src/HOL/Library/Multiset.thy
author hoelzl
Tue, 30 Jun 2015 13:30:04 +0200
changeset 60614 e39e6881985c
parent 60613 f11e9fd70b7d
child 60678 17ba2df56dee
permissions -rw-r--r--
generalized inf and sup_continuous; added intro rules
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
10249
e4d13d8a9011 Multisets (from HOL/Induct/Multiset and friends);
wenzelm
parents:
diff changeset
     1
(*  Title:      HOL/Library/Multiset.thy
15072
4861bf6af0b4 new material courtesy of Norbert Voelker
paulson
parents: 14981
diff changeset
     2
    Author:     Tobias Nipkow, Markus Wenzel, Lawrence C Paulson, Norbert Voelker
55129
26bd1cba3ab5 killed 'More_BNFs' by moving its various bits where they (now) belong
blanchet
parents: 54868
diff changeset
     3
    Author:     Andrei Popescu, TU Muenchen
59813
6320064f22bb more multiset theorems
blanchet
parents: 59807
diff changeset
     4
    Author:     Jasmin Blanchette, Inria, LORIA, MPII
6320064f22bb more multiset theorems
blanchet
parents: 59807
diff changeset
     5
    Author:     Dmitriy Traytel, TU Muenchen
6320064f22bb more multiset theorems
blanchet
parents: 59807
diff changeset
     6
    Author:     Mathias Fleury, MPII
10249
e4d13d8a9011 Multisets (from HOL/Induct/Multiset and friends);
wenzelm
parents:
diff changeset
     7
*)
e4d13d8a9011 Multisets (from HOL/Induct/Multiset and friends);
wenzelm
parents:
diff changeset
     8
60500
903bb1495239 isabelle update_cartouches;
wenzelm
parents: 60400
diff changeset
     9
section \<open>(Finite) multisets\<close>
10249
e4d13d8a9011 Multisets (from HOL/Induct/Multiset and friends);
wenzelm
parents:
diff changeset
    10
15131
c69542757a4d New theory header syntax.
nipkow
parents: 15072
diff changeset
    11
theory Multiset
51599
1559e9266280 optionalized very specific code setup for multisets
haftmann
parents: 51548
diff changeset
    12
imports Main
15131
c69542757a4d New theory header syntax.
nipkow
parents: 15072
diff changeset
    13
begin
10249
e4d13d8a9011 Multisets (from HOL/Induct/Multiset and friends);
wenzelm
parents:
diff changeset
    14
60500
903bb1495239 isabelle update_cartouches;
wenzelm
parents: 60400
diff changeset
    15
subsection \<open>The type of multisets\<close>
10249
e4d13d8a9011 Multisets (from HOL/Induct/Multiset and friends);
wenzelm
parents:
diff changeset
    16
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
    17
definition "multiset = {f :: 'a \<Rightarrow> nat. finite {x. f x > 0}}"
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
    18
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
    19
typedef 'a multiset = "multiset :: ('a \<Rightarrow> nat) set"
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
    20
  morphisms count Abs_multiset
45694
4a8743618257 prefer typedef without extra definition and alternative name;
wenzelm
parents: 45608
diff changeset
    21
  unfolding multiset_def
10249
e4d13d8a9011 Multisets (from HOL/Induct/Multiset and friends);
wenzelm
parents:
diff changeset
    22
proof
45694
4a8743618257 prefer typedef without extra definition and alternative name;
wenzelm
parents: 45608
diff changeset
    23
  show "(\<lambda>x. 0::nat) \<in> {f. finite {x. f x > 0}}" by simp
10249
e4d13d8a9011 Multisets (from HOL/Induct/Multiset and friends);
wenzelm
parents:
diff changeset
    24
qed
e4d13d8a9011 Multisets (from HOL/Induct/Multiset and friends);
wenzelm
parents:
diff changeset
    25
47429
ec64d94cbf9c multiset operations are defined with lift_definitions;
bulwahn
parents: 47308
diff changeset
    26
setup_lifting type_definition_multiset
19086
1b3780be6cc2 new-style definitions/abbreviations;
wenzelm
parents: 18730
diff changeset
    27
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
    28
abbreviation Melem :: "'a \<Rightarrow> 'a multiset \<Rightarrow> bool"  ("(_/ :# _)" [50, 51] 50) where
25610
72e1563aee09 a fold operation for multisets + more lemmas
kleing
parents: 25595
diff changeset
    29
  "a :# M == 0 < count M a"
72e1563aee09 a fold operation for multisets + more lemmas
kleing
parents: 25595
diff changeset
    30
26145
95670b6e1fa3 tuned document;
wenzelm
parents: 26143
diff changeset
    31
notation (xsymbols)
95670b6e1fa3 tuned document;
wenzelm
parents: 26143
diff changeset
    32
  Melem (infix "\<in>#" 50)
10249
e4d13d8a9011 Multisets (from HOL/Induct/Multiset and friends);
wenzelm
parents:
diff changeset
    33
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
    34
lemma multiset_eq_iff: "M = N \<longleftrightarrow> (\<forall>a. count M a = count N a)"
39302
d7728f65b353 renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents: 39301
diff changeset
    35
  by (simp only: count_inject [symmetric] fun_eq_iff)
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
    36
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
    37
lemma multiset_eqI: "(\<And>x. count A x = count B x) \<Longrightarrow> A = B"
39302
d7728f65b353 renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents: 39301
diff changeset
    38
  using multiset_eq_iff by auto
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
    39
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
    40
text \<open>Preservation of the representing set @{term multiset}.\<close>
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
    41
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
    42
lemma const0_in_multiset: "(\<lambda>a. 0) \<in> multiset"
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
    43
  by (simp add: multiset_def)
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
    44
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
    45
lemma only1_in_multiset: "(\<lambda>b. if b = a then n else 0) \<in> multiset"
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
    46
  by (simp add: multiset_def)
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
    47
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
    48
lemma union_preserves_multiset: "M \<in> multiset \<Longrightarrow> N \<in> multiset \<Longrightarrow> (\<lambda>a. M a + N a) \<in> multiset"
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
    49
  by (simp add: multiset_def)
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
    50
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
    51
lemma diff_preserves_multiset:
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
    52
  assumes "M \<in> multiset"
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
    53
  shows "(\<lambda>a. M a - N a) \<in> multiset"
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
    54
proof -
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
    55
  have "{x. N x < M x} \<subseteq> {x. 0 < M x}"
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
    56
    by auto
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
    57
  with assms show ?thesis
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
    58
    by (auto simp add: multiset_def intro: finite_subset)
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
    59
qed
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
    60
41069
6fabc0414055 name filter operation just filter (c.f. List.filter and list comprehension syntax)
haftmann
parents: 40968
diff changeset
    61
lemma filter_preserves_multiset:
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
    62
  assumes "M \<in> multiset"
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
    63
  shows "(\<lambda>x. if P x then M x else 0) \<in> multiset"
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
    64
proof -
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
    65
  have "{x. (P x \<longrightarrow> 0 < M x) \<and> P x} \<subseteq> {x. 0 < M x}"
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
    66
    by auto
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
    67
  with assms show ?thesis
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
    68
    by (auto simp add: multiset_def intro: finite_subset)
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
    69
qed
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
    70
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
    71
lemmas in_multiset = const0_in_multiset only1_in_multiset
41069
6fabc0414055 name filter operation just filter (c.f. List.filter and list comprehension syntax)
haftmann
parents: 40968
diff changeset
    72
  union_preserves_multiset diff_preserves_multiset filter_preserves_multiset
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
    73
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
    74
60500
903bb1495239 isabelle update_cartouches;
wenzelm
parents: 60400
diff changeset
    75
subsection \<open>Representing multisets\<close>
903bb1495239 isabelle update_cartouches;
wenzelm
parents: 60400
diff changeset
    76
903bb1495239 isabelle update_cartouches;
wenzelm
parents: 60400
diff changeset
    77
text \<open>Multiset enumeration\<close>
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
    78
48008
846ff14337a4 use transfer method for instance proof
huffman
parents: 47429
diff changeset
    79
instantiation multiset :: (type) cancel_comm_monoid_add
25571
c9e39eafc7a0 instantiation target rather than legacy instance
haftmann
parents: 25507
diff changeset
    80
begin
c9e39eafc7a0 instantiation target rather than legacy instance
haftmann
parents: 25507
diff changeset
    81
47429
ec64d94cbf9c multiset operations are defined with lift_definitions;
bulwahn
parents: 47308
diff changeset
    82
lift_definition zero_multiset :: "'a multiset" is "\<lambda>a. 0"
ec64d94cbf9c multiset operations are defined with lift_definitions;
bulwahn
parents: 47308
diff changeset
    83
by (rule const0_in_multiset)
25571
c9e39eafc7a0 instantiation target rather than legacy instance
haftmann
parents: 25507
diff changeset
    84
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
    85
abbreviation Mempty :: "'a multiset" ("{#}") where
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
    86
  "Mempty \<equiv> 0"
25571
c9e39eafc7a0 instantiation target rather than legacy instance
haftmann
parents: 25507
diff changeset
    87
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
    88
lift_definition plus_multiset :: "'a multiset \<Rightarrow> 'a multiset \<Rightarrow> 'a multiset" is "\<lambda>M N. (\<lambda>a. M a + N a)"
47429
ec64d94cbf9c multiset operations are defined with lift_definitions;
bulwahn
parents: 47308
diff changeset
    89
by (rule union_preserves_multiset)
25571
c9e39eafc7a0 instantiation target rather than legacy instance
haftmann
parents: 25507
diff changeset
    90
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
    91
lift_definition minus_multiset :: "'a multiset \<Rightarrow> 'a multiset \<Rightarrow> 'a multiset" is "\<lambda> M N. \<lambda>a. M a - N a"
59815
cce82e360c2f explicit commutative additive inverse operation;
haftmann
parents: 59813
diff changeset
    92
by (rule diff_preserves_multiset)
cce82e360c2f explicit commutative additive inverse operation;
haftmann
parents: 59813
diff changeset
    93
48008
846ff14337a4 use transfer method for instance proof
huffman
parents: 47429
diff changeset
    94
instance
59815
cce82e360c2f explicit commutative additive inverse operation;
haftmann
parents: 59813
diff changeset
    95
  by default (transfer, simp add: fun_eq_iff)+
25571
c9e39eafc7a0 instantiation target rather than legacy instance
haftmann
parents: 25507
diff changeset
    96
c9e39eafc7a0 instantiation target rather than legacy instance
haftmann
parents: 25507
diff changeset
    97
end
10249
e4d13d8a9011 Multisets (from HOL/Induct/Multiset and friends);
wenzelm
parents:
diff changeset
    98
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
    99
lift_definition single :: "'a \<Rightarrow> 'a multiset" is "\<lambda>a b. if b = a then 1 else 0"
47429
ec64d94cbf9c multiset operations are defined with lift_definitions;
bulwahn
parents: 47308
diff changeset
   100
by (rule only1_in_multiset)
15869
3aca7f05cd12 intersection
kleing
parents: 15867
diff changeset
   101
26145
95670b6e1fa3 tuned document;
wenzelm
parents: 26143
diff changeset
   102
syntax
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   103
  "_multiset" :: "args \<Rightarrow> 'a multiset"    ("{#(_)#}")
25507
d13468d40131 added {#.,.,...#}
nipkow
parents: 25208
diff changeset
   104
translations
d13468d40131 added {#.,.,...#}
nipkow
parents: 25208
diff changeset
   105
  "{#x, xs#}" == "{#x#} + {#xs#}"
d13468d40131 added {#.,.,...#}
nipkow
parents: 25208
diff changeset
   106
  "{#x#}" == "CONST single x"
d13468d40131 added {#.,.,...#}
nipkow
parents: 25208
diff changeset
   107
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   108
lemma count_empty [simp]: "count {#} a = 0"
47429
ec64d94cbf9c multiset operations are defined with lift_definitions;
bulwahn
parents: 47308
diff changeset
   109
  by (simp add: zero_multiset.rep_eq)
10249
e4d13d8a9011 Multisets (from HOL/Induct/Multiset and friends);
wenzelm
parents:
diff changeset
   110
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   111
lemma count_single [simp]: "count {#b#} a = (if b = a then 1 else 0)"
47429
ec64d94cbf9c multiset operations are defined with lift_definitions;
bulwahn
parents: 47308
diff changeset
   112
  by (simp add: single.rep_eq)
29901
f4b3f8fbf599 finiteness lemmas
nipkow
parents: 29509
diff changeset
   113
10249
e4d13d8a9011 Multisets (from HOL/Induct/Multiset and friends);
wenzelm
parents:
diff changeset
   114
60500
903bb1495239 isabelle update_cartouches;
wenzelm
parents: 60400
diff changeset
   115
subsection \<open>Basic operations\<close>
903bb1495239 isabelle update_cartouches;
wenzelm
parents: 60400
diff changeset
   116
903bb1495239 isabelle update_cartouches;
wenzelm
parents: 60400
diff changeset
   117
subsubsection \<open>Union\<close>
10249
e4d13d8a9011 Multisets (from HOL/Induct/Multiset and friends);
wenzelm
parents:
diff changeset
   118
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   119
lemma count_union [simp]: "count (M + N) a = count M a + count N a"
47429
ec64d94cbf9c multiset operations are defined with lift_definitions;
bulwahn
parents: 47308
diff changeset
   120
  by (simp add: plus_multiset.rep_eq)
10249
e4d13d8a9011 Multisets (from HOL/Induct/Multiset and friends);
wenzelm
parents:
diff changeset
   121
e4d13d8a9011 Multisets (from HOL/Induct/Multiset and friends);
wenzelm
parents:
diff changeset
   122
60500
903bb1495239 isabelle update_cartouches;
wenzelm
parents: 60400
diff changeset
   123
subsubsection \<open>Difference\<close>
10249
e4d13d8a9011 Multisets (from HOL/Induct/Multiset and friends);
wenzelm
parents:
diff changeset
   124
49388
1ffd5a055acf typeclass formalising bounded subtraction
haftmann
parents: 48040
diff changeset
   125
instantiation multiset :: (type) comm_monoid_diff
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   126
begin
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   127
49388
1ffd5a055acf typeclass formalising bounded subtraction
haftmann
parents: 48040
diff changeset
   128
instance
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   129
  by default (transfer; simp add: fun_eq_iff)
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   130
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   131
end
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   132
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   133
lemma count_diff [simp]: "count (M - N) a = count M a - count N a"
47429
ec64d94cbf9c multiset operations are defined with lift_definitions;
bulwahn
parents: 47308
diff changeset
   134
  by (simp add: minus_multiset.rep_eq)
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   135
17161
57c69627d71a tuned some proofs;
wenzelm
parents: 15869
diff changeset
   136
lemma diff_empty [simp]: "M - {#} = M \<and> {#} - M = {#}"
52289
83ce5d2841e7 type class for confined subtraction
haftmann
parents: 51623
diff changeset
   137
  by rule (fact Groups.diff_zero, fact Groups.zero_diff)
36903
489c1fbbb028 Multiset: renamed, added and tuned lemmas;
nipkow
parents: 36867
diff changeset
   138
489c1fbbb028 Multiset: renamed, added and tuned lemmas;
nipkow
parents: 36867
diff changeset
   139
lemma diff_cancel[simp]: "A - A = {#}"
52289
83ce5d2841e7 type class for confined subtraction
haftmann
parents: 51623
diff changeset
   140
  by (fact Groups.diff_cancel)
10249
e4d13d8a9011 Multisets (from HOL/Induct/Multiset and friends);
wenzelm
parents:
diff changeset
   141
36903
489c1fbbb028 Multiset: renamed, added and tuned lemmas;
nipkow
parents: 36867
diff changeset
   142
lemma diff_union_cancelR [simp]: "M + N - N = (M::'a multiset)"
52289
83ce5d2841e7 type class for confined subtraction
haftmann
parents: 51623
diff changeset
   143
  by (fact add_diff_cancel_right')
10249
e4d13d8a9011 Multisets (from HOL/Induct/Multiset and friends);
wenzelm
parents:
diff changeset
   144
36903
489c1fbbb028 Multiset: renamed, added and tuned lemmas;
nipkow
parents: 36867
diff changeset
   145
lemma diff_union_cancelL [simp]: "N + M - N = (M::'a multiset)"
52289
83ce5d2841e7 type class for confined subtraction
haftmann
parents: 51623
diff changeset
   146
  by (fact add_diff_cancel_left')
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   147
52289
83ce5d2841e7 type class for confined subtraction
haftmann
parents: 51623
diff changeset
   148
lemma diff_right_commute:
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   149
  fixes M N Q :: "'a multiset"
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   150
  shows "M - N - Q = M - Q - N"
52289
83ce5d2841e7 type class for confined subtraction
haftmann
parents: 51623
diff changeset
   151
  by (fact diff_right_commute)
83ce5d2841e7 type class for confined subtraction
haftmann
parents: 51623
diff changeset
   152
83ce5d2841e7 type class for confined subtraction
haftmann
parents: 51623
diff changeset
   153
lemma diff_add:
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   154
  fixes M N Q :: "'a multiset"
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   155
  shows "M - (N + Q) = M - N - Q"
52289
83ce5d2841e7 type class for confined subtraction
haftmann
parents: 51623
diff changeset
   156
  by (rule sym) (fact diff_diff_add)
58425
246985c6b20b simpler proof
blanchet
parents: 58247
diff changeset
   157
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   158
lemma insert_DiffM: "x \<in># M \<Longrightarrow> {#x#} + (M - {#x#}) = M"
39302
d7728f65b353 renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents: 39301
diff changeset
   159
  by (clarsimp simp: multiset_eq_iff)
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   160
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   161
lemma insert_DiffM2 [simp]: "x \<in># M \<Longrightarrow> M - {#x#} + {#x#} = M"
39302
d7728f65b353 renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents: 39301
diff changeset
   162
  by (clarsimp simp: multiset_eq_iff)
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   163
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   164
lemma diff_union_swap: "a \<noteq> b \<Longrightarrow> M - {#a#} + {#b#} = M + {#b#} - {#a#}"
39302
d7728f65b353 renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents: 39301
diff changeset
   165
  by (auto simp add: multiset_eq_iff)
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   166
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   167
lemma diff_union_single_conv: "a \<in># J \<Longrightarrow> I + J - {#a#} = I + (J - {#a#})"
39302
d7728f65b353 renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents: 39301
diff changeset
   168
  by (simp add: multiset_eq_iff)
26143
314c0bcb7df7 Added useful general lemmas from the work with the HeapMonad
bulwahn
parents: 26033
diff changeset
   169
10249
e4d13d8a9011 Multisets (from HOL/Induct/Multiset and friends);
wenzelm
parents:
diff changeset
   170
60500
903bb1495239 isabelle update_cartouches;
wenzelm
parents: 60400
diff changeset
   171
subsubsection \<open>Equality of multisets\<close>
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   172
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   173
lemma single_not_empty [simp]: "{#a#} \<noteq> {#} \<and> {#} \<noteq> {#a#}"
39302
d7728f65b353 renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents: 39301
diff changeset
   174
  by (simp add: multiset_eq_iff)
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   175
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   176
lemma single_eq_single [simp]: "{#a#} = {#b#} \<longleftrightarrow> a = b"
39302
d7728f65b353 renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents: 39301
diff changeset
   177
  by (auto simp add: multiset_eq_iff)
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   178
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   179
lemma union_eq_empty [iff]: "M + N = {#} \<longleftrightarrow> M = {#} \<and> N = {#}"
39302
d7728f65b353 renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents: 39301
diff changeset
   180
  by (auto simp add: multiset_eq_iff)
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   181
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   182
lemma empty_eq_union [iff]: "{#} = M + N \<longleftrightarrow> M = {#} \<and> N = {#}"
39302
d7728f65b353 renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents: 39301
diff changeset
   183
  by (auto simp add: multiset_eq_iff)
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   184
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   185
lemma multi_self_add_other_not_self [simp]: "M = M + {#x#} \<longleftrightarrow> False"
39302
d7728f65b353 renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents: 39301
diff changeset
   186
  by (auto simp add: multiset_eq_iff)
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   187
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   188
lemma diff_single_trivial: "\<not> x \<in># M \<Longrightarrow> M - {#x#} = M"
39302
d7728f65b353 renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents: 39301
diff changeset
   189
  by (auto simp add: multiset_eq_iff)
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   190
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   191
lemma diff_single_eq_union: "x \<in># M \<Longrightarrow> M - {#x#} = N \<longleftrightarrow> M = N + {#x#}"
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   192
  by auto
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   193
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   194
lemma union_single_eq_diff: "M + {#x#} = N \<Longrightarrow> M = N - {#x#}"
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   195
  by (auto dest: sym)
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   196
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   197
lemma union_single_eq_member: "M + {#x#} = N \<Longrightarrow> x \<in># N"
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   198
  by auto
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   199
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   200
lemma union_is_single: "M + N = {#a#} \<longleftrightarrow> M = {#a#} \<and> N={#} \<or> M = {#} \<and> N = {#a#}"
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   201
  (is "?lhs = ?rhs")
46730
e3b99d0231bc tuned proofs;
wenzelm
parents: 46394
diff changeset
   202
proof
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   203
  show ?lhs if ?rhs using that by auto
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   204
  show ?rhs if ?lhs
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   205
    using that by (simp add: multiset_eq_iff split: if_splits) (metis add_is_1)
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   206
qed
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   207
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   208
lemma single_is_union: "{#a#} = M + N \<longleftrightarrow> {#a#} = M \<and> N = {#} \<or> M = {#} \<and> {#a#} = N"
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   209
  by (auto simp add: eq_commute [of "{#a#}" "M + N"] union_is_single)
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   210
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   211
lemma add_eq_conv_diff:
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   212
  "M + {#a#} = N + {#b#} \<longleftrightarrow> M = N \<and> a = b \<or> M = N - {#a#} + {#b#} \<and> N = M - {#b#} + {#a#}"
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   213
  (is "?lhs \<longleftrightarrow> ?rhs")
44890
22f665a2e91c new fastforce replacing fastsimp - less confusing name
nipkow
parents: 44339
diff changeset
   214
(* shorter: by (simp add: multiset_eq_iff) fastforce *)
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   215
proof
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   216
  show ?lhs if ?rhs
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   217
    using that
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   218
    by (auto simp add: add.assoc add.commute [of "{#b#}"])
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   219
      (drule sym, simp add: add.assoc [symmetric])
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   220
  show ?rhs if ?lhs
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   221
  proof (cases "a = b")
60500
903bb1495239 isabelle update_cartouches;
wenzelm
parents: 60400
diff changeset
   222
    case True with \<open>?lhs\<close> show ?thesis by simp
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   223
  next
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   224
    case False
60500
903bb1495239 isabelle update_cartouches;
wenzelm
parents: 60400
diff changeset
   225
    from \<open>?lhs\<close> have "a \<in># N + {#b#}" by (rule union_single_eq_member)
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   226
    with False have "a \<in># N" by auto
60500
903bb1495239 isabelle update_cartouches;
wenzelm
parents: 60400
diff changeset
   227
    moreover from \<open>?lhs\<close> have "M = N + {#b#} - {#a#}" by (rule union_single_eq_diff)
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   228
    moreover note False
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   229
    ultimately show ?thesis by (auto simp add: diff_right_commute [of _ "{#a#}"] diff_union_swap)
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   230
  qed
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   231
qed
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   232
58425
246985c6b20b simpler proof
blanchet
parents: 58247
diff changeset
   233
lemma insert_noteq_member:
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   234
  assumes BC: "B + {#b#} = C + {#c#}"
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   235
   and bnotc: "b \<noteq> c"
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   236
  shows "c \<in># B"
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   237
proof -
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   238
  have "c \<in># C + {#c#}" by simp
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   239
  have nc: "\<not> c \<in># {#b#}" using bnotc by simp
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   240
  then have "c \<in># B + {#b#}" using BC by simp
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   241
  then show "c \<in># B" using nc by simp
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   242
qed
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   243
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   244
lemma add_eq_conv_ex:
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   245
  "(M + {#a#} = N + {#b#}) =
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   246
    (M = N \<and> a = b \<or> (\<exists>K. M = K + {#b#} \<and> N = K + {#a#}))"
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   247
  by (auto simp add: add_eq_conv_diff)
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   248
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   249
lemma multi_member_split: "x \<in># M \<Longrightarrow> \<exists>A. M = A + {#x#}"
51600
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
   250
  by (rule_tac x = "M - {#x#}" in exI, simp)
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
   251
58425
246985c6b20b simpler proof
blanchet
parents: 58247
diff changeset
   252
lemma multiset_add_sub_el_shuffle:
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   253
  assumes "c \<in># B"
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   254
    and "b \<noteq> c"
58098
ff478d85129b inlined unused definition
haftmann
parents: 58035
diff changeset
   255
  shows "B - {#c#} + {#b#} = B + {#b#} - {#c#}"
ff478d85129b inlined unused definition
haftmann
parents: 58035
diff changeset
   256
proof -
60500
903bb1495239 isabelle update_cartouches;
wenzelm
parents: 60400
diff changeset
   257
  from \<open>c \<in># B\<close> obtain A where B: "B = A + {#c#}"
58098
ff478d85129b inlined unused definition
haftmann
parents: 58035
diff changeset
   258
    by (blast dest: multi_member_split)
ff478d85129b inlined unused definition
haftmann
parents: 58035
diff changeset
   259
  have "A + {#b#} = A + {#b#} + {#c#} - {#c#}" by simp
58425
246985c6b20b simpler proof
blanchet
parents: 58247
diff changeset
   260
  then have "A + {#b#} = A + {#c#} + {#b#} - {#c#}"
58098
ff478d85129b inlined unused definition
haftmann
parents: 58035
diff changeset
   261
    by (simp add: ac_simps)
ff478d85129b inlined unused definition
haftmann
parents: 58035
diff changeset
   262
  then show ?thesis using B by simp
ff478d85129b inlined unused definition
haftmann
parents: 58035
diff changeset
   263
qed
ff478d85129b inlined unused definition
haftmann
parents: 58035
diff changeset
   264
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   265
60500
903bb1495239 isabelle update_cartouches;
wenzelm
parents: 60400
diff changeset
   266
subsubsection \<open>Pointwise ordering induced by count\<close>
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   267
60397
f8a513fedb31 Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 59999
diff changeset
   268
definition subseteq_mset :: "'a multiset \<Rightarrow> 'a multiset \<Rightarrow> bool" (infix "<=#" 50) where
60400
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 60397
diff changeset
   269
"subseteq_mset A B = (\<forall>a. count A a \<le> count B a)"
60397
f8a513fedb31 Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 59999
diff changeset
   270
f8a513fedb31 Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 59999
diff changeset
   271
definition subset_mset :: "'a multiset \<Rightarrow> 'a multiset \<Rightarrow> bool" (infix "<#" 50) where
60400
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 60397
diff changeset
   272
"subset_mset A B = (A <=# B \<and> A \<noteq> B)"
60397
f8a513fedb31 Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 59999
diff changeset
   273
f8a513fedb31 Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 59999
diff changeset
   274
notation subseteq_mset (infix "\<le>#" 50)
f8a513fedb31 Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 59999
diff changeset
   275
notation (xsymbols) subseteq_mset (infix "\<subseteq>#" 50)
f8a513fedb31 Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 59999
diff changeset
   276
f8a513fedb31 Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 59999
diff changeset
   277
notation (xsymbols) subset_mset (infix "\<subset>#" 50)
f8a513fedb31 Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 59999
diff changeset
   278
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   279
interpretation subset_mset: ordered_ab_semigroup_add_imp_le "op +" "op -" "op \<subseteq>#" "op \<subset>#"
60397
f8a513fedb31 Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 59999
diff changeset
   280
  by default (auto simp add: subset_mset_def subseteq_mset_def multiset_eq_iff intro: order_trans antisym)
59986
f38b94549dc8 introduced new abbreviations for multiset operations (in the hope of getting rid of the old names <, <=, etc.)
