| author | wenzelm | 
| Fri, 20 Oct 2023 22:19:05 +0200 | |
| changeset 78805 | 62616d8422c5 | 
| parent 78099 | 4d9349989d94 | 
| child 80914 | d97fdabd9e2b | 
| permissions | -rw-r--r-- | 
| 62479 | 1 | (* Title: HOL/Nonstandard_Analysis/NSA.thy | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32155diff
changeset | 2 | Author: Jacques D. Fleuriot, University of Cambridge | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32155diff
changeset | 3 | Author: Lawrence C Paulson, University of Cambridge | 
| 27468 | 4 | *) | 
| 5 | ||
| 64435 | 6 | section \<open>Infinite Numbers, Infinitesimals, Infinitely Close Relation\<close> | 
| 27468 | 7 | |
| 8 | theory NSA | |
| 70221 | 9 | imports HyperDef "HOL-Library.Lub_Glb" | 
| 27468 | 10 | begin | 
| 11 | ||
| 64435 | 12 | definition hnorm :: "'a::real_normed_vector star \<Rightarrow> real star" | 
| 13 | where [transfer_unfold]: "hnorm = *f* norm" | |
| 27468 | 14 | |
| 64435 | 15 | definition Infinitesimal  :: "('a::real_normed_vector) star set"
 | 
| 16 |   where "Infinitesimal = {x. \<forall>r \<in> Reals. 0 < r \<longrightarrow> hnorm x < r}"
 | |
| 27468 | 17 | |
| 64435 | 18 | definition HFinite :: "('a::real_normed_vector) star set"
 | 
| 19 |   where "HFinite = {x. \<exists>r \<in> Reals. hnorm x < r}"
 | |
| 27468 | 20 | |
| 64435 | 21 | definition HInfinite :: "('a::real_normed_vector) star set"
 | 
| 22 |   where "HInfinite = {x. \<forall>r \<in> Reals. r < hnorm x}"
 | |
| 27468 | 23 | |
| 64435 | 24 | definition approx :: "'a::real_normed_vector star \<Rightarrow> 'a star \<Rightarrow> bool" (infixl "\<approx>" 50) | 
| 25 | where "x \<approx> y \<longleftrightarrow> x - y \<in> Infinitesimal" | |
| 26 | \<comment> \<open>the ``infinitely close'' relation\<close> | |
| 27468 | 27 | |
| 64435 | 28 | definition st :: "hypreal \<Rightarrow> hypreal" | 
| 29 | where "st = (\<lambda>x. SOME r. x \<in> HFinite \<and> r \<in> \<real> \<and> r \<approx> x)" | |
| 30 | \<comment> \<open>the standard part of a hyperreal\<close> | |
| 27468 | 31 | |
| 64435 | 32 | definition monad :: "'a::real_normed_vector star \<Rightarrow> 'a star set" | 
| 33 |   where "monad x = {y. x \<approx> y}"
 | |
| 27468 | 34 | |
| 64435 | 35 | definition galaxy :: "'a::real_normed_vector star \<Rightarrow> 'a star set" | 
| 36 |   where "galaxy x = {y. (x + -y) \<in> HFinite}"
 | |
| 27468 | 37 | |
| 64435 | 38 | lemma SReal_def: "\<real> \<equiv> {x. \<exists>r. x = hypreal_of_real r}"
 | 
| 39 | by (simp add: Reals_def image_def) | |
| 40 | ||
| 27468 | 41 | |
| 61975 | 42 | subsection \<open>Nonstandard Extension of the Norm Function\<close> | 
| 27468 | 43 | |
| 64435 | 44 | definition scaleHR :: "real star \<Rightarrow> 'a star \<Rightarrow> 'a::real_normed_vector star" | 
| 45 | where [transfer_unfold]: "scaleHR = starfun2 scaleR" | |
| 27468 | 46 | |
| 47 | lemma Standard_hnorm [simp]: "x \<in> Standard \<Longrightarrow> hnorm x \<in> Standard" | |
| 64435 | 48 | by (simp add: hnorm_def) | 
| 27468 | 49 | |
| 50 | lemma star_of_norm [simp]: "star_of (norm x) = hnorm (star_of x)" | |
