by class semiring_numeral_div, replacing pdivmod by divmod_abs
 haftmann parents: 
53068diff
changeset | 716 | by (simp_all only: numeral_mult numeral.simps distrib) simp_all | 
| 
d165213e3924
execution of int division by class semiring_numeral_div, replacing pdivmod by divmod_abs
 haftmann parents: 
53068diff
changeset | 717 | have "1 div 2 = 0" "1 mod 2 = 1" by (auto intro: div_less mod_less) | 
| 
d165213e3924
execution of int division by class semiring_numeral_div, replacing pdivmod by divmod_abs
 haftmann parents: 
53068diff
changeset | 718 | then show ?P and ?Q | 
| 
d165213e3924
execution of int division by class semiring_numeral_div, replacing pdivmod by divmod_abs
 haftmann parents: 
53068diff
changeset | 719 | by (simp_all add: prod_eq_iff split_def * [of m] * [of n] mod_mult_mult1 | 
| 
d165213e3924
execution of int division by class semiring_numeral_div, replacing pdivmod by divmod_abs
 haftmann parents: 
53068diff
changeset | 720 | div_mult2_eq [of _ _ 2] mod_mult2_eq [of _ _ 2] add.commute del: numeral_times_numeral) | 
| 
d165213e3924
execution of int division by class semiring_numeral_div, replacing pdivmod by divmod_abs
 haftmann parents: 
53068diff
changeset | 721 | qed | 
| 
d165213e3924
execution of int division by class semiring_numeral_div, replacing pdivmod by divmod_abs
 haftmann parents: 
53068diff
changeset | 722 | |
| 53067 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 723 | end | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 724 | |
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 725 | hide_fact (open) diff_invert_add1 le_add_diff_inverse2 diff_zero | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 726 |   -- {* restore simple accesses for more general variants of theorems *}
 | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 727 | |
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 728 | |
| 26100 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 729 | subsection {* Division on @{typ nat} *}
 | 
| 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 730 | |
| 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 731 | text {*
 | 
| 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 732 |   We define @{const div} and @{const mod} on @{typ nat} by means
 | 
| 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 733 | of a characteristic relation with two input arguments | 
| 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 734 |   @{term "m\<Colon>nat"}, @{term "n\<Colon>nat"} and two output arguments
 | 
| 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 735 |   @{term "q\<Colon>nat"}(uotient) and @{term "r\<Colon>nat"}(emainder).
 | 
| 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 736 | *} | 
| 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 737 | |
| 33340 
a165b97f3658
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33318diff
changeset | 738 | definition divmod_nat_rel :: "nat \<Rightarrow> nat \<Rightarrow> nat \<times> nat \<Rightarrow> bool" where | 
| 
a165b97f3658
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33318diff
changeset | 739 | "divmod_nat_rel m n qr \<longleftrightarrow> | 
| 30923 
2697a1d1d34a
more coherent developement in Divides.thy and IntDiv.thy
 haftmann parents: 
30840diff
changeset | 740 | m = fst qr * n + snd qr \<and> | 
| 
2697a1d1d34a
more coherent developement in Divides.thy and IntDiv.thy
 haftmann parents: 
30840diff
changeset | 741 | (if n = 0 then fst qr = 0 else if n > 0 then 0 \<le> snd qr \<and> snd qr < n else n < snd qr \<and> snd qr \<le> 0)" | 
| 26100 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 742 | |
| 33340 
a165b97f3658
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33318diff
changeset | 743 | text {* @{const divmod_nat_rel} is total: *}
 | 
| 26100 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 744 | |
| 33340 
a165b97f3658
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33318diff
changeset | 745 | lemma divmod_nat_rel_ex: | 
| 
a165b97f3658
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33318diff
changeset | 746 | obtains q r where "divmod_nat_rel m n (q, r)" | 
| 26100 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 747 | proof (cases "n = 0") | 
| 30923 
2697a1d1d34a
more coherent developement in Divides.thy and IntDiv.thy
 haftmann parents: 
30840diff
changeset | 748 | case True with that show thesis | 
| 33340 
a165b97f3658
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33318diff
changeset | 749 | by (auto simp add: divmod_nat_rel_def) | 
| 26100 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 750 | next | 
| 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 751 | case False | 
| 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 752 | have "\<exists>q r. m = q * n + r \<and> r < n" | 
| 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 753 | proof (induct m) | 
| 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 754 | case 0 with `n \<noteq> 0` | 
| 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 755 | have "(0\<Colon>nat) = 0 * n + 0 \<and> 0 < n" by simp | 
| 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 756 | then show ?case by blast | 
| 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 757 | next | 
| 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 758 | case (Suc m) then obtain q' r' | 
| 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 759 | where m: "m = q' * n + r'" and n: "r' < n" by auto | 
| 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 760 | then show ?case proof (cases "Suc r' < n") | 
| 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 761 | case True | 
| 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 762 | from m n have "Suc m = q' * n + Suc r'" by simp | 
| 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 763 | with True show ?thesis by blast | 
| 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 764 | next | 
| 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 765 | case False then have "n \<le> Suc r'" by auto | 
| 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 766 | moreover from n have "Suc r' \<le> n" by auto | 
| 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 767 | ultimately have "n = Suc r'" by auto | 
| 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 768 | with m have "Suc m = Suc q' * n + 0" by simp | 
| 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 769 | with `n \<noteq> 0` show ?thesis by blast | 
| 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 770 | qed | 
| 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 771 | qed | 
| 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 772 | with that show thesis | 
| 33340 
a165b97f3658
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33318diff
changeset | 773 | using `n \<noteq> 0` by (auto simp add: divmod_nat_rel_def) | 
| 26100 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 774 | qed | 
| 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 775 | |
| 33340 
a165b97f3658
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33318diff
changeset | 776 | text {* @{const divmod_nat_rel} is injective: *}
 | 
| 26100 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 777 | |
| 33340 
a165b97f3658
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33318diff
changeset | 778 | lemma divmod_nat_rel_unique: | 
| 
a165b97f3658
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33318diff
changeset | 779 | assumes "divmod_nat_rel m n qr" | 
| 
a165b97f3658
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33318diff
changeset | 780 | and "divmod_nat_rel m n qr'" | 
| 30923 
2697a1d1d34a
more coherent developement in Divides.thy and IntDiv.thy
 haftmann parents: 
30840diff
changeset | 781 | shows "qr = qr'" | 
| 26100 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 782 | proof (cases "n = 0") | 
| 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 783 | case True with assms show ?thesis | 
| 30923 
2697a1d1d34a
more coherent developement in Divides.thy and IntDiv.thy
 haftmann parents: 
30840diff
changeset | 784 | by (cases qr, cases qr') | 
| 33340 
a165b97f3658
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33318diff
changeset | 785 | (simp add: divmod_nat_rel_def) | 
| 26100 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 786 | next | 
| 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 787 | case False | 
| 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 788 | have aux: "\<And>q r q' r'. q' * n + r' = q * n + r \<Longrightarrow> r < n \<Longrightarrow> q' \<le> (q\<Colon>nat)" | 
| 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 789 | apply (rule leI) | 
| 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 790 | apply (subst less_iff_Suc_add) | 
| 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 791 | apply (auto simp add: add_mult_distrib) | 
| 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 792 | done | 
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53199diff
changeset | 793 | from `n \<noteq> 0` assms have *: "fst qr = fst qr'" | 
| 33340 
a165b97f3658
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33318diff
changeset | 794 | by (auto simp add: divmod_nat_rel_def intro: order_antisym dest: aux sym) | 
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53199diff
changeset | 795 | with assms have "snd qr = snd qr'" | 
| 33340 
a165b97f3658
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33318diff
changeset | 796 | by (simp add: divmod_nat_rel_def) | 
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53199diff
changeset | 797 | with * show ?thesis by (cases qr, cases qr') simp | 
| 26100 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 798 | qed | 
| 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 799 | |
| 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 800 | text {*
 | 
| 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 801 | We instantiate divisibility on the natural numbers by | 
| 33340 
a165b97f3658
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33318diff
changeset | 802 |   means of @{const divmod_nat_rel}:
 | 
| 26100 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 803 | *} | 
| 25942 | 804 | |
| 33340 
a165b97f3658
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33318diff
changeset | 805 | definition divmod_nat :: "nat \<Rightarrow> nat \<Rightarrow> nat \<times> nat" where | 
| 37767 | 806 | "divmod_nat m n = (THE qr. divmod_nat_rel m n qr)" | 
| 30923 
2697a1d1d34a
more coherent developement in Divides.thy and IntDiv.thy
 haftmann parents: 
30840diff
changeset | 807 | |
| 33340 
a165b97f3658
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33318diff
changeset | 808 | lemma divmod_nat_rel_divmod_nat: | 
| 
a165b97f3658
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33318diff
changeset | 809 | "divmod_nat_rel m n (divmod_nat m n)" | 
| 30923 
2697a1d1d34a
more coherent developement in Divides.thy and IntDiv.thy
 haftmann parents: 
30840diff
changeset | 810 | proof - | 
| 33340 
a165b97f3658
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33318diff
changeset | 811 | from divmod_nat_rel_ex | 
| 
a165b97f3658
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33318diff
changeset | 812 | obtain qr where rel: "divmod_nat_rel m n qr" . | 
| 30923 
2697a1d1d34a
more coherent developement in Divides.thy and IntDiv.thy
 haftmann parents: 
30840diff
changeset | 813 | then show ?thesis | 
| 33340 
a165b97f3658
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33318diff
changeset | 814 | by (auto simp add: divmod_nat_def intro: theI elim: divmod_nat_rel_unique) | 
| 30923 
2697a1d1d34a
more coherent developement in Divides.thy and IntDiv.thy
 haftmann parents: 
30840diff
changeset | 815 | qed | 
| 
2697a1d1d34a
more coherent developement in Divides.thy and IntDiv.thy
 haftmann parents: 
30840diff
changeset | 816 | |
| 47135 
fb67b596067f
rename lemmas {div,mod}_eq -> {div,mod}_nat_unique, for consistency with minus_unique, inverse_unique, etc.
 huffman parents: 
47134diff
changeset | 817 | lemma divmod_nat_unique: | 
| 33340 
a165b97f3658
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33318diff
changeset | 818 | assumes "divmod_nat_rel m n qr" | 
| 
a165b97f3658
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33318diff
changeset | 819 | shows "divmod_nat m n = qr" | 
| 
a165b97f3658
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33318diff
changeset | 820 | using assms by (auto intro: divmod_nat_rel_unique divmod_nat_rel_divmod_nat) | 
| 26100 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 821 | |
| 46551 
866bce5442a3
simplify projections on simultaneous computations of div and mod; tuned structure (from Florian Haftmann)
 huffman parents: 
46026diff
changeset | 822 | instantiation nat :: semiring_div | 
| 
866bce5442a3
simplify projections on simultaneous computations of div and mod; tuned structure (from Florian Haftmann)
 huffman parents: 
46026diff
changeset | 823 | begin | 
| 
866bce5442a3
simplify projections on simultaneous computations of div and mod; tuned structure (from Florian Haftmann)
 huffman parents: 
46026diff
changeset | 824 | |
| 26100 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 825 | definition div_nat where | 
| 33340 
a165b97f3658
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33318diff
changeset | 826 | "m div n = fst (divmod_nat m n)" | 
| 26100 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 827 | |
| 46551 
866bce5442a3
simplify projections on simultaneous computations of div and mod; tuned structure (from Florian Haftmann)
 huffman parents: 
46026diff
changeset | 828 | lemma fst_divmod_nat [simp]: | 
| 
866bce5442a3
simplify projections on simultaneous computations of div and mod; tuned structure (from Florian Haftmann)
 huffman parents: 
46026diff
changeset | 829 | "fst (divmod_nat m n) = m div n" | 
| 
866bce5442a3
simplify projections on simultaneous computations of div and mod; tuned structure (from Florian Haftmann)
 huffman parents: 
46026diff
changeset | 830 | by (simp add: div_nat_def) | 
| 
866bce5442a3
simplify projections on simultaneous computations of div and mod; tuned structure (from Florian Haftmann)
 huffman parents: 
46026diff
changeset | 831 | |
| 26100 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 832 | definition mod_nat where | 
| 33340 
a165b97f3658
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33318diff
changeset | 833 | "m mod n = snd (divmod_nat m n)" | 
| 25571 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25162diff
changeset | 834 | |
| 46551 
866bce5442a3
simplify projections on simultaneous computations of div and mod; tuned structure (from Florian Haftmann)
 huffman parents: 
46026diff
changeset | 835 | lemma snd_divmod_nat [simp]: | 
| 
866bce5442a3
simplify projections on simultaneous computations of div and mod; tuned structure (from Florian Haftmann)
 huffman parents: 
46026diff
changeset | 836 | "snd (divmod_nat m n) = m mod n" | 
| 
866bce5442a3
simplify projections on simultaneous computations of div and mod; tuned structure (from Florian Haftmann)
 huffman parents: 
46026diff
changeset | 837 | by (simp add: mod_nat_def) | 
| 
866bce5442a3
simplify projections on simultaneous computations of div and mod; tuned structure (from Florian Haftmann)
 huffman parents: 
46026diff
changeset | 838 | |
| 33340 
a165b97f3658
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33318diff
changeset | 839 | lemma divmod_nat_div_mod: | 
| 
a165b97f3658
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33318diff
changeset | 840 | "divmod_nat m n = (m div n, m mod n)" | 
| 46551 
866bce5442a3
simplify projections on simultaneous computations of div and mod; tuned structure (from Florian Haftmann)
 huffman parents: 
46026diff
changeset | 841 | by (simp add: prod_eq_iff) | 
| 26100 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 842 | |
| 47135 
fb67b596067f
rename lemmas {div,mod}_eq -> {div,mod}_nat_unique, for consistency with minus_unique, inverse_unique, etc.
 huffman parents: 
47134diff
changeset | 843 | lemma div_nat_unique: | 
| 33340 
a165b97f3658
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33318diff
changeset | 844 | assumes "divmod_nat_rel m n (q, r)" | 
| 26100 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 845 | shows "m div n = q" | 
| 47135 
fb67b596067f
rename lemmas {div,mod}_eq -> {div,mod}_nat_unique, for consistency with minus_unique, inverse_unique, etc.
 huffman parents: 
47134diff
changeset | 846 | using assms by (auto dest!: divmod_nat_unique simp add: prod_eq_iff) | 
| 
fb67b596067f
rename lemmas {div,mod}_eq -> {div,mod}_nat_unique, for consistency with minus_unique, inverse_unique, etc.
 huffman parents: 
47134diff
changeset | 847 | |
| 
fb67b596067f
rename lemmas {div,mod}_eq -> {div,mod}_nat_unique, for consistency with minus_unique, inverse_unique, etc.
 huffman parents: 
47134diff
changeset | 848 | lemma mod_nat_unique: | 
| 33340 
a165b97f3658
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33318diff
changeset | 849 | assumes "divmod_nat_rel m n (q, r)" | 
| 26100 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 850 | shows "m mod n = r" | 
| 47135 
fb67b596067f
rename lemmas {div,mod}_eq -> {div,mod}_nat_unique, for consistency with minus_unique, inverse_unique, etc.
 huffman parents: 
47134diff
changeset | 851 | using assms by (auto dest!: divmod_nat_unique simp add: prod_eq_iff) | 
| 25571 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25162diff
changeset | 852 | |
| 33340 
a165b97f3658
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33318diff
changeset | 853 | lemma divmod_nat_rel: "divmod_nat_rel m n (m div n, m mod n)" | 
| 46551 
866bce5442a3
simplify projections on simultaneous computations of div and mod; tuned structure (from Florian Haftmann)
 huffman parents: 
46026diff
changeset | 854 | using divmod_nat_rel_divmod_nat by (simp add: divmod_nat_div_mod) | 
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14208diff
changeset | 855 | |
| 47136 | 856 | lemma divmod_nat_zero: "divmod_nat m 0 = (0, m)" | 
| 857 | by (simp add: divmod_nat_unique divmod_nat_rel_def) | |
| 858 | ||
| 859 | lemma divmod_nat_zero_left: "divmod_nat 0 n = (0, 0)" | |
| 860 | by (simp add: divmod_nat_unique divmod_nat_rel_def) | |
| 25942 | 861 | |
| 47137 | 862 | lemma divmod_nat_base: "m < n \<Longrightarrow> divmod_nat m n = (0, m)" | 
| 863 | by (simp add: divmod_nat_unique divmod_nat_rel_def) | |
| 25942 | 864 | |
| 33340 
a165b97f3658
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33318diff
changeset | 865 | lemma divmod_nat_step: | 
| 26100 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 866 | assumes "0 < n" and "n \<le> m" | 
| 33340 
a165b97f3658
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33318diff
changeset | 867 | shows "divmod_nat m n = (Suc ((m - n) div n), (m - n) mod n)" | 
| 47135 
fb67b596067f
rename lemmas {div,mod}_eq -> {div,mod}_nat_unique, for consistency with minus_unique, inverse_unique, etc.