blanchet
parents: 59958
diff changeset
   281
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   282
lemma mset_less_eqI: "(\<And>x. count A x \<le> count B x) \<Longrightarrow> A \<le># B"
60397
f8a513fedb31 Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 59999
diff changeset
   283
  by (simp add: subseteq_mset_def)
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   284
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   285
lemma mset_le_exists_conv: "(A::'a multiset) \<le># B \<longleftrightarrow> (\<exists>C. B = A + C)"
60397
f8a513fedb31 Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 59999
diff changeset
   286
apply (unfold subseteq_mset_def, rule iffI, rule_tac x = "B - A" in exI)
39302
d7728f65b353 renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents: 39301
diff changeset
   287
apply (auto intro: multiset_eq_iff [THEN iffD2])
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   288
done
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   289
60397
f8a513fedb31 Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 59999
diff changeset
   290
interpretation subset_mset: ordered_cancel_comm_monoid_diff  "op +" "op -" 0 "op \<le>#" "op <#"
52289
83ce5d2841e7 type class for confined subtraction
haftmann
parents: 51623
diff changeset
   291
  by default (simp, fact mset_le_exists_conv)
83ce5d2841e7 type class for confined subtraction
haftmann
parents: 51623
diff changeset
   292
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   293
lemma mset_le_mono_add_right_cancel [simp]: "(A::'a multiset) + C \<le># B + C \<longleftrightarrow> A \<le># B"
60397
f8a513fedb31 Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 59999
diff changeset
   294
  by (fact subset_mset.add_le_cancel_right)
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   295
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   296
lemma mset_le_mono_add_left_cancel [simp]: "C + (A::'a multiset) \<le># C + B \<longleftrightarrow> A \<le># B"
60397
f8a513fedb31 Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 59999
diff changeset
   297
  by (fact subset_mset.add_le_cancel_left)
35268
04673275441a switched notations for pointwise and multiset order
haftmann
parents: 35028
diff changeset
   298
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   299
lemma mset_le_mono_add: "(A::'a multiset) \<le># B \<Longrightarrow> C \<le># D \<Longrightarrow> A + C \<le># B + D"
60397
f8a513fedb31 Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 59999
diff changeset
   300
  by (fact subset_mset.add_mono)
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   301
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   302
lemma mset_le_add_left [simp]: "(A::'a multiset) \<le># A + B"
60397
f8a513fedb31 Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 59999
diff changeset
   303
  unfolding subseteq_mset_def by auto
35268
04673275441a switched notations for pointwise and multiset order
haftmann
parents: 35028
diff changeset
   304
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   305
lemma mset_le_add_right [simp]: "B \<le># (A::'a multiset) + B"
60397
f8a513fedb31 Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 59999
diff changeset
   306
  unfolding subseteq_mset_def by auto
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   307
60607
d440af2e584f more symbols;
wenzelm
parents: 60606
diff changeset
   308
lemma mset_le_single: "a \<in># B \<Longrightarrow> {#a#} \<le># B"
60397
f8a513fedb31 Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 59999
diff changeset
   309
  by (simp add: subseteq_mset_def)
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   310
35268
04673275441a switched notations for pointwise and multiset order
haftmann
parents: 35028
diff changeset
   311
lemma multiset_diff_union_assoc:
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   312
  fixes A B C D :: "'a multiset"
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   313
  shows "C \<le># B \<Longrightarrow> A + B - C = A + (B - C)"
60397
f8a513fedb31 Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 59999
diff changeset
   314
  by (simp add: subset_mset.diff_add_assoc)
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   315
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   316
lemma mset_le_multiset_union_diff_commute:
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   317
  fixes A B C D :: "'a multiset"
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   318
  shows "B \<le># A \<Longrightarrow> A - B + C = A + C - B"
60397
f8a513fedb31 Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 59999
diff changeset
   319
by (simp add: subset_mset.add_diff_assoc2)
f8a513fedb31 Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 59999
diff changeset
   320
f8a513fedb31 Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 59999
diff changeset
   321
lemma diff_le_self[simp]: "(M::'a multiset) - N \<le># M"
f8a513fedb31 Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 59999
diff changeset
   322
by(simp add: subseteq_mset_def)
f8a513fedb31 Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 59999
diff changeset
   323
f8a513fedb31 Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 59999
diff changeset
   324
lemma mset_lessD: "A <# B \<Longrightarrow> x \<in># A \<Longrightarrow> x \<in># B"
f8a513fedb31 Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 59999
diff changeset
   325
apply (clarsimp simp: subset_mset_def subseteq_mset_def)
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   326
apply (erule_tac x=x in allE)
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   327
apply auto
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   328
done
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   329
60397
f8a513fedb31 Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 59999
diff changeset
   330
lemma mset_leD: "A \<le># B \<Longrightarrow> x \<in># A \<Longrightarrow> x \<in># B"
f8a513fedb31 Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 59999
diff changeset
   331
apply (clarsimp simp: subset_mset_def subseteq_mset_def)
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   332
apply (erule_tac x = x in allE)
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   333
apply auto
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   334
done
58425
246985c6b20b simpler proof
blanchet
parents: 58247
diff changeset
   335
60397
f8a513fedb31 Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 59999
diff changeset
   336
lemma mset_less_insertD: "(A + {#x#} <# B) \<Longrightarrow> (x \<in># B \<and> A <# B)"
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   337
apply (rule conjI)
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   338
 apply (simp add: mset_lessD)
60397
f8a513fedb31 Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 59999
diff changeset
   339
apply (clarsimp simp: subset_mset_def subseteq_mset_def)
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   340
apply safe
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   341
 apply (erule_tac x = a in allE)
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   342
 apply (auto split: split_if_asm)
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   343
done
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   344
60397
f8a513fedb31 Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 59999
diff changeset
   345
lemma mset_le_insertD: "(A + {#x#} \<le># B) \<Longrightarrow> (x \<in># B \<and> A \<le># B)"
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   346
apply (rule conjI)
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   347
 apply (simp add: mset_leD)
60397
f8a513fedb31 Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 59999
diff changeset
   348
apply (force simp: subset_mset_def subseteq_mset_def split: split_if_asm)
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   349
done
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   350
60397
f8a513fedb31 Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 59999
diff changeset
   351
lemma mset_less_of_empty[simp]: "A <# {#} \<longleftrightarrow> False"
f8a513fedb31 Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 59999
diff changeset
   352
  by (auto simp add: subseteq_mset_def subset_mset_def multiset_eq_iff)
f8a513fedb31 Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 59999
diff changeset
   353
f8a513fedb31 Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 59999
diff changeset
   354
lemma empty_le[simp]: "{#} \<le># A"
55808
488c3e8282c8 added Rene Thiemann's patch for the nonterminating equality/subset test code for multisets
nipkow
parents: 55565
diff changeset
   355
  unfolding mset_le_exists_conv by auto
488c3e8282c8 added Rene Thiemann's patch for the nonterminating equality/subset test code for multisets
nipkow
parents: 55565
diff changeset
   356
60397
f8a513fedb31 Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 59999
diff changeset
   357
lemma le_empty[simp]: "(M \<le># {#}) = (M = {#})"
55808
488c3e8282c8 added Rene Thiemann's patch for the nonterminating equality/subset test code for multisets
nipkow
parents: 55565
diff changeset
   358
  unfolding mset_le_exists_conv by auto
488c3e8282c8 added Rene Thiemann's patch for the nonterminating equality/subset test code for multisets
nipkow
parents: 55565
diff changeset
   359
60397
f8a513fedb31 Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 59999
diff changeset
   360
lemma multi_psub_of_add_self[simp]: "A <# A + {#x#}"
f8a513fedb31 Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 59999
diff changeset
   361
  by (auto simp: subset_mset_def subseteq_mset_def)
f8a513fedb31 Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 59999
diff changeset
   362
f8a513fedb31 Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 59999
diff changeset
   363
lemma multi_psub_self[simp]: "(A::'a multiset) <# A = False"
35268
04673275441a switched notations for pointwise and multiset order
haftmann
parents: 35028
diff changeset
   364
  by simp
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   365
60397
f8a513fedb31 Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 59999
diff changeset
   366
lemma mset_less_add_bothsides: "N + {#x#} <# M + {#x#} \<Longrightarrow> N <# M"
f8a513fedb31 Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 59999
diff changeset
   367
  by (fact subset_mset.add_less_imp_less_right)
35268
04673275441a switched notations for pointwise and multiset order
haftmann
parents: 35028
diff changeset
   368
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   369
lemma mset_less_empty_nonempty: "{#} <# S \<longleftrightarrow> S \<noteq> {#}"
60397
f8a513fedb31 Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 59999
diff changeset
   370
  by (auto simp: subset_mset_def subseteq_mset_def)
35268
04673275441a switched notations for pointwise and multiset order
haftmann
parents: 35028
diff changeset
   371
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   372
lemma mset_less_diff_self: "c \<in># B \<Longrightarrow> B - {#c#} <# B"
60397
f8a513fedb31 Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 59999
diff changeset
   373
  by (auto simp: subset_mset_def subseteq_mset_def multiset_eq_iff)
35268
04673275441a switched notations for pointwise and multiset order
haftmann
parents: 35028
diff changeset
   374
04673275441a switched notations for pointwise and multiset order
haftmann
parents: 35028
diff changeset
   375
60500
903bb1495239 isabelle update_cartouches;
wenzelm
parents: 60400
diff changeset
   376
subsubsection \<open>Intersection\<close>
35268
04673275441a switched notations for pointwise and multiset order
haftmann
parents: 35028
diff changeset
   377
60397
f8a513fedb31 Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 59999
diff changeset
   378
definition inf_subset_mset :: "'a multiset \<Rightarrow> 'a multiset \<Rightarrow> 'a multiset" (infixl "#\<inter>" 70) where
f8a513fedb31 Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 59999
diff changeset
   379
  multiset_inter_def: "inf_subset_mset A B = A - (A - B)"
f8a513fedb31 Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 59999
diff changeset
   380
f8a513fedb31 Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 59999
diff changeset
   381
interpretation subset_mset: semilattice_inf inf_subset_mset "op \<le>#" "op <#"
46921
aa862ff8a8a9 some proof indentation;
wenzelm
parents: 46756
diff changeset
   382
proof -
60397
f8a513fedb31 Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 59999
diff changeset
   383
   have aux: "\<And>m n q :: nat. m \<le> n \<Longrightarrow> m \<le> q \<Longrightarrow> m \<le> n - (n - q)" by arith
f8a513fedb31 Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 59999
diff changeset
   384
   show "class.semilattice_inf op #\<inter> op \<le># op <#"
f8a513fedb31 Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 59999
diff changeset
   385
     by default (auto simp add: multiset_inter_def subseteq_mset_def aux)
35268
04673275441a switched notations for pointwise and multiset order
haftmann
parents: 35028
diff changeset
   386
qed
04673275441a switched notations for pointwise and multiset order
haftmann
parents: 35028
diff changeset
   387
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   388
41069
6fabc0414055 name filter operation just filter (c.f. List.filter and list comprehension syntax)
haftmann
parents: 40968
diff changeset
   389
lemma multiset_inter_count [simp]:
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   390
  fixes A B :: "'a multiset"
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   391
  shows "count (A #\<inter> B) x = min (count A x) (count B x)"
47429
ec64d94cbf9c multiset operations are defined with lift_definitions;
bulwahn
parents: 47308
diff changeset
   392
  by (simp add: multiset_inter_def)
35268
04673275441a switched notations for pointwise and multiset order
haftmann
parents: 35028
diff changeset
   393
04673275441a switched notations for pointwise and multiset order
haftmann
parents: 35028
diff changeset
   394
lemma multiset_inter_single: "a \<noteq> b \<Longrightarrow> {#a#} #\<inter> {#b#} = {#}"
46730
e3b99d0231bc tuned proofs;
wenzelm
parents: 46394
diff changeset
   395
  by (rule multiset_eqI) auto
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   396
35268
04673275441a switched notations for pointwise and multiset order
haftmann
parents: 35028
diff changeset
   397
lemma multiset_union_diff_commute:
04673275441a switched notations for pointwise and multiset order
haftmann
parents: 35028
diff changeset
   398
  assumes "B #\<inter> C = {#}"
04673275441a switched notations for pointwise and multiset order
haftmann
parents: 35028
diff changeset
   399
  shows "A + B - C = A - C + B"
39302
d7728f65b353 renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents: 39301
diff changeset
   400
proof (rule multiset_eqI)
35268
04673275441a switched notations for pointwise and multiset order
haftmann
parents: 35028
diff changeset
   401
  fix x
04673275441a switched notations for pointwise and multiset order
haftmann
parents: 35028
diff changeset
   402
  from assms have "min (count B x) (count C x) = 0"
46730
e3b99d0231bc tuned proofs;
wenzelm
parents: 46394
diff changeset
   403
    by (auto simp add: multiset_eq_iff)
35268
04673275441a switched notations for pointwise and multiset order
haftmann
parents: 35028
diff changeset
   404
  then have "count B x = 0 \<or> count C x = 0"
04673275441a switched notations for pointwise and multiset order
haftmann
parents: 35028
diff changeset
   405
    by auto
04673275441a switched notations for pointwise and multiset order
haftmann
parents: 35028
diff changeset
   406
  then show "count (A + B - C) x = count (A - C + B) x"
04673275441a switched notations for pointwise and multiset order
haftmann
parents: 35028
diff changeset
   407
    by auto
04673275441a switched notations for pointwise and multiset order
haftmann
parents: 35028
diff changeset
   408
qed
04673275441a switched notations for pointwise and multiset order
haftmann
parents: 35028
diff changeset
   409
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   410
lemma empty_inter [simp]: "{#} #\<inter> M = {#}"
51600
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
   411
  by (simp add: multiset_eq_iff)
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
   412
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   413
lemma inter_empty [simp]: "M #\<inter> {#} = {#}"
51600
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
   414
  by (simp add: multiset_eq_iff)
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
   415
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   416
lemma inter_add_left1: "\<not> x \<in># N \<Longrightarrow> (M + {#x#}) #\<inter> N = M #\<inter> N"
51600
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
   417
  by (simp add: multiset_eq_iff)
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
   418
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   419
lemma inter_add_left2: "x \<in># N \<Longrightarrow> (M + {#x#}) #\<inter> N = (M #\<inter> (N - {#x#})) + {#x#}"
51600
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
   420
  by (simp add: multiset_eq_iff)
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
   421
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   422
lemma inter_add_right1: "\<not> x \<in># N \<Longrightarrow> N #\<inter> (M + {#x#}) = N #\<inter> M"
51600
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
   423
  by (simp add: multiset_eq_iff)
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
   424
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   425
lemma inter_add_right2: "x \<in># N \<Longrightarrow> N #\<inter> (M + {#x#}) = ((N - {#x#}) #\<inter> M) + {#x#}"
51600
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
   426
  by (simp add: multiset_eq_iff)
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
   427
35268
04673275441a switched notations for pointwise and multiset order
haftmann
parents: 35028
diff changeset
   428
60500
903bb1495239 isabelle update_cartouches;
wenzelm
parents: 60400
diff changeset
   429
subsubsection \<open>Bounded union\<close>
60397
f8a513fedb31 Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 59999
diff changeset
   430
definition sup_subset_mset :: "'a multiset \<Rightarrow> 'a multiset \<Rightarrow> 'a multiset"(infixl "#\<union>" 70)  where
f8a513fedb31 Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 59999
diff changeset
   431
  "sup_subset_mset A B = A + (B - A)"
f8a513fedb31 Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 59999
diff changeset
   432
f8a513fedb31 Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 59999
diff changeset
   433
interpretation subset_mset: semilattice_sup sup_subset_mset "op \<le>#" "op <#"
51623
1194b438426a sup on multisets
haftmann
parents: 51600
diff changeset
   434
proof -
1194b438426a sup on multisets
haftmann
parents: 51600
diff changeset
   435
  have aux: "\<And>m n q :: nat. m \<le> n \<Longrightarrow> q \<le> n \<Longrightarrow> m + (q - m) \<le> n" by arith
60397
f8a513fedb31 Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 59999
diff changeset
   436
  show "class.semilattice_sup op #\<union> op \<le># op <#"
f8a513fedb31 Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 59999
diff changeset
   437
    by default (auto simp add: sup_subset_mset_def subseteq_mset_def aux)
51623
1194b438426a sup on multisets
haftmann
parents: 51600
diff changeset
   438
qed
1194b438426a sup on multisets
haftmann
parents: 51600
diff changeset
   439
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   440
lemma sup_subset_mset_count [simp]: "count (A #\<union> B) x = max (count A x) (count B x)"
60397
f8a513fedb31 Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 59999
diff changeset
   441
  by (simp add: sup_subset_mset_def)
51623
1194b438426a sup on multisets
haftmann
parents: 51600
diff changeset
   442
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   443
lemma empty_sup [simp]: "{#} #\<union> M = M"
51623
1194b438426a sup on multisets
haftmann
parents: 51600
diff changeset
   444
  by (simp add: multiset_eq_iff)
1194b438426a sup on multisets
haftmann
parents: 51600
diff changeset
   445
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   446
lemma sup_empty [simp]: "M #\<union> {#} = M"
51623
1194b438426a sup on multisets
haftmann
parents: 51600
diff changeset
   447
  by (simp add: multiset_eq_iff)
1194b438426a sup on multisets
haftmann
parents: 51600
diff changeset
   448
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   449
lemma sup_add_left1: "\<not> x \<in># N \<Longrightarrow> (M + {#x#}) #\<union> N = (M #\<union> N) + {#x#}"
51623
1194b438426a sup on multisets
haftmann
parents: 51600
diff changeset
   450
  by (simp add: multiset_eq_iff)
1194b438426a sup on multisets
haftmann
parents: 51600
diff changeset
   451
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   452
lemma sup_add_left2: "x \<in># N \<Longrightarrow> (M + {#x#}) #\<union> N = (M #\<union> (N - {#x#})) + {#x#}"
51623
1194b438426a sup on multisets
haftmann
parents: 51600
diff changeset
   453
  by (simp add: multiset_eq_iff)
1194b438426a sup on multisets
haftmann
parents: 51600
diff changeset
   454
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   455
lemma sup_add_right1: "\<not> x \<in># N \<Longrightarrow> N #\<union> (M + {#x#}) = (N #\<union> M) + {#x#}"
51623
1194b438426a sup on multisets
haftmann
parents: 51600
diff changeset
   456
  by (simp add: multiset_eq_iff)
1194b438426a sup on multisets
haftmann
parents: 51600
diff changeset
   457
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   458
lemma sup_add_right2: "x \<in># N \<Longrightarrow> N #\<union> (M + {#x#}) = ((N - {#x#}) #\<union> M) + {#x#}"
51623
1194b438426a sup on multisets
haftmann
parents: 51600
diff changeset
   459
  by (simp add: multiset_eq_iff)
1194b438426a sup on multisets
haftmann
parents: 51600
diff changeset
   460
60500
903bb1495239 isabelle update_cartouches;
wenzelm
parents: 60400
diff changeset
   461
subsubsection \<open>Subset is an order\<close>
60397
f8a513fedb31 Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 59999
diff changeset
   462
interpretation subset_mset: order "op \<le>#" "op <#" by unfold_locales auto
51623
1194b438426a sup on multisets
haftmann
parents: 51600
diff changeset
   463
60500
903bb1495239 isabelle update_cartouches;
wenzelm
parents: 60400
diff changeset
   464
subsubsection \<open>Filter (with comprehension syntax)\<close>
903bb1495239 isabelle update_cartouches;
wenzelm
parents: 60400
diff changeset
   465
903bb1495239 isabelle update_cartouches;
wenzelm
parents: 60400
diff changeset
   466
text \<open>Multiset comprehension\<close>
41069
6fabc0414055 name filter operation just filter (c.f. List.filter and list comprehension syntax)
haftmann
parents: 40968
diff changeset
   467
59998
c54d36be22ef renamed Multiset.fold -> fold_mset, Multiset.filter -> filter_mset
nipkow
parents: 59986
diff changeset
   468
lift_definition filter_mset :: "('a \<Rightarrow> bool) \<Rightarrow> 'a multiset \<Rightarrow> 'a multiset"
c54d36be22ef renamed Multiset.fold -> fold_mset, Multiset.filter -> filter_mset
nipkow
parents: 59986
diff changeset
   469
is "\<lambda>P M. \<lambda>x. if P x then M x else 0"
47429
ec64d94cbf9c multiset operations are defined with lift_definitions;
bulwahn
parents: 47308
diff changeset
   470
by (rule filter_preserves_multiset)
35268
04673275441a switched notations for pointwise and multiset order
haftmann
parents: 35028
diff changeset
   471
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   472
lemma count_filter_mset [simp]: "count (filter_mset P M) a = (if P a then count M a else 0)"
59998
c54d36be22ef renamed Multiset.fold -> fold_mset, Multiset.filter -> filter_mset
nipkow
parents: 59986
diff changeset
   473
  by (simp add: filter_mset.rep_eq)
c54d36be22ef renamed Multiset.fold -> fold_mset, Multiset.filter -> filter_mset
nipkow
parents: 59986
diff changeset
   474
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   475
lemma filter_empty_mset [simp]: "filter_mset P {#} = {#}"
59998
c54d36be22ef renamed Multiset.fold -> fold_mset, Multiset.filter -> filter_mset
nipkow
parents: 59986
diff changeset
   476
  by (rule multiset_eqI) simp
c54d36be22ef renamed Multiset.fold -> fold_mset, Multiset.filter -> filter_mset
nipkow
parents: 59986
diff changeset
   477
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   478
lemma filter_single_mset [simp]: "filter_mset P {#x#} = (if P x then {#x#} else {#})"
39302
d7728f65b353 renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents: 39301
diff changeset
   479
  by (rule multiset_eqI) simp
35268
04673275441a switched notations for pointwise and multiset order
haftmann
parents: 35028
diff changeset
   480
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   481
lemma filter_union_mset [simp]: "filter_mset P (M + N) = filter_mset P M + filter_mset P N"
41069
6fabc0414055 name filter operation just filter (c.f. List.filter and list comprehension syntax)
haftmann
parents: 40968
diff changeset
   482
  by (rule multiset_eqI) simp
6fabc0414055 name filter operation just filter (c.f. List.filter and list comprehension syntax)
haftmann
parents: 40968
diff changeset
   483
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   484
lemma filter_diff_mset [simp]: "filter_mset P (M - N) = filter_mset P M - filter_mset P N"
39302
d7728f65b353 renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents: 39301
diff changeset
   485
  by (rule multiset_eqI) simp
35268
04673275441a switched notations for pointwise and multiset order
haftmann
parents: 35028
diff changeset
   486
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   487
lemma filter_inter_mset [simp]: "filter_mset P (M #\<inter> N) = filter_mset P M #\<inter> filter_mset P N"
41069
6fabc0414055 name filter operation just filter (c.f. List.filter and list comprehension syntax)
haftmann
parents: 40968
diff changeset
   488
  by (rule multiset_eqI) simp
6fabc0414055 name filter operation just filter (c.f. List.filter and list comprehension syntax)
haftmann
parents: 40968
diff changeset
   489
60397
f8a513fedb31 Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 59999
diff changeset
   490
lemma multiset_filter_subset[simp]: "filter_mset f M \<le># M"
f8a513fedb31 Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 59999
diff changeset
   491
  by (simp add: mset_less_eqI)
f8a513fedb31 Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 59999
diff changeset
   492
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   493
lemma multiset_filter_mono:
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   494
  assumes "A \<le># B"
60397
f8a513fedb31 Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 59999
diff changeset
   495
  shows "filter_mset f A \<le># filter_mset f B"
58035
177eeda93a8c added lemmas contributed by Rene Thiemann
blanchet
parents: 57966
diff changeset
   496
proof -
177eeda93a8c added lemmas contributed by Rene Thiemann
blanchet
parents: 57966
diff changeset
   497
  from assms[unfolded mset_le_exists_conv]
177eeda93a8c added lemmas contributed by Rene Thiemann
blanchet
parents: 57966
diff changeset
   498
  obtain C where B: "B = A + C" by auto
177eeda93a8c added lemmas contributed by Rene Thiemann
blanchet
parents: 57966
diff changeset
   499
  show ?thesis unfolding B by auto
177eeda93a8c added lemmas contributed by Rene Thiemann
blanchet
parents: 57966
diff changeset
   500
qed
177eeda93a8c added lemmas contributed by Rene Thiemann
blanchet
parents: 57966
diff changeset
   501
41069
6fabc0414055 name filter operation just filter (c.f. List.filter and list comprehension syntax)
haftmann
parents: 40968
diff changeset
   502
syntax
6fabc0414055 name filter operation just filter (c.f. List.filter and list comprehension syntax)
haftmann
parents: 40968
diff changeset
   503
  "_MCollect" :: "pttrn \<Rightarrow> 'a multiset \<Rightarrow> bool \<Rightarrow> 'a multiset"    ("(1{# _ :# _./ _#})")
6fabc0414055 name filter operation just filter (c.f. List.filter and list comprehension syntax)
haftmann
parents: 40968
diff changeset
   504
syntax (xsymbol)
6fabc0414055 name filter operation just filter (c.f. List.filter and list comprehension syntax)
haftmann
parents: 40968
diff changeset
   505
  "_MCollect" :: "pttrn \<Rightarrow> 'a multiset \<Rightarrow> bool \<Rightarrow> 'a multiset"    ("(1{# _ \<in># _./ _#})")
6fabc0414055 name filter operation just filter (c.f. List.filter and list comprehension syntax)
haftmann
parents: 40968
diff changeset
   506
translations
59998
c54d36be22ef renamed Multiset.fold -> fold_mset, Multiset.filter -> filter_mset
nipkow
parents: 59986
diff changeset
   507
  "{#x \<in># M. P#}" == "CONST filter_mset (\<lambda>x. P) M"
41069
6fabc0414055 name filter operation just filter (c.f. List.filter and list comprehension syntax)
haftmann
parents: 40968
diff changeset
   508
10249
e4d13d8a9011 Multisets (from HOL/Induct/Multiset and friends);
wenzelm
parents:
diff changeset
   509
60500
903bb1495239 isabelle update_cartouches;
wenzelm
parents: 60400
diff changeset
   510
subsubsection \<open>Set of elements\<close>
10249
e4d13d8a9011 Multisets (from HOL/Induct/Multiset and friends);
wenzelm
parents:
diff changeset
   511
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   512
definition set_mset :: "'a multiset \<Rightarrow> 'a set"
60607
d440af2e584f more symbols;
wenzelm
parents: 60606
diff changeset
   513
  where "set_mset M = {x. x \<in># M}"
60495
d7ff0a1df90a renamed Multiset.set_of to the canonical set_mset
nipkow
parents: 60400
diff changeset
   514
d7ff0a1df90a renamed Multiset.set_of to the canonical set_mset
nipkow
parents: 60400
diff changeset
   515
lemma set_mset_empty [simp]: "set_mset {#} = {}"
d7ff0a1df90a renamed Multiset.set_of to the canonical set_mset
nipkow
parents: 60400
diff changeset
   516
by (simp add: set_mset_def)
d7ff0a1df90a renamed Multiset.set_of to the canonical set_mset
nipkow
parents: 60400
diff changeset
   517
d7ff0a1df90a renamed Multiset.set_of to the canonical set_mset
nipkow
parents: 60400
diff changeset
   518
lemma set_mset_single [simp]: "set_mset {#b#} = {b}"
d7ff0a1df90a renamed Multiset.set_of to the canonical set_mset
nipkow
parents: 60400
diff changeset
   519
by (simp add: set_mset_def)
d7ff0a1df90a renamed Multiset.set_of to the canonical set_mset
nipkow
parents: 60400
diff changeset
   520
d7ff0a1df90a renamed Multiset.set_of to the canonical set_mset
nipkow
parents: 60400
diff changeset
   521
lemma set_mset_union [simp]: "set_mset (M + N) = set_mset M \<union> set_mset N"
d7ff0a1df90a renamed Multiset.set_of to the canonical set_mset
nipkow
parents: 60400
diff changeset
   522
by (auto simp add: set_mset_def)
d7ff0a1df90a renamed Multiset.set_of to the canonical set_mset
nipkow
parents: 60400
diff changeset
   523
d7ff0a1df90a renamed Multiset.set_of to the canonical set_mset
nipkow
parents: 60400
diff changeset
   524
lemma set_mset_eq_empty_iff [simp]: "(set_mset M = {}) = (M = {#})"
d7ff0a1df90a renamed Multiset.set_of to the canonical set_mset
nipkow
parents: 60400
diff changeset
   525
by (auto simp add: set_mset_def multiset_eq_iff)
d7ff0a1df90a renamed Multiset.set_of to the canonical set_mset
nipkow
parents: 60400
diff changeset
   526
60607
d440af2e584f more symbols;
wenzelm
parents: 60606
diff changeset
   527
lemma mem_set_mset_iff [simp]: "(x \<in> set_mset M) = (x \<in># M)"
60495
d7ff0a1df90a renamed Multiset.set_of to the canonical set_mset
nipkow
parents: 60400
diff changeset
   528
by (auto simp add: set_mset_def)
d7ff0a1df90a renamed Multiset.set_of to the canonical set_mset
nipkow
parents: 60400
diff changeset
   529
60607
d440af2e584f more symbols;
wenzelm
parents: 60606
diff changeset
   530
lemma set_mset_filter [simp]: "set_mset {# x\<in>#M. P x #} = set_mset M \<inter> {x. P x}"
60495
d7ff0a1df90a renamed Multiset.set_of to the canonical set_mset
nipkow
parents: 60400
diff changeset
   531
by (auto simp add: set_mset_def)
d7ff0a1df90a renamed Multiset.set_of to the canonical set_mset
nipkow
parents: 60400
diff changeset
   532
d7ff0a1df90a renamed Multiset.set_of to the canonical set_mset
nipkow
parents: 60400
diff changeset
   533
lemma finite_set_mset [iff]: "finite (set_mset M)"
d7ff0a1df90a renamed Multiset.set_of to the canonical set_mset
nipkow
parents: 60400
diff changeset
   534
  using count [of M] by (simp add: multiset_def set_mset_def)
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   535
60607
d440af2e584f more symbols;
wenzelm
parents: 60606
diff changeset
   536
lemma finite_Collect_mem [iff]: "finite {x. x \<in># M}"
60495
d7ff0a1df90a renamed Multiset.set_of to the canonical set_mset
nipkow
parents: 60400
diff changeset
   537
  unfolding set_mset_def[symmetric] by simp
d7ff0a1df90a renamed Multiset.set_of to the canonical set_mset
nipkow
parents: 60400
diff changeset
   538
d7ff0a1df90a renamed Multiset.set_of to the canonical set_mset
nipkow
parents: 60400
diff changeset
   539
lemma set_mset_mono: "A \<le># B \<Longrightarrow> set_mset A \<subseteq> set_mset B"
d7ff0a1df90a renamed Multiset.set_of to the canonical set_mset
nipkow
parents: 60400
diff changeset
   540
  by (metis mset_leD subsetI mem_set_mset_iff)
d7ff0a1df90a renamed Multiset.set_of to the canonical set_mset
nipkow
parents: 60400
diff changeset
   541
d7ff0a1df90a renamed Multiset.set_of to the canonical set_mset
nipkow
parents: 60400
diff changeset
   542
lemma ball_set_mset_iff: "(\<forall>x \<in> set_mset M. P x) \<longleftrightarrow> (\<forall>x. x \<in># M \<longrightarrow> P x)"
59813
6320064f22bb more multiset theorems
blanchet
parents: 59807
diff changeset
   543
  by auto
6320064f22bb more multiset theorems
blanchet
parents: 59807
diff changeset
   544
6320064f22bb more multiset theorems
blanchet
parents: 59807
diff changeset
   545
60500
903bb1495239 isabelle update_cartouches;
wenzelm
parents: 60400
diff changeset
   546
subsubsection \<open>Size\<close>
10249
e4d13d8a9011 Multisets (from HOL/Induct/Multiset and friends);
wenzelm
parents:
diff changeset
   547
56656
7f9b686bf30a size function for multisets
blanchet
parents: 55945
diff changeset
   548
definition wcount where "wcount f M = (\<lambda>x. count M x * Suc (f x))"
7f9b686bf30a size function for multisets
blanchet
parents: 55945
diff changeset
   549
7f9b686bf30a size function for multisets
blanchet
parents: 55945
diff changeset
   550
lemma wcount_union: "wcount f (M + N) a = wcount f M a + wcount f N a"
7f9b686bf30a size function for multisets
blanchet
parents: 55945
diff changeset
   551
  by (auto simp: wcount_def add_mult_distrib)
7f9b686bf30a size function for multisets
blanchet
parents: 55945
diff changeset
   552
7f9b686bf30a size function for multisets
blanchet
parents: 55945
diff changeset
   553
definition size_multiset :: "('a \<Rightarrow> nat) \<Rightarrow> 'a multiset \<Rightarrow> nat" where
60495
d7ff0a1df90a renamed Multiset.set_of to the canonical set_mset
nipkow
parents: 60400
diff changeset
   554
  "size_multiset f M = setsum (wcount f M) (set_mset M)"
56656
7f9b686bf30a size function for multisets
blanchet
parents: 55945
diff changeset
   555
7f9b686bf30a size function for multisets
blanchet
parents: 55945
diff changeset
   556
lemmas size_multiset_eq = size_multiset_def[unfolded wcount_def]
7f9b686bf30a size function for multisets
blanchet
parents: 55945
diff changeset
   557
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   558
instantiation multiset :: (type) size
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   559
begin
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   560
56656
7f9b686bf30a size function for multisets
blanchet
parents: 55945
diff changeset
   561
definition size_multiset where
7f9b686bf30a size function for multisets
blanchet
parents: 55945
diff changeset
   562
  size_multiset_overloaded_def: "size_multiset = Multiset.size_multiset (\<lambda>_. 0)"
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   563
instance ..
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   564
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   565
end
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   566
56656
7f9b686bf30a size function for multisets
blanchet
parents: 55945
diff changeset
   567
lemmas size_multiset_overloaded_eq =
7f9b686bf30a size function for multisets
blanchet
parents: 55945
diff changeset
   568
  size_multiset_overloaded_def[THEN fun_cong, unfolded size_multiset_eq, simplified]
7f9b686bf30a size function for multisets
blanchet
parents: 55945
diff changeset
   569
7f9b686bf30a size function for multisets
blanchet
parents: 55945
diff changeset
   570
lemma size_multiset_empty [simp]: "size_multiset f {#} = 0"
7f9b686bf30a size function for multisets
blanchet
parents: 55945
diff changeset
   571
by (simp add: size_multiset_def)
7f9b686bf30a size function for multisets
blanchet
parents: 55945
diff changeset
   572
28708
a1a436f09ec6 explicit check for pattern discipline before code translation
haftmann
parents: 28562
diff changeset
   573
lemma size_empty [simp]: "size {#} = 0"
56656
7f9b686bf30a size function for multisets
blanchet
parents: 55945
diff changeset
   574
by (simp add: size_multiset_overloaded_def)
7f9b686bf30a size function for multisets
blanchet
parents: 55945
diff changeset
   575
7f9b686bf30a size function for multisets
blanchet
parents: 55945
diff changeset
   576
lemma size_multiset_single [simp]: "size_multiset f {#b#} = Suc (f b)"
7f9b686bf30a size function for multisets
blanchet
parents: 55945
diff changeset
   577
by (simp add: size_multiset_eq)
10249
e4d13d8a9011 Multisets (from HOL/Induct/Multiset and friends);
wenzelm
parents:
diff changeset
   578
28708
a1a436f09ec6 explicit check for pattern discipline before code translation
haftmann
parents: 28562
diff changeset
   579
lemma size_single [simp]: "size {#b#} = 1"
56656
7f9b686bf30a size function for multisets
blanchet
parents: 55945
diff changeset
   580
by (simp add: size_multiset_overloaded_def)
7f9b686bf30a size function for multisets
blanchet
parents: 55945
diff changeset
   581
7f9b686bf30a size function for multisets
blanchet
parents: 55945
diff changeset
   582
lemma setsum_wcount_Int:
60495
d7ff0a1df90a renamed Multiset.set_of to the canonical set_mset
nipkow
parents: 60400
diff changeset
   583
  "finite A \<Longrightarrow> setsum (wcount f N) (A \<inter> set_mset N) = setsum (wcount f N) A"
26178
nipkow
parents: 26176
diff changeset
   584
apply (induct rule: finite_induct)
nipkow
parents: 26176
diff changeset
   585
 apply simp
60495
d7ff0a1df90a renamed Multiset.set_of to the canonical set_mset
nipkow
parents: 60400
diff changeset
   586
apply (simp add: Int_insert_left set_mset_def wcount_def)
56656
7f9b686bf30a size function for multisets
blanchet
parents: 55945
diff changeset
   587
done
7f9b686bf30a size function for multisets
blanchet
parents: 55945
diff changeset
   588
7f9b686bf30a size function for multisets
blanchet
parents: 55945
diff changeset
   589
lemma size_multiset_union [simp]:
7f9b686bf30a size function for multisets
blanchet
parents: 55945
diff changeset
   590
  "size_multiset f (M + N::'a multiset) = size_multiset f M + size_multiset f N"
57418
6ab1c7cb0b8d fact consolidation
haftmann
parents: 56656
diff changeset
   591
apply (simp add: size_multiset_def setsum_Un_nat setsum.distrib setsum_wcount_Int wcount_union)
56656
7f9b686bf30a size function for multisets
blanchet
parents: 55945
diff changeset
   592
apply (subst Int_commute)
7f9b686bf30a size function for multisets
blanchet
parents: 55945
diff changeset
   593
apply (simp add: setsum_wcount_Int)
26178
nipkow
parents: 26176
diff changeset
   594
done
10249
e4d13d8a9011 Multisets (from HOL/Induct/Multiset and friends);
wenzelm
parents:
diff changeset
   595
28708
a1a436f09ec6 explicit check for pattern discipline before code translation
haftmann
parents: 28562
diff changeset
   596
lemma size_union [simp]: "size (M + N::'a multiset) = size M + size N"
56656
7f9b686bf30a size function for multisets
blanchet
parents: 55945
diff changeset
   597
by (auto simp add: size_multiset_overloaded_def)
7f9b686bf30a size function for multisets
blanchet
parents: 55945
diff changeset
   598
7f9b686bf30a size function for multisets
blanchet
parents: 55945
diff changeset
   599
lemma size_multiset_eq_0_iff_empty [iff]: "(size_multiset f M = 0) = (M = {#})"
7f9b686bf30a size function for multisets
blanchet
parents: 55945
diff changeset
   600
by (auto simp add: size_multiset_eq multiset_eq_iff)
10249
e4d13d8a9011 Multisets (from HOL/Induct/Multiset and friends);
wenzelm
parents:
diff changeset
   601
17161
57c69627d71a tuned some proofs;
wenzelm
parents: 15869
diff changeset
   602
lemma size_eq_0_iff_empty [iff]: "(size M = 0) = (M = {#})"
56656
7f9b686bf30a size function for multisets
blanchet
parents: 55945
diff changeset
   603
by (auto simp add: size_multiset_overloaded_def)
26016
f9d1bf2fc59c added multiset comprehension
nipkow
parents: 25759
diff changeset
   604
f9d1bf2fc59c added multiset comprehension
nipkow
parents: 25759
diff changeset
   605
lemma nonempty_has_size: "(S \<noteq> {#}) = (0 < size S)"
26178
nipkow
parents: 26176
diff changeset
   606
by (metis gr0I gr_implies_not0 size_empty size_eq_0_iff_empty)
10249
e4d13d8a9011 Multisets (from HOL/Induct/Multiset and friends);
wenzelm
parents:
diff changeset
   607
60607
d440af2e584f more symbols;
wenzelm
parents: 60606
diff changeset
   608
lemma size_eq_Suc_imp_elem: "size M = Suc n \<Longrightarrow> \<exists>a. a \<in># M"
56656
7f9b686bf30a size function for multisets
blanchet
parents: 55945
diff changeset
   609
apply (unfold size_multiset_overloaded_eq)
26178
nipkow
parents: 26176
diff changeset
   610
apply (drule setsum_SucD)
nipkow
parents: 26176
diff changeset
   611
apply auto
nipkow
parents: 26176
diff changeset
   612
done
10249
e4d13d8a9011 Multisets (from HOL/Induct/Multiset and friends);
wenzelm
parents:
diff changeset
   613
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   614
lemma size_eq_Suc_imp_eq_union:
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   615
  assumes "size M = Suc n"
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   616
  shows "\<exists>a N. M = N + {#a#}"
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   617
proof -
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   618
  from assms obtain a where "a \<in># M"
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   619
    by (erule size_eq_Suc_imp_elem [THEN exE])
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   620
  then have "M = M - {#a#} + {#a#}" by simp
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   621
  then show ?thesis by blast
23611
65b168646309 more interpretations
nipkow
parents: 23373
diff changeset
   622
qed
15869
3aca7f05cd12 intersection
kleing
parents: 15867
diff changeset
   623
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   624
lemma size_mset_mono:
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   625
  fixes A B :: "'a multiset"
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   626
  assumes "A \<le># B"
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   627
  shows "size A \<le> size B"
59949
fc4c896c8e74 Removed mcard because it is equal to size
nipkow
parents: 59815
diff changeset
   628
proof -
fc4c896c8e74 Removed mcard because it is equal to size
nipkow
parents: 59815
diff changeset
   629
  from assms[unfolded mset_le_exists_conv]
fc4c896c8e74 Removed mcard because it is equal to size
nipkow
parents: 59815
diff changeset
   630
  obtain C where B: "B = A + C" by auto
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   631
  show ?thesis unfolding B by (induct C) auto
59949
fc4c896c8e74 Removed mcard because it is equal to size
nipkow
parents: 59815
diff changeset
   632
qed
fc4c896c8e74 Removed mcard because it is equal to size
nipkow
parents: 59815
diff changeset
   633
59998
c54d36be22ef renamed Multiset.fold -> fold_mset, Multiset.filter -> filter_mset
nipkow
parents: 59986
diff changeset
   634
lemma size_filter_mset_lesseq[simp]: "size (filter_mset f M) \<le> size M"
59949
fc4c896c8e74 Removed mcard because it is equal to size
nipkow
parents: 59815
diff changeset
   635
by (rule size_mset_mono[OF multiset_filter_subset])
fc4c896c8e74 Removed mcard because it is equal to size
nipkow
parents: 59815
diff changeset
   636
fc4c896c8e74 Removed mcard because it is equal to size
nipkow
parents: 59815
diff changeset
   637
lemma size_Diff_submset:
60397
f8a513fedb31 Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 59999
diff changeset
   638
  "M \<le># M' \<Longrightarrow> size (M' - M) = size M' - size(M::'a multiset)"
59949
fc4c896c8e74 Removed mcard because it is equal to size
nipkow
parents: 59815
diff changeset
   639
by (metis add_diff_cancel_left' size_union mset_le_exists_conv)
26016
f9d1bf2fc59c added multiset comprehension
nipkow
parents: 25759
diff changeset
   640
60500
903bb1495239 isabelle update_cartouches;
wenzelm
parents: 60400
diff changeset
   641
subsection \<open>Induction and case splits\<close>
10249
e4d13d8a9011 Multisets (from HOL/Induct/Multiset and friends);
wenzelm
parents:
diff changeset
   642
18258
836491e9b7d5 tuned induct proofs;
wenzelm
parents: 17778
diff changeset
   643
theorem multiset_induct [case_names empty add, induct type: multiset]:
48009
9b9150033b5a shortened some proofs
huffman
parents: 48008
diff changeset
   644
  assumes empty: "P {#}"
9b9150033b5a shortened some proofs
huffman
parents: 48008
diff changeset
   645
  assumes add: "\<And>M x. P M \<Longrightarrow> P (M + {#x#})"
9b9150033b5a shortened some proofs
huffman
parents: 48008
diff changeset
   646
  shows "P M"
9b9150033b5a shortened some proofs
huffman
parents: 48008
diff changeset
   647
proof (induct n \<equiv> "size M" arbitrary: M)
9b9150033b5a shortened some proofs
huffman
parents: 48008
diff changeset
   648
  case 0 thus "P M" by (simp add: empty)
9b9150033b5a shortened some proofs
huffman
parents: 48008
diff changeset
   649
next
9b9150033b5a shortened some proofs
huffman
parents: 48008
diff changeset
   650
  case (Suc k)
9b9150033b5a shortened some proofs
huffman
parents: 48008
diff changeset
   651
  obtain N x where "M = N + {#x#}"
60500
903bb1495239 isabelle update_cartouches;
wenzelm
parents: 60400
diff changeset
   652
    using \<open>Suc k = size M\<close> [symmetric]
48009
9b9150033b5a shortened some proofs
huffman
parents: 48008
diff changeset
   653
    using size_eq_Suc_imp_eq_union by fast
9b9150033b5a shortened some proofs
huffman
parents: 48008
diff changeset
   654
  with Suc add show "P M" by simp
10249
e4d13d8a9011 Multisets (from HOL/Induct/Multiset and friends);
wenzelm
parents:
diff changeset
   655
qed
e4d13d8a9011 Multisets (from HOL/Induct/Multiset and friends);
wenzelm
parents:
diff changeset
   656
25610
72e1563aee09 a fold operation for multisets + more lemmas
kleing
parents: 25595
diff changeset
   657
lemma multi_nonempty_split: "M \<noteq> {#} \<Longrightarrow> \<exists>A a. M = A + {#a#}"
26178
nipkow
parents: 26176
diff changeset
   658
by (induct M) auto
25610
72e1563aee09 a fold operation for multisets + more lemmas
kleing
parents: 25595
diff changeset
   659
55913
c1409c103b77 proper UTF-8;
wenzelm
parents: 55811
diff changeset
   660
lemma multiset_cases [cases type]:
c1409c103b77 proper UTF-8;
wenzelm
parents: 55811
diff changeset
   661
  obtains (empty) "M = {#}"
c1409c103b77 proper UTF-8;
wenzelm
parents: 55811
diff changeset
   662
    | (add) N x where "M = N + {#x#}"
c1409c103b77 proper UTF-8;
wenzelm
parents: 55811
diff changeset
   663
  using assms by (induct M) simp_all
25610
72e1563aee09 a fold operation for multisets + more lemmas
kleing
parents: 25595
diff changeset
   664
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   665
lemma multi_drop_mem_not_eq: "c \<in># B \<Longrightarrow> B - {#c#} \<noteq> B"
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   666
by (cases "B = {#}") (auto dest: multi_member_split)
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   667
60607
d440af2e584f more symbols;
wenzelm
parents: 60606
diff changeset
   668
lemma multiset_partition: "M = {# x\<in>#M. P x #} + {# x\<in>#M. \<not> P x #}"
39302
d7728f65b353 renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents: 39301
diff changeset
   669
apply (subst multiset_eq_iff)
26178
nipkow
parents: 26176
diff changeset
   670
apply auto
nipkow
parents: 26176
diff changeset
   671
done
10249
e4d13d8a9011 Multisets (from HOL/Induct/Multiset and friends);
wenzelm
parents:
diff changeset
   672
60397
f8a513fedb31 Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 59999
diff changeset
   673
lemma mset_less_size: "(A::'a multiset) <# B \<Longrightarrow> size A < size B"
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   674
proof (induct A arbitrary: B)
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   675
  case (empty M)
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   676
  then have "M \<noteq> {#}" by (simp add: mset_less_empty_nonempty)
58425
246985c6b20b simpler proof
blanchet
parents: 58247
diff changeset
   677
  then obtain M' x where "M = M' + {#x#}"
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   678
    by (blast dest: multi_nonempty_split)
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   679
  then show ?case by simp
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   680
next
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   681
  case (add S x T)
60397
f8a513fedb31 Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 59999
diff changeset
   682
  have IH: "\<And>B. S <# B \<Longrightarrow> size S < size B" by fact
f8a513fedb31 Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 59999
diff changeset
   683
  have SxsubT: "S + {#x#} <# T" by fact
f8a513fedb31 Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 59999
diff changeset
   684
  then have "x \<in># T" and "S <# T" by (auto dest: mset_less_insertD)
58425
246985c6b20b simpler proof
blanchet
parents: 58247
diff changeset
   685
  then obtain T' where T: "T = T' + {#x#}"
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   686
    by (blast dest: multi_member_split)
60397
f8a513fedb31 Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 59999
diff changeset
   687
  then have "S <# T'" using SxsubT
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   688
    by (blast intro: mset_less_add_bothsides)
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   689
  then have "size S < size T'" using IH by simp
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   690
  then show ?case using T by simp
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   691
qed
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   692
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   693
59949
fc4c896c8e74 Removed mcard because it is equal to size
nipkow
parents: 59815
diff changeset
   694
lemma size_1_singleton_mset: "size M = 1 \<Longrightarrow> \<exists>a. M = {#a#}"
fc4c896c8e74 Removed mcard because it is equal to size
nipkow
parents: 59815
diff changeset
   695
by (cases M) auto
fc4c896c8e74 Removed mcard because it is equal to size
nipkow
parents: 59815
diff changeset
   696
60500
903bb1495239 isabelle update_cartouches;
wenzelm
parents: 60400
diff changeset
   697
subsubsection \<open>Strong induction and subset induction for multisets\<close>
903bb1495239 isabelle update_cartouches;
wenzelm
parents: 60400
diff changeset
   698
903bb1495239 isabelle update_cartouches;
wenzelm
parents: 60400
diff changeset
   699
text \<open>Well-foundedness of strict subset relation\<close>
58098
ff478d85129b inlined unused definition
haftmann
parents: 58035
diff changeset
   700
60397
f8a513fedb31 Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 59999
diff changeset
   701
lemma wf_less_mset_rel: "wf {(M, N :: 'a multiset). M <# N}"
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   702
apply (rule wf_measure [THEN wf_subset, where f1=size])
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   703
apply (clarsimp simp: measure_def inv_image_def mset_less_size)
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   704
done
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   705
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   706
lemma full_multiset_induct [case_names less]:
60397
f8a513fedb31 Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 59999
diff changeset
   707
assumes ih: "\<And>B. \<forall>(A::'a multiset). A <# B \<longrightarrow> P A \<Longrightarrow> P B"
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   708
shows "P B"
58098
ff478d85129b inlined unused definition
haftmann
parents: 58035
diff changeset
   709
apply (rule wf_less_mset_rel [THEN wf_induct])
ff478d85129b inlined unused definition
haftmann
parents: 58035
diff changeset
   710
apply (rule ih, auto)
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   711
done
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   712
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   713
lemma multi_subset_induct [consumes 2, case_names empty add]:
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   714
  assumes "F \<le># A"
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   715
    and empty: "P {#}"
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   716
    and insert: "\<And>a F. a \<in># A \<Longrightarrow> P F \<Longrightarrow> P (F + {#a#})"
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   717
  shows "P F"
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   718
proof -
60500
903bb1495239 isabelle update_cartouches;
wenzelm
parents: 60400
diff changeset
   719
  from \<open>F \<le># A\<close>
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   720
  show ?thesis
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   721
  proof (induct F)
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   722
    show "P {#}" by fact
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   723
  next
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   724
    fix x F
60397
f8a513fedb31 Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 59999
diff changeset
   725
    assume P: "F \<le># A \<Longrightarrow> P F" and i: "F + {#x#} \<le># A"
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   726
    show "P (F + {#x#})"
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   727
    proof (rule insert)
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   728
      from i show "x \<in># A" by (auto dest: mset_le_insertD)
60397
f8a513fedb31 Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 59999
diff changeset
   729
      from i have "F \<le># A" by (auto dest: mset_le_insertD)
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   730
      with P show "P F" .
