| author | wenzelm | 
| Tue, 08 Nov 2005 10:43:08 +0100 | |
| changeset 18117 | 61a430a67d7c | 
| parent 17782 | b3846df9d643 | 
| child 18423 | d7859164447f | 
| permissions | -rw-r--r-- | 
| 12396 | 1 | (* Title: HOL/Finite_Set.thy | 
| 2 | ID: $Id$ | |
| 3 | Author: Tobias Nipkow, Lawrence C Paulson and Markus Wenzel | |
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 4 | with contributions by Jeremy Avigad | 
| 12396 | 5 | *) | 
| 6 | ||
| 7 | header {* Finite sets *}
 | |
| 8 | ||
| 15131 | 9 | theory Finite_Set | 
| 16760 | 10 | imports Power Inductive Lattice_Locales | 
| 15131 | 11 | begin | 
| 12396 | 12 | |
| 15392 | 13 | subsection {* Definition and basic properties *}
 | 
| 12396 | 14 | |
| 15 | consts Finites :: "'a set set" | |
| 13737 | 16 | syntax | 
| 17 | finite :: "'a set => bool" | |
| 18 | translations | |
| 19 | "finite A" == "A : Finites" | |
| 12396 | 20 | |
| 21 | inductive Finites | |
| 22 | intros | |
| 23 |     emptyI [simp, intro!]: "{} : Finites"
 | |
| 24 | insertI [simp, intro!]: "A : Finites ==> insert a A : Finites" | |
| 25 | ||
| 26 | axclass finite \<subseteq> type | |
| 27 | finite: "finite UNIV" | |
| 28 | ||
| 13737 | 29 | lemma ex_new_if_finite: -- "does not depend on def of finite at all" | 
| 14661 | 30 | assumes "\<not> finite (UNIV :: 'a set)" and "finite A" | 
| 31 | shows "\<exists>a::'a. a \<notin> A" | |
| 32 | proof - | |
| 33 | from prems have "A \<noteq> UNIV" by blast | |
| 34 | thus ?thesis by blast | |
| 35 | qed | |
| 12396 | 36 | |
| 37 | lemma finite_induct [case_names empty insert, induct set: Finites]: | |
| 38 | "finite F ==> | |
| 15327 
0230a10582d3
changed the order of !!-quantifiers in finite set induction.
 nipkow parents: 
15318diff
changeset | 39 |     P {} ==> (!!x F. finite F ==> x \<notin> F ==> P F ==> P (insert x F)) ==> P F"
 | 
| 12396 | 40 |   -- {* Discharging @{text "x \<notin> F"} entails extra work. *}
 | 
| 41 | proof - | |
| 13421 | 42 |   assume "P {}" and
 | 
| 15327 
0230a10582d3
changed the order of !!-quantifiers in finite set induction.
 nipkow parents: 
15318diff
changeset | 43 | insert: "!!x F. finite F ==> x \<notin> F ==> P F ==> P (insert x F)" | 
| 12396 | 44 | assume "finite F" | 
| 45 | thus "P F" | |
| 46 | proof induct | |
| 47 |     show "P {}" .
 | |
| 15327 
0230a10582d3
changed the order of !!-quantifiers in finite set induction.
 nipkow parents: 
15318diff
changeset | 48 | fix x F assume F: "finite F" and P: "P F" | 
| 12396 | 49 | show "P (insert x F)" | 
| 50 | proof cases | |
| 51 | assume "x \<in> F" | |
| 52 | hence "insert x F = F" by (rule insert_absorb) | |
| 53 | with P show ?thesis by (simp only:) | |
| 54 | next | |
| 55 | assume "x \<notin> F" | |
| 56 | from F this P show ?thesis by (rule insert) | |
| 57 | qed | |
| 58 | qed | |
| 59 | qed | |
| 60 | ||
| 15484 | 61 | lemma finite_ne_induct[case_names singleton insert, consumes 2]: | 
| 62 | assumes fin: "finite F" shows "F \<noteq> {} \<Longrightarrow>
 | |
| 63 |  \<lbrakk> \<And>x. P{x};
 | |
| 64 |    \<And>x F. \<lbrakk> finite F; F \<noteq> {}; x \<notin> F; P F \<rbrakk> \<Longrightarrow> P (insert x F) \<rbrakk>
 | |
| 65 | \<Longrightarrow> P F" | |
| 66 | using fin | |
| 67 | proof induct | |
| 68 | case empty thus ?case by simp | |
| 69 | next | |
| 70 | case (insert x F) | |
| 71 | show ?case | |
| 72 | proof cases | |
| 73 |     assume "F = {}" thus ?thesis using insert(4) by simp
 | |
| 74 | next | |
| 75 |     assume "F \<noteq> {}" thus ?thesis using insert by blast
 | |
| 76 | qed | |
| 77 | qed | |
| 78 | ||
| 12396 | 79 | lemma finite_subset_induct [consumes 2, case_names empty insert]: | 
| 80 | "finite F ==> F \<subseteq> A ==> | |
| 15327 
0230a10582d3
changed the order of !!-quantifiers in finite set induction.
 nipkow parents: 
15318diff
changeset | 81 |     P {} ==> (!!a F. finite F ==> a \<in> A ==> a \<notin> F ==> P F ==> P (insert a F)) ==>
 | 
| 12396 | 82 | P F" | 
| 83 | proof - | |
| 13421 | 84 |   assume "P {}" and insert:
 | 
| 15327 
0230a10582d3
changed the order of !!-quantifiers in finite set induction.
 nipkow parents: 
15318diff
changeset | 85 | "!!a F. finite F ==> a \<in> A ==> a \<notin> F ==> P F ==> P (insert a F)" | 
| 12396 | 86 | assume "finite F" | 
| 87 | thus "F \<subseteq> A ==> P F" | |
| 88 | proof induct | |
| 89 |     show "P {}" .
 | |
| 15327 
0230a10582d3
changed the order of !!-quantifiers in finite set induction.
 nipkow parents: 
15318diff
changeset | 90 | fix x F assume "finite F" and "x \<notin> F" | 
| 12396 | 91 | and P: "F \<subseteq> A ==> P F" and i: "insert x F \<subseteq> A" | 
| 92 | show "P (insert x F)" | |
| 93 | proof (rule insert) | |
| 94 | from i show "x \<in> A" by blast | |
| 95 | from i have "F \<subseteq> A" by blast | |
| 96 | with P show "P F" . | |
| 97 | qed | |
| 98 | qed | |
| 99 | qed | |
| 100 | ||
| 15392 | 101 | text{* Finite sets are the images of initial segments of natural numbers: *}
 | 
| 102 | ||
| 15510 | 103 | lemma finite_imp_nat_seg_image_inj_on: | 
| 104 | assumes fin: "finite A" | |
| 105 |   shows "\<exists> (n::nat) f. A = f ` {i. i<n} & inj_on f {i. i<n}"
 | |
| 15392 | 106 | using fin | 
| 107 | proof induct | |
| 108 | case empty | |
| 15510 | 109 | show ?case | 
| 110 |   proof show "\<exists>f. {} = f ` {i::nat. i < 0} & inj_on f {i. i<0}" by simp 
 | |
| 111 | qed | |
| 15392 | 112 | next | 
| 113 | case (insert a A) | |
| 15510 | 114 | have notinA: "a \<notin> A" . | 
| 115 | from insert.hyps obtain n f | |
| 116 |     where "A = f ` {i::nat. i < n}" "inj_on f {i. i < n}" by blast
 | |
| 117 |   hence "insert a A = f(n:=a) ` {i. i < Suc n}"
 | |
| 118 |         "inj_on (f(n:=a)) {i. i < Suc n}" using notinA
 | |
| 119 | by (auto simp add: image_def Ball_def inj_on_def less_Suc_eq) | |
| 15392 | 120 | thus ?case by blast | 
| 121 | qed | |
| 122 | ||
| 123 | lemma nat_seg_image_imp_finite: | |
| 124 |   "!!f A. A = f ` {i::nat. i<n} \<Longrightarrow> finite A"
 | |
| 125 | proof (induct n) | |
| 126 | case 0 thus ?case by simp | |
| 127 | next | |
| 128 | case (Suc n) | |
| 129 |   let ?B = "f ` {i. i < n}"
 | |
| 130 | have finB: "finite ?B" by(rule Suc.hyps[OF refl]) | |
| 131 | show ?case | |
| 132 | proof cases | |
| 133 | assume "\<exists>k<n. f n = f k" | |
| 134 | hence "A = ?B" using Suc.prems by(auto simp:less_Suc_eq) | |
| 135 | thus ?thesis using finB by simp | |
| 136 | next | |
| 137 | assume "\<not>(\<exists> k<n. f n = f k)" | |
| 138 | hence "A = insert (f n) ?B" using Suc.prems by(auto simp:less_Suc_eq) | |
| 139 | thus ?thesis using finB by simp | |
| 140 | qed | |
| 141 | qed | |
| 142 | ||
| 143 | lemma finite_conv_nat_seg_image: | |
| 144 |   "finite A = (\<exists> (n::nat) f. A = f ` {i::nat. i<n})"
 | |
| 15510 | 145 | by(blast intro: nat_seg_image_imp_finite dest: finite_imp_nat_seg_image_inj_on) | 
| 15392 | 146 | |
| 147 | subsubsection{* Finiteness and set theoretic constructions *}
 | |
| 148 | ||
| 12396 | 149 | lemma finite_UnI: "finite F ==> finite G ==> finite (F Un G)" | 
| 150 |   -- {* The union of two finite sets is finite. *}
 | |
| 151 | by (induct set: Finites) simp_all | |
| 152 | ||
| 153 | lemma finite_subset: "A \<subseteq> B ==> finite B ==> finite A" | |
| 154 |   -- {* Every subset of a finite set is finite. *}
 | |
| 155 | proof - | |
| 156 | assume "finite B" | |
| 157 | thus "!!A. A \<subseteq> B ==> finite A" | |
| 158 | proof induct | |
| 159 | case empty | |
| 160 | thus ?case by simp | |
| 161 | next | |
| 15327 
0230a10582d3
changed the order of !!-quantifiers in finite set induction.
 nipkow parents: 
15318diff
changeset | 162 | case (insert x F A) | 
| 12396 | 163 |     have A: "A \<subseteq> insert x F" and r: "A - {x} \<subseteq> F ==> finite (A - {x})" .
 | 
| 164 | show "finite A" | |
| 165 | proof cases | |
| 166 | assume x: "x \<in> A" | |
| 167 |       with A have "A - {x} \<subseteq> F" by (simp add: subset_insert_iff)
 | |
| 168 |       with r have "finite (A - {x})" .
 | |
| 169 |       hence "finite (insert x (A - {x}))" ..
 | |
| 170 |       also have "insert x (A - {x}) = A" by (rule insert_Diff)
 | |
| 171 | finally show ?thesis . | |
| 172 | next | |
| 173 | show "A \<subseteq> F ==> ?thesis" . | |
| 174 | assume "x \<notin> A" | |
| 175 | with A show "A \<subseteq> F" by (simp add: subset_insert_iff) | |
| 176 | qed | |
| 177 | qed | |
| 178 | qed | |
| 179 | ||
| 17761 | 180 | lemma finite_Collect_subset: "finite A \<Longrightarrow> finite{x \<in> A. P x}"
 | 
| 181 | using finite_subset[of "{x \<in> A. P x}" "A"] by blast
 | |
| 182 | ||
| 12396 | 183 | lemma finite_Un [iff]: "finite (F Un G) = (finite F & finite G)" | 
| 184 | by (blast intro: finite_subset [of _ "X Un Y", standard] finite_UnI) | |
| 185 | ||
| 186 | lemma finite_Int [simp, intro]: "finite F | finite G ==> finite (F Int G)" | |
| 187 |   -- {* The converse obviously fails. *}
 | |
| 188 | by (blast intro: finite_subset) | |
| 189 | ||
| 190 | lemma finite_insert [simp]: "finite (insert a A) = finite A" | |
| 191 | apply (subst insert_is_Un) | |
| 14208 | 192 | apply (simp only: finite_Un, blast) | 
| 12396 | 193 | done | 
| 194 | ||
| 15281 | 195 | lemma finite_Union[simp, intro]: | 
| 196 | "\<lbrakk> finite A; !!M. M \<in> A \<Longrightarrow> finite M \<rbrakk> \<Longrightarrow> finite(\<Union>A)" | |
| 197 | by (induct rule:finite_induct) simp_all | |
| 198 | ||
| 12396 | 199 | lemma finite_empty_induct: | 
| 200 | "finite A ==> | |
| 201 |   P A ==> (!!a A. finite A ==> a:A ==> P A ==> P (A - {a})) ==> P {}"
 | |
| 202 | proof - | |
| 203 | assume "finite A" | |
| 204 |     and "P A" and "!!a A. finite A ==> a:A ==> P A ==> P (A - {a})"
 | |
| 205 | have "P (A - A)" | |
| 206 | proof - | |
| 207 | fix c b :: "'a set" | |
| 208 | presume c: "finite c" and b: "finite b" | |
| 209 |       and P1: "P b" and P2: "!!x y. finite y ==> x \<in> y ==> P y ==> P (y - {x})"
 | |
| 210 | from c show "c \<subseteq> b ==> P (b - c)" | |
| 211 | proof induct | |
| 212 | case empty | |
| 213 | from P1 show ?case by simp | |
| 214 | next | |
| 15327 
0230a10582d3
changed the order of !!-quantifiers in finite set induction.
 nipkow parents: 
15318diff
changeset | 215 | case (insert x F) | 
| 12396 | 216 |       have "P (b - F - {x})"
 | 
| 217 | proof (rule P2) | |
| 218 | from _ b show "finite (b - F)" by (rule finite_subset) blast | |
| 219 | from insert show "x \<in> b - F" by simp | |
| 220 | from insert show "P (b - F)" by simp | |
| 221 | qed | |
| 222 |       also have "b - F - {x} = b - insert x F" by (rule Diff_insert [symmetric])
 | |
| 223 | finally show ?case . | |
| 224 | qed | |
| 225 | next | |
| 226 | show "A \<subseteq> A" .. | |
| 227 | qed | |
| 228 |   thus "P {}" by simp
 | |
| 229 | qed | |
| 230 | ||
| 231 | lemma finite_Diff [simp]: "finite B ==> finite (B - Ba)" | |
| 232 | by (rule Diff_subset [THEN finite_subset]) | |
| 233 | ||
| 234 | lemma finite_Diff_insert [iff]: "finite (A - insert a B) = finite (A - B)" | |
| 235 | apply (subst Diff_insert) | |
| 236 | apply (case_tac "a : A - B") | |
| 237 | apply (rule finite_insert [symmetric, THEN trans]) | |
| 14208 | 238 | apply (subst insert_Diff, simp_all) | 
| 12396 | 239 | done | 
| 240 | ||
| 241 | ||
| 15392 | 242 | text {* Image and Inverse Image over Finite Sets *}
 | 
| 13825 | 243 | |
| 244 | lemma finite_imageI[simp]: "finite F ==> finite (h ` F)" | |
| 245 |   -- {* The image of a finite set is finite. *}
 | |
| 246 | by (induct set: Finites) simp_all | |
| 247 | ||
| 14430 
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
 paulson parents: 
14331diff
changeset | 248 | lemma finite_surj: "finite A ==> B <= f ` A ==> finite B" | 
| 
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
 paulson parents: 
14331diff
changeset | 249 | apply (frule finite_imageI) | 
| 
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
 paulson parents: 
14331diff
changeset | 250 | apply (erule finite_subset, assumption) | 
| 
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
 paulson parents: 
14331diff
changeset | 251 | done | 
| 
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
 paulson parents: 
14331diff
changeset | 252 | |
| 13825 | 253 | lemma finite_range_imageI: | 
| 254 | "finite (range g) ==> finite (range (%x. f (g x)))" | |
| 14208 | 255 | apply (drule finite_imageI, simp) | 
| 13825 | 256 | done | 
| 257 | ||
| 12396 | 258 | lemma finite_imageD: "finite (f`A) ==> inj_on f A ==> finite A" | 
| 259 | proof - | |
| 260 |   have aux: "!!A. finite (A - {}) = finite A" by simp
 | |
| 261 | fix B :: "'a set" | |
| 262 | assume "finite B" | |
| 263 | thus "!!A. f`A = B ==> inj_on f A ==> finite A" | |
| 264 | apply induct | |
| 265 | apply simp | |
| 266 |     apply (subgoal_tac "EX y:A. f y = x & F = f ` (A - {y})")
 | |
| 267 | apply clarify | |
| 268 | apply (simp (no_asm_use) add: inj_on_def) | |
| 14208 | 269 | apply (blast dest!: aux [THEN iffD1], atomize) | 
| 12396 | 270 | apply (erule_tac V = "ALL A. ?PP (A)" in thin_rl) | 
| 14208 | 271 | apply (frule subsetD [OF equalityD2 insertI1], clarify) | 
| 12396 | 272 | apply (rule_tac x = xa in bexI) | 
| 273 | apply (simp_all add: inj_on_image_set_diff) | |
| 274 | done | |
| 275 | qed (rule refl) | |
| 276 | ||
| 277 | ||
| 13825 | 278 | lemma inj_vimage_singleton: "inj f ==> f-`{a} \<subseteq> {THE x. f x = a}"
 | 
| 279 |   -- {* The inverse image of a singleton under an injective function
 | |
| 280 | is included in a singleton. *} | |
| 14430 
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
 paulson parents: 
14331diff
changeset | 281 | apply (auto simp add: inj_on_def) | 
| 
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
 paulson parents: 
14331diff
changeset | 282 | apply (blast intro: the_equality [symmetric]) | 
| 13825 | 283 | done | 
| 284 | ||
| 285 | lemma finite_vimageI: "[|finite F; inj h|] ==> finite (h -` F)" | |
| 286 |   -- {* The inverse image of a finite set under an injective function
 | |
| 287 | is finite. *} | |
| 14430 
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
 paulson parents: 
14331diff
changeset | 288 | apply (induct set: Finites, simp_all) | 
| 
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
 paulson parents: 
14331diff
changeset | 289 | apply (subst vimage_insert) | 
| 
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
 paulson parents: 
14331diff
changeset | 290 | apply (simp add: finite_Un finite_subset [OF inj_vimage_singleton]) | 
| 13825 | 291 | done | 
| 292 | ||
| 293 | ||
| 15392 | 294 | text {* The finite UNION of finite sets *}
 | 
| 12396 | 295 | |
| 296 | lemma finite_UN_I: "finite A ==> (!!a. a:A ==> finite (B a)) ==> finite (UN a:A. B a)" | |
| 297 | by (induct set: Finites) simp_all | |
| 298 | ||
| 299 | text {*
 | |
| 300 | Strengthen RHS to | |
| 14430 
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
 paulson parents: 
14331diff
changeset | 301 |   @{prop "((ALL x:A. finite (B x)) & finite {x. x:A & B x \<noteq> {}})"}?