 huffman parents: 
47134diff
changeset | 868 | proof (rule divmod_nat_unique) | 
| 47134 | 869 | have "divmod_nat_rel (m - n) n ((m - n) div n, (m - n) mod n)" | 
| 870 | by (rule divmod_nat_rel) | |
| 871 | thus "divmod_nat_rel m n (Suc ((m - n) div n), (m - n) mod n)" | |
| 872 | unfolding divmod_nat_rel_def using assms by auto | |
| 26100 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 873 | qed | 
| 25942 | 874 | |
| 26300 | 875 | text {* The ''recursion'' equations for @{const div} and @{const mod} *}
 | 
| 26100 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 876 | |
| 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 877 | lemma div_less [simp]: | 
| 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 878 | fixes m n :: nat | 
| 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 879 | assumes "m < n" | 
| 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 880 | shows "m div n = 0" | 
| 46551 
866bce5442a3
simplify projections on simultaneous computations of div and mod; tuned structure (from Florian Haftmann)
 huffman parents: 
46026diff
changeset | 881 | using assms divmod_nat_base by (simp add: prod_eq_iff) | 
| 25942 | 882 | |
| 26100 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 883 | lemma le_div_geq: | 
| 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 884 | fixes m n :: nat | 
| 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 885 | assumes "0 < n" and "n \<le> m" | 
| 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 886 | shows "m div n = Suc ((m - n) div n)" | 
| 46551 
866bce5442a3
simplify projections on simultaneous computations of div and mod; tuned structure (from Florian Haftmann)
 huffman parents: 
46026diff
changeset | 887 | using assms divmod_nat_step by (simp add: prod_eq_iff) | 
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14208diff
changeset | 888 | |
| 26100 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 889 | lemma mod_less [simp]: | 
| 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 890 | fixes m n :: nat | 
| 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 891 | assumes "m < n" | 
| 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 892 | shows "m mod n = m" | 
| 46551 
866bce5442a3
simplify projections on simultaneous computations of div and mod; tuned structure (from Florian Haftmann)
 huffman parents: 
46026diff
changeset | 893 | using assms divmod_nat_base by (simp add: prod_eq_iff) | 
| 26100 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 894 | |
| 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 895 | lemma le_mod_geq: | 
| 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 896 | fixes m n :: nat | 
| 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 897 | assumes "n \<le> m" | 
| 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 898 | shows "m mod n = (m - n) mod n" | 
| 46551 
866bce5442a3
simplify projections on simultaneous computations of div and mod; tuned structure (from Florian Haftmann)
 huffman parents: 
46026diff
changeset | 899 | using assms divmod_nat_step by (cases "n = 0") (simp_all add: prod_eq_iff) | 
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14208diff
changeset | 900 | |
| 47136 | 901 | instance proof | 
| 902 | fix m n :: nat | |
| 903 | show "m div n * n + m mod n = m" | |
| 904 | using divmod_nat_rel [of m n] by (simp add: divmod_nat_rel_def) | |
| 905 | next | |
| 906 | fix m n q :: nat | |
| 907 | assume "n \<noteq> 0" | |
| 908 | then show "(q + m * n) div n = m + q div n" | |
| 909 | by (induct m) (simp_all add: le_div_geq) | |
| 910 | next | |
| 911 | fix m n q :: nat | |
| 912 | assume "m \<noteq> 0" | |
| 913 | hence "\<And>a b. divmod_nat_rel n q (a, b) \<Longrightarrow> divmod_nat_rel (m * n) (m * q) (a, m * b)" | |
| 914 | unfolding divmod_nat_rel_def | |
| 915 | by (auto split: split_if_asm, simp_all add: algebra_simps) | |
| 916 | moreover from divmod_nat_rel have "divmod_nat_rel n q (n div q, n mod q)" . | |
| 917 | ultimately have "divmod_nat_rel (m * n) (m * q) (n div q, m * (n mod q))" . | |
| 918 | thus "(m * n) div (m * q) = n div q" by (rule div_nat_unique) | |
| 919 | next | |
| 920 | fix n :: nat show "n div 0 = 0" | |
| 33340 
a165b97f3658
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33318diff
changeset | 921 | by (simp add: div_nat_def divmod_nat_zero) | 
| 47136 | 922 | next | 
| 923 | fix n :: nat show "0 div n = 0" | |
| 924 | by (simp add: div_nat_def divmod_nat_zero_left) | |
| 25942 | 925 | qed | 
| 26100 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 926 | |
| 25942 | 927 | end | 
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14208diff
changeset | 928 | |
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 929 | lemma divmod_nat_if [code]: "divmod_nat m n = (if n = 0 \<or> m < n then (0, m) else | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 930 | let (q, r) = divmod_nat (m - n) n in (Suc q, r))" | 
| 46551 
866bce5442a3
simplify projections on simultaneous computations of div and mod; tuned structure (from Florian Haftmann)
 huffman parents: 
46026diff
changeset | 931 | by (simp add: prod_eq_iff prod_case_beta not_less le_div_geq le_mod_geq) | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 932 | |
| 26100 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 933 | text {* Simproc for cancelling @{const div} and @{const mod} *}
 | 
| 25942 | 934 | |
| 51299 
30b014246e21
proper place for cancel_div_mod.ML (see also ee729dbd1b7f and ec7f10155389);
 wenzelm parents: 
51173diff
changeset | 935 | ML_file "~~/src/Provers/Arith/cancel_div_mod.ML" | 
| 
30b014246e21
proper place for cancel_div_mod.ML (see also ee729dbd1b7f and ec7f10155389);
 wenzelm parents: 
51173diff
changeset | 936 | |
| 30934 | 937 | ML {*
 | 
| 43594 | 938 | structure Cancel_Div_Mod_Nat = Cancel_Div_Mod | 
| 41550 | 939 | ( | 
| 30934 | 940 |   val div_name = @{const_name div};
 | 
| 941 |   val mod_name = @{const_name mod};
 | |
| 942 | val mk_binop = HOLogic.mk_binop; | |
| 48561 
12aa0cb2b447
move ML functions from nat_arith.ML to Divides.thy, which is the only place they are used
 huffman parents: 
47268diff
changeset | 943 |   val mk_plus = HOLogic.mk_binop @{const_name Groups.plus};
 | 
| 
12aa0cb2b447
move ML functions from nat_arith.ML to Divides.thy, which is the only place they are used
 huffman parents: 
47268diff
changeset | 944 |   val dest_plus = HOLogic.dest_bin @{const_name Groups.plus} HOLogic.natT;
 | 
| 
12aa0cb2b447
move ML functions from nat_arith.ML to Divides.thy, which is the only place they are used
 huffman parents: 
47268diff
changeset | 945 | fun mk_sum [] = HOLogic.zero | 
| 
12aa0cb2b447
move ML functions from nat_arith.ML to Divides.thy, which is the only place they are used
 huffman parents: 
47268diff
changeset | 946 | | mk_sum [t] = t | 
| 
12aa0cb2b447
move ML functions from nat_arith.ML to Divides.thy, which is the only place they are used
 huffman parents: 
47268diff
changeset | 947 | | mk_sum (t :: ts) = mk_plus (t, mk_sum ts); | 
| 
12aa0cb2b447
move ML functions from nat_arith.ML to Divides.thy, which is the only place they are used
 huffman parents: 
47268diff
changeset | 948 | fun dest_sum tm = | 
| 
12aa0cb2b447
move ML functions from nat_arith.ML to Divides.thy, which is the only place they are used
 huffman parents: 
47268diff
changeset | 949 | if HOLogic.is_zero tm then [] | 
| 
12aa0cb2b447
move ML functions from nat_arith.ML to Divides.thy, which is the only place they are used
 huffman parents: 
47268diff
changeset | 950 | else | 
| 
12aa0cb2b447
move ML functions from nat_arith.ML to Divides.thy, which is the only place they are used
 huffman parents: 
47268diff
changeset | 951 | (case try HOLogic.dest_Suc tm of | 
| 
12aa0cb2b447
move ML functions from nat_arith.ML to Divides.thy, which is the only place they are used
 huffman parents: 
47268diff
changeset | 952 | SOME t => HOLogic.Suc_zero :: dest_sum t | 
| 
12aa0cb2b447
move ML functions from nat_arith.ML to Divides.thy, which is the only place they are used
 huffman parents: 
47268diff
changeset | 953 | | NONE => | 
| 
12aa0cb2b447
move ML functions from nat_arith.ML to Divides.thy, which is the only place they are used
 huffman parents: 
47268diff
changeset | 954 | (case try dest_plus tm of | 
| 
12aa0cb2b447
move ML functions from nat_arith.ML to Divides.thy, which is the only place they are used
 huffman parents: 
47268diff
changeset | 955 | SOME (t, u) => dest_sum t @ dest_sum u | 
| 
12aa0cb2b447
move ML functions from nat_arith.ML to Divides.thy, which is the only place they are used
 huffman parents: 
47268diff
changeset | 956 | | NONE => [tm])); | 
| 25942 | 957 | |
| 30934 | 958 |   val div_mod_eqs = map mk_meta_eq [@{thm div_mod_equality}, @{thm div_mod_equality2}];
 | 
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14208diff
changeset | 959 | |
| 30934 | 960 | val prove_eq_sums = Arith_Data.prove_conv2 all_tac (Arith_Data.simp_all_tac | 
| 35050 
9f841f20dca6
renamed OrderedGroup to Groups; split theory Ring_and_Field into Rings Fields
 haftmann parents: 
34982diff
changeset | 961 |     (@{thm add_0_left} :: @{thm add_0_right} :: @{thms add_ac}))
 | 
| 41550 | 962 | ) | 
| 25942 | 963 | *} | 
| 964 | ||
| 43594 | 965 | simproc_setup cancel_div_mod_nat ("(m::nat) + n") = {* K Cancel_Div_Mod_Nat.proc *}
 | 
| 966 | ||
| 26100 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 967 | |
| 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 968 | subsubsection {* Quotient *}
 | 
| 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 969 | |
| 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 970 | lemma div_geq: "0 < n \<Longrightarrow> \<not> m < n \<Longrightarrow> m div n = Suc ((m - n) div n)" | 
| 29667 | 971 | by (simp add: le_div_geq linorder_not_less) | 
| 26100 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 972 | |
| 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 973 | lemma div_if: "0 < n \<Longrightarrow> m div n = (if m < n then 0 else Suc ((m - n) div n))" | 
| 29667 | 974 | by (simp add: div_geq) | 
| 26100 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 975 | |
| 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 976 | lemma div_mult_self_is_m [simp]: "0<n ==> (m*n) div n = (m::nat)" | 
| 29667 | 977 | by simp | 
| 26100 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 978 | |
| 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 979 | lemma div_mult_self1_is_m [simp]: "0<n ==> (n*m) div n = (m::nat)" | 
| 29667 | 980 | by simp | 
| 26100 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 981 | |
| 53066 | 982 | lemma div_positive: | 
| 983 | fixes m n :: nat | |
| 984 | assumes "n > 0" | |
| 985 | assumes "m \<ge> n" | |
| 986 | shows "m div n > 0" | |
| 987 | proof - | |
| 988 | from `m \<ge> n` obtain q where "m = n + q" | |
| 989 | by (auto simp add: le_iff_add) | |
| 990 | with `n > 0` show ?thesis by simp | |
| 991 | qed | |
| 992 | ||
| 25942 | 993 | |
| 994 | subsubsection {* Remainder *}
 | |
| 995 | ||
| 26100 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 996 | lemma mod_less_divisor [simp]: | 
| 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 997 | fixes m n :: nat | 
| 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 998 | assumes "n > 0" | 
| 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 999 | shows "m mod n < (n::nat)" | 
| 33340 
a165b97f3658
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33318diff
changeset | 1000 | using assms divmod_nat_rel [of m n] unfolding divmod_nat_rel_def by auto | 
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14208diff
changeset | 1001 | |
| 51173 | 1002 | lemma mod_Suc_le_divisor [simp]: | 
| 1003 | "m mod Suc n \<le> n" | |
| 1004 | using mod_less_divisor [of "Suc n" m] by arith | |
| 1005 | ||
| 26100 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 1006 | lemma mod_less_eq_dividend [simp]: | 
| 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 1007 | fixes m n :: nat | 
| 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 1008 | shows "m mod n \<le> m" | 
| 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 1009 | proof (rule add_leD2) | 
| 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 1010 | from mod_div_equality have "m div n * n + m mod n = m" . | 
| 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 1011 | then show "m div n * n + m mod n \<le> m" by auto | 
| 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 1012 | qed | 
| 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 1013 | |
| 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 1014 | lemma mod_geq: "\<not> m < (n\<Colon>nat) \<Longrightarrow> m mod n = (m - n) mod n" | 
| 29667 | 1015 | by (simp add: le_mod_geq linorder_not_less) | 
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14208diff
changeset | 1016 | |
| 26100 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 1017 | lemma mod_if: "m mod (n\<Colon>nat) = (if m < n then m else (m - n) mod n)" | 
| 29667 | 1018 | by (simp add: le_mod_geq) | 
| 26100 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 1019 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14208diff
changeset | 1020 | lemma mod_1 [simp]: "m mod Suc 0 = 0" | 
| 29667 | 1021 | by (induct m) (simp_all add: mod_geq) | 
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14208diff
changeset | 1022 | |
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14208diff
changeset | 1023 | (* a simple rearrangement of mod_div_equality: *) | 
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14208diff
changeset | 1024 | lemma mult_div_cancel: "(n::nat) * (m div n) = m - (m mod n)" | 
| 47138 | 1025 | using mod_div_equality2 [of n m] by arith | 
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14208diff
changeset | 1026 | |
| 15439 | 1027 | lemma mod_le_divisor[simp]: "0 < n \<Longrightarrow> m mod n \<le> (n::nat)" | 
| 22718 | 1028 | apply (drule mod_less_divisor [where m = m]) | 
| 1029 | apply simp | |
| 1030 | done | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14208diff
changeset | 1031 | |
| 26100 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 1032 | subsubsection {* Quotient and Remainder *}
 | 
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14208diff
changeset | 1033 | |
| 33340 
a165b97f3658
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33318diff
changeset | 1034 | lemma divmod_nat_rel_mult1_eq: | 
| 46552 | 1035 | "divmod_nat_rel b c (q, r) | 
| 33340 
a165b97f3658
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33318diff
changeset | 1036 | \<Longrightarrow> divmod_nat_rel (a * b) c (a * q + a * r div c, a * r mod c)" | 
| 
a165b97f3658
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33318diff
changeset | 1037 | by (auto simp add: split_ifs divmod_nat_rel_def algebra_simps) | 
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14208diff
changeset | 1038 | |
| 30923 
2697a1d1d34a
more coherent developement in Divides.thy and IntDiv.thy
 haftmann parents: 
30840diff
changeset | 1039 | lemma div_mult1_eq: | 
| 
2697a1d1d34a
more coherent developement in Divides.thy and IntDiv.thy
 haftmann parents: 
30840diff
changeset | 1040 | "(a * b) div c = a * (b div c) + a * (b mod c) div (c::nat)" | 
| 47135 
fb67b596067f
rename lemmas {div,mod}_eq -> {div,mod}_nat_unique, for consistency with minus_unique, inverse_unique, etc.
 huffman parents: 
47134diff
changeset | 1041 | by (blast intro: divmod_nat_rel_mult1_eq [THEN div_nat_unique] divmod_nat_rel) | 
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14208diff
changeset | 1042 | |
| 33340 
a165b97f3658
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33318diff
changeset | 1043 | lemma divmod_nat_rel_add1_eq: | 
| 46552 | 1044 | "divmod_nat_rel a c (aq, ar) \<Longrightarrow> divmod_nat_rel b c (bq, br) | 
| 33340 
a165b97f3658
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33318diff
changeset | 1045 | \<Longrightarrow> divmod_nat_rel (a + b) c (aq + bq + (ar + br) div c, (ar + br) mod c)" | 
| 
a165b97f3658
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33318diff
changeset | 1046 | by (auto simp add: split_ifs divmod_nat_rel_def algebra_simps) | 
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14208diff
changeset | 1047 | |
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14208diff
changeset | 1048 | (*NOT suitable for rewriting: the RHS has an instance of the LHS*) | 
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14208diff
changeset | 1049 | lemma div_add1_eq: | 
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 1050 | "(a+b) div (c::nat) = a div c + b div c + ((a mod c + b mod c) div c)" | 
| 47135 
fb67b596067f
rename lemmas {div,mod}_eq -> {div,mod}_nat_unique, for consistency with minus_unique, inverse_unique, etc.
 huffman parents: 
47134diff
changeset | 1051 | by (blast intro: divmod_nat_rel_add1_eq [THEN div_nat_unique] divmod_nat_rel) | 
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14208diff
changeset | 1052 | |
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14208diff
changeset | 1053 | lemma mod_lemma: "[| (0::nat) < c; r < b |] ==> b * (q mod c) + r < b * c" | 
| 22718 | 1054 | apply (cut_tac m = q and n = c in mod_less_divisor) | 
| 1055 | apply (drule_tac [2] m = "q mod c" in less_imp_Suc_add, auto) | |
| 1056 | apply (erule_tac P = "%x. ?lhs < ?rhs x" in ssubst) | |
| 1057 | apply (simp add: add_mult_distrib2) | |
| 1058 | done | |
| 10559 
d3fd54fc659b
many new div and mod properties (borrowed from Integ/IntDiv)
 paulson parents: 
10214diff
changeset | 1059 | |
| 33340 
a165b97f3658
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33318diff
changeset | 1060 | lemma divmod_nat_rel_mult2_eq: | 
| 46552 | 1061 | "divmod_nat_rel a b (q, r) | 
| 33340 
a165b97f3658
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33318diff
changeset | 1062 | \<Longrightarrow> divmod_nat_rel a (b * c) (q div c, b *(q mod c) + r)" | 
| 
a165b97f3658
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33318diff
changeset | 1063 | by (auto simp add: mult_ac divmod_nat_rel_def add_mult_distrib2 [symmetric] mod_lemma) | 
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14208diff
changeset | 1064 | |
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14208diff
changeset | 1065 | lemma div_mult2_eq: "a div (b*c) = (a div b) div (c::nat)" | 
| 47135 
fb67b596067f
rename lemmas {div,mod}_eq -> {div,mod}_nat_unique, for consistency with minus_unique, inverse_unique, etc.
 huffman parents: 
47134diff
changeset | 1066 | by (force simp add: divmod_nat_rel [THEN divmod_nat_rel_mult2_eq, THEN div_nat_unique]) | 
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14208diff
changeset | 1067 | |
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14208diff
changeset | 1068 | lemma mod_mult2_eq: "a mod (b*c) = b*(a div b mod c) + a mod (b::nat)" | 
| 47135 
fb67b596067f
rename lemmas {div,mod}_eq -> {div,mod}_nat_unique, for consistency with minus_unique, inverse_unique, etc.
 huffman parents: 
47134diff
changeset | 1069 | by (auto simp add: mult_commute divmod_nat_rel [THEN divmod_nat_rel_mult2_eq, THEN mod_nat_unique]) | 
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14208diff
changeset | 1070 | |
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14208diff
changeset | 1071 | |
| 46551 
866bce5442a3
simplify projections on simultaneous computations of div and mod; tuned structure (from Florian Haftmann)
 huffman parents: 
46026diff
changeset | 1072 | subsubsection {* Further Facts about Quotient and Remainder *}
 | 
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14208diff
changeset | 1073 | |
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14208diff
changeset | 1074 | lemma div_1 [simp]: "m div Suc 0 = m" | 
| 29667 | 1075 | by (induct m) (simp_all add: div_geq) | 
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14208diff
changeset | 1076 | |
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14208diff
changeset | 1077 | (* Monotonicity of div in first argument *) | 
| 30923 
2697a1d1d34a
more coherent developement in Divides.thy and IntDiv.thy
 haftmann parents: 
30840diff
changeset | 1078 | lemma div_le_mono [rule_format (no_asm)]: | 
| 22718 | 1079 | "\<forall>m::nat. m \<le> n --> (m div k) \<le> (n div k)" | 
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14208diff
changeset | 1080 | apply (case_tac "k=0", simp) | 
| 15251 | 1081 | apply (induct "n" rule: nat_less_induct, clarify) | 
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14208diff
changeset | 1082 | apply (case_tac "n<k") | 
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14208diff
changeset | 1083 | (* 1 case n<k *) | 
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14208diff
changeset | 1084 | apply simp | 
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14208diff
changeset | 1085 | (* 2 case n >= k *) | 
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14208diff
changeset | 1086 | apply (case_tac "m<k") | 
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14208diff
changeset | 1087 | (* 2.1 case m<k *) | 
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14208diff
changeset | 1088 | apply simp | 
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14208diff
changeset | 1089 | (* 2.2 case m>=k *) | 
| 15439 | 1090 | apply (simp add: div_geq diff_le_mono) | 
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14208diff
changeset | 1091 | done | 
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14208diff
changeset | 1092 | |
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14208diff
changeset | 1093 | (* Antimonotonicity of div in second argument *) | 
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14208diff
changeset | 1094 | lemma div_le_mono2: "!!m::nat. [| 0<m; m\<le>n |] ==> (k div n) \<le> (k div m)" | 
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14208diff
changeset | 1095 | apply (subgoal_tac "0<n") | 
| 22718 | 1096 | prefer 2 apply simp | 
| 15251 | 1097 | apply (induct_tac k rule: nat_less_induct) | 
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14208diff
changeset | 1098 | apply (rename_tac "k") | 
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14208diff
changeset | 1099 | apply (case_tac "k<n", simp) | 
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14208diff
changeset | 1100 | apply (subgoal_tac "~ (k<m) ") | 
| 22718 | 1101 | prefer 2 apply simp | 
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14208diff
changeset | 1102 | apply (simp add: div_geq) | 
| 15251 | 1103 | apply (subgoal_tac "(k-n) div n \<le> (k-m) div n") | 
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14208diff
changeset | 1104 | prefer 2 | 
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14208diff
changeset | 1105 | apply (blast intro: div_le_mono diff_le_mono2) | 
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14208diff
changeset | 1106 | apply (rule le_trans, simp) | 
| 15439 | 1107 | apply (simp) | 
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14208diff
changeset | 1108 | done | 
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14208diff
changeset | 1109 | |
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14208diff
changeset | 1110 | lemma div_le_dividend [simp]: "m div n \<le> (m::nat)" | 
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14208diff
changeset | 1111 | apply (case_tac "n=0", simp) | 
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14208diff
changeset | 1112 | apply (subgoal_tac "m div n \<le> m div 1", simp) | 
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14208diff
changeset | 1113 | apply (rule div_le_mono2) | 
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14208diff
changeset | 1114 | apply (simp_all (no_asm_simp)) | 
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14208diff
changeset | 1115 | done | 
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14208diff
changeset | 1116 | |
| 22718 | 1117 | (* Similar for "less than" *) | 
| 47138 | 1118 | lemma div_less_dividend [simp]: | 
| 1119 | "\<lbrakk>(1::nat) < n; 0 < m\<rbrakk> \<Longrightarrow> m div n < m" | |
| 1120 | apply (induct m rule: nat_less_induct) | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14208diff
changeset | 1121 | apply (rename_tac "m") | 
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14208diff
changeset | 1122 | apply (case_tac "m<n", simp) | 
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14208diff
changeset | 1123 | apply (subgoal_tac "0<n") | 
| 22718 | 1124 | prefer 2 apply simp | 
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14208diff
changeset | 1125 | apply (simp add: div_geq) | 
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14208diff
changeset | 1126 | apply (case_tac "n<m") | 
| 15251 | 1127 | apply (subgoal_tac "(m-n) div n < (m-n) ") | 
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14208diff
changeset | 1128 | apply (rule impI less_trans_Suc)+ | 
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14208diff
changeset | 1129 | apply assumption | 
| 15439 | 1130 | apply (simp_all) | 
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14208diff
changeset | 1131 | done | 