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   731
    qed
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   732
  qed
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   733
qed
26145
95670b6e1fa3 tuned document;
wenzelm
parents: 26143
diff changeset
   734
17161
57c69627d71a tuned some proofs;
wenzelm
parents: 15869
diff changeset
   735
60500
903bb1495239 isabelle update_cartouches;
wenzelm
parents: 60400
diff changeset
   736
subsection \<open>The fold combinator\<close>
48023
6dfe5e774012 reordered sections
huffman
parents: 48012
diff changeset
   737
59998
c54d36be22ef renamed Multiset.fold -> fold_mset, Multiset.filter -> filter_mset
nipkow
parents: 59986
diff changeset
   738
definition fold_mset :: "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'b \<Rightarrow> 'a multiset \<Rightarrow> 'b"
48023
6dfe5e774012 reordered sections
huffman
parents: 48012
diff changeset
   739
where
60495
d7ff0a1df90a renamed Multiset.set_of to the canonical set_mset
nipkow
parents: 60400
diff changeset
   740
  "fold_mset f s M = Finite_Set.fold (\<lambda>x. f x ^^ count M x) s (set_mset M)"
48023
6dfe5e774012 reordered sections
huffman
parents: 48012
diff changeset
   741
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   742
lemma fold_mset_empty [simp]: "fold_mset f s {#} = s"
59998
c54d36be22ef renamed Multiset.fold -> fold_mset, Multiset.filter -> filter_mset
nipkow
parents: 59986
diff changeset
   743
  by (simp add: fold_mset_def)
48023
6dfe5e774012 reordered sections
huffman
parents: 48012
diff changeset
   744
6dfe5e774012 reordered sections
huffman
parents: 48012
diff changeset
   745
context comp_fun_commute
6dfe5e774012 reordered sections
huffman
parents: 48012
diff changeset
   746
begin
6dfe5e774012 reordered sections
huffman
parents: 48012
diff changeset
   747
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   748
lemma fold_mset_insert: "fold_mset f s (M + {#x#}) = f x (fold_mset f s M)"
49822
0cfc1651be25 simplified construction of fold combinator on multisets;
haftmann
parents: 49717
diff changeset
   749
proof -
0cfc1651be25 simplified construction of fold combinator on multisets;
haftmann
parents: 49717
diff changeset
   750
  interpret mset: comp_fun_commute "\<lambda>y. f y ^^ count M y"
0cfc1651be25 simplified construction of fold combinator on multisets;
haftmann
parents: 49717
diff changeset
   751
    by (fact comp_fun_commute_funpow)
0cfc1651be25 simplified construction of fold combinator on multisets;
haftmann
parents: 49717
diff changeset
   752
  interpret mset_union: comp_fun_commute "\<lambda>y. f y ^^ count (M + {#x#}) y"
0cfc1651be25 simplified construction of fold combinator on multisets;
haftmann
parents: 49717
diff changeset
   753
    by (fact comp_fun_commute_funpow)
0cfc1651be25 simplified construction of fold combinator on multisets;
haftmann
parents: 49717
diff changeset
   754
  show ?thesis
60495
d7ff0a1df90a renamed Multiset.set_of to the canonical set_mset
nipkow
parents: 60400
diff changeset
   755
  proof (cases "x \<in> set_mset M")
49822
0cfc1651be25 simplified construction of fold combinator on multisets;
haftmann
parents: 49717
diff changeset
   756
    case False
0cfc1651be25 simplified construction of fold combinator on multisets;
haftmann
parents: 49717
diff changeset
   757
    then have *: "count (M + {#x#}) x = 1" by simp
60495
d7ff0a1df90a renamed Multiset.set_of to the canonical set_mset
nipkow
parents: 60400
diff changeset
   758
    from False have "Finite_Set.fold (\<lambda>y. f y ^^ count (M + {#x#}) y) s (set_mset M) =
d7ff0a1df90a renamed Multiset.set_of to the canonical set_mset
nipkow
parents: 60400
diff changeset
   759
      Finite_Set.fold (\<lambda>y. f y ^^ count M y) s (set_mset M)"
49822
0cfc1651be25 simplified construction of fold combinator on multisets;
haftmann
parents: 49717
diff changeset
   760
      by (auto intro!: Finite_Set.fold_cong comp_fun_commute_funpow)
0cfc1651be25 simplified construction of fold combinator on multisets;
haftmann
parents: 49717
diff changeset
   761
    with False * show ?thesis
59998
c54d36be22ef renamed Multiset.fold -> fold_mset, Multiset.filter -> filter_mset
nipkow
parents: 59986
diff changeset
   762
      by (simp add: fold_mset_def del: count_union)
48023
6dfe5e774012 reordered sections
huffman
parents: 48012
diff changeset
   763
  next
49822
0cfc1651be25 simplified construction of fold combinator on multisets;
haftmann
parents: 49717
diff changeset
   764
    case True
60495
d7ff0a1df90a renamed Multiset.set_of to the canonical set_mset
nipkow
parents: 60400
diff changeset
   765
    def N \<equiv> "set_mset M - {x}"
d7ff0a1df90a renamed Multiset.set_of to the canonical set_mset
nipkow
parents: 60400
diff changeset
   766
    from N_def True have *: "set_mset M = insert x N" "x \<notin> N" "finite N" by auto
49822
0cfc1651be25 simplified construction of fold combinator on multisets;
haftmann
parents: 49717
diff changeset
   767
    then have "Finite_Set.fold (\<lambda>y. f y ^^ count (M + {#x#}) y) s N =
0cfc1651be25 simplified construction of fold combinator on multisets;
haftmann
parents: 49717
diff changeset
   768
      Finite_Set.fold (\<lambda>y. f y ^^ count M y) s N"
0cfc1651be25 simplified construction of fold combinator on multisets;
haftmann
parents: 49717
diff changeset
   769
      by (auto intro!: Finite_Set.fold_cong comp_fun_commute_funpow)
59998
c54d36be22ef renamed Multiset.fold -> fold_mset, Multiset.filter -> filter_mset
nipkow
parents: 59986
diff changeset
   770
    with * show ?thesis by (simp add: fold_mset_def del: count_union) simp
48023
6dfe5e774012 reordered sections
huffman
parents: 48012
diff changeset
   771
  qed
6dfe5e774012 reordered sections
huffman
parents: 48012
diff changeset
   772
qed
6dfe5e774012 reordered sections
huffman
parents: 48012
diff changeset
   773
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   774
corollary fold_mset_single [simp]: "fold_mset f s {#x#} = f x s"
49822
0cfc1651be25 simplified construction of fold combinator on multisets;
haftmann
parents: 49717
diff changeset
   775
proof -
59998
c54d36be22ef renamed Multiset.fold -> fold_mset, Multiset.filter -> filter_mset
nipkow
parents: 59986
diff changeset
   776
  have "fold_mset f s ({#} + {#x#}) = f x s" by (simp only: fold_mset_insert) simp
49822
0cfc1651be25 simplified construction of fold combinator on multisets;
haftmann
parents: 49717
diff changeset
   777
  then show ?thesis by simp
0cfc1651be25 simplified construction of fold combinator on multisets;
haftmann
parents: 49717
diff changeset
   778
qed
48023
6dfe5e774012 reordered sections
huffman
parents: 48012
diff changeset
   779
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   780
lemma fold_mset_fun_left_comm: "f x (fold_mset f s M) = fold_mset f (f x s) M"
49822
0cfc1651be25 simplified construction of fold combinator on multisets;
haftmann
parents: 49717
diff changeset
   781
  by (induct M) (simp_all add: fold_mset_insert fun_left_comm)
48023
6dfe5e774012 reordered sections
huffman
parents: 48012
diff changeset
   782
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   783
lemma fold_mset_union [simp]: "fold_mset f s (M + N) = fold_mset f (fold_mset f s M) N"
49822
0cfc1651be25 simplified construction of fold combinator on multisets;
haftmann
parents: 49717
diff changeset
   784
proof (induct M)
48023
6dfe5e774012 reordered sections
huffman
parents: 48012
diff changeset
   785
  case empty then show ?case by simp
6dfe5e774012 reordered sections
huffman
parents: 48012
diff changeset
   786
next
49822
0cfc1651be25 simplified construction of fold combinator on multisets;
haftmann
parents: 49717
diff changeset
   787
  case (add M x)
0cfc1651be25 simplified construction of fold combinator on multisets;
haftmann
parents: 49717
diff changeset
   788
  have "M + {#x#} + N = (M + N) + {#x#}"
57514
bdc2c6b40bf2 prefer ac_simps collections over separate name bindings for add and mult
haftmann
parents: 57512
diff changeset
   789
    by (simp add: ac_simps)
51548
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
   790
  with add show ?case by (simp add: fold_mset_insert fold_mset_fun_left_comm)
48023
6dfe5e774012 reordered sections
huffman
parents: 48012
diff changeset
   791
qed
6dfe5e774012 reordered sections
huffman
parents: 48012
diff changeset
   792
6dfe5e774012 reordered sections
huffman
parents: 48012
diff changeset
   793
lemma fold_mset_fusion:
6dfe5e774012 reordered sections
huffman
parents: 48012
diff changeset
   794
  assumes "comp_fun_commute g"
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   795
    and *: "\<And>x y. h (g x y) = f x (h y)"
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   796
  shows "h (fold_mset g w A) = fold_mset f (h w) A"
48023
6dfe5e774012 reordered sections
huffman
parents: 48012
diff changeset
   797
proof -
6dfe5e774012 reordered sections
huffman
parents: 48012
diff changeset
   798
  interpret comp_fun_commute g by (fact assms)
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   799
  from * show ?thesis by (induct A) auto
48023
6dfe5e774012 reordered sections
huffman
parents: 48012
diff changeset
   800
qed
6dfe5e774012 reordered sections
huffman
parents: 48012
diff changeset
   801
6dfe5e774012 reordered sections
huffman
parents: 48012
diff changeset
   802
end
6dfe5e774012 reordered sections
huffman
parents: 48012
diff changeset
   803
60500
903bb1495239 isabelle update_cartouches;
wenzelm
parents: 60400
diff changeset
   804
text \<open>
48023
6dfe5e774012 reordered sections
huffman
parents: 48012
diff changeset
   805
  A note on code generation: When defining some function containing a
59998
c54d36be22ef renamed Multiset.fold -> fold_mset, Multiset.filter -> filter_mset
nipkow
parents: 59986
diff changeset
   806
  subterm @{term "fold_mset F"}, code generation is not automatic. When
48023
6dfe5e774012 reordered sections
huffman
parents: 48012
diff changeset
   807
  interpreting locale @{text left_commutative} with @{text F}, the
59998
c54d36be22ef renamed Multiset.fold -> fold_mset, Multiset.filter -> filter_mset
nipkow
parents: 59986
diff changeset
   808
  would be code thms for @{const fold_mset} become thms like
c54d36be22ef renamed Multiset.fold -> fold_mset, Multiset.filter -> filter_mset
nipkow
parents: 59986
diff changeset
   809
  @{term "fold_mset F z {#} = z"} where @{text F} is not a pattern but
48023
6dfe5e774012 reordered sections
huffman
parents: 48012
diff changeset
   810
  contains defined symbols, i.e.\ is not a code thm. Hence a separate
6dfe5e774012 reordered sections
huffman
parents: 48012
diff changeset
   811
  constant with its own code thms needs to be introduced for @{text
6dfe5e774012 reordered sections
huffman
parents: 48012
diff changeset
   812
  F}. See the image operator below.
60500
903bb1495239 isabelle update_cartouches;
wenzelm
parents: 60400
diff changeset
   813
\<close>
903bb1495239 isabelle update_cartouches;
wenzelm
parents: 60400
diff changeset
   814
903bb1495239 isabelle update_cartouches;
wenzelm
parents: 60400
diff changeset
   815
903bb1495239 isabelle update_cartouches;
wenzelm
parents: 60400
diff changeset
   816
subsection \<open>Image\<close>
48023
6dfe5e774012 reordered sections
huffman
parents: 48012
diff changeset
   817
6dfe5e774012 reordered sections
huffman
parents: 48012
diff changeset
   818
definition image_mset :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a multiset \<Rightarrow> 'b multiset" where
60607
d440af2e584f more symbols;
wenzelm
parents: 60606
diff changeset
   819
  "image_mset f = fold_mset (plus \<circ> single \<circ> f) {#}"
d440af2e584f more symbols;
wenzelm
parents: 60606
diff changeset
   820
d440af2e584f more symbols;
wenzelm
parents: 60606
diff changeset
   821
lemma comp_fun_commute_mset_image: "comp_fun_commute (plus \<circ> single \<circ> f)"
49823
1c146fa7701e avoid global interpretation
haftmann
parents: 49822
diff changeset
   822
proof
57514
bdc2c6b40bf2 prefer ac_simps collections over separate name bindings for add and mult
haftmann
parents: 57512
diff changeset
   823
qed (simp add: ac_simps fun_eq_iff)
48023
6dfe5e774012 reordered sections
huffman
parents: 48012
diff changeset
   824
6dfe5e774012 reordered sections
huffman
parents: 48012
diff changeset
   825
lemma image_mset_empty [simp]: "image_mset f {#} = {#}"
49823
1c146fa7701e avoid global interpretation
haftmann
parents: 49822
diff changeset
   826
  by (simp add: image_mset_def)
48023
6dfe5e774012 reordered sections
huffman
parents: 48012
diff changeset
   827
6dfe5e774012 reordered sections
huffman
parents: 48012
diff changeset
   828
lemma image_mset_single [simp]: "image_mset f {#x#} = {#f x#}"
49823
1c146fa7701e avoid global interpretation
haftmann
parents: 49822
diff changeset
   829
proof -
60607
d440af2e584f more symbols;
wenzelm
parents: 60606
diff changeset
   830
  interpret comp_fun_commute "plus \<circ> single \<circ> f"
49823
1c146fa7701e avoid global interpretation
haftmann
parents: 49822
diff changeset
   831
    by (fact comp_fun_commute_mset_image)
1c146fa7701e avoid global interpretation
haftmann
parents: 49822
diff changeset
   832
  show ?thesis by (simp add: image_mset_def)
1c146fa7701e avoid global interpretation
haftmann
parents: 49822
diff changeset
   833
qed
48023
6dfe5e774012 reordered sections
huffman
parents: 48012
diff changeset
   834
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   835
lemma image_mset_union [simp]: "image_mset f (M + N) = image_mset f M + image_mset f N"
49823
1c146fa7701e avoid global interpretation
haftmann
parents: 49822
diff changeset
   836
proof -
60607
d440af2e584f more symbols;
wenzelm
parents: 60606
diff changeset
   837
  interpret comp_fun_commute "plus \<circ> single \<circ> f"
49823
1c146fa7701e avoid global interpretation
haftmann
parents: 49822
diff changeset
   838
    by (fact comp_fun_commute_mset_image)
57514
bdc2c6b40bf2 prefer ac_simps collections over separate name bindings for add and mult
haftmann
parents: 57512
diff changeset
   839
  show ?thesis by (induct N) (simp_all add: image_mset_def ac_simps)
49823
1c146fa7701e avoid global interpretation
haftmann
parents: 49822
diff changeset
   840
qed
1c146fa7701e avoid global interpretation
haftmann
parents: 49822
diff changeset
   841
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   842
corollary image_mset_insert: "image_mset f (M + {#a#}) = image_mset f M + {#f a#}"
49823
1c146fa7701e avoid global interpretation
haftmann
parents: 49822
diff changeset
   843
  by simp
48023
6dfe5e774012 reordered sections
huffman
parents: 48012
diff changeset
   844
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   845
lemma set_image_mset [simp]: "set_mset (image_mset f M) = image f (set_mset M)"
49823
1c146fa7701e avoid global interpretation
haftmann
parents: 49822
diff changeset
   846
  by (induct M) simp_all
48040
4caf6cd063be add lemma set_of_image_mset
huffman
parents: 48023
diff changeset
   847
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   848
lemma size_image_mset [simp]: "size (image_mset f M) = size M"
49823
1c146fa7701e avoid global interpretation
haftmann
parents: 49822
diff changeset
   849
  by (induct M) simp_all
48023
6dfe5e774012 reordered sections
huffman
parents: 48012
diff changeset
   850
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   851
lemma image_mset_is_empty_iff [simp]: "image_mset f M = {#} \<longleftrightarrow> M = {#}"
49823
1c146fa7701e avoid global interpretation
haftmann
parents: 49822
diff changeset
   852
  by (cases M) auto
48023
6dfe5e774012 reordered sections
huffman
parents: 48012
diff changeset
   853
6dfe5e774012 reordered sections
huffman
parents: 48012
diff changeset
   854
syntax
6dfe5e774012 reordered sections
huffman
parents: 48012
diff changeset
   855
  "_comprehension1_mset" :: "'a \<Rightarrow> 'b \<Rightarrow> 'b multiset \<Rightarrow> 'a multiset"
6dfe5e774012 reordered sections
huffman
parents: 48012
diff changeset
   856
      ("({#_/. _ :# _#})")
6dfe5e774012 reordered sections
huffman
parents: 48012
diff changeset
   857
translations
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   858
  "{#e. x:#M#}" == "CONST image_mset (\<lambda>x. e) M"
48023
6dfe5e774012 reordered sections
huffman
parents: 48012
diff changeset
   859
59813
6320064f22bb more multiset theorems
blanchet
parents: 59807
diff changeset
   860
syntax (xsymbols)
6320064f22bb more multiset theorems
blanchet
parents: 59807
diff changeset
   861
  "_comprehension2_mset" :: "'a \<Rightarrow> 'b \<Rightarrow> 'b multiset \<Rightarrow> 'a multiset"
6320064f22bb more multiset theorems
blanchet
parents: 59807
diff changeset
   862
      ("({#_/. _ \<in># _#})")
6320064f22bb more multiset theorems
blanchet
parents: 59807
diff changeset
   863
translations
6320064f22bb more multiset theorems
blanchet
parents: 59807
diff changeset
   864
  "{#e. x \<in># M#}" == "CONST image_mset (\<lambda>x. e) M"
6320064f22bb more multiset theorems
blanchet
parents: 59807
diff changeset
   865
48023
6dfe5e774012 reordered sections
huffman
parents: 48012
diff changeset
   866
syntax
59813
6320064f22bb more multiset theorems
blanchet
parents: 59807
diff changeset
   867
  "_comprehension3_mset" :: "'a \<Rightarrow> 'b \<Rightarrow> 'b multiset \<Rightarrow> bool \<Rightarrow> 'a multiset"
48023
6dfe5e774012 reordered sections
huffman
parents: 48012
diff changeset
   868
      ("({#_/ | _ :# _./ _#})")
6dfe5e774012 reordered sections
huffman
parents: 48012
diff changeset
   869
translations
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   870
  "{#e | x:#M. P#}" \<rightharpoonup> "{#e. x :# {# x:#M. P#}#}"
48023
6dfe5e774012 reordered sections
huffman
parents: 48012
diff changeset
   871
59813
6320064f22bb more multiset theorems
blanchet
parents: 59807
diff changeset
   872
syntax
6320064f22bb more multiset theorems
blanchet
parents: 59807
diff changeset
   873
  "_comprehension4_mset" :: "'a \<Rightarrow> 'b \<Rightarrow> 'b multiset \<Rightarrow> bool \<Rightarrow> 'a multiset"
6320064f22bb more multiset theorems
blanchet
parents: 59807
diff changeset
   874
      ("({#_/ | _ \<in># _./ _#})")
6320064f22bb more multiset theorems
blanchet
parents: 59807
diff changeset
   875
translations
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   876
  "{#e | x\<in>#M. P#}" \<rightharpoonup> "{#e. x \<in># {# x\<in>#M. P#}#}"
59813
6320064f22bb more multiset theorems
blanchet
parents: 59807
diff changeset
   877
60500
903bb1495239 isabelle update_cartouches;
wenzelm
parents: 60400
diff changeset
   878
text \<open>
60607
d440af2e584f more symbols;
wenzelm
parents: 60606
diff changeset
   879
  This allows to write not just filters like @{term "{#x\<in>#M. x<c#}"}
d440af2e584f more symbols;
wenzelm
parents: 60606
diff changeset
   880
  but also images like @{term "{#x+x. x\<in>#M #}"} and @{term [source]
d440af2e584f more symbols;
wenzelm
parents: 60606
diff changeset
   881
  "{#x+x|x\<in>#M. x<c#}"}, where the latter is currently displayed as
d440af2e584f more symbols;
wenzelm
parents: 60606
diff changeset
   882
  @{term "{#x+x|x\<in>#M. x<c#}"}.