 | 
| 12396 | 302 | |
| 303 | We'd need to prove | |
| 14430 
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
 paulson parents: 
14331diff
changeset | 304 |   @{prop "finite C ==> ALL A B. (UNION A B) <= C --> finite {x. x:A & B x \<noteq> {}}"}
 | 
| 12396 | 305 | by induction. *} | 
| 306 | ||
| 307 | lemma finite_UN [simp]: "finite A ==> finite (UNION A B) = (ALL x:A. finite (B x))" | |
| 308 | by (blast intro: finite_UN_I finite_subset) | |
| 309 | ||
| 310 | ||
| 17022 | 311 | lemma finite_Plus: "[| finite A; finite B |] ==> finite (A <+> B)" | 
| 312 | by (simp add: Plus_def) | |
| 313 | ||
| 15392 | 314 | text {* Sigma of finite sets *}
 | 
| 12396 | 315 | |
| 316 | lemma finite_SigmaI [simp]: | |
| 317 | "finite A ==> (!!a. a:A ==> finite (B a)) ==> finite (SIGMA a:A. B a)" | |
| 318 | by (unfold Sigma_def) (blast intro!: finite_UN_I) | |
| 319 | ||
| 15402 | 320 | lemma finite_cartesian_product: "[| finite A; finite B |] ==> | 
| 321 | finite (A <*> B)" | |
| 322 | by (rule finite_SigmaI) | |
| 323 | ||
| 12396 | 324 | lemma finite_Prod_UNIV: | 
| 325 |     "finite (UNIV::'a set) ==> finite (UNIV::'b set) ==> finite (UNIV::('a * 'b) set)"
 | |
| 326 |   apply (subgoal_tac "(UNIV:: ('a * 'b) set) = Sigma UNIV (%x. UNIV)")
 | |
| 327 | apply (erule ssubst) | |
| 14208 | 328 | apply (erule finite_SigmaI, auto) | 
| 12396 | 329 | done | 
| 330 | ||
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 331 | lemma finite_cartesian_productD1: | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 332 |      "[| finite (A <*> B); B \<noteq> {} |] ==> finite A"
 | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 333 | apply (auto simp add: finite_conv_nat_seg_image) | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 334 | apply (drule_tac x=n in spec) | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 335 | apply (drule_tac x="fst o f" in spec) | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 336 | apply (auto simp add: o_def) | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 337 | prefer 2 apply (force dest!: equalityD2) | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 338 | apply (drule equalityD1) | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 339 | apply (rename_tac y x) | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 340 | apply (subgoal_tac "\<exists>k. k<n & f k = (x,y)") | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 341 | prefer 2 apply force | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 342 | apply clarify | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 343 | apply (rule_tac x=k in image_eqI, auto) | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 344 | done | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 345 | |
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 346 | lemma finite_cartesian_productD2: | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 347 |      "[| finite (A <*> B); A \<noteq> {} |] ==> finite B"
 | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 348 | apply (auto simp add: finite_conv_nat_seg_image) | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 349 | apply (drule_tac x=n in spec) | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 350 | apply (drule_tac x="snd o f" in spec) | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 351 | apply (auto simp add: o_def) | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 352 | prefer 2 apply (force dest!: equalityD2) | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 353 | apply (drule equalityD1) | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 354 | apply (rename_tac x y) | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 355 | apply (subgoal_tac "\<exists>k. k<n & f k = (x,y)") | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 356 | prefer 2 apply force | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 357 | apply clarify | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 358 | apply (rule_tac x=k in image_eqI, auto) | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 359 | done | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 360 | |
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 361 | |
| 15392 | 362 | text {* The powerset of a finite set *}
 | 
| 12396 | 363 | |
| 364 | lemma finite_Pow_iff [iff]: "finite (Pow A) = finite A" | |
| 365 | proof | |
| 366 | assume "finite (Pow A)" | |
| 367 |   with _ have "finite ((%x. {x}) ` A)" by (rule finite_subset) blast
 | |
| 368 | thus "finite A" by (rule finite_imageD [unfolded inj_on_def]) simp | |
| 369 | next | |
| 370 | assume "finite A" | |
| 371 | thus "finite (Pow A)" | |
| 372 | by induct (simp_all add: finite_UnI finite_imageI Pow_insert) | |
| 373 | qed | |
| 374 | ||
| 15392 | 375 | |
| 376 | lemma finite_UnionD: "finite(\<Union>A) \<Longrightarrow> finite A" | |
| 377 | by(blast intro: finite_subset[OF subset_Pow_Union]) | |
| 378 | ||
| 379 | ||
| 12396 | 380 | lemma finite_converse [iff]: "finite (r^-1) = finite r" | 
| 381 | apply (subgoal_tac "r^-1 = (%(x,y). (y,x))`r") | |
| 382 | apply simp | |
| 383 | apply (rule iffI) | |
| 384 | apply (erule finite_imageD [unfolded inj_on_def]) | |
| 385 | apply (simp split add: split_split) | |
| 386 | apply (erule finite_imageI) | |
| 14208 | 387 | apply (simp add: converse_def image_def, auto) | 
| 12396 | 388 | apply (rule bexI) | 
| 389 | prefer 2 apply assumption | |
| 390 | apply simp | |
| 391 | done | |
| 392 | ||
| 14430 
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
 paulson parents: 
14331diff
changeset | 393 | |
| 15392 | 394 | text {* \paragraph{Finiteness of transitive closure} (Thanks to Sidi
 | 
| 395 | Ehmety) *} | |
| 12396 | 396 | |
| 397 | lemma finite_Field: "finite r ==> finite (Field r)" | |
| 398 |   -- {* A finite relation has a finite field (@{text "= domain \<union> range"}. *}
 | |
| 399 | apply (induct set: Finites) | |
| 400 | apply (auto simp add: Field_def Domain_insert Range_insert) | |
| 401 | done | |
| 402 | ||
| 403 | lemma trancl_subset_Field2: "r^+ <= Field r \<times> Field r" | |
| 404 | apply clarify | |
| 405 | apply (erule trancl_induct) | |
| 406 | apply (auto simp add: Field_def) | |
| 407 | done | |
| 408 | ||
| 409 | lemma finite_trancl: "finite (r^+) = finite r" | |
| 410 | apply auto | |
| 411 | prefer 2 | |
| 412 | apply (rule trancl_subset_Field2 [THEN finite_subset]) | |
| 413 | apply (rule finite_SigmaI) | |
| 414 | prefer 3 | |
| 13704 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
13595diff
changeset | 415 | apply (blast intro: r_into_trancl' finite_subset) | 
| 12396 | 416 | apply (auto simp add: finite_Field) | 
| 417 | done | |
| 418 | ||
| 419 | ||
| 15392 | 420 | subsection {* A fold functional for finite sets *}
 | 
| 421 | ||
| 422 | text {* The intended behaviour is
 | |
| 15480 | 423 | @{text "fold f g z {x\<^isub>1, ..., x\<^isub>n} = f (g x\<^isub>1) (\<dots> (f (g x\<^isub>n) z)\<dots>)"}
 | 
| 15392 | 424 | if @{text f} is associative-commutative. For an application of @{text fold}
 | 
| 425 | se the definitions of sums and products over finite sets. | |
| 426 | *} | |
| 427 | ||
| 428 | consts | |
| 429 |   foldSet :: "('a => 'a => 'a) => ('b => 'a) => 'a => ('b set \<times> 'a) set"
 | |
| 430 | ||
| 15480 | 431 | inductive "foldSet f g z" | 
| 15392 | 432 | intros | 
| 15480 | 433 | emptyI [intro]: "({}, z) : foldSet f g z"
 | 
| 15506 | 434 | insertI [intro]: | 
| 435 | "\<lbrakk> x \<notin> A; (A, y) : foldSet f g z \<rbrakk> | |
| 436 | \<Longrightarrow> (insert x A, f (g x) y) : foldSet f g z" | |
| 15392 | 437 | |
| 15480 | 438 | inductive_cases empty_foldSetE [elim!]: "({}, x) : foldSet f g z"
 | 
| 15392 | 439 | |
| 440 | constdefs | |
| 441 |   fold :: "('a => 'a => 'a) => ('b => 'a) => 'a => 'b set => 'a"
 | |
| 15480 | 442 | "fold f g z A == THE x. (A, x) : foldSet f g z" | 
| 15392 | 443 | |
| 15498 | 444 | text{*A tempting alternative for the definiens is
 | 
| 445 | @{term "if finite A then THE x. (A, x) : foldSet f g e else e"}.
 | |
| 446 | It allows the removal of finiteness assumptions from the theorems | |
| 447 | @{text fold_commute}, @{text fold_reindex} and @{text fold_distrib}.
 | |
| 448 | The proofs become ugly, with @{text rule_format}. It is not worth the effort.*}
 | |
| 449 | ||
| 450 | ||
| 15392 | 451 | lemma Diff1_foldSet: | 
| 15480 | 452 |   "(A - {x}, y) : foldSet f g z ==> x: A ==> (A, f (g x) y) : foldSet f g z"
 | 
| 15392 | 453 | by (erule insert_Diff [THEN subst], rule foldSet.intros, auto) | 
| 454 | ||
| 15480 | 455 | lemma foldSet_imp_finite: "(A, x) : foldSet f g z ==> finite A" | 
| 15392 | 456 | by (induct set: foldSet) auto | 
| 457 | ||
| 15480 | 458 | lemma finite_imp_foldSet: "finite A ==> EX x. (A, x) : foldSet f g z" | 
| 15392 | 459 | by (induct set: Finites) auto | 
| 460 | ||
| 461 | ||
| 462 | subsubsection {* Commutative monoids *}
 | |
| 15480 | 463 | |
| 15392 | 464 | locale ACf = | 
| 465 | fixes f :: "'a => 'a => 'a" (infixl "\<cdot>" 70) | |
| 466 | assumes commute: "x \<cdot> y = y \<cdot> x" | |
| 467 | and assoc: "(x \<cdot> y) \<cdot> z = x \<cdot> (y \<cdot> z)" | |
| 468 | ||
| 469 | locale ACe = ACf + | |
| 470 | fixes e :: 'a | |
| 471 | assumes ident [simp]: "x \<cdot> e = x" | |
| 472 | ||
| 15480 | 473 | locale ACIf = ACf + | 
| 474 | assumes idem: "x \<cdot> x = x" | |
| 475 | ||
| 15392 | 476 | lemma (in ACf) left_commute: "x \<cdot> (y \<cdot> z) = y \<cdot> (x \<cdot> z)" | 
| 477 | proof - | |
| 478 | have "x \<cdot> (y \<cdot> z) = (y \<cdot> z) \<cdot> x" by (simp only: commute) | |
| 479 | also have "... = y \<cdot> (z \<cdot> x)" by (simp only: assoc) | |
| 480 | also have "z \<cdot> x = x \<cdot> z" by (simp only: commute) | |
| 481 | finally show ?thesis . | |
| 482 | qed | |
| 483 | ||
| 484 | lemmas (in ACf) AC = assoc commute left_commute | |
| 485 | ||
| 486 | lemma (in ACe) left_ident [simp]: "e \<cdot> x = x" | |
| 487 | proof - | |
| 488 | have "x \<cdot> e = x" by (rule ident) | |
| 489 | thus ?thesis by (subst commute) | |
| 490 | qed | |
| 491 | ||
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 492 | lemma (in ACIf) idem2: "x \<cdot> (x \<cdot> y) = x \<cdot> y" | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 493 | proof - | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 494 | have "x \<cdot> (x \<cdot> y) = (x \<cdot> x) \<cdot> y" by(simp add:assoc) | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 495 | also have "\<dots> = x \<cdot> y" by(simp add:idem) | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 496 | finally show ?thesis . | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 497 | qed | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 498 | |
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 499 | lemmas (in ACIf) ACI = AC idem idem2 | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 500 | |
| 15765 | 501 | text{* Interpretation of locales: *}
 | 
| 502 | ||
| 503 | interpretation AC_add: ACe ["op +" "0::'a::comm_monoid_add"] | |
| 504 | by(auto intro: ACf.intro ACe_axioms.intro add_assoc add_commute) | |
| 15402 | 505 | |
| 15765 | 506 | interpretation AC_mult: ACe ["op *" "1::'a::comm_monoid_mult"] | 
| 507 | apply - | |
| 15780 | 508 | apply (fast intro: ACf.intro mult_assoc mult_commute) | 
| 509 | apply (fastsimp intro: ACe_axioms.intro mult_assoc mult_commute) | |
| 15765 | 510 | done | 
| 511 | ||
| 15402 | 512 | |
| 15392 | 513 | subsubsection{*From @{term foldSet} to @{term fold}*}
 | 
| 514 | ||
| 15510 | 515 | lemma image_less_Suc: "h ` {i. i < Suc m} = insert (h m) (h ` {i. i < m})"
 | 
| 516 | by (auto simp add: less_Suc_eq) | |
| 517 | ||
| 518 | lemma insert_image_inj_on_eq: | |
| 519 |      "[|insert (h m) A = h ` {i. i < Suc m}; h m \<notin> A; 
 | |
| 520 |         inj_on h {i. i < Suc m}|] 
 | |
| 521 |       ==> A = h ` {i. i < m}"
 | |
| 522 | apply (auto simp add: image_less_Suc inj_on_def) | |
| 523 | apply (blast intro: less_trans) | |
| 524 | done | |
| 525 | ||
| 526 | lemma insert_inj_onE: | |
| 527 |   assumes aA: "insert a A = h`{i::nat. i<n}" and anot: "a \<notin> A" 
 | |
| 528 |       and inj_on: "inj_on h {i::nat. i<n}"
 | |
| 529 |   shows "\<exists>hm m. inj_on hm {i::nat. i<m} & A = hm ` {i. i<m} & m < n"
 | |
| 530 | proof (cases n) | |
| 531 | case 0 thus ?thesis using aA by auto | |
| 532 | next | |
| 533 | case (Suc m) | |
| 534 | have nSuc: "n = Suc m" . | |
| 535 | have mlessn: "m<n" by (simp add: nSuc) | |
| 15532 | 536 | from aA obtain k where hkeq: "h k = a" and klessn: "k<n" by (blast elim!: equalityE) | 
| 15520 | 537 | let ?hm = "swap k m h" | 
| 538 |   have inj_hm: "inj_on ?hm {i. i < n}" using klessn mlessn 
 | |
| 539 | by (simp add: inj_on_swap_iff inj_on) | |
| 15510 | 540 | show ?thesis | 
| 15520 | 541 | proof (intro exI conjI) | 
| 542 |     show "inj_on ?hm {i. i < m}" using inj_hm
 | |
| 15510 | 543 | by (auto simp add: nSuc less_Suc_eq intro: subset_inj_on) | 
| 15520 | 544 | show "m<n" by (rule mlessn) | 
| 545 |     show "A = ?hm ` {i. i < m}" 
 | |
| 546 | proof (rule insert_image_inj_on_eq) | |
| 547 |       show "inj_on (swap k m h) {i. i < Suc m}" using inj_hm nSuc by simp
 | |
| 548 | show "?hm m \<notin> A" by (simp add: swap_def hkeq anot) | |
| 549 |       show "insert (?hm m) A = ?hm ` {i. i < Suc m}"
 | |
| 550 | using aA hkeq nSuc klessn | |
| 551 | by (auto simp add: swap_def image_less_Suc fun_upd_image | |
| 552 | less_Suc_eq inj_on_image_set_diff [OF inj_on]) | |
| 15479 | 553 | qed | 
| 554 | qed | |
| 555 | qed | |
| 556 | ||
| 15392 | 557 | lemma (in ACf) foldSet_determ_aux: | 
| 15510 | 558 |   "!!A x x' h. \<lbrakk> A = h`{i::nat. i<n}; inj_on h {i. i<n}; 
 | 
| 559 | (A,x) : foldSet f g z; (A,x') : foldSet f g z \<rbrakk> | |
| 15392 | 560 | \<Longrightarrow> x' = x" | 
| 15510 | 561 | proof (induct n rule: less_induct) | 
| 562 | case (less n) | |
| 563 | have IH: "!!m h A x x'. | |
| 564 |                \<lbrakk>m<n; A = h ` {i. i<m}; inj_on h {i. i<m}; 
 | |
| 565 | (A,x) \<in> foldSet f g z; (A, x') \<in> foldSet f g z\<rbrakk> \<Longrightarrow> x' = x" . | |
| 566 | have Afoldx: "(A,x) \<in> foldSet f g z" and Afoldx': "(A,x') \<in> foldSet f g z" | |
| 567 |      and A: "A = h`{i. i<n}" and injh: "inj_on h {i. i<n}" .