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14208diff
changeset | 1132 | |
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14208diff
changeset | 1133 | text{*A fact for the mutilated chess board*}
 | 
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14208diff
changeset | 1134 | lemma mod_Suc: "Suc(m) mod n = (if Suc(m mod n) = n then 0 else Suc(m mod n))" | 
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14208diff
changeset | 1135 | apply (case_tac "n=0", simp) | 
| 15251 | 1136 | apply (induct "m" rule: nat_less_induct) | 
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14208diff
changeset | 1137 | apply (case_tac "Suc (na) <n") | 
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14208diff
changeset | 1138 | (* case Suc(na) < n *) | 
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14208diff
changeset | 1139 | apply (frule lessI [THEN less_trans], simp add: less_not_refl3) | 
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14208diff
changeset | 1140 | (* case n \<le> Suc(na) *) | 
| 16796 | 1141 | apply (simp add: linorder_not_less le_Suc_eq mod_geq) | 
| 15439 | 1142 | apply (auto simp add: Suc_diff_le le_mod_geq) | 
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14208diff
changeset | 1143 | done | 
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14208diff
changeset | 1144 | |
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14208diff
changeset | 1145 | lemma mod_eq_0_iff: "(m mod d = 0) = (\<exists>q::nat. m = d*q)" | 
| 29667 | 1146 | by (auto simp add: dvd_eq_mod_eq_0 [symmetric] dvd_def) | 
| 17084 
fb0a80aef0be
classical rules must have names for ATP integration
 paulson parents: 
16796diff
changeset | 1147 | |
| 22718 | 1148 | lemmas mod_eq_0D [dest!] = mod_eq_0_iff [THEN iffD1] | 
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14208diff
changeset | 1149 | |
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14208diff
changeset | 1150 | (*Loses information, namely we also have r<d provided d is nonzero*) | 
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14208diff
changeset | 1151 | lemma mod_eqD: "(m mod d = r) ==> \<exists>q::nat. m = r + q*d" | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 1152 | apply (cut_tac a = m in mod_div_equality) | 
| 22718 | 1153 | apply (simp only: add_ac) | 
| 1154 | apply (blast intro: sym) | |
| 1155 | done | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14208diff
changeset | 1156 | |
| 13152 | 1157 | lemma split_div: | 
| 13189 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 nipkow parents: 
13152diff
changeset | 1158 | "P(n div k :: nat) = | 
| 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 nipkow parents: 
13152diff
changeset | 1159 | ((k = 0 \<longrightarrow> P 0) \<and> (k \<noteq> 0 \<longrightarrow> (!i. !j<k. n = k*i + j \<longrightarrow> P i)))" | 
| 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 nipkow parents: 
13152diff
changeset | 1160 | (is "?P = ?Q" is "_ = (_ \<and> (_ \<longrightarrow> ?R))") | 
| 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 nipkow parents: 
13152diff
changeset | 1161 | proof | 
| 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 nipkow parents: 
13152diff
changeset | 1162 | assume P: ?P | 
| 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 nipkow parents: 
13152diff
changeset | 1163 | show ?Q | 
| 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 nipkow parents: 
13152diff
changeset | 1164 | proof (cases) | 
| 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 nipkow parents: 
13152diff
changeset | 1165 | assume "k = 0" | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 1166 | with P show ?Q by simp | 
| 13189 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 nipkow parents: 
13152diff
changeset | 1167 | next | 
| 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 nipkow parents: 
13152diff
changeset | 1168 | assume not0: "k \<noteq> 0" | 
| 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 nipkow parents: 
13152diff
changeset | 1169 | thus ?Q | 
| 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 nipkow parents: 
13152diff
changeset | 1170 | proof (simp, intro allI impI) | 
| 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 nipkow parents: 
13152diff
changeset | 1171 | fix i j | 
| 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 nipkow parents: 
13152diff
changeset | 1172 | assume n: "n = k*i + j" and j: "j < k" | 
| 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 nipkow parents: 
13152diff
changeset | 1173 | show "P i" | 
| 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 nipkow parents: 
13152diff
changeset | 1174 | proof (cases) | 
| 22718 | 1175 | assume "i = 0" | 
| 1176 | with n j P show "P i" by simp | |
| 13189 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 nipkow parents: 
13152diff
changeset | 1177 | next | 
| 22718 | 1178 | assume "i \<noteq> 0" | 
| 1179 | with not0 n j P show "P i" by(simp add:add_ac) | |
| 13189 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 nipkow parents: 
13152diff
changeset | 1180 | qed | 
| 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 nipkow parents: 
13152diff
changeset | 1181 | qed | 
| 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 nipkow parents: 
13152diff
changeset | 1182 | qed | 
| 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 nipkow parents: 
13152diff
changeset | 1183 | next | 
| 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 nipkow parents: 
13152diff
changeset | 1184 | assume Q: ?Q | 
| 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 nipkow parents: 
13152diff
changeset | 1185 | show ?P | 
| 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 nipkow parents: 
13152diff
changeset | 1186 | proof (cases) | 
| 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 nipkow parents: 
13152diff
changeset | 1187 | assume "k = 0" | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 1188 | with Q show ?P by simp | 
| 13189 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 nipkow parents: 
13152diff
changeset | 1189 | next | 
| 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 nipkow parents: 
13152diff
changeset | 1190 | assume not0: "k \<noteq> 0" | 
| 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 nipkow parents: 
13152diff
changeset | 1191 | with Q have R: ?R by simp | 
| 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 nipkow parents: 
13152diff
changeset | 1192 | from not0 R[THEN spec,of "n div k",THEN spec, of "n mod k"] | 
| 13517 | 1193 | show ?P by simp | 
| 13189 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 nipkow parents: 
13152diff
changeset | 1194 | qed | 
| 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 nipkow parents: 
13152diff
changeset | 1195 | qed | 
| 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 nipkow parents: 
13152diff
changeset | 1196 | |
| 13882 | 1197 | lemma split_div_lemma: | 
| 26100 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 1198 | assumes "0 < n" | 
| 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 1199 | shows "n * q \<le> m \<and> m < n * Suc q \<longleftrightarrow> q = ((m\<Colon>nat) div n)" (is "?lhs \<longleftrightarrow> ?rhs") | 
| 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 1200 | proof | 
| 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 1201 | assume ?rhs | 
| 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 1202 | with mult_div_cancel have nq: "n * q = m - (m mod n)" by simp | 
| 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 1203 | then have A: "n * q \<le> m" by simp | 
| 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 1204 | have "n - (m mod n) > 0" using mod_less_divisor assms by auto | 
| 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 1205 | then have "m < m + (n - (m mod n))" by simp | 
| 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 1206 | then have "m < n + (m - (m mod n))" by simp | 
| 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 1207 | with nq have "m < n + n * q" by simp | 
| 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 1208 | then have B: "m < n * Suc q" by simp | 
| 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 1209 | from A B show ?lhs .. | 
| 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 1210 | next | 
| 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 1211 | assume P: ?lhs | 
| 33340 
a165b97f3658
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33318diff
changeset | 1212 | then have "divmod_nat_rel m n (q, m - n * q)" | 
| 
a165b97f3658
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33318diff
changeset | 1213 | unfolding divmod_nat_rel_def by (auto simp add: mult_ac) | 
| 
a165b97f3658
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33318diff
changeset | 1214 | with divmod_nat_rel_unique divmod_nat_rel [of m n] | 
| 30923 
2697a1d1d34a
more coherent developement in Divides.thy and IntDiv.thy
 haftmann parents: 
30840diff
changeset | 1215 | have "(q, m - n * q) = (m div n, m mod n)" by auto | 
| 
2697a1d1d34a
more coherent developement in Divides.thy and IntDiv.thy
 haftmann parents: 
30840diff
changeset | 1216 | then show ?rhs by simp | 
| 26100 
fbc60cd02ae2
using only an relation predicate to construct div and mod
 haftmann parents: 
26072diff
changeset | 1217 | qed | 
| 13882 | 1218 | |
| 1219 | theorem split_div': | |
| 1220 | "P ((m::nat) div n) = ((n = 0 \<and> P 0) \<or> | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14208diff
changeset | 1221 | (\<exists>q. (n * q \<le> m \<and> m < n * (Suc q)) \<and> P q))" | 
| 13882 | 1222 | apply (case_tac "0 < n") | 
| 1223 | apply (simp only: add: split_div_lemma) | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 1224 | apply simp_all | 
| 13882 | 1225 | done | 
| 1226 | ||
| 13189 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 nipkow parents: 
13152diff
changeset | 1227 | lemma split_mod: | 
| 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 nipkow parents: 
13152diff
changeset | 1228 | "P(n mod k :: nat) = | 
| 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 nipkow parents: 
13152diff
changeset | 1229 | ((k = 0 \<longrightarrow> P n) \<and> (k \<noteq> 0 \<longrightarrow> (!i. !j<k. n = k*i + j \<longrightarrow> P j)))" | 
| 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 nipkow parents: 
13152diff
changeset | 1230 | (is "?P = ?Q" is "_ = (_ \<and> (_ \<longrightarrow> ?R))") | 
| 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 nipkow parents: 
13152diff
changeset | 1231 | proof | 
| 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 nipkow parents: 
13152diff
changeset | 1232 | assume P: ?P | 
| 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 nipkow parents: 
13152diff
changeset | 1233 | show ?Q | 
| 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 nipkow parents: 
13152diff
changeset | 1234 | proof (cases) | 
| 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 nipkow parents: 
13152diff
changeset | 1235 | assume "k = 0" | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 1236 | with P show ?Q by simp | 
| 13189 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 nipkow parents: 
13152diff
changeset | 1237 | next | 
| 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 nipkow parents: 
13152diff
changeset | 1238 | assume not0: "k \<noteq> 0" | 
| 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 nipkow parents: 
13152diff
changeset | 1239 | thus ?Q | 
| 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 nipkow parents: 
13152diff
changeset | 1240 | proof (simp, intro allI impI) | 
| 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 nipkow parents: 
13152diff
changeset | 1241 | fix i j | 
| 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 nipkow parents: 
13152diff
changeset | 1242 | assume "n = k*i + j" "j < k" | 
| 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 nipkow parents: 
13152diff
changeset | 1243 | thus "P j" using not0 P by(simp add:add_ac mult_ac) | 
| 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 nipkow parents: 
13152diff
changeset | 1244 | qed | 
| 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 nipkow parents: 
13152diff
changeset | 1245 | qed | 
| 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 nipkow parents: 
13152diff
changeset | 1246 | next | 
| 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 nipkow parents: 
13152diff
changeset | 1247 | assume Q: ?Q | 
| 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 nipkow parents: 
13152diff
changeset | 1248 | show ?P | 
| 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 nipkow parents: 
13152diff
changeset | 1249 | proof (cases) | 
| 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 nipkow parents: 
13152diff
changeset | 1250 | assume "k = 0" | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27540diff
changeset | 1251 | with Q show ?P by simp | 
| 13189 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 nipkow parents: 
13152diff
changeset | 1252 | next | 
| 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 nipkow parents: 
13152diff
changeset | 1253 | assume not0: "k \<noteq> 0" | 
| 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 nipkow parents: 
13152diff
changeset | 1254 | with Q have R: ?R by simp | 
| 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 nipkow parents: 
13152diff
changeset | 1255 | from not0 R[THEN spec,of "n div k",THEN spec, of "n mod k"] | 
| 13517 | 1256 | show ?P by simp | 
| 13189 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 nipkow parents: 
13152diff
changeset | 1257 | qed | 
| 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 nipkow parents: 
13152diff
changeset | 1258 | qed | 
| 
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
 nipkow parents: 
13152diff
changeset | 1259 | |
| 13882 | 1260 | theorem mod_div_equality': "(m::nat) mod n = m - (m div n) * n" | 
| 47138 | 1261 | using mod_div_equality [of m n] by arith | 
| 1262 | ||
| 1263 | lemma div_mod_equality': "(m::nat) div n * n = m - m mod n" | |
| 1264 | using mod_div_equality [of m n] by arith | |
| 1265 | (* FIXME: very similar to mult_div_cancel *) | |
| 22800 | 1266 | |
| 52398 | 1267 | lemma div_eq_dividend_iff: "a \<noteq> 0 \<Longrightarrow> (a :: nat) div b = a \<longleftrightarrow> b = 1" | 
| 1268 | apply rule | |
| 1269 | apply (cases "b = 0") | |
| 1270 | apply simp_all | |
| 1271 | apply (metis (full_types) One_nat_def Suc_lessI div_less_dividend less_not_refl3) | |
| 1272 | done | |
| 1273 | ||
| 22800 | 1274 | |
| 46551 
866bce5442a3
simplify projections on simultaneous computations of div and mod; tuned structure (from Florian Haftmann)
 huffman parents: 
46026diff
changeset | 1275 | subsubsection {* An ``induction'' law for modulus arithmetic. *}
 | 
| 14640 | 1276 | |
| 1277 | lemma mod_induct_0: | |
| 1278 | assumes step: "\<forall>i<p. P i \<longrightarrow> P ((Suc i) mod p)" | |
| 1279 | and base: "P i" and i: "i<p" | |
| 1280 | shows "P 0" | |
| 1281 | proof (rule ccontr) | |
| 1282 | assume contra: "\<not>(P 0)" | |
| 1283 | from i have p: "0<p" by simp | |
| 1284 | have "\<forall>k. 0<k \<longrightarrow> \<not> P (p-k)" (is "\<forall>k. ?A k") | |
| 1285 | proof | |
| 1286 | fix k | |
| 1287 | show "?A k" | |
| 1288 | proof (induct k) | |
| 1289 | show "?A 0" by simp -- "by contradiction" | |
| 1290 | next | |
| 1291 | fix n | |
| 1292 | assume ih: "?A n" | |
| 1293 | show "?A (Suc n)" | |
| 1294 | proof (clarsimp) | |
| 22718 | 1295 | assume y: "P (p - Suc n)" | 
| 1296 | have n: "Suc n < p" | |
| 1297 | proof (rule ccontr) | |
| 1298 | assume "\<not>(Suc n < p)" | |
| 1299 | hence "p - Suc n = 0" | |
| 1300 | by simp | |
| 1301 | with y contra show "False" | |
| 1302 | by simp | |
| 1303 | qed | |
| 1304 | hence n2: "Suc (p - Suc n) = p-n" by arith | |
| 1305 | from p have "p - Suc n < p" by arith | |
| 1306 | with y step have z: "P ((Suc (p - Suc n)) mod p)" | |
| 1307 | by blast | |
| 1308 | show "False" | |
| 1309 | proof (cases "n=0") | |
| 1310 | case True | |
| 1311 | with z n2 contra show ?thesis by simp | |
| 1312 | next | |
| 1313 | case False | |
| 1314 | with p have "p-n < p" by arith | |
| 1315 | with z n2 False ih show ?thesis by simp | |
| 1316 | qed | |
| 14640 | 1317 | qed | 
| 1318 | qed | |
| 1319 | qed | |
| 1320 | moreover | |
| 1321 | from i obtain k where "0<k \<and> i+k=p" | |
| 1322 | by (blast dest: less_imp_add_positive) | |
| 1323 | hence "0<k \<and> i=p-k" by auto | |
| 1324 | moreover | |
| 1325 | note base | |
| 1326 | ultimately | |
| 1327 | show "False" by blast | |
| 1328 | qed | |
| 1329 | ||
| 1330 | lemma mod_induct: | |
| 1331 | assumes step: "\<forall>i<p. P i \<longrightarrow> P ((Suc i) mod p)" | |
| 1332 | and base: "P i" and i: "i<p" and j: "j<p" | |
| 1333 | shows "P j" | |
| 1334 | proof - | |
| 1335 | have "\<forall>j<p. P j" | |
| 1336 | proof | |
| 1337 | fix j | |
| 1338 | show "j<p \<longrightarrow> P j" (is "?A j") | |
| 1339 | proof (induct j) | |
| 1340 | from step base i show "?A 0" | |
| 22718 | 1341 | by (auto elim: mod_induct_0) | 
| 14640 | 1342 | next | 
| 1343 | fix k | |
| 1344 | assume ih: "?A k" | |
| 1345 | show "?A (Suc k)" | |
| 1346 | proof | |
| 22718 | 1347 | assume suc: "Suc k < p" | 
| 1348 | hence k: "k<p" by simp | |
| 1349 | with ih have "P k" .. | |
| 1350 | with step k have "P (Suc k mod p)" | |
| 1351 | by blast | |
| 1352 | moreover | |
| 1353 | from suc have "Suc k mod p = Suc k" | |
| 1354 | by simp | |
| 1355 | ultimately | |
| 1356 | show "P (Suc k)" by simp | |
| 14640 | 1357 | qed | 
| 1358 | qed | |
| 1359 | qed | |
| 1360 | with j show ?thesis by blast | |
| 1361 | qed | |
| 1362 | ||
| 33296 
a3924d1069e5
moved theory Divides after theory Nat_Numeral; tuned some proof texts
 haftmann parents: 
33274diff
changeset | 1363 | lemma div2_Suc_Suc [simp]: "Suc (Suc m) div 2 = Suc (m div 2)" | 
| 47138 | 1364 | by (simp add: numeral_2_eq_2 le_div_geq) | 
| 1365 | ||
| 1366 | lemma mod2_Suc_Suc [simp]: "Suc (Suc m) mod 2 = m mod 2" | |
| 1367 | by (simp add: numeral_2_eq_2 le_mod_geq) | |
| 33296 
a3924d1069e5
moved theory Divides after theory Nat_Numeral; tuned some proof texts
 haftmann parents: 
33274diff
changeset | 1368 | |
| 
a3924d1069e5
moved theory Divides after theory Nat_Numeral; tuned some proof texts
 haftmann parents: 
33274diff
changeset | 1369 | lemma add_self_div_2 [simp]: "(m + m) div 2 = (m::nat)" | 
| 47217 
501b9bbd0d6e
removed redundant nat-specific copies of theorems
 huffman parents: 
47167diff
changeset | 1370 | by (simp add: mult_2 [symmetric]) | 
| 33296 
a3924d1069e5
moved theory Divides after theory Nat_Numeral; tuned some proof texts
 haftmann parents: 
33274diff
changeset | 1371 | |
| 
a3924d1069e5
moved theory Divides after theory Nat_Numeral; tuned some proof texts
 haftmann parents: 
33274diff
changeset | 1372 | lemma mod2_gr_0 [simp]: "0 < (m\<Colon>nat) mod 2 \<longleftrightarrow> m mod 2 = 1" | 
| 
a3924d1069e5
moved theory Divides after theory Nat_Numeral; tuned some proof texts
 haftmann parents: 
33274diff
changeset | 1373 | proof - | 
| 35815 
10e723e54076
tuned proofs (to avoid linarith error message caused by bootstrapping of HOL)
 boehmes parents: 
35673diff
changeset | 1374 |   { fix n :: nat have  "(n::nat) < 2 \<Longrightarrow> n = 0 \<or> n = 1" by (cases n) simp_all }
 | 
| 33296 
a3924d1069e5
moved theory Divides after theory Nat_Numeral; tuned some proof texts
 haftmann parents: 
33274diff
changeset | 1375 | moreover have "m mod 2 < 2" by simp | 
| 
a3924d1069e5
moved theory Divides after theory Nat_Numeral; tuned some proof texts
 haftmann parents: 
33274diff
changeset | 1376 | ultimately have "m mod 2 = 0 \<or> m mod 2 = 1" . | 
| 
a3924d1069e5
moved theory Divides after theory Nat_Numeral; tuned some proof texts
 haftmann parents: 
33274diff
changeset | 1377 | then show ?thesis by auto | 
| 
a3924d1069e5
moved theory Divides after theory Nat_Numeral; tuned some proof texts
 haftmann parents: 
33274diff
changeset | 1378 | qed | 
| 
a3924d1069e5
moved theory Divides after theory Nat_Numeral; tuned some proof texts
 haftmann parents: 
33274diff
changeset | 1379 | |
| 
a3924d1069e5
moved theory Divides after theory Nat_Numeral; tuned some proof texts
 haftmann parents: 
33274diff
changeset | 1380 | text{*These lemmas collapse some needless occurrences of Suc:
 | 
| 
a3924d1069e5
moved theory Divides after theory Nat_Numeral; tuned some proof texts
 haftmann parents: 
33274diff
changeset | 1381 | at least three Sucs, since two and fewer are rewritten back to Suc again! | 
| 
a3924d1069e5
moved theory Divides after theory Nat_Numeral; tuned some proof texts
 haftmann parents: 
33274diff
changeset | 1382 | We already have some rules to simplify operands smaller than 3.*} | 
| 
a3924d1069e5
moved theory Divides after theory Nat_Numeral; tuned some proof texts
 haftmann parents: 
33274diff
changeset | 1383 | |
| 
a3924d1069e5
moved theory Divides after theory Nat_Numeral; tuned some proof texts
 haftmann parents: 
33274diff
changeset | 1384 | lemma div_Suc_eq_div_add3 [simp]: "m div (Suc (Suc (Suc n))) = m div (3+n)" | 
| 
a3924d1069e5
moved theory Divides after theory Nat_Numeral; tuned some proof texts
 haftmann parents: 
33274diff
changeset | 1385 | by (simp add: Suc3_eq_add_3) | 
| 
a3924d1069e5
moved theory Divides after theory Nat_Numeral; tuned some proof texts
 haftmann parents: 
33274diff
changeset | 1386 | |
| 
a3924d1069e5
moved theory Divides after theory Nat_Numeral; tuned some proof texts
 haftmann parents: 
33274diff
changeset | 1387 | lemma mod_Suc_eq_mod_add3 [simp]: "m mod (Suc (Suc (Suc n))) = m mod (3+n)" | 
| 
a3924d1069e5
moved theory Divides after theory Nat_Numeral; tuned some proof texts
 haftmann parents: 
33274diff
changeset | 1388 | by (simp add: Suc3_eq_add_3) | 
| 
a3924d1069e5
moved theory Divides after theory Nat_Numeral; tuned some proof texts
 haftmann parents: 
33274diff
changeset | 1389 | |
| 
a3924d1069e5
moved theory Divides after theory Nat_Numeral; tuned some proof texts
 haftmann parents: 
33274diff
changeset | 1390 | lemma Suc_div_eq_add3_div: "(Suc (Suc (Suc m))) div n = (3+m) div n" | 
| 
a3924d1069e5
moved theory Divides after theory Nat_Numeral; tuned some proof texts
 haftmann parents: 
33274diff
changeset | 1391 | by (simp add: Suc3_eq_add_3) | 
| 
a3924d1069e5
moved theory Divides after theory Nat_Numeral; tuned some proof texts
 haftmann parents: 
33274diff
changeset | 1392 | |
| 
a3924d1069e5
moved theory Divides after theory Nat_Numeral; tuned some proof texts
 haftmann parents: 
33274diff
changeset | 1393 | lemma Suc_mod_eq_add3_mod: "(Suc (Suc (Suc m))) mod n = (3+m) mod n" | 
| 
a3924d1069e5
moved theory Divides after theory Nat_Numeral; tuned some proof texts
 haftmann parents: 
33274diff
changeset | 1394 | by (simp add: Suc3_eq_add_3) | 
| 
a3924d1069e5
moved theory Divides after theory Nat_Numeral; tuned some proof texts
 haftmann parents: 
33274diff
changeset | 1395 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 1396 | lemmas Suc_div_eq_add3_div_numeral [simp] = Suc_div_eq_add3_div [of _ "numeral v"] for v | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 1397 | lemmas Suc_mod_eq_add3_mod_numeral [simp] = Suc_mod_eq_add3_mod [of _ "numeral v"] for v | 
| 33296 
a3924d1069e5
moved theory Divides after theory Nat_Numeral; tuned some proof texts
 haftmann parents: 
33274diff
changeset | 1398 | |
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1399 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1400 | lemma Suc_times_mod_eq: "1<k ==> Suc (k * m) mod k = 1" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1401 | apply (induct "m") | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1402 | apply (simp_all add: mod_Suc) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1403 | done | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1404 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 1405 | declare Suc_times_mod_eq [of "numeral w", simp] for w | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1406 | |
| 47138 | 1407 | lemma Suc_div_le_mono [simp]: "n div k \<le> (Suc n) div k" | 
| 1408 | by (simp add: div_le_mono) | |
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1409 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1410 | lemma Suc_n_div_2_gt_zero [simp]: "(0::nat) < n ==> 0 < (n + 1) div 2" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1411 | by (cases n) simp_all | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1412 | |
| 35815 
10e723e54076
tuned proofs (to avoid linarith error message caused by bootstrapping of HOL)
 boehmes parents: 
35673diff
changeset | 1413 | lemma div_2_gt_zero [simp]: assumes A: "(1::nat) < n" shows "0 < n div 2" | 
| 
10e723e54076
tuned proofs (to avoid linarith error message caused by bootstrapping of HOL)
 boehmes parents: 
35673diff
changeset | 1414 | proof - | 
| 
10e723e54076
tuned proofs (to avoid linarith error message caused by bootstrapping of HOL)
 boehmes parents: 
35673diff
changeset | 1415 | from A have B: "0 < n - 1" and C: "n - 1 + 1 = n" by simp_all | 
| 
10e723e54076
tuned proofs (to avoid linarith error message caused by bootstrapping of HOL)
