author | wenzelm |
Tue, 06 Jun 2006 20:47:12 +0200 | |
changeset 19800 | 5f764272183e |
parent 19482 | 9f11af8f7ef9 |
child 20011 | f14c03e08e22 |
permissions | -rw-r--r-- |
12319 | 1 |
(* Title: Pure/net.ML |
0 | 2 |
ID: $Id$ |
12319 | 3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
0 | 4 |
Copyright 1993 University of Cambridge |
5 |
||
6 |
Discrimination nets: a data structure for indexing items |
|
7 |
||
12319 | 8 |
From the book |
9 |
E. Charniak, C. K. Riesbeck, D. V. McDermott. |
|
0 | 10 |
Artificial Intelligence Programming. |
11 |
(Lawrence Erlbaum Associates, 1980). [Chapter 14] |
|
225
76f60e6400e8
optimized net for matching of abstractions to speed up simplifier
nipkow
parents:
0
diff
changeset
|
12 |
|
12319 | 13 |
match_term no longer treats abstractions as wildcards; instead they match |
228 | 14 |
only wildcards in patterns. Requires operands to be beta-eta-normal. |
0 | 15 |
*) |
16 |
||
12319 | 17 |
signature NET = |
16808 | 18 |
sig |
0 | 19 |
type key |
16808 | 20 |
val key_of_term: term -> key list |
0 | 21 |
type 'a net |
22 |
val empty: 'a net |
|
16808 | 23 |
exception INSERT |
24 |
val insert: ('a * 'a -> bool) -> key list * 'a -> 'a net -> 'a net |
|
25 |
val insert_term: ('a * 'a -> bool) -> term * 'a -> 'a net -> 'a net |
|
26 |
exception DELETE |
|
27 |
val delete: ('b * 'a -> bool) -> key list * 'b -> 'a net -> 'a net |
|
28 |
val delete_term: ('b * 'a -> bool) -> term * 'b -> 'a net -> 'a net |
|
29 |
val lookup: 'a net -> key list -> 'a list |
|
0 | 30 |
val match_term: 'a net -> term -> 'a list |
31 |
val unify_term: 'a net -> term -> 'a list |
|
16808 | 32 |
val entries: 'a net -> 'a list |
33 |
val subtract: ('b * 'a -> bool) -> 'a net -> 'b net -> 'b list |
|
34 |
val merge: ('a * 'a -> bool) -> 'a net * 'a net -> 'a net |
|
35 |
end; |
|
0 | 36 |
|
16808 | 37 |
structure Net: NET = |
0 | 38 |
struct |
39 |
||
40 |
datatype key = CombK | VarK | AtomK of string; |
|
41 |
||
228 | 42 |
(*Keys are preorder lists of symbols -- Combinations, Vars, Atoms. |
225
76f60e6400e8
optimized net for matching of abstractions to speed up simplifier
nipkow
parents:
0
diff
changeset
|
43 |
Any term whose head is a Var is regarded entirely as a Var. |
228 | 44 |
Abstractions are also regarded as Vars; this covers eta-conversion |
45 |
and "near" eta-conversions such as %x.?P(?f(x)). |
|
0 | 46 |
*) |
12319 | 47 |
fun add_key_of_terms (t, cs) = |
0 | 48 |
let fun rands (f$t, cs) = CombK :: rands (f, add_key_of_terms(t, cs)) |
12319 | 49 |
| rands (Const(c,_), cs) = AtomK c :: cs |
50 |
| rands (Free(c,_), cs) = AtomK c :: cs |
|
16986 | 51 |
| rands (Bound i, cs) = AtomK (Term.bound i) :: cs |
0 | 52 |
in case (head_of t) of |
225
76f60e6400e8
optimized net for matching of abstractions to speed up simplifier
nipkow
parents:
0
diff
changeset
|
53 |
Var _ => VarK :: cs |
228 | 54 |
| Abs _ => VarK :: cs |
225
76f60e6400e8
optimized net for matching of abstractions to speed up simplifier
nipkow
parents:
0
diff