 | |
| 568 | show ?case | |
| 569 | proof (rule foldSet.cases [OF Afoldx]) | |
| 570 |       assume "(A, x) = ({}, z)"
 | |
| 571 | with Afoldx' show "x' = x" by blast | |
| 15392 | 572 | next | 
| 15510 | 573 | fix B b u | 
| 574 | assume "(A,x) = (insert b B, g b \<cdot> u)" and notinB: "b \<notin> B" | |
| 575 | and Bu: "(B,u) \<in> foldSet f g z" | |
| 576 | hence AbB: "A = insert b B" and x: "x = g b \<cdot> u" by auto | |
| 577 | show "x'=x" | |
| 578 | proof (rule foldSet.cases [OF Afoldx']) | |
| 579 |         assume "(A, x') = ({}, z)"
 | |
| 580 | with AbB show "x' = x" by blast | |
| 15392 | 581 | next | 
| 15510 | 582 | fix C c v | 
| 583 | assume "(A,x') = (insert c C, g c \<cdot> v)" and notinC: "c \<notin> C" | |
| 584 | and Cv: "(C,v) \<in> foldSet f g z" | |
| 585 | hence AcC: "A = insert c C" and x': "x' = g c \<cdot> v" by auto | |
| 586 | 	from A AbB have Beq: "insert b B = h`{i. i<n}" by simp
 | |
| 587 | from insert_inj_onE [OF Beq notinB injh] | |
| 588 |         obtain hB mB where inj_onB: "inj_on hB {i. i < mB}" 
 | |
| 589 |                      and Beq: "B = hB ` {i. i < mB}"
 | |
| 590 | and lessB: "mB < n" by auto | |
| 591 | 	from A AcC have Ceq: "insert c C = h`{i. i<n}" by simp
 | |
| 592 | from insert_inj_onE [OF Ceq notinC injh] | |
| 593 |         obtain hC mC where inj_onC: "inj_on hC {i. i < mC}"
 | |
| 594 |                        and Ceq: "C = hC ` {i. i < mC}"
 | |
| 595 | and lessC: "mC < n" by auto | |
| 596 | show "x'=x" | |
| 15392 | 597 | proof cases | 
| 15510 | 598 | assume "b=c" | 
| 599 | then moreover have "B = C" using AbB AcC notinB notinC by auto | |
| 600 | ultimately show ?thesis using Bu Cv x x' IH[OF lessC Ceq inj_onC] | |
| 601 | by auto | |
| 15392 | 602 | next | 
| 603 | assume diff: "b \<noteq> c" | |
| 604 | 	  let ?D = "B - {c}"
 | |
| 605 | have B: "B = insert c ?D" and C: "C = insert b ?D" | |
| 15510 | 606 | using AbB AcC notinB notinC diff by(blast elim!:equalityE)+ | 
| 15402 | 607 | have "finite A" by(rule foldSet_imp_finite[OF Afoldx]) | 
| 15510 | 608 | with AbB have "finite ?D" by simp | 
| 15480 | 609 | then obtain d where Dfoldd: "(?D,d) \<in> foldSet f g z" | 
| 17589 | 610 | using finite_imp_foldSet by iprover | 
| 15506 | 611 | moreover have cinB: "c \<in> B" using B by auto | 
| 15480 | 612 | ultimately have "(B,g c \<cdot> d) \<in> foldSet f g z" | 
| 15392 | 613 | by(rule Diff1_foldSet) | 
| 15510 | 614 | hence "g c \<cdot> d = u" by (rule IH [OF lessB Beq inj_onB Bu]) | 
| 615 | moreover have "g b \<cdot> d = v" | |
| 616 | proof (rule IH[OF lessC Ceq inj_onC Cv]) | |
| 617 | show "(C, g b \<cdot> d) \<in> foldSet f g z" using C notinB Dfoldd | |
| 15392 | 618 | by fastsimp | 
| 619 | qed | |
| 15510 | 620 | ultimately show ?thesis using x x' by (auto simp: AC) | 
| 15392 | 621 | qed | 
| 622 | qed | |
| 623 | qed | |
| 624 | qed | |
| 625 | ||
| 626 | ||
| 627 | lemma (in ACf) foldSet_determ: | |
| 15510 | 628 | "(A,x) : foldSet f g z ==> (A,y) : foldSet f g z ==> y = x" | 
| 629 | apply (frule foldSet_imp_finite [THEN finite_imp_nat_seg_image_inj_on]) | |
| 630 | apply (blast intro: foldSet_determ_aux [rule_format]) | |
| 15392 | 631 | done | 
| 632 | ||
| 15480 | 633 | lemma (in ACf) fold_equality: "(A, y) : foldSet f g z ==> fold f g z A = y" | 
| 15392 | 634 | by (unfold fold_def) (blast intro: foldSet_determ) | 
| 635 | ||
| 636 | text{* The base case for @{text fold}: *}
 | |
| 637 | ||
| 15480 | 638 | lemma fold_empty [simp]: "fold f g z {} = z"
 | 
| 15392 | 639 | by (unfold fold_def) blast | 
| 640 | ||
| 641 | lemma (in ACf) fold_insert_aux: "x \<notin> A ==> | |
| 15480 | 642 | ((insert x A, v) : foldSet f g z) = | 
| 643 | (EX y. (A, y) : foldSet f g z & v = f (g x) y)" | |
| 15392 | 644 | apply auto | 
| 645 | apply (rule_tac A1 = A and f1 = f in finite_imp_foldSet [THEN exE]) | |
| 646 | apply (fastsimp dest: foldSet_imp_finite) | |
| 647 | apply (blast intro: foldSet_determ) | |
| 648 | done | |
| 649 | ||
| 650 | text{* The recursion equation for @{text fold}: *}
 | |
| 651 | ||
| 652 | lemma (in ACf) fold_insert[simp]: | |
| 15480 | 653 | "finite A ==> x \<notin> A ==> fold f g z (insert x A) = f (g x) (fold f g z A)" | 
| 15392 | 654 | apply (unfold fold_def) | 
| 655 | apply (simp add: fold_insert_aux) | |
| 656 | apply (rule the_equality) | |
| 657 | apply (auto intro: finite_imp_foldSet | |
| 658 | cong add: conj_cong simp add: fold_def [symmetric] fold_equality) | |
| 659 | done | |
| 660 | ||
| 15535 | 661 | lemma (in ACf) fold_rec: | 
| 662 | assumes fin: "finite A" and a: "a:A" | |
| 663 | shows "fold f g z A = f (g a) (fold f g z (A - {a}))"
 | |
| 664 | proof- | |
| 665 |   have A: "A = insert a (A - {a})" using a by blast
 | |
| 666 |   hence "fold f g z A = fold f g z (insert a (A - {a}))" by simp
 | |
| 667 |   also have "\<dots> = f (g a) (fold f g z (A - {a}))"
 | |
| 668 | by(rule fold_insert) (simp add:fin)+ | |
| 669 | finally show ?thesis . | |
| 670 | qed | |
| 671 | ||
| 15392 | 672 | |
| 15480 | 673 | text{* A simplified version for idempotent functions: *}
 | 
| 674 | ||
| 15509 | 675 | lemma (in ACIf) fold_insert_idem: | 
| 15480 | 676 | assumes finA: "finite A" | 
| 15508 | 677 | shows "fold f g z (insert a A) = g a \<cdot> fold f g z A" | 
| 15480 | 678 | proof cases | 
| 679 | assume "a \<in> A" | |
| 680 | then obtain B where A: "A = insert a B" and disj: "a \<notin> B" | |
| 681 | by(blast dest: mk_disjoint_insert) | |
| 682 | show ?thesis | |
| 683 | proof - | |
| 684 | from finA A have finB: "finite B" by(blast intro: finite_subset) | |
| 685 | have "fold f g z (insert a A) = fold f g z (insert a B)" using A by simp | |
| 686 | also have "\<dots> = (g a) \<cdot> (fold f g z B)" | |
| 15506 | 687 | using finB disj by simp | 
| 15480 | 688 | also have "\<dots> = g a \<cdot> fold f g z A" | 
| 689 | using A finB disj by(simp add:idem assoc[symmetric]) | |
| 690 | finally show ?thesis . | |
| 691 | qed | |
| 692 | next | |
| 693 | assume "a \<notin> A" | |
| 694 | with finA show ?thesis by simp | |
| 695 | qed | |
| 696 | ||
| 15484 | 697 | lemma (in ACIf) foldI_conv_id: | 
| 698 | "finite A \<Longrightarrow> fold f g z A = fold f id z (g ` A)" | |
| 15509 | 699 | by(erule finite_induct)(simp_all add: fold_insert_idem del: fold_insert) | 
| 15484 | 700 | |
| 15392 | 701 | subsubsection{*Lemmas about @{text fold}*}
 | 
| 702 | ||
| 703 | lemma (in ACf) fold_commute: | |
| 15487 | 704 | "finite A ==> (!!z. f x (fold f g z A) = fold f g (f x z) A)" | 
| 15392 | 705 | apply (induct set: Finites, simp) | 
| 15487 | 706 | apply (simp add: left_commute [of x]) | 
| 15392 | 707 | done | 
| 708 | ||
| 709 | lemma (in ACf) fold_nest_Un_Int: | |
| 710 | "finite A ==> finite B | |
| 15480 | 711 | ==> fold f g (fold f g z B) A = fold f g (fold f g z (A Int B)) (A Un B)" | 
| 15392 | 712 | apply (induct set: Finites, simp) | 
| 713 | apply (simp add: fold_commute Int_insert_left insert_absorb) | |
| 714 | done | |
| 715 | ||
| 716 | lemma (in ACf) fold_nest_Un_disjoint: | |
| 717 |   "finite A ==> finite B ==> A Int B = {}
 | |
| 15480 | 718 | ==> fold f g z (A Un B) = fold f g (fold f g z B) A" | 
| 15392 | 719 | by (simp add: fold_nest_Un_Int) | 
| 720 | ||
| 721 | lemma (in ACf) fold_reindex: | |
| 15487 | 722 | assumes fin: "finite A" | 
| 723 | shows "inj_on h A \<Longrightarrow> fold f g z (h ` A) = fold f (g \<circ> h) z A" | |
| 15506 | 724 | using fin apply induct | 
| 15392 | 725 | apply simp | 
| 726 | apply simp | |
| 727 | done | |
| 728 | ||
| 729 | lemma (in ACe) fold_Un_Int: | |
| 730 | "finite A ==> finite B ==> | |
| 731 | fold f g e A \<cdot> fold f g e B = | |
| 732 | fold f g e (A Un B) \<cdot> fold f g e (A Int B)" | |
| 733 | apply (induct set: Finites, simp) | |
| 734 | apply (simp add: AC insert_absorb Int_insert_left) | |
| 735 | done | |
| 736 | ||
| 737 | corollary (in ACe) fold_Un_disjoint: | |
| 738 |   "finite A ==> finite B ==> A Int B = {} ==>
 | |
| 739 | fold f g e (A Un B) = fold f g e A \<cdot> fold f g e B" | |
| 740 | by (simp add: fold_Un_Int) | |
| 741 | ||
| 742 | lemma (in ACe) fold_UN_disjoint: | |
| 743 | "\<lbrakk> finite I; ALL i:I. finite (A i); | |
| 744 |      ALL i:I. ALL j:I. i \<noteq> j --> A i Int A j = {} \<rbrakk>
 | |
| 745 | \<Longrightarrow> fold f g e (UNION I A) = | |
| 746 | fold f (%i. fold f g e (A i)) e I" | |
| 747 | apply (induct set: Finites, simp, atomize) | |
| 748 | apply (subgoal_tac "ALL i:F. x \<noteq> i") | |
| 749 | prefer 2 apply blast | |
| 750 |   apply (subgoal_tac "A x Int UNION F A = {}")
 | |
| 751 | prefer 2 apply blast | |
| 752 | apply (simp add: fold_Un_disjoint) | |
| 753 | done | |
| 754 | ||
| 15506 | 755 | text{*Fusion theorem, as described in
 | 
| 756 | Graham Hutton's paper, | |
| 757 | A Tutorial on the Universality and Expressiveness of Fold, | |
| 758 | JFP 9:4 (355-372), 1999.*} | |
| 759 | lemma (in ACf) fold_fusion: | |
| 760 | includes ACf g | |
| 761 | shows | |
| 762 | "finite A ==> | |
| 763 | (!!x y. h (g x y) = f x (h y)) ==> | |
| 764 | h (fold g j w A) = fold f j (h w) A" | |
| 765 | by (induct set: Finites, simp_all) | |
| 766 | ||
| 15392 | 767 | lemma (in ACf) fold_cong: | 
| 15480 | 768 | "finite A \<Longrightarrow> (!!x. x:A ==> g x = h x) ==> fold f g z A = fold f h z A" | 
| 769 | apply (subgoal_tac "ALL C. C <= A --> (ALL x:C. g x = h x) --> fold f g z C = fold f h z C") | |
| 15392 | 770 | apply simp | 
| 771 | apply (erule finite_induct, simp) | |
| 772 | apply (simp add: subset_insert_iff, clarify) | |
| 773 | apply (subgoal_tac "finite C") | |
| 774 | prefer 2 apply (blast dest: finite_subset [COMP swap_prems_rl]) | |
| 775 |   apply (subgoal_tac "C = insert x (C - {x})")
 | |
| 776 | prefer 2 apply blast | |
| 777 | apply (erule ssubst) | |
| 778 | apply (drule spec) | |
| 779 | apply (erule (1) notE impE) | |
| 780 | apply (simp add: Ball_def del: insert_Diff_single) | |
| 781 | done | |
| 782 | ||
| 783 | lemma (in ACe) fold_Sigma: "finite A ==> ALL x:A. finite (B x) ==> | |
| 784 | fold f (%x. fold f (g x) e (B x)) e A = | |
| 785 | fold f (split g) e (SIGMA x:A. B x)" | |
| 786 | apply (subst Sigma_def) | |
| 15506 | 787 | apply (subst fold_UN_disjoint, assumption, simp) | 
| 15392 | 788 | apply blast | 
| 789 | apply (erule fold_cong) | |
| 15506 | 790 | apply (subst fold_UN_disjoint, simp, simp) | 
| 15392 | 791 | apply blast | 
| 15506 | 792 | apply simp | 
| 15392 | 793 | done | 
| 794 | ||
| 795 | lemma (in ACe) fold_distrib: "finite A \<Longrightarrow> | |
| 796 | fold f (%x. f (g x) (h x)) e A = f (fold f g e A) (fold f h e A)" | |
| 15506 | 797 | apply (erule finite_induct, simp) | 
| 15392 | 798 | apply (simp add:AC) | 
| 799 | done | |
| 800 | ||
| 801 | ||
| 15402 | 802 | subsection {* Generalized summation over a set *}
 | 
| 803 | ||
| 804 | constdefs | |
| 805 |   setsum :: "('a => 'b) => 'a set => 'b::comm_monoid_add"
 | |
| 806 | "setsum f A == if finite A then fold (op +) f 0 A else 0" | |
| 807 | ||
| 808 | text{* Now: lot's of fancy syntax. First, @{term "setsum (%x. e) A"} is
 | |
| 809 | written @{text"\<Sum>x\<in>A. e"}. *}
 | |
| 810 | ||
| 811 | syntax | |
| 17189 | 812 |   "_setsum" :: "pttrn => 'a set => 'b => 'b::comm_monoid_add"    ("(3SUM _:_. _)" [0, 51, 10] 10)
 | 
| 15402 | 813 | syntax (xsymbols) | 
| 17189 | 814 |   "_setsum" :: "pttrn => 'a set => 'b => 'b::comm_monoid_add"    ("(3\<Sum>_\<in>_. _)" [0, 51, 10] 10)
 | 
| 15402 | 815 | syntax (HTML output) | 
| 17189 | 816 |   "_setsum" :: "pttrn => 'a set => 'b => 'b::comm_monoid_add"    ("(3\<Sum>_\<in>_. _)" [0, 51, 10] 10)
 | 
| 15402 | 817 | |
| 818 | translations -- {* Beware of argument permutation! *}
 | |
| 819 | "SUM i:A. b" == "setsum (%i. b) A" | |
| 820 | "\<Sum>i\<in>A. b" == "setsum (%i. b) A" | |
| 821 | ||
| 822 | text{* Instead of @{term"\<Sum>x\<in>{x. P}. e"} we introduce the shorter
 | |
| 823 |  @{text"\<Sum>x|P. e"}. *}
 | |
| 824 | ||
| 825 | syntax | |
| 17189 | 826 |   "_qsetsum" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a \<Rightarrow> 'a" ("(3SUM _ |/ _./ _)" [0,0,10] 10)
 | 
| 15402 | 827 | syntax (xsymbols) | 
| 17189 | 828 |   "_qsetsum" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a \<Rightarrow> 'a" ("(3\<Sum>_ | (_)./ _)" [0,0,10] 10)
 | 
| 15402 | 829 | syntax (HTML output) | 
| 17189 | 830 |   "_qsetsum" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a \<Rightarrow> 'a" ("(3\<Sum>_ | (_)./ _)" [0,0,10] 10)
 | 
| 15402 | 831 | |
| 832 | translations | |
| 833 |   "SUM x|P. t" => "setsum (%x. t) {x. P}"
 | |
| 834 |   "\<Sum>x|P. t" => "setsum (%x. t) {x. P}"
 | |
| 835 | ||
| 836 | text{* Finally we abbreviate @{term"\<Sum>x\<in>A. x"} by @{text"\<Sum>A"}. *}
 | |
| 837 | ||
| 838 | syntax | |
| 839 |   "_Setsum" :: "'a set => 'a::comm_monoid_mult"  ("\<Sum>_" [1000] 999)
 | |
| 840 | ||
| 841 | parse_translation {*
 | |
| 842 | let | |
| 17782 | 843 | fun Setsum_tr [A] = Syntax.const "setsum" $ Term.absdummy (dummyT, Bound 0) $ A | 
| 15402 | 844 |   in [("_Setsum", Setsum_tr)] end;
 | 
| 845 | *} | |
| 846 | ||
| 847 | print_translation {*
 | |
| 848 | let | |
| 849 | fun setsum_tr' [Abs(_,_,Bound 0), A] = Syntax.const "_Setsum" $ A | |
| 850 |     | setsum_tr' [Abs(x,Tx,t), Const ("Collect",_) $ Abs(y,Ty,P)] = 
 | |
| 851 | if x<>y then raise Match | |
| 852 | else let val x' = Syntax.mark_bound x | |
| 853 | val t' = subst_bound(x',t) | |
| 854 | val P' = subst_bound(x',P) | |
| 855 | in Syntax.const "_qsetsum" $ Syntax.mark_bound x $ P' $ t' end | |
| 856 | in | |
| 857 | [("setsum", setsum_tr')]
 | |
| 858 | end | |
| 859 | *} | |
| 860 | ||
| 861 | lemma setsum_empty [simp]: "setsum f {} = 0"
 | |
| 862 | by (simp add: setsum_def) | |
| 863 | ||
| 864 | lemma setsum_insert [simp]: | |
| 865 | "finite F ==> a \<notin> F ==> setsum f (insert a F) = f a + setsum f F" | |
| 15765 | 866 | by (simp add: setsum_def) | 
| 15402 | 867 | |
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 868 | lemma setsum_infinite [simp]: "~ finite A ==> setsum f A = 0" | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 869 | by (simp add: setsum_def) | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 870 | |
| 15402 | 871 | lemma setsum_reindex: | 
| 872 | "inj_on f B ==> setsum h (f ` B) = setsum (h \<circ> f) B" | |
| 15765 | 873 | by(auto simp add: setsum_def AC_add.fold_reindex dest!:finite_imageD) | 
| 15402 | 874 | |
| 875 | lemma setsum_reindex_id: | |
| 876 | "inj_on f B ==> setsum f B = setsum id (f ` B)" | |
| 877 | by (auto simp add: setsum_reindex) | |
| 878 | ||
| 879 | lemma setsum_cong: | |
| 880 | "A = B ==> (!!x. x:B ==> f x = g x) ==> setsum f A = setsum g B" | |
| 15765 | 881 | by(fastsimp simp: setsum_def intro: AC_add.fold_cong) | 
| 15402 | 882 | |
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16632diff
changeset | 883 | lemma strong_setsum_cong[cong]: | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16632diff
changeset | 884 | "A = B ==> (!!x. x:B =simp=> f x = g x) | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16632diff
changeset | 885 | ==> setsum (%x. f x) A = setsum (%x. g x) B" | 
| 16632 
ad2895beef79
Added strong_setsum_cong and strong_setprod_cong.
 berghofe parents: 
16550diff
changeset | 886 | by(fastsimp simp: simp_implies_def setsum_def intro: AC_add.fold_cong) | 
| 
ad2895beef79
Added strong_setsum_cong and strong_setprod_cong.