 boehmes parents: 
35673diff
changeset | 1416 | from Suc_n_div_2_gt_zero [OF B] C show ?thesis by simp | 
| 
10e723e54076
tuned proofs (to avoid linarith error message caused by bootstrapping of HOL)
 boehmes parents: 
35673diff
changeset | 1417 | qed | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1418 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1419 | (* Potential use of algebra : Equality modulo n*) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1420 | lemma mod_mult_self3 [simp]: "(k*n + m) mod n = m mod (n::nat)" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1421 | by (simp add: mult_ac add_ac) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1422 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1423 | lemma mod_mult_self4 [simp]: "Suc (k*n + m) mod n = Suc m mod n" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1424 | proof - | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1425 | have "Suc (k * n + m) mod n = (k * n + Suc m) mod n" by simp | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1426 | also have "... = Suc m mod n" by (rule mod_mult_self3) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1427 | finally show ?thesis . | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1428 | qed | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1429 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1430 | lemma mod_Suc_eq_Suc_mod: "Suc m mod n = Suc (m mod n) mod n" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1431 | apply (subst mod_Suc [of m]) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1432 | apply (subst mod_Suc [of "m mod n"], simp) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1433 | done | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1434 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 1435 | lemma mod_2_not_eq_zero_eq_one_nat: | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 1436 | fixes n :: nat | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 1437 | shows "n mod 2 \<noteq> 0 \<longleftrightarrow> n mod 2 = 1" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 1438 | by simp | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 1439 | |
| 53067 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 1440 | instance nat :: semiring_numeral_div | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 1441 | by intro_classes (auto intro: div_positive simp add: mult_div_cancel mod_mult2_eq div_mult2_eq) | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 1442 | |
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1443 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1444 | subsection {* Division on @{typ int} *}
 | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1445 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1446 | definition divmod_int_rel :: "int \<Rightarrow> int \<Rightarrow> int \<times> int \<Rightarrow> bool" where | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1447 |     --{*definition of quotient and remainder*}
 | 
| 47139 
98bddfa0f717
extend definition of divmod_int_rel to handle denominator=0 case
 huffman parents: 
47138diff
changeset | 1448 | "divmod_int_rel a b = (\<lambda>(q, r). a = b * q + r \<and> | 
| 
98bddfa0f717
extend definition of divmod_int_rel to handle denominator=0 case
 huffman parents: 
47138diff
changeset | 1449 | (if 0 < b then 0 \<le> r \<and> r < b else if b < 0 then b < r \<and> r \<le> 0 else q = 0))" | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1450 | |
| 53067 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 1451 | text {*
 | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 1452 | The following algorithmic devlopment actually echos what has already | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 1453 |   been developed in class @{class semiring_numeral_div}.  In the long
 | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 1454 |   run it seems better to derive division on @{typ int} just from
 | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 1455 |   division on @{typ nat} and instantiate @{class semiring_numeral_div}
 | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 1456 | accordingly. | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 1457 | *} | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 1458 | |
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1459 | definition adjust :: "int \<Rightarrow> int \<times> int \<Rightarrow> int \<times> int" where | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1460 |     --{*for the division algorithm*}
 | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 1461 | "adjust b = (\<lambda>(q, r). if 0 \<le> r - b then (2 * q + 1, r - b) | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1462 | else (2 * q, r))" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1463 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1464 | text{*algorithm for the case @{text "a\<ge>0, b>0"}*}
 | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1465 | function posDivAlg :: "int \<Rightarrow> int \<Rightarrow> int \<times> int" where | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1466 | "posDivAlg a b = (if a < b \<or> b \<le> 0 then (0, a) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1467 | else adjust b (posDivAlg a (2 * b)))" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1468 | by auto | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1469 | termination by (relation "measure (\<lambda>(a, b). nat (a - b + 1))") | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1470 | (auto simp add: mult_2) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1471 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1472 | text{*algorithm for the case @{text "a<0, b>0"}*}
 | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1473 | function negDivAlg :: "int \<Rightarrow> int \<Rightarrow> int \<times> int" where | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1474 | "negDivAlg a b = (if 0 \<le>a + b \<or> b \<le> 0 then (-1, a + b) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1475 | else adjust b (negDivAlg a (2 * b)))" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1476 | by auto | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1477 | termination by (relation "measure (\<lambda>(a, b). nat (- a - b))") | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1478 | (auto simp add: mult_2) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1479 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1480 | text{*algorithm for the general case @{term "b\<noteq>0"}*}
 | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1481 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1482 | definition divmod_int :: "int \<Rightarrow> int \<Rightarrow> int \<times> int" where | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1483 |     --{*The full division algorithm considers all possible signs for a, b
 | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1484 |        including the special case @{text "a=0, b<0"} because 
 | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1485 |        @{term negDivAlg} requires @{term "a<0"}.*}
 | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1486 | "divmod_int a b = (if 0 \<le> a then if 0 \<le> b then posDivAlg a b | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1487 | else if a = 0 then (0, 0) | 
| 46560 
8e252a608765
remove constant negateSnd in favor of 'apsnd uminus' (from Florian Haftmann)
 huffman parents: 
46552diff
changeset | 1488 | else apsnd uminus (negDivAlg (-a) (-b)) | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1489 | else | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1490 | if 0 < b then negDivAlg a b | 
| 46560 
8e252a608765
remove constant negateSnd in favor of 'apsnd uminus' (from Florian Haftmann)
 huffman parents: 
46552diff
changeset | 1491 | else apsnd uminus (posDivAlg (-a) (-b)))" | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1492 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1493 | instantiation int :: Divides.div | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1494 | begin | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1495 | |
| 46551 
866bce5442a3
simplify projections on simultaneous computations of div and mod; tuned structure (from Florian Haftmann)
 huffman parents: 
46026diff
changeset | 1496 | definition div_int where | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1497 | "a div b = fst (divmod_int a b)" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1498 | |
| 46551 
866bce5442a3
simplify projections on simultaneous computations of div and mod; tuned structure (from Florian Haftmann)
 huffman parents: 
46026diff
changeset | 1499 | lemma fst_divmod_int [simp]: | 
| 
866bce5442a3
simplify projections on simultaneous computations of div and mod; tuned structure (from Florian Haftmann)
 huffman parents: 
46026diff
changeset | 1500 | "fst (divmod_int a b) = a div b" | 
| 
866bce5442a3
simplify projections on simultaneous computations of div and mod; tuned structure (from Florian Haftmann)
 huffman parents: 
46026diff
changeset | 1501 | by (simp add: div_int_def) | 
| 
866bce5442a3
simplify projections on simultaneous computations of div and mod; tuned structure (from Florian Haftmann)
 huffman parents: 
46026diff
changeset | 1502 | |
| 
866bce5442a3
simplify projections on simultaneous computations of div and mod; tuned structure (from Florian Haftmann)
 huffman parents: 
46026diff
changeset | 1503 | definition mod_int where | 
| 46560 
8e252a608765
remove constant negateSnd in favor of 'apsnd uminus' (from Florian Haftmann)
 huffman parents: 
46552diff
changeset | 1504 | "a mod b = snd (divmod_int a b)" | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1505 | |
| 46551 
866bce5442a3
simplify projections on simultaneous computations of div and mod; tuned structure (from Florian Haftmann)
 huffman parents: 
46026diff
changeset | 1506 | lemma snd_divmod_int [simp]: | 
| 
866bce5442a3
simplify projections on simultaneous computations of div and mod; tuned structure (from Florian Haftmann)
 huffman parents: 
46026diff
changeset | 1507 | "snd (divmod_int a b) = a mod b" | 
| 
866bce5442a3
simplify projections on simultaneous computations of div and mod; tuned structure (from Florian Haftmann)
 huffman parents: 
46026diff
changeset | 1508 | by (simp add: mod_int_def) | 
| 
866bce5442a3
simplify projections on simultaneous computations of div and mod; tuned structure (from Florian Haftmann)
 huffman parents: 
46026diff
changeset | 1509 | |
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1510 | instance .. | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1511 | |
| 3366 | 1512 | end | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1513 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1514 | lemma divmod_int_mod_div: | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1515 | "divmod_int p q = (p div q, p mod q)" | 
| 46551 
866bce5442a3
simplify projections on simultaneous computations of div and mod; tuned structure (from Florian Haftmann)
 huffman parents: 
46026diff
changeset | 1516 | by (simp add: prod_eq_iff) | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1517 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1518 | text{*
 | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1519 | Here is the division algorithm in ML: | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1520 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1521 | \begin{verbatim}
 | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1522 | fun posDivAlg (a,b) = | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1523 | if a<b then (0,a) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1524 | else let val (q,r) = posDivAlg(a, 2*b) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1525 | in if 0\<le>r-b then (2*q+1, r-b) else (2*q, r) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1526 | end | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1527 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1528 | fun negDivAlg (a,b) = | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1529 | if 0\<le>a+b then (~1,a+b) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1530 | else let val (q,r) = negDivAlg(a, 2*b) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1531 | in if 0\<le>r-b then (2*q+1, r-b) else (2*q, r) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1532 | end; | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1533 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1534 | fun negateSnd (q,r:int) = (q,~r); | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1535 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1536 | fun divmod (a,b) = if 0\<le>a then | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1537 | if b>0 then posDivAlg (a,b) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1538 | else if a=0 then (0,0) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1539 | else negateSnd (negDivAlg (~a,~b)) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1540 | else | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1541 | if 0<b then negDivAlg (a,b) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1542 | else negateSnd (posDivAlg (~a,~b)); | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1543 | \end{verbatim}
 | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1544 | *} | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1545 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1546 | |
| 46551 
866bce5442a3
simplify projections on simultaneous computations of div and mod; tuned structure (from Florian Haftmann)
 huffman parents: 
46026diff
changeset | 1547 | subsubsection {* Uniqueness and Monotonicity of Quotients and Remainders *}
 | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1548 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1549 | lemma unique_quotient_lemma: | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1550 | "[| b*q' + r' \<le> b*q + r; 0 \<le> r'; r' < b; r < b |] | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1551 | ==> q' \<le> (q::int)" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1552 | apply (subgoal_tac "r' + b * (q'-q) \<le> r") | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1553 | prefer 2 apply (simp add: right_diff_distrib) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1554 | apply (subgoal_tac "0 < b * (1 + q - q') ") | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1555 | apply (erule_tac [2] order_le_less_trans) | 
| 49962 
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
 webertj parents: 
48891diff
changeset | 1556 | prefer 2 apply (simp add: right_diff_distrib distrib_left) | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1557 | apply (subgoal_tac "b * q' < b * (1 + q) ") | 
| 49962 
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
 webertj parents: 
48891diff
changeset | 1558 | prefer 2 apply (simp add: right_diff_distrib distrib_left) | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1559 | apply (simp add: mult_less_cancel_left) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1560 | done | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1561 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1562 | lemma unique_quotient_lemma_neg: | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1563 | "[| b*q' + r' \<le> b*q + r; r \<le> 0; b < r; b < r' |] | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1564 | ==> q \<le> (q'::int)" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1565 | by (rule_tac b = "-b" and r = "-r'" and r' = "-r" in unique_quotient_lemma, | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1566 | auto) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1567 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1568 | lemma unique_quotient: | 
| 46552 | 1569 | "[| divmod_int_rel a b (q, r); divmod_int_rel a b (q', r') |] | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1570 | ==> q = q'" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1571 | apply (simp add: divmod_int_rel_def linorder_neq_iff split: split_if_asm) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1572 | apply (blast intro: order_antisym | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1573 | dest: order_eq_refl [THEN unique_quotient_lemma] | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1574 | order_eq_refl [THEN unique_quotient_lemma_neg] sym)+ | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1575 | done | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1576 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1577 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1578 | lemma unique_remainder: | 
| 46552 | 1579 | "[| divmod_int_rel a b (q, r); divmod_int_rel a b (q', r') |] | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1580 | ==> r = r'" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1581 | apply (subgoal_tac "q = q'") | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1582 | apply (simp add: divmod_int_rel_def) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1583 | apply (blast intro: unique_quotient) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1584 | done | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1585 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1586 | |
| 46551 
866bce5442a3
simplify projections on simultaneous computations of div and mod; tuned structure (from Florian Haftmann)
 huffman parents: 
46026diff
changeset | 1587 | subsubsection {* Correctness of @{term posDivAlg}, the Algorithm for Non-Negative Dividends *}
 | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1588 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1589 | text{*And positive divisors*}
 | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1590 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1591 | lemma adjust_eq [simp]: | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 1592 | "adjust b (q, r) = | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 1593 | (let diff = r - b in | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 1594 | if 0 \<le> diff then (2 * q + 1, diff) | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1595 | else (2*q, r))" | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 1596 | by (simp add: Let_def adjust_def) | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1597 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1598 | declare posDivAlg.simps [simp del] | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1599 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1600 | text{*use with a simproc to avoid repeatedly proving the premise*}
 | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1601 | lemma posDivAlg_eqn: | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1602 | "0 < b ==> | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1603 | posDivAlg a b = (if a<b then (0,a) else adjust b (posDivAlg a (2*b)))" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1604 | by (rule posDivAlg.simps [THEN trans], simp) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1605 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1606 | text{*Correctness of @{term posDivAlg}: it computes quotients correctly*}
 | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1607 | theorem posDivAlg_correct: | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1608 | assumes "0 \<le> a" and "0 < b" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1609 | shows "divmod_int_rel a b (posDivAlg a b)" | 
| 41550 | 1610 | using assms | 
| 1611 | apply (induct a b rule: posDivAlg.induct) | |
| 1612 | apply auto | |
| 1613 | apply (simp add: divmod_int_rel_def) | |
| 49962 
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
 webertj parents: 
48891diff
changeset | 1614 | apply (subst posDivAlg_eqn, simp add: distrib_left) | 
| 41550 | 1615 | apply (case_tac "a < b") | 
| 1616 | apply simp_all | |
| 1617 | apply (erule splitE) | |
| 49962 
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
 webertj parents: 
48891diff
changeset | 1618 | apply (auto simp add: distrib_left Let_def mult_ac mult_2_right) | 
| 41550 | 1619 | done | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1620 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1621 | |
| 46551 
866bce5442a3
simplify projections on simultaneous computations of div and mod; tuned structure (from Florian Haftmann)
 huffman parents: 
46026diff
changeset | 1622 | subsubsection {* Correctness of @{term negDivAlg}, the Algorithm for Negative Dividends *}
 | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1623 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1624 | text{*And positive divisors*}
 | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1625 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1626 | declare negDivAlg.simps [simp del] | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1627 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1628 | text{*use with a simproc to avoid repeatedly proving the premise*}
 | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1629 | lemma negDivAlg_eqn: | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1630 | "0 < b ==> | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1631 | negDivAlg a b = | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1632 | (if 0\<le>a+b then (-1,a+b) else adjust b (negDivAlg a (2*b)))" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1633 | by (rule negDivAlg.simps [THEN trans], simp) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1634 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1635 | (*Correctness of negDivAlg: it computes quotients correctly | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1636 | It doesn't work if a=0 because the 0/b equals 0, not -1*) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1637 | lemma negDivAlg_correct: | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1638 | assumes "a < 0" and "b > 0" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1639 | shows "divmod_int_rel a b (negDivAlg a b)" | 
| 41550 | 1640 | using assms | 
| 1641 | apply (induct a b rule: negDivAlg.induct) | |
| 1642 | apply (auto simp add: linorder_not_le) | |
| 1643 | apply (simp add: divmod_int_rel_def) | |
| 1644 | apply (subst negDivAlg_eqn, assumption) | |
| 1645 | apply (case_tac "a + b < (0\<Colon>int)") | |
| 1646 | apply simp_all | |
| 1647 | apply (erule splitE) | |
| 49962 
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
 webertj parents: 
48891diff
changeset | 1648 | apply (auto simp add: distrib_left Let_def mult_ac mult_2_right) | 
| 41550 | 1649 | done | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1650 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1651 | |
| 46551 
866bce5442a3
simplify projections on simultaneous computations of div and mod; tuned structure (from Florian Haftmann)
 huffman parents: 
46026diff
changeset | 1652 | subsubsection {* Existence Shown by Proving the Division Algorithm to be Correct *}
 | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1653 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1654 | (*the case a=0*) | 
| 47139 
98bddfa0f717
extend definition of divmod_int_rel to handle denominator=0 case
 huffman parents: 
47138diff
changeset | 1655 | lemma divmod_int_rel_0: "divmod_int_rel 0 b (0, 0)" | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1656 | by (auto simp add: divmod_int_rel_def linorder_neq_iff) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1657 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1658 | lemma posDivAlg_0 [simp]: "posDivAlg 0 b = (0, 0)" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1659 | by (subst posDivAlg.simps, auto) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1660 | |
| 47139 
98bddfa0f717
extend definition of divmod_int_rel to handle denominator=0 case
 huffman parents: 
47138diff
changeset | 1661 | lemma posDivAlg_0_right [simp]: "posDivAlg a 0 = (0, a)" | 
| 
98bddfa0f717
extend definition of divmod_int_rel to handle denominator=0 case
 huffman parents: 
47138diff
changeset | 1662 | by (subst posDivAlg.simps, auto) | 
| 
98bddfa0f717
extend definition of divmod_int_rel to handle denominator=0 case
 huffman parents: 
47138diff
changeset | 1663 | |
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1664 | lemma negDivAlg_minus1 [simp]: "negDivAlg -1 b = (-1, b - 1)" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1665 | by (subst negDivAlg.simps, auto) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1666 | |
| 46560 
8e252a608765
remove constant negateSnd in favor of 'apsnd uminus' (from Florian Haftmann)
 huffman parents: 
46552diff
changeset | 1667 | lemma divmod_int_rel_neg: "divmod_int_rel (-a) (-b) qr ==> divmod_int_rel a b (apsnd uminus qr)" | 
| 47139 
98bddfa0f717
extend definition of divmod_int_rel to handle denominator=0 case
 huffman parents: 
47138diff
changeset | 1668 | by (auto simp add: divmod_int_rel_def) | 
| 
98bddfa0f717
extend definition of divmod_int_rel to handle denominator=0 case
 huffman parents: 