changeset
|
55 |
| _ => rands(t,cs) |
0 | 56 |
end; |
57 |
||
225
76f60e6400e8
optimized net for matching of abstractions to speed up simplifier
nipkow
parents:
0
diff
changeset
|
58 |
(*convert a term to a list of keys*) |
0 | 59 |
fun key_of_term t = add_key_of_terms (t, []); |
60 |
||
61 |
||
62 |
(*Trees indexed by key lists: each arc is labelled by a key. |
|
63 |
Each node contains a list of items, and arcs to children. |
|
64 |
The empty key addresses the entire net. |
|
65 |
Lookup functions preserve order in items stored at same level. |
|
66 |
*) |
|
67 |
datatype 'a net = Leaf of 'a list |
|
12319 | 68 |
| Net of {comb: 'a net, |
69 |
var: 'a net, |
|
16708 | 70 |
atoms: 'a net Symtab.table}; |
0 | 71 |
|
72 |
val empty = Leaf[]; |
|
16708 | 73 |
fun is_empty (Leaf []) = true | is_empty _ = false; |
74 |
val emptynet = Net{comb=empty, var=empty, atoms=Symtab.empty}; |
|
0 | 75 |
|
76 |
||
77 |
(*** Insertion into a discrimination net ***) |
|
78 |
||
12319 | 79 |
exception INSERT; (*duplicate item in the net*) |
0 | 80 |
|
81 |
||
82 |
(*Adds item x to the list at the node addressed by the keys. |
|
83 |
Creates node if not already present. |
|
12319 | 84 |
eq is the equality test for items. |
0 | 85 |
The empty list of keys generates a Leaf node, others a Net node. |
86 |
*) |
|
16808 | 87 |
fun insert eq (keys,x) net = |
12319 | 88 |
let fun ins1 ([], Leaf xs) = |
16686 | 89 |
if member eq xs x then raise INSERT else Leaf(x::xs) |
0 | 90 |
| ins1 (keys, Leaf[]) = ins1 (keys, emptynet) (*expand empty...*) |
16708 | 91 |
| ins1 (CombK :: keys, Net{comb,var,atoms}) = |
92 |
Net{comb=ins1(keys,comb), var=var, atoms=atoms} |
|
93 |
| ins1 (VarK :: keys, Net{comb,var,atoms}) = |
|
94 |
Net{comb=comb, var=ins1(keys,var), atoms=atoms} |
|
95 |
| ins1 (AtomK a :: keys, Net{comb,var,atoms}) = |
|
96 |
let |
|
18939 | 97 |
val net' = the_default empty (Symtab.lookup atoms a); |
17412 | 98 |
val atoms' = Symtab.update (a, ins1 (keys, net')) atoms; |
16708 | 99 |
in Net{comb=comb, var=var, atoms=atoms'} end |
0 | 100 |
in ins1 (keys,net) end; |
101 |
||
16808 | 102 |
fun insert_safe eq entry net = insert eq entry net handle INSERT => net; |
103 |
fun insert_term eq (t, x) = insert eq (key_of_term t, x); |
|
104 |
||
0 | 105 |
|
106 |
(*** Deletion from a discrimination net ***) |
|
107 |
||
12319 | 108 |
exception DELETE; (*missing item in the net*) |
0 | 109 |
|
110 |
(*Create a new Net node if it would be nonempty*) |
|
16708 | 111 |
fun newnet (args as {comb,var,atoms}) = |
112 |
if is_empty comb andalso is_empty var andalso Symtab.is_empty atoms |
|
113 |
then empty else Net args; |
|
0 | 114 |
|
115 |
(*Deletes item x from the list at the node addressed by the keys. |
|
116 |
Raises DELETE if absent. Collapses the net if possible. |
|
117 |
eq is the equality test for items. *) |
|
16808 | 118 |
fun delete eq (keys, x) net = |
0 | 119 |
let fun del1 ([], Leaf xs) = |
16686 | 120 |
if member eq xs x then Leaf (remove eq x xs) |