 berghofe parents: 
16550diff
changeset | 887 | |
| 15554 | 888 | lemma setsum_cong2: "\<lbrakk>\<And>x. x \<in> A \<Longrightarrow> f x = g x\<rbrakk> \<Longrightarrow> setsum f A = setsum g A"; | 
| 889 | by (rule setsum_cong[OF refl], auto); | |
| 890 | ||
| 15402 | 891 | lemma setsum_reindex_cong: | 
| 15554 | 892 | "[|inj_on f A; B = f ` A; !!a. a:A \<Longrightarrow> g a = h (f a)|] | 
| 15402 | 893 | ==> setsum h B = setsum g A" | 
| 894 | by (simp add: setsum_reindex cong: setsum_cong) | |
| 895 | ||
| 15542 | 896 | lemma setsum_0[simp]: "setsum (%i. 0) A = 0" | 
| 15402 | 897 | apply (clarsimp simp: setsum_def) | 
| 15765 | 898 | apply (erule finite_induct, auto) | 
| 15402 | 899 | done | 
| 900 | ||
| 15543 | 901 | lemma setsum_0': "ALL a:A. f a = 0 ==> setsum f A = 0" | 
| 902 | by(simp add:setsum_cong) | |
| 15402 | 903 | |
| 904 | lemma setsum_Un_Int: "finite A ==> finite B ==> | |
| 905 | setsum g (A Un B) + setsum g (A Int B) = setsum g A + setsum g B" | |
| 906 |   -- {* The reversed orientation looks more natural, but LOOPS as a simprule! *}
 | |
| 15765 | 907 | by(simp add: setsum_def AC_add.fold_Un_Int [symmetric]) | 
| 15402 | 908 | |
| 909 | lemma setsum_Un_disjoint: "finite A ==> finite B | |
| 910 |   ==> A Int B = {} ==> setsum g (A Un B) = setsum g A + setsum g B"
 | |
| 911 | by (subst setsum_Un_Int [symmetric], auto) | |
| 912 | ||
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 913 | (*But we can't get rid of finite I. If infinite, although the rhs is 0, | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 914 | the lhs need not be, since UNION I A could still be finite.*) | 
| 15402 | 915 | lemma setsum_UN_disjoint: | 
| 916 | "finite I ==> (ALL i:I. finite (A i)) ==> | |
| 917 |         (ALL i:I. ALL j:I. i \<noteq> j --> A i Int A j = {}) ==>
 | |
| 918 | setsum f (UNION I A) = (\<Sum>i\<in>I. setsum f (A i))" | |
| 15765 | 919 | by(simp add: setsum_def AC_add.fold_UN_disjoint cong: setsum_cong) | 
| 15402 | 920 | |
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 921 | text{*No need to assume that @{term C} is finite.  If infinite, the rhs is
 | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 922 | directly 0, and @{term "Union C"} is also infinite, hence the lhs is also 0.*}
 | 
| 15402 | 923 | lemma setsum_Union_disjoint: | 
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 924 | "[| (ALL A:C. finite A); | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 925 |       (ALL A:C. ALL B:C. A \<noteq> B --> A Int B = {}) |]
 | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 926 | ==> setsum f (Union C) = setsum (setsum f) C" | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 927 | apply (cases "finite C") | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 928 | prefer 2 apply (force dest: finite_UnionD simp add: setsum_def) | 
| 15402 | 929 | apply (frule setsum_UN_disjoint [of C id f]) | 
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 930 | apply (unfold Union_def id_def, assumption+) | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 931 | done | 
| 15402 | 932 | |
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 933 | (*But we can't get rid of finite A. If infinite, although the lhs is 0, | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 934 | the rhs need not be, since SIGMA A B could still be finite.*) | 
| 15402 | 935 | lemma setsum_Sigma: "finite A ==> ALL x:A. finite (B x) ==> | 
| 17189 | 936 | (\<Sum>x\<in>A. (\<Sum>y\<in>B x. f x y)) = (\<Sum>(x,y)\<in>(SIGMA x:A. B x). f x y)" | 
| 15765 | 937 | by(simp add:setsum_def AC_add.fold_Sigma split_def cong:setsum_cong) | 
| 15402 | 938 | |
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 939 | text{*Here we can eliminate the finiteness assumptions, by cases.*}
 | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 940 | lemma setsum_cartesian_product: | 
| 17189 | 941 | "(\<Sum>x\<in>A. (\<Sum>y\<in>B. f x y)) = (\<Sum>(x,y) \<in> A <*> B. f x y)" | 
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 942 | apply (cases "finite A") | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 943 | apply (cases "finite B") | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 944 | apply (simp add: setsum_Sigma) | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 945 |  apply (cases "A={}", simp)
 | 
| 15543 | 946 | apply (simp) | 
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 947 | apply (auto simp add: setsum_def | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 948 | dest: finite_cartesian_productD1 finite_cartesian_productD2) | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 949 | done | 
| 15402 | 950 | |
| 951 | lemma setsum_addf: "setsum (%x. f x + g x) A = (setsum f A + setsum g A)" | |
| 15765 | 952 | by(simp add:setsum_def AC_add.fold_distrib) | 
| 15402 | 953 | |
| 954 | ||
| 955 | subsubsection {* Properties in more restricted classes of structures *}
 | |
| 956 | ||
| 957 | lemma setsum_SucD: "setsum f A = Suc n ==> EX a:A. 0 < f a" | |
| 958 | apply (case_tac "finite A") | |
| 959 | prefer 2 apply (simp add: setsum_def) | |
| 960 | apply (erule rev_mp) | |
| 961 | apply (erule finite_induct, auto) | |
| 962 | done | |
| 963 | ||
| 964 | lemma setsum_eq_0_iff [simp]: | |
| 965 | "finite F ==> (setsum f F = 0) = (ALL a:F. f a = (0::nat))" | |
| 966 | by (induct set: Finites) auto | |
| 967 | ||
| 968 | lemma setsum_Un_nat: "finite A ==> finite B ==> | |
| 969 | (setsum f (A Un B) :: nat) = setsum f A + setsum f B - setsum f (A Int B)" | |
| 970 |   -- {* For the natural numbers, we have subtraction. *}
 | |
| 971 | by (subst setsum_Un_Int [symmetric], auto simp add: ring_eq_simps) | |
| 972 | ||
| 973 | lemma setsum_Un: "finite A ==> finite B ==> | |
| 974 | (setsum f (A Un B) :: 'a :: ab_group_add) = | |
| 975 | setsum f A + setsum f B - setsum f (A Int B)" | |
| 976 | by (subst setsum_Un_Int [symmetric], auto simp add: ring_eq_simps) | |
| 977 | ||
| 978 | lemma setsum_diff1_nat: "(setsum f (A - {a}) :: nat) =
 | |
| 979 | (if a:A then setsum f A - f a else setsum f A)" | |
| 980 | apply (case_tac "finite A") | |
| 981 | prefer 2 apply (simp add: setsum_def) | |
| 982 | apply (erule finite_induct) | |
| 983 | apply (auto simp add: insert_Diff_if) | |
| 984 | apply (drule_tac a = a in mk_disjoint_insert, auto) | |
| 985 | done | |
| 986 | ||
| 987 | lemma setsum_diff1: "finite A \<Longrightarrow> | |
| 988 |   (setsum f (A - {a}) :: ('a::ab_group_add)) =
 | |
| 989 | (if a:A then setsum f A - f a else setsum f A)" | |
| 990 | by (erule finite_induct) (auto simp add: insert_Diff_if) | |
| 991 | ||
| 15552 
8ab8e425410b
added setsum_diff1' which holds in more general cases than setsum_diff1
 obua parents: 
15543diff
changeset | 992 | lemma setsum_diff1'[rule_format]: "finite A \<Longrightarrow> a \<in> A \<longrightarrow> (\<Sum> x \<in> A. f x) = f a + (\<Sum> x \<in> (A - {a}). f x)"
 | 
| 
8ab8e425410b
added setsum_diff1' which holds in more general cases than setsum_diff1
 obua parents: 
15543diff
changeset | 993 |   apply (erule finite_induct[where F=A and P="% A. (a \<in> A \<longrightarrow> (\<Sum> x \<in> A. f x) = f a + (\<Sum> x \<in> (A - {a}). f x))"])
 | 
| 
8ab8e425410b
added setsum_diff1' which holds in more general cases than setsum_diff1
 obua parents: 
15543diff
changeset | 994 | apply (auto simp add: insert_Diff_if add_ac) | 
| 
8ab8e425410b
added setsum_diff1' which holds in more general cases than setsum_diff1
 obua parents: 
15543diff
changeset | 995 | done | 
| 
8ab8e425410b
added setsum_diff1' which holds in more general cases than setsum_diff1
 obua parents: 
15543diff
changeset | 996 | |
| 15402 | 997 | (* By Jeremy Siek: *) | 
| 998 | ||
| 999 | lemma setsum_diff_nat: | |
| 1000 | assumes finB: "finite B" | |
| 1001 | shows "B \<subseteq> A \<Longrightarrow> (setsum f (A - B) :: nat) = (setsum f A) - (setsum f B)" | |
| 1002 | using finB | |
| 1003 | proof (induct) | |
| 1004 |   show "setsum f (A - {}) = (setsum f A) - (setsum f {})" by simp
 | |
| 1005 | next | |
| 1006 | fix F x assume finF: "finite F" and xnotinF: "x \<notin> F" | |
| 1007 | and xFinA: "insert x F \<subseteq> A" | |
| 1008 | and IH: "F \<subseteq> A \<Longrightarrow> setsum f (A - F) = setsum f A - setsum f F" | |
| 1009 | from xnotinF xFinA have xinAF: "x \<in> (A - F)" by simp | |
| 1010 |   from xinAF have A: "setsum f ((A - F) - {x}) = setsum f (A - F) - f x"
 | |
| 1011 | by (simp add: setsum_diff1_nat) | |
| 1012 | from xFinA have "F \<subseteq> A" by simp | |
| 1013 | with IH have "setsum f (A - F) = setsum f A - setsum f F" by simp | |
| 1014 |   with A have B: "setsum f ((A - F) - {x}) = setsum f A - setsum f F - f x"
 | |
| 1015 | by simp | |
| 1016 |   from xnotinF have "A - insert x F = (A - F) - {x}" by auto
 | |
| 1017 | with B have C: "setsum f (A - insert x F) = setsum f A - setsum f F - f x" | |
| 1018 | by simp | |
| 1019 | from finF xnotinF have "setsum f (insert x F) = setsum f F + f x" by simp | |
| 1020 | with C have "setsum f (A - insert x F) = setsum f A - setsum f (insert x F)" | |
| 1021 | by simp | |
| 1022 | thus "setsum f (A - insert x F) = setsum f A - setsum f (insert x F)" by simp | |
| 1023 | qed | |
| 1024 | ||
| 1025 | lemma setsum_diff: | |
| 1026 | assumes le: "finite A" "B \<subseteq> A" | |
| 1027 |   shows "setsum f (A - B) = setsum f A - ((setsum f B)::('a::ab_group_add))"
 | |
| 1028 | proof - | |
| 1029 | from le have finiteB: "finite B" using finite_subset by auto | |
| 1030 | show ?thesis using finiteB le | |
| 1031 | proof (induct) | |
| 1032 | case empty | |
| 1033 | thus ?case by auto | |
| 1034 | next | |
| 1035 | case (insert x F) | |
| 1036 | thus ?case using le finiteB | |
| 1037 | by (simp add: Diff_insert[where a=x and B=F] setsum_diff1 insert_absorb) | |
| 1038 | qed | |
| 1039 | qed | |
| 1040 | ||
| 1041 | lemma setsum_mono: | |
| 1042 |   assumes le: "\<And>i. i\<in>K \<Longrightarrow> f (i::'a) \<le> ((g i)::('b::{comm_monoid_add, pordered_ab_semigroup_add}))"
 | |
| 1043 | shows "(\<Sum>i\<in>K. f i) \<le> (\<Sum>i\<in>K. g i)" | |
| 1044 | proof (cases "finite K") | |
| 1045 | case True | |
| 1046 | thus ?thesis using le | |
| 1047 | proof (induct) | |
| 1048 | case empty | |
| 1049 | thus ?case by simp | |
| 1050 | next | |
| 1051 | case insert | |
| 1052 | thus ?case using add_mono | |
| 1053 | by force | |
| 1054 | qed | |
| 1055 | next | |
| 1056 | case False | |
| 1057 | thus ?thesis | |
| 1058 | by (simp add: setsum_def) | |
| 1059 | qed | |
| 1060 | ||
| 15554 | 1061 | lemma setsum_strict_mono: | 
| 1062 | fixes f :: "'a \<Rightarrow> 'b::{pordered_cancel_ab_semigroup_add,comm_monoid_add}"
 | |
| 1063 | assumes fin_ne: "finite A"  "A \<noteq> {}"
 | |
| 1064 | shows "(!!x. x:A \<Longrightarrow> f x < g x) \<Longrightarrow> setsum f A < setsum g A" | |
| 1065 | using fin_ne | |
| 1066 | proof (induct rule: finite_ne_induct) | |
| 1067 | case singleton thus ?case by simp | |
| 1068 | next | |
| 1069 | case insert thus ?case by (auto simp: add_strict_mono) | |
| 1070 | qed | |
| 1071 | ||
| 15535 | 1072 | lemma setsum_negf: | 
| 1073 | "setsum (%x. - (f x)::'a::ab_group_add) A = - setsum f A" | |
| 1074 | proof (cases "finite A") | |
| 1075 | case True thus ?thesis by (induct set: Finites, auto) | |
| 1076 | next | |
| 1077 | case False thus ?thesis by (simp add: setsum_def) | |
| 1078 | qed | |
| 15402 | 1079 | |
| 15535 | 1080 | lemma setsum_subtractf: | 
| 1081 | "setsum (%x. ((f x)::'a::ab_group_add) - g x) A = | |
| 15402 | 1082 | setsum f A - setsum g A" | 
| 15535 | 1083 | proof (cases "finite A") | 
| 1084 | case True thus ?thesis by (simp add: diff_minus setsum_addf setsum_negf) | |
| 1085 | next | |
| 1086 | case False thus ?thesis by (simp add: setsum_def) | |
| 1087 | qed | |
| 15402 | 1088 | |
| 15535 | 1089 | lemma setsum_nonneg: | 
| 1090 | assumes nn: "\<forall>x\<in>A. (0::'a::{pordered_ab_semigroup_add,comm_monoid_add}) \<le> f x"
 | |
| 1091 | shows "0 \<le> setsum f A" | |
| 1092 | proof (cases "finite A") | |
| 1093 | case True thus ?thesis using nn | |
| 15402 | 1094 | apply (induct set: Finites, auto) | 
| 1095 | apply (subgoal_tac "0 + 0 \<le> f x + setsum f F", simp) | |
| 1096 | apply (blast intro: add_mono) | |
| 1097 | done | |
| 15535 | 1098 | next | 
| 1099 | case False thus ?thesis by (simp add: setsum_def) | |
| 1100 | qed | |
| 15402 | 1101 | |
| 15535 | 1102 | lemma setsum_nonpos: | 
| 1103 | assumes np: "\<forall>x\<in>A. f x \<le> (0::'a::{pordered_ab_semigroup_add,comm_monoid_add})"
 | |
| 1104 | shows "setsum f A \<le> 0" | |
| 1105 | proof (cases "finite A") | |
| 1106 | case True thus ?thesis using np | |
| 15402 | 1107 | apply (induct set: Finites, auto) | 
| 1108 | apply (subgoal_tac "f x + setsum f F \<le> 0 + 0", simp) | |
| 1109 | apply (blast intro: add_mono) | |
| 1110 | done | |
| 15535 | 1111 | next | 
| 1112 | case False thus ?thesis by (simp add: setsum_def) | |
| 1113 | qed | |
| 15402 | 1114 | |
| 15539 | 1115 | lemma setsum_mono2: | 
| 1116 | fixes f :: "'a \<Rightarrow> 'b :: {pordered_ab_semigroup_add_imp_le,comm_monoid_add}"
 | |
| 1117 | assumes fin: "finite B" and sub: "A \<subseteq> B" and nn: "\<And>b. b \<in> B-A \<Longrightarrow> 0 \<le> f b" | |
| 1118 | shows "setsum f A \<le> setsum f B" | |
| 1119 | proof - | |
| 1120 | have "setsum f A \<le> setsum f A + setsum f (B-A)" | |
| 1121 | by(simp add: add_increasing2[OF setsum_nonneg] nn Ball_def) | |
| 1122 | also have "\<dots> = setsum f (A \<union> (B-A))" using fin finite_subset[OF sub fin] | |
| 1123 | by (simp add:setsum_Un_disjoint del:Un_Diff_cancel) | |
| 1124 | also have "A \<union> (B-A) = B" using sub by blast | |
| 1125 | finally show ?thesis . | |
| 1126 | qed | |
| 15542 | 1127 | |
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 1128 | lemma setsum_mono3: "finite B ==> A <= B ==> | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 1129 | ALL x: B - A. | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 1130 |       0 <= ((f x)::'a::{comm_monoid_add,pordered_ab_semigroup_add}) ==>
 | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 1131 | setsum f A <= setsum f B" | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 1132 | apply (subgoal_tac "setsum f B = setsum f A + setsum f (B - A)") | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 1133 | apply (erule ssubst) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 1134 | apply (subgoal_tac "setsum f A + 0 <= setsum f A + setsum f (B - A)") | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 1135 | apply simp | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 1136 | apply (rule add_left_mono) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 1137 | apply (erule setsum_nonneg) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 1138 | apply (subst setsum_Un_disjoint [THEN sym]) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 1139 | apply (erule finite_subset, assumption) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 1140 | apply (rule finite_subset) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 1141 | prefer 2 | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 1142 | apply assumption | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 1143 | apply auto | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 1144 | apply (rule setsum_cong) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 1145 | apply auto | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 1146 | done | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 1147 | |
| 15837 | 1148 | (* FIXME: this is distributitivty, name as such! *) | 
| 17149 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1149 | (* suggested name: setsum_right_distrib (CB) *) | 
| 15837 | 1150 | |
| 15402 | 1151 | lemma setsum_mult: | 
| 1152 |   fixes f :: "'a => ('b::semiring_0_cancel)"
 | |
| 1153 | shows "r * setsum f A = setsum (%n. r * f n) A" | |
| 1154 | proof (cases "finite A") | |
| 1155 | case True | |
| 1156 | thus ?thesis | |
| 1157 | proof (induct) | |
| 1158 | case empty thus ?case by simp | |
| 1159 | next | |
| 1160 | case (insert x A) thus ?case by (simp add: right_distrib) | |
| 1161 | qed | |
| 1162 | next | |
| 1163 | case False thus ?thesis by (simp add: setsum_def) | |
| 1164 | qed | |
| 1165 | ||
| 17149 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1166 | lemma setsum_left_distrib: | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1167 | "setsum f A * (r::'a::semiring_0_cancel) = (\<Sum>n\<in>A. f n * r)" | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1168 | proof (cases "finite A") | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1169 | case True | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1170 | then show ?thesis | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1171 | proof induct | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1172 | case empty thus ?case by simp | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1173 | next | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1174 | case (insert x A) thus ?case by (simp add: left_distrib) | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1175 | qed | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1176 | next | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1177 | case False thus ?thesis by (simp add: setsum_def) | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1178 | qed | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1179 | |
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1180 | lemma setsum_divide_distrib: | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1181 | "setsum f A / (r::'a::field) = (\<Sum>n\<in>A. f n / r)" | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1182 | proof (cases "finite A") | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1183 | case True | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1184 | then show ?thesis | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1185 | proof induct | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1186 | case empty thus ?case by simp | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1187 | next | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1188 | case (insert x A) thus ?case by (simp add: add_divide_distrib) | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1189 | qed | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1190 | next | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1191 | case False thus ?thesis by (simp add: setsum_def) | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1192 | qed | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1193 | |