60500
903bb1495239 isabelle update_cartouches;
wenzelm
parents: 60400
diff changeset
   883
\<close>
48023
6dfe5e774012 reordered sections
huffman
parents: 48012
diff changeset
   884
60495
d7ff0a1df90a renamed Multiset.set_of to the canonical set_mset
nipkow
parents: 60400
diff changeset
   885
lemma in_image_mset: "y \<in># {#f x. x \<in># M#} \<longleftrightarrow> y \<in> f ` set_mset M"
60498
c8141ac6f03f more compact name
nipkow
parents: 60495
diff changeset
   886
by (metis mem_set_mset_iff set_image_mset)
59813
6320064f22bb more multiset theorems
blanchet
parents: 59807
diff changeset
   887
55467
a5c9002bc54d renamed 'enriched_type' to more informative 'functor' (following the renaming of enriched type constructors to bounded natural functors)
blanchet
parents: 55417
diff changeset
   888
functor image_mset: image_mset
48023
6dfe5e774012 reordered sections
huffman
parents: 48012
diff changeset
   889
proof -
6dfe5e774012 reordered sections
huffman
parents: 48012
diff changeset
   890
  fix f g show "image_mset f \<circ> image_mset g = image_mset (f \<circ> g)"
6dfe5e774012 reordered sections
huffman
parents: 48012
diff changeset
   891
  proof
6dfe5e774012 reordered sections
huffman
parents: 48012
diff changeset
   892
    fix A
6dfe5e774012 reordered sections
huffman
parents: 48012
diff changeset
   893
    show "(image_mset f \<circ> image_mset g) A = image_mset (f \<circ> g) A"
6dfe5e774012 reordered sections
huffman
parents: 48012
diff changeset
   894
      by (induct A) simp_all
6dfe5e774012 reordered sections
huffman
parents: 48012
diff changeset
   895
  qed
6dfe5e774012 reordered sections
huffman
parents: 48012
diff changeset
   896
  show "image_mset id = id"
6dfe5e774012 reordered sections
huffman
parents: 48012
diff changeset
   897
  proof
6dfe5e774012 reordered sections
huffman
parents: 48012
diff changeset
   898
    fix A
6dfe5e774012 reordered sections
huffman
parents: 48012
diff changeset
   899
    show "image_mset id A = id A"
6dfe5e774012 reordered sections
huffman
parents: 48012
diff changeset
   900
      by (induct A) simp_all
6dfe5e774012 reordered sections
huffman
parents: 48012
diff changeset
   901
  qed
6dfe5e774012 reordered sections
huffman
parents: 48012
diff changeset
   902
qed
6dfe5e774012 reordered sections
huffman
parents: 48012
diff changeset
   903
59813
6320064f22bb more multiset theorems
blanchet
parents: 59807
diff changeset
   904
declare
6320064f22bb more multiset theorems
blanchet
parents: 59807
diff changeset
   905
  image_mset.id [simp]
6320064f22bb more multiset theorems
blanchet
parents: 59807
diff changeset
   906
  image_mset.identity [simp]
6320064f22bb more multiset theorems
blanchet
parents: 59807
diff changeset
   907
6320064f22bb more multiset theorems
blanchet
parents: 59807
diff changeset
   908
lemma image_mset_id[simp]: "image_mset id x = x"
6320064f22bb more multiset theorems
blanchet
parents: 59807
diff changeset
   909
  unfolding id_def by auto
6320064f22bb more multiset theorems
blanchet
parents: 59807
diff changeset
   910
6320064f22bb more multiset theorems
blanchet
parents: 59807
diff changeset
   911
lemma image_mset_cong: "(\<And>x. x \<in># M \<Longrightarrow> f x = g x) \<Longrightarrow> {#f x. x \<in># M#} = {#g x. x \<in># M#}"
6320064f22bb more multiset theorems
blanchet
parents: 59807
diff changeset
   912
  by (induct M) auto
6320064f22bb more multiset theorems
blanchet
parents: 59807
diff changeset
   913
6320064f22bb more multiset theorems
blanchet
parents: 59807
diff changeset
   914
lemma image_mset_cong_pair:
6320064f22bb more multiset theorems
blanchet
parents: 59807
diff changeset
   915
  "(\<forall>x y. (x, y) \<in># M \<longrightarrow> f x y = g x y) \<Longrightarrow> {#f x y. (x, y) \<in># M#} = {#g x y. (x, y) \<in># M#}"
6320064f22bb more multiset theorems
blanchet
parents: 59807
diff changeset
   916
  by (metis image_mset_cong split_cong)
49717
56494eedf493 default simp rule for image under identity
haftmann
parents: 49394
diff changeset
   917
48023
6dfe5e774012 reordered sections
huffman
parents: 48012
diff changeset
   918
60500
903bb1495239 isabelle update_cartouches;
wenzelm
parents: 60400
diff changeset
   919
subsection \<open>Further conversions\<close>
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   920
60515
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
   921
primrec mset :: "'a list \<Rightarrow> 'a multiset" where
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
   922
  "mset [] = {#}" |
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
   923
  "mset (a # x) = mset x + {# a #}"
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   924
37107
1535aa1c943a more lemmas
haftmann
parents: 37074
diff changeset
   925
lemma in_multiset_in_set:
60515
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
   926
  "x \<in># mset xs \<longleftrightarrow> x \<in> set xs"
37107
1535aa1c943a more lemmas
haftmann
parents: 37074
diff changeset
   927
  by (induct xs) simp_all
1535aa1c943a more lemmas
haftmann
parents: 37074
diff changeset
   928
60515
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
   929
lemma count_mset:
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
   930
  "count (mset xs) x = length (filter (\<lambda>y. x = y) xs)"
37107
1535aa1c943a more lemmas
haftmann
parents: 37074
diff changeset
   931
  by (induct xs) simp_all
1535aa1c943a more lemmas
haftmann
parents: 37074
diff changeset
   932
60515
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
   933
lemma mset_zero_iff[simp]: "(mset x = {#}) = (x = [])"
59813
6320064f22bb more multiset theorems
blanchet
parents: 59807
diff changeset
   934
  by (induct x) auto
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   935
60515
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
   936
lemma mset_zero_iff_right[simp]: "({#} = mset x) = (x = [])"
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   937
by (induct x) auto
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   938
60515
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
   939
lemma set_mset_mset[simp]: "set_mset (mset x) = set x"
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   940
by (induct x) auto
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   941
60607
d440af2e584f more symbols;
wenzelm
parents: 60606
diff changeset
   942
lemma mem_set_multiset_eq: "x \<in> set xs = (x \<in># mset xs)"
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   943
by (induct xs) auto
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   944
60515
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
   945
lemma size_mset [simp]: "size (mset xs) = length xs"
48012
b6e5e86a7303 shortened yet more multiset proofs;
huffman
parents: 48011
diff changeset
   946
  by (induct xs) simp_all
b6e5e86a7303 shortened yet more multiset proofs;
huffman
parents: 48011
diff changeset
   947
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   948
lemma mset_append [simp]: "mset (xs @ ys) = mset xs + mset ys"
57514
bdc2c6b40bf2 prefer ac_simps collections over separate name bindings for add and mult
haftmann
parents: 57512
diff changeset
   949
  by (induct xs arbitrary: ys) (auto simp: ac_simps)
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   950
60607
d440af2e584f more symbols;
wenzelm
parents: 60606
diff changeset
   951
lemma mset_filter: "mset (filter P xs) = {#x \<in># mset xs. P x #}"
40303
2d507370e879 lemmas multiset_of_filter, sort_key_by_quicksort
haftmann
parents: 40250
diff changeset
   952
  by (induct xs) simp_all
2d507370e879 lemmas multiset_of_filter, sort_key_by_quicksort
haftmann
parents: 40250
diff changeset
   953
60515
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
   954
lemma mset_rev [simp]:
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
   955
  "mset (rev xs) = mset xs"
40950
a370b0fb6f09 lemma multiset_of_rev
haftmann
parents: 40606
diff changeset
   956
  by (induct xs) simp_all
a370b0fb6f09 lemma multiset_of_rev
haftmann
parents: 40606
diff changeset
   957
60515
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
   958
lemma surj_mset: "surj mset"
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   959
apply (unfold surj_def)
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   960
apply (rule allI)
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   961
apply (rule_tac M = y in multiset_induct)
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   962
 apply auto
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   963
apply (rule_tac x = "x # xa" in exI)
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   964
apply auto
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   965
done
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   966
60515
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
   967
lemma set_count_greater_0: "set x = {a. count (mset x) a > 0}"
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   968
by (induct x) auto
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   969
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   970
lemma distinct_count_atmost_1:
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   971
  "distinct x = (\<forall>a. count (mset x) a = (if a \<in> set x then 1 else 0))"
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   972
apply (induct x, simp, rule iffI, simp_all)
55417
01fbfb60c33e adapted to 'xxx_{case,rec}' renaming, to new theorem names, and to new variable names in theorems
blanchet
parents: 55129
diff changeset
   973
apply (rename_tac a b)
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   974
apply (rule conjI)
60515
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
   975
apply (simp_all add: set_mset_mset [THEN sym] del: set_mset_mset)
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   976
apply (erule_tac x = a in allE, simp, clarify)
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   977
apply (erule_tac x = aa in allE, simp)
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   978
done
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   979
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   980
lemma mset_eq_setD: "mset xs = mset ys \<Longrightarrow> set xs = set ys"
39302
d7728f65b353 renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents: 39301
diff changeset
   981
by (rule) (auto simp add:multiset_eq_iff set_count_greater_0)
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   982
60515
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
   983
lemma set_eq_iff_mset_eq_distinct:
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   984
  "distinct x \<Longrightarrow> distinct y \<Longrightarrow>
60515
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
   985
    (set x = set y) = (mset x = mset y)"
39302
d7728f65b353 renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents: 39301
diff changeset
   986
by (auto simp: multiset_eq_iff distinct_count_atmost_1)
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   987
60515
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
   988
lemma set_eq_iff_mset_remdups_eq:
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
   989
   "(set x = set y) = (mset (remdups x) = mset (remdups y))"
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   990
apply (rule iffI)
60515
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
   991
apply (simp add: set_eq_iff_mset_eq_distinct[THEN iffD1])
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   992
apply (drule distinct_remdups [THEN distinct_remdups
60515
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
   993
      [THEN set_eq_iff_mset_eq_distinct [THEN iffD2]]])
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   994
apply simp
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   995
done
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   996
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
   997
lemma mset_compl_union [simp]: "mset [x\<leftarrow>xs. P x] + mset [x\<leftarrow>xs. \<not>P x] = mset xs"
57514
bdc2c6b40bf2 prefer ac_simps collections over separate name bindings for add and mult
haftmann
parents: 57512
diff changeset
   998
  by (induct xs) (auto simp: ac_simps)
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
   999
60607
d440af2e584f more symbols;
wenzelm
parents: 60606
diff changeset
  1000
lemma nth_mem_mset: "i < length ls \<Longrightarrow> (ls ! i) \<in># mset ls"
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
  1001
apply (induct ls arbitrary: i)
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
  1002
 apply simp
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
  1003
apply (case_tac i)
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
  1004
 apply auto
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
  1005
done
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
  1006
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1007
lemma mset_remove1[simp]: "mset (remove1 a xs) = mset xs - {#a#}"
39302
d7728f65b353 renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents: 39301
diff changeset
  1008
by (induct xs) (auto simp add: multiset_eq_iff)
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
  1009
60515
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  1010
lemma mset_eq_length:
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  1011
  assumes "mset xs = mset ys"
37107
1535aa1c943a more lemmas
haftmann
parents: 37074
diff changeset
  1012
  shows "length xs = length ys"
60515
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  1013
  using assms by (metis size_mset)
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  1014
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  1015
lemma mset_eq_length_filter:
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  1016
  assumes "mset xs = mset ys"
39533
91a0ff0ff237 generalized lemmas multiset_of_insort, multiset_of_sort, properties_for_sort for *_key variants
haftmann
parents: 39314
diff changeset
  1017
  shows "length (filter (\<lambda>x. z = x) xs) = length (filter (\<lambda>y. z = y) ys)"
60515
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  1018
  using assms by (metis count_mset)
39533
91a0ff0ff237 generalized lemmas multiset_of_insort, multiset_of_sort, properties_for_sort for *_key variants
haftmann
parents: 39314
diff changeset
  1019
45989
b39256df5f8a moved theorem requiring multisets from More_List to Multiset
haftmann
parents: 45866
diff changeset
  1020
lemma fold_multiset_equiv:
b39256df5f8a moved theorem requiring multisets from More_List to Multiset
haftmann
parents: 45866
diff changeset
  1021
  assumes f: "\<And>x y. x \<in> set xs \<Longrightarrow> y \<in> set xs \<Longrightarrow> f x \<circ> f y = f y \<circ> f x"
60515
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  1022
    and equiv: "mset xs = mset ys"
49822
0cfc1651be25 simplified construction of fold combinator on multisets;
haftmann
parents: 49717
diff changeset
  1023
  shows "List.fold f xs = List.fold f ys"
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1024
  using f equiv [symmetric]
46921
aa862ff8a8a9 some proof indentation;
wenzelm
parents: 46756
diff changeset
  1025
proof (induct xs arbitrary: ys)
45989
b39256df5f8a moved theorem requiring multisets from More_List to Multiset
haftmann
parents: 45866
diff changeset
  1026
  case Nil then show ?case by simp
b39256df5f8a moved theorem requiring multisets from More_List to Multiset
haftmann
parents: 45866
diff changeset
  1027
next
b39256df5f8a moved theorem requiring multisets from More_List to Multiset
haftmann
parents: 45866
diff changeset
  1028
  case (Cons x xs)
60515
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  1029
  then have *: "set ys = set (x # xs)" by (blast dest: mset_eq_setD)
58425
246985c6b20b simpler proof
blanchet
parents: 58247
diff changeset
  1030
  have "\<And>x y. x \<in> set ys \<Longrightarrow> y \<in> set ys \<Longrightarrow> f x \<circ> f y = f y \<circ> f x"
45989
b39256df5f8a moved theorem requiring multisets from More_List to Multiset
haftmann
parents: 45866
diff changeset
  1031
    by (rule Cons.prems(1)) (simp_all add: *)
b39256df5f8a moved theorem requiring multisets from More_List to Multiset
haftmann
parents: 45866
diff changeset
  1032
  moreover from * have "x \<in> set ys" by simp
49822
0cfc1651be25 simplified construction of fold combinator on multisets;
haftmann
parents: 49717
diff changeset
  1033
  ultimately have "List.fold f ys = List.fold f (remove1 x ys) \<circ> f x" by (fact fold_remove1_split)
0cfc1651be25 simplified construction of fold combinator on multisets;
haftmann
parents: 49717
diff changeset
  1034
  moreover from Cons.prems have "List.fold f xs = List.fold f (remove1 x ys)" by (auto intro: Cons.hyps)
45989
b39256df5f8a moved theorem requiring multisets from More_List to Multiset
haftmann
parents: 45866
diff changeset
  1035
  ultimately show ?case by simp
b39256df5f8a moved theorem requiring multisets from More_List to Multiset
haftmann
parents: 45866
diff changeset
  1036
qed
b39256df5f8a moved theorem requiring multisets from More_List to Multiset
haftmann
parents: 45866
diff changeset
  1037
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1038
lemma mset_insort [simp]: "mset (insort x xs) = mset xs + {#x#}"
51548
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1039
  by (induct xs) (simp_all add: ac_simps)
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1040
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1041
lemma mset_map: "mset (map f xs) = image_mset f (mset xs)"
51600
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
  1042
  by (induct xs) simp_all
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
  1043
60513
55c7316f76d6 multiset_of_set -> mset_set
nipkow
parents: 60503
diff changeset
  1044
definition mset_set :: "'a set \<Rightarrow> 'a multiset"
51548
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1045
where
60513
55c7316f76d6 multiset_of_set -> mset_set
nipkow
parents: 60503
diff changeset
  1046
  "mset_set = folding.F (\<lambda>x M. {#x#} + M) {#}"
55c7316f76d6 multiset_of_set -> mset_set
nipkow
parents: 60503
diff changeset
  1047
55c7316f76d6 multiset_of_set -> mset_set
nipkow
parents: 60503
diff changeset
  1048
interpretation mset_set!: folding "\<lambda>x M. {#x#} + M" "{#}"
51548
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1049
where
60513
55c7316f76d6 multiset_of_set -> mset_set
nipkow
parents: 60503
diff changeset
  1050
  "folding.F (\<lambda>x M. {#x#} + M) {#} = mset_set"
51548
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1051
proof -
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1052
  interpret comp_fun_commute "\<lambda>x M. {#x#} + M" by default (simp add: fun_eq_iff ac_simps)
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1053
  show "folding (\<lambda>x M. {#x#} + M)" by default (fact comp_fun_commute)
60513
55c7316f76d6 multiset_of_set -> mset_set
nipkow
parents: 60503
diff changeset
  1054
  from mset_set_def show "folding.F (\<lambda>x M. {#x#} + M) {#} = mset_set" ..
51548
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1055
qed
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1056
60513
55c7316f76d6 multiset_of_set -> mset_set
nipkow
parents: 60503
diff changeset
  1057
lemma count_mset_set [simp]:
55c7316f76d6 multiset_of_set -> mset_set
nipkow
parents: 60503
diff changeset
  1058
  "finite A \<Longrightarrow> x \<in> A \<Longrightarrow> count (mset_set A) x = 1" (is "PROP ?P")
55c7316f76d6 multiset_of_set -> mset_set
nipkow
parents: 60503
diff changeset
  1059
  "\<not> finite A \<Longrightarrow> count (mset_set A) x = 0" (is "PROP ?Q")
55c7316f76d6 multiset_of_set -> mset_set
nipkow
parents: 60503
diff changeset
  1060
  "x \<notin> A \<Longrightarrow> count (mset_set A) x = 0" (is "PROP ?R")
51600
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
  1061
proof -
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1062
  have *: "count (mset_set A) x = 0" if "x \<notin> A" for A
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1063
  proof (cases "finite A")
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1064
    case False then show ?thesis by simp
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1065
  next
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1066
    case True from True \<open>x \<notin> A\<close> show ?thesis by (induct A) auto
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1067
  qed
51600
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
  1068
  then show "PROP ?P" "PROP ?Q" "PROP ?R"
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
  1069
  by (auto elim!: Set.set_insert)
60513
55c7316f76d6 multiset_of_set -> mset_set
nipkow
parents: 60503
diff changeset
  1070
qed -- \<open>TODO: maybe define @{const mset_set} also in terms of @{const Abs_multiset}\<close>
55c7316f76d6 multiset_of_set -> mset_set
nipkow
parents: 60503
diff changeset
  1071
55c7316f76d6 multiset_of_set -> mset_set
nipkow
parents: 60503
diff changeset
  1072
lemma elem_mset_set[simp, intro]: "finite A \<Longrightarrow> x \<in># mset_set A \<longleftrightarrow> x \<in> A"
59813
6320064f22bb more multiset theorems
blanchet
parents: 59807
diff changeset
  1073
  by (induct A rule: finite_induct) simp_all
6320064f22bb more multiset theorems
blanchet
parents: 59807
diff changeset
  1074
51548
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1075
context linorder
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1076
begin
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1077
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1078
definition sorted_list_of_multiset :: "'a multiset \<Rightarrow> 'a list"
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1079
where
59998
c54d36be22ef renamed Multiset.fold -> fold_mset, Multiset.filter -> filter_mset
nipkow
parents: 59986
diff changeset
  1080
  "sorted_list_of_multiset M = fold_mset insort [] M"
51548
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1081
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1082
lemma sorted_list_of_multiset_empty [simp]:
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1083
  "sorted_list_of_multiset {#} = []"
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1084
  by (simp add: sorted_list_of_multiset_def)
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1085
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1086
lemma sorted_list_of_multiset_singleton [simp]:
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1087
  "sorted_list_of_multiset {#x#} = [x]"
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1088
proof -
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1089
  interpret comp_fun_commute insort by (fact comp_fun_commute_insort)
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1090
  show ?thesis by (simp add: sorted_list_of_multiset_def)
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1091
qed
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1092
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1093
lemma sorted_list_of_multiset_insert [simp]:
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1094
  "sorted_list_of_multiset (M + {#x#}) = List.insort x (sorted_list_of_multiset M)"
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1095
proof -
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1096
  interpret comp_fun_commute insort by (fact comp_fun_commute_insort)
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1097
  show ?thesis by (simp add: sorted_list_of_multiset_def)
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1098
qed
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1099
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1100
end
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1101
60515
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  1102
lemma mset_sorted_list_of_multiset [simp]:
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  1103
  "mset (sorted_list_of_multiset M) = M"
60513
55c7316f76d6 multiset_of_set -> mset_set
nipkow
parents: 60503
diff changeset
  1104
by (induct M) simp_all
51548
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1105
60515
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  1106
lemma sorted_list_of_multiset_mset [simp]:
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  1107
  "sorted_list_of_multiset (mset xs) = sort xs"
60513
55c7316f76d6 multiset_of_set -> mset_set
nipkow
parents: 60503
diff changeset
  1108
by (induct xs) simp_all
55c7316f76d6 multiset_of_set -> mset_set
nipkow
parents: 60503
diff changeset
  1109
55c7316f76d6 multiset_of_set -> mset_set
nipkow
parents: 60503
diff changeset
  1110
lemma finite_set_mset_mset_set[simp]:
55c7316f76d6 multiset_of_set -> mset_set
nipkow
parents: 60503
diff changeset
  1111
  "finite A \<Longrightarrow> set_mset (mset_set A) = A"
55c7316f76d6 multiset_of_set -> mset_set
nipkow
parents: 60503
diff changeset
  1112
by (induct A rule: finite_induct) simp_all
55c7316f76d6 multiset_of_set -> mset_set
nipkow
parents: 60503
diff changeset
  1113
55c7316f76d6 multiset_of_set -> mset_set
nipkow
parents: 60503
diff changeset
  1114
lemma infinite_set_mset_mset_set:
55c7316f76d6 multiset_of_set -> mset_set
nipkow
parents: 60503
diff changeset
  1115
  "\<not> finite A \<Longrightarrow> set_mset (mset_set A) = {}"
55c7316f76d6 multiset_of_set -> mset_set
nipkow
parents: 60503
diff changeset
  1116
by simp
51548
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1117
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1118
lemma set_sorted_list_of_multiset [simp]:
60495
d7ff0a1df90a renamed Multiset.set_of to the canonical set_mset
nipkow
parents: 60400
diff changeset
  1119
  "set (sorted_list_of_multiset M) = set_mset M"
60513
55c7316f76d6 multiset_of_set -> mset_set
nipkow
parents: 60503
diff changeset
  1120
by (induct M) (simp_all add: set_insort)
55c7316f76d6 multiset_of_set -> mset_set
nipkow
parents: 60503
diff changeset
  1121
55c7316f76d6 multiset_of_set -> mset_set
nipkow
parents: 60503
diff changeset
  1122
lemma sorted_list_of_mset_set [simp]:
55c7316f76d6 multiset_of_set -> mset_set
nipkow
parents: 60503
diff changeset
  1123
  "sorted_list_of_multiset (mset_set A) = sorted_list_of_set A"
55c7316f76d6 multiset_of_set -> mset_set
nipkow
parents: 60503
diff changeset
  1124
by (cases "finite A") (induct A rule: finite_induct, simp_all add: ac_simps)
51548
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1125
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1126
60500
903bb1495239 isabelle update_cartouches;
wenzelm
parents: 60400
diff changeset
  1127
subsection \<open>Big operators\<close>
51548
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1128
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1129
no_notation times (infixl "*" 70)
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1130
no_notation Groups.one ("1")
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1131
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1132
locale comm_monoid_mset = comm_monoid
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1133
begin
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1134
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1135
definition F :: "'a multiset \<Rightarrow> 'a"
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1136
  where eq_fold: "F M = fold_mset f 1 M"
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1137
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1138
lemma empty [simp]: "F {#} = 1"
51548
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1139
  by (simp add: eq_fold)
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1140
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1141
lemma singleton [simp]:
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1142
  "F {#x#} = x"
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1143
proof -
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1144
  interpret comp_fun_commute
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1145
    by default (simp add: fun_eq_iff left_commute)
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1146
  show ?thesis by (simp add: eq_fold)
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1147
qed
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1148
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1149
lemma union [simp]: "F (M + N) = F M * F N"
51548
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1150
proof -
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1151
  interpret comp_fun_commute f
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1152
    by default (simp add: fun_eq_iff left_commute)
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1153
  show ?thesis by (induct N) (simp_all add: left_commute eq_fold)
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1154
qed
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1155
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1156
end
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1157
59813
6320064f22bb more multiset theorems
blanchet
parents: 59807
diff changeset
  1158
lemma comp_fun_commute_plus_mset[simp]: "comp_fun_commute (op + \<Colon> 'a multiset \<Rightarrow> _ \<Rightarrow> _)"
6320064f22bb more multiset theorems
blanchet
parents: 59807
diff changeset
  1159
  by default (simp add: add_ac comp_def)
6320064f22bb more multiset theorems
blanchet
parents: 59807
diff changeset
  1160
6320064f22bb more multiset theorems
blanchet
parents: 59807
diff changeset
  1161
declare comp_fun_commute.fold_mset_insert[OF comp_fun_commute_plus_mset, simp]
6320064f22bb more multiset theorems
blanchet
parents: 59807
diff changeset
  1162
59998
c54d36be22ef renamed Multiset.fold -> fold_mset, Multiset.filter -> filter_mset
nipkow
parents: 59986
diff changeset
  1163
lemma in_mset_fold_plus_iff[iff]: "x \<in># fold_mset (op +) M NN \<longleftrightarrow> x \<in># M \<or> (\<exists>N. N \<in># NN \<and> x \<in># N)"
59813
6320064f22bb more multiset theorems
blanchet
parents: 59807
diff changeset
  1164
  by (induct NN) auto
6320064f22bb more multiset theorems
blanchet
parents: 59807
diff changeset
  1165
51548
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1166
notation times (infixl "*" 70)
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1167
notation Groups.one ("1")
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1168
54868
bab6cade3cc5 prefer target-style syntaxx for sublocale
haftmann
parents: 54295
diff changeset
  1169
context comm_monoid_add
bab6cade3cc5 prefer target-style syntaxx for sublocale
haftmann
parents: 54295
diff changeset
  1170
begin
bab6cade3cc5 prefer target-style syntaxx for sublocale
haftmann
parents: 54295
diff changeset
  1171
bab6cade3cc5 prefer target-style syntaxx for sublocale
haftmann
parents: 54295
diff changeset
  1172
definition msetsum :: "'a multiset \<Rightarrow> 'a"
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1173
  where "msetsum = comm_monoid_mset.F plus 0"
51548
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1174
54868
bab6cade3cc5 prefer target-style syntaxx for sublocale
haftmann
parents: 54295
diff changeset
  1175
sublocale msetsum!: comm_monoid_mset plus 0
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1176
  where "comm_monoid_mset.F plus 0 = msetsum"
51548
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1177
proof -
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1178
  show "comm_monoid_mset plus 0" ..
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1179
  from msetsum_def show "comm_monoid_mset.F plus 0 = msetsum" ..
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1180
qed
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1181
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1182
lemma setsum_unfold_msetsum:
60513
55c7316f76d6 multiset_of_set -> mset_set
nipkow
parents: 60503
diff changeset
  1183
  "setsum f A = msetsum (image_mset f (mset_set A))"
51548
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1184
  by (cases "finite A") (induct A rule: finite_induct, simp_all)
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1185
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1186
end
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1187
59813
6320064f22bb more multiset theorems
blanchet
parents: 59807
diff changeset
  1188
lemma msetsum_diff:
6320064f22bb more multiset theorems
blanchet
parents: 59807
diff changeset
  1189
  fixes M N :: "('a \<Colon> ordered_cancel_comm_monoid_diff) multiset"
60397
f8a513fedb31 Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 59999
diff changeset
  1190
  shows "N \<le># M \<Longrightarrow> msetsum (M - N) = msetsum M - msetsum N"
f8a513fedb31 Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 59999
diff changeset
  1191
  by (metis add_diff_cancel_right' msetsum.union subset_mset.diff_add)
59813
6320064f22bb more multiset theorems
blanchet
parents: 59807
diff changeset
  1192
59949
fc4c896c8e74 Removed mcard because it is equal to size
nipkow
parents: 59815
diff changeset
  1193
lemma size_eq_msetsum: "size M = msetsum (image_mset (\<lambda>_. 1) M)"
fc4c896c8e74 Removed mcard because it is equal to size
nipkow
parents: 59815
diff changeset
  1194
proof (induct M)
fc4c896c8e74 Removed mcard because it is equal to size
nipkow
parents: 59815
diff changeset
  1195
  case empty then show ?case by simp
fc4c896c8e74 Removed mcard because it is equal to size
nipkow
parents: 59815
diff changeset
  1196
next
fc4c896c8e74 Removed mcard because it is equal to size
nipkow
parents: 59815
diff changeset
  1197
  case (add M x) then show ?case
60495
d7ff0a1df90a renamed Multiset.set_of to the canonical set_mset
nipkow
parents: 60400
diff changeset
  1198
    by (cases "x \<in> set_mset M")
d7ff0a1df90a renamed Multiset.set_of to the canonical set_mset
nipkow
parents: 60400
diff changeset
  1199
      (simp_all del: mem_set_mset_iff add: size_multiset_overloaded_eq setsum.distrib setsum.delta' insert_absorb, simp)
59949
fc4c896c8e74 Removed mcard because it is equal to size
nipkow
parents: 59815
diff changeset
  1200
qed
fc4c896c8e74 Removed mcard because it is equal to size
nipkow
parents: 59815
diff changeset
  1201
fc4c896c8e74 Removed mcard because it is equal to size
nipkow
parents: 59815
diff changeset
  1202
59813
6320064f22bb more multiset theorems
blanchet
parents: 59807
diff changeset
  1203
abbreviation Union_mset :: "'a multiset multiset \<Rightarrow> 'a multiset" where
6320064f22bb more multiset theorems
blanchet
parents: 59807
diff changeset
  1204
  "Union_mset MM \<equiv> msetsum MM"
6320064f22bb more multiset theorems
blanchet
parents: 59807
diff changeset
  1205
6320064f22bb more multiset theorems
blanchet
parents: 59807
diff changeset
  1206
notation (xsymbols) Union_mset ("\<Union>#_" [900] 900)
6320064f22bb more multiset theorems
blanchet
parents: 59807
diff changeset
  1207
60495
d7ff0a1df90a renamed Multiset.set_of to the canonical set_mset
nipkow
parents: 60400
diff changeset
  1208
lemma set_mset_Union_mset[simp]: "set_mset (\<Union># MM) = (\<Union>M \<in> set_mset MM. set_mset M)"
59813
6320064f22bb more multiset theorems
blanchet
parents: 59807
diff changeset
  1209
  by (induct MM) auto
6320064f22bb more multiset theorems
blanchet
parents: 59807
diff changeset
  1210
6320064f22bb more multiset theorems
blanchet
parents: 59807
diff changeset
  1211
lemma in_Union_mset_iff[iff]: "x \<in># \<Union># MM \<longleftrightarrow> (\<exists>M. M \<in># MM \<and> x \<in># M)"
6320064f22bb more multiset theorems
blanchet
parents: 59807
diff changeset
  1212
  by (induct MM) auto
6320064f22bb more multiset theorems
blanchet
parents: 59807
diff changeset
  1213
51548
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1214
syntax
58425
246985c6b20b simpler proof
blanchet
parents: 58247
diff changeset
  1215
  "_msetsum_image" :: "pttrn \<Rightarrow> 'b set \<Rightarrow> 'a \<Rightarrow> 'a::comm_monoid_add"
51548
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1216
      ("(3SUM _:#_. _)" [0, 51, 10] 10)
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1217
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1218
syntax (xsymbols)
58425
246985c6b20b simpler proof
blanchet
parents: 58247
diff changeset
  1219
  "_msetsum_image" :: "pttrn \<Rightarrow> 'b set \<Rightarrow> 'a \<Rightarrow> 'a::comm_monoid_add"
57518
2f640245fc6d refrain from auxiliary abbreviation: be more explicit to the reader in situations where syntax translation does not apply;
haftmann
parents: 57514
diff changeset
  1220
      ("(3\<Sum>_\<in>#_. _)" [0, 51, 10] 10)
51548
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1221
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1222
syntax (HTML output)
58425
246985c6b20b simpler proof
blanchet
parents: 58247
diff changeset
  1223
  "_msetsum_image" :: "pttrn \<Rightarrow> 'b set \<Rightarrow> 'a \<Rightarrow> 'a::comm_monoid_add"
51548
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1224
      ("(3\<Sum>_\<in>#_. _)" [0, 51, 10] 10)
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1225
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1226
translations
57518
2f640245fc6d refrain from auxiliary abbreviation: be more explicit to the reader in situations where syntax translation does not apply;
haftmann
parents: 57514
diff changeset
  1227
  "SUM i :# A. b" == "CONST msetsum (CONST image_mset (\<lambda>i. b) A)"
51548
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1228
54868
bab6cade3cc5 prefer target-style syntaxx for sublocale
haftmann
parents: 54295
diff changeset
  1229
context comm_monoid_mult
bab6cade3cc5 prefer target-style syntaxx for sublocale
haftmann
parents: 54295
diff changeset
  1230
begin
bab6cade3cc5 prefer target-style syntaxx for sublocale
haftmann
parents: 54295
diff changeset
  1231
bab6cade3cc5 prefer target-style syntaxx for sublocale
haftmann
parents: 54295
diff changeset
  1232
definition msetprod :: "'a multiset \<Rightarrow> 'a"
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1233
  where "msetprod = comm_monoid_mset.F times 1"
54868
bab6cade3cc5 prefer target-style syntaxx for sublocale
haftmann
parents: 54295
diff changeset
  1234
bab6cade3cc5 prefer target-style syntaxx for sublocale
haftmann
parents: 54295
diff changeset
  1235
sublocale msetprod!: comm_monoid_mset times 1
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1236
  where "comm_monoid_mset.F times 1 = msetprod"
51548
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1237
proof -
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1238
  show "comm_monoid_mset times 1" ..
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1239
  show "comm_monoid_mset.F times 1 = msetprod" using msetprod_def ..
51548
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1240
qed
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1241
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1242
lemma msetprod_empty:
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1243
  "msetprod {#} = 1"
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1244
  by (fact msetprod.empty)
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1245
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1246
lemma msetprod_singleton:
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1247
  "msetprod {#x#} = x"
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1248
  by (fact msetprod.singleton)
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1249
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1250
lemma msetprod_Un:
58425
246985c6b20b simpler proof
blanchet
parents: 58247
diff changeset
  1251
  "msetprod (A + B) = msetprod A * msetprod B"
51548
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1252
  by (fact msetprod.union)
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1253
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1254
lemma setprod_unfold_msetprod:
60513
55c7316f76d6 multiset_of_set -> mset_set
nipkow
parents: 60503
diff changeset
  1255
  "setprod f A = msetprod (image_mset f (mset_set A))"
51548
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1256
  by (cases "finite A") (induct A rule: finite_induct, simp_all)
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1257
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1258
lemma msetprod_multiplicity:
60495
d7ff0a1df90a renamed Multiset.set_of to the canonical set_mset
nipkow
parents: 60400
diff changeset
  1259
  "msetprod M = setprod (\<lambda>x. x ^ count M x) (set_mset M)"
59998
c54d36be22ef renamed Multiset.fold -> fold_mset, Multiset.filter -> filter_mset
nipkow
parents: 59986
diff changeset
  1260
  by (simp add: fold_mset_def setprod.eq_fold msetprod.eq_fold funpow_times_power comp_def)
51548
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1261
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1262
end
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1263
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1264
syntax
58425
246985c6b20b simpler proof
blanchet
parents: 58247
diff changeset
  1265
  "_msetprod_image" :: "pttrn \<Rightarrow> 'b set \<Rightarrow> 'a \<Rightarrow> 'a::comm_monoid_mult"
51548
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1266
      ("(3PROD _:#_. _)" [0, 51, 10] 10)
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1267
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1268
syntax (xsymbols)
58425
246985c6b20b simpler proof
blanchet
parents: 58247
diff changeset
  1269
  "_msetprod_image" :: "pttrn \<Rightarrow> 'b set \<Rightarrow> 'a \<Rightarrow> 'a::comm_monoid_mult"
51548
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1270
      ("(3\<Prod>_\<in>#_. _)" [0, 51, 10] 10)
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1271
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1272
syntax (HTML output)
58425
246985c6b20b simpler proof
blanchet
parents: 58247
diff changeset
  1273
  "_msetprod_image" :: "pttrn \<Rightarrow> 'b set \<Rightarrow> 'a \<Rightarrow> 'a::comm_monoid_mult"
51548
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1274
      ("(3\<Prod>_\<in>#_. _)" [0, 51, 10] 10)
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1275
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1276
translations
57518
2f640245fc6d refrain from auxiliary abbreviation: be more explicit to the reader in situations where syntax translation does not apply;
haftmann
parents: 57514
diff changeset
  1277
  "PROD i :# A. b" == "CONST msetprod (CONST image_mset (\<lambda>i. b) A)"
51548
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1278
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1279
lemma (in comm_semiring_1) dvd_msetprod:
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1280
  assumes "x \<in># A"
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1281
  shows "x dvd msetprod A"
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1282
proof -
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1283
  from assms have "A = (A - {#x#}) + {#x#}" by simp
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1284
  then obtain B where "A = B + {#x#}" ..
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1285
  then show ?thesis by simp
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1286
qed
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1287
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1288
60500
903bb1495239 isabelle update_cartouches;
wenzelm
parents: 60400
diff changeset
  1289
subsection \<open>Replicate operation\<close>
59813
6320064f22bb more multiset theorems
blanchet
parents: 59807
diff changeset
  1290
6320064f22bb more multiset theorems
blanchet
parents: 59807
diff changeset
  1291
definition replicate_mset :: "nat \<Rightarrow> 'a \<Rightarrow> 'a multiset" where
6320064f22bb more multiset theorems
blanchet
parents: 59807
diff changeset
  1292
  "replicate_mset n x = ((op + {#x#}) ^^ n) {#}"
6320064f22bb more multiset theorems
blanchet
parents: 59807
diff changeset
  1293
6320064f22bb more multiset theorems
blanchet
parents: 59807
diff changeset
  1294
lemma replicate_mset_0[simp]: "replicate_mset 0 x = {#}"
6320064f22bb more multiset theorems
blanchet
parents: 59807
diff changeset
  1295
  unfolding replicate_mset_def by simp
6320064f22bb more multiset theorems
blanchet
parents: 59807
diff changeset
  1296
6320064f22bb more multiset theorems
blanchet
parents: 59807
diff changeset
  1297
lemma replicate_mset_Suc[simp]: "replicate_mset (Suc n) x = replicate_mset n x + {#x#}"
6320064f22bb more multiset theorems
blanchet
parents: 59807
diff changeset
  1298
  unfolding replicate_mset_def by (induct n) (auto intro: add.commute)
6320064f22bb more multiset theorems
blanchet
parents: 59807
diff changeset
  1299
6320064f22bb more multiset theorems
blanchet
parents: 59807
diff changeset
  1300
lemma in_replicate_mset[simp]: "x \<in># replicate_mset n y \<longleftrightarrow> n > 0 \<and> x = y"
6320064f22bb more multiset theorems
blanchet
parents: 59807
diff changeset
  1301
  unfolding replicate_mset_def by (induct n) simp_all
6320064f22bb more multiset theorems
blanchet
parents: 59807
diff changeset
  1302
6320064f22bb more multiset theorems
blanchet
parents: 59807
diff changeset
  1303
lemma count_replicate_mset[simp]: "count (replicate_mset n x) y = (if y = x then n else 0)"
6320064f22bb more multiset theorems
blanchet
parents: 59807
diff changeset
  1304
  unfolding replicate_mset_def by (induct n) simp_all
6320064f22bb more multiset theorems
blanchet
parents: 59807
diff changeset
  1305
60495
d7ff0a1df90a renamed Multiset.set_of to the canonical set_mset
nipkow
parents: 60400
diff changeset
  1306
lemma set_mset_replicate_mset_subset[simp]: "set_mset (replicate_mset n x) = (if n = 0 then {} else {x})"
59813
6320064f22bb more multiset theorems
blanchet
parents: 59807
diff changeset
  1307
  by (auto split: if_splits)
6320064f22bb more multiset theorems
blanchet
parents: 59807
diff changeset
  1308
59949
fc4c896c8e74 Removed mcard because it is equal to size
nipkow
parents: 59815
diff changeset
  1309
lemma size_replicate_mset[simp]: "size (replicate_mset n M) = n"
59813
6320064f22bb more multiset theorems
blanchet
parents: 59807
diff changeset
  1310
  by (induct n, simp_all)
6320064f22bb more multiset theorems
blanchet
parents: 59807
diff changeset
  1311
60397
f8a513fedb31 Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 59999
diff changeset
  1312
lemma count_le_replicate_mset_le: "n \<le> count M x \<longleftrightarrow> replicate_mset n x \<le># M"
f8a513fedb31 Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 59999
diff changeset
  1313
  by (auto simp add: assms mset_less_eqI) (metis count_replicate_mset subseteq_mset_def)
f8a513fedb31 Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 59999
diff changeset
  1314
59813
6320064f22bb more multiset theorems
blanchet
parents: 59807
diff changeset
  1315
6320064f22bb more multiset theorems
blanchet
parents: 59807
diff changeset
  1316
lemma filter_eq_replicate_mset: "{#y \<in># D. y = x#} = replicate_mset (count D x) x"
6320064f22bb more multiset theorems
blanchet
parents: 59807
diff changeset
  1317
  by (induct D) simp_all
6320064f22bb more multiset theorems
blanchet
parents: 59807
diff changeset
  1318
51548
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1319
60500
903bb1495239 isabelle update_cartouches;
wenzelm
parents: 60400
diff changeset
  1320
subsection \<open>Alternative representations\<close>
903bb1495239 isabelle update_cartouches;
wenzelm
parents: 60400
diff changeset
  1321
903bb1495239 isabelle update_cartouches;
wenzelm
parents: 60400
diff changeset
  1322
subsubsection \<open>Lists\<close>
51548
757fa47af981 centralized various multiset operations in theory multiset;
haftmann
parents: 51161
diff changeset
  1323
39533
91a0ff0ff237 generalized lemmas multiset_of_insort, multiset_of_sort, properties_for_sort for *_key variants
haftmann
parents: 39314
diff changeset
  1324
context linorder
91a0ff0ff237 generalized lemmas multiset_of_insort, multiset_of_sort, properties_for_sort for *_key variants
haftmann
parents: 39314
diff changeset
  1325
begin
91a0ff0ff237 generalized lemmas multiset_of_insort, multiset_of_sort, properties_for_sort for *_key variants
haftmann
parents: 39314
diff changeset
  1326
60515
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  1327
lemma mset_insort [simp]:
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  1328
  "mset (insort_key k x xs) = {#x#} + mset xs"
37107
1535aa1c943a more lemmas
haftmann
parents: 37074
diff changeset
  1329
  by (induct xs) (simp_all add: ac_simps)
58425
246985c6b20b simpler proof
blanchet
parents: 58247
diff changeset
  1330
60515
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  1331
lemma mset_sort [simp]:
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  1332
  "mset (sort_key k xs) = mset xs"
37107
1535aa1c943a more lemmas
haftmann
parents: 37074
diff changeset
  1333
  by (induct xs) (simp_all add: ac_simps)
1535aa1c943a more lemmas
haftmann
parents: 37074
diff changeset
  1334
60500
903bb1495239 isabelle update_cartouches;
wenzelm
parents: 60400
diff changeset
  1335
text \<open>
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
  1336
  This lemma shows which properties suffice to show that a function
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
  1337
  @{text "f"} with @{text "f xs = ys"} behaves like sort.