0 | 121 |
else raise DELETE |
12319 | 122 |
| del1 (keys, Leaf[]) = raise DELETE |
16708 | 123 |
| del1 (CombK :: keys, Net{comb,var,atoms}) = |
124 |
newnet{comb=del1(keys,comb), var=var, atoms=atoms} |
|
125 |
| del1 (VarK :: keys, Net{comb,var,atoms}) = |
|
126 |
newnet{comb=comb, var=del1(keys,var), atoms=atoms} |
|
127 |
| del1 (AtomK a :: keys, Net{comb,var,atoms}) = |
|
128 |
let val atoms' = |
|
17412 | 129 |
(case Symtab.lookup atoms a of |
16708 | 130 |
NONE => raise DELETE |
131 |
| SOME net' => |
|
132 |
(case del1 (keys, net') of |
|
133 |
Leaf [] => Symtab.delete a atoms |
|
17412 | 134 |
| net'' => Symtab.update (a, net'') atoms)) |
16708 | 135 |
in newnet{comb=comb, var=var, atoms=atoms'} end |
0 | 136 |
in del1 (keys,net) end; |
137 |
||
16808 | 138 |
fun delete_term eq (t, x) = delete eq (key_of_term t, x); |
0 | 139 |
|
16677 | 140 |
|
0 | 141 |
(*** Retrieval functions for discrimination nets ***) |
142 |
||
16708 | 143 |
exception ABSENT; |
0 | 144 |
|
16708 | 145 |
fun the_atom atoms a = |
17412 | 146 |
(case Symtab.lookup atoms a of |
16708 | 147 |
NONE => raise ABSENT |
148 |
| SOME net => net); |
|
0 | 149 |
|
150 |
(*Return the list of items at the given node, [] if no such node*) |
|
16808 | 151 |
fun lookup (Leaf xs) [] = xs |
152 |
| lookup (Leaf _) (_ :: _) = [] (*non-empty keys and empty net*) |
|
153 |
| lookup (Net {comb, var, atoms}) (CombK :: keys) = lookup comb keys |
|
154 |
| lookup (Net {comb, var, atoms}) (VarK :: keys) = lookup var keys |
|
155 |
| lookup (Net {comb, var, atoms}) (AtomK a :: keys) = |
|
156 |
lookup (the_atom atoms a) keys handle ABSENT => []; |
|
0 | 157 |
|
158 |
||
159 |
(*Skipping a term in a net. Recursively skip 2 levels if a combination*) |
|
160 |
fun net_skip (Leaf _, nets) = nets |
|
16708 | 161 |
| net_skip (Net{comb,var,atoms}, nets) = |
162 |
foldr net_skip (Symtab.fold (cons o #2) atoms (var::nets)) (net_skip (comb,[])); |
|
0 | 163 |
|
16808 | 164 |
|
165 |
(** Matching and Unification **) |
|
0 | 166 |
|
167 |
(*conses the linked net, if present, to nets*) |
|
16708 | 168 |
fun look1 (atoms, a) nets = |
169 |
the_atom atoms a :: nets handle ABSENT => nets; |
|
0 | 170 |
|
12319 | 171 |
(*Return the nodes accessible from the term (cons them before nets) |
0 | 172 |
"unif" signifies retrieval for unification rather than matching. |
173 |
Var in net matches any term. |
|
12319 | 174 |
Abs or Var in object: if "unif", regarded as wildcard, |
225
76f60e6400e8
optimized net for matching of abstractions to speed up simplifier
nipkow
parents:
0
diff
changeset
|
175 |
else matches only a variable in net. |
76f60e6400e8
optimized net for matching of abstractions to speed up simplifier
nipkow
parents:
0
diff
changeset
|
176 |
*) |
0 | 177 |
fun matching unif t (net,nets) = |
178 |
let fun rands _ (Leaf _, nets) = nets |
|
16708 | 179 |
| rands t (Net{comb,atoms,...}, nets) = |
12319 | 180 |
case t of |
15574
b1d1b5bfc464
Removed practically all references to Library.foldr.