| 15535 | 1194 | lemma setsum_abs[iff]: | 
| 15402 | 1195 |   fixes f :: "'a => ('b::lordered_ab_group_abs)"
 | 
| 1196 | shows "abs (setsum f A) \<le> setsum (%i. abs(f i)) A" | |
| 15535 | 1197 | proof (cases "finite A") | 
| 1198 | case True | |
| 1199 | thus ?thesis | |
| 1200 | proof (induct) | |
| 1201 | case empty thus ?case by simp | |
| 1202 | next | |
| 1203 | case (insert x A) | |
| 1204 | thus ?case by (auto intro: abs_triangle_ineq order_trans) | |
| 1205 | qed | |
| 15402 | 1206 | next | 
| 15535 | 1207 | case False thus ?thesis by (simp add: setsum_def) | 
| 15402 | 1208 | qed | 
| 1209 | ||
| 15535 | 1210 | lemma setsum_abs_ge_zero[iff]: | 
| 15402 | 1211 |   fixes f :: "'a => ('b::lordered_ab_group_abs)"
 | 
| 1212 | shows "0 \<le> setsum (%i. abs(f i)) A" | |
| 15535 | 1213 | proof (cases "finite A") | 
| 1214 | case True | |
| 1215 | thus ?thesis | |
| 1216 | proof (induct) | |
| 1217 | case empty thus ?case by simp | |
| 1218 | next | |
| 1219 | case (insert x A) thus ?case by (auto intro: order_trans) | |
| 1220 | qed | |
| 15402 | 1221 | next | 
| 15535 | 1222 | case False thus ?thesis by (simp add: setsum_def) | 
| 15402 | 1223 | qed | 
| 1224 | ||
| 15539 | 1225 | lemma abs_setsum_abs[simp]: | 
| 1226 |   fixes f :: "'a => ('b::lordered_ab_group_abs)"
 | |
| 1227 | shows "abs (\<Sum>a\<in>A. abs(f a)) = (\<Sum>a\<in>A. abs(f a))" | |
| 1228 | proof (cases "finite A") | |
| 1229 | case True | |
| 1230 | thus ?thesis | |
| 1231 | proof (induct) | |
| 1232 | case empty thus ?case by simp | |
| 1233 | next | |
| 1234 | case (insert a A) | |
| 1235 | hence "\<bar>\<Sum>a\<in>insert a A. \<bar>f a\<bar>\<bar> = \<bar>\<bar>f a\<bar> + (\<Sum>a\<in>A. \<bar>f a\<bar>)\<bar>" by simp | |
| 1236 | also have "\<dots> = \<bar>\<bar>f a\<bar> + \<bar>\<Sum>a\<in>A. \<bar>f a\<bar>\<bar>\<bar>" using insert by simp | |
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 1237 | also have "\<dots> = \<bar>f a\<bar> + \<bar>\<Sum>a\<in>A. \<bar>f a\<bar>\<bar>" | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 1238 | by (simp del: abs_of_nonneg) | 
| 15539 | 1239 | also have "\<dots> = (\<Sum>a\<in>insert a A. \<bar>f a\<bar>)" using insert by simp | 
| 1240 | finally show ?case . | |
| 1241 | qed | |
| 1242 | next | |
| 1243 | case False thus ?thesis by (simp add: setsum_def) | |
| 1244 | qed | |
| 1245 | ||
| 15402 | 1246 | |
| 17149 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1247 | text {* Commuting outer and inner summation *}
 | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1248 | |
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1249 | lemma swap_inj_on: | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1250 | "inj_on (%(i, j). (j, i)) (A \<times> B)" | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1251 | by (unfold inj_on_def) fast | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1252 | |
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1253 | lemma swap_product: | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1254 | "(%(i, j). (j, i)) ` (A \<times> B) = B \<times> A" | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1255 | by (simp add: split_def image_def) blast | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1256 | |
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1257 | lemma setsum_commute: | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1258 | "(\<Sum>i\<in>A. \<Sum>j\<in>B. f i j) = (\<Sum>j\<in>B. \<Sum>i\<in>A. f i j)" | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1259 | proof (simp add: setsum_cartesian_product) | 
| 17189 | 1260 | have "(\<Sum>(x,y) \<in> A <*> B. f x y) = | 
| 1261 | (\<Sum>(y,x) \<in> (%(i, j). (j, i)) ` (A \<times> B). f x y)" | |
| 17149 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1262 | (is "?s = _") | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1263 | apply (simp add: setsum_reindex [where f = "%(i, j). (j, i)"] swap_inj_on) | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1264 | apply (simp add: split_def) | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1265 | done | 
| 17189 | 1266 | also have "... = (\<Sum>(y,x)\<in>B \<times> A. f x y)" | 
| 17149 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1267 | (is "_ = ?t") | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1268 | apply (simp add: swap_product) | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1269 | done | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1270 | finally show "?s = ?t" . | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1271 | qed | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1272 | |
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1273 | |
| 15402 | 1274 | subsection {* Generalized product over a set *}
 | 
| 1275 | ||
| 1276 | constdefs | |
| 1277 |   setprod :: "('a => 'b) => 'a set => 'b::comm_monoid_mult"
 | |
| 1278 | "setprod f A == if finite A then fold (op *) f 1 A else 1" | |
| 1279 | ||
| 1280 | syntax | |
| 17189 | 1281 |   "_setprod" :: "pttrn => 'a set => 'b => 'b::comm_monoid_mult"  ("(3PROD _:_. _)" [0, 51, 10] 10)
 | 
| 15402 | 1282 | syntax (xsymbols) | 
| 17189 | 1283 |   "_setprod" :: "pttrn => 'a set => 'b => 'b::comm_monoid_mult"  ("(3\<Prod>_\<in>_. _)" [0, 51, 10] 10)
 | 
| 15402 | 1284 | syntax (HTML output) | 
| 17189 | 1285 |   "_setprod" :: "pttrn => 'a set => 'b => 'b::comm_monoid_mult"  ("(3\<Prod>_\<in>_. _)" [0, 51, 10] 10)
 | 
| 16550 | 1286 | |
| 1287 | translations -- {* Beware of argument permutation! *}
 | |
| 1288 | "PROD i:A. b" == "setprod (%i. b) A" | |
| 1289 | "\<Prod>i\<in>A. b" == "setprod (%i. b) A" | |
| 1290 | ||
| 1291 | text{* Instead of @{term"\<Prod>x\<in>{x. P}. e"} we introduce the shorter
 | |
| 1292 |  @{text"\<Prod>x|P. e"}. *}
 | |
| 1293 | ||
| 1294 | syntax | |
| 17189 | 1295 |   "_qsetprod" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a \<Rightarrow> 'a" ("(3PROD _ |/ _./ _)" [0,0,10] 10)
 | 
| 16550 | 1296 | syntax (xsymbols) | 
| 17189 | 1297 |   "_qsetprod" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a \<Rightarrow> 'a" ("(3\<Prod>_ | (_)./ _)" [0,0,10] 10)
 | 
| 16550 | 1298 | syntax (HTML output) | 
| 17189 | 1299 |   "_qsetprod" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a \<Rightarrow> 'a" ("(3\<Prod>_ | (_)./ _)" [0,0,10] 10)
 | 
| 16550 | 1300 | |
| 15402 | 1301 | translations | 
| 16550 | 1302 |   "PROD x|P. t" => "setprod (%x. t) {x. P}"
 | 
| 1303 |   "\<Prod>x|P. t" => "setprod (%x. t) {x. P}"
 | |
| 1304 | ||
| 1305 | text{* Finally we abbreviate @{term"\<Prod>x\<in>A. x"} by @{text"\<Prod>A"}. *}
 | |
| 15402 | 1306 | |
| 1307 | syntax | |
| 1308 |   "_Setprod" :: "'a set => 'a::comm_monoid_mult"  ("\<Prod>_" [1000] 999)
 | |
| 1309 | ||
| 1310 | parse_translation {*
 | |
| 1311 | let | |
| 1312 |     fun Setprod_tr [A] = Syntax.const "setprod" $ Abs ("", dummyT, Bound 0) $ A
 | |
| 1313 |   in [("_Setprod", Setprod_tr)] end;
 | |
| 1314 | *} | |
| 1315 | print_translation {*
 | |
| 1316 | let fun setprod_tr' [Abs(x,Tx,t), A] = | |
| 1317 | if t = Bound 0 then Syntax.const "_Setprod" $ A else raise Match | |
| 1318 | in | |
| 1319 | [("setprod", setprod_tr')]
 | |
| 1320 | end | |
| 1321 | *} | |
| 1322 | ||
| 1323 | ||
| 1324 | lemma setprod_empty [simp]: "setprod f {} = 1"
 | |
| 1325 | by (auto simp add: setprod_def) | |
| 1326 | ||
| 1327 | lemma setprod_insert [simp]: "[| finite A; a \<notin> A |] ==> | |
| 1328 | setprod f (insert a A) = f a * setprod f A" | |
| 15765 | 1329 | by (simp add: setprod_def) | 
| 15402 | 1330 | |
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1331 | lemma setprod_infinite [simp]: "~ finite A ==> setprod f A = 1" | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1332 | by (simp add: setprod_def) | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1333 | |
| 15402 | 1334 | lemma setprod_reindex: | 
| 1335 | "inj_on f B ==> setprod h (f ` B) = setprod (h \<circ> f) B" | |
| 15765 | 1336 | by(auto simp: setprod_def AC_mult.fold_reindex dest!:finite_imageD) | 
| 15402 | 1337 | |
| 1338 | lemma setprod_reindex_id: "inj_on f B ==> setprod f B = setprod id (f ` B)" | |
| 1339 | by (auto simp add: setprod_reindex) | |
| 1340 | ||
| 1341 | lemma setprod_cong: | |
| 1342 | "A = B ==> (!!x. x:B ==> f x = g x) ==> setprod f A = setprod g B" | |
| 15765 | 1343 | by(fastsimp simp: setprod_def intro: AC_mult.fold_cong) | 
| 15402 | 1344 | |
| 16632 
ad2895beef79
Added strong_setsum_cong and strong_setprod_cong.
 berghofe parents: 
16550diff
changeset | 1345 | lemma strong_setprod_cong: | 
| 
ad2895beef79
Added strong_setsum_cong and strong_setprod_cong.
 berghofe parents: 
16550diff
changeset | 1346 | "A = B ==> (!!x. x:B =simp=> f x = g x) ==> setprod f A = setprod g B" | 
| 
ad2895beef79
Added strong_setsum_cong and strong_setprod_cong.
 berghofe parents: 
16550diff
changeset | 1347 | by(fastsimp simp: simp_implies_def setprod_def intro: AC_mult.fold_cong) | 
| 
ad2895beef79
Added strong_setsum_cong and strong_setprod_cong.
 berghofe parents: 
16550diff
changeset | 1348 | |
| 15402 | 1349 | lemma setprod_reindex_cong: "inj_on f A ==> | 
| 1350 | B = f ` A ==> g = h \<circ> f ==> setprod h B = setprod g A" | |
| 1351 | by (frule setprod_reindex, simp) | |
| 1352 | ||
| 1353 | ||
| 1354 | lemma setprod_1: "setprod (%i. 1) A = 1" | |
| 1355 | apply (case_tac "finite A") | |
| 1356 | apply (erule finite_induct, auto simp add: mult_ac) | |
| 1357 | done | |
| 1358 | ||
| 1359 | lemma setprod_1': "ALL a:F. f a = 1 ==> setprod f F = 1" | |
| 1360 | apply (subgoal_tac "setprod f F = setprod (%x. 1) F") | |
| 1361 | apply (erule ssubst, rule setprod_1) | |
| 1362 | apply (rule setprod_cong, auto) | |
| 1363 | done | |
| 1364 | ||
| 1365 | lemma setprod_Un_Int: "finite A ==> finite B | |
| 1366 | ==> setprod g (A Un B) * setprod g (A Int B) = setprod g A * setprod g B" | |
| 15765 | 1367 | by(simp add: setprod_def AC_mult.fold_Un_Int[symmetric]) | 
| 15402 | 1368 | |
| 1369 | lemma setprod_Un_disjoint: "finite A ==> finite B | |
| 1370 |   ==> A Int B = {} ==> setprod g (A Un B) = setprod g A * setprod g B"
 | |
| 1371 | by (subst setprod_Un_Int [symmetric], auto) | |
| 1372 | ||
| 1373 | lemma setprod_UN_disjoint: | |
| 1374 | "finite I ==> (ALL i:I. finite (A i)) ==> | |
| 1375 |         (ALL i:I. ALL j:I. i \<noteq> j --> A i Int A j = {}) ==>
 | |
| 1376 | setprod f (UNION I A) = setprod (%i. setprod f (A i)) I" | |
| 15765 | 1377 | by(simp add: setprod_def AC_mult.fold_UN_disjoint cong: setprod_cong) | 
| 15402 | 1378 | |
| 1379 | lemma setprod_Union_disjoint: | |
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1380 | "[| (ALL A:C. finite A); | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1381 |       (ALL A:C. ALL B:C. A \<noteq> B --> A Int B = {}) |] 
 | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1382 | ==> setprod f (Union C) = setprod (setprod f) C" | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1383 | apply (cases "finite C") | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1384 | prefer 2 apply (force dest: finite_UnionD simp add: setprod_def) | 
| 15402 | 1385 | apply (frule setprod_UN_disjoint [of C id f]) | 
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1386 | apply (unfold Union_def id_def, assumption+) | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1387 | done | 
| 15402 | 1388 | |
| 1389 | lemma setprod_Sigma: "finite A ==> ALL x:A. finite (B x) ==> | |
| 16550 | 1390 | (\<Prod>x\<in>A. (\<Prod>y\<in> B x. f x y)) = | 
| 17189 | 1391 | (\<Prod>(x,y)\<in>(SIGMA x:A. B x). f x y)" | 
| 15765 | 1392 | by(simp add:setprod_def AC_mult.fold_Sigma split_def cong:setprod_cong) | 
| 15402 | 1393 | |
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1394 | text{*Here we can eliminate the finiteness assumptions, by cases.*}
 | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1395 | lemma setprod_cartesian_product: | 
| 17189 | 1396 | "(\<Prod>x\<in>A. (\<Prod>y\<in> B. f x y)) = (\<Prod>(x,y)\<in>(A <*> B). f x y)" | 
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1397 | apply (cases "finite A") | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1398 | apply (cases "finite B") | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1399 | apply (simp add: setprod_Sigma) | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1400 |  apply (cases "A={}", simp)
 | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1401 | apply (simp add: setprod_1) | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1402 | apply (auto simp add: setprod_def | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1403 | dest: finite_cartesian_productD1 finite_cartesian_productD2) | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1404 | done | 
| 15402 | 1405 | |
| 1406 | lemma setprod_timesf: | |
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1407 | "setprod (%x. f x * g x) A = (setprod f A * setprod g A)" | 
| 15765 | 1408 | by(simp add:setprod_def AC_mult.fold_distrib) | 
| 15402 | 1409 | |
| 1410 | ||
| 1411 | subsubsection {* Properties in more restricted classes of structures *}
 | |
| 1412 | ||
| 1413 | lemma setprod_eq_1_iff [simp]: | |
| 1414 | "finite F ==> (setprod f F = 1) = (ALL a:F. f a = (1::nat))" | |
| 1415 | by (induct set: Finites) auto | |
| 1416 | ||
| 1417 | lemma setprod_zero: | |
| 1418 | "finite A ==> EX x: A. f x = (0::'a::comm_semiring_1_cancel) ==> setprod f A = 0" | |
| 1419 | apply (induct set: Finites, force, clarsimp) | |
| 1420 | apply (erule disjE, auto) | |
| 1421 | done | |
| 1422 | ||
| 1423 | lemma setprod_nonneg [rule_format]: | |
| 1424 | "(ALL x: A. (0::'a::ordered_idom) \<le> f x) --> 0 \<le> setprod f A" | |
| 1425 | apply (case_tac "finite A") | |
| 1426 | apply (induct set: Finites, force, clarsimp) | |
| 1427 | apply (subgoal_tac "0 * 0 \<le> f x * setprod f F", force) | |
| 1428 | apply (rule mult_mono, assumption+) | |
| 1429 | apply (auto simp add: setprod_def) | |
| 1430 | done | |
| 1431 | ||
| 1432 | lemma setprod_pos [rule_format]: "(ALL x: A. (0::'a::ordered_idom) < f x) | |
| 1433 | --> 0 < setprod f A" | |
| 1434 | apply (case_tac "finite A") | |
| 1435 | apply (induct set: Finites, force, clarsimp) | |
| 1436 | apply (subgoal_tac "0 * 0 < f x * setprod f F", force) | |
| 1437 | apply (rule mult_strict_mono, assumption+) | |
| 1438 | apply (auto simp add: setprod_def) | |
| 1439 | done | |
| 1440 | ||
| 1441 | lemma setprod_nonzero [rule_format]: | |
| 1442 | "(ALL x y. (x::'a::comm_semiring_1_cancel) * y = 0 --> x = 0 | y = 0) ==> | |
| 1443 | finite A ==> (ALL x: A. f x \<noteq> (0::'a)) --> setprod f A \<noteq> 0" | |
| 1444 | apply (erule finite_induct, auto) | |
| 1445 | done | |
| 1446 | ||
| 1447 | lemma setprod_zero_eq: | |
| 1448 | "(ALL x y. (x::'a::comm_semiring_1_cancel) * y = 0 --> x = 0 | y = 0) ==> | |
| 1449 | finite A ==> (setprod f A = (0::'a)) = (EX x: A. f x = 0)" | |
| 1450 | apply (insert setprod_zero [of A f] setprod_nonzero [of A f], blast) | |
| 1451 | done | |
| 1452 | ||
| 1453 | lemma setprod_nonzero_field: | |
| 1454 | "finite A ==> (ALL x: A. f x \<noteq> (0::'a::field)) ==> setprod f A \<noteq> 0" | |
| 1455 | apply (rule setprod_nonzero, auto) | |
| 1456 | done | |
| 1457 | ||
| 1458 | lemma setprod_zero_eq_field: | |
| 1459 | "finite A ==> (setprod f A = (0::'a::field)) = (EX x: A. f x = 0)" | |
| 1460 | apply (rule setprod_zero_eq, auto) | |
| 1461 | done | |
| 1462 | ||
| 1463 | lemma setprod_Un: "finite A ==> finite B ==> (ALL x: A Int B. f x \<noteq> 0) ==> | |
| 1464 |     (setprod f (A Un B) :: 'a ::{field})
 | |
| 1465 | = setprod f A * setprod f B / setprod f (A Int B)" | |
| 1466 | apply (subst setprod_Un_Int [symmetric], auto) | |
| 1467 | apply (subgoal_tac "finite (A Int B)") | |
| 1468 | apply (frule setprod_nonzero_field [of "A Int B" f], assumption) | |
| 1469 | apply (subst times_divide_eq_right [THEN sym], auto simp add: divide_self) | |
| 1470 | done | |
| 1471 | ||
| 1472 | lemma setprod_diff1: "finite A ==> f a \<noteq> 0 ==> | |
| 1473 |     (setprod f (A - {a}) :: 'a :: {field}) =
 | |
| 1474 | (if a:A then setprod f A / f a else setprod f A)" | |
| 1475 | apply (erule finite_induct) | |
| 1476 | apply (auto simp add: insert_Diff_if) | |
| 1477 | apply (subgoal_tac "f a * setprod f F / f a = setprod f F * f a / f a") | |
| 1478 | apply (erule ssubst) | |
| 1479 | apply (subst times_divide_eq_right [THEN sym]) | |
| 1480 | apply (auto simp add: mult_ac times_divide_eq_right divide_self) | |
| 1481 | done | |
| 1482 | ||
| 1483 | lemma setprod_inversef: "finite A ==> | |
| 1484 |     ALL x: A. f x \<noteq> (0::'a::{field,division_by_zero}) ==>
 | |
| 1485 | setprod (inverse \<circ> f) A = inverse (setprod f A)" | |
| 1486 | apply (erule finite_induct) | |
| 1487 | apply (simp, simp) | |
| 1488 | done | |
| 1489 | ||
| 1490 | lemma setprod_dividef: | |
| 1491 | "[|finite A; | |
| 1492 |         \<forall>x \<in> A. g x \<noteq> (0::'a::{field,division_by_zero})|]
 | |
| 1493 | ==> setprod (%x. f x / g x) A = setprod f A / setprod g A" | |
| 1494 | apply (subgoal_tac | |
| 1495 | "setprod (%x. f x / g x) A = setprod (%x. f x * (inverse \<circ> g) x) A") | |
| 1496 | apply (erule ssubst) | |
| 1497 | apply (subst divide_inverse) | |
| 1498 | apply (subst setprod_timesf) | |
| 1499 | apply (subst setprod_inversef, assumption+, rule refl) | |
| 1500 | apply (rule setprod_cong, rule refl) | |
| 1501 | apply (subst divide_inverse, auto) | |
| 1502 | done | |
| 1503 | ||
| 12396 | 1504 | subsection {* Finite cardinality *}
 | 
| 1505 | ||
| 15402 | 1506 | text {* This definition, although traditional, is ugly to work with:
 | 
| 1507 | @{text "card A == LEAST n. EX f. A = {f i | i. i < n}"}.