60500
903bb1495239 isabelle update_cartouches;
wenzelm
parents: 60400
diff changeset
  1338
\<close>
37074
322d065ebef7 localized properties_for_sort
haftmann
parents: 36903
diff changeset
  1339
39533
91a0ff0ff237 generalized lemmas multiset_of_insort, multiset_of_sort, properties_for_sort for *_key variants
haftmann
parents: 39314
diff changeset
  1340
lemma properties_for_sort_key:
60515
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  1341
  assumes "mset ys = mset xs"
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1342
    and "\<And>k. k \<in> set ys \<Longrightarrow> filter (\<lambda>x. f k = f x) ys = filter (\<lambda>x. f k = f x) xs"
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1343
    and "sorted (map f ys)"
39533
91a0ff0ff237 generalized lemmas multiset_of_insort, multiset_of_sort, properties_for_sort for *_key variants
haftmann
parents: 39314
diff changeset
  1344
  shows "sort_key f xs = ys"
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1345
  using assms
46921
aa862ff8a8a9 some proof indentation;
wenzelm
parents: 46756
diff changeset
  1346
proof (induct xs arbitrary: ys)
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
  1347
  case Nil then show ?case by simp
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
  1348
next
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
  1349
  case (Cons x xs)
39533
91a0ff0ff237 generalized lemmas multiset_of_insort, multiset_of_sort, properties_for_sort for *_key variants
haftmann
parents: 39314
diff changeset
  1350
  from Cons.prems(2) have
40305
41833242cc42 tuned lemma proposition of properties_for_sort_key
haftmann
parents: 40303
diff changeset
  1351
    "\<forall>k \<in> set ys. filter (\<lambda>x. f k = f x) (remove1 x ys) = filter (\<lambda>x. f k = f x) xs"
39533
91a0ff0ff237 generalized lemmas multiset_of_insort, multiset_of_sort, properties_for_sort for *_key variants
haftmann
parents: 39314
diff changeset
  1352
    by (simp add: filter_remove1)
91a0ff0ff237 generalized lemmas multiset_of_insort, multiset_of_sort, properties_for_sort for *_key variants
haftmann
parents: 39314
diff changeset
  1353
  with Cons.prems have "sort_key f xs = remove1 x ys"
91a0ff0ff237 generalized lemmas multiset_of_insort, multiset_of_sort, properties_for_sort for *_key variants
haftmann
parents: 39314
diff changeset
  1354
    by (auto intro!: Cons.hyps simp add: sorted_map_remove1)
91a0ff0ff237 generalized lemmas multiset_of_insort, multiset_of_sort, properties_for_sort for *_key variants
haftmann
parents: 39314
diff changeset
  1355
  moreover from Cons.prems have "x \<in> set ys"
91a0ff0ff237 generalized lemmas multiset_of_insort, multiset_of_sort, properties_for_sort for *_key variants
haftmann
parents: 39314
diff changeset
  1356
    by (auto simp add: mem_set_multiset_eq intro!: ccontr)
91a0ff0ff237 generalized lemmas multiset_of_insort, multiset_of_sort, properties_for_sort for *_key variants
haftmann
parents: 39314
diff changeset
  1357
  ultimately show ?case using Cons.prems by (simp add: insort_key_remove1)
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
  1358
qed
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
  1359
39533
91a0ff0ff237 generalized lemmas multiset_of_insort, multiset_of_sort, properties_for_sort for *_key variants
haftmann
parents: 39314
diff changeset
  1360
lemma properties_for_sort:
60515
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  1361
  assumes multiset: "mset ys = mset xs"
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1362
    and "sorted ys"
39533
91a0ff0ff237 generalized lemmas multiset_of_insort, multiset_of_sort, properties_for_sort for *_key variants
haftmann
parents: 39314
diff changeset
  1363
  shows "sort xs = ys"
91a0ff0ff237 generalized lemmas multiset_of_insort, multiset_of_sort, properties_for_sort for *_key variants
haftmann
parents: 39314
diff changeset
  1364
proof (rule properties_for_sort_key)
60515
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  1365
  from multiset show "mset ys = mset xs" .
60500
903bb1495239 isabelle update_cartouches;
wenzelm
parents: 60400
diff changeset
  1366
  from \<open>sorted ys\<close> show "sorted (map (\<lambda>x. x) ys)" by simp
39533
91a0ff0ff237 generalized lemmas multiset_of_insort, multiset_of_sort, properties_for_sort for *_key variants
haftmann
parents: 39314
diff changeset
  1367
  from multiset have "\<And>k. length (filter (\<lambda>y. k = y) ys) = length (filter (\<lambda>x. k = x) xs)"
60515
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  1368
    by (rule mset_eq_length_filter)
39533
91a0ff0ff237 generalized lemmas multiset_of_insort, multiset_of_sort, properties_for_sort for *_key variants
haftmann
parents: 39314
diff changeset
  1369
  then have "\<And>k. replicate (length (filter (\<lambda>y. k = y) ys)) k = replicate (length (filter (\<lambda>x. k = x) xs)) k"
91a0ff0ff237 generalized lemmas multiset_of_insort, multiset_of_sort, properties_for_sort for *_key variants
haftmann
parents: 39314
diff changeset
  1370
    by simp
40305
41833242cc42 tuned lemma proposition of properties_for_sort_key
haftmann
parents: 40303
diff changeset
  1371
  then show "\<And>k. k \<in> set ys \<Longrightarrow> filter (\<lambda>y. k = y) ys = filter (\<lambda>x. k = x) xs"
39533
91a0ff0ff237 generalized lemmas multiset_of_insort, multiset_of_sort, properties_for_sort for *_key variants
haftmann
parents: 39314
diff changeset
  1372
    by (simp add: replicate_length_filter)
91a0ff0ff237 generalized lemmas multiset_of_insort, multiset_of_sort, properties_for_sort for *_key variants
haftmann
parents: 39314
diff changeset
  1373
qed
91a0ff0ff237 generalized lemmas multiset_of_insort, multiset_of_sort, properties_for_sort for *_key variants
haftmann
parents: 39314
diff changeset
  1374
40303
2d507370e879 lemmas multiset_of_filter, sort_key_by_quicksort
haftmann
parents: 40250
diff changeset
  1375
lemma sort_key_by_quicksort:
2d507370e879 lemmas multiset_of_filter, sort_key_by_quicksort
haftmann
parents: 40250
diff changeset
  1376
  "sort_key f xs = sort_key f [x\<leftarrow>xs. f x < f (xs ! (length xs div 2))]
2d507370e879 lemmas multiset_of_filter, sort_key_by_quicksort
haftmann
parents: 40250
diff changeset
  1377
    @ [x\<leftarrow>xs. f x = f (xs ! (length xs div 2))]
2d507370e879 lemmas multiset_of_filter, sort_key_by_quicksort
haftmann
parents: 40250
diff changeset
  1378
    @ sort_key f [x\<leftarrow>xs. f x > f (xs ! (length xs div 2))]" (is "sort_key f ?lhs = ?rhs")
2d507370e879 lemmas multiset_of_filter, sort_key_by_quicksort
haftmann
parents: 40250
diff changeset
  1379
proof (rule properties_for_sort_key)
60515
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  1380
  show "mset ?rhs = mset ?lhs"
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  1381
    by (rule multiset_eqI) (auto simp add: mset_filter)
40303
2d507370e879 lemmas multiset_of_filter, sort_key_by_quicksort
haftmann
parents: 40250
diff changeset
  1382
  show "sorted (map f ?rhs)"
2d507370e879 lemmas multiset_of_filter, sort_key_by_quicksort
haftmann
parents: 40250
diff changeset
  1383
    by (auto simp add: sorted_append intro: sorted_map_same)
2d507370e879 lemmas multiset_of_filter, sort_key_by_quicksort
haftmann
parents: 40250
diff changeset
  1384
next
40305
41833242cc42 tuned lemma proposition of properties_for_sort_key
haftmann
parents: 40303
diff changeset
  1385
  fix l
41833242cc42 tuned lemma proposition of properties_for_sort_key
haftmann
parents: 40303
diff changeset
  1386
  assume "l \<in> set ?rhs"
40346
58af2b8327b7 tuned proof
haftmann
parents: 40307
diff changeset
  1387
  let ?pivot = "f (xs ! (length xs div 2))"
58af2b8327b7 tuned proof
haftmann
parents: 40307
diff changeset
  1388
  have *: "\<And>x. f l = f x \<longleftrightarrow> f x = f l" by auto
40306
e4461b9854a5 tuned proof
haftmann
parents: 40305
diff changeset
  1389
  have "[x \<leftarrow> sort_key f xs . f x = f l] = [x \<leftarrow> xs. f x = f l]"
40305
41833242cc42 tuned lemma proposition of properties_for_sort_key
haftmann
parents: 40303
diff changeset
  1390
    unfolding filter_sort by (rule properties_for_sort_key) (auto intro: sorted_map_same)
40346
58af2b8327b7 tuned proof
haftmann
parents: 40307
diff changeset
  1391
  with * have **: "[x \<leftarrow> sort_key f xs . f l = f x] = [x \<leftarrow> xs. f l = f x]" by simp
58af2b8327b7 tuned proof
haftmann
parents: 40307
diff changeset
  1392
  have "\<And>x P. P (f x) ?pivot \<and> f l = f x \<longleftrightarrow> P (f l) ?pivot \<and> f l = f x" by auto
58af2b8327b7 tuned proof
haftmann
parents: 40307
diff changeset
  1393
  then have "\<And>P. [x \<leftarrow> sort_key f xs . P (f x) ?pivot \<and> f l = f x] =
58af2b8327b7 tuned proof
haftmann
parents: 40307
diff changeset
  1394
    [x \<leftarrow> sort_key f xs. P (f l) ?pivot \<and> f l = f x]" by simp
58af2b8327b7 tuned proof
haftmann
parents: 40307
diff changeset
  1395
  note *** = this [of "op <"] this [of "op >"] this [of "op ="]
40306
e4461b9854a5 tuned proof
haftmann
parents: 40305
diff changeset
  1396
  show "[x \<leftarrow> ?rhs. f l = f x] = [x \<leftarrow> ?lhs. f l = f x]"
40305
41833242cc42 tuned lemma proposition of properties_for_sort_key
haftmann
parents: 40303
diff changeset
  1397
  proof (cases "f l" ?pivot rule: linorder_cases)
46730
e3b99d0231bc tuned proofs;
wenzelm
parents: 46394
diff changeset
  1398
    case less
e3b99d0231bc tuned proofs;
wenzelm
parents: 46394
diff changeset
  1399
    then have "f l \<noteq> ?pivot" and "\<not> f l > ?pivot" by auto
e3b99d0231bc tuned proofs;
wenzelm
parents: 46394
diff changeset
  1400
    with less show ?thesis
40346
58af2b8327b7 tuned proof
haftmann
parents: 40307
diff changeset
  1401
      by (simp add: filter_sort [symmetric] ** ***)
40305
41833242cc42 tuned lemma proposition of properties_for_sort_key
haftmann
parents: 40303
diff changeset
  1402
  next
40306
e4461b9854a5 tuned proof
haftmann
parents: 40305
diff changeset
  1403
    case equal then show ?thesis
40346
58af2b8327b7 tuned proof
haftmann
parents: 40307
diff changeset
  1404
      by (simp add: * less_le)
40305
41833242cc42 tuned lemma proposition of properties_for_sort_key
haftmann
parents: 40303
diff changeset
  1405
  next
46730
e3b99d0231bc tuned proofs;
wenzelm
parents: 46394
diff changeset
  1406
    case greater
e3b99d0231bc tuned proofs;
wenzelm
parents: 46394
diff changeset
  1407
    then have "f l \<noteq> ?pivot" and "\<not> f l < ?pivot" by auto
e3b99d0231bc tuned proofs;
wenzelm
parents: 46394
diff changeset
  1408
    with greater show ?thesis
40346
58af2b8327b7 tuned proof
haftmann
parents: 40307
diff changeset
  1409
      by (simp add: filter_sort [symmetric] ** ***)
40306
e4461b9854a5 tuned proof
haftmann
parents: 40305
diff changeset
  1410
  qed
40303
2d507370e879 lemmas multiset_of_filter, sort_key_by_quicksort
haftmann
parents: 40250
diff changeset
  1411
qed
2d507370e879 lemmas multiset_of_filter, sort_key_by_quicksort
haftmann
parents: 40250
diff changeset
  1412
2d507370e879 lemmas multiset_of_filter, sort_key_by_quicksort
haftmann
parents: 40250
diff changeset
  1413
lemma sort_by_quicksort:
2d507370e879 lemmas multiset_of_filter, sort_key_by_quicksort
haftmann
parents: 40250
diff changeset
  1414
  "sort xs = sort [x\<leftarrow>xs. x < xs ! (length xs div 2)]
2d507370e879 lemmas multiset_of_filter, sort_key_by_quicksort
haftmann
parents: 40250
diff changeset
  1415
    @ [x\<leftarrow>xs. x = xs ! (length xs div 2)]
2d507370e879 lemmas multiset_of_filter, sort_key_by_quicksort
haftmann
parents: 40250
diff changeset
  1416
    @ sort [x\<leftarrow>xs. x > xs ! (length xs div 2)]" (is "sort ?lhs = ?rhs")
2d507370e879 lemmas multiset_of_filter, sort_key_by_quicksort
haftmann
parents: 40250
diff changeset
  1417
  using sort_key_by_quicksort [of "\<lambda>x. x", symmetric] by simp
2d507370e879 lemmas multiset_of_filter, sort_key_by_quicksort
haftmann
parents: 40250
diff changeset
  1418
60500
903bb1495239 isabelle update_cartouches;
wenzelm
parents: 60400
diff changeset
  1419
text \<open>A stable parametrized quicksort\<close>
40347
429bf4388b2f added code lemmas for stable parametrized quicksort
haftmann
parents: 40346
diff changeset
  1420
429bf4388b2f added code lemmas for stable parametrized quicksort
haftmann
parents: 40346
diff changeset
  1421
definition part :: "('b \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'b list \<Rightarrow> 'b list \<times> 'b list \<times> 'b list" where
429bf4388b2f added code lemmas for stable parametrized quicksort
haftmann
parents: 40346
diff changeset
  1422
  "part f pivot xs = ([x \<leftarrow> xs. f x < pivot], [x \<leftarrow> xs. f x = pivot], [x \<leftarrow> xs. pivot < f x])"
429bf4388b2f added code lemmas for stable parametrized quicksort
haftmann
parents: 40346
diff changeset
  1423
429bf4388b2f added code lemmas for stable parametrized quicksort
haftmann
parents: 40346
diff changeset
  1424
lemma part_code [code]:
429bf4388b2f added code lemmas for stable parametrized quicksort
haftmann
parents: 40346
diff changeset
  1425
  "part f pivot [] = ([], [], [])"
429bf4388b2f added code lemmas for stable parametrized quicksort
haftmann
parents: 40346
diff changeset
  1426
  "part f pivot (x # xs) = (let (lts, eqs, gts) = part f pivot xs; x' = f x in
429bf4388b2f added code lemmas for stable parametrized quicksort
haftmann
parents: 40346
diff changeset
  1427
     if x' < pivot then (x # lts, eqs, gts)
429bf4388b2f added code lemmas for stable parametrized quicksort
haftmann
parents: 40346
diff changeset
  1428
     else if x' > pivot then (lts, eqs, x # gts)
429bf4388b2f added code lemmas for stable parametrized quicksort
haftmann
parents: 40346
diff changeset
  1429
     else (lts, x # eqs, gts))"
429bf4388b2f added code lemmas for stable parametrized quicksort
haftmann
parents: 40346
diff changeset
  1430
  by (auto simp add: part_def Let_def split_def)
429bf4388b2f added code lemmas for stable parametrized quicksort
haftmann
parents: 40346
diff changeset
  1431
429bf4388b2f added code lemmas for stable parametrized quicksort
haftmann
parents: 40346
diff changeset
  1432
lemma sort_key_by_quicksort_code [code]:
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1433
  "sort_key f xs =
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1434
    (case xs of
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1435
      [] \<Rightarrow> []
40347
429bf4388b2f added code lemmas for stable parametrized quicksort
haftmann
parents: 40346
diff changeset
  1436
    | [x] \<Rightarrow> xs
429bf4388b2f added code lemmas for stable parametrized quicksort
haftmann
parents: 40346
diff changeset
  1437
    | [x, y] \<Rightarrow> (if f x \<le> f y then xs else [y, x])
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1438
    | _ \<Rightarrow>
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1439
        let (lts, eqs, gts) = part f (f (xs ! (length xs div 2))) xs
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1440
        in sort_key f lts @ eqs @ sort_key f gts)"
40347
429bf4388b2f added code lemmas for stable parametrized quicksort
haftmann
parents: 40346
diff changeset
  1441
proof (cases xs)
429bf4388b2f added code lemmas for stable parametrized quicksort
haftmann
parents: 40346
diff changeset
  1442
  case Nil then show ?thesis by simp
429bf4388b2f added code lemmas for stable parametrized quicksort
haftmann
parents: 40346
diff changeset
  1443
next
46921
aa862ff8a8a9 some proof indentation;
wenzelm
parents: 46756
diff changeset
  1444
  case (Cons _ ys) note hyps = Cons show ?thesis
aa862ff8a8a9 some proof indentation;
wenzelm
parents: 46756
diff changeset
  1445
  proof (cases ys)
40347
429bf4388b2f added code lemmas for stable parametrized quicksort
haftmann
parents: 40346
diff changeset
  1446
    case Nil with hyps show ?thesis by simp
429bf4388b2f added code lemmas for stable parametrized quicksort
haftmann
parents: 40346
diff changeset
  1447
  next
46921
aa862ff8a8a9 some proof indentation;
wenzelm
parents: 46756
diff changeset
  1448
    case (Cons _ zs) note hyps = hyps Cons show ?thesis
aa862ff8a8a9 some proof indentation;
wenzelm
parents: 46756
diff changeset
  1449
    proof (cases zs)
40347
429bf4388b2f added code lemmas for stable parametrized quicksort
haftmann
parents: 40346
diff changeset
  1450
      case Nil with hyps show ?thesis by auto
429bf4388b2f added code lemmas for stable parametrized quicksort
haftmann
parents: 40346
diff changeset
  1451
    next
58425
246985c6b20b simpler proof
blanchet
parents: 58247
diff changeset
  1452
      case Cons
40347
429bf4388b2f added code lemmas for stable parametrized quicksort
haftmann
parents: 40346
diff changeset
  1453
      from sort_key_by_quicksort [of f xs]
429bf4388b2f added code lemmas for stable parametrized quicksort
haftmann
parents: 40346
diff changeset
  1454
      have "sort_key f xs = (let (lts, eqs, gts) = part f (f (xs ! (length xs div 2))) xs
429bf4388b2f added code lemmas for stable parametrized quicksort
haftmann
parents: 40346
diff changeset
  1455
        in sort_key f lts @ eqs @ sort_key f gts)"
429bf4388b2f added code lemmas for stable parametrized quicksort
haftmann
parents: 40346
diff changeset
  1456
      by (simp only: split_def Let_def part_def fst_conv snd_conv)
429bf4388b2f added code lemmas for stable parametrized quicksort
haftmann
parents: 40346
diff changeset
  1457
      with hyps Cons show ?thesis by (simp only: list.cases)
429bf4388b2f added code lemmas for stable parametrized quicksort
haftmann
parents: 40346
diff changeset
  1458
    qed
429bf4388b2f added code lemmas for stable parametrized quicksort
haftmann
parents: 40346
diff changeset
  1459
  qed
429bf4388b2f added code lemmas for stable parametrized quicksort
haftmann
parents: 40346
diff changeset
  1460
qed
429bf4388b2f added code lemmas for stable parametrized quicksort
haftmann
parents: 40346
diff changeset
  1461
39533
91a0ff0ff237 generalized lemmas multiset_of_insort, multiset_of_sort, properties_for_sort for *_key variants
haftmann
parents: 39314
diff changeset
  1462
end
91a0ff0ff237 generalized lemmas multiset_of_insort, multiset_of_sort, properties_for_sort for *_key variants
haftmann
parents: 39314
diff changeset
  1463
40347
429bf4388b2f added code lemmas for stable parametrized quicksort
haftmann
parents: 40346
diff changeset
  1464
hide_const (open) part
429bf4388b2f added code lemmas for stable parametrized quicksort
haftmann
parents: 40346
diff changeset
  1465
60515
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  1466
lemma mset_remdups_le: "mset (remdups xs) \<le># mset xs"
60397
f8a513fedb31 Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 59999
diff changeset
  1467
  by (induct xs) (auto intro: subset_mset.order_trans)
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
  1468
60515
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  1469
lemma mset_update:
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  1470
  "i < length ls \<Longrightarrow> mset (ls[i := v]) = mset ls - {#ls ! i#} + {#v#}"
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
  1471
proof (induct ls arbitrary: i)
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
  1472
  case Nil then show ?case by simp
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
  1473
next
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
  1474
  case (Cons x xs)
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
  1475
  show ?case
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
  1476
  proof (cases i)
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
  1477
    case 0 then show ?thesis by simp
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
  1478
  next
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
  1479
    case (Suc i')
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
  1480
    with Cons show ?thesis
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
  1481
      apply simp
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
  1482
      apply (subst add.assoc)
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
  1483
      apply (subst add.commute [of "{#v#}" "{#x#}"])
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
  1484
      apply (subst add.assoc [symmetric])
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
  1485
      apply simp
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
  1486
      apply (rule mset_le_multiset_union_diff_commute)
60515
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  1487
      apply (simp add: mset_le_single nth_mem_mset)
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
  1488
      done
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
  1489
  qed
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
  1490
qed
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
  1491
60515
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  1492
lemma mset_swap:
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
  1493
  "i < length ls \<Longrightarrow> j < length ls \<Longrightarrow>
60515
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  1494
    mset (ls[j := ls ! i, i := ls ! j]) = mset ls"
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  1495
  by (cases "i = j") (simp_all add: mset_update nth_mem_mset)
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
  1496
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
  1497
60500
903bb1495239 isabelle update_cartouches;
wenzelm
parents: 60400
diff changeset
  1498
subsection \<open>The multiset order\<close>
903bb1495239 isabelle update_cartouches;
wenzelm
parents: 60400
diff changeset
  1499
903bb1495239 isabelle update_cartouches;
wenzelm
parents: 60400
diff changeset
  1500
subsubsection \<open>Well-foundedness\<close>
10249
e4d13d8a9011 Multisets (from HOL/Induct/Multiset and friends);
wenzelm
parents:
diff changeset
  1501
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1502
definition mult1 :: "('a \<times> 'a) set \<Rightarrow> ('a multiset \<times> 'a multiset) set" where
37765
26bdfb7b680b dropped superfluous [code del]s
haftmann
parents: 37751
diff changeset
  1503
  "mult1 r = {(N, M). \<exists>a M0 K. M = M0 + {#a#} \<and> N = M0 + K \<and>
60607
d440af2e584f more symbols;
wenzelm
parents: 60606
diff changeset
  1504
      (\<forall>b. b \<in># K \<longrightarrow> (b, a) \<in> r)}"
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1505
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1506
definition mult :: "('a \<times> 'a) set \<Rightarrow> ('a multiset \<times> 'a multiset) set" where
37765
26bdfb7b680b dropped superfluous [code del]s
haftmann
parents: 37751
diff changeset
  1507
  "mult r = (mult1 r)\<^sup>+"
10249
e4d13d8a9011 Multisets (from HOL/Induct/Multiset and friends);
wenzelm
parents:
diff changeset
  1508
23751
a7c7edf2c5ad Restored set notation.
berghofe
parents: 23611
diff changeset
  1509
lemma not_less_empty [iff]: "(M, {#}) \<notin> mult1 r"
26178
nipkow
parents: 26176
diff changeset
  1510
by (simp add: mult1_def)
10249
e4d13d8a9011 Multisets (from HOL/Induct/Multiset and friends);
wenzelm
parents:
diff changeset
  1511
60608
c5cbd90bd94e tuned proofs;
wenzelm
parents: 60607
diff changeset
  1512
lemma less_add:
c5cbd90bd94e tuned proofs;
wenzelm
parents: 60607
diff changeset
  1513
  assumes mult1: "(N, M0 + {#a#}) \<in> mult1 r"
c5cbd90bd94e tuned proofs;
wenzelm
parents: 60607
diff changeset
  1514
  shows
c5cbd90bd94e tuned proofs;
wenzelm
parents: 60607
diff changeset
  1515
    "(\<exists>M. (M, M0) \<in> mult1 r \<and> N = M + {#a#}) \<or>
c5cbd90bd94e tuned proofs;
wenzelm
parents: 60607
diff changeset
  1516
     (\<exists>K. (\<forall>b. b \<in># K \<longrightarrow> (b, a) \<in> r) \<and> N = M0 + K)"
c5cbd90bd94e tuned proofs;
wenzelm
parents: 60607
diff changeset
  1517
proof -
60607
d440af2e584f more symbols;
wenzelm
parents: 60606
diff changeset
  1518
  let ?r = "\<lambda>K a. \<forall>b. b \<in># K \<longrightarrow> (b, a) \<in> r"
11464
ddea204de5bc turned translation for 1::nat into def.
nipkow
parents: 10714
diff changeset
  1519
  let ?R = "\<lambda>N M. \<exists>a M0 K. M = M0 + {#a#} \<and> N = M0 + K \<and> ?r K a"
60608
c5cbd90bd94e tuned proofs;
wenzelm
parents: 60607
diff changeset
  1520
  obtain a' M0' K where M0: "M0 + {#a#} = M0' + {#a'#}"
c5cbd90bd94e tuned proofs;
wenzelm
parents: 60607
diff changeset
  1521
    and N: "N = M0' + K"
c5cbd90bd94e tuned proofs;
wenzelm
parents: 60607
diff changeset
  1522
    and r: "?r K a'"
c5cbd90bd94e tuned proofs;
wenzelm
parents: 60607
diff changeset
  1523
    using mult1 unfolding mult1_def by auto
c5cbd90bd94e tuned proofs;
wenzelm
parents: 60607
diff changeset
  1524
  show ?thesis (is "?case1 \<or> ?case2")
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1525
  proof -
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1526
    from M0 consider "M0 = M0'" "a = a'"
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1527
      | K' where "M0 = K' + {#a'#}" "M0' = K' + {#a#}"
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1528
      by atomize_elim (simp only: add_eq_conv_ex)
18258
836491e9b7d5 tuned induct proofs;
wenzelm
parents: 17778
diff changeset
  1529
    then show ?thesis
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1530
    proof cases
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1531
      case 1
11464
ddea204de5bc turned translation for 1::nat into def.
nipkow
parents: 10714
diff changeset
  1532
      with N r have "?r K a \<and> N = M0 + K" by simp
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1533
      then have ?case2 ..
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1534
      then show ?thesis ..
10249
e4d13d8a9011 Multisets (from HOL/Induct/Multiset and friends);
wenzelm
parents:
diff changeset
  1535
    next
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1536
      case 2
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1537
      from N 2(2) have n: "N = K' + K + {#a#}" by (simp add: ac_simps)
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1538
      with r 2(1) have "?R (K' + K) M0" by blast
60608
c5cbd90bd94e tuned proofs;
wenzelm
parents: 60607
diff changeset
  1539
      with n have ?case1 by (simp add: mult1_def)
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1540
      then show ?thesis ..
10249
e4d13d8a9011 Multisets (from HOL/Induct/Multiset and friends);
wenzelm
parents:
diff changeset
  1541
    qed
e4d13d8a9011 Multisets (from HOL/Induct/Multiset and friends);
wenzelm
parents:
diff changeset
  1542
  qed
e4d13d8a9011 Multisets (from HOL/Induct/Multiset and friends);
wenzelm
parents:
diff changeset
  1543
qed
e4d13d8a9011 Multisets (from HOL/Induct/Multiset and friends);
wenzelm
parents:
diff changeset
  1544
60608
c5cbd90bd94e tuned proofs;
wenzelm
parents: 60607
diff changeset
  1545
lemma all_accessible:
c5cbd90bd94e tuned proofs;
wenzelm
parents: 60607
diff changeset
  1546
  assumes "wf r"
c5cbd90bd94e tuned proofs;
wenzelm
parents: 60607
diff changeset
  1547
  shows "\<forall>M. M \<in> Wellfounded.acc (mult1 r)"
10249
e4d13d8a9011 Multisets (from HOL/Induct/Multiset and friends);
wenzelm
parents:
diff changeset
  1548
proof
e4d13d8a9011 Multisets (from HOL/Induct/Multiset and friends);
wenzelm
parents:
diff changeset
  1549
  let ?R = "mult1 r"
54295
45a5523d4a63 qualifed popular user space names
haftmann
parents: 52289
diff changeset
  1550
  let ?W = "Wellfounded.acc ?R"
10249
e4d13d8a9011 Multisets (from HOL/Induct/Multiset and friends);
wenzelm
parents:
diff changeset
  1551
  {
e4d13d8a9011 Multisets (from HOL/Induct/Multiset and friends);
wenzelm
parents:
diff changeset
  1552
    fix M M0 a
23751
a7c7edf2c5ad Restored set notation.
berghofe
parents: 23611
diff changeset
  1553
    assume M0: "M0 \<in> ?W"
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1554
      and wf_hyp: "\<And>b. (b, a) \<in> r \<Longrightarrow> (\<forall>M \<in> ?W. M + {#b#} \<in> ?W)"
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1555
      and acc_hyp: "\<forall>M. (M, M0) \<in> ?R \<longrightarrow> M + {#a#} \<in> ?W"
23751
a7c7edf2c5ad Restored set notation.
berghofe
parents: 23611
diff changeset
  1556
    have "M0 + {#a#} \<in> ?W"
a7c7edf2c5ad Restored set notation.
berghofe
parents: 23611
diff changeset
  1557
    proof (rule accI [of "M0 + {#a#}"])
10249
e4d13d8a9011 Multisets (from HOL/Induct/Multiset and friends);
wenzelm
parents:
diff changeset
  1558
      fix N
23751
a7c7edf2c5ad Restored set notation.
berghofe
parents: 23611
diff changeset
  1559
      assume "(N, M0 + {#a#}) \<in> ?R"
60608
c5cbd90bd94e tuned proofs;
wenzelm
parents: 60607
diff changeset
  1560
      then consider M where "(M, M0) \<in> ?R" "N = M + {#a#}"
c5cbd90bd94e tuned proofs;
wenzelm
parents: 60607
diff changeset
  1561
        | K where "\<forall>b. b \<in># K \<longrightarrow> (b, a) \<in> r" "N = M0 + K"
c5cbd90bd94e tuned proofs;
wenzelm
parents: 60607
diff changeset
  1562
        by atomize_elim (rule less_add)
23751
a7c7edf2c5ad Restored set notation.
berghofe
parents: 23611
diff changeset
  1563
      then show "N \<in> ?W"
60608
c5cbd90bd94e tuned proofs;
wenzelm
parents: 60607
diff changeset
  1564
      proof cases
c5cbd90bd94e tuned proofs;
wenzelm
parents: 60607
diff changeset
  1565
        case 1
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1566
        from acc_hyp have "(M, M0) \<in> ?R \<longrightarrow> M + {#a#} \<in> ?W" ..
60500
903bb1495239 isabelle update_cartouches;
wenzelm
parents: 60400
diff changeset
  1567
        from this and \<open>(M, M0) \<in> ?R\<close> have "M + {#a#} \<in> ?W" ..
60608
c5cbd90bd94e tuned proofs;
wenzelm
parents: 60607
diff changeset
  1568
        then show "N \<in> ?W" by (simp only: \<open>N = M + {#a#}\<close>)
10249
e4d13d8a9011 Multisets (from HOL/Induct/Multiset and friends);
wenzelm
parents:
diff changeset
  1569
      next
60608
c5cbd90bd94e tuned proofs;
wenzelm
parents: 60607
diff changeset
  1570
        case 2
c5cbd90bd94e tuned proofs;
wenzelm
parents: 60607
diff changeset
  1571
        from this(1) have "M0 + K \<in> ?W"
10249
e4d13d8a9011 Multisets (from HOL/Induct/Multiset and friends);
wenzelm
parents:
diff changeset
  1572
        proof (induct K)
18730
843da46f89ac tuned proofs;
wenzelm
parents: 18258
diff changeset
  1573
          case empty
23751
a7c7edf2c5ad Restored set notation.
berghofe
parents: 23611
diff changeset
  1574
          from M0 show "M0 + {#} \<in> ?W" by simp
18730
843da46f89ac tuned proofs;
wenzelm
parents: 18258
diff changeset
  1575
        next
843da46f89ac tuned proofs;
wenzelm
parents: 18258
diff changeset
  1576
          case (add K x)
23751
a7c7edf2c5ad Restored set notation.
berghofe
parents: 23611
diff changeset
  1577
          from add.prems have "(x, a) \<in> r" by simp
a7c7edf2c5ad Restored set notation.
berghofe
parents: 23611
diff changeset
  1578
          with wf_hyp have "\<forall>M \<in> ?W. M + {#x#} \<in> ?W" by blast
a7c7edf2c5ad Restored set notation.
berghofe
parents: 23611
diff changeset
  1579
          moreover from add have "M0 + K \<in> ?W" by simp
a7c7edf2c5ad Restored set notation.
berghofe
parents: 23611
diff changeset
  1580
          ultimately have "(M0 + K) + {#x#} \<in> ?W" ..