47138diff
changeset | 1669 | |
| 
98bddfa0f717
extend definition of divmod_int_rel to handle denominator=0 case
 huffman parents: 
47138diff
changeset | 1670 | lemma divmod_int_correct: "divmod_int_rel a b (divmod_int a b)" | 
| 
98bddfa0f717
extend definition of divmod_int_rel to handle denominator=0 case
 huffman parents: 
47138diff
changeset | 1671 | apply (cases "b = 0", simp add: divmod_int_def divmod_int_rel_def) | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1672 | by (force simp add: linorder_neq_iff divmod_int_rel_0 divmod_int_def divmod_int_rel_neg | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1673 | posDivAlg_correct negDivAlg_correct) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1674 | |
| 47141 
02d6b816e4b3
move int::ring_div instance upward, simplify several proofs
 huffman parents: 
47140diff
changeset | 1675 | lemma divmod_int_unique: | 
| 
02d6b816e4b3
move int::ring_div instance upward, simplify several proofs
 huffman parents: 
47140diff
changeset | 1676 | assumes "divmod_int_rel a b qr" | 
| 
02d6b816e4b3
move int::ring_div instance upward, simplify several proofs
 huffman parents: 
47140diff
changeset | 1677 | shows "divmod_int a b = qr" | 
| 
02d6b816e4b3
move int::ring_div instance upward, simplify several proofs
 huffman parents: 
47140diff
changeset | 1678 | using assms divmod_int_correct [of a b] | 
| 
02d6b816e4b3
move int::ring_div instance upward, simplify several proofs
 huffman parents: 
47140diff
changeset | 1679 | using unique_quotient [of a b] unique_remainder [of a b] | 
| 
02d6b816e4b3
move int::ring_div instance upward, simplify several proofs
 huffman parents: 
47140diff
changeset | 1680 | by (metis pair_collapse) | 
| 
02d6b816e4b3
move int::ring_div instance upward, simplify several proofs
 huffman parents: 
47140diff
changeset | 1681 | |
| 
02d6b816e4b3
move int::ring_div instance upward, simplify several proofs
 huffman parents: 
47140diff
changeset | 1682 | lemma divmod_int_rel_div_mod: "divmod_int_rel a b (a div b, a mod b)" | 
| 
02d6b816e4b3
move int::ring_div instance upward, simplify several proofs
 huffman parents: 
47140diff
changeset | 1683 | using divmod_int_correct by (simp add: divmod_int_mod_div) | 
| 
02d6b816e4b3
move int::ring_div instance upward, simplify several proofs
 huffman parents: 
47140diff
changeset | 1684 | |
| 
02d6b816e4b3
move int::ring_div instance upward, simplify several proofs
 huffman parents: 
47140diff
changeset | 1685 | lemma div_int_unique: "divmod_int_rel a b (q, r) \<Longrightarrow> a div b = q" | 
| 
02d6b816e4b3
move int::ring_div instance upward, simplify several proofs
 huffman parents: 
47140diff
changeset | 1686 | by (simp add: divmod_int_rel_div_mod [THEN unique_quotient]) | 
| 
02d6b816e4b3
move int::ring_div instance upward, simplify several proofs
 huffman parents: 
47140diff
changeset | 1687 | |
| 
02d6b816e4b3
move int::ring_div instance upward, simplify several proofs
 huffman parents: 
47140diff
changeset | 1688 | lemma mod_int_unique: "divmod_int_rel a b (q, r) \<Longrightarrow> a mod b = r" | 
| 
02d6b816e4b3
move int::ring_div instance upward, simplify several proofs
 huffman parents: 
47140diff
changeset | 1689 | by (simp add: divmod_int_rel_div_mod [THEN unique_remainder]) | 
| 
02d6b816e4b3
move int::ring_div instance upward, simplify several proofs
 huffman parents: 
47140diff
changeset | 1690 | |
| 
02d6b816e4b3
move int::ring_div instance upward, simplify several proofs
 huffman parents: 
47140diff
changeset | 1691 | instance int :: ring_div | 
| 
02d6b816e4b3
move int::ring_div instance upward, simplify several proofs
 huffman parents: 
47140diff
changeset | 1692 | proof | 
| 
02d6b816e4b3
move int::ring_div instance upward, simplify several proofs
 huffman parents: 
47140diff
changeset | 1693 | fix a b :: int | 
| 
02d6b816e4b3
move int::ring_div instance upward, simplify several proofs
 huffman parents: 
47140diff
changeset | 1694 | show "a div b * b + a mod b = a" | 
| 
02d6b816e4b3
move int::ring_div instance upward, simplify several proofs
 huffman parents: 
47140diff
changeset | 1695 | using divmod_int_rel_div_mod [of a b] | 
| 
02d6b816e4b3
move int::ring_div instance upward, simplify several proofs
 huffman parents: 
47140diff
changeset | 1696 | unfolding divmod_int_rel_def by (simp add: mult_commute) | 
| 
02d6b816e4b3
move int::ring_div instance upward, simplify several proofs
 huffman parents: 
47140diff
changeset | 1697 | next | 
| 
02d6b816e4b3
move int::ring_div instance upward, simplify several proofs
 huffman parents: 
47140diff
changeset | 1698 | fix a b c :: int | 
| 
02d6b816e4b3
move int::ring_div instance upward, simplify several proofs
 huffman parents: 
47140diff
changeset | 1699 | assume "b \<noteq> 0" | 
| 
02d6b816e4b3
move int::ring_div instance upward, simplify several proofs
 huffman parents: 
47140diff
changeset | 1700 | hence "divmod_int_rel (a + c * b) b (c + a div b, a mod b)" | 
| 
02d6b816e4b3
move int::ring_div instance upward, simplify several proofs
 huffman parents: 
47140diff
changeset | 1701 | using divmod_int_rel_div_mod [of a b] | 
| 
02d6b816e4b3
move int::ring_div instance upward, simplify several proofs
 huffman parents: 
47140diff
changeset | 1702 | unfolding divmod_int_rel_def by (auto simp: algebra_simps) | 
| 
02d6b816e4b3
move int::ring_div instance upward, simplify several proofs
 huffman parents: 
47140diff
changeset | 1703 | thus "(a + c * b) div b = c + a div b" | 
| 
02d6b816e4b3
move int::ring_div instance upward, simplify several proofs
 huffman parents: 
47140diff
changeset | 1704 | by (rule div_int_unique) | 
| 
02d6b816e4b3
move int::ring_div instance upward, simplify several proofs
 huffman parents: 
47140diff
changeset | 1705 | next | 
| 
02d6b816e4b3
move int::ring_div instance upward, simplify several proofs
 huffman parents: 
47140diff
changeset | 1706 | fix a b c :: int | 
| 
02d6b816e4b3
move int::ring_div instance upward, simplify several proofs
 huffman parents: 
47140diff
changeset | 1707 | assume "c \<noteq> 0" | 
| 
02d6b816e4b3
move int::ring_div instance upward, simplify several proofs
 huffman parents: 
47140diff
changeset | 1708 | hence "\<And>q r. divmod_int_rel a b (q, r) | 
| 
02d6b816e4b3
move int::ring_div instance upward, simplify several proofs
 huffman parents: 
47140diff
changeset | 1709 | \<Longrightarrow> divmod_int_rel (c * a) (c * b) (q, c * r)" | 
| 
02d6b816e4b3
move int::ring_div instance upward, simplify several proofs
 huffman parents: 
47140diff
changeset | 1710 | unfolding divmod_int_rel_def | 
| 
02d6b816e4b3
move int::ring_div instance upward, simplify several proofs
 huffman parents: 
47140diff
changeset | 1711 | by - (rule linorder_cases [of 0 b], auto simp: algebra_simps | 
| 
02d6b816e4b3
move int::ring_div instance upward, simplify several proofs
 huffman parents: 
47140diff
changeset | 1712 | mult_less_0_iff zero_less_mult_iff mult_strict_right_mono | 
| 
02d6b816e4b3
move int::ring_div instance upward, simplify several proofs
 huffman parents: 
47140diff
changeset | 1713 | mult_strict_right_mono_neg zero_le_mult_iff mult_le_0_iff) | 
| 
02d6b816e4b3
move int::ring_div instance upward, simplify several proofs
 huffman parents: 
47140diff
changeset | 1714 | hence "divmod_int_rel (c * a) (c * b) (a div b, c * (a mod b))" | 
| 
02d6b816e4b3
move int::ring_div instance upward, simplify several proofs
 huffman parents: 
47140diff
changeset | 1715 | using divmod_int_rel_div_mod [of a b] . | 
| 
02d6b816e4b3
move int::ring_div instance upward, simplify several proofs
 huffman parents: 
47140diff
changeset | 1716 | thus "(c * a) div (c * b) = a div b" | 
| 
02d6b816e4b3
move int::ring_div instance upward, simplify several proofs
 huffman parents: 
47140diff
changeset | 1717 | by (rule div_int_unique) | 
| 
02d6b816e4b3
move int::ring_div instance upward, simplify several proofs
 huffman parents: 
47140diff
changeset | 1718 | next | 
| 
02d6b816e4b3
move int::ring_div instance upward, simplify several proofs
 huffman parents: 
47140diff
changeset | 1719 | fix a :: int show "a div 0 = 0" | 
| 
02d6b816e4b3
move int::ring_div instance upward, simplify several proofs
 huffman parents: 
47140diff
changeset | 1720 | by (rule div_int_unique, simp add: divmod_int_rel_def) | 
| 
02d6b816e4b3
move int::ring_div instance upward, simplify several proofs
 huffman parents: 
47140diff
changeset | 1721 | next | 
| 
02d6b816e4b3
move int::ring_div instance upward, simplify several proofs
 huffman parents: 
47140diff
changeset | 1722 | fix a :: int show "0 div a = 0" | 
| 
02d6b816e4b3
move int::ring_div instance upward, simplify several proofs
 huffman parents: 
47140diff
changeset | 1723 | by (rule div_int_unique, auto simp add: divmod_int_rel_def) | 
| 
02d6b816e4b3
move int::ring_div instance upward, simplify several proofs
 huffman parents: 
47140diff
changeset | 1724 | qed | 
| 
02d6b816e4b3
move int::ring_div instance upward, simplify several proofs
 huffman parents: 
47140diff
changeset | 1725 | |
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1726 | text{*Basic laws about division and remainder*}
 | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1727 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1728 | lemma zmod_zdiv_equality: "(a::int) = b * (a div b) + (a mod b)" | 
| 47141 
02d6b816e4b3
move int::ring_div instance upward, simplify several proofs
 huffman parents: 
47140diff
changeset | 1729 | by (fact mod_div_equality2 [symmetric]) | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1730 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1731 | text {* Tool setup *}
 | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1732 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 1733 | (* FIXME: Theorem list add_0s doesn't exist, because Numeral0 has gone. *) | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 1734 | lemmas add_0s = add_0_left add_0_right | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 1735 | |
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1736 | ML {*
 | 
| 43594 | 1737 | structure Cancel_Div_Mod_Int = Cancel_Div_Mod | 
| 41550 | 1738 | ( | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1739 |   val div_name = @{const_name div};
 | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1740 |   val mod_name = @{const_name mod};
 | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1741 | val mk_binop = HOLogic.mk_binop; | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1742 | val mk_sum = Arith_Data.mk_sum HOLogic.intT; | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1743 | val dest_sum = Arith_Data.dest_sum; | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1744 | |
| 47165 | 1745 |   val div_mod_eqs = map mk_meta_eq [@{thm div_mod_equality}, @{thm div_mod_equality2}];
 | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1746 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1747 | val prove_eq_sums = Arith_Data.prove_conv2 all_tac (Arith_Data.simp_all_tac | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54227diff
changeset | 1748 |     (@{thm diff_conv_add_uminus} :: @{thms add_0s} @ @{thms add_ac}))
 | 
| 41550 | 1749 | ) | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1750 | *} | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1751 | |
| 43594 | 1752 | simproc_setup cancel_div_mod_int ("(k::int) + l") = {* K Cancel_Div_Mod_Int.proc *}
 | 
| 1753 | ||
| 47141 
02d6b816e4b3
move int::ring_div instance upward, simplify several proofs
 huffman parents: 
47140diff
changeset | 1754 | lemma pos_mod_conj: "(0::int) < b \<Longrightarrow> 0 \<le> a mod b \<and> a mod b < b" | 
| 
02d6b816e4b3
move int::ring_div instance upward, simplify several proofs
 huffman parents: 
47140diff
changeset | 1755 | using divmod_int_correct [of a b] | 
| 
02d6b816e4b3
move int::ring_div instance upward, simplify several proofs
 huffman parents: 
47140diff
changeset | 1756 | by (auto simp add: divmod_int_rel_def prod_eq_iff) | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1757 | |
| 45607 | 1758 | lemmas pos_mod_sign [simp] = pos_mod_conj [THEN conjunct1] | 
| 1759 | and pos_mod_bound [simp] = pos_mod_conj [THEN conjunct2] | |
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1760 | |
| 47141 
02d6b816e4b3
move int::ring_div instance upward, simplify several proofs
 huffman parents: 
47140diff
changeset | 1761 | lemma neg_mod_conj: "b < (0::int) \<Longrightarrow> a mod b \<le> 0 \<and> b < a mod b" | 
| 
02d6b816e4b3
move int::ring_div instance upward, simplify several proofs
 huffman parents: 
47140diff
changeset | 1762 | using divmod_int_correct [of a b] | 
| 
02d6b816e4b3
move int::ring_div instance upward, simplify several proofs
 huffman parents: 
47140diff
changeset | 1763 | by (auto simp add: divmod_int_rel_def prod_eq_iff) | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1764 | |
| 45607 | 1765 | lemmas neg_mod_sign [simp] = neg_mod_conj [THEN conjunct1] | 
| 1766 | and neg_mod_bound [simp] = neg_mod_conj [THEN conjunct2] | |
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1767 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1768 | |
| 46551 
866bce5442a3
simplify projections on simultaneous computations of div and mod; tuned structure (from Florian Haftmann)
 huffman parents: 
46026diff
changeset | 1769 | subsubsection {* General Properties of div and mod *}
 | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1770 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1771 | lemma div_pos_pos_trivial: "[| (0::int) \<le> a; a < b |] ==> a div b = 0" | 
| 47140 
97c3676c5c94
rename lemmas {divmod_int_rel_{div,mod} -> {div,mod}_int_unique, for consistency with nat lemma names
 huffman parents: 
47139diff
changeset | 1772 | apply (rule div_int_unique) | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1773 | apply (auto simp add: divmod_int_rel_def) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1774 | done | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1775 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1776 | lemma div_neg_neg_trivial: "[| a \<le> (0::int); b < a |] ==> a div b = 0" | 
| 47140 
97c3676c5c94
rename lemmas {divmod_int_rel_{div,mod} -> {div,mod}_int_unique, for consistency with nat lemma names
 huffman parents: 
47139diff
changeset | 1777 | apply (rule div_int_unique) | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1778 | apply (auto simp add: divmod_int_rel_def) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1779 | done | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1780 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1781 | lemma div_pos_neg_trivial: "[| (0::int) < a; a+b \<le> 0 |] ==> a div b = -1" | 
| 47140 
97c3676c5c94
rename lemmas {divmod_int_rel_{div,mod} -> {div,mod}_int_unique, for consistency with nat lemma names
 huffman parents: 
47139diff
changeset | 1782 | apply (rule div_int_unique) | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1783 | apply (auto simp add: divmod_int_rel_def) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1784 | done | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1785 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1786 | (*There is no div_neg_pos_trivial because 0 div b = 0 would supersede it*) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1787 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1788 | lemma mod_pos_pos_trivial: "[| (0::int) \<le> a; a < b |] ==> a mod b = a" | 
| 47140 
97c3676c5c94
rename lemmas {divmod_int_rel_{div,mod} -> {div,mod}_int_unique, for consistency with nat lemma names
 huffman parents: 
47139diff
changeset | 1789 | apply (rule_tac q = 0 in mod_int_unique) | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1790 | apply (auto simp add: divmod_int_rel_def) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1791 | done | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1792 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1793 | lemma mod_neg_neg_trivial: "[| a \<le> (0::int); b < a |] ==> a mod b = a" | 
| 47140 
97c3676c5c94
rename lemmas {divmod_int_rel_{div,mod} -> {div,mod}_int_unique, for consistency with nat lemma names
 huffman parents: 
47139diff
changeset | 1794 | apply (rule_tac q = 0 in mod_int_unique) | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1795 | apply (auto simp add: divmod_int_rel_def) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1796 | done | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1797 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1798 | lemma mod_pos_neg_trivial: "[| (0::int) < a; a+b \<le> 0 |] ==> a mod b = a+b" | 
| 47140 
97c3676c5c94
rename lemmas {divmod_int_rel_{div,mod} -> {div,mod}_int_unique, for consistency with nat lemma names
 huffman parents: 
47139diff
changeset | 1799 | apply (rule_tac q = "-1" in mod_int_unique) | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1800 | apply (auto simp add: divmod_int_rel_def) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1801 | done | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1802 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1803 | text{*There is no @{text mod_neg_pos_trivial}.*}
 | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1804 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1805 | |
| 46551 
866bce5442a3
simplify projections on simultaneous computations of div and mod; tuned structure (from Florian Haftmann)
 huffman parents: 
46026diff
changeset | 1806 | subsubsection {* Laws for div and mod with Unary Minus *}
 | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1807 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1808 | lemma zminus1_lemma: | 
| 47139 
98bddfa0f717
extend definition of divmod_int_rel to handle denominator=0 case
 huffman parents: 
47138diff
changeset | 1809 | "divmod_int_rel a b (q, r) ==> b \<noteq> 0 | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1810 | ==> divmod_int_rel (-a) b (if r=0 then -q else -q - 1, | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1811 | if r=0 then 0 else b-r)" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1812 | by (force simp add: split_ifs divmod_int_rel_def linorder_neq_iff right_diff_distrib) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1813 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1814 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1815 | lemma zdiv_zminus1_eq_if: | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1816 | "b \<noteq> (0::int) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1817 | ==> (-a) div b = | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1818 | (if a mod b = 0 then - (a div b) else - (a div b) - 1)" | 
| 47140 
97c3676c5c94
rename lemmas {divmod_int_rel_{div,mod} -> {div,mod}_int_unique, for consistency with nat lemma names
 huffman parents: 
47139diff
changeset | 1819 | by (blast intro: divmod_int_rel_div_mod [THEN zminus1_lemma, THEN div_int_unique]) | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1820 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1821 | lemma zmod_zminus1_eq_if: | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1822 | "(-a::int) mod b = (if a mod b = 0 then 0 else b - (a mod b))" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1823 | apply (case_tac "b = 0", simp) | 
| 47140 
97c3676c5c94
rename lemmas {divmod_int_rel_{div,mod} -> {div,mod}_int_unique, for consistency with nat lemma names
 huffman parents: 
47139diff
changeset | 1824 | apply (blast intro: divmod_int_rel_div_mod [THEN zminus1_lemma, THEN mod_int_unique]) | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1825 | done | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1826 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1827 | lemma zmod_zminus1_not_zero: | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1828 | fixes k l :: int | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1829 | shows "- k mod l \<noteq> 0 \<Longrightarrow> k mod l \<noteq> 0" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1830 | unfolding zmod_zminus1_eq_if by auto | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1831 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1832 | lemma zdiv_zminus2_eq_if: | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1833 | "b \<noteq> (0::int) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1834 | ==> a div (-b) = | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1835 | (if a mod b = 0 then - (a div b) else - (a div b) - 1)" | 
| 47159 | 1836 | by (simp add: zdiv_zminus1_eq_if div_minus_right) | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1837 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1838 | lemma zmod_zminus2_eq_if: | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1839 | "a mod (-b::int) = (if a mod b = 0 then 0 else (a mod b) - b)" | 
| 47159 | 1840 | by (simp add: zmod_zminus1_eq_if mod_minus_right) | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1841 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1842 | lemma zmod_zminus2_not_zero: | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1843 | fixes k l :: int | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1844 | shows "k mod - l \<noteq> 0 \<Longrightarrow> k mod l \<noteq> 0" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1845 | unfolding zmod_zminus2_eq_if by auto | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1846 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1847 | |
| 46551 
866bce5442a3
simplify projections on simultaneous computations of div and mod; tuned structure (from Florian Haftmann)
 huffman parents: 
46026diff
changeset | 1848 | subsubsection {* Computation of Division and Remainder *}
 | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1849 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1850 | lemma div_eq_minus1: "(0::int) < b ==> -1 div b = -1" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1851 | by (simp add: div_int_def divmod_int_def) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1852 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1853 | lemma zmod_minus1: "(0::int) < b ==> -1 mod b = b - 1" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1854 | by (simp add: mod_int_def divmod_int_def) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1855 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1856 | text{*a positive, b positive *}
 | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1857 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1858 | lemma div_pos_pos: "[| 0 < a; 0 \<le> b |] ==> a div b = fst (posDivAlg a b)" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1859 | by (simp add: div_int_def divmod_int_def) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1860 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1861 | lemma mod_pos_pos: "[| 0 < a; 0 \<le> b |] ==> a mod b = snd (posDivAlg a b)" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1862 | by (simp add: mod_int_def divmod_int_def) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1863 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1864 | text{*a negative, b positive *}
 | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1865 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1866 | lemma div_neg_pos: "[| a < 0; 0 < b |] ==> a div b = fst (negDivAlg a b)" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1867 | by (simp add: div_int_def divmod_int_def) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1868 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1869 | lemma mod_neg_pos: "[| a < 0; 0 < b |] ==> a mod b = snd (negDivAlg a b)" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1870 | by (simp add: mod_int_def divmod_int_def) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1871 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1872 | text{*a positive, b negative *}
 | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1873 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1874 | lemma div_pos_neg: | 
| 46560 
8e252a608765
remove constant negateSnd in favor of 'apsnd uminus' (from Florian Haftmann)
 huffman parents: 
46552diff
changeset | 1875 | "[| 0 < a; b < 0 |] ==> a div b = fst (apsnd uminus (negDivAlg (-a) (-b)))" | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1876 | by (simp add: div_int_def divmod_int_def) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1877 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1878 | lemma mod_pos_neg: | 
| 46560 
8e252a608765
remove constant negateSnd in favor of 'apsnd uminus' (from Florian Haftmann)
 huffman parents: 
46552diff
changeset | 1879 | "[| 0 < a; b < 0 |] ==> a mod b = snd (apsnd uminus (negDivAlg (-a) (-b)))" | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1880 | by (simp add: mod_int_def divmod_int_def) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1881 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1882 | text{*a negative, b negative *}
 | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1883 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1884 | lemma div_neg_neg: | 
| 46560 
8e252a608765
remove constant negateSnd in favor of 'apsnd uminus' (from Florian Haftmann)