skalberg
parents:
15570
diff
changeset
|
181 |
f$t => foldr (matching unif t) nets (rands f (comb,[])) |
16708 | 182 |
| Const(c,_) => look1 (atoms, c) nets |
183 |
| Free(c,_) => look1 (atoms, c) nets |
|
16986 | 184 |
| Bound i => look1 (atoms, Term.bound i) nets |
12319 | 185 |
| _ => nets |
186 |
in |
|
0 | 187 |
case net of |
12319 | 188 |
Leaf _ => nets |
0 | 189 |
| Net{var,...} => |
12319 | 190 |
case head_of t of |
191 |
Var _ => if unif then net_skip (net,nets) |
|
192 |
else var::nets (*only matches Var in net*) |
|
2836 | 193 |
(*If "unif" then a var instantiation in the abstraction could allow |
194 |
an eta-reduction, so regard the abstraction as a wildcard.*) |
|
12319 | 195 |
| Abs _ => if unif then net_skip (net,nets) |
196 |
else var::nets (*only a Var can match*) |
|
197 |
| _ => rands t (net, var::nets) (*var could match also*) |
|
0 | 198 |
end; |
199 |
||
19482
9f11af8f7ef9
tuned basic list operators (flat, maps, map_filter);
wenzelm
parents:
18939
diff
changeset
|
200 |
fun extract_leaves l = maps (fn Leaf xs => xs) l; |
0 | 201 |
|
225
76f60e6400e8
optimized net for matching of abstractions to speed up simplifier
nipkow
parents:
0
diff
changeset
|
202 |
(*return items whose key could match t, WHICH MUST BE BETA-ETA NORMAL*) |
12319 | 203 |
fun match_term net t = |
0 | 204 |
extract_leaves (matching false t (net,[])); |
205 |
||
206 |
(*return items whose key could unify with t*) |
|
12319 | 207 |
fun unify_term net t = |
0 | 208 |
extract_leaves (matching true t (net,[])); |
209 |
||
3548 | 210 |
|
16808 | 211 |
(** operations on nets **) |
212 |
||
213 |
(*subtraction: collect entries of second net that are NOT present in first net*) |
|
214 |
fun subtract eq net1 net2 = |
|
215 |
let |
|
216 |
fun subtr (Net _) (Leaf ys) = append ys |
|
217 |
| subtr (Leaf xs) (Leaf ys) = |
|
218 |
fold_rev (fn y => if member eq xs y then I else cons y) ys |
|
219 |
| subtr (Leaf _) (net as Net _) = subtr emptynet net |
|
220 |
| subtr (Net {comb = comb1, var = var1, atoms = atoms1}) |
|
221 |
(Net {comb = comb2, var = var2, atoms = atoms2}) = |
|
16842 | 222 |
subtr comb1 comb2 |
223 |
#> subtr var1 var2 |
|
224 |
#> Symtab.fold (fn (a, net) => |
|
18939 | 225 |
subtr (the_default emptynet (Symtab.lookup atoms1 a)) net) atoms2 |
16808 | 226 |
in subtr net1 net2 [] end; |
227 |
||
228 |
fun entries net = subtract (K false) empty net; |
|
229 |
||
230 |
||
231 |
(* merge *) |
|
3548 | 232 |
|
233 |
fun cons_fst x (xs, y) = (x :: xs, y); |
|
234 |
||
235 |
fun dest (Leaf xs) = map (pair []) xs |
|
16708 | 236 |
| dest (Net {comb, var, atoms}) = |
3560 | 237 |
map (cons_fst CombK) (dest comb) @ |
238 |
map (cons_fst VarK) (dest var) @ |
|
19482
9f11af8f7ef9
tuned basic list operators (flat, maps, map_filter);
wenzelm
parents:
18939
diff
changeset
|
239 |
maps (fn (a, net) => map (cons_fst (AtomK a)) (dest net)) (Symtab.dest atoms); |
3548 | 240 |
|
16808 | 241 |
fun merge eq (net1, net2) = fold (insert_safe eq) (dest net2) net1; |
3548 | 242 |
|
0 | 243 |
end; |