 | |
| 1508 | But now that we have @{text setsum} things are easy:
 | |
| 12396 | 1509 | *} | 
| 1510 | ||
| 1511 | constdefs | |
| 1512 | card :: "'a set => nat" | |
| 15402 | 1513 | "card A == setsum (%x. 1::nat) A" | 
| 12396 | 1514 | |
| 1515 | lemma card_empty [simp]: "card {} = 0"
 | |
| 15402 | 1516 | by (simp add: card_def) | 
| 1517 | ||
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1518 | lemma card_infinite [simp]: "~ finite A ==> card A = 0" | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1519 | by (simp add: card_def) | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1520 | |
| 15402 | 1521 | lemma card_eq_setsum: "card A = setsum (%x. 1) A" | 
| 1522 | by (simp add: card_def) | |
| 12396 | 1523 | |
| 1524 | lemma card_insert_disjoint [simp]: | |
| 1525 | "finite A ==> x \<notin> A ==> card (insert x A) = Suc(card A)" | |
| 15765 | 1526 | by(simp add: card_def) | 
| 15402 | 1527 | |
| 1528 | lemma card_insert_if: | |
| 1529 | "finite A ==> card (insert x A) = (if x:A then card A else Suc(card(A)))" | |
| 1530 | by (simp add: insert_absorb) | |
| 12396 | 1531 | |
| 1532 | lemma card_0_eq [simp]: "finite A ==> (card A = 0) = (A = {})"
 | |
| 1533 | apply auto | |
| 15506 | 1534 | apply (drule_tac a = x in mk_disjoint_insert, clarify, auto) | 
| 12396 | 1535 | done | 
| 1536 | ||
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1537 | lemma card_eq_0_iff: "(card A = 0) = (A = {} | ~ finite A)"
 | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1538 | by auto | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1539 | |
| 12396 | 1540 | lemma card_Suc_Diff1: "finite A ==> x: A ==> Suc (card (A - {x})) = card A"
 | 
| 14302 | 1541 | apply(rule_tac t = A in insert_Diff [THEN subst], assumption) | 
| 1542 | apply(simp del:insert_Diff_single) | |
| 1543 | done | |
| 12396 | 1544 | |
| 1545 | lemma card_Diff_singleton: | |
| 1546 |     "finite A ==> x: A ==> card (A - {x}) = card A - 1"
 | |
| 1547 | by (simp add: card_Suc_Diff1 [symmetric]) | |
| 1548 | ||
| 1549 | lemma card_Diff_singleton_if: | |
| 1550 |     "finite A ==> card (A-{x}) = (if x : A then card A - 1 else card A)"
 | |
| 1551 | by (simp add: card_Diff_singleton) | |
| 1552 | ||
| 1553 | lemma card_insert: "finite A ==> card (insert x A) = Suc (card (A - {x}))"
 | |
| 1554 | by (simp add: card_insert_if card_Suc_Diff1) | |
| 1555 | ||
| 1556 | lemma card_insert_le: "finite A ==> card A <= card (insert x A)" | |
| 1557 | by (simp add: card_insert_if) | |
| 1558 | ||
| 15402 | 1559 | lemma card_mono: "\<lbrakk> finite B; A \<subseteq> B \<rbrakk> \<Longrightarrow> card A \<le> card B" | 
| 15539 | 1560 | by (simp add: card_def setsum_mono2) | 
| 15402 | 1561 | |
| 12396 | 1562 | lemma card_seteq: "finite B ==> (!!A. A <= B ==> card B <= card A ==> A = B)" | 
| 14208 | 1563 | apply (induct set: Finites, simp, clarify) | 
| 12396 | 1564 |   apply (subgoal_tac "finite A & A - {x} <= F")
 | 
| 14208 | 1565 | prefer 2 apply (blast intro: finite_subset, atomize) | 
| 12396 | 1566 |   apply (drule_tac x = "A - {x}" in spec)
 | 
| 1567 | apply (simp add: card_Diff_singleton_if split add: split_if_asm) | |
| 14208 | 1568 | apply (case_tac "card A", auto) | 
| 12396 | 1569 | done | 
| 1570 | ||
| 1571 | lemma psubset_card_mono: "finite B ==> A < B ==> card A < card B" | |
| 1572 | apply (simp add: psubset_def linorder_not_le [symmetric]) | |
| 1573 | apply (blast dest: card_seteq) | |
| 1574 | done | |
| 1575 | ||
| 1576 | lemma card_Un_Int: "finite A ==> finite B | |
| 1577 | ==> card A + card B = card (A Un B) + card (A Int B)" | |
| 15402 | 1578 | by(simp add:card_def setsum_Un_Int) | 
| 12396 | 1579 | |
| 1580 | lemma card_Un_disjoint: "finite A ==> finite B | |
| 1581 |     ==> A Int B = {} ==> card (A Un B) = card A + card B"
 | |
| 1582 | by (simp add: card_Un_Int) | |
| 1583 | ||
| 1584 | lemma card_Diff_subset: | |
| 15402 | 1585 | "finite B ==> B <= A ==> card (A - B) = card A - card B" | 
| 1586 | by(simp add:card_def setsum_diff_nat) | |
| 12396 | 1587 | |
| 1588 | lemma card_Diff1_less: "finite A ==> x: A ==> card (A - {x}) < card A"
 | |
| 1589 | apply (rule Suc_less_SucD) | |
| 1590 | apply (simp add: card_Suc_Diff1) | |
| 1591 | done | |
| 1592 | ||
| 1593 | lemma card_Diff2_less: | |
| 1594 |     "finite A ==> x: A ==> y: A ==> card (A - {x} - {y}) < card A"
 | |
| 1595 | apply (case_tac "x = y") | |
| 1596 | apply (simp add: card_Diff1_less) | |
| 1597 | apply (rule less_trans) | |
| 1598 | prefer 2 apply (auto intro!: card_Diff1_less) | |
| 1599 | done | |
| 1600 | ||
| 1601 | lemma card_Diff1_le: "finite A ==> card (A - {x}) <= card A"
 | |
| 1602 | apply (case_tac "x : A") | |
| 1603 | apply (simp_all add: card_Diff1_less less_imp_le) | |
| 1604 | done | |
| 1605 | ||
| 1606 | lemma card_psubset: "finite B ==> A \<subseteq> B ==> card A < card B ==> A < B" | |
| 14208 | 1607 | by (erule psubsetI, blast) | 
| 12396 | 1608 | |
| 14889 | 1609 | lemma insert_partition: | 
| 15402 | 1610 |   "\<lbrakk> x \<notin> F; \<forall>c1 \<in> insert x F. \<forall>c2 \<in> insert x F. c1 \<noteq> c2 \<longrightarrow> c1 \<inter> c2 = {} \<rbrakk>
 | 
| 1611 |   \<Longrightarrow> x \<inter> \<Union> F = {}"
 | |
| 14889 | 1612 | by auto | 
| 1613 | ||
| 1614 | (* main cardinality theorem *) | |
| 1615 | lemma card_partition [rule_format]: | |
| 1616 | "finite C ==> | |
| 1617 | finite (\<Union> C) --> | |
| 1618 | (\<forall>c\<in>C. card c = k) --> | |
| 1619 |         (\<forall>c1 \<in> C. \<forall>c2 \<in> C. c1 \<noteq> c2 --> c1 \<inter> c2 = {}) -->  
 | |
| 1620 | k * card(C) = card (\<Union> C)" | |
| 1621 | apply (erule finite_induct, simp) | |
| 1622 | apply (simp add: card_insert_disjoint card_Un_disjoint insert_partition | |
| 1623 | finite_subset [of _ "\<Union> (insert x F)"]) | |
| 1624 | done | |
| 1625 | ||
| 12396 | 1626 | |
| 15539 | 1627 | lemma setsum_constant [simp]: "(\<Sum>x \<in> A. y) = of_nat(card A) * y" | 
| 1628 | apply (cases "finite A") | |
| 1629 | apply (erule finite_induct) | |
| 1630 | apply (auto simp add: ring_distrib add_ac) | |
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1631 | done | 
| 15402 | 1632 | |
| 15539 | 1633 | |
| 16550 | 1634 | lemma setprod_constant: "finite A ==> (\<Prod>x\<in> A. (y::'a::recpower)) = y^(card A)" | 
| 15402 | 1635 | apply (erule finite_induct) | 
| 1636 | apply (auto simp add: power_Suc) | |
| 1637 | done | |
| 1638 | ||
| 15542 | 1639 | lemma setsum_bounded: | 
| 1640 |   assumes le: "\<And>i. i\<in>A \<Longrightarrow> f i \<le> (K::'a::{comm_semiring_1_cancel, pordered_ab_semigroup_add})"
 | |
| 1641 | shows "setsum f A \<le> of_nat(card A) * K" | |
| 1642 | proof (cases "finite A") | |
| 1643 | case True | |
| 1644 | thus ?thesis using le setsum_mono[where K=A and g = "%x. K"] by simp | |
| 1645 | next | |
| 1646 | case False thus ?thesis by (simp add: setsum_def) | |
| 1647 | qed | |
| 1648 | ||
| 15402 | 1649 | |
| 1650 | subsubsection {* Cardinality of unions *}
 | |
| 1651 | ||
| 15539 | 1652 | lemma of_nat_id[simp]: "(of_nat n :: nat) = n" | 
| 1653 | by(induct n, auto) | |
| 1654 | ||
| 15402 | 1655 | lemma card_UN_disjoint: | 
| 1656 | "finite I ==> (ALL i:I. finite (A i)) ==> | |
| 1657 |         (ALL i:I. ALL j:I. i \<noteq> j --> A i Int A j = {}) ==>
 | |
| 1658 | card (UNION I A) = (\<Sum>i\<in>I. card(A i))" | |
| 15539 | 1659 | apply (simp add: card_def del: setsum_constant) | 
| 15402 | 1660 | apply (subgoal_tac | 
| 1661 | "setsum (%i. card (A i)) I = setsum (%i. (setsum (%x. 1) (A i))) I") | |
| 15539 | 1662 | apply (simp add: setsum_UN_disjoint del: setsum_constant) | 
| 1663 | apply (simp cong: setsum_cong) | |
| 15402 | 1664 | done | 
| 1665 | ||
| 1666 | lemma card_Union_disjoint: | |
| 1667 | "finite C ==> (ALL A:C. finite A) ==> | |
| 1668 |         (ALL A:C. ALL B:C. A \<noteq> B --> A Int B = {}) ==>
 | |
| 1669 | card (Union C) = setsum card C" | |
| 1670 | apply (frule card_UN_disjoint [of C id]) | |
| 1671 | apply (unfold Union_def id_def, assumption+) | |
| 1672 | done | |
| 1673 | ||
| 12396 | 1674 | subsubsection {* Cardinality of image *}
 | 
| 1675 | ||
| 15447 | 1676 | text{*The image of a finite set can be expressed using @{term fold}.*}
 | 
| 1677 | lemma image_eq_fold: "finite A ==> f ` A = fold (op Un) (%x. {f x}) {} A"
 | |
| 1678 | apply (erule finite_induct, simp) | |
| 1679 | apply (subst ACf.fold_insert) | |
| 1680 | apply (auto simp add: ACf_def) | |
| 1681 | done | |
| 1682 | ||
| 12396 | 1683 | lemma card_image_le: "finite A ==> card (f ` A) <= card A" | 
| 14208 | 1684 | apply (induct set: Finites, simp) | 
| 12396 | 1685 | apply (simp add: le_SucI finite_imageI card_insert_if) | 
| 1686 | done | |
| 1687 | ||
| 15402 | 1688 | lemma card_image: "inj_on f A ==> card (f ` A) = card A" | 
| 15539 | 1689 | by(simp add:card_def setsum_reindex o_def del:setsum_constant) | 
| 12396 | 1690 | |
| 1691 | lemma endo_inj_surj: "finite A ==> f ` A \<subseteq> A ==> inj_on f A ==> f ` A = A" | |
| 1692 | by (simp add: card_seteq card_image) | |
| 1693 | ||
| 15111 | 1694 | lemma eq_card_imp_inj_on: | 
| 1695 | "[| finite A; card(f ` A) = card A |] ==> inj_on f A" | |
| 15506 | 1696 | apply (induct rule:finite_induct, simp) | 
| 15111 | 1697 | apply(frule card_image_le[where f = f]) | 
| 1698 | apply(simp add:card_insert_if split:if_splits) | |
| 1699 | done | |
| 1700 | ||
| 1701 | lemma inj_on_iff_eq_card: | |
| 1702 | "finite A ==> inj_on f A = (card(f ` A) = card A)" | |
| 1703 | by(blast intro: card_image eq_card_imp_inj_on) | |
| 1704 | ||
| 12396 | 1705 | |
| 15402 | 1706 | lemma card_inj_on_le: | 
| 1707 | "[|inj_on f A; f ` A \<subseteq> B; finite B |] ==> card A \<le> card B" | |
| 1708 | apply (subgoal_tac "finite A") | |
| 1709 | apply (force intro: card_mono simp add: card_image [symmetric]) | |
| 1710 | apply (blast intro: finite_imageD dest: finite_subset) | |
| 1711 | done | |
| 1712 | ||
| 1713 | lemma card_bij_eq: | |
| 1714 | "[|inj_on f A; f ` A \<subseteq> B; inj_on g B; g ` B \<subseteq> A; | |
| 1715 | finite A; finite B |] ==> card A = card B" | |
| 1716 | by (auto intro: le_anti_sym card_inj_on_le) | |
| 1717 | ||
| 1718 | ||
| 1719 | subsubsection {* Cardinality of products *}
 | |
| 1720 | ||
| 1721 | (* | |
| 1722 | lemma SigmaI_insert: "y \<notin> A ==> | |
| 1723 |   (SIGMA x:(insert y A). B x) = (({y} <*> (B y)) \<union> (SIGMA x: A. B x))"
 | |
| 1724 | by auto | |
| 1725 | *) | |
| 1726 | ||
| 1727 | lemma card_SigmaI [simp]: | |
| 1728 | "\<lbrakk> finite A; ALL a:A. finite (B a) \<rbrakk> | |
| 1729 | \<Longrightarrow> card (SIGMA x: A. B x) = (\<Sum>a\<in>A. card (B a))" | |
| 15539 | 1730 | by(simp add:card_def setsum_Sigma del:setsum_constant) | 
| 15402 | 1731 | |
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1732 | lemma card_cartesian_product: "card (A <*> B) = card(A) * card(B)" | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1733 | apply (cases "finite A") | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1734 | apply (cases "finite B") | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1735 | apply (auto simp add: card_eq_0_iff | 
| 15539 | 1736 | dest: finite_cartesian_productD1 finite_cartesian_productD2) | 
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1737 | done | 
| 15402 | 1738 | |
| 1739 | lemma card_cartesian_product_singleton:  "card({x} <*> A) = card(A)"
 | |
| 15539 | 1740 | by (simp add: card_cartesian_product) | 
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1741 | |
| 15402 | 1742 | |
| 1743 | ||
| 12396 | 1744 | subsubsection {* Cardinality of the Powerset *}
 | 
| 1745 | ||
| 1746 | lemma card_Pow: "finite A ==> card (Pow A) = Suc (Suc 0) ^ card A" (* FIXME numeral 2 (!?) *) | |
| 1747 | apply (induct set: Finites) | |
| 1748 | apply (simp_all add: Pow_insert) | |
| 14208 | 1749 | apply (subst card_Un_disjoint, blast) | 
| 1750 | apply (blast intro: finite_imageI, blast) | |
| 12396 | 1751 | apply (subgoal_tac "inj_on (insert x) (Pow F)") | 
| 1752 | apply (simp add: card_image Pow_insert) | |
| 1753 | apply (unfold inj_on_def) | |
| 1754 | apply (blast elim!: equalityE) | |
| 1755 | done | |
| 1756 | ||
| 15392 | 1757 | text {* Relates to equivalence classes.  Based on a theorem of
 | 
| 1758 | F. Kammüller's. *} | |
| 12396 | 1759 | |
| 1760 | lemma dvd_partition: | |
| 15392 | 1761 | "finite (Union C) ==> | 
| 12396 | 1762 | ALL c : C. k dvd card c ==> | 
| 14430 
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
 paulson parents: 
14331diff
changeset | 1763 |     (ALL c1: C. ALL c2: C. c1 \<noteq> c2 --> c1 Int c2 = {}) ==>
 | 
| 12396 | 1764 | k dvd card (Union C)" | 
| 15392 | 1765 | apply(frule finite_UnionD) | 
| 1766 | apply(rotate_tac -1) | |
| 14208 | 1767 | apply (induct set: Finites, simp_all, clarify) | 
| 12396 | 1768 | apply (subst card_Un_disjoint) | 
| 1769 | apply (auto simp add: dvd_add disjoint_eq_subset_Compl) | |
| 1770 | done | |
| 1771 | ||
| 1772 | ||
| 15392 | 1773 | subsection{* A fold functional for non-empty sets *}
 | 
| 1774 | ||
| 1775 | text{* Does not require start value. *}
 | |
| 12396 | 1776 | |
| 15392 | 1777 | consts | 
| 15506 | 1778 |   fold1Set :: "('a => 'a => 'a) => ('a set \<times> 'a) set"
 | 
| 15392 | 1779 | |
| 15506 | 1780 | inductive "fold1Set f" | 
| 15392 | 1781 | intros | 
| 15506 | 1782 | fold1Set_insertI [intro]: | 
| 1783 | "\<lbrakk> (A,x) \<in> foldSet f id a; a \<notin> A \<rbrakk> \<Longrightarrow> (insert a A, x) \<in> fold1Set f" | |
| 12396 | 1784 | |
| 15392 | 1785 | constdefs | 
| 1786 |   fold1 :: "('a => 'a => 'a) => 'a set => 'a"
 | |
| 15506 | 1787 | "fold1 f A == THE x. (A, x) : fold1Set f" | 
| 1788 | ||
| 1789 | lemma fold1Set_nonempty: | |
| 1790 |  "(A, x) : fold1Set f \<Longrightarrow> A \<noteq> {}"
 | |
| 1791 | by(erule fold1Set.cases, simp_all) | |
| 1792 | ||
| 15392 | 1793 | |
| 15506 | 1794 | inductive_cases empty_fold1SetE [elim!]: "({}, x) : fold1Set f"
 | 
| 1795 | ||
| 1796 | inductive_cases insert_fold1SetE [elim!]: "(insert a X, x) : fold1Set f" | |
| 1797 | ||
| 1798 | ||
| 1799 | lemma fold1Set_sing [iff]: "(({a},b) : fold1Set f) = (a = b)"
 | |
| 1800 | by (blast intro: foldSet.intros elim: foldSet.cases) | |
| 15392 | 1801 | |
| 15508 | 1802 | lemma fold1_singleton[simp]: "fold1 f {a} = a"
 | 
| 1803 | by (unfold fold1_def) blast | |
| 12396 | 1804 | |
| 15508 | 1805 | lemma finite_nonempty_imp_fold1Set: | 
| 1806 |   "\<lbrakk> finite A; A \<noteq> {} \<rbrakk> \<Longrightarrow> EX x. (A, x) : fold1Set f"
 | |
| 1807 | apply (induct A rule: finite_induct) | |
| 1808 | apply (auto dest: finite_imp_foldSet [of _ f id]) | |
| 1809 | done | |
| 15506 | 1810 | |
| 1811 | text{*First, some lemmas about @{term foldSet}.*}
 | |
| 15392 | 1812 | |
| 15508 | 1813 | lemma (in ACf) foldSet_insert_swap: | 
| 1814 | assumes fold: "(A,y) \<in> foldSet f id b" | |
| 15521 | 1815 | shows "b \<notin> A \<Longrightarrow> (insert b A, z \<cdot> y) \<in> foldSet f id z" | 
| 15508 | 1816 | using fold | 
| 1817 | proof (induct rule: foldSet.induct) | |
| 1818 | case emptyI thus ?case by (force simp add: fold_insert_aux commute) | |
| 1819 | next | |
| 1820 | case (insertI A x y) | |
| 1821 | have "(insert x (insert b A), x \<cdot> (z \<cdot> y)) \<in> foldSet f (\<lambda>u. u) z" | |
| 15521 | 1822 |       using insertI by force  --{*how does @{term id} get unfolded?*}
 | 
| 15508 | 1823 | thus ?case by (simp add: insert_commute AC) | 
| 1824 | qed | |
| 1825 | ||
| 1826 | lemma (in ACf) foldSet_permute_diff: | |
| 1827 | assumes fold: "(A,x) \<in> foldSet f id b" | |
| 1828 | shows "!!a. \<lbrakk>a \<in> A; b \<notin> A\<rbrakk> \<Longrightarrow> (insert b (A-{a}), x) \<in> foldSet f id a"
 | |
| 1829 | using fold | |
| 1830 | proof (induct rule: foldSet.induct) | |
| 1831 | case emptyI thus ?case by simp | |
| 1832 | next | |
| 1833 | case (insertI A x y) | |
| 15521 | 1834 | have "a = x \<or> a \<in> A" using insertI by simp | 
| 1835 | thus ?case | |
| 1836 | proof | |
| 1837 | assume "a = x" | |
| 1838 | with insertI show ?thesis | |
| 1839 | by (simp add: id_def [symmetric], blast intro: foldSet_insert_swap) | |
| 1840 | next | |
| 1841 | assume ainA: "a \<in> A" | |
| 1842 |     hence "(insert x (insert b (A - {a})), x \<cdot> y) \<in> foldSet f id a"
 | |
| 1843 | using insertI by (force simp: id_def) | |
| 1844 | moreover | |
| 1845 |     have "insert x (insert b (A - {a})) = insert b (insert x A - {a})"
 | |
| 1846 | using ainA insertI by blast | |
| 1847 | ultimately show ?thesis by (simp add: id_def) | |
| 15508 | 1848 | qed | 
| 1849 | qed | |
| 1850 | ||
| 1851 | lemma (in ACf) fold1_eq_fold: | |
| 1852 | "[|finite A; a \<notin> A|] ==> fold1 f (insert a A) = fold f id a A" | |
| 1853 | apply (simp add: fold1_def fold_def) | |
| 1854 | apply (rule the_equality) | |
| 1855 | apply (best intro: foldSet_determ theI dest: finite_imp_foldSet [of _ f id]) | |