| 64435 | 51 | by transfer (rule refl) | 
| 27468 | 52 | |
| 64435 | 53 | lemma hnorm_ge_zero [simp]: "\<And>x::'a::real_normed_vector star. 0 \<le> hnorm x" | 
| 54 | by transfer (rule norm_ge_zero) | |
| 27468 | 55 | |
| 64435 | 56 | lemma hnorm_eq_zero [simp]: "\<And>x::'a::real_normed_vector star. hnorm x = 0 \<longleftrightarrow> x = 0" | 
| 57 | by transfer (rule norm_eq_zero) | |
| 27468 | 58 | |
| 64435 | 59 | lemma hnorm_triangle_ineq: "\<And>x y::'a::real_normed_vector star. hnorm (x + y) \<le> hnorm x + hnorm y" | 
| 60 | by transfer (rule norm_triangle_ineq) | |
| 27468 | 61 | |
| 64435 | 62 | lemma hnorm_triangle_ineq3: "\<And>x y::'a::real_normed_vector star. \<bar>hnorm x - hnorm y\<bar> \<le> hnorm (x - y)" | 
| 63 | by transfer (rule norm_triangle_ineq3) | |
| 64 | ||
| 65 | lemma hnorm_scaleR: "\<And>x::'a::real_normed_vector star. hnorm (a *\<^sub>R x) = \<bar>star_of a\<bar> * hnorm x" | |
| 66 | by transfer (rule norm_scaleR) | |
| 27468 | 67 | |
| 64435 | 68 | lemma hnorm_scaleHR: "\<And>a (x::'a::real_normed_vector star). hnorm (scaleHR a x) = \<bar>a\<bar> * hnorm x" | 
| 69 | by transfer (rule norm_scaleR) | |
| 27468 | 70 | |
| 64435 | 71 | lemma hnorm_mult_ineq: "\<And>x y::'a::real_normed_algebra star. hnorm (x * y) \<le> hnorm x * hnorm y" | 
| 72 | by transfer (rule norm_mult_ineq) | |
| 27468 | 73 | |
| 64435 | 74 | lemma hnorm_mult: "\<And>x y::'a::real_normed_div_algebra star. hnorm (x * y) = hnorm x * hnorm y" | 
| 75 | by transfer (rule norm_mult) | |
| 27468 | 76 | |
| 64435 | 77 | lemma hnorm_hyperpow: "\<And>(x::'a::{real_normed_div_algebra} star) n. hnorm (x pow n) = hnorm x pow n"
 | 
| 78 | by transfer (rule norm_power) | |
| 79 | ||
| 80 | lemma hnorm_one [simp]: "hnorm (1::'a::real_normed_div_algebra star) = 1" | |
| 81 | by transfer (rule norm_one) | |
| 27468 | 82 | |
| 64435 | 83 | lemma hnorm_zero [simp]: "hnorm (0::'a::real_normed_vector star) = 0" | 
| 84 | by transfer (rule norm_zero) | |
| 27468 | 85 | |
| 64435 | 86 | lemma zero_less_hnorm_iff [simp]: "\<And>x::'a::real_normed_vector star. 0 < hnorm x \<longleftrightarrow> x \<noteq> 0" | 
| 87 | by transfer (rule zero_less_norm_iff) | |
| 27468 | 88 | |
| 64435 | 89 | lemma hnorm_minus_cancel [simp]: "\<And>x::'a::real_normed_vector star. hnorm (- x) = hnorm x" | 
| 90 | by transfer (rule norm_minus_cancel) | |
| 27468 | 91 | |
| 64435 | 92 | lemma hnorm_minus_commute: "\<And>a b::'a::real_normed_vector star. hnorm (a - b) = hnorm (b - a)" | 
| 93 | by transfer (rule norm_minus_commute) | |
| 27468 | 94 | |
| 64435 | 95 | lemma hnorm_triangle_ineq2: "\<And>a b::'a::real_normed_vector star. hnorm a - hnorm b \<le> hnorm (a - b)" | 
| 96 | by transfer (rule norm_triangle_ineq2) | |
| 27468 | 97 | |
| 64435 | 98 | lemma hnorm_triangle_ineq4: "\<And>a b::'a::real_normed_vector star. hnorm (a - b) \<le> hnorm a + hnorm b" | 
| 99 | by transfer (rule norm_triangle_ineq4) | |
| 27468 | 100 | |
| 64435 | 101 | lemma abs_hnorm_cancel [simp]: "\<And>a::'a::real_normed_vector star. \<bar>hnorm a\<