 huffman parents: 
46552diff
changeset | 1885 | "[| a < 0; b \<le> 0 |] ==> a div b = fst (apsnd uminus (posDivAlg (-a) (-b)))" | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1886 | by (simp add: div_int_def divmod_int_def) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1887 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1888 | lemma mod_neg_neg: | 
| 46560 
8e252a608765
remove constant negateSnd in favor of 'apsnd uminus' (from Florian Haftmann)
 huffman parents: 
46552diff
changeset | 1889 | "[| a < 0; b \<le> 0 |] ==> a mod b = snd (apsnd uminus (posDivAlg (-a) (-b)))" | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1890 | by (simp add: mod_int_def divmod_int_def) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1891 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1892 | text {*Simplify expresions in which div and mod combine numerical constants*}
 | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1893 | |
| 45530 
0c4853bb77bf
rewrite integer numeral div/mod simprocs to not return conditional rewrites; add regression tests
 huffman parents: 
45231diff
changeset | 1894 | lemma int_div_pos_eq: "\<lbrakk>(a::int) = b * q + r; 0 \<le> r; r < b\<rbrakk> \<Longrightarrow> a div b = q" | 
| 47140 
97c3676c5c94
rename lemmas {divmod_int_rel_{div,mod} -> {div,mod}_int_unique, for consistency with nat lemma names
 huffman parents: 
47139diff
changeset | 1895 | by (rule div_int_unique [of a b q r]) (simp add: divmod_int_rel_def) | 
| 45530 
0c4853bb77bf
rewrite integer numeral div/mod simprocs to not return conditional rewrites; add regression tests
 huffman parents: 
45231diff
changeset | 1896 | |
| 
0c4853bb77bf
rewrite integer numeral div/mod simprocs to not return conditional rewrites; add regression tests
 huffman parents: 
45231diff
changeset | 1897 | lemma int_div_neg_eq: "\<lbrakk>(a::int) = b * q + r; r \<le> 0; b < r\<rbrakk> \<Longrightarrow> a div b = q" | 
| 47140 
97c3676c5c94
rename lemmas {divmod_int_rel_{div,mod} -> {div,mod}_int_unique, for consistency with nat lemma names
 huffman parents: 
47139diff
changeset | 1898 | by (rule div_int_unique [of a b q r], | 
| 46552 | 1899 | simp add: divmod_int_rel_def) | 
| 45530 
0c4853bb77bf
rewrite integer numeral div/mod simprocs to not return conditional rewrites; add regression tests
 huffman parents: 
45231diff
changeset | 1900 | |
| 
0c4853bb77bf
rewrite integer numeral div/mod simprocs to not return conditional rewrites; add regression tests
 huffman parents: 
45231diff
changeset | 1901 | lemma int_mod_pos_eq: "\<lbrakk>(a::int) = b * q + r; 0 \<le> r; r < b\<rbrakk> \<Longrightarrow> a mod b = r" | 
| 47140 
97c3676c5c94
rename lemmas {divmod_int_rel_{div,mod} -> {div,mod}_int_unique, for consistency with nat lemma names
 huffman parents: 
47139diff
changeset | 1902 | by (rule mod_int_unique [of a b q r], | 
| 46552 | 1903 | simp add: divmod_int_rel_def) | 
| 45530 
0c4853bb77bf
rewrite integer numeral div/mod simprocs to not return conditional rewrites; add regression tests
 huffman parents: 
45231diff
changeset | 1904 | |
| 
0c4853bb77bf
rewrite integer numeral div/mod simprocs to not return conditional rewrites; add regression tests
 huffman parents: 
45231diff
changeset | 1905 | lemma int_mod_neg_eq: "\<lbrakk>(a::int) = b * q + r; r \<le> 0; b < r\<rbrakk> \<Longrightarrow> a mod b = r" | 
| 47140 
97c3676c5c94
rename lemmas {divmod_int_rel_{div,mod} -> {div,mod}_int_unique, for consistency with nat lemma names
 huffman parents: 
47139diff
changeset | 1906 | by (rule mod_int_unique [of a b q r], | 
| 46552 | 1907 | simp add: divmod_int_rel_def) | 
| 45530 
0c4853bb77bf
rewrite integer numeral div/mod simprocs to not return conditional rewrites; add regression tests
 huffman parents: 
45231diff
changeset | 1908 | |
| 53069 
d165213e3924
execution of int division by class semiring_numeral_div, replacing pdivmod by divmod_abs
 haftmann parents: 
53068diff
changeset | 1909 | text {*
 | 
| 
d165213e3924
execution of int division by class semiring_numeral_div, replacing pdivmod by divmod_abs
 haftmann parents: 
53068diff
changeset | 1910 | numeral simprocs -- high chance that these can be replaced | 
| 
d165213e3924
execution of int division by class semiring_numeral_div, replacing pdivmod by divmod_abs
 haftmann parents: 
53068diff
changeset | 1911 |   by divmod algorithm from @{class semiring_numeral_div}
 | 
| 
d165213e3924
execution of int division by class semiring_numeral_div, replacing pdivmod by divmod_abs
 haftmann parents: 
53068diff
changeset | 1912 | *} | 
| 
d165213e3924
execution of int division by class semiring_numeral_div, replacing pdivmod by divmod_abs
 haftmann parents: 
53068diff
changeset | 1913 | |
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1914 | ML {*
 | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1915 | local | 
| 45530 
0c4853bb77bf
rewrite integer numeral div/mod simprocs to not return conditional rewrites; add regression tests
 huffman parents: 
45231diff
changeset | 1916 | val mk_number = HOLogic.mk_number HOLogic.intT | 
| 
0c4853bb77bf
rewrite integer numeral div/mod simprocs to not return conditional rewrites; add regression tests
 huffman parents: 
45231diff
changeset | 1917 |   val plus = @{term "plus :: int \<Rightarrow> int \<Rightarrow> int"}
 | 
| 
0c4853bb77bf
rewrite integer numeral div/mod simprocs to not return conditional rewrites; add regression tests
 huffman parents: 
45231diff
changeset | 1918 |   val times = @{term "times :: int \<Rightarrow> int \<Rightarrow> int"}
 | 
| 
0c4853bb77bf
rewrite integer numeral div/mod simprocs to not return conditional rewrites; add regression tests
 huffman parents: 
45231diff
changeset | 1919 |   val zero = @{term "0 :: int"}
 | 
| 
0c4853bb77bf
rewrite integer numeral div/mod simprocs to not return conditional rewrites; add regression tests
 huffman parents: 
45231diff
changeset | 1920 |   val less = @{term "op < :: int \<Rightarrow> int \<Rightarrow> bool"}
 | 
| 
0c4853bb77bf
rewrite integer numeral div/mod simprocs to not return conditional rewrites; add regression tests
 huffman parents: 
45231diff
changeset | 1921 |   val le = @{term "op \<le> :: int \<Rightarrow> int \<Rightarrow> bool"}
 | 
| 
0c4853bb77bf
rewrite integer numeral div/mod simprocs to not return conditional rewrites; add regression tests
 huffman parents: 
45231diff
changeset | 1922 |   val simps = @{thms arith_simps} @ @{thms rel_simps} @
 | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 1923 |     map (fn th => th RS sym) [@{thm numeral_1_eq_1}]
 | 
| 45530 
0c4853bb77bf
rewrite integer numeral div/mod simprocs to not return conditional rewrites; add regression tests
 huffman parents: 
45231diff
changeset | 1924 | fun prove ctxt goal = Goal.prove ctxt [] [] (HOLogic.mk_Trueprop goal) | 
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51299diff
changeset | 1925 | (K (ALLGOALS (full_simp_tac (put_simpset HOL_basic_ss ctxt addsimps simps)))); | 
| 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51299diff
changeset | 1926 | fun binary_proc proc ctxt ct = | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1927 | (case Thm.term_of ct of | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1928 | _ $ t $ u => | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1929 | (case try (pairself (`(snd o HOLogic.dest_number))) (t, u) of | 
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51299diff
changeset | 1930 | SOME args => proc ctxt args | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1931 | | NONE => NONE) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1932 | | _ => NONE); | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1933 | in | 
| 45530 
0c4853bb77bf
rewrite integer numeral div/mod simprocs to not return conditional rewrites; add regression tests
 huffman parents: 
45231diff
changeset | 1934 | fun divmod_proc posrule negrule = | 
| 
0c4853bb77bf
rewrite integer numeral div/mod simprocs to not return conditional rewrites; add regression tests
 huffman parents: 
45231diff
changeset | 1935 | binary_proc (fn ctxt => fn ((a, t), (b, u)) => | 
| 
0c4853bb77bf
rewrite integer numeral div/mod simprocs to not return conditional rewrites; add regression tests
 huffman parents: 
45231diff
changeset | 1936 | if b = 0 then NONE else let | 
| 
0c4853bb77bf
rewrite integer numeral div/mod simprocs to not return conditional rewrites; add regression tests
 huffman parents: 
45231diff
changeset | 1937 | val (q, r) = pairself mk_number (Integer.div_mod a b) | 
| 
0c4853bb77bf
rewrite integer numeral div/mod simprocs to not return conditional rewrites; add regression tests
 huffman parents: 
45231diff
changeset | 1938 | val goal1 = HOLogic.mk_eq (t, plus $ (times $ u $ q) $ r) | 
| 
0c4853bb77bf
rewrite integer numeral div/mod simprocs to not return conditional rewrites; add regression tests
 huffman parents: 
45231diff
changeset | 1939 | val (goal2, goal3, rule) = if b > 0 | 
| 
0c4853bb77bf
rewrite integer numeral div/mod simprocs to not return conditional rewrites; add regression tests
 huffman parents: 
45231diff
changeset | 1940 | then (le $ zero $ r, less $ r $ u, posrule RS eq_reflection) | 
| 
0c4853bb77bf
rewrite integer numeral div/mod simprocs to not return conditional rewrites; add regression tests
 huffman parents: 
45231diff
changeset | 1941 | else (le $ r $ zero, less $ u $ r, negrule RS eq_reflection) | 
| 
0c4853bb77bf
rewrite integer numeral div/mod simprocs to not return conditional rewrites; add regression tests
 huffman parents: 
45231diff
changeset | 1942 | in SOME (rule OF map (prove ctxt) [goal1, goal2, goal3]) end) | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1943 | end | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1944 | *} | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1945 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 1946 | simproc_setup binary_int_div | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 1947 |   ("numeral m div numeral n :: int" |
 | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 1948 | "numeral m div neg_numeral n :: int" | | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 1949 | "neg_numeral m div numeral n :: int" | | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 1950 | "neg_numeral m div neg_numeral n :: int") = | 
| 45530 
0c4853bb77bf
rewrite integer numeral div/mod simprocs to not return conditional rewrites; add regression tests
 huffman parents: 
45231diff
changeset | 1951 |   {* K (divmod_proc @{thm int_div_pos_eq} @{thm int_div_neg_eq}) *}
 | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1952 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 1953 | simproc_setup binary_int_mod | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 1954 |   ("numeral m mod numeral n :: int" |
 | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 1955 | "numeral m mod neg_numeral n :: int" | | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 1956 | "neg_numeral m mod numeral n :: int" | | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 1957 | "neg_numeral m mod neg_numeral n :: int") = | 
| 45530 
0c4853bb77bf
rewrite integer numeral div/mod simprocs to not return conditional rewrites; add regression tests
 huffman parents: 
45231diff
changeset | 1958 |   {* K (divmod_proc @{thm int_mod_pos_eq} @{thm int_mod_neg_eq}) *}
 | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1959 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 1960 | lemmas posDivAlg_eqn_numeral [simp] = | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 1961 | posDivAlg_eqn [of "numeral v" "numeral w", OF zero_less_numeral] for v w | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 1962 | |
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 1963 | lemmas negDivAlg_eqn_numeral [simp] = | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 1964 | negDivAlg_eqn [of "numeral v" "neg_numeral w", OF zero_less_numeral] for v w | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1965 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1966 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1967 | text{*Special-case simplification *}
 | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1968 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1969 | (** The last remaining special cases for constant arithmetic: | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1970 | 1 div z and 1 mod z **) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1971 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 1972 | lemmas div_pos_pos_1_numeral [simp] = | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 1973 | div_pos_pos [OF zero_less_one, of "numeral w", OF zero_le_numeral] for w | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 1974 | |
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 1975 | lemmas div_pos_neg_1_numeral [simp] = | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 1976 | div_pos_neg [OF zero_less_one, of "neg_numeral w", | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 1977 | OF neg_numeral_less_zero] for w | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 1978 | |
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 1979 | lemmas mod_pos_pos_1_numeral [simp] = | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 1980 | mod_pos_pos [OF zero_less_one, of "numeral w", OF zero_le_numeral] for w | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 1981 | |
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 1982 | lemmas mod_pos_neg_1_numeral [simp] = | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 1983 | mod_pos_neg [OF zero_less_one, of "neg_numeral w", | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 1984 | OF neg_numeral_less_zero] for w | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 1985 | |
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 1986 | lemmas posDivAlg_eqn_1_numeral [simp] = | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 1987 | posDivAlg_eqn [of concl: 1 "numeral w", OF zero_less_numeral] for w | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 1988 | |
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 1989 | lemmas negDivAlg_eqn_1_numeral [simp] = | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 1990 | negDivAlg_eqn [of concl: 1 "numeral w", OF zero_less_numeral] for w | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1991 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1992 | |
| 46551 
866bce5442a3
simplify projections on simultaneous computations of div and mod; tuned structure (from Florian Haftmann)
 huffman parents: 
46026diff
changeset | 1993 | subsubsection {* Monotonicity in the First Argument (Dividend) *}
 | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1994 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1995 | lemma zdiv_mono1: "[| a \<le> a'; 0 < (b::int) |] ==> a div b \<le> a' div b" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1996 | apply (cut_tac a = a and b = b in zmod_zdiv_equality) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1997 | apply (cut_tac a = a' and b = b in zmod_zdiv_equality) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1998 | apply (rule unique_quotient_lemma) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 1999 | apply (erule subst) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2000 | apply (erule subst, simp_all) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2001 | done | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2002 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2003 | lemma zdiv_mono1_neg: "[| a \<le> a'; (b::int) < 0 |] ==> a' div b \<le> a div b" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2004 | apply (cut_tac a = a and b = b in zmod_zdiv_equality) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2005 | apply (cut_tac a = a' and b = b in zmod_zdiv_equality) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2006 | apply (rule unique_quotient_lemma_neg) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2007 | apply (erule subst) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2008 | apply (erule subst, simp_all) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2009 | done | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2010 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2011 | |
| 46551 
866bce5442a3
simplify projections on simultaneous computations of div and mod; tuned structure (from Florian Haftmann)
 huffman parents: 
46026diff
changeset | 2012 | subsubsection {* Monotonicity in the Second Argument (Divisor) *}
 | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2013 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2014 | lemma q_pos_lemma: | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2015 | "[| 0 \<le> b'*q' + r'; r' < b'; 0 < b' |] ==> 0 \<le> (q'::int)" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2016 | apply (subgoal_tac "0 < b'* (q' + 1) ") | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2017 | apply (simp add: zero_less_mult_iff) | 
| 49962 
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
 webertj parents: 
48891diff
changeset | 2018 | apply (simp add: distrib_left) | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2019 | done | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2020 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2021 | lemma zdiv_mono2_lemma: | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2022 | "[| b*q + r = b'*q' + r'; 0 \<le> b'*q' + r'; | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2023 | r' < b'; 0 \<le> r; 0 < b'; b' \<le> b |] | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2024 | ==> q \<le> (q'::int)" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2025 | apply (frule q_pos_lemma, assumption+) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2026 | apply (subgoal_tac "b*q < b* (q' + 1) ") | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2027 | apply (simp add: mult_less_cancel_left) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2028 | apply (subgoal_tac "b*q = r' - r + b'*q'") | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2029 | prefer 2 apply simp | 
| 49962 
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
 webertj parents: 
48891diff
changeset | 2030 | apply (simp (no_asm_simp) add: distrib_left) | 
| 44766 | 2031 | apply (subst add_commute, rule add_less_le_mono, arith) | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2032 | apply (rule mult_right_mono, auto) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2033 | done | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2034 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2035 | lemma zdiv_mono2: | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2036 | "[| (0::int) \<le> a; 0 < b'; b' \<le> b |] ==> a div b \<le> a div b'" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2037 | apply (subgoal_tac "b \<noteq> 0") | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2038 | prefer 2 apply arith | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2039 | apply (cut_tac a = a and b = b in zmod_zdiv_equality) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2040 | apply (cut_tac a = a and b = b' in zmod_zdiv_equality) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2041 | apply (rule zdiv_mono2_lemma) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2042 | apply (erule subst) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2043 | apply (erule subst, simp_all) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2044 | done | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2045 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2046 | lemma q_neg_lemma: | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2047 | "[| b'*q' + r' < 0; 0 \<le> r'; 0 < b' |] ==> q' \<le> (0::int)" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2048 | apply (subgoal_tac "b'*q' < 0") | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2049 | apply (simp add: mult_less_0_iff, arith) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2050 | done | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2051 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2052 | lemma zdiv_mono2_neg_lemma: | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2053 | "[| b*q + r = b'*q' + r'; b'*q' + r' < 0; | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2054 | r < b; 0 \<le> r'; 0 < b'; b' \<le> b |] | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2055 | ==> q' \<le> (q::int)" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2056 | apply (frule q_neg_lemma, assumption+) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2057 | apply (subgoal_tac "b*q' < b* (q + 1) ") | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2058 | apply (simp add: mult_less_cancel_left) | 
| 49962 
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
 webertj parents: 
48891diff
changeset | 2059 | apply (simp add: distrib_left) | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2060 | apply (subgoal_tac "b*q' \<le> b'*q'") | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2061 | prefer 2 apply (simp add: mult_right_mono_neg, arith) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2062 | done | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2063 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2064 | lemma zdiv_mono2_neg: | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2065 | "[| a < (0::int); 0 < b'; b' \<le> b |] ==> a div b' \<le> a div b" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2066 | apply (cut_tac a = a and b = b in zmod_zdiv_equality) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2067 | apply (cut_tac a = a and b = b' in zmod_zdiv_equality) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2068 | apply (rule zdiv_mono2_neg_lemma) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2069 | apply (erule subst) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2070 | apply (erule subst, simp_all) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2071 | done | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2072 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2073 | |
| 46551 
866bce5442a3
simplify projections on simultaneous computations of div and mod; tuned structure (from Florian Haftmann)
 huffman parents: 
46026diff
changeset | 2074 | subsubsection {* More Algebraic Laws for div and mod *}
 | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2075 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2076 | text{*proving (a*b) div c = a * (b div c) + a * (b mod c) *}
 | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2077 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2078 | lemma zmult1_lemma: | 
| 46552 | 2079 | "[| divmod_int_rel b c (q, r) |] | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2080 | ==> divmod_int_rel (a * b) c (a*q + a*r div c, a*r mod c)" | 
| 49962 
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
 webertj parents: 
48891diff
changeset | 2081 | by (auto simp add: split_ifs divmod_int_rel_def linorder_neq_iff distrib_left mult_ac) | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2082 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2083 | lemma zdiv_zmult1_eq: "(a*b) div c = a*(b div c) + a*(b mod c) div (c::int)" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2084 | apply (case_tac "c = 0", simp) | 
| 47140 
97c3676c5c94
rename lemmas {divmod_int_rel_{div,mod} -> {div,mod}_int_unique, for consistency with nat lemma names
 huffman parents: 
47139diff
changeset | 2085 | apply (blast intro: divmod_int_rel_div_mod [THEN zmult1_lemma, THEN div_int_unique]) | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2086 | done | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2087 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2088 | text{*proving (a+b) div c = a div c + b div c + ((a mod c + b mod c) div c) *}
 | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2089 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2090 | lemma zadd1_lemma: | 
| 46552 | 2091 | "[| divmod_int_rel a c (aq, ar); divmod_int_rel b c (bq, br) |] | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2092 | ==> divmod_int_rel (a+b) c (aq + bq + (ar+br) div c, (ar+br) mod c)" | 
| 49962 
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
 webertj parents: 
48891diff
changeset | 2093 | by (force simp add: split_ifs divmod_int_rel_def linorder_neq_iff distrib_left) | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2094 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2095 | (*NOT suitable for rewriting: the RHS has an instance of the LHS*) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2096 | lemma zdiv_zadd1_eq: | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2097 | "(a+b) div (c::int) = a div c + b div c + ((a mod c + b mod c) div c)" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2098 | apply (case_tac "c = 0", simp) | 
| 47140 
97c3676c5c94
rename lemmas {divmod_int_rel_{div,mod} -> {div,mod}_int_unique, for consistency with nat lemma names
 huffman parents: 
47139diff