| 1856 | apply (rule sym, clarify) | |
| 1857 | apply (case_tac "Aa=A") | |
| 1858 | apply (best intro: the_equality foldSet_determ) | |
| 1859 | apply (subgoal_tac "(A,x) \<in> foldSet f id a") | |
| 1860 | apply (best intro: the_equality foldSet_determ) | |
| 1861 | apply (subgoal_tac "insert aa (Aa - {a}) = A") 
 | |
| 1862 | prefer 2 apply (blast elim: equalityE) | |
| 1863 | apply (auto dest: foldSet_permute_diff [where a=a]) | |
| 1864 | done | |
| 1865 | ||
| 15521 | 1866 | lemma nonempty_iff: "(A \<noteq> {}) = (\<exists>x B. A = insert x B & x \<notin> B)"
 | 
| 1867 | apply safe | |
| 1868 | apply simp | |
| 1869 | apply (drule_tac x=x in spec) | |
| 1870 | apply (drule_tac x="A-{x}" in spec, auto) 
 | |
| 15508 | 1871 | done | 
| 1872 | ||
| 15521 | 1873 | lemma (in ACf) fold1_insert: | 
| 1874 |   assumes nonempty: "A \<noteq> {}" and A: "finite A" "x \<notin> A"
 | |
| 1875 | shows "fold1 f (insert x A) = f x (fold1 f A)" | |
| 1876 | proof - | |
| 1877 | from nonempty obtain a A' where "A = insert a A' & a ~: A'" | |
| 1878 | by (auto simp add: nonempty_iff) | |
| 1879 | with A show ?thesis | |
| 1880 | by (simp add: insert_commute [of x] fold1_eq_fold eq_commute) | |
| 1881 | qed | |
| 1882 | ||
| 15509 | 1883 | lemma (in ACIf) fold1_insert_idem [simp]: | 
| 15521 | 1884 |   assumes nonempty: "A \<noteq> {}" and A: "finite A" 
 | 
| 1885 | shows "fold1 f (insert x A) = f x (fold1 f A)" | |
| 1886 | proof - | |
| 1887 | from nonempty obtain a A' where A': "A = insert a A' & a ~: A'" | |
| 1888 | by (auto simp add: nonempty_iff) | |
| 1889 | show ?thesis | |
| 1890 | proof cases | |
| 1891 | assume "a = x" | |
| 1892 | thus ?thesis | |
| 1893 | proof cases | |
| 1894 |       assume "A' = {}"
 | |
| 1895 | with prems show ?thesis by (simp add: idem) | |
| 1896 | next | |
| 1897 |       assume "A' \<noteq> {}"
 | |
| 1898 | with prems show ?thesis | |
| 1899 | by (simp add: fold1_insert assoc [symmetric] idem) | |
| 1900 | qed | |
| 1901 | next | |
| 1902 | assume "a \<noteq> x" | |
| 1903 | with prems show ?thesis | |
| 1904 | by (simp add: insert_commute fold1_eq_fold fold_insert_idem) | |
| 1905 | qed | |
| 1906 | qed | |
| 15506 | 1907 | |
| 1908 | ||
| 15508 | 1909 | text{* Now the recursion rules for definitions: *}
 | 
| 1910 | ||
| 1911 | lemma fold1_singleton_def: "g \<equiv> fold1 f \<Longrightarrow> g {a} = a"
 | |
| 1912 | by(simp add:fold1_singleton) | |
| 1913 | ||
| 1914 | lemma (in ACf) fold1_insert_def: | |
| 1915 |   "\<lbrakk> g \<equiv> fold1 f; finite A; x \<notin> A; A \<noteq> {} \<rbrakk> \<Longrightarrow> g(insert x A) = x \<cdot> (g A)"
 | |
| 1916 | by(simp add:fold1_insert) | |
| 1917 | ||
| 15509 | 1918 | lemma (in ACIf) fold1_insert_idem_def: | 
| 15508 | 1919 |   "\<lbrakk> g \<equiv> fold1 f; finite A; A \<noteq> {} \<rbrakk> \<Longrightarrow> g(insert x A) = x \<cdot> (g A)"
 | 
| 15509 | 1920 | by(simp add:fold1_insert_idem) | 
| 15508 | 1921 | |
| 1922 | subsubsection{* Determinacy for @{term fold1Set} *}
 | |
| 1923 | ||
| 1924 | text{*Not actually used!!*}
 | |
| 12396 | 1925 | |
| 15506 | 1926 | lemma (in ACf) foldSet_permute: | 
| 1927 | "[|(insert a A, x) \<in> foldSet f id b; a \<notin> A; b \<notin> A|] | |
| 1928 | ==> (insert b A, x) \<in> foldSet f id a" | |
| 1929 | apply (case_tac "a=b") | |
| 1930 | apply (auto dest: foldSet_permute_diff) | |
| 1931 | done | |
| 15376 | 1932 | |
| 15506 | 1933 | lemma (in ACf) fold1Set_determ: | 
| 1934 | "(A, x) \<in> fold1Set f ==> (A, y) \<in> fold1Set f ==> y = x" | |
| 1935 | proof (clarify elim!: fold1Set.cases) | |
| 1936 | fix A x B y a b | |
| 1937 | assume Ax: "(A, x) \<in> foldSet f id a" | |
| 1938 | assume By: "(B, y) \<in> foldSet f id b" | |
| 1939 | assume anotA: "a \<notin> A" | |
| 1940 | assume bnotB: "b \<notin> B" | |
| 1941 | assume eq: "insert a A = insert b B" | |
| 1942 | show "y=x" | |
| 1943 | proof cases | |
| 1944 | assume same: "a=b" | |
| 1945 | hence "A=B" using anotA bnotB eq by (blast elim!: equalityE) | |
| 1946 | thus ?thesis using Ax By same by (blast intro: foldSet_determ) | |
| 15392 | 1947 | next | 
| 15506 | 1948 | assume diff: "a\<noteq>b" | 
| 1949 |     let ?D = "B - {a}"
 | |
| 1950 | have B: "B = insert a ?D" and A: "A = insert b ?D" | |
| 1951 | and aB: "a \<in> B" and bA: "b \<in> A" | |
| 1952 | using eq anotA bnotB diff by (blast elim!:equalityE)+ | |
| 1953 | with aB bnotB By | |
| 1954 | have "(insert b ?D, y) \<in> foldSet f id a" | |
| 1955 | by (auto intro: foldSet_permute simp add: insert_absorb) | |
| 1956 | moreover | |
| 1957 | have "(insert b ?D, x) \<in> foldSet f id a" | |
| 1958 | by (simp add: A [symmetric] Ax) | |
| 1959 | ultimately show ?thesis by (blast intro: foldSet_determ) | |
| 15392 | 1960 | qed | 
| 12396 | 1961 | qed | 
| 1962 | ||
| 15506 | 1963 | lemma (in ACf) fold1Set_equality: "(A, y) : fold1Set f ==> fold1 f A = y" | 
| 1964 | by (unfold fold1_def) (blast intro: fold1Set_determ) | |
| 1965 | ||
| 1966 | declare | |
| 1967 | empty_foldSetE [rule del] foldSet.intros [rule del] | |
| 1968 | empty_fold1SetE [rule del] insert_fold1SetE [rule del] | |
| 1969 |   -- {* No more proves involve these relations. *}
 | |
| 15376 | 1970 | |
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 1971 | subsubsection{* Semi-Lattices *}
 | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 1972 | |
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 1973 | locale ACIfSL = ACIf + | 
| 15500 | 1974 | fixes below :: "'a \<Rightarrow> 'a \<Rightarrow> bool" (infixl "\<sqsubseteq>" 50) | 
| 1975 | assumes below_def: "(x \<sqsubseteq> y) = (x\<cdot>y = x)" | |
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 1976 | |
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 1977 | locale ACIfSLlin = ACIfSL + | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 1978 |   assumes lin: "x\<cdot>y \<in> {x,y}"
 | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 1979 | |
| 15500 | 1980 | lemma (in ACIfSL) below_refl[simp]: "x \<sqsubseteq> x" | 
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 1981 | by(simp add: below_def idem) | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 1982 | |
| 15500 | 1983 | lemma (in ACIfSL) below_f_conv[simp]: "x \<sqsubseteq> y \<cdot> z = (x \<sqsubseteq> y \<and> x \<sqsubseteq> z)" | 
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 1984 | proof | 
| 15500 | 1985 | assume "x \<sqsubseteq> y \<cdot> z" | 
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 1986 | hence xyzx: "x \<cdot> (y \<cdot> z) = x" by(simp add: below_def) | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 1987 | have "x \<cdot> y = x" | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 1988 | proof - | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 1989 | have "x \<cdot> y = (x \<cdot> (y \<cdot> z)) \<cdot> y" by(rule subst[OF xyzx], rule refl) | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 1990 | also have "\<dots> = x \<cdot> (y \<cdot> z)" by(simp add:ACI) | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 1991 | also have "\<dots> = x" by(rule xyzx) | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 1992 | finally show ?thesis . | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 1993 | qed | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 1994 | moreover have "x \<cdot> z = x" | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 1995 | proof - | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 1996 | have "x \<cdot> z = (x \<cdot> (y \<cdot> z)) \<cdot> z" by(rule subst[OF xyzx], rule refl) | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 1997 | also have "\<dots> = x \<cdot> (y \<cdot> z)" by(simp add:ACI) | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 1998 | also have "\<dots> = x" by(rule xyzx) | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 1999 | finally show ?thesis . | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2000 | qed | 
| 15500 | 2001 | ultimately show "x \<sqsubseteq> y \<and> x \<sqsubseteq> z" by(simp add: below_def) | 
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2002 | next | 
| 15500 | 2003 | assume a: "x \<sqsubseteq> y \<and> x \<sqsubseteq> z" | 
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2004 | hence y: "x \<cdot> y = x" and z: "x \<cdot> z = x" by(simp_all add: below_def) | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2005 | have "x \<cdot> (y \<cdot> z) = (x \<cdot> y) \<cdot> z" by(simp add:assoc) | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2006 | also have "x \<cdot> y = x" using a by(simp_all add: below_def) | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2007 | also have "x \<cdot> z = x" using a by(simp_all add: below_def) | 
| 15500 | 2008 | finally show "x \<sqsubseteq> y \<cdot> z" by(simp_all add: below_def) | 
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2009 | qed | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2010 | |
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2011 | lemma (in ACIfSLlin) above_f_conv: | 
| 15500 | 2012 | "x \<cdot> y \<sqsubseteq> z = (x \<sqsubseteq> z \<or> y \<sqsubseteq> z)" | 
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2013 | proof | 
| 15500 | 2014 | assume a: "x \<cdot> y \<sqsubseteq> z" | 
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2015 | have "x \<cdot> y = x \<or> x \<cdot> y = y" using lin[of x y] by simp | 
| 15500 | 2016 | thus "x \<sqsubseteq> z \<or> y \<sqsubseteq> z" | 
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2017 | proof | 
| 15500 | 2018 | assume "x \<cdot> y = x" hence "x \<sqsubseteq> z" by(rule subst)(rule a) thus ?thesis .. | 
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2019 | next | 
| 15500 | 2020 | assume "x \<cdot> y = y" hence "y \<sqsubseteq> z" by(rule subst)(rule a) thus ?thesis .. | 
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2021 | qed | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2022 | next | 
| 15500 | 2023 | assume "x \<sqsubseteq> z \<or> y \<sqsubseteq> z" | 
| 2024 | thus "x \<cdot> y \<sqsubseteq> z" | |
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2025 | proof | 
| 15500 | 2026 | assume a: "x \<sqsubseteq> z" | 
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2027 | have "(x \<cdot> y) \<cdot> z = (x \<cdot> z) \<cdot> y" by(simp add:ACI) | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2028 | also have "x \<cdot> z = x" using a by(simp add:below_def) | 
| 15500 | 2029 | finally show "x \<cdot> y \<sqsubseteq> z" by(simp add:below_def) | 
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2030 | next | 
| 15500 | 2031 | assume a: "y \<sqsubseteq> z" | 
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2032 | have "(x \<cdot> y) \<cdot> z = x \<cdot> (y \<cdot> z)" by(simp add:ACI) | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2033 | also have "y \<cdot> z = y" using a by(simp add:below_def) | 
| 15500 | 2034 | finally show "x \<cdot> y \<sqsubseteq> z" by(simp add:below_def) | 
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2035 | qed | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2036 | qed | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2037 | |
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2038 | |
| 15502 | 2039 | subsubsection{* Lemmas about @{text fold1} *}
 | 
| 15484 | 2040 | |
| 2041 | lemma (in ACf) fold1_Un: | |
| 2042 | assumes A: "finite A" "A \<noteq> {}"
 | |
| 2043 | shows "finite B \<Longrightarrow> B \<noteq> {} \<Longrightarrow> A Int B = {} \<Longrightarrow>
 | |
| 2044 | fold1 f (A Un B) = f (fold1 f A) (fold1 f B)" | |
| 2045 | using A | |
| 2046 | proof(induct rule:finite_ne_induct) | |
| 2047 | case singleton thus ?case by(simp add:fold1_insert) | |
| 2048 | next | |
| 2049 | case insert thus ?case by (simp add:fold1_insert assoc) | |
| 2050 | qed | |
| 2051 | ||
| 2052 | lemma (in ACIf) fold1_Un2: | |
| 2053 | assumes A: "finite A" "A \<noteq> {}"
 | |
| 2054 | shows "finite B \<Longrightarrow> B \<noteq> {} \<Longrightarrow>
 | |
| 2055 | fold1 f (A Un B) = f (fold1 f A) (fold1 f B)" | |
| 2056 | using A | |
| 2057 | proof(induct rule:finite_ne_induct) | |
| 15509 | 2058 | case singleton thus ?case by(simp add:fold1_insert_idem) | 
| 15484 | 2059 | next | 
| 15509 | 2060 | case insert thus ?case by (simp add:fold1_insert_idem assoc) | 
| 15484 | 2061 | qed | 
| 2062 | ||
| 2063 | lemma (in ACf) fold1_in: | |
| 2064 |   assumes A: "finite (A)" "A \<noteq> {}" and elem: "\<And>x y. x\<cdot>y \<in> {x,y}"
 | |
| 2065 | shows "fold1 f A \<in> A" | |
| 2066 | using A | |
| 2067 | proof (induct rule:finite_ne_induct) | |
| 15506 | 2068 | case singleton thus ?case by simp | 
| 15484 | 2069 | next | 
| 2070 | case insert thus ?case using elem by (force simp add:fold1_insert) | |
| 2071 | qed | |
| 2072 | ||
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2073 | lemma (in ACIfSL) below_fold1_iff: | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2074 | assumes A: "finite A" "A \<noteq> {}"
 | 
| 15500 | 2075 | shows "x \<sqsubseteq> fold1 f A = (\<forall>a\<in>A. x \<sqsubseteq> a)" | 
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2076 | using A | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2077 | by(induct rule:finite_ne_induct) simp_all | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2078 | |
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2079 | lemma (in ACIfSL) fold1_belowI: | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2080 | assumes A: "finite A" "A \<noteq> {}"
 | 
| 15500 | 2081 | shows "a \<in> A \<Longrightarrow> fold1 f A \<sqsubseteq> a" | 
| 15484 | 2082 | using A | 
| 2083 | proof (induct rule:finite_ne_induct) | |
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2084 | case singleton thus ?case by simp | 
| 15484 | 2085 | next | 
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2086 | case (insert x F) | 
| 15517 | 2087 | from insert(5) have "a = x \<or> a \<in> F" by simp | 
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2088 | thus ?case | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2089 | proof | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2090 | assume "a = x" thus ?thesis using insert by(simp add:below_def ACI) | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2091 | next | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2092 | assume "a \<in> F" | 
| 15508 | 2093 | hence bel: "fold1 f F \<sqsubseteq> a" by(rule insert) | 
| 2094 | have "fold1 f (insert x F) \<cdot> a = x \<cdot> (fold1 f F \<cdot> a)" | |
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2095 | using insert by(simp add:below_def ACI) | 
| 15508 | 2096 | also have "fold1 f F \<cdot> a = fold1 f F" | 
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2097 | using bel by(simp add:below_def ACI) | 
| 15508 | 2098 | also have "x \<cdot> \<dots> = fold1 f (insert x F)" | 
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2099 | using insert by(simp add:below_def ACI) | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2100 | finally show ?thesis by(simp add:below_def) | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2101 | qed | 
| 15484 | 2102 | qed | 
| 2103 | ||
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2104 | lemma (in ACIfSLlin) fold1_below_iff: | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2105 | assumes A: "finite A" "A \<noteq> {}"
 | 
| 15500 | 2106 | shows "fold1 f A \<sqsubseteq> x = (\<exists>a\<in>A. a \<sqsubseteq> x)" | 
| 15484 | 2107 | using A | 
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2108 | by(induct rule:finite_ne_induct)(simp_all add:above_f_conv) | 
| 15484 | 2109 | |
| 15512 
ed1fa4617f52
Extracted generic lattice stuff to new Lattice_Locales.thy
 nipkow parents: 
15510diff
changeset | 2110 | |
| 15500 | 2111 | subsubsection{* Lattices *}
 | 
| 2112 | ||
| 15512 
ed1fa4617f52
Extracted generic lattice stuff to new Lattice_Locales.thy
 nipkow parents: 
15510diff
changeset | 2113 | locale Lattice = lattice + | 
| 
ed1fa4617f52
Extracted generic lattice stuff to new Lattice_Locales.thy
 nipkow parents: 
15510diff
changeset | 2114 |   fixes Inf :: "'a set \<Rightarrow> 'a" ("\<Sqinter>_" [900] 900)
 | 
| 15500 | 2115 |   and Sup :: "'a set \<Rightarrow> 'a" ("\<Squnion>_" [900] 900)
 | 
| 2116 | defines "Inf == fold1 inf" and "Sup == fold1 sup" | |
| 2117 | ||
| 15512 
ed1fa4617f52
Extracted generic lattice stuff to new Lattice_Locales.thy
 nipkow parents: 
15510diff
changeset | 2118 | locale Distrib_Lattice = distrib_lattice + Lattice | 
| 15504 | 2119 | |
| 15500 | 2120 | text{* Lattices are semilattices *}
 | 
| 2121 | ||
| 2122 | lemma (in Lattice) ACf_inf: "ACf inf" | |
| 15512 
ed1fa4617f52
Extracted generic lattice stuff to new Lattice_Locales.thy
 nipkow parents: 
15510diff
changeset | 2123 | by(blast intro: ACf.intro inf_commute inf_assoc) | 