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
  1581
          then show "M0 + (K + {#x#}) \<in> ?W" by (simp only: add.assoc)
10249
e4d13d8a9011 Multisets (from HOL/Induct/Multiset and friends);
wenzelm
parents:
diff changeset
  1582
        qed
60608
c5cbd90bd94e tuned proofs;
wenzelm
parents: 60607
diff changeset
  1583
        then show "N \<in> ?W" by (simp only: 2(2))
10249
e4d13d8a9011 Multisets (from HOL/Induct/Multiset and friends);
wenzelm
parents:
diff changeset
  1584
      qed
e4d13d8a9011 Multisets (from HOL/Induct/Multiset and friends);
wenzelm
parents:
diff changeset
  1585
    qed
e4d13d8a9011 Multisets (from HOL/Induct/Multiset and friends);
wenzelm
parents:
diff changeset
  1586
  } note tedious_reasoning = this
e4d13d8a9011 Multisets (from HOL/Induct/Multiset and friends);
wenzelm
parents:
diff changeset
  1587
60608
c5cbd90bd94e tuned proofs;
wenzelm
parents: 60607
diff changeset
  1588
  show "M \<in> ?W" for M
10249
e4d13d8a9011 Multisets (from HOL/Induct/Multiset and friends);
wenzelm
parents:
diff changeset
  1589
  proof (induct M)
23751
a7c7edf2c5ad Restored set notation.
berghofe
parents: 23611
diff changeset
  1590
    show "{#} \<in> ?W"
10249
e4d13d8a9011 Multisets (from HOL/Induct/Multiset and friends);
wenzelm
parents:
diff changeset
  1591
    proof (rule accI)
23751
a7c7edf2c5ad Restored set notation.
berghofe
parents: 23611
diff changeset
  1592
      fix b assume "(b, {#}) \<in> ?R"
a7c7edf2c5ad Restored set notation.
berghofe
parents: 23611
diff changeset
  1593
      with not_less_empty show "b \<in> ?W" by contradiction
10249
e4d13d8a9011 Multisets (from HOL/Induct/Multiset and friends);
wenzelm
parents:
diff changeset
  1594
    qed
e4d13d8a9011 Multisets (from HOL/Induct/Multiset and friends);
wenzelm
parents:
diff changeset
  1595
23751
a7c7edf2c5ad Restored set notation.
berghofe
parents: 23611
diff changeset
  1596
    fix M a assume "M \<in> ?W"
60608
c5cbd90bd94e tuned proofs;
wenzelm
parents: 60607
diff changeset
  1597
    from \<open>wf r\<close> have "\<forall>M \<in> ?W. M + {#a#} \<in> ?W"
10249
e4d13d8a9011 Multisets (from HOL/Induct/Multiset and friends);
wenzelm
parents:
diff changeset
  1598
    proof induct
e4d13d8a9011 Multisets (from HOL/Induct/Multiset and friends);
wenzelm
parents:
diff changeset
  1599
      fix a
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1600
      assume r: "\<And>b. (b, a) \<in> r \<Longrightarrow> (\<forall>M \<in> ?W. M + {#b#} \<in> ?W)"
23751
a7c7edf2c5ad Restored set notation.
berghofe
parents: 23611
diff changeset
  1601
      show "\<forall>M \<in> ?W. M + {#a#} \<in> ?W"
10249
e4d13d8a9011 Multisets (from HOL/Induct/Multiset and friends);
wenzelm
parents:
diff changeset
  1602
      proof
23751
a7c7edf2c5ad Restored set notation.
berghofe
parents: 23611
diff changeset
  1603
        fix M assume "M \<in> ?W"
a7c7edf2c5ad Restored set notation.
berghofe
parents: 23611
diff changeset
  1604
        then show "M + {#a#} \<in> ?W"
23373
ead82c82da9e tuned proofs: avoid implicit prems;
wenzelm
parents: 23281
diff changeset
  1605
          by (rule acc_induct) (rule tedious_reasoning [OF _ r])
10249
e4d13d8a9011 Multisets (from HOL/Induct/Multiset and friends);
wenzelm
parents:
diff changeset
  1606
      qed
e4d13d8a9011 Multisets (from HOL/Induct/Multiset and friends);
wenzelm
parents:
diff changeset
  1607
    qed
60500
903bb1495239 isabelle update_cartouches;
wenzelm
parents: 60400
diff changeset
  1608
    from this and \<open>M \<in> ?W\<close> show "M + {#a#} \<in> ?W" ..
10249
e4d13d8a9011 Multisets (from HOL/Induct/Multiset and friends);
wenzelm
parents:
diff changeset
  1609
  qed
e4d13d8a9011 Multisets (from HOL/Induct/Multiset and friends);
wenzelm
parents:
diff changeset
  1610
qed
e4d13d8a9011 Multisets (from HOL/Induct/Multiset and friends);
wenzelm
parents:
diff changeset
  1611
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1612
theorem wf_mult1: "wf r \<Longrightarrow> wf (mult1 r)"
26178
nipkow
parents: 26176
diff changeset
  1613
by (rule acc_wfI) (rule all_accessible)
10249
e4d13d8a9011 Multisets (from HOL/Induct/Multiset and friends);
wenzelm
parents:
diff changeset
  1614
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1615
theorem wf_mult: "wf r \<Longrightarrow> wf (mult r)"
26178
nipkow
parents: 26176
diff changeset
  1616
unfolding mult_def by (rule wf_trancl) (rule wf_mult1)
10249
e4d13d8a9011 Multisets (from HOL/Induct/Multiset and friends);
wenzelm
parents:
diff changeset
  1617
e4d13d8a9011 Multisets (from HOL/Induct/Multiset and friends);
wenzelm
parents:
diff changeset
  1618
60500
903bb1495239 isabelle update_cartouches;
wenzelm
parents: 60400
diff changeset
  1619
subsubsection \<open>Closure-free presentation\<close>
903bb1495239 isabelle update_cartouches;
wenzelm
parents: 60400
diff changeset
  1620
903bb1495239 isabelle update_cartouches;
wenzelm
parents: 60400
diff changeset
  1621
text \<open>One direction.\<close>
10249
e4d13d8a9011 Multisets (from HOL/Induct/Multiset and friends);
wenzelm
parents:
diff changeset
  1622
e4d13d8a9011 Multisets (from HOL/Induct/Multiset and friends);
wenzelm
parents:
diff changeset
  1623
lemma mult_implies_one_step:
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1624
  "trans r \<Longrightarrow> (M, N) \<in> mult r \<Longrightarrow>
11464
ddea204de5bc turned translation for 1::nat into def.
nipkow
parents: 10714
diff changeset
  1625
    \<exists>I J K. N = I + J \<and> M = I + K \<and> J \<noteq> {#} \<and>
60495
d7ff0a1df90a renamed Multiset.set_of to the canonical set_mset
nipkow
parents: 60400
diff changeset
  1626
    (\<forall>k \<in> set_mset K. \<exists>j \<in> set_mset J. (k, j) \<in> r)"
d7ff0a1df90a renamed Multiset.set_of to the canonical set_mset
nipkow
parents: 60400
diff changeset
  1627
apply (unfold mult_def mult1_def set_mset_def)
26178
nipkow
parents: 26176
diff changeset
  1628
apply (erule converse_trancl_induct, clarify)
nipkow
parents: 26176
diff changeset
  1629
 apply (rule_tac x = M0 in exI, simp, clarify)
60607
d440af2e584f more symbols;
wenzelm
parents: 60606
diff changeset
  1630
apply (case_tac "a \<in># K")
26178
nipkow
parents: 26176
diff changeset
  1631
 apply (rule_tac x = I in exI)
nipkow
parents: 26176
diff changeset
  1632
 apply (simp (no_asm))
nipkow
parents: 26176
diff changeset
  1633
 apply (rule_tac x = "(K - {#a#}) + Ka" in exI)
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
  1634
 apply (simp (no_asm_simp) add: add.assoc [symmetric])
59807
22bc39064290 prefer local fixes;
wenzelm
parents: 59625
diff changeset
  1635
 apply (drule_tac f = "\<lambda>M. M - {#a#}" and x="S + T" for S T in arg_cong)
26178
nipkow
parents: 26176
diff changeset
  1636
 apply (simp add: diff_union_single_conv)
nipkow
parents: 26176
diff changeset
  1637
 apply (simp (no_asm_use) add: trans_def)
nipkow
parents: 26176
diff changeset
  1638
 apply blast
60607
d440af2e584f more symbols;
wenzelm
parents: 60606
diff changeset
  1639
apply (subgoal_tac "a \<in># I")
26178
nipkow
parents: 26176
diff changeset
  1640
 apply (rule_tac x = "I - {#a#}" in exI)
nipkow
parents: 26176
diff changeset
  1641
 apply (rule_tac x = "J + {#a#}" in exI)
nipkow
parents: 26176
diff changeset
  1642
 apply (rule_tac x = "K + Ka" in exI)
nipkow
parents: 26176
diff changeset
  1643
 apply (rule conjI)
39302
d7728f65b353 renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents: 39301
diff changeset
  1644
  apply (simp add: multiset_eq_iff split: nat_diff_split)
26178
nipkow
parents: 26176
diff changeset
  1645
 apply (rule conjI)
59807
22bc39064290 prefer local fixes;
wenzelm
parents: 59625
diff changeset
  1646
  apply (drule_tac f = "\<lambda>M. M - {#a#}" and x="S + T" for S T in arg_cong, simp)
39302
d7728f65b353 renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents: 39301
diff changeset
  1647
  apply (simp add: multiset_eq_iff split: nat_diff_split)
26178
nipkow
parents: 26176
diff changeset
  1648
 apply (simp (no_asm_use) add: trans_def)
nipkow
parents: 26176
diff changeset
  1649
 apply blast
60607
d440af2e584f more symbols;
wenzelm
parents: 60606
diff changeset
  1650
apply (subgoal_tac "a \<in># (M0 + {#a#})")
26178
nipkow
parents: 26176
diff changeset
  1651
 apply simp
nipkow
parents: 26176
diff changeset
  1652
apply (simp (no_asm))
nipkow
parents: 26176
diff changeset
  1653
done
10249
e4d13d8a9011 Multisets (from HOL/Induct/Multiset and friends);
wenzelm
parents:
diff changeset
  1654
e4d13d8a9011 Multisets (from HOL/Induct/Multiset and friends);
wenzelm
parents:
diff changeset
  1655
lemma one_step_implies_mult_aux:
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1656
  "trans r \<Longrightarrow>
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1657
    \<forall>I J K. size J = n \<and> J \<noteq> {#} \<and> (\<forall>k \<in> set_mset K. \<exists>j \<in> set_mset J. (k, j) \<in> r)
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1658
      \<longrightarrow> (I + K, I + J) \<in> mult r"
26178
nipkow
parents: 26176
diff changeset
  1659
apply (induct_tac n, auto)
nipkow
parents: 26176
diff changeset
  1660
apply (frule size_eq_Suc_imp_eq_union, clarify)
nipkow
parents: 26176
diff changeset
  1661
apply (rename_tac "J'", simp)
nipkow
parents: 26176
diff changeset
  1662
apply (erule notE, auto)
nipkow
parents: 26176
diff changeset
  1663
apply (case_tac "J' = {#}")
nipkow
parents: 26176
diff changeset
  1664
 apply (simp add: mult_def)
nipkow
parents: 26176
diff changeset
  1665
 apply (rule r_into_trancl)
60495
d7ff0a1df90a renamed Multiset.set_of to the canonical set_mset
nipkow
parents: 60400
diff changeset
  1666
 apply (simp add: mult1_def set_mset_def, blast)
60500
903bb1495239 isabelle update_cartouches;
wenzelm
parents: 60400
diff changeset
  1667
txt \<open>Now we know @{term "J' \<noteq> {#}"}.\<close>
26178
nipkow
parents: 26176
diff changeset
  1668
apply (cut_tac M = K and P = "\<lambda>x. (x, a) \<in> r" in multiset_partition)
60495
d7ff0a1df90a renamed Multiset.set_of to the canonical set_mset
nipkow
parents: 60400
diff changeset
  1669
apply (erule_tac P = "\<forall>k \<in> set_mset K. P k" for P in rev_mp)
26178
nipkow
parents: 26176
diff changeset
  1670
apply (erule ssubst)
nipkow
parents: 26176
diff changeset
  1671
apply (simp add: Ball_def, auto)
nipkow
parents: 26176
diff changeset
  1672
apply (subgoal_tac
60607
d440af2e584f more symbols;
wenzelm
parents: 60606
diff changeset
  1673
  "((I + {# x \<in># K. (x, a) \<in> r #}) + {# x \<in># K. (x, a) \<notin> r #},
d440af2e584f more symbols;
wenzelm
parents: 60606
diff changeset
  1674
    (I + {# x \<in># K. (x, a) \<in> r #}) + J') \<in> mult r")
26178
nipkow
parents: 26176
diff changeset
  1675
 prefer 2
nipkow
parents: 26176
diff changeset
  1676
 apply force
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
  1677
apply (simp (no_asm_use) add: add.assoc [symmetric] mult_def)
26178
nipkow
parents: 26176
diff changeset
  1678
apply (erule trancl_trans)
nipkow
parents: 26176
diff changeset
  1679
apply (rule r_into_trancl)
60495
d7ff0a1df90a renamed Multiset.set_of to the canonical set_mset
nipkow
parents: 60400
diff changeset
  1680
apply (simp add: mult1_def set_mset_def)
26178
nipkow
parents: 26176
diff changeset
  1681
apply (rule_tac x = a in exI)
nipkow
parents: 26176
diff changeset
  1682
apply (rule_tac x = "I + J'" in exI)
57514
bdc2c6b40bf2 prefer ac_simps collections over separate name bindings for add and mult
haftmann
parents: 57512
diff changeset
  1683
apply (simp add: ac_simps)
26178
nipkow
parents: 26176
diff changeset
  1684
done
10249
e4d13d8a9011 Multisets (from HOL/Induct/Multiset and friends);
wenzelm
parents:
diff changeset
  1685
17161
57c69627d71a tuned some proofs;
wenzelm
parents: 15869
diff changeset
  1686
lemma one_step_implies_mult:
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1687
  "trans r \<Longrightarrow> J \<noteq> {#} \<Longrightarrow> \<forall>k \<in> set_mset K. \<exists>j \<in> set_mset J. (k, j) \<in> r
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1688
    \<Longrightarrow> (I + K, I + J) \<in> mult r"
26178
nipkow
parents: 26176
diff changeset
  1689
using one_step_implies_mult_aux by blast
10249
e4d13d8a9011 Multisets (from HOL/Induct/Multiset and friends);
wenzelm
parents:
diff changeset
  1690
e4d13d8a9011 Multisets (from HOL/Induct/Multiset and friends);
wenzelm
parents:
diff changeset
  1691
60500
903bb1495239 isabelle update_cartouches;
wenzelm
parents: 60400
diff changeset
  1692
subsubsection \<open>Partial-order properties\<close>
10249
e4d13d8a9011 Multisets (from HOL/Induct/Multiset and friends);
wenzelm
parents:
diff changeset
  1693
59958
4538d41e8e54 renamed multiset ordering to free up nice <# etc. symbols for the standard subset
blanchet
parents: 59949
diff changeset
  1694
definition less_multiset :: "'a\<Colon>order multiset \<Rightarrow> 'a multiset \<Rightarrow> bool" (infix "#<#" 50) where
4538d41e8e54 renamed multiset ordering to free up nice <# etc. symbols for the standard subset
blanchet
parents: 59949
diff changeset
  1695
  "M' #<# M \<longleftrightarrow> (M', M) \<in> mult {(x', x). x' < x}"
4538d41e8e54 renamed multiset ordering to free up nice <# etc. symbols for the standard subset
blanchet
parents: 59949
diff changeset
  1696
4538d41e8e54 renamed multiset ordering to free up nice <# etc. symbols for the standard subset
blanchet
parents: 59949
diff changeset
  1697
definition le_multiset :: "'a\<Colon>order multiset \<Rightarrow> 'a multiset \<Rightarrow> bool" (infix "#<=#" 50) where
4538d41e8e54 renamed multiset ordering to free up nice <# etc. symbols for the standard subset
blanchet
parents: 59949
diff changeset
  1698
  "M' #<=# M \<longleftrightarrow> M' #<# M \<or> M' = M"
4538d41e8e54 renamed multiset ordering to free up nice <# etc. symbols for the standard subset
blanchet
parents: 59949
diff changeset
  1699
4538d41e8e54 renamed multiset ordering to free up nice <# etc. symbols for the standard subset
blanchet
parents: 59949
diff changeset
  1700
notation (xsymbols) less_multiset (infix "#\<subset>#" 50)
4538d41e8e54 renamed multiset ordering to free up nice <# etc. symbols for the standard subset
blanchet
parents: 59949
diff changeset
  1701
notation (xsymbols) le_multiset (infix "#\<subseteq>#" 50)
10249
e4d13d8a9011 Multisets (from HOL/Induct/Multiset and friends);
wenzelm
parents:
diff changeset
  1702
35268
04673275441a switched notations for pointwise and multiset order
haftmann
parents: 35028
diff changeset
  1703
interpretation multiset_order: order le_multiset less_multiset
04673275441a switched notations for pointwise and multiset order
haftmann
parents: 35028
diff changeset
  1704
proof -
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1705
  have irrefl: "\<not> M #\<subset># M" for M :: "'a multiset"
35268
04673275441a switched notations for pointwise and multiset order
haftmann
parents: 35028
diff changeset
  1706
  proof
59958
4538d41e8e54 renamed multiset ordering to free up nice <# etc. symbols for the standard subset
blanchet
parents: 59949
diff changeset
  1707
    assume "M #\<subset># M"
35268
04673275441a switched notations for pointwise and multiset order
haftmann
parents: 35028
diff changeset
  1708
    then have MM: "(M, M) \<in> mult {(x, y). x < y}" by (simp add: less_multiset_def)
04673275441a switched notations for pointwise and multiset order
haftmann
parents: 35028
diff changeset
  1709
    have "trans {(x'::'a, x). x' < x}"
04673275441a switched notations for pointwise and multiset order
haftmann
parents: 35028
diff changeset
  1710
      by (rule transI) simp
04673275441a switched notations for pointwise and multiset order
haftmann
parents: 35028
diff changeset
  1711
    moreover note MM
04673275441a switched notations for pointwise and multiset order
haftmann
parents: 35028
diff changeset
  1712
    ultimately have "\<exists>I J K. M = I + J \<and> M = I + K
60495
d7ff0a1df90a renamed Multiset.set_of to the canonical set_mset
nipkow
parents: 60400
diff changeset
  1713
      \<and> J \<noteq> {#} \<and> (\<forall>k\<in>set_mset K. \<exists>j\<in>set_mset J. (k, j) \<in> {(x, y). x < y})"
35268
04673275441a switched notations for pointwise and multiset order
haftmann
parents: 35028
diff changeset
  1714
      by (rule mult_implies_one_step)
04673275441a switched notations for pointwise and multiset order
haftmann
parents: 35028
diff changeset
  1715
    then obtain I J K where "M = I + J" and "M = I + K"
60495
d7ff0a1df90a renamed Multiset.set_of to the canonical set_mset
nipkow
parents: 60400
diff changeset
  1716
      and "J \<noteq> {#}" and "(\<forall>k\<in>set_mset K. \<exists>j\<in>set_mset J. (k, j) \<in> {(x, y). x < y})" by blast
d7ff0a1df90a renamed Multiset.set_of to the canonical set_mset
nipkow
parents: 60400
diff changeset
  1717
    then have aux1: "K \<noteq> {#}" and aux2: "\<forall>k\<in>set_mset K. \<exists>j\<in>set_mset K. k < j" by auto
d7ff0a1df90a renamed Multiset.set_of to the canonical set_mset
nipkow
parents: 60400
diff changeset
  1718
    have "finite (set_mset K)" by simp
35268
04673275441a switched notations for pointwise and multiset order
haftmann
parents: 35028
diff changeset
  1719
    moreover note aux2
60495
d7ff0a1df90a renamed Multiset.set_of to the canonical set_mset
nipkow
parents: 60400
diff changeset
  1720
    ultimately have "set_mset K = {}"
35268
04673275441a switched notations for pointwise and multiset order
haftmann
parents: 35028
diff changeset
  1721
      by (induct rule: finite_induct) (auto intro: order_less_trans)
04673275441a switched notations for pointwise and multiset order
haftmann
parents: 35028
diff changeset
  1722
    with aux1 show False by simp
04673275441a switched notations for pointwise and multiset order
haftmann
parents: 35028
diff changeset
  1723
  qed
59958
4538d41e8e54 renamed multiset ordering to free up nice <# etc. symbols for the standard subset
blanchet
parents: 59949
diff changeset
  1724
  have trans: "\<And>K M N :: 'a multiset. K #\<subset># M \<Longrightarrow> M #\<subset># N \<Longrightarrow> K #\<subset># N"
35268
04673275441a switched notations for pointwise and multiset order
haftmann
parents: 35028
diff changeset
  1725
    unfolding less_multiset_def mult_def by (blast intro: trancl_trans)
46921
aa862ff8a8a9 some proof indentation;
wenzelm
parents: 46756
diff changeset
  1726
  show "class.order (le_multiset :: 'a multiset \<Rightarrow> _) less_multiset"
aa862ff8a8a9 some proof indentation;
wenzelm
parents: 46756
diff changeset
  1727
    by default (auto simp add: le_multiset_def irrefl dest: trans)
35268
04673275441a switched notations for pointwise and multiset order
haftmann
parents: 35028
diff changeset
  1728
qed
10249
e4d13d8a9011 Multisets (from HOL/Induct/Multiset and friends);
wenzelm
parents:
diff changeset
  1729
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1730
lemma mult_less_irrefl [elim!]: "M #\<subset># (M::'a::order multiset) \<Longrightarrow> R"
46730
e3b99d0231bc tuned proofs;
wenzelm
parents: 46394
diff changeset
  1731
  by simp
26567
7bcebb8c2d33 instantiation replacing primitive instance plus overloaded defs; more conservative type arities
haftmann
parents: 26178
diff changeset
  1732
10249
e4d13d8a9011 Multisets (from HOL/Induct/Multiset and friends);
wenzelm
parents:
diff changeset
  1733
60500
903bb1495239 isabelle update_cartouches;
wenzelm
parents: 60400
diff changeset
  1734
subsubsection \<open>Monotonicity of multiset union\<close>
10249
e4d13d8a9011 Multisets (from HOL/Induct/Multiset and friends);
wenzelm
parents:
diff changeset
  1735
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1736
lemma mult1_union: "(B, D) \<in> mult1 r \<Longrightarrow> (C + B, C + D) \<in> mult1 r"
26178
nipkow
parents: 26176
diff changeset
  1737
apply (unfold mult1_def)
nipkow
parents: 26176
diff changeset
  1738
apply auto
nipkow
parents: 26176
diff changeset
  1739
apply (rule_tac x = a in exI)
nipkow
parents: 26176
diff changeset
  1740
apply (rule_tac x = "C + M0" in exI)
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
  1741
apply (simp add: add.assoc)
26178
nipkow
parents: 26176
diff changeset
  1742
done
10249
e4d13d8a9011 Multisets (from HOL/Induct/Multiset and friends);
wenzelm
parents:
diff changeset
  1743
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1744
lemma union_less_mono2: "B #\<subset># D \<Longrightarrow> C + B #\<subset># C + (D::'a::order multiset)"
26178
nipkow
parents: 26176
diff changeset
  1745
apply (unfold less_multiset_def mult_def)
nipkow
parents: 26176
diff changeset
  1746
apply (erule trancl_induct)
40249
cd404ecb9107 Remove unnecessary premise of mult1_union
Lars Noschinski <noschinl@in.tum.de>
parents: 39533
diff changeset
  1747
 apply (blast intro: mult1_union)
cd404ecb9107 Remove unnecessary premise of mult1_union
Lars Noschinski <noschinl@in.tum.de>
parents: 39533
diff changeset
  1748
apply (blast intro: mult1_union trancl_trans)
26178
nipkow
parents: 26176
diff changeset
  1749
done
10249
e4d13d8a9011 Multisets (from HOL/Induct/Multiset and friends);
wenzelm
parents:
diff changeset
  1750
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1751
lemma union_less_mono1: "B #\<subset># D \<Longrightarrow> B + C #\<subset># D + (C::'a::order multiset)"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
  1752
apply (subst add.commute [of B C])
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
  1753
apply (subst add.commute [of D C])
26178
nipkow
parents: 26176
diff changeset
  1754
apply (erule union_less_mono2)
nipkow
parents: 26176
diff changeset
  1755
done
10249
e4d13d8a9011 Multisets (from HOL/Induct/Multiset and friends);
wenzelm
parents:
diff changeset
  1756
17161
57c69627d71a tuned some proofs;
wenzelm
parents: 15869
diff changeset
  1757
lemma union_less_mono:
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1758
  fixes A B C D :: "'a::order multiset"
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1759
  shows "A #\<subset># C \<Longrightarrow> B #\<subset># D \<Longrightarrow> A + B #\<subset># C + D"
35268
04673275441a switched notations for pointwise and multiset order
haftmann
parents: 35028
diff changeset
  1760
  by (blast intro!: union_less_mono1 union_less_mono2 multiset_order.less_trans)
10249
e4d13d8a9011 Multisets (from HOL/Induct/Multiset and friends);
wenzelm
parents:
diff changeset
  1761
35268
04673275441a switched notations for pointwise and multiset order
haftmann
parents: 35028
diff changeset
  1762
interpretation multiset_order: ordered_ab_semigroup_add plus le_multiset less_multiset
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1763
  by default (auto simp add: le_multiset_def intro: union_less_mono2)
26145
95670b6e1fa3 tuned document;
wenzelm
parents: 26143
diff changeset
  1764
15072
4861bf6af0b4 new material courtesy of Norbert Voelker
paulson
parents: 14981
diff changeset
  1765
60500
903bb1495239 isabelle update_cartouches;
wenzelm
parents: 60400
diff changeset
  1766
subsubsection \<open>Termination proofs with multiset orders\<close>
29125
d41182a8135c method "sizechange" proves termination of functions; added more infrastructure for termination proofs
krauss
parents: 28823
diff changeset
  1767
d41182a8135c method "sizechange" proves termination of functions; added more infrastructure for termination proofs
krauss
parents: 28823
diff changeset
  1768
lemma multi_member_skip: "x \<in># XS \<Longrightarrow> x \<in># {# y #} + XS"
d41182a8135c method "sizechange" proves termination of functions; added more infrastructure for termination proofs
krauss
parents: 28823
diff changeset
  1769
  and multi_member_this: "x \<in># {# x #} + XS"
d41182a8135c method "sizechange" proves termination of functions; added more infrastructure for termination proofs
krauss
parents: 28823
diff changeset
  1770
  and multi_member_last: "x \<in># {# x #}"
d41182a8135c method "sizechange" proves termination of functions; added more infrastructure for termination proofs
krauss
parents: 28823
diff changeset
  1771
  by auto
d41182a8135c method "sizechange" proves termination of functions; added more infrastructure for termination proofs
krauss
parents: 28823
diff changeset
  1772
d41182a8135c method "sizechange" proves termination of functions; added more infrastructure for termination proofs
krauss
parents: 28823
diff changeset
  1773
definition "ms_strict = mult pair_less"
37765
26bdfb7b680b dropped superfluous [code del]s
haftmann
parents: 37751
diff changeset
  1774
definition "ms_weak = ms_strict \<union> Id"
29125
d41182a8135c method "sizechange" proves termination of functions; added more infrastructure for termination proofs
krauss
parents: 28823
diff changeset
  1775
d41182a8135c method "sizechange" proves termination of functions; added more infrastructure for termination proofs
krauss
parents: 28823
diff changeset
  1776
lemma ms_reduction_pair: "reduction_pair (ms_strict, ms_weak)"
d41182a8135c method "sizechange" proves termination of functions; added more infrastructure for termination proofs
krauss
parents: 28823
diff changeset
  1777
unfolding reduction_pair_def ms_strict_def ms_weak_def pair_less_def
d41182a8135c method "sizechange" proves termination of functions; added more infrastructure for termination proofs
krauss
parents: 28823
diff changeset
  1778
by (auto intro: wf_mult1 wf_trancl simp: mult_def)
d41182a8135c method "sizechange" proves termination of functions; added more infrastructure for termination proofs
krauss
parents: 28823
diff changeset
  1779
d41182a8135c method "sizechange" proves termination of functions; added more infrastructure for termination proofs
krauss
parents: 28823
diff changeset
  1780
lemma smsI:
60495
d7ff0a1df90a renamed Multiset.set_of to the canonical set_mset
nipkow
parents: 60400
diff changeset
  1781
  "(set_mset A, set_mset B) \<in> max_strict \<Longrightarrow> (Z + A, Z + B) \<in> ms_strict"
29125
d41182a8135c method "sizechange" proves termination of functions; added more infrastructure for termination proofs
krauss
parents: 28823
diff changeset
  1782
  unfolding ms_strict_def
d41182a8135c method "sizechange" proves termination of functions; added more infrastructure for termination proofs
krauss
parents: 28823
diff changeset
  1783
by (rule one_step_implies_mult) (auto simp add: max_strict_def pair_less_def elim!:max_ext.cases)
d41182a8135c method "sizechange" proves termination of functions; added more infrastructure for termination proofs
krauss
parents: 28823
diff changeset
  1784
d41182a8135c method "sizechange" proves termination of functions; added more infrastructure for termination proofs
krauss
parents: 28823
diff changeset
  1785
lemma wmsI:
60495
d7ff0a1df90a renamed Multiset.set_of to the canonical set_mset
nipkow
parents: 60400
diff changeset
  1786
  "(set_mset A, set_mset B) \<in> max_strict \<or> A = {#} \<and> B = {#}
29125
d41182a8135c method "sizechange" proves termination of functions; added more infrastructure for termination proofs
krauss
parents: 28823
diff changeset
  1787
  \<Longrightarrow> (Z + A, Z + B) \<in> ms_weak"
d41182a8135c method "sizechange" proves termination of functions; added more infrastructure for termination proofs
krauss
parents: 28823
diff changeset
  1788
unfolding ms_weak_def ms_strict_def
d41182a8135c method "sizechange" proves termination of functions; added more infrastructure for termination proofs
krauss
parents: 28823
diff changeset
  1789
by (auto simp add: pair_less_def max_strict_def elim!:max_ext.cases intro: one_step_implies_mult)
d41182a8135c method "sizechange" proves termination of functions; added more infrastructure for termination proofs
krauss
parents: 28823
diff changeset
  1790
d41182a8135c method "sizechange" proves termination of functions; added more infrastructure for termination proofs
krauss
parents: 28823
diff changeset
  1791
inductive pw_leq
d41182a8135c method "sizechange" proves termination of functions; added more infrastructure for termination proofs
krauss
parents: 28823
diff changeset
  1792
where
d41182a8135c method "sizechange" proves termination of functions; added more infrastructure for termination proofs
krauss
parents: 28823
diff changeset
  1793
  pw_leq_empty: "pw_leq {#} {#}"
d41182a8135c method "sizechange" proves termination of functions; added more infrastructure for termination proofs
krauss
parents: 28823
diff changeset
  1794
| pw_leq_step:  "\<lbrakk>(x,y) \<in> pair_leq; pw_leq X Y \<rbrakk> \<Longrightarrow> pw_leq ({#x#} + X) ({#y#} + Y)"
d41182a8135c method "sizechange" proves termination of functions; added more infrastructure for termination proofs
krauss
parents: 28823
diff changeset
  1795
d41182a8135c method "sizechange" proves termination of functions; added more infrastructure for termination proofs
krauss
parents: 28823
diff changeset
  1796
lemma pw_leq_lstep:
d41182a8135c method "sizechange" proves termination of functions; added more infrastructure for termination proofs
krauss
parents: 28823
diff changeset
  1797
  "(x, y) \<in> pair_leq \<Longrightarrow> pw_leq {#x#} {#y#}"
d41182a8135c method "sizechange" proves termination of functions; added more infrastructure for termination proofs
krauss
parents: 28823
diff changeset
  1798
by (drule pw_leq_step) (rule pw_leq_empty, simp)
d41182a8135c method "sizechange" proves termination of functions; added more infrastructure for termination proofs
krauss
parents: 28823
diff changeset
  1799
d41182a8135c method "sizechange" proves termination of functions; added more infrastructure for termination proofs
krauss
parents: 28823
diff changeset
  1800
lemma pw_leq_split:
d41182a8135c method "sizechange" proves termination of functions; added more infrastructure for termination proofs
krauss
parents: 28823
diff changeset
  1801
  assumes "pw_leq X Y"
60495
d7ff0a1df90a renamed Multiset.set_of to the canonical set_mset
nipkow
parents: 60400
diff changeset
  1802
  shows "\<exists>A B Z. X = A + Z \<and> Y = B + Z \<and> ((set_mset A, set_mset B) \<in> max_strict \<or> (B = {#} \<and> A = {#}))"
29125
d41182a8135c method "sizechange" proves termination of functions; added more infrastructure for termination proofs
krauss
parents: 28823
diff changeset
  1803
  using assms
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1804
proof induct
29125
d41182a8135c method "sizechange" proves termination of functions; added more infrastructure for termination proofs
krauss
parents: 28823
diff changeset
  1805
  case pw_leq_empty thus ?case by auto
d41182a8135c method "sizechange" proves termination of functions; added more infrastructure for termination proofs
krauss
parents: 28823
diff changeset
  1806
next
d41182a8135c method "sizechange" proves termination of functions; added more infrastructure for termination proofs
krauss
parents: 28823
diff changeset
  1807
  case (pw_leq_step x y X Y)
d41182a8135c method "sizechange" proves termination of functions; added more infrastructure for termination proofs
krauss
parents: 28823
diff changeset
  1808
  then obtain A B Z where
58425
246985c6b20b simpler proof
blanchet
parents: 58247
diff changeset
  1809
    [simp]: "X = A + Z" "Y = B + Z"
60495
d7ff0a1df90a renamed Multiset.set_of to the canonical set_mset
nipkow
parents: 60400
diff changeset
  1810
      and 1[simp]: "(set_mset A, set_mset B) \<in> max_strict \<or> (B = {#} \<and> A = {#})"
29125
d41182a8135c method "sizechange" proves termination of functions; added more infrastructure for termination proofs
krauss
parents: 28823
diff changeset
  1811
    by auto
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1812
  from pw_leq_step consider "x = y" | "(x, y) \<in> pair_less"
29125
d41182a8135c method "sizechange" proves termination of functions; added more infrastructure for termination proofs
krauss
parents: 28823
diff changeset
  1813
    unfolding pair_leq_def by auto
d41182a8135c method "sizechange" proves termination of functions; added more infrastructure for termination proofs
krauss
parents: 28823
diff changeset
  1814
  thus ?case
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1815
  proof cases
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1816
    case [simp]: 1
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1817
    have "{#x#} + X = A + ({#y#}+Z) \<and> {#y#} + Y = B + ({#y#}+Z) \<and>
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1818
      ((set_mset A, set_mset B) \<in> max_strict \<or> (B = {#} \<and> A = {#}))"
57514
bdc2c6b40bf2 prefer ac_simps collections over separate name bindings for add and mult
haftmann
parents: 57512
diff changeset
  1819
      by (auto simp: ac_simps)
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1820
    thus ?thesis by blast
29125
d41182a8135c method "sizechange" proves termination of functions; added more infrastructure for termination proofs
krauss
parents: 28823
diff changeset
  1821
  next
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1822
    case 2
29125
d41182a8135c method "sizechange" proves termination of functions; added more infrastructure for termination proofs
krauss
parents: 28823
diff changeset
  1823
    let ?A' = "{#x#} + A" and ?B' = "{#y#} + B"
d41182a8135c method "sizechange" proves termination of functions; added more infrastructure for termination proofs
krauss
parents: 28823
diff changeset
  1824
    have "{#x#} + X = ?A' + Z"
d41182a8135c method "sizechange" proves termination of functions; added more infrastructure for termination proofs
krauss
parents: 28823
diff changeset
  1825
      "{#y#} + Y = ?B' + Z"
57514
bdc2c6b40bf2 prefer ac_simps collections over separate name bindings for add and mult
haftmann
parents: 57512
diff changeset
  1826
      by (auto simp add: ac_simps)
58425
246985c6b20b simpler proof
blanchet
parents: 58247
diff changeset
  1827
    moreover have
60495
d7ff0a1df90a renamed Multiset.set_of to the canonical set_mset
nipkow
parents: 60400
diff changeset
  1828
      "(set_mset ?A', set_mset ?B') \<in> max_strict"
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1829
      using 1 2 unfolding max_strict_def
29125
d41182a8135c method "sizechange" proves termination of functions; added more infrastructure for termination proofs
krauss
parents: 28823
diff changeset
  1830
      by (auto elim!: max_ext.cases)
d41182a8135c method "sizechange" proves termination of functions; added more infrastructure for termination proofs
krauss
parents: 28823
diff changeset
  1831
    ultimately show ?thesis by blast
d41182a8135c method "sizechange" proves termination of functions; added more infrastructure for termination proofs
krauss
parents: 28823
diff changeset
  1832
  qed
d41182a8135c method "sizechange" proves termination of functions; added more infrastructure for termination proofs
krauss
parents: 28823
diff changeset
  1833
qed
d41182a8135c method "sizechange" proves termination of functions; added more infrastructure for termination proofs
krauss
parents: 28823
diff changeset
  1834
58425
246985c6b20b simpler proof
blanchet
parents: 58247
diff changeset
  1835
lemma
29125
d41182a8135c method "sizechange" proves termination of functions; added more infrastructure for termination proofs
krauss
parents: 28823
diff changeset
  1836
  assumes pwleq: "pw_leq Z Z'"
60495
d7ff0a1df90a renamed Multiset.set_of to the canonical set_mset
nipkow
parents: 60400
diff changeset
  1837
  shows ms_strictI: "(set_mset A, set_mset B) \<in> max_strict \<Longrightarrow> (Z + A, Z' + B) \<in> ms_strict"
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1838
    and ms_weakI1:  "(set_mset A, set_mset B) \<in> max_strict \<Longrightarrow> (Z + A, Z' + B) \<in> ms_weak"
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1839
    and ms_weakI2:  "(Z + {#}, Z' + {#}) \<in> ms_weak"
29125
d41182a8135c method "sizechange" proves termination of functions; added more infrastructure for termination proofs
krauss
parents: 28823
diff changeset
  1840
proof -
58425
246985c6b20b simpler proof
blanchet
parents: 58247
diff changeset
  1841
  from pw_leq_split[OF pwleq]
29125
d41182a8135c method "sizechange" proves termination of functions; added more infrastructure for termination proofs
krauss
parents: 28823
diff changeset
  1842
  obtain A' B' Z''
d41182a8135c method "sizechange" proves termination of functions; added more infrastructure for termination proofs
krauss
parents: 28823
diff changeset
  1843
    where [simp]: "Z = A' + Z''" "Z' = B' + Z''"
60495
d7ff0a1df90a renamed Multiset.set_of to the canonical set_mset
nipkow
parents: 60400
diff changeset
  1844
    and mx_or_empty: "(set_mset A', set_mset B') \<in> max_strict \<or> (A' = {#} \<and> B' = {#})"
29125