changeset | 2099 | apply (blast intro: zadd1_lemma [OF divmod_int_rel_div_mod divmod_int_rel_div_mod] div_int_unique) | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2100 | done | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2101 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2102 | lemma posDivAlg_div_mod: | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2103 | assumes "k \<ge> 0" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2104 | and "l \<ge> 0" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2105 | shows "posDivAlg k l = (k div l, k mod l)" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2106 | proof (cases "l = 0") | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2107 | case True then show ?thesis by (simp add: posDivAlg.simps) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2108 | next | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2109 | case False with assms posDivAlg_correct | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2110 | have "divmod_int_rel k l (fst (posDivAlg k l), snd (posDivAlg k l))" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2111 | by simp | 
| 47140 
97c3676c5c94
rename lemmas {divmod_int_rel_{div,mod} -> {div,mod}_int_unique, for consistency with nat lemma names
 huffman parents: 
47139diff
changeset | 2112 | from div_int_unique [OF this] mod_int_unique [OF this] | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2113 | show ?thesis by simp | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2114 | qed | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2115 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2116 | lemma negDivAlg_div_mod: | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2117 | assumes "k < 0" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2118 | and "l > 0" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2119 | shows "negDivAlg k l = (k div l, k mod l)" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2120 | proof - | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2121 | from assms have "l \<noteq> 0" by simp | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2122 | from assms negDivAlg_correct | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2123 | have "divmod_int_rel k l (fst (negDivAlg k l), snd (negDivAlg k l))" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2124 | by simp | 
| 47140 
97c3676c5c94
rename lemmas {divmod_int_rel_{div,mod} -> {div,mod}_int_unique, for consistency with nat lemma names
 huffman parents: 
47139diff
changeset | 2125 | from div_int_unique [OF this] mod_int_unique [OF this] | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2126 | show ?thesis by simp | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2127 | qed | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2128 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2129 | lemma zmod_eq_0_iff: "(m mod d = 0) = (EX q::int. m = d*q)" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2130 | by (simp add: dvd_eq_mod_eq_0 [symmetric] dvd_def) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2131 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2132 | (* REVISIT: should this be generalized to all semiring_div types? *) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2133 | lemmas zmod_eq_0D [dest!] = zmod_eq_0_iff [THEN iffD1] | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2134 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 2135 | lemma zmod_zdiv_equality': | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 2136 | "(m\<Colon>int) mod n = m - (m div n) * n" | 
| 47141 
02d6b816e4b3
move int::ring_div instance upward, simplify several proofs
 huffman parents: 
47140diff
changeset | 2137 | using mod_div_equality [of m n] by arith | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 2138 | |
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2139 | |
| 46551 
866bce5442a3
simplify projections on simultaneous computations of div and mod; tuned structure (from Florian Haftmann)
 huffman parents: 
46026diff
changeset | 2140 | subsubsection {* Proving  @{term "a div (b*c) = (a div b) div c"} *}
 | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2141 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2142 | (*The condition c>0 seems necessary. Consider that 7 div ~6 = ~2 but | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2143 | 7 div 2 div ~3 = 3 div ~3 = ~1. The subcase (a div b) mod c = 0 seems | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2144 | to cause particular problems.*) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2145 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2146 | text{*first, four lemmas to bound the remainder for the cases b<0 and b>0 *}
 | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2147 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2148 | lemma zmult2_lemma_aux1: "[| (0::int) < c; b < r; r \<le> 0 |] ==> b*c < b*(q mod c) + r" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2149 | apply (subgoal_tac "b * (c - q mod c) < r * 1") | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2150 | apply (simp add: algebra_simps) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2151 | apply (rule order_le_less_trans) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2152 | apply (erule_tac [2] mult_strict_right_mono) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2153 | apply (rule mult_left_mono_neg) | 
| 35216 | 2154 | using add1_zle_eq[of "q mod c"]apply(simp add: algebra_simps) | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2155 | apply (simp) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2156 | apply (simp) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2157 | done | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2158 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2159 | lemma zmult2_lemma_aux2: | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2160 | "[| (0::int) < c; b < r; r \<le> 0 |] ==> b * (q mod c) + r \<le> 0" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2161 | apply (subgoal_tac "b * (q mod c) \<le> 0") | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2162 | apply arith | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2163 | apply (simp add: mult_le_0_iff) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2164 | done | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2165 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2166 | lemma zmult2_lemma_aux3: "[| (0::int) < c; 0 \<le> r; r < b |] ==> 0 \<le> b * (q mod c) + r" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2167 | apply (subgoal_tac "0 \<le> b * (q mod c) ") | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2168 | apply arith | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2169 | apply (simp add: zero_le_mult_iff) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2170 | done | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2171 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2172 | lemma zmult2_lemma_aux4: "[| (0::int) < c; 0 \<le> r; r < b |] ==> b * (q mod c) + r < b * c" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2173 | apply (subgoal_tac "r * 1 < b * (c - q mod c) ") | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2174 | apply (simp add: right_diff_distrib) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2175 | apply (rule order_less_le_trans) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2176 | apply (erule mult_strict_right_mono) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2177 | apply (rule_tac [2] mult_left_mono) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2178 | apply simp | 
| 35216 | 2179 | using add1_zle_eq[of "q mod c"] apply (simp add: algebra_simps) | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2180 | apply simp | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2181 | done | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2182 | |
| 46552 | 2183 | lemma zmult2_lemma: "[| divmod_int_rel a b (q, r); 0 < c |] | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2184 | ==> divmod_int_rel a (b * c) (q div c, b*(q mod c) + r)" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2185 | by (auto simp add: mult_ac divmod_int_rel_def linorder_neq_iff | 
| 49962 
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
 webertj parents: 
48891diff
changeset | 2186 | zero_less_mult_iff distrib_left [symmetric] | 
| 47139 
98bddfa0f717
extend definition of divmod_int_rel to handle denominator=0 case
 huffman parents: 
47138diff
changeset | 2187 | zmult2_lemma_aux1 zmult2_lemma_aux2 zmult2_lemma_aux3 zmult2_lemma_aux4 mult_less_0_iff split: split_if_asm) | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2188 | |
| 53068 | 2189 | lemma zdiv_zmult2_eq: | 
| 2190 | fixes a b c :: int | |
| 2191 | shows "0 \<le> c \<Longrightarrow> a div (b * c) = (a div b) div c" | |
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2192 | apply (case_tac "b = 0", simp) | 
| 53068 | 2193 | apply (force simp add: le_less divmod_int_rel_div_mod [THEN zmult2_lemma, THEN div_int_unique]) | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2194 | done | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2195 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2196 | lemma zmod_zmult2_eq: | 
| 53068 | 2197 | fixes a b c :: int | 
| 2198 | shows "0 \<le> c \<Longrightarrow> a mod (b * c) = b * (a div b mod c) + a mod b" | |
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2199 | apply (case_tac "b = 0", simp) | 
| 53068 | 2200 | apply (force simp add: le_less divmod_int_rel_div_mod [THEN zmult2_lemma, THEN mod_int_unique]) | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2201 | done | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2202 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 2203 | lemma div_pos_geq: | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 2204 | fixes k l :: int | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 2205 | assumes "0 < l" and "l \<le> k" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 2206 | shows "k div l = (k - l) div l + 1" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 2207 | proof - | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 2208 | have "k = (k - l) + l" by simp | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 2209 | then obtain j where k: "k = j + l" .. | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 2210 | with assms show ?thesis by simp | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 2211 | qed | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 2212 | |
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 2213 | lemma mod_pos_geq: | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 2214 | fixes k l :: int | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 2215 | assumes "0 < l" and "l \<le> k" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 2216 | shows "k mod l = (k - l) mod l" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 2217 | proof - | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 2218 | have "k = (k - l) + l" by simp | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 2219 | then obtain j where k: "k = j + l" .. | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 2220 | with assms show ?thesis by simp | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 2221 | qed | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 2222 | |
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2223 | |
| 46551 
866bce5442a3
simplify projections on simultaneous computations of div and mod; tuned structure (from Florian Haftmann)
 huffman parents: 
46026diff
changeset | 2224 | subsubsection {* Splitting Rules for div and mod *}
 | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2225 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2226 | text{*The proofs of the two lemmas below are essentially identical*}
 | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2227 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2228 | lemma split_pos_lemma: | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2229 | "0<k ==> | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2230 | P(n div k :: int)(n mod k) = (\<forall>i j. 0\<le>j & j<k & n = k*i + j --> P i j)" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2231 | apply (rule iffI, clarify) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2232 | apply (erule_tac P="P ?x ?y" in rev_mp) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2233 | apply (subst mod_add_eq) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2234 | apply (subst zdiv_zadd1_eq) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2235 | apply (simp add: div_pos_pos_trivial mod_pos_pos_trivial) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2236 | txt{*converse direction*}
 | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2237 | apply (drule_tac x = "n div k" in spec) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2238 | apply (drule_tac x = "n mod k" in spec, simp) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2239 | done | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2240 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2241 | lemma split_neg_lemma: | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2242 | "k<0 ==> | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2243 | P(n div k :: int)(n mod k) = (\<forall>i j. k<j & j\<le>0 & n = k*i + j --> P i j)" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2244 | apply (rule iffI, clarify) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2245 | apply (erule_tac P="P ?x ?y" in rev_mp) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2246 | apply (subst mod_add_eq) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2247 | apply (subst zdiv_zadd1_eq) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2248 | apply (simp add: div_neg_neg_trivial mod_neg_neg_trivial) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2249 | txt{*converse direction*}
 | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2250 | apply (drule_tac x = "n div k" in spec) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2251 | apply (drule_tac x = "n mod k" in spec, simp) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2252 | done | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2253 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2254 | lemma split_zdiv: | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2255 | "P(n div k :: int) = | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2256 | ((k = 0 --> P 0) & | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2257 | (0<k --> (\<forall>i j. 0\<le>j & j<k & n = k*i + j --> P i)) & | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2258 | (k<0 --> (\<forall>i j. k<j & j\<le>0 & n = k*i + j --> P i)))" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2259 | apply (case_tac "k=0", simp) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2260 | apply (simp only: linorder_neq_iff) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2261 | apply (erule disjE) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2262 | apply (simp_all add: split_pos_lemma [of concl: "%x y. P x"] | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2263 | split_neg_lemma [of concl: "%x y. P x"]) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2264 | done | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2265 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2266 | lemma split_zmod: | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2267 | "P(n mod k :: int) = | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2268 | ((k = 0 --> P n) & | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2269 | (0<k --> (\<forall>i j. 0\<le>j & j<k & n = k*i + j --> P j)) & | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2270 | (k<0 --> (\<forall>i j. k<j & j\<le>0 & n = k*i + j --> P j)))" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2271 | apply (case_tac "k=0", simp) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2272 | apply (simp only: linorder_neq_iff) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2273 | apply (erule disjE) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2274 | apply (simp_all add: split_pos_lemma [of concl: "%x y. P y"] | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2275 | split_neg_lemma [of concl: "%x y. P y"]) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2276 | done | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2277 | |
| 33730 
1755ca4ec022
Fixed splitting of div and mod on integers (split theorem differed from implementation).
 webertj parents: 
33728diff
changeset | 2278 | text {* Enable (lin)arith to deal with @{const div} and @{const mod}
 | 
| 
1755ca4ec022
Fixed splitting of div and mod on integers (split theorem differed from implementation).
 webertj parents: 
33728diff
changeset | 2279 | when these are applied to some constant that is of the form | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 2280 |   @{term "numeral k"}: *}
 | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 2281 | declare split_zdiv [of _ _ "numeral k", arith_split] for k | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 2282 | declare split_zmod [of _ _ "numeral k", arith_split] for k | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2283 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2284 | |
| 47166 | 2285 | subsubsection {* Computing @{text "div"} and @{text "mod"} with shifting *}
 | 
| 2286 | ||
| 2287 | lemma pos_divmod_int_rel_mult_2: | |
| 2288 | assumes "0 \<le> b" | |
| 2289 | assumes "divmod_int_rel a b (q, r)" | |
| 2290 | shows "divmod_int_rel (1 + 2*a) (2*b) (q, 1 + 2*r)" | |
| 2291 | using assms unfolding divmod_int_rel_def by auto | |
| 2292 | ||
| 2293 | lemma neg_divmod_int_rel_mult_2: | |
| 2294 | assumes "b \<le> 0" | |
| 2295 | assumes "divmod_int_rel (a + 1) b (q, r)" | |
| 2296 | shows "divmod_int_rel (1 + 2*a) (2*b) (q, 2*r - 1)" | |
| 2297 | using assms unfolding divmod_int_rel_def by auto | |
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2298 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2299 | text{*computing div by shifting *}
 | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2300 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2301 | lemma pos_zdiv_mult_2: "(0::int) \<le> a ==> (1 + 2*b) div (2*a) = b div a" | 
| 47166 | 2302 | using pos_divmod_int_rel_mult_2 [OF _ divmod_int_rel_div_mod] | 
| 2303 | by (rule div_int_unique) | |
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2304 | |
| 35815 
10e723e54076
tuned proofs (to avoid linarith error message caused by bootstrapping of HOL)
 boehmes parents: 
35673diff
changeset | 2305 | lemma neg_zdiv_mult_2: | 
| 
10e723e54076
tuned proofs (to avoid linarith error message caused by bootstrapping of HOL)
 boehmes parents: 
35673diff
changeset | 2306 | assumes A: "a \<le> (0::int)" shows "(1 + 2*b) div (2*a) = (b+1) div a" | 
| 47166 | 2307 | using neg_divmod_int_rel_mult_2 [OF A divmod_int_rel_div_mod] | 
| 2308 | by (rule div_int_unique) | |
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2309 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 2310 | (* FIXME: add rules for negative numerals *) | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 2311 | lemma zdiv_numeral_Bit0 [simp]: | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 2312 | "numeral (Num.Bit0 v) div numeral (Num.Bit0 w) = | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 2313 | numeral v div (numeral w :: int)" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 2314 | unfolding numeral.simps unfolding mult_2 [symmetric] | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 2315 | by (rule div_mult_mult1, simp) | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 2316 | |
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 2317 | lemma zdiv_numeral_Bit1 [simp]: | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 2318 | "numeral (Num.Bit1 v) div numeral (Num.Bit0 w) = | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 2319 | (numeral v div (numeral w :: int))" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 2320 | unfolding numeral.simps | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 2321 | unfolding mult_2 [symmetric] add_commute [of _ 1] | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 2322 | by (rule pos_zdiv_mult_2, simp) | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2323 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2324 | lemma pos_zmod_mult_2: | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2325 | fixes a b :: int | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2326 | assumes "0 \<le> a" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2327 | shows "(1 + 2 * b) mod (2 * a) = 1 + 2 * (b mod a)" | 
| 47166 | 2328 | using pos_divmod_int_rel_mult_2 [OF assms divmod_int_rel_div_mod] | 
| 2329 | by (rule mod_int_unique) | |
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2330 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2331 | lemma neg_zmod_mult_2: | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2332 | fixes a b :: int | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2333 | assumes "a \<le> 0" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2334 | shows "(1 + 2 * b) mod (2 * a) = 2 * ((b + 1) mod a) - 1" | 
| 47166 | 2335 | using neg_divmod_int_rel_mult_2 [OF assms divmod_int_rel_div_mod] | 
| 2336 | by (rule mod_int_unique) | |
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2337 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 2338 | (* FIXME: add rules for negative numerals *) | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 2339 | lemma zmod_numeral_Bit0 [simp]: | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 2340 | "numeral (Num.Bit0 v) mod numeral (Num.Bit0 w) = | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 2341 | (2::int) * (numeral v mod numeral w)" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 2342 | unfolding numeral_Bit0 [of v] numeral_Bit0 [of w] | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 2343 | unfolding mult_2 [symmetric] by (rule mod_mult_mult1) | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 2344 | |
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 2345 | lemma zmod_numeral_Bit1 [simp]: | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 2346 | "numeral (Num.Bit1 v) mod numeral (Num.Bit0 w) = | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 2347 | 2 * (numeral v mod numeral w) + (1::int)" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 2348 | unfolding numeral_Bit1 [of v] numeral_Bit0 [of w] | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 2349 | unfolding mult_2 [symmetric] add_commute [of _ 1] | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 2350 | by (rule pos_zmod_mult_2, simp) | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2351 | |
| 39489 | 2352 | lemma zdiv_eq_0_iff: | 
| 2353 | "(i::int) div k = 0 \<longleftrightarrow> k=0 \<or> 0\<le>i \<and> i<k \<or> i\<le>0 \<and> k<i" (is "?L = ?R") | |
| 2354 | proof | |
| 2355 | assume ?L | |
| 2356 | have "?L \<longrightarrow> ?R" by (rule split_zdiv[THEN iffD2]) simp | |
| 2357 | with `?L` show ?R by blast | |
| 2358 | next | |
| 2359 | assume ?R thus ?L | |
| 2360 | by(auto simp: div_pos_pos_trivial div_neg_neg_trivial) | |
| 2361 | qed | |
| 2362 | ||
| 2363 | ||
| 46551 
866bce5442a3
simplify projections on simultaneous computations of div and mod; tuned structure (from Florian Haftmann)
 huffman parents: 
46026diff
changeset | 2364 | subsubsection {* Quotients of Signs *}
 | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2365 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2366 | lemma div_neg_pos_less0: "[| a < (0::int); 0 < b |] ==> a div b < 0" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2367 | apply (subgoal_tac "a div b \<le> -1", force) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2368 | apply (rule order_trans) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2369 | apply (rule_tac a' = "-1" in zdiv_mono1) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2370 | apply (auto simp add: div_eq_minus1) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2371 | done | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2372 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2373 | lemma div_nonneg_neg_le0: "[| (0::int) \<le> a; b < 0 |] ==> a div b \<le> 0" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2374 | by (drule zdiv_mono1_neg, auto) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2375 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2376 | lemma div_nonpos_pos_le0: "[| (a::int) \<le> 0; b > 0 |] ==> a div b \<le> 0" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2377 | by (drule zdiv_mono1, auto) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2378 | |
| 33804 | 2379 | text{* Now for some equivalences of the form @{text"a div b >=< 0 \<longleftrightarrow> \<dots>"}
 | 
| 2380 | conditional upon the sign of @{text a} or @{text b}. There are many more.