| 15500 | 2124 | |
| 2125 | lemma (in Lattice) ACf_sup: "ACf sup" | |
| 15512 
ed1fa4617f52
Extracted generic lattice stuff to new Lattice_Locales.thy
 nipkow parents: 
15510diff
changeset | 2126 | by(blast intro: ACf.intro sup_commute sup_assoc) | 
| 15500 | 2127 | |
| 2128 | lemma (in Lattice) ACIf_inf: "ACIf inf" | |
| 2129 | apply(rule ACIf.intro) | |
| 2130 | apply(rule ACf_inf) | |
| 2131 | apply(rule ACIf_axioms.intro) | |
| 2132 | apply(rule inf_idem) | |
| 2133 | done | |
| 2134 | ||
| 2135 | lemma (in Lattice) ACIf_sup: "ACIf sup" | |
| 2136 | apply(rule ACIf.intro) | |
| 2137 | apply(rule ACf_sup) | |
| 2138 | apply(rule ACIf_axioms.intro) | |
| 2139 | apply(rule sup_idem) | |
| 2140 | done | |
| 2141 | ||
| 2142 | lemma (in Lattice) ACIfSL_inf: "ACIfSL inf (op \<sqsubseteq>)" | |
| 2143 | apply(rule ACIfSL.intro) | |
| 2144 | apply(rule ACf_inf) | |
| 2145 | apply(rule ACIf.axioms[OF ACIf_inf]) | |
| 2146 | apply(rule ACIfSL_axioms.intro) | |
| 2147 | apply(rule iffI) | |
| 2148 | apply(blast intro: antisym inf_le1 inf_le2 inf_least refl) | |
| 2149 | apply(erule subst) | |
| 2150 | apply(rule inf_le2) | |
| 2151 | done | |
| 2152 | ||
| 2153 | lemma (in Lattice) ACIfSL_sup: "ACIfSL sup (%x y. y \<sqsubseteq> x)" | |
| 2154 | apply(rule ACIfSL.intro) | |
| 2155 | apply(rule ACf_sup) | |
| 2156 | apply(rule ACIf.axioms[OF ACIf_sup]) | |
| 2157 | apply(rule ACIfSL_axioms.intro) | |
| 2158 | apply(rule iffI) | |
| 2159 | apply(blast intro: antisym sup_ge1 sup_ge2 sup_greatest refl) | |
| 2160 | apply(erule subst) | |
| 2161 | apply(rule sup_ge2) | |
| 2162 | done | |
| 2163 | ||
| 15505 | 2164 | |
| 2165 | subsubsection{* Fold laws in lattices *}
 | |
| 15500 | 2166 | |
| 15780 | 2167 | lemma (in Lattice) Inf_le_Sup[simp]: "\<lbrakk> finite A; A \<noteq> {} \<rbrakk> \<Longrightarrow> \<Sqinter>A \<sqsubseteq> \<Squnion>A"
 | 
| 15500 | 2168 | apply(unfold Sup_def Inf_def) | 
| 2169 | apply(subgoal_tac "EX a. a:A") | |
| 2170 | prefer 2 apply blast | |
| 2171 | apply(erule exE) | |
| 2172 | apply(rule trans) | |
| 2173 | apply(erule (2) ACIfSL.fold1_belowI[OF ACIfSL_inf]) | |
| 2174 | apply(erule (2) ACIfSL.fold1_belowI[OF ACIfSL_sup]) | |
| 2175 | done | |
| 2176 | ||
| 15780 | 2177 | lemma (in Lattice) sup_Inf_absorb[simp]: | 
| 15504 | 2178 |   "\<lbrakk> finite A; A \<noteq> {}; a \<in> A \<rbrakk> \<Longrightarrow> (a \<squnion> \<Sqinter>A) = a"
 | 
| 15512 
ed1fa4617f52
Extracted generic lattice stuff to new Lattice_Locales.thy
 nipkow parents: 
15510diff
changeset | 2179 | apply(subst sup_commute) | 
| 15504 | 2180 | apply(simp add:Inf_def sup_absorb ACIfSL.fold1_belowI[OF ACIfSL_inf]) | 
| 2181 | done | |
| 2182 | ||
| 15780 | 2183 | lemma (in Lattice) inf_Sup_absorb[simp]: | 
| 15504 | 2184 |   "\<lbrakk> finite A; A \<noteq> {}; a \<in> A \<rbrakk> \<Longrightarrow> (a \<sqinter> \<Squnion>A) = a"
 | 
| 2185 | by(simp add:Sup_def inf_absorb ACIfSL.fold1_belowI[OF ACIfSL_sup]) | |
| 2186 | ||
| 2187 | ||
| 15512 
ed1fa4617f52
Extracted generic lattice stuff to new Lattice_Locales.thy
 nipkow parents: 
15510diff
changeset | 2188 | lemma (in Distrib_Lattice) sup_Inf1_distrib: | 
| 15500 | 2189 | assumes A: "finite A" "A \<noteq> {}"
 | 
| 2190 | shows "(x \<squnion> \<Sqinter>A) = \<Sqinter>{x \<squnion> a|a. a \<in> A}"
 | |
| 2191 | using A | |
| 2192 | proof (induct rule: finite_ne_induct) | |
| 2193 | case singleton thus ?case by(simp add:Inf_def) | |
| 2194 | next | |
| 2195 | case (insert y A) | |
| 2196 |   have fin: "finite {x \<squnion> a |a. a \<in> A}"
 | |
| 15517 | 2197 | by(fast intro: finite_surj[where f = "%a. x \<squnion> a", OF insert(1)]) | 
| 15500 | 2198 | have "x \<squnion> \<Sqinter> (insert y A) = x \<squnion> (y \<sqinter> \<Sqinter> A)" | 
| 2199 | using insert by(simp add:ACf.fold1_insert_def[OF ACf_inf Inf_def]) | |
| 2200 | also have "\<dots> = (x \<squnion> y) \<sqinter> (x \<squnion> \<Sqinter> A)" by(rule sup_inf_distrib1) | |
| 2201 |   also have "x \<squnion> \<Sqinter> A = \<Sqinter>{x \<squnion> a|a. a \<in> A}" using insert by simp
 | |
| 2202 |   also have "(x \<squnion> y) \<sqinter> \<dots> = \<Sqinter> (insert (x \<squnion> y) {x \<squnion> a |a. a \<in> A})"
 | |
| 15509 | 2203 | using insert by(simp add:ACIf.fold1_insert_idem_def[OF ACIf_inf Inf_def fin]) | 
| 15500 | 2204 |   also have "insert (x\<squnion>y) {x\<squnion>a |a. a \<in> A} = {x\<squnion>a |a. a \<in> insert y A}"
 | 
| 2205 | by blast | |
| 2206 | finally show ?case . | |
| 2207 | qed | |
| 2208 | ||
| 15512 
ed1fa4617f52
Extracted generic lattice stuff to new Lattice_Locales.thy
 nipkow parents: 
15510diff
changeset | 2209 | lemma (in Distrib_Lattice) sup_Inf2_distrib: | 
| 15500 | 2210 | assumes A: "finite A" "A \<noteq> {}" and B: "finite B" "B \<noteq> {}"
 | 
| 2211 | shows "(\<Sqinter>A \<squnion> \<Sqinter>B) = \<Sqinter>{a \<squnion> b|a b. a \<in> A \<and> b \<in> B}"
 | |
| 2212 | using A | |
| 2213 | proof (induct rule: finite_ne_induct) | |
| 2214 | case singleton thus ?case | |
| 2215 | by(simp add: sup_Inf1_distrib[OF B] fold1_singleton_def[OF Inf_def]) | |
| 2216 | next | |
| 2217 | case (insert x A) | |
| 2218 |   have finB: "finite {x \<squnion> b |b. b \<in> B}"
 | |
| 15517 | 2219 | by(fast intro: finite_surj[where f = "%b. x \<squnion> b", OF B(1)]) | 
| 15500 | 2220 |   have finAB: "finite {a \<squnion> b |a b. a \<in> A \<and> b \<in> B}"
 | 
| 2221 | proof - | |
| 2222 |     have "{a \<squnion> b |a b. a \<in> A \<and> b \<in> B} = (UN a:A. UN b:B. {a \<squnion> b})"
 | |
| 2223 | by blast | |
| 15517 | 2224 | thus ?thesis by(simp add: insert(1) B(1)) | 
| 15500 | 2225 | qed | 
| 2226 |   have ne: "{a \<squnion> b |a b. a \<in> A \<and> b \<in> B} \<noteq> {}" using insert B by blast
 | |
| 2227 | have "\<Sqinter>(insert x A) \<squnion> \<Sqinter>B = (x \<sqinter> \<Sqinter>A) \<squnion> \<Sqinter>B" | |
| 15509 | 2228 | using insert by(simp add:ACIf.fold1_insert_idem_def[OF ACIf_inf Inf_def]) | 
| 15500 | 2229 | also have "\<dots> = (x \<squnion> \<Sqinter>B) \<sqinter> (\<Sqinter>A \<squnion> \<Sqinter>B)" by(rule sup_inf_distrib2) | 
| 2230 |   also have "\<dots> = \<Sqinter>{x \<squnion> b|b. b \<in> B} \<sqinter> \<Sqinter>{a \<squnion> b|a b. a \<in> A \<and> b \<in> B}"
 | |
| 2231 | using insert by(simp add:sup_Inf1_distrib[OF B]) | |
| 2232 |   also have "\<dots> = \<Sqinter>({x\<squnion>b |b. b \<in> B} \<union> {a\<squnion>b |a b. a \<in> A \<and> b \<in> B})"
 | |
| 2233 | (is "_ = \<Sqinter>?M") | |
| 2234 | using B insert | |
| 2235 | by(simp add:Inf_def ACIf.fold1_Un2[OF ACIf_inf finB _ finAB ne]) | |
| 2236 |   also have "?M = {a \<squnion> b |a b. a \<in> insert x A \<and> b \<in> B}"
 | |
| 2237 | by blast | |
| 2238 | finally show ?case . | |
| 2239 | qed | |
| 2240 | ||
| 15484 | 2241 | |
| 15392 | 2242 | subsection{*Min and Max*}
 | 
| 2243 | ||
| 2244 | text{* As an application of @{text fold1} we define the minimal and
 | |
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2245 | maximal element of a (non-empty) set over a linear order. *} | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2246 | |
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2247 | constdefs | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2248 |   Min :: "('a::linorder)set => 'a"
 | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2249 | "Min == fold1 min" | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2250 | |
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2251 |   Max :: "('a::linorder)set => 'a"
 | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2252 | "Max == fold1 max" | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2253 | |
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2254 | |
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2255 | text{* Before we can do anything, we need to show that @{text min} and
 | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2256 | @{text max} are ACI and the ordering is linear: *}
 | 
| 15392 | 2257 | |
| 15837 | 2258 | interpretation min: ACf ["min:: 'a::linorder \<Rightarrow> 'a \<Rightarrow> 'a"] | 
| 15392 | 2259 | apply(rule ACf.intro) | 
| 2260 | apply(auto simp:min_def) | |
| 2261 | done | |
| 2262 | ||
| 15837 | 2263 | interpretation min: ACIf ["min:: 'a::linorder \<Rightarrow> 'a \<Rightarrow> 'a"] | 
| 15392 | 2264 | apply(rule ACIf_axioms.intro) | 
| 2265 | apply(auto simp:min_def) | |
| 15376 | 2266 | done | 
| 2267 | ||
| 15837 | 2268 | interpretation max: ACf ["max :: 'a::linorder \<Rightarrow> 'a \<Rightarrow> 'a"] | 
| 15392 | 2269 | apply(rule ACf.intro) | 
| 2270 | apply(auto simp:max_def) | |
| 2271 | done | |
| 2272 | ||
| 15837 | 2273 | interpretation max: ACIf ["max:: 'a::linorder \<Rightarrow> 'a \<Rightarrow> 'a"] | 
| 15392 | 2274 | apply(rule ACIf_axioms.intro) | 
| 2275 | apply(auto simp:max_def) | |
| 15376 | 2276 | done | 
| 12396 | 2277 | |
| 15837 | 2278 | interpretation min: | 
| 15780 | 2279 | ACIfSL ["min:: 'a::linorder \<Rightarrow> 'a \<Rightarrow> 'a" "op \<le>"] | 
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2280 | apply(rule ACIfSL_axioms.intro) | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2281 | apply(auto simp:min_def) | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2282 | done | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2283 | |
| 15837 | 2284 | interpretation min: | 
| 15780 | 2285 | ACIfSLlin ["min :: 'a::linorder \<Rightarrow> 'a \<Rightarrow> 'a" "op \<le>"] | 
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2286 | apply(rule ACIfSLlin_axioms.intro) | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2287 | apply(auto simp:min_def) | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2288 | done | 
| 15392 | 2289 | |
| 15837 | 2290 | interpretation max: | 
| 15780 | 2291 | ACIfSL ["max :: 'a::linorder \<Rightarrow> 'a \<Rightarrow> 'a" "%x y. y\<le>x"] | 
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2292 | apply(rule ACIfSL_axioms.intro) | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2293 | apply(auto simp:max_def) | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2294 | done | 
| 15392 | 2295 | |
| 15837 | 2296 | interpretation max: | 
| 15780 | 2297 | ACIfSLlin ["max :: 'a::linorder \<Rightarrow> 'a \<Rightarrow> 'a" "%x y. y\<le>x"] | 
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2298 | apply(rule ACIfSLlin_axioms.intro) | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2299 | apply(auto simp:max_def) | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2300 | done | 
| 15392 | 2301 | |
| 15837 | 2302 | interpretation min_max: | 
| 15780 | 2303 | Lattice ["op \<le>" "min :: 'a::linorder \<Rightarrow> 'a \<Rightarrow> 'a" "max" "Min" "Max"] | 
| 2304 | apply - | |
| 2305 | apply(rule Min_def) | |
| 2306 | apply(rule Max_def) | |
| 15507 | 2307 | done | 
| 15500 | 2308 | |
| 2309 | ||
| 15837 | 2310 | interpretation min_max: | 
| 15780 | 2311 | Distrib_Lattice ["op \<le>" "min :: 'a::linorder \<Rightarrow> 'a \<Rightarrow> 'a" "max" "Min" "Max"] | 
| 2312 | . | |
| 15765 | 2313 | |
| 15402 | 2314 | text{* Now we instantiate the recursion equations and declare them
 | 
| 15392 | 2315 | simplification rules: *} | 
| 2316 | ||
| 17085 | 2317 | (* Making Min or Max a defined parameter of a locale, suitably | 
| 2318 | extending ACIf, could make the following interpretations more automatic. *) | |
| 15765 | 2319 | |
| 17085 | 2320 | lemmas Min_singleton = fold1_singleton_def [OF Min_def] | 
| 2321 | lemmas Max_singleton = fold1_singleton_def [OF Max_def] | |
| 2322 | lemmas Min_insert = min.fold1_insert_idem_def [OF Min_def] | |
| 2323 | lemmas Max_insert = max.fold1_insert_idem_def [OF Max_def] | |
| 2324 | ||
| 2325 | declare Min_singleton [simp] Max_singleton [simp] | |
| 2326 | declare Min_insert [simp] Max_insert [simp] | |
| 2327 | ||
| 15392 | 2328 | |
| 15484 | 2329 | text{* Now we instantiate some @{text fold1} properties: *}
 | 
| 15392 | 2330 | |
| 2331 | lemma Min_in [simp]: | |
| 15484 | 2332 |   shows "finite A \<Longrightarrow> A \<noteq> {} \<Longrightarrow> Min A \<in> A"
 | 
| 15791 | 2333 | using min.fold1_in | 
| 15484 | 2334 | by(fastsimp simp: Min_def min_def) | 
| 15392 | 2335 | |
| 2336 | lemma Max_in [simp]: | |
| 15484 | 2337 |   shows "finite A \<Longrightarrow> A \<noteq> {} \<Longrightarrow> Max A \<in> A"
 | 
| 15791 | 2338 | using max.fold1_in | 
| 15484 | 2339 | by(fastsimp simp: Max_def max_def) | 
| 15392 | 2340 | |
| 15484 | 2341 | lemma Min_le [simp]: "\<lbrakk> finite A; A \<noteq> {}; x \<in> A \<rbrakk> \<Longrightarrow> Min A \<le> x"
 | 
| 15791 | 2342 | by(simp add: Min_def min.fold1_belowI) | 
| 15392 | 2343 | |
| 15484 | 2344 | lemma Max_ge [simp]: "\<lbrakk> finite A; A \<noteq> {}; x \<in> A \<rbrakk> \<Longrightarrow> x \<le> Max A"
 | 
| 15791 | 2345 | by(simp add: Max_def max.fold1_belowI) | 
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2346 | |
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2347 | lemma Min_ge_iff[simp]: | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2348 |   "\<lbrakk> finite A; A \<noteq> {} \<rbrakk> \<Longrightarrow> (x \<le> Min A) = (\<forall>a\<in>A. x \<le> a)"
 | 
| 15791 | 2349 | by(simp add: Min_def min.below_fold1_iff) | 
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2350 | |
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2351 | lemma Max_le_iff[simp]: | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2352 |   "\<lbrakk> finite A; A \<noteq> {} \<rbrakk> \<Longrightarrow> (Max A \<le> x) = (\<forall>a\<in>A. a \<le> x)"
 | 
| 15791 | 2353 | by(simp add: Max_def max.below_fold1_iff) | 
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2354 | |
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2355 | lemma Min_le_iff: | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2356 |   "\<lbrakk> finite A; A \<noteq> {} \<rbrakk> \<Longrightarrow> (Min A \<le> x) = (\<exists>a\<in>A. a \<le> x)"
 | 
| 15791 | 2357 | by(simp add: Min_def min.fold1_below_iff) | 
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2358 | |
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2359 | lemma Max_ge_iff: | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2360 |   "\<lbrakk> finite A; A \<noteq> {} \<rbrakk> \<Longrightarrow> (x \<le> Max A) = (\<exists>a\<in>A. x \<le> a)"
 | 
| 15791 | 2361 | by(simp add: Max_def max.fold1_below_iff) | 
| 12396 | 2362 | |
| 17022 | 2363 | subsection {* Properties of axclass @{text finite} *}
 | 
| 2364 | ||
| 2365 | text{* Many of these are by Brian Huffman. *}
 | |
| 2366 | ||
| 2367 | lemma finite_set: "finite (A::'a::finite set)" | |
| 2368 | by (rule finite_subset [OF subset_UNIV finite]) | |
| 2369 | ||
| 2370 | ||
| 2371 | instance unit :: finite | |
| 2372 | proof | |
| 2373 |   have "finite {()}" by simp
 | |
| 2374 |   also have "{()} = UNIV" by auto
 | |
| 2375 | finally show "finite (UNIV :: unit set)" . | |
| 2376 | qed | |
| 2377 | ||
| 2378 | instance bool :: finite | |
| 2379 | proof | |
| 2380 |   have "finite {True, False}" by simp
 | |
| 2381 |   also have "{True, False} = UNIV" by auto
 | |
| 2382 | finally show "finite (UNIV :: bool set)" . | |
| 2383 | qed | |
| 2384 | ||
| 2385 | ||
| 2386 | instance * :: (finite, finite) finite | |
| 2387 | proof | |
| 2388 |   show "finite (UNIV :: ('a \<times> 'b) set)"
 | |
| 2389 | proof (rule finite_Prod_UNIV) | |
| 2390 | show "finite (UNIV :: 'a set)" by (rule finite) | |
| 2391 | show "finite (UNIV :: 'b set)" by (rule finite) | |
| 2392 | qed | |
| 2393 | qed | |
| 2394 | ||
| 2395 | instance "+" :: (finite, finite) finite | |
| 2396 | proof | |
| 2397 | have a: "finite (UNIV :: 'a set)" by (rule finite) | |
| 2398 | have b: "finite (UNIV :: 'b set)" by (rule finite) | |
| 2399 | from a b have "finite ((UNIV :: 'a set) <+> (UNIV :: 'b set))" | |
| 2400 | by (rule finite_Plus) | |
| 2401 |   thus "finite (UNIV :: ('a + 'b) set)" by simp
 | |
| 2402 | qed | |
| 2403 | ||
| 2404 | ||
| 2405 | instance set :: (finite) finite | |
| 2406 | proof | |
| 2407 | have "finite (UNIV :: 'a set)" by (rule finite) | |
| 2408 | hence "finite (Pow (UNIV :: 'a set))" | |
| 2409 | by (rule finite_Pow_iff [THEN iffD2]) | |
| 2410 | thus "finite (UNIV :: 'a set set)" by simp | |
| 2411 | qed | |
| 2412 | ||
| 2413 | lemma inj_graph: "inj (%f. {(x, y). y = f x})"
 | |
| 2414 | by (rule inj_onI, auto simp add: expand_set_eq expand_fun_eq) | |
| 2415 | ||
| 2416 | instance fun :: (finite, finite) finite | |
| 2417 | proof | |
| 2418 |   show "finite (UNIV :: ('a => 'b) set)"
 | |
| 2419 | proof (rule finite_imageD) | |
| 2420 |     let ?graph = "%f::'a => 'b. {(x, y). y = f x}"
 | |
| 2421 | show "finite (range ?graph)" by (rule finite_set) | |
| 2422 | show "inj ?graph" by (rule inj_graph) | |
| 2423 | qed | |
| 2424 | qed | |
| 2425 | ||
| 15042 | 2426 | end |