d41182a8135c method "sizechange" proves termination of functions; added more infrastructure for termination proofs
krauss
parents: 28823
diff changeset
  1845
    by blast
d41182a8135c method "sizechange" proves termination of functions; added more infrastructure for termination proofs
krauss
parents: 28823
diff changeset
  1846
  {
60495
d7ff0a1df90a renamed Multiset.set_of to the canonical set_mset
nipkow
parents: 60400
diff changeset
  1847
    assume max: "(set_mset A, set_mset B) \<in> max_strict"
29125
d41182a8135c method "sizechange" proves termination of functions; added more infrastructure for termination proofs
krauss
parents: 28823
diff changeset
  1848
    from mx_or_empty
d41182a8135c method "sizechange" proves termination of functions; added more infrastructure for termination proofs
krauss
parents: 28823
diff changeset
  1849
    have "(Z'' + (A + A'), Z'' + (B + B')) \<in> ms_strict"
d41182a8135c method "sizechange" proves termination of functions; added more infrastructure for termination proofs
krauss
parents: 28823
diff changeset
  1850
    proof
60495
d7ff0a1df90a renamed Multiset.set_of to the canonical set_mset
nipkow
parents: 60400
diff changeset
  1851
      assume max': "(set_mset A', set_mset B') \<in> max_strict"
d7ff0a1df90a renamed Multiset.set_of to the canonical set_mset
nipkow
parents: 60400
diff changeset
  1852
      with max have "(set_mset (A + A'), set_mset (B + B')) \<in> max_strict"
29125
d41182a8135c method "sizechange" proves termination of functions; added more infrastructure for termination proofs
krauss
parents: 28823
diff changeset
  1853
        by (auto simp: max_strict_def intro: max_ext_additive)
58425
246985c6b20b simpler proof
blanchet
parents: 58247
diff changeset
  1854
      thus ?thesis by (rule smsI)
29125
d41182a8135c method "sizechange" proves termination of functions; added more infrastructure for termination proofs
krauss
parents: 28823
diff changeset
  1855
    next
d41182a8135c method "sizechange" proves termination of functions; added more infrastructure for termination proofs
krauss
parents: 28823
diff changeset
  1856
      assume [simp]: "A' = {#} \<and> B' = {#}"
d41182a8135c method "sizechange" proves termination of functions; added more infrastructure for termination proofs
krauss
parents: 28823
diff changeset
  1857
      show ?thesis by (rule smsI) (auto intro: max)
d41182a8135c method "sizechange" proves termination of functions; added more infrastructure for termination proofs
krauss
parents: 28823
diff changeset
  1858
    qed
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1859
    thus "(Z + A, Z' + B) \<in> ms_strict" by (simp add: ac_simps)
29125
d41182a8135c method "sizechange" proves termination of functions; added more infrastructure for termination proofs
krauss
parents: 28823
diff changeset
  1860
    thus "(Z + A, Z' + B) \<in> ms_weak" by (simp add: ms_weak_def)
d41182a8135c method "sizechange" proves termination of functions; added more infrastructure for termination proofs
krauss
parents: 28823
diff changeset
  1861
  }
d41182a8135c method "sizechange" proves termination of functions; added more infrastructure for termination proofs
krauss
parents: 28823
diff changeset
  1862
  from mx_or_empty
d41182a8135c method "sizechange" proves termination of functions; added more infrastructure for termination proofs
krauss
parents: 28823
diff changeset
  1863
  have "(Z'' + A', Z'' + B') \<in> ms_weak" by (rule wmsI)
57514
bdc2c6b40bf2 prefer ac_simps collections over separate name bindings for add and mult
haftmann
parents: 57512
diff changeset
  1864
  thus "(Z + {#}, Z' + {#}) \<in> ms_weak" by (simp add:ac_simps)
29125
d41182a8135c method "sizechange" proves termination of functions; added more infrastructure for termination proofs
krauss
parents: 28823
diff changeset
  1865
qed
d41182a8135c method "sizechange" proves termination of functions; added more infrastructure for termination proofs
krauss
parents: 28823
diff changeset
  1866
39301
e1bd8a54c40f added and renamed lemmas
nipkow
parents: 39198
diff changeset
  1867
lemma empty_neutral: "{#} + x = x" "x + {#} = x"
29125
d41182a8135c method "sizechange" proves termination of functions; added more infrastructure for termination proofs
krauss
parents: 28823
diff changeset
  1868
and nonempty_plus: "{# x #} + rs \<noteq> {#}"
d41182a8135c method "sizechange" proves termination of functions; added more infrastructure for termination proofs
krauss
parents: 28823
diff changeset
  1869
and nonempty_single: "{# x #} \<noteq> {#}"
d41182a8135c method "sizechange" proves termination of functions; added more infrastructure for termination proofs
krauss
parents: 28823
diff changeset
  1870
by auto
d41182a8135c method "sizechange" proves termination of functions; added more infrastructure for termination proofs
krauss
parents: 28823
diff changeset
  1871
60500
903bb1495239 isabelle update_cartouches;
wenzelm
parents: 60400
diff changeset
  1872
setup \<open>
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1873
  let
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1874
    fun msetT T = Type (@{type_name multiset}, [T]);
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1875
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1876
    fun mk_mset T [] = Const (@{const_abbrev Mempty}, msetT T)
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1877
      | mk_mset T [x] = Const (@{const_name single}, T --> msetT T) $ x
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1878
      | mk_mset T (x :: xs) =
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1879
            Const (@{const_name plus}, msetT T --> msetT T --> msetT T) $
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1880
                  mk_mset T [x] $ mk_mset T xs
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1881
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1882
    fun mset_member_tac m i =
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1883
      if m <= 0 then
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1884
        rtac @{thm multi_member_this} i ORELSE rtac @{thm multi_member_last} i
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1885
      else
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1886
        rtac @{thm multi_member_skip} i THEN mset_member_tac (m - 1) i
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1887
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1888
    val mset_nonempty_tac =
29125
d41182a8135c method "sizechange" proves termination of functions; added more infrastructure for termination proofs
krauss
parents: 28823
diff changeset
  1889
      rtac @{thm nonempty_plus} ORELSE' rtac @{thm nonempty_single}
d41182a8135c method "sizechange" proves termination of functions; added more infrastructure for termination proofs
krauss
parents: 28823
diff changeset
  1890
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1891
    fun regroup_munion_conv ctxt =
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1892
      Function_Lib.regroup_conv ctxt @{const_abbrev Mempty} @{const_name plus}
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1893
        (map (fn t => t RS eq_reflection) (@{thms ac_simps} @ @{thms empty_neutral}))
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1894
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1895
    fun unfold_pwleq_tac i =
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1896
      (rtac @{thm pw_leq_step} i THEN (fn st => unfold_pwleq_tac (i + 1) st))
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1897
        ORELSE (rtac @{thm pw_leq_lstep} i)
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1898
        ORELSE (rtac @{thm pw_leq_empty} i)
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1899
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1900
    val set_mset_simps = [@{thm set_mset_empty}, @{thm set_mset_single}, @{thm set_mset_union},
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1901
                        @{thm Un_insert_left}, @{thm Un_empty_left}]
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1902
  in
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1903
    ScnpReconstruct.multiset_setup (ScnpReconstruct.Multiset
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1904
    {
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1905
      msetT=msetT, mk_mset=mk_mset, mset_regroup_conv=regroup_munion_conv,
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1906
      mset_member_tac=mset_member_tac, mset_nonempty_tac=mset_nonempty_tac,
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1907
      mset_pwleq_tac=unfold_pwleq_tac, set_of_simps=set_mset_simps,
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1908
      smsI'= @{thm ms_strictI}, wmsI2''= @{thm ms_weakI2}, wmsI1= @{thm ms_weakI1},
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1909
      reduction_pair= @{thm ms_reduction_pair}
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1910
    })
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1911
  end
60500
903bb1495239 isabelle update_cartouches;
wenzelm
parents: 60400
diff changeset
  1912
\<close>
903bb1495239 isabelle update_cartouches;
wenzelm
parents: 60400
diff changeset
  1913
903bb1495239 isabelle update_cartouches;
wenzelm
parents: 60400
diff changeset
  1914
903bb1495239 isabelle update_cartouches;
wenzelm
parents: 60400
diff changeset
  1915
subsection \<open>Legacy theorem bindings\<close>
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
  1916
39302
d7728f65b353 renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents: 39301
diff changeset
  1917
lemmas multi_count_eq = multiset_eq_iff [symmetric]
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
  1918
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
  1919
lemma union_commute: "M + N = N + (M::'a multiset)"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
  1920
  by (fact add.commute)
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
  1921
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
  1922
lemma union_assoc: "(M + N) + K = M + (N + (K::'a multiset))"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
  1923
  by (fact add.assoc)
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
  1924
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
  1925
lemma union_lcomm: "M + (N + K) = N + (M + (K::'a multiset))"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57492
diff changeset
  1926
  by (fact add.left_commute)
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
  1927
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
  1928
lemmas union_ac = union_assoc union_commute union_lcomm
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
  1929
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
  1930
lemma union_right_cancel: "M + K = N + K \<longleftrightarrow> M = (N::'a multiset)"
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
  1931
  by (fact add_right_cancel)
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
  1932
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
  1933
lemma union_left_cancel: "K + M = K + N \<longleftrightarrow> M = (N::'a multiset)"
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
  1934
  by (fact add_left_cancel)
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
  1935
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
  1936
lemma multi_union_self_other_eq: "(A::'a multiset) + X = A + Y \<Longrightarrow> X = Y"
59557
ebd8ecacfba6 establish unique preferred fact names
haftmann
parents: 58881
diff changeset
  1937
  by (fact add_left_imp_eq)
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
  1938
60397
f8a513fedb31 Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 59999
diff changeset
  1939
lemma mset_less_trans: "(M::'a multiset) <# K \<Longrightarrow> K <# N \<Longrightarrow> M <# N"
f8a513fedb31 Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 59999
diff changeset
  1940
  by (fact subset_mset.less_trans)
35268
04673275441a switched notations for pointwise and multiset order
haftmann
parents: 35028
diff changeset
  1941
04673275441a switched notations for pointwise and multiset order
haftmann
parents: 35028
diff changeset
  1942
lemma multiset_inter_commute: "A #\<inter> B = B #\<inter> A"
60397
f8a513fedb31 Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 59999
diff changeset
  1943
  by (fact subset_mset.inf.commute)
35268
04673275441a switched notations for pointwise and multiset order
haftmann
parents: 35028
diff changeset
  1944
04673275441a switched notations for pointwise and multiset order
haftmann
parents: 35028
diff changeset
  1945
lemma multiset_inter_assoc: "A #\<inter> (B #\<inter> C) = A #\<inter> B #\<inter> C"
60397
f8a513fedb31 Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 59999
diff changeset
  1946
  by (fact subset_mset.inf.assoc [symmetric])
35268
04673275441a switched notations for pointwise and multiset order
haftmann
parents: 35028
diff changeset
  1947
04673275441a switched notations for pointwise and multiset order
haftmann
parents: 35028
diff changeset
  1948
lemma multiset_inter_left_commute: "A #\<inter> (B #\<inter> C) = B #\<inter> (A #\<inter> C)"
60397
f8a513fedb31 Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 59999
diff changeset
  1949
  by (fact subset_mset.inf.left_commute)
35268
04673275441a switched notations for pointwise and multiset order
haftmann
parents: 35028
diff changeset
  1950
04673275441a switched notations for pointwise and multiset order
haftmann
parents: 35028
diff changeset
  1951
lemmas multiset_inter_ac =
04673275441a switched notations for pointwise and multiset order
haftmann
parents: 35028
diff changeset
  1952
  multiset_inter_commute
04673275441a switched notations for pointwise and multiset order
haftmann
parents: 35028
diff changeset
  1953
  multiset_inter_assoc
04673275441a switched notations for pointwise and multiset order
haftmann
parents: 35028
diff changeset
  1954
  multiset_inter_left_commute
04673275441a switched notations for pointwise and multiset order
haftmann
parents: 35028
diff changeset
  1955
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1956
lemma mult_less_not_refl: "\<not> M #\<subset># (M::'a::order multiset)"
35268
04673275441a switched notations for pointwise and multiset order
haftmann
parents: 35028
diff changeset
  1957
  by (fact multiset_order.less_irrefl)
04673275441a switched notations for pointwise and multiset order
haftmann
parents: 35028
diff changeset
  1958
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1959
lemma mult_less_trans: "K #\<subset># M \<Longrightarrow> M #\<subset># N \<Longrightarrow> K #\<subset># (N::'a::order multiset)"
35268
04673275441a switched notations for pointwise and multiset order
haftmann
parents: 35028
diff changeset
  1960
  by (fact multiset_order.less_trans)
58425
246985c6b20b simpler proof
blanchet
parents: 58247
diff changeset
  1961
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1962
lemma mult_less_not_sym: "M #\<subset># N \<Longrightarrow> \<not> N #\<subset># (M::'a::order multiset)"
35268
04673275441a switched notations for pointwise and multiset order
haftmann
parents: 35028
diff changeset
  1963
  by (fact multiset_order.less_not_sym)
04673275441a switched notations for pointwise and multiset order
haftmann
parents: 35028
diff changeset
  1964
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1965
lemma mult_less_asym: "M #\<subset># N \<Longrightarrow> (\<not> P \<Longrightarrow> N #\<subset># (M::'a::order multiset)) \<Longrightarrow> P"
35268
04673275441a switched notations for pointwise and multiset order
haftmann
parents: 35028
diff changeset
  1966
  by (fact multiset_order.less_asym)
34943
e97b22500a5c cleanup of Multiset.thy: less duplication, tuned and simplified a couple of proofs, less historical organization of sections, conversion from associations lists to multisets, rudimentary code generation
haftmann
parents: 33102
diff changeset
  1967
60500
903bb1495239 isabelle update_cartouches;
wenzelm
parents: 60400
diff changeset
  1968
declaration \<open>
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1969
  let
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1970
    fun multiset_postproc _ maybe_name all_values (T as Type (_, [elem_T])) (Const _ $ t') =
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1971
          let
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1972
            val (maybe_opt, ps) =
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1973
              Nitpick_Model.dest_plain_fun t'
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1974
              ||> op ~~
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1975
              ||> map (apsnd (snd o HOLogic.dest_number))
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1976
            fun elems_for t =
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1977
              (case AList.lookup (op =) ps t of
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1978
                SOME n => replicate n t
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1979
              | NONE => [Const (maybe_name, elem_T --> elem_T) $ t])
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1980
          in
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1981
            (case maps elems_for (all_values elem_T) @
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1982
                 (if maybe_opt then [Const (Nitpick_Model.unrep (), elem_T)] else []) of
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1983
              [] => Const (@{const_name zero_class.zero}, T)
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1984
            | ts =>
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1985
                foldl1 (fn (t1, t2) =>
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1986
                    Const (@{const_name plus_class.plus}, T --> T --> T) $ t1 $ t2)
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1987
                  (map (curry (op $) (Const (@{const_name single}, elem_T --> T))) ts))
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1988
          end
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1989
      | multiset_postproc _ _ _ _ t = t
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1990
  in Nitpick_Model.register_term_postprocessor @{typ "'a multiset"} multiset_postproc end
60500
903bb1495239 isabelle update_cartouches;
wenzelm
parents: 60400
diff changeset
  1991
\<close>
903bb1495239 isabelle update_cartouches;
wenzelm
parents: 60400
diff changeset
  1992
903bb1495239 isabelle update_cartouches;
wenzelm
parents: 60400
diff changeset
  1993
903bb1495239 isabelle update_cartouches;
wenzelm
parents: 60400
diff changeset
  1994
subsection \<open>Naive implementation using lists\<close>
51600
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
  1995
60515
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  1996
code_datatype mset
51600
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
  1997
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  1998
lemma [code]: "{#} = mset []"
51600
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
  1999
  by simp
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
  2000
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  2001
lemma [code]: "{#x#} = mset [x]"
51600
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
  2002
  by simp
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
  2003
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  2004
lemma union_code [code]: "mset xs + mset ys = mset (xs @ ys)"
51600
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
  2005
  by simp
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
  2006
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  2007
lemma [code]: "image_mset f (mset xs) = mset (map f xs)"
60515
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  2008
  by (simp add: mset_map)
51600
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
  2009
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  2010
lemma [code]: "filter_mset f (mset xs) = mset (filter f xs)"
60515
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  2011
  by (simp add: mset_filter)
51600
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
  2012
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  2013
lemma [code]: "mset xs - mset ys = mset (fold remove1 ys xs)"
51600
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
  2014
  by (rule sym, induct ys arbitrary: xs) (simp_all add: diff_add diff_right_commute)
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
  2015
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
  2016
lemma [code]:
60515
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  2017
  "mset xs #\<inter> mset ys =
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  2018
    mset (snd (fold (\<lambda>x (ys, zs).
51600
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
  2019
      if x \<in> set ys then (remove1 x ys, x # zs) else (ys, zs)) xs (ys, [])))"
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
  2020
proof -
60515
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  2021
  have "\<And>zs. mset (snd (fold (\<lambda>x (ys, zs).
51600
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
  2022
    if x \<in> set ys then (remove1 x ys, x # zs) else (ys, zs)) xs (ys, zs))) =
60515
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  2023
      (mset xs #\<inter> mset ys) + mset zs"
51623
1194b438426a sup on multisets
haftmann
parents: 51600
diff changeset
  2024
    by (induct xs arbitrary: ys)
1194b438426a sup on multisets
haftmann
parents: 51600
diff changeset
  2025
      (auto simp add: mem_set_multiset_eq inter_add_right1 inter_add_right2 ac_simps)
1194b438426a sup on multisets
haftmann
parents: 51600
diff changeset
  2026
  then show ?thesis by simp
1194b438426a sup on multisets
haftmann
parents: 51600
diff changeset
  2027
qed
1194b438426a sup on multisets
haftmann
parents: 51600
diff changeset
  2028
1194b438426a sup on multisets
haftmann
parents: 51600
diff changeset
  2029
lemma [code]:
60515
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  2030
  "mset xs #\<union> mset ys =
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  2031
    mset (split append (fold (\<lambda>x (ys, zs). (remove1 x ys, x # zs)) xs (ys, [])))"
51623
1194b438426a sup on multisets
haftmann
parents: 51600
diff changeset
  2032
proof -
60515
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  2033
  have "\<And>zs. mset (split append (fold (\<lambda>x (ys, zs). (remove1 x ys, x # zs)) xs (ys, zs))) =
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  2034
      (mset xs #\<union> mset ys) + mset zs"
51623
1194b438426a sup on multisets
haftmann
parents: 51600
diff changeset
  2035
    by (induct xs arbitrary: ys) (simp_all add: multiset_eq_iff)
51600
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
  2036
  then show ?thesis by simp
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
  2037
qed
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
  2038
59813
6320064f22bb more multiset theorems
blanchet
parents: 59807
diff changeset
  2039
declare in_multiset_in_set [code_unfold]
51600
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
  2040
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  2041
lemma [code]: "count (mset xs) x = fold (\<lambda>y. if x = y then Suc else id) xs 0"
51600
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
  2042
proof -
60515
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  2043
  have "\<And>n. fold (\<lambda>y. if x = y then Suc else id) xs n = count (mset xs) x + n"
51600
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
  2044
    by (induct xs) simp_all
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
  2045
  then show ?thesis by simp
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
  2046
qed
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
  2047
60515
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  2048
declare set_mset_mset [code]
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  2049
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  2050
declare sorted_list_of_multiset_mset [code]
51600
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
  2051
60500
903bb1495239 isabelle update_cartouches;
wenzelm
parents: 60400
diff changeset
  2052
lemma [code]: -- \<open>not very efficient, but representation-ignorant!\<close>
60515
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  2053
  "mset_set A = mset (sorted_list_of_set A)"
51600
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
  2054
  apply (cases "finite A")
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
  2055
  apply simp_all
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
  2056
  apply (induct A rule: finite_induct)
59813
6320064f22bb more multiset theorems
blanchet
parents: 59807
diff changeset
  2057
  apply (simp_all add: add.commute)
51600
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
  2058
  done
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
  2059
60515
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  2060
declare size_mset [code]
51600
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
  2061
58425
246985c6b20b simpler proof
blanchet
parents: 58247
diff changeset
  2062
fun ms_lesseq_impl :: "'a list \<Rightarrow> 'a list \<Rightarrow> bool option" where
55808
488c3e8282c8 added Rene Thiemann's patch for the nonterminating equality/subset test code for multisets
nipkow
parents: 55565
diff changeset
  2063
  "ms_lesseq_impl [] ys = Some (ys \<noteq> [])"
58425
246985c6b20b simpler proof
blanchet
parents: 58247
diff changeset
  2064
| "ms_lesseq_impl (Cons x xs) ys = (case List.extract (op = x) ys of
55808
488c3e8282c8 added Rene Thiemann's patch for the nonterminating equality/subset test code for multisets
nipkow
parents: 55565
diff changeset
  2065
     None \<Rightarrow> None
488c3e8282c8 added Rene Thiemann's patch for the nonterminating equality/subset test code for multisets
nipkow
parents: 55565
diff changeset
  2066
   | Some (ys1,_,ys2) \<Rightarrow> ms_lesseq_impl xs (ys1 @ ys2))"
488c3e8282c8 added Rene Thiemann's patch for the nonterminating equality/subset test code for multisets
nipkow
parents: 55565
diff changeset
  2067
60515
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  2068
lemma ms_lesseq_impl: "(ms_lesseq_impl xs ys = None \<longleftrightarrow> \<not> mset xs \<le># mset ys) \<and>
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  2069
  (ms_lesseq_impl xs ys = Some True \<longleftrightarrow> mset xs <# mset ys) \<and>
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  2070
  (ms_lesseq_impl xs ys = Some False \<longrightarrow> mset xs = mset ys)"
55808
488c3e8282c8 added Rene Thiemann's patch for the nonterminating equality/subset test code for multisets
nipkow
parents: 55565
diff changeset
  2071
proof (induct xs arbitrary: ys)
488c3e8282c8 added Rene Thiemann's patch for the nonterminating equality/subset test code for multisets
nipkow
parents: 55565
diff changeset
  2072
  case (Nil ys)
488c3e8282c8 added Rene Thiemann's patch for the nonterminating equality/subset test code for multisets
nipkow
parents: 55565
diff changeset
  2073
  show ?case by (auto simp: mset_less_empty_nonempty)
488c3e8282c8 added Rene Thiemann's patch for the nonterminating equality/subset test code for multisets
nipkow
parents: 55565
diff changeset
  2074
next
488c3e8282c8 added Rene Thiemann's patch for the nonterminating equality/subset test code for multisets
nipkow
parents: 55565
diff changeset
  2075
  case (Cons x xs ys)
488c3e8282c8 added Rene Thiemann's patch for the nonterminating equality/subset test code for multisets
nipkow
parents: 55565
diff changeset
  2076
  show ?case
488c3e8282c8 added Rene Thiemann's patch for the nonterminating equality/subset test code for multisets
nipkow
parents: 55565
diff changeset
  2077
  proof (cases "List.extract (op = x) ys")
488c3e8282c8 added Rene Thiemann's patch for the nonterminating equality/subset test code for multisets
nipkow
parents: 55565
diff changeset
  2078
    case None
488c3e8282c8 added Rene Thiemann's patch for the nonterminating equality/subset test code for multisets
nipkow
parents: 55565
diff changeset
  2079
    hence x: "x \<notin> set ys" by (simp add: extract_None_iff)
488c3e8282c8 added Rene Thiemann's patch for the nonterminating equality/subset test code for multisets
nipkow
parents: 55565
diff changeset
  2080
    {
60515
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  2081
      assume "mset (x # xs) \<le># mset ys"
60495
d7ff0a1df90a renamed Multiset.set_of to the canonical set_mset
nipkow
parents: 60400
diff changeset
  2082
      from set_mset_mono[OF this] x have False by simp
55808
488c3e8282c8 added Rene Thiemann's patch for the nonterminating equality/subset test code for multisets
nipkow
parents: 55565
diff changeset
  2083
    } note nle = this
488c3e8282c8 added Rene Thiemann's patch for the nonterminating equality/subset test code for multisets
nipkow
parents: 55565
diff changeset
  2084
    moreover
488c3e8282c8 added Rene Thiemann's patch for the nonterminating equality/subset test code for multisets
nipkow
parents: 55565
diff changeset
  2085
    {
60515
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  2086
      assume "mset (x # xs) <# mset ys"
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  2087
      hence "mset (x # xs) \<le># mset ys" by auto
55808
488c3e8282c8 added Rene Thiemann's patch for the nonterminating equality/subset test code for multisets
nipkow
parents: 55565
diff changeset
  2088
      from nle[OF this] have False .
488c3e8282c8 added Rene Thiemann's patch for the nonterminating equality/subset test code for multisets
nipkow
parents: 55565
diff changeset
  2089
    }
488c3e8282c8 added Rene Thiemann's patch for the nonterminating equality/subset test code for multisets
nipkow
parents: 55565
diff changeset
  2090
    ultimately show ?thesis using None by auto
488c3e8282c8 added Rene Thiemann's patch for the nonterminating equality/subset test code for multisets
nipkow
parents: 55565
diff changeset
  2091
  next
488c3e8282c8 added Rene Thiemann's patch for the nonterminating equality/subset test code for multisets
nipkow
parents: 55565
diff changeset
  2092
    case (Some res)
488c3e8282c8 added Rene Thiemann's patch for the nonterminating equality/subset test code for multisets
nipkow
parents: 55565
diff changeset
  2093
    obtain ys1 y ys2 where res: "res = (ys1,y,ys2)" by (cases res, auto)
488c3e8282c8 added Rene Thiemann's patch for the nonterminating equality/subset test code for multisets
nipkow
parents: 55565
diff changeset
  2094
    note Some = Some[unfolded res]
488c3e8282c8 added Rene Thiemann's patch for the nonterminating equality/subset test code for multisets
nipkow
parents: 55565
diff changeset
  2095
    from extract_SomeE[OF Some] have "ys = ys1 @ x # ys2" by simp
60515
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  2096
    hence id: "mset ys = mset (ys1 @ ys2) + {#x#}"
55808
488c3e8282c8 added Rene Thiemann's patch for the nonterminating equality/subset test code for multisets
nipkow
parents: 55565
diff changeset
  2097
      by (auto simp: ac_simps)
488c3e8282c8 added Rene Thiemann's patch for the nonterminating equality/subset test code for multisets
nipkow
parents: 55565
diff changeset
  2098
    show ?thesis unfolding ms_lesseq_impl.simps
488c3e8282c8 added Rene Thiemann's patch for the nonterminating equality/subset test code for multisets
nipkow
parents: 55565
diff changeset
  2099
      unfolding Some option.simps split
488c3e8282c8 added Rene Thiemann's patch for the nonterminating equality/subset test code for multisets
nipkow
parents: 55565
diff changeset
  2100
      unfolding id
488c3e8282c8 added Rene Thiemann's patch for the nonterminating equality/subset test code for multisets
nipkow
parents: 55565
diff changeset
  2101
      using Cons[of "ys1 @ ys2"]
60397
f8a513fedb31 Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 59999
diff changeset
  2102
      unfolding subset_mset_def subseteq_mset_def by auto
55808
488c3e8282c8 added Rene Thiemann's patch for the nonterminating equality/subset test code for multisets
nipkow
parents: 55565
diff changeset
  2103
  qed
488c3e8282c8 added Rene Thiemann's patch for the nonterminating equality/subset test code for multisets
nipkow
parents: 55565
diff changeset
  2104
qed
488c3e8282c8 added Rene Thiemann's patch for the nonterminating equality/subset test code for multisets
nipkow
parents: 55565
diff changeset
  2105
60515
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  2106
lemma [code]: "mset xs \<le># mset ys \<longleftrightarrow> ms_lesseq_impl xs ys \<noteq> None"
55808
488c3e8282c8 added Rene Thiemann's patch for the nonterminating equality/subset test code for multisets
nipkow
parents: 55565
diff changeset
  2107
  using ms_lesseq_impl[of xs ys] by (cases "ms_lesseq_impl xs ys", auto)
488c3e8282c8 added Rene Thiemann's patch for the nonterminating equality/subset test code for multisets
nipkow
parents: 55565
diff changeset
  2108
60515
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  2109
lemma [code]: "mset xs <# mset ys \<longleftrightarrow> ms_lesseq_impl xs ys = Some True"
55808
488c3e8282c8 added Rene Thiemann's patch for the nonterminating equality/subset test code for multisets
nipkow
parents: 55565
diff changeset
  2110
  using ms_lesseq_impl[of xs ys] by (cases "ms_lesseq_impl xs ys", auto)
51600
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
  2111
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
  2112
instantiation multiset :: (equal) equal
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
  2113
begin
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
  2114
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
  2115
definition
55808
488c3e8282c8 added Rene Thiemann's patch for the nonterminating equality/subset test code for multisets
nipkow
parents: 55565
diff changeset
  2116
  [code del]: "HOL.equal A (B :: 'a multiset) \<longleftrightarrow> A = B"
60515
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  2117
lemma [code]: "HOL.equal (mset xs) (mset ys) \<longleftrightarrow> ms_lesseq_impl xs ys = Some False"
55808
488c3e8282c8 added Rene Thiemann's patch for the nonterminating equality/subset test code for multisets
nipkow
parents: 55565
diff changeset
  2118
  unfolding equal_multiset_def
488c3e8282c8 added Rene Thiemann's patch for the nonterminating equality/subset test code for multisets
nipkow
parents: 55565
diff changeset
  2119
  using ms_lesseq_impl[of xs ys] by (cases "ms_lesseq_impl xs ys", auto)
51600
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
  2120
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
  2121
instance
55808
488c3e8282c8 added Rene Thiemann's patch for the nonterminating equality/subset test code for multisets
nipkow
parents: 55565
diff changeset
  2122
  by default (simp add: equal_multiset_def)
37169
f69efa106feb make Nitpick "show_all" option behave less surprisingly
blanchet
parents: 37107
diff changeset
  2123
end
49388
1ffd5a055acf typeclass formalising bounded subtraction
haftmann
parents: 48040
diff changeset
  2124
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  2125
lemma [code]: "msetsum (mset xs) = listsum xs"
51600
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
  2126
  by (induct xs) (simp_all add: add.commute)
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
  2127
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  2128
lemma [code]: "msetprod (mset xs) = fold times xs 1"
51600
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
  2129
proof -
60515
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  2130
  have "\<And>x. fold times xs x = msetprod (mset xs) * x"
51600
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
  2131
    by (induct xs) (simp_all add: mult.assoc)
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
  2132
  then show ?thesis by simp
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
  2133
qed
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
  2134
60500
903bb1495239 isabelle update_cartouches;
wenzelm
parents: 60400
diff changeset
  2135
text \<open>
51600
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
  2136
  Exercise for the casual reader: add implementations for @{const le_multiset}
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
  2137
  and @{const less_multiset} (multiset order).