 | |
| 2381 | They should all be simp rules unless that causes too much search. *} | |
| 2382 | ||
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2383 | lemma pos_imp_zdiv_nonneg_iff: "(0::int) < b ==> (0 \<le> a div b) = (0 \<le> a)" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2384 | apply auto | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2385 | apply (drule_tac [2] zdiv_mono1) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2386 | apply (auto simp add: linorder_neq_iff) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2387 | apply (simp (no_asm_use) add: linorder_not_less [symmetric]) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2388 | apply (blast intro: div_neg_pos_less0) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2389 | done | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2390 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2391 | lemma neg_imp_zdiv_nonneg_iff: | 
| 33804 | 2392 | "b < (0::int) ==> (0 \<le> a div b) = (a \<le> (0::int))" | 
| 47159 | 2393 | apply (subst div_minus_minus [symmetric]) | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2394 | apply (subst pos_imp_zdiv_nonneg_iff, auto) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2395 | done | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2396 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2397 | (*But not (a div b \<le> 0 iff a\<le>0); consider a=1, b=2 when a div b = 0.*) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2398 | lemma pos_imp_zdiv_neg_iff: "(0::int) < b ==> (a div b < 0) = (a < 0)" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2399 | by (simp add: linorder_not_le [symmetric] pos_imp_zdiv_nonneg_iff) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2400 | |
| 39489 | 2401 | lemma pos_imp_zdiv_pos_iff: | 
| 2402 | "0<k \<Longrightarrow> 0 < (i::int) div k \<longleftrightarrow> k \<le> i" | |
| 2403 | using pos_imp_zdiv_nonneg_iff[of k i] zdiv_eq_0_iff[of i k] | |
| 2404 | by arith | |
| 2405 | ||
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2406 | (*Again the law fails for \<le>: consider a = -1, b = -2 when a div b = 0*) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2407 | lemma neg_imp_zdiv_neg_iff: "b < (0::int) ==> (a div b < 0) = (0 < a)" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2408 | by (simp add: linorder_not_le [symmetric] neg_imp_zdiv_nonneg_iff) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2409 | |
| 33804 | 2410 | lemma nonneg1_imp_zdiv_pos_iff: | 
| 2411 | "(0::int) <= a \<Longrightarrow> (a div b > 0) = (a >= b & b>0)" | |
| 2412 | apply rule | |
| 2413 | apply rule | |
| 2414 | using div_pos_pos_trivial[of a b]apply arith | |
| 2415 | apply(cases "b=0")apply simp | |
| 2416 | using div_nonneg_neg_le0[of a b]apply arith | |
| 2417 | using int_one_le_iff_zero_less[of "a div b"] zdiv_mono1[of b a b]apply simp | |
| 2418 | done | |
| 2419 | ||
| 39489 | 2420 | lemma zmod_le_nonneg_dividend: "(m::int) \<ge> 0 ==> m mod k \<le> m" | 
| 2421 | apply (rule split_zmod[THEN iffD2]) | |
| 44890 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 nipkow parents: 
44766diff
changeset | 2422 | apply(fastforce dest: q_pos_lemma intro: split_mult_pos_le) | 
| 39489 | 2423 | done | 
| 2424 | ||
| 2425 | ||
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2426 | subsubsection {* The Divides Relation *}
 | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2427 | |
| 47268 | 2428 | lemma dvd_neg_numeral_left [simp]: | 
| 2429 | fixes y :: "'a::comm_ring_1" | |
| 2430 | shows "(neg_numeral k) dvd y \<longleftrightarrow> (numeral k) dvd y" | |
| 2431 | unfolding neg_numeral_def minus_dvd_iff .. | |
| 2432 | ||
| 2433 | lemma dvd_neg_numeral_right [simp]: | |
| 2434 | fixes x :: "'a::comm_ring_1" | |
| 2435 | shows "x dvd (neg_numeral k) \<longleftrightarrow> x dvd (numeral k)" | |
| 2436 | unfolding neg_numeral_def dvd_minus_iff .. | |
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2437 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 2438 | lemmas dvd_eq_mod_eq_0_numeral [simp] = | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 2439 | dvd_eq_mod_eq_0 [of "numeral x" "numeral y"] for x y | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 2440 | |
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 2441 | |
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 2442 | subsubsection {* Further properties *}
 | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 2443 | |
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2444 | lemma zmult_div_cancel: "(n::int) * (m div n) = m - (m mod n)" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2445 | using zmod_zdiv_equality[where a="m" and b="n"] | 
| 47142 | 2446 | by (simp add: algebra_simps) (* FIXME: generalize *) | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2447 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2448 | lemma zdiv_int: "int (a div b) = (int a) div (int b)" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2449 | apply (subst split_div, auto) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2450 | apply (subst split_zdiv, auto) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2451 | apply (rule_tac a="int (b * i) + int j" and b="int b" and r="int j" and r'=ja in unique_quotient) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2452 | apply (auto simp add: divmod_int_rel_def of_nat_mult) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2453 | done | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2454 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2455 | lemma zmod_int: "int (a mod b) = (int a) mod (int b)" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2456 | apply (subst split_mod, auto) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2457 | apply (subst split_zmod, auto) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2458 | apply (rule_tac a="int (b * i) + int j" and b="int b" and q="int i" and q'=ia | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2459 | in unique_remainder) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2460 | apply (auto simp add: divmod_int_rel_def of_nat_mult) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2461 | done | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2462 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2463 | lemma abs_div: "(y::int) dvd x \<Longrightarrow> abs (x div y) = abs x div abs y" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2464 | by (unfold dvd_def, cases "y=0", auto simp add: abs_mult) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2465 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2466 | text{*Suggested by Matthias Daum*}
 | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2467 | lemma int_power_div_base: | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2468 | "\<lbrakk>0 < m; 0 < k\<rbrakk> \<Longrightarrow> k ^ m div k = (k::int) ^ (m - Suc 0)" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2469 | apply (subgoal_tac "k ^ m = k ^ ((m - Suc 0) + Suc 0)") | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2470 | apply (erule ssubst) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2471 | apply (simp only: power_add) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2472 | apply simp_all | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2473 | done | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2474 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2475 | text {* by Brian Huffman *}
 | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2476 | lemma zminus_zmod: "- ((x::int) mod m) mod m = - x mod m" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2477 | by (rule mod_minus_eq [symmetric]) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2478 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2479 | lemma zdiff_zmod_left: "(x mod m - y) mod m = (x - y) mod (m::int)" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2480 | by (rule mod_diff_left_eq [symmetric]) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2481 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2482 | lemma zdiff_zmod_right: "(x - y mod m) mod m = (x - y) mod (m::int)" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2483 | by (rule mod_diff_right_eq [symmetric]) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2484 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2485 | lemmas zmod_simps = | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2486 | mod_add_left_eq [symmetric] | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2487 | mod_add_right_eq [symmetric] | 
| 47142 | 2488 | mod_mult_right_eq[symmetric] | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2489 | mod_mult_left_eq [symmetric] | 
| 47164 | 2490 | power_mod | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2491 | zminus_zmod zdiff_zmod_left zdiff_zmod_right | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2492 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2493 | text {* Distributive laws for function @{text nat}. *}
 | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2494 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2495 | lemma nat_div_distrib: "0 \<le> x \<Longrightarrow> nat (x div y) = nat x div nat y" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2496 | apply (rule linorder_cases [of y 0]) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2497 | apply (simp add: div_nonneg_neg_le0) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2498 | apply simp | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2499 | apply (simp add: nat_eq_iff pos_imp_zdiv_nonneg_iff zdiv_int) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2500 | done | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2501 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2502 | (*Fails if y<0: the LHS collapses to (nat z) but the RHS doesn't*) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2503 | lemma nat_mod_distrib: | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2504 | "\<lbrakk>0 \<le> x; 0 \<le> y\<rbrakk> \<Longrightarrow> nat (x mod y) = nat x mod nat y" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2505 | apply (case_tac "y = 0", simp) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2506 | apply (simp add: nat_eq_iff zmod_int) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2507 | done | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2508 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2509 | text  {* transfer setup *}
 | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2510 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2511 | lemma transfer_nat_int_functions: | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2512 | "(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> (nat x) div (nat y) = nat (x div y)" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2513 | "(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> (nat x) mod (nat y) = nat (x mod y)" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2514 | by (auto simp add: nat_div_distrib nat_mod_distrib) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2515 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2516 | lemma transfer_nat_int_function_closures: | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2517 | "(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> x div y >= 0" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2518 | "(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> x mod y >= 0" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2519 | apply (cases "y = 0") | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2520 | apply (auto simp add: pos_imp_zdiv_nonneg_iff) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2521 | apply (cases "y = 0") | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2522 | apply auto | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2523 | done | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2524 | |
| 35644 | 2525 | declare transfer_morphism_nat_int [transfer add return: | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2526 | transfer_nat_int_functions | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2527 | transfer_nat_int_function_closures | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2528 | ] | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2529 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2530 | lemma transfer_int_nat_functions: | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2531 | "(int x) div (int y) = int (x div y)" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2532 | "(int x) mod (int y) = int (x mod y)" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2533 | by (auto simp add: zdiv_int zmod_int) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2534 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2535 | lemma transfer_int_nat_function_closures: | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2536 | "is_nat x \<Longrightarrow> is_nat y \<Longrightarrow> is_nat (x div y)" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2537 | "is_nat x \<Longrightarrow> is_nat y \<Longrightarrow> is_nat (x mod y)" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2538 | by (simp_all only: is_nat_def transfer_nat_int_function_closures) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2539 | |
| 35644 | 2540 | declare transfer_morphism_int_nat [transfer add return: | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2541 | transfer_int_nat_functions | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2542 | transfer_int_nat_function_closures | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2543 | ] | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2544 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2545 | text{*Suggested by Matthias Daum*}
 | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2546 | lemma int_div_less_self: "\<lbrakk>0 < x; 1 < k\<rbrakk> \<Longrightarrow> x div k < (x::int)" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2547 | apply (subgoal_tac "nat x div nat k < nat x") | 
| 34225 | 2548 | apply (simp add: nat_div_distrib [symmetric]) | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2549 | apply (rule Divides.div_less_dividend, simp_all) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2550 | done | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2551 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2552 | lemma zmod_eq_dvd_iff: "(x::int) mod n = y mod n \<longleftrightarrow> n dvd x - y" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2553 | proof | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2554 | assume H: "x mod n = y mod n" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2555 | hence "x mod n - y mod n = 0" by simp | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2556 | hence "(x mod n - y mod n) mod n = 0" by simp | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2557 | hence "(x - y) mod n = 0" by (simp add: mod_diff_eq[symmetric]) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2558 | thus "n dvd x - y" by (simp add: dvd_eq_mod_eq_0) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2559 | next | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2560 | assume H: "n dvd x - y" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2561 | then obtain k where k: "x-y = n*k" unfolding dvd_def by blast | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2562 | hence "x = n*k + y" by simp | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2563 | hence "x mod n = (n*k + y) mod n" by simp | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2564 | thus "x mod n = y mod n" by (simp add: mod_add_left_eq) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2565 | qed | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2566 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2567 | lemma nat_mod_eq_lemma: assumes xyn: "(x::nat) mod n = y mod n" and xy:"y \<le> x" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2568 | shows "\<exists>q. x = y + n * q" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2569 | proof- | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2570 | from xy have th: "int x - int y = int (x - y)" by simp | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2571 | from xyn have "int x mod int n = int y mod int n" | 
| 46551 
866bce5442a3
simplify projections on simultaneous computations of div and mod; tuned structure (from Florian Haftmann)
 huffman parents: 
46026diff
changeset | 2572 | by (simp add: zmod_int [symmetric]) | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2573 | hence "int n dvd int x - int y" by (simp only: zmod_eq_dvd_iff[symmetric]) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2574 | hence "n dvd x - y" by (simp add: th zdvd_int) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2575 | then show ?thesis using xy unfolding dvd_def apply clarsimp apply (rule_tac x="k" in exI) by arith | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2576 | qed | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2577 | |
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2578 | lemma nat_mod_eq_iff: "(x::nat) mod n = y mod n \<longleftrightarrow> (\<exists>q1 q2. x + n * q1 = y + n * q2)" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2579 | (is "?lhs = ?rhs") | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2580 | proof | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2581 | assume H: "x mod n = y mod n" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2582 |   {assume xy: "x \<le> y"
 | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2583 | from H have th: "y mod n = x mod n" by simp | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2584 | from nat_mod_eq_lemma[OF th xy] have ?rhs | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2585 | apply clarify apply (rule_tac x="q" in exI) by (rule exI[where x="0"], simp)} | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2586 | moreover | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2587 |   {assume xy: "y \<le> x"
 | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2588 | from nat_mod_eq_lemma[OF H xy] have ?rhs | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2589 | apply clarify apply (rule_tac x="0" in exI) by (rule_tac x="q" in exI, simp)} | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2590 | ultimately show ?rhs using linear[of x y] by blast | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2591 | next | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2592 | assume ?rhs then obtain q1 q2 where q12: "x + n * q1 = y + n * q2" by blast | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2593 | hence "(x + n * q1) mod n = (y + n * q2) mod n" by simp | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2594 | thus ?lhs by simp | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2595 | qed | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2596 | |
| 53067 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 2597 | text {*
 | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 2598 | This re-embedding of natural division on integers goes back to the | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 2599 | time when numerals had been signed numerals. It should | 
| 53070 | 2600 |   now be replaced by the algorithm developed in @{class semiring_numeral_div}.  
 | 
| 53067 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 2601 | *} | 
| 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 2602 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 2603 | lemma div_nat_numeral [simp]: | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 2604 | "(numeral v :: nat) div numeral v' = nat (numeral v div numeral v')" | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2605 | by (simp add: nat_div_distrib) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2606 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 2607 | lemma one_div_nat_numeral [simp]: | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 2608 | "Suc 0 div numeral v' = nat (1 div numeral v')" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 2609 | by (subst nat_div_distrib, simp_all) | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 2610 | |
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 2611 | lemma mod_nat_numeral [simp]: | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 2612 | "(numeral v :: nat) mod numeral v' = nat (numeral v mod numeral v')" | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2613 | by (simp add: nat_mod_distrib) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2614 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 2615 | lemma one_mod_nat_numeral [simp]: | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 2616 | "Suc 0 mod numeral v' = nat (1 mod numeral v')" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 2617 | by (subst nat_mod_distrib) simp_all | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 2618 | |
| 53067 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 2619 | instance int :: semiring_numeral_div | 
| 53068 | 2620 | by intro_classes (auto intro: zmod_le_nonneg_dividend | 
| 2621 | simp add: zmult_div_cancel | |
| 2622 | pos_imp_zdiv_pos_iff div_pos_pos_trivial mod_pos_pos_trivial | |
| 2623 | zmod_zmult2_eq zdiv_zmult2_eq) | |
| 53067 
ee0b7c2315d2
type class for generic division algorithm on numerals
 haftmann parents: 
53066diff
changeset | 2624 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 2625 | |
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 2626 | subsubsection {* Tools setup *}
 | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 2627 | |
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 2628 | text {* Nitpick *}
 | 
| 34126 | 2629 | |
| 41792 
ff3cb0c418b7
renamed "nitpick\_def" to "nitpick_unfold" to reflect its new semantics
 blanchet parents: 
41550diff
changeset | 2630 | lemmas [nitpick_unfold] = dvd_eq_mod_eq_0 mod_div_equality' zmod_zdiv_equality' | 
| 34126 | 2631 | |
| 35673 | 2632 | |
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2633 | subsubsection {* Code generation *}
 | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2634 | |
| 53069 
d165213e3924
execution of int division by class semiring_numeral_div, replacing pdivmod by divmod_abs
 haftmann parents: 
53068diff
changeset | 2635 | definition divmod_abs :: "int \<Rightarrow> int \<Rightarrow> int \<times> int" | 
| 
d165213e3924
execution of int division by class semiring_numeral_div, replacing pdivmod by divmod_abs
 haftmann parents: 
53068diff
changeset | 2636 | where | 
| 
d165213e3924
execution of int division by class semiring_numeral_div, replacing pdivmod by divmod_abs
 haftmann parents: 
53068diff
changeset | 2637 | "divmod_abs k l = (\<bar>k\<bar> div \<bar>l\<bar>, \<bar>k\<bar> mod \<bar>l\<bar>)" | 
| 
d165213e3924
execution of int division by class semiring_numeral_div, replacing pdivmod by divmod_abs
 haftmann parents: 
53068diff
changeset | 2638 | |
| 
d165213e3924
execution of int division by class semiring_numeral_div, replacing pdivmod by divmod_abs
 haftmann parents: 
53068diff
changeset | 2639 | lemma fst_divmod_abs [simp]: | 
| 
d165213e3924
execution of int division by class semiring_numeral_div, replacing pdivmod by divmod_abs
 haftmann parents: 
53068diff
changeset | 2640 | "fst (divmod_abs k l) = \<bar>k\<bar> div \<bar>l\<bar>" | 
| 
d165213e3924
execution of int division by class semiring_numeral_div, replacing pdivmod by divmod_abs
 haftmann parents: 
53068diff
changeset | 2641 | by (simp add: divmod_abs_def) | 
| 
d165213e3924
execution of int division by class semiring_numeral_div, replacing pdivmod by divmod_abs
 haftmann parents: 
53068diff
changeset | 2642 | |
| 
d165213e3924
execution of int division by class semiring_numeral_div, replacing pdivmod by divmod_abs
 haftmann parents: 
53068diff
changeset | 2643 | lemma snd_divmod_abs [simp]: | 
| 
d165213e3924
execution of int division by class semiring_numeral_div, replacing pdivmod by divmod_abs
 haftmann parents: 
53068diff
changeset | 2644 | "snd (divmod_abs k l) = \<bar>k\<bar> mod \<bar>l\<bar>" | 
| 
d165213e3924
execution of int division by class semiring_numeral_div, replacing pdivmod by divmod_abs
 haftmann parents: 
53068diff
changeset | 2645 | by (simp add: divmod_abs_def) | 
| 
d165213e3924
execution of int division by class semiring_numeral_div, replacing pdivmod by divmod_abs
 haftmann parents: 
53068diff
changeset | 2646 | |
| 
d165213e3924
execution of int division by class semiring_numeral_div, replacing pdivmod by divmod_abs
 haftmann parents: 
53068diff
changeset | 2647 | lemma divmod_abs_code [code]: | 
| 
d165213e3924
execution of int division by class semiring_numeral_div, replacing pdivmod by divmod_abs
 haftmann parents: 
53068diff
changeset | 2648 | "divmod_abs (Int.Pos k) (Int.Pos l) = divmod k l" | 
| 
d165213e3924
execution of int division by class semiring_numeral_div, replacing pdivmod by divmod_abs
 haftmann parents: 
53068diff
changeset | 2649 | "divmod_abs (Int.Neg k) (Int.Neg l) = divmod k l" | 
| 
d165213e3924
execution of int division by class semiring_numeral_div, replacing pdivmod by divmod_abs
 haftmann parents: 
53068diff
changeset | 2650 | "divmod_abs (Int.Neg k) (Int.Pos l) = divmod k l" | 
| 
d165213e3924
execution of int division by class semiring_numeral_div, replacing pdivmod by divmod_abs
 haftmann parents: 
53068diff
changeset | 2651 | "divmod_abs (Int.Pos k) (Int.Neg l) = divmod k l" | 
| 
d165213e3924
execution of int division by class semiring_numeral_div, replacing pdivmod by divmod_abs
 haftmann parents: 
53068diff
changeset | 2652 | "divmod_abs j 0 = (0, \<bar>j\<bar>)" | 
| 
d165213e3924
execution of int division by class semiring_numeral_div, replacing pdivmod by divmod_abs
 haftmann parents: 
53068diff
changeset | 2653 | "divmod_abs 0 j = (0, 0)" | 
| 
d165213e3924
execution of int division by class semiring_numeral_div, replacing pdivmod by divmod_abs
 haftmann parents: 
53068diff
changeset | 2654 | by (simp_all add: prod_eq_iff) | 
| 
d165213e3924
execution of int division by class semiring_numeral_div, replacing pdivmod by divmod_abs
 haftmann parents: 
53068diff
changeset | 2655 | |
| 
d165213e3924
execution of int division by class semiring_numeral_div, replacing pdivmod by divmod_abs
 haftmann parents: 
53068diff
changeset | 2656 | lemma divmod_int_divmod_abs: | 
| 
d165213e3924
execution of int division by class semiring_numeral_div, replacing pdivmod by divmod_abs
 haftmann parents: 
53068diff
changeset | 2657 | "divmod_int k l = (if k = 0 then (0, 0) else if l = 0 then (0, k) else | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2658 | apsnd ((op *) (sgn l)) (if 0 < l \<and> 0 \<le> k \<or> l < 0 \<and> k < 0 | 
| 53069 
d165213e3924
execution of int division by class semiring_numeral_div, replacing pdivmod by divmod_abs
 haftmann parents: 
53068diff
changeset | 2659 | then divmod_abs k l | 
| 
d165213e3924
execution of int division by class semiring_numeral_div, replacing pdivmod by divmod_abs
 haftmann parents: 
53068diff
changeset | 2660 | else (let (r, s) = divmod_abs k l in | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46560diff
changeset | 2661 | if s = 0 then (- r, 0) else (- r - 1, \<bar>l\<bar> - s))))" | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2662 | proof - | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2663 | have aux: "\<And>q::int. - k = l * q \<longleftrightarrow> k = l * - q" by auto | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2664 | show ?thesis | 
| 53069 
d165213e3924
execution of int division by class semiring_numeral_div, replacing pdivmod by divmod_abs
 haftmann parents: 
53068diff
changeset | 2665 | by (simp add: prod_eq_iff split_def Let_def) | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2666 | (auto simp add: aux not_less not_le zdiv_zminus1_eq_if | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2667 | zmod_zminus1_eq_if zdiv_zminus2_eq_if zmod_zminus2_eq_if) | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2668 | qed | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2669 | |
| 53069 
d165213e3924
execution of int division by class semiring_numeral_div, replacing pdivmod by divmod_abs
 haftmann parents: 
53068diff
changeset | 2670 | lemma divmod_int_code [code]: | 
| 
d165213e3924
execution of int division by class semiring_numeral_div, replacing pdivmod by divmod_abs
 haftmann parents: 
53068diff
changeset | 2671 | "divmod_int k l = (if k = 0 then (0, 0) else if l = 0 then (0, k) else | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2672 | apsnd ((op *) (sgn l)) (if sgn k = sgn l | 
| 53069 
d165213e3924
execution of int division by class semiring_numeral_div, replacing pdivmod by divmod_abs
 haftmann parents: 
53068diff
changeset | 2673 | then divmod_abs k l | 
| 
d165213e3924
execution of int division by class semiring_numeral_div, replacing pdivmod by divmod_abs
 haftmann parents: 
53068diff
changeset | 2674 | else (let (r, s) = divmod_abs k l in | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2675 | if s = 0 then (- r, 0) else (- r - 1, \<bar>l\<bar> - s))))" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2676 | proof - | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2677 | have "k \<noteq> 0 \<Longrightarrow> l \<noteq> 0 \<Longrightarrow> 0 < l \<and> 0 \<le> k \<or> l < 0 \<and> k < 0 \<longleftrightarrow> sgn k = sgn l" | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2678 | by (auto simp add: not_less sgn_if) | 
| 53069 
d165213e3924
execution of int division by class semiring_numeral_div, replacing pdivmod by divmod_abs
 haftmann parents: 
53068diff
changeset | 2679 | then show ?thesis by (simp add: divmod_int_divmod_abs) | 
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2680 | qed | 
| 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2681 | |
| 53069 
d165213e3924
execution of int division by class semiring_numeral_div, replacing pdivmod by divmod_abs
 haftmann parents: 
53068diff
changeset | 2682 | hide_const (open) divmod_abs | 
| 
d165213e3924
execution of int division by class semiring_numeral_div, replacing pdivmod by divmod_abs
 haftmann parents: 
53068diff
changeset | 2683 | |
| 52435 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52398diff
changeset | 2684 | code_identifier | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52398diff
changeset | 2685 | code_module Divides \<rightharpoonup> (SML) Arith and (OCaml) Arith and (Haskell) Arith | 
| 33364 | 2686 | |
| 33361 
1f18de40b43f
combined former theories Divides and IntDiv to one theory Divides
 haftmann parents: 
33340diff
changeset | 2687 | end | 
| 52435 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52398diff
changeset | 2688 |