60500
903bb1495239 isabelle update_cartouches;
wenzelm
parents: 60400
diff changeset
  2138
\<close>
903bb1495239 isabelle update_cartouches;
wenzelm
parents: 60400
diff changeset
  2139
903bb1495239 isabelle update_cartouches;
wenzelm
parents: 60400
diff changeset
  2140
text \<open>Quickcheck generators\<close>
51600
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
  2141
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
  2142
definition (in term_syntax)
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
  2143
  msetify :: "'a\<Colon>typerep list \<times> (unit \<Rightarrow> Code_Evaluation.term)
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
  2144
    \<Rightarrow> 'a multiset \<times> (unit \<Rightarrow> Code_Evaluation.term)" where
60515
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  2145
  [code_unfold]: "msetify xs = Code_Evaluation.valtermify mset {\<cdot>} xs"
51600
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
  2146
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
  2147
notation fcomp (infixl "\<circ>>" 60)
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
  2148
notation scomp (infixl "\<circ>\<rightarrow>" 60)
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
  2149
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
  2150
instantiation multiset :: (random) random
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
  2151
begin
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
  2152
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
  2153
definition
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
  2154
  "Quickcheck_Random.random i = Quickcheck_Random.random i \<circ>\<rightarrow> (\<lambda>xs. Pair (msetify xs))"
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
  2155
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
  2156
instance ..
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
  2157
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
  2158
end
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
  2159
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
  2160
no_notation fcomp (infixl "\<circ>>" 60)
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
  2161
no_notation scomp (infixl "\<circ>\<rightarrow>" 60)
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
  2162
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
  2163
instantiation multiset :: (full_exhaustive) full_exhaustive
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
  2164
begin
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
  2165
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
  2166
definition full_exhaustive_multiset :: "('a multiset \<times> (unit \<Rightarrow> term) \<Rightarrow> (bool \<times> term list) option) \<Rightarrow> natural \<Rightarrow> (bool \<times> term list) option"
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
  2167
where
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
  2168
  "full_exhaustive_multiset f i = Quickcheck_Exhaustive.full_exhaustive (\<lambda>xs. f (msetify xs)) i"
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
  2169
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
  2170
instance ..
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
  2171
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
  2172
end
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
  2173
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
  2174
hide_const (open) msetify
197e25f13f0c default implementation of multisets by list with reasonable coverage of operations on multisets
haftmann
parents: 51599
diff changeset
  2175
55129
26bd1cba3ab5 killed 'More_BNFs' by moving its various bits where they (now) belong
blanchet
parents: 54868
diff changeset
  2176
60500
903bb1495239 isabelle update_cartouches;
wenzelm
parents: 60400
diff changeset
  2177
subsection \<open>BNF setup\<close>
55129
26bd1cba3ab5 killed 'More_BNFs' by moving its various bits where they (now) belong
blanchet
parents: 54868
diff changeset
  2178
57966
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2179
definition rel_mset where
60515
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  2180
  "rel_mset R X Y \<longleftrightarrow> (\<exists>xs ys. mset xs = X \<and> mset ys = Y \<and> list_all2 R xs ys)"
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  2181
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  2182
lemma mset_zip_take_Cons_drop_twice:
57966
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2183
  assumes "length xs = length ys" "j \<le> length xs"
60515
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  2184
  shows "mset (zip (take j xs @ x # drop j xs) (take j ys @ y # drop j ys)) =
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  2185
    mset (zip xs ys) + {#(x, y)#}"
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  2186
  using assms
57966
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2187
proof (induct xs ys arbitrary: x y j rule: list_induct2)
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2188
  case Nil
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2189
  thus ?case
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2190
    by simp
55129
26bd1cba3ab5 killed 'More_BNFs' by moving its various bits where they (now) belong
blanchet
parents: 54868
diff changeset
  2191
next
57966
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2192
  case (Cons x xs y ys)
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2193
  thus ?case
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2194
  proof (cases "j = 0")
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2195
    case True
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2196
    thus ?thesis
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2197
      by simp
55129
26bd1cba3ab5 killed 'More_BNFs' by moving its various bits where they (now) belong
blanchet
parents: 54868
diff changeset
  2198
  next
57966
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2199
    case False
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2200
    then obtain k where k: "j = Suc k"
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2201
      by (case_tac j) simp
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2202
    hence "k \<le> length xs"
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2203
      using Cons.prems by auto
60515
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  2204
    hence "mset (zip (take k xs @ x # drop k xs) (take k ys @ y # drop k ys)) =
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  2205
      mset (zip xs ys) + {#(x, y)#}"
57966
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2206
      by (rule Cons.hyps(2))
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2207
    thus ?thesis
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2208
      unfolding k by (auto simp: add.commute union_lcomm)
58425
246985c6b20b simpler proof
blanchet
parents: 58247
diff changeset
  2209
  qed
55129
26bd1cba3ab5 killed 'More_BNFs' by moving its various bits where they (now) belong
blanchet
parents: 54868
diff changeset
  2210
qed
26bd1cba3ab5 killed 'More_BNFs' by moving its various bits where they (now) belong
blanchet
parents: 54868
diff changeset
  2211
60515
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  2212
lemma ex_mset_zip_left:
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  2213
  assumes "length xs = length ys" "mset xs' = mset xs"
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  2214
  shows "\<exists>ys'. length ys' = length xs' \<and> mset (zip xs' ys') = mset (zip xs ys)"
58425
246985c6b20b simpler proof
blanchet
parents: 58247
diff changeset
  2215
using assms
57966
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2216
proof (induct xs ys arbitrary: xs' rule: list_induct2)
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2217
  case Nil
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2218
  thus ?case
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2219
    by auto
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2220
next
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2221
  case (Cons x xs y ys xs')
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2222
  obtain j where j_len: "j < length xs'" and nth_j: "xs' ! j = x"
60515
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  2223
    by (metis Cons.prems in_set_conv_nth list.set_intros(1) mset_eq_setD)
58425
246985c6b20b simpler proof
blanchet
parents: 58247
diff changeset
  2224
246985c6b20b simpler proof
blanchet
parents: 58247
diff changeset
  2225
  def xsa \<equiv> "take j xs' @ drop (Suc j) xs'"
60515
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  2226
  have "mset xs' = {#x#} + mset xsa"
57966
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2227
    unfolding xsa_def using j_len nth_j
58247
98d0f85d247f enamed drop_Suc_conv_tl and nth_drop' to Cons_nth_drop_Suc
nipkow
parents: 58098
diff changeset
  2228
    by (metis (no_types) ab_semigroup_add_class.add_ac(1) append_take_drop_id Cons_nth_drop_Suc
60515
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  2229
      mset.simps(2) union_code add.commute)
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  2230
  hence ms_x: "mset xsa = mset xs"
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  2231
    by (metis Cons.prems add.commute add_right_imp_eq mset.simps(2))
57966
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2232
  then obtain ysa where
60515
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  2233
    len_a: "length ysa = length xsa" and ms_a: "mset (zip xsa ysa) = mset (zip xs ys)"
57966
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2234
    using Cons.hyps(2) by blast
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2235
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2236
  def ys' \<equiv> "take j ysa @ y # drop j ysa"
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2237
  have xs': "xs' = take j xsa @ x # drop j xsa"
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2238
    using ms_x j_len nth_j Cons.prems xsa_def
58247
98d0f85d247f enamed drop_Suc_conv_tl and nth_drop' to Cons_nth_drop_Suc
nipkow
parents: 58098
diff changeset
  2239
    by (metis append_eq_append_conv append_take_drop_id diff_Suc_Suc Cons_nth_drop_Suc length_Cons
60515
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  2240
      length_drop size_mset)
57966
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2241
  have j_len': "j \<le> length xsa"
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2242
    using j_len xs' xsa_def
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2243
    by (metis add_Suc_right append_take_drop_id length_Cons length_append less_eq_Suc_le not_less)
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2244
  have "length ys' = length xs'"
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2245
    unfolding ys'_def using Cons.prems len_a ms_x
60515
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  2246
    by (metis add_Suc_right append_take_drop_id length_Cons length_append mset_eq_length)
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  2247
  moreover have "mset (zip xs' ys') = mset (zip (x # xs) (y # ys))"
57966
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2248
    unfolding xs' ys'_def
60515
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  2249
    by (rule trans[OF mset_zip_take_Cons_drop_twice])
57966
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2250
      (auto simp: len_a ms_a j_len' add.commute)
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2251
  ultimately show ?case
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2252
    by blast
55129
26bd1cba3ab5 killed 'More_BNFs' by moving its various bits where they (now) belong
blanchet
parents: 54868
diff changeset
  2253
qed
26bd1cba3ab5 killed 'More_BNFs' by moving its various bits where they (now) belong
blanchet
parents: 54868
diff changeset
  2254
57966
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2255
lemma list_all2_reorder_left_invariance:
60515
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  2256
  assumes rel: "list_all2 R xs ys" and ms_x: "mset xs' = mset xs"
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  2257
  shows "\<exists>ys'. list_all2 R xs' ys' \<and> mset ys' = mset ys"
57966
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2258
proof -
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2259
  have len: "length xs = length ys"
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2260
    using rel list_all2_conv_all_nth by auto
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2261
  obtain ys' where
60515
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  2262
    len': "length xs' = length ys'" and ms_xy: "mset (zip xs' ys') = mset (zip xs ys)"
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  2263
    using len ms_x by (metis ex_mset_zip_left)
57966
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2264
  have "list_all2 R xs' ys'"
60515
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  2265
    using assms(1) len' ms_xy unfolding list_all2_iff by (blast dest: mset_eq_setD)
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  2266
  moreover have "mset ys' = mset ys"
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  2267
    using len len' ms_xy map_snd_zip mset_map by metis
57966
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2268
  ultimately show ?thesis
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2269
    by blast
55129
26bd1cba3ab5 killed 'More_BNFs' by moving its various bits where they (now) belong
blanchet
parents: 54868
diff changeset
  2270
qed
26bd1cba3ab5 killed 'More_BNFs' by moving its various bits where they (now) belong
blanchet
parents: 54868
diff changeset
  2271
60515
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  2272
lemma ex_mset: "\<exists>xs. mset xs = X"
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  2273
  by (induct X) (simp, metis mset.simps(2))
55129
26bd1cba3ab5 killed 'More_BNFs' by moving its various bits where they (now) belong
blanchet
parents: 54868
diff changeset
  2274
26bd1cba3ab5 killed 'More_BNFs' by moving its various bits where they (now) belong
blanchet
parents: 54868
diff changeset
  2275
bnf "'a multiset"
57966
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2276
  map: image_mset
60495
d7ff0a1df90a renamed Multiset.set_of to the canonical set_mset
nipkow
parents: 60400
diff changeset
  2277
  sets: set_mset
55129
26bd1cba3ab5 killed 'More_BNFs' by moving its various bits where they (now) belong
blanchet
parents: 54868
diff changeset
  2278
  bd: natLeq
26bd1cba3ab5 killed 'More_BNFs' by moving its various bits where they (now) belong
blanchet
parents: 54868
diff changeset
  2279
  wits: "{#}"
57966
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2280
  rel: rel_mset
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2281
proof -
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2282
  show "image_mset id = id"
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2283
    by (rule image_mset.id)
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  2284
  show "image_mset (g \<circ> f) = image_mset g \<circ> image_mset f" for f g
59813
6320064f22bb more multiset theorems
blanchet
parents: 59807
diff changeset
  2285
    unfolding comp_def by (rule ext) (simp add: comp_def image_mset.compositionality)
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  2286
  show "(\<And>z. z \<in> set_mset X \<Longrightarrow> f z = g z) \<Longrightarrow> image_mset f X = image_mset g X" for f g X
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  2287
    by (induct X) (simp_all (no_asm),
60495
d7ff0a1df90a renamed Multiset.set_of to the canonical set_mset
nipkow
parents: 60400
diff changeset
  2288
      metis One_nat_def Un_iff count_single mem_set_mset_iff set_mset_union zero_less_Suc)
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  2289
  show "set_mset \<circ> image_mset f = op ` f \<circ> set_mset" for f
57966
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2290
    by auto
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2291
  show "card_order natLeq"
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2292
    by (rule natLeq_card_order)
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2293
  show "BNF_Cardinal_Arithmetic.cinfinite natLeq"
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2294
    by (rule natLeq_cinfinite)
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  2295
  show "ordLeq3 (card_of (set_mset X)) natLeq" for X
57966
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2296
    by transfer
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2297
      (auto intro!: ordLess_imp_ordLeq simp: finite_iff_ordLess_natLeq[symmetric] multiset_def)
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  2298
  show "rel_mset R OO rel_mset S \<le> rel_mset (R OO S)" for R S
57966
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2299
    unfolding rel_mset_def[abs_def] OO_def
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2300
    apply clarify
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2301
    apply (rename_tac X Z Y xs ys' ys zs)
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2302
    apply (drule_tac xs = ys' and ys = zs and xs' = ys in list_all2_reorder_left_invariance)
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  2303
    apply (auto intro: list_all2_trans)
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  2304
    done
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  2305
  show "rel_mset R =
60495
d7ff0a1df90a renamed Multiset.set_of to the canonical set_mset
nipkow
parents: 60400
diff changeset
  2306
    (BNF_Def.Grp {x. set_mset x \<subseteq> {(x, y). R x y}} (image_mset fst))\<inverse>\<inverse> OO
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  2307
    BNF_Def.Grp {x. set_mset x \<subseteq> {(x, y). R x y}} (image_mset snd)" for R
57966
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2308
    unfolding rel_mset_def[abs_def] BNF_Def.Grp_def OO_def
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2309
    apply (rule ext)+
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2310
    apply auto
60515
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  2311
     apply (rule_tac x = "mset (zip xs ys)" in exI; auto)
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  2312
        apply (metis list_all2_lengthD map_fst_zip mset_map)
57966
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2313
       apply (auto simp: list_all2_iff)[1]
60515
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  2314
      apply (metis list_all2_lengthD map_snd_zip mset_map)
57966
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2315
     apply (auto simp: list_all2_iff)[1]
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2316
    apply (rename_tac XY)
60515
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  2317
    apply (cut_tac X = XY in ex_mset)
57966
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2318
    apply (erule exE)
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2319
    apply (rename_tac xys)
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2320
    apply (rule_tac x = "map fst xys" in exI)
60515
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  2321
    apply (auto simp: mset_map)
57966
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2322
    apply (rule_tac x = "map snd xys" in exI)
60515
484559628038 renamed multiset_of -> mset
nipkow
parents: 60513
diff changeset
  2323
    apply (auto simp: mset_map list_all2I subset_eq zip_map_fst_snd)
59997
90fb391a15c1 tuned proofs;
wenzelm
parents: 59986
diff changeset
  2324
    done
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  2325
  show "z \<in> set_mset {#} \<Longrightarrow> False" for z
57966
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2326
    by auto
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2327
qed
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2328
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  2329
inductive rel_mset'
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  2330
where
57966
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2331
  Zero[intro]: "rel_mset' R {#} {#}"
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2332
| Plus[intro]: "\<lbrakk>R a b; rel_mset' R M N\<rbrakk> \<Longrightarrow> rel_mset' R (M + {#a#}) (N + {#b#})"
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2333
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2334
lemma rel_mset_Zero: "rel_mset R {#} {#}"
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2335
unfolding rel_mset_def Grp_def by auto
55129
26bd1cba3ab5 killed 'More_BNFs' by moving its various bits where they (now) belong
blanchet
parents: 54868
diff changeset
  2336
26bd1cba3ab5 killed 'More_BNFs' by moving its various bits where they (now) belong
blanchet
parents: 54868
diff changeset
  2337
declare multiset.count[simp]
26bd1cba3ab5 killed 'More_BNFs' by moving its various bits where they (now) belong
blanchet
parents: 54868
diff changeset
  2338
declare Abs_multiset_inverse[simp]
26bd1cba3ab5 killed 'More_BNFs' by moving its various bits where they (now) belong
blanchet
parents: 54868
diff changeset
  2339
declare multiset.count_inverse[simp]
26bd1cba3ab5 killed 'More_BNFs' by moving its various bits where they (now) belong
blanchet
parents: 54868
diff changeset
  2340
declare union_preserves_multiset[simp]
26bd1cba3ab5 killed 'More_BNFs' by moving its various bits where they (now) belong
blanchet
parents: 54868
diff changeset
  2341
57966
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2342
lemma rel_mset_Plus:
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  2343
  assumes ab: "R a b"
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  2344
    and MN: "rel_mset R M N"
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  2345
  shows "rel_mset R (M + {#a#}) (N + {#b#})"
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  2346
proof -
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  2347
  have "\<exists>ya. image_mset fst y + {#a#} = image_mset fst ya \<and>
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  2348
    image_mset snd y + {#b#} = image_mset snd ya \<and>
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  2349
    set_mset ya \<subseteq> {(x, y). R x y}"
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  2350
    if "R a b" and "set_mset y \<subseteq> {(x, y). R x y}" for y
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  2351
    using that by (intro exI[of _ "y + {#(a,b)#}"]) auto
55129
26bd1cba3ab5 killed 'More_BNFs' by moving its various bits where they (now) belong
blanchet
parents: 54868
diff changeset
  2352
  thus ?thesis
26bd1cba3ab5 killed 'More_BNFs' by moving its various bits where they (now) belong
blanchet
parents: 54868
diff changeset
  2353
  using assms
57966
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2354
  unfolding multiset.rel_compp_Grp Grp_def by blast
55129
26bd1cba3ab5 killed 'More_BNFs' by moving its various bits where they (now) belong
blanchet
parents: 54868
diff changeset
  2355
qed
26bd1cba3ab5 killed 'More_BNFs' by moving its various bits where they (now) belong
blanchet
parents: 54868
diff changeset
  2356
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  2357
lemma rel_mset'_imp_rel_mset: "rel_mset' R M N \<Longrightarrow> rel_mset R M N"
57966
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2358
apply(induct rule: rel_mset'.induct)
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2359
using rel_mset_Zero rel_mset_Plus by auto
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2360
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  2361
lemma rel_mset_size: "rel_mset R M N \<Longrightarrow> size M = size N"
59949
fc4c896c8e74 Removed mcard because it is equal to size
nipkow
parents: 59815
diff changeset
  2362
unfolding multiset.rel_compp_Grp Grp_def by auto
55129
26bd1cba3ab5 killed 'More_BNFs' by moving its various bits where they (now) belong
blanchet
parents: 54868
diff changeset
  2363
26bd1cba3ab5 killed 'More_BNFs' by moving its various bits where they (now) belong
blanchet
parents: 54868
diff changeset
  2364
lemma multiset_induct2[case_names empty addL addR]:
26bd1cba3ab5 killed 'More_BNFs' by moving its various bits where they (now) belong
blanchet
parents: 54868
diff changeset
  2365
assumes empty: "P {#} {#}"
26bd1cba3ab5 killed 'More_BNFs' by moving its various bits where they (now) belong
blanchet
parents: 54868
diff changeset
  2366
and addL: "\<And>M N a. P M N \<Longrightarrow> P (M + {#a#}) N"
26bd1cba3ab5 killed 'More_BNFs' by moving its various bits where they (now) belong
blanchet
parents: 54868
diff changeset
  2367
and addR: "\<And>M N a. P M N \<Longrightarrow> P M (N + {#a#})"
26bd1cba3ab5 killed 'More_BNFs' by moving its various bits where they (now) belong
blanchet
parents: 54868
diff changeset
  2368
shows "P M N"
26bd1cba3ab5 killed 'More_BNFs' by moving its various bits where they (now) belong
blanchet
parents: 54868
diff changeset
  2369
apply(induct N rule: multiset_induct)
26bd1cba3ab5 killed 'More_BNFs' by moving its various bits where they (now) belong
blanchet
parents: 54868
diff changeset
  2370
  apply(induct M rule: multiset_induct, rule empty, erule addL)
26bd1cba3ab5 killed 'More_BNFs' by moving its various bits where they (now) belong
blanchet
parents: 54868
diff changeset
  2371
  apply(induct M rule: multiset_induct, erule addR, erule addR)
26bd1cba3ab5 killed 'More_BNFs' by moving its various bits where they (now) belong
blanchet
parents: 54868
diff changeset
  2372
done
26bd1cba3ab5 killed 'More_BNFs' by moving its various bits where they (now) belong
blanchet
parents: 54868
diff changeset
  2373
59949
fc4c896c8e74 Removed mcard because it is equal to size
nipkow
parents: 59815
diff changeset
  2374
lemma multiset_induct2_size[consumes 1, case_names empty add]:
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  2375
  assumes c: "size M = size N"
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  2376
    and empty: "P {#} {#}"
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  2377
    and add: "\<And>M N a b. P M N \<Longrightarrow> P (M + {#a#}) (N + {#b#})"
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  2378
  shows "P M N"
59949
fc4c896c8e74 Removed mcard because it is equal to size
nipkow
parents: 59815
diff changeset
  2379
using c proof(induct M arbitrary: N rule: measure_induct_rule[of size])
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  2380
  case (less M)
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  2381
  show ?case
55129
26bd1cba3ab5 killed 'More_BNFs' by moving its various bits where they (now) belong
blanchet
parents: 54868
diff changeset
  2382
  proof(cases "M = {#}")
26bd1cba3ab5 killed 'More_BNFs' by moving its various bits where they (now) belong
blanchet
parents: 54868
diff changeset
  2383
    case True hence "N = {#}" using less.prems by auto
26bd1cba3ab5 killed 'More_BNFs' by moving its various bits where they (now) belong
blanchet
parents: 54868
diff changeset
  2384
    thus ?thesis using True empty by auto
26bd1cba3ab5 killed 'More_BNFs' by moving its various bits where they (now) belong
blanchet
parents: 54868
diff changeset
  2385
  next
26bd1cba3ab5 killed 'More_BNFs' by moving its various bits where they (now) belong
blanchet
parents: 54868
diff changeset
  2386
    case False then obtain M1 a where M: "M = M1 + {#a#}" by (metis multi_nonempty_split)
26bd1cba3ab5 killed 'More_BNFs' by moving its various bits where they (now) belong
blanchet
parents: 54868
diff changeset
  2387
    have "N \<noteq> {#}" using False less.prems by auto
26bd1cba3ab5 killed 'More_BNFs' by moving its various bits where they (now) belong
blanchet
parents: 54868
diff changeset
  2388
    then obtain N1 b where N: "N = N1 + {#b#}" by (metis multi_nonempty_split)
59949
fc4c896c8e74 Removed mcard because it is equal to size
nipkow
parents: 59815
diff changeset
  2389
    have "size M1 = size N1" using less.prems unfolding M N by auto
55129
26bd1cba3ab5 killed 'More_BNFs' by moving its various bits where they (now) belong
blanchet
parents: 54868
diff changeset
  2390
    thus ?thesis using M N less.hyps add by auto
26bd1cba3ab5 killed 'More_BNFs' by moving its various bits where they (now) belong
blanchet
parents: 54868
diff changeset
  2391
  qed
26bd1cba3ab5 killed 'More_BNFs' by moving its various bits where they (now) belong
blanchet
parents: 54868
diff changeset
  2392
qed
26bd1cba3ab5 killed 'More_BNFs' by moving its various bits where they (now) belong
blanchet
parents: 54868
diff changeset
  2393
26bd1cba3ab5 killed 'More_BNFs' by moving its various bits where they (now) belong
blanchet
parents: 54868
diff changeset
  2394
lemma msed_map_invL:
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  2395
  assumes "image_mset f (M + {#a#}) = N"
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  2396
  shows "\<exists>N1. N = N1 + {#f a#} \<and> image_mset f M = N1"
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  2397
proof -
55129
26bd1cba3ab5 killed 'More_BNFs' by moving its various bits where they (now) belong
blanchet
parents: 54868
diff changeset
  2398
  have "f a \<in># N"
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  2399
    using assms multiset.set_map[of f "M + {#a#}"] by auto
55129
26bd1cba3ab5 killed 'More_BNFs' by moving its various bits where they (now) belong
blanchet
parents: 54868
diff changeset
  2400
  then obtain N1 where N: "N = N1 + {#f a#}" using multi_member_split by metis
57966
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2401
  have "image_mset f M = N1" using assms unfolding N by simp
55129
26bd1cba3ab5 killed 'More_BNFs' by moving its various bits where they (now) belong
blanchet
parents: 54868
diff changeset
  2402
  thus ?thesis using N by blast
26bd1cba3ab5 killed 'More_BNFs' by moving its various bits where they (now) belong
blanchet
parents: 54868
diff changeset
  2403
qed
26bd1cba3ab5 killed 'More_BNFs' by moving its various bits where they (now) belong
blanchet
parents: 54868
diff changeset
  2404
26bd1cba3ab5 killed 'More_BNFs' by moving its various bits where they (now) belong
blanchet
parents: 54868
diff changeset
  2405
lemma msed_map_invR:
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  2406
  assumes "image_mset f M = N + {#b#}"
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  2407
  shows "\<exists>M1 a. M = M1 + {#a#} \<and> f a = b \<and> image_mset f M1 = N"
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  2408
proof -
55129
26bd1cba3ab5 killed 'More_BNFs' by moving its various bits where they (now) belong
blanchet
parents: 54868
diff changeset
  2409
  obtain a where a: "a \<in># M" and fa: "f a = b"
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  2410
    using multiset.set_map[of f M] unfolding assms
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  2411
    by (metis image_iff mem_set_mset_iff union_single_eq_member)
55129
26bd1cba3ab5 killed 'More_BNFs' by moving its various bits where they (now) belong
blanchet
parents: 54868
diff changeset
  2412
  then obtain M1 where M: "M = M1 + {#a#}" using multi_member_split by metis
57966
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2413
  have "image_mset f M1 = N" using assms unfolding M fa[symmetric] by simp
55129
26bd1cba3ab5 killed 'More_BNFs' by moving its various bits where they (now) belong
blanchet
parents: 54868
diff changeset
  2414
  thus ?thesis using M fa by blast
26bd1cba3ab5 killed 'More_BNFs' by moving its various bits where they (now) belong
blanchet
parents: 54868
diff changeset
  2415
qed
26bd1cba3ab5 killed 'More_BNFs' by moving its various bits where they (now) belong
blanchet
parents: 54868
diff changeset
  2416
26bd1cba3ab5 killed 'More_BNFs' by moving its various bits where they (now) belong
blanchet
parents: 54868
diff changeset
  2417
lemma msed_rel_invL:
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  2418
  assumes "rel_mset R (M + {#a#}) N"
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  2419
  shows "\<exists>N1 b. N = N1 + {#b#} \<and> R a b \<and> rel_mset R M N1"
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  2420
proof -
57966
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2421
  obtain K where KM: "image_mset fst K = M + {#a#}"
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  2422
    and KN: "image_mset snd K = N" and sK: "set_mset K \<subseteq> {(a, b). R a b}"
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  2423
    using assms
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  2424
    unfolding multiset.rel_compp_Grp Grp_def by auto
55129
26bd1cba3ab5 killed 'More_BNFs' by moving its various bits where they (now) belong
blanchet
parents: 54868
diff changeset
  2425
  obtain K1 ab where K: "K = K1 + {#ab#}" and a: "fst ab = a"
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  2426
    and K1M: "image_mset fst K1 = M" using msed_map_invR[OF KM] by auto
57966
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2427
  obtain N1 where N: "N = N1 + {#snd ab#}" and K1N1: "image_mset snd K1 = N1"
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  2428
    using msed_map_invL[OF KN[unfolded K]] by auto
55129
26bd1cba3ab5 killed 'More_BNFs' by moving its various bits where they (now) belong
blanchet
parents: 54868
diff changeset
  2429
  have Rab: "R a (snd ab)" using sK a unfolding K by auto
57966
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2430
  have "rel_mset R M N1" using sK K1M K1N1
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  2431
    unfolding K multiset.rel_compp_Grp Grp_def by auto
55129
26bd1cba3ab5 killed 'More_BNFs' by moving its various bits where they (now) belong
blanchet
parents: 54868
diff changeset
  2432
  thus ?thesis using N Rab by auto
26bd1cba3ab5 killed 'More_BNFs' by moving its various bits where they (now) belong
blanchet
parents: 54868
diff changeset
  2433
qed
26bd1cba3ab5 killed 'More_BNFs' by moving its various bits where they (now) belong
blanchet
parents: 54868
diff changeset
  2434
26bd1cba3ab5 killed 'More_BNFs' by moving its various bits where they (now) belong
blanchet
parents: 54868
diff changeset
  2435
lemma msed_rel_invR:
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  2436
  assumes "rel_mset R M (N + {#b#})"
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  2437
  shows "\<exists>M1 a. M = M1 + {#a#} \<and> R a b \<and> rel_mset R M1 N"
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  2438
proof -
57966
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2439
  obtain K where KN: "image_mset snd K = N + {#b#}"
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  2440
    and KM: "image_mset fst K = M" and sK: "set_mset K \<subseteq> {(a, b). R a b}"
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  2441
    using assms
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  2442
    unfolding multiset.rel_compp_Grp Grp_def by auto
55129
26bd1cba3ab5 killed 'More_BNFs' by moving its various bits where they (now) belong
blanchet
parents: 54868
diff changeset
  2443
  obtain K1 ab where K: "K = K1 + {#ab#}" and b: "snd ab = b"
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  2444
    and K1N: "image_mset snd K1 = N" using msed_map_invR[OF KN] by auto
57966
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2445
  obtain M1 where M: "M = M1 + {#fst ab#}" and K1M1: "image_mset fst K1 = M1"
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  2446
    using msed_map_invL[OF KM[unfolded K]] by auto
55129
26bd1cba3ab5 killed 'More_BNFs' by moving its various bits where they (now) belong
blanchet
parents: 54868
diff changeset
  2447
  have Rab: "R (fst ab) b" using sK b unfolding K by auto
57966
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2448
  have "rel_mset R M1 N" using sK K1N K1M1
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  2449
    unfolding K multiset.rel_compp_Grp Grp_def by auto
55129
26bd1cba3ab5 killed 'More_BNFs' by moving its various bits where they (now) belong
blanchet
parents: 54868
diff changeset
  2450
  thus ?thesis using M Rab by auto
26bd1cba3ab5 killed 'More_BNFs' by moving its various bits where they (now) belong
blanchet
parents: 54868
diff changeset
  2451
qed
26bd1cba3ab5 killed 'More_BNFs' by moving its various bits where they (now) belong
blanchet
parents: 54868
diff changeset
  2452
57966
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2453
lemma rel_mset_imp_rel_mset':
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  2454
  assumes "rel_mset R M N"
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  2455
  shows "rel_mset' R M N"
59949
fc4c896c8e74 Removed mcard because it is equal to size
nipkow
parents: 59815
diff changeset
  2456
using assms proof(induct M arbitrary: N rule: measure_induct_rule[of size])
55129
26bd1cba3ab5 killed 'More_BNFs' by moving its various bits where they (now) belong
blanchet
parents: 54868
diff changeset
  2457
  case (less M)
59949
fc4c896c8e74 Removed mcard because it is equal to size
nipkow
parents: 59815
diff changeset
  2458
  have c: "size M = size N" using rel_mset_size[OF less.prems] .
55129
26bd1cba3ab5 killed 'More_BNFs' by moving its various bits where they (now) belong
blanchet
parents: 54868
diff changeset
  2459
  show ?case
26bd1cba3ab5 killed 'More_BNFs' by moving its various bits where they (now) belong
blanchet
parents: 54868
diff changeset
  2460
  proof(cases "M = {#}")
26bd1cba3ab5 killed 'More_BNFs' by moving its various bits where they (now) belong
blanchet
parents: 54868
diff changeset
  2461
    case True hence "N = {#}" using c by simp
57966
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2462
    thus ?thesis using True rel_mset'.Zero by auto
55129
26bd1cba3ab5 killed 'More_BNFs' by moving its various bits where they (now) belong
blanchet
parents: 54868
diff changeset
  2463
  next
26bd1cba3ab5 killed 'More_BNFs' by moving its various bits where they (now) belong
blanchet
parents: 54868
diff changeset
  2464
    case False then obtain M1 a where M: "M = M1 + {#a#}" by (metis multi_nonempty_split)
57966
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2465
    obtain N1 b where N: "N = N1 + {#b#}" and R: "R a b" and ms: "rel_mset R M1 N1"
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  2466
      using msed_rel_invL[OF less.prems[unfolded M]] by auto
57966
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2467
    have "rel_mset' R M1 N1" using less.hyps[of M1 N1] ms unfolding M by simp
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2468
    thus ?thesis using rel_mset'.Plus[of R a b, OF R] unfolding M N by simp
55129
26bd1cba3ab5 killed 'More_BNFs' by moving its various bits where they (now) belong
blanchet
parents: 54868
diff changeset
  2469
  qed
26bd1cba3ab5 killed 'More_BNFs' by moving its various bits where they (now) belong
blanchet
parents: 54868
diff changeset
  2470
qed
26bd1cba3ab5 killed 'More_BNFs' by moving its various bits where they (now) belong
blanchet
parents: 54868
diff changeset
  2471
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  2472
lemma rel_mset_rel_mset': "rel_mset R M N = rel_mset' R M N"
57966
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2473
using rel_mset_imp_rel_mset' rel_mset'_imp_rel_mset by auto
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2474
60613
f11e9fd70b7d fix tex-output for rel_mset
hoelzl
parents: 60608
diff changeset
  2475
text \<open>The main end product for @{const rel_mset}: inductive characterization:\<close>
57966
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2476
theorems rel_mset_induct[case_names empty add, induct pred: rel_mset] =
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  2477
  rel_mset'.induct[unfolded rel_mset_rel_mset'[symmetric]]
55129
26bd1cba3ab5 killed 'More_BNFs' by moving its various bits where they (now) belong
blanchet
parents: 54868
diff changeset
  2478
56656
7f9b686bf30a size function for multisets
blanchet
parents: 55945
diff changeset
  2479
60500
903bb1495239 isabelle update_cartouches;
wenzelm
parents: 60400
diff changeset
  2480
subsection \<open>Size setup\<close>
56656
7f9b686bf30a size function for multisets
blanchet
parents: 55945
diff changeset
  2481
57966
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2482
lemma multiset_size_o_map: "size_multiset g \<circ> image_mset f = size_multiset (g \<circ> f)"
6fab7e95587d use 'image_mset' as BNF map function
blanchet
parents: 57518
diff changeset
  2483
  unfolding o_apply by (rule ext) (induct_tac, auto)
56656
7f9b686bf30a size function for multisets
blanchet
parents: 55945
diff changeset
  2484
60500
903bb1495239 isabelle update_cartouches;
wenzelm
parents: 60400
diff changeset
  2485
setup \<open>
60606
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  2486
  BNF_LFP_Size.register_size_global @{type_name multiset} @{const_name size_multiset}
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  2487
    @{thms size_multiset_empty size_multiset_single size_multiset_union size_empty size_single
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  2488
      size_union}
e5cb9271e339 more symbols;
wenzelm
parents: 60515
diff changeset
  2489
    @{thms multiset_size_o_map}
60500
903bb1495239 isabelle update_cartouches;
wenzelm
parents: 60400
diff changeset
  2490
\<close>
56656
7f9b686bf30a size function for multisets
blanchet
parents: 55945
diff changeset
  2491
7f9b686bf30a size function for multisets
blanchet
parents: 55945
diff changeset
  2492
hide_const (open) wcount
7f9b686bf30a size function for multisets
blanchet
parents: 55945
diff changeset
  2493
55129
26bd1cba3ab5 killed 'More_BNFs' by moving its various bits where they (now) belong
blanchet
parents: 54868
diff changeset
  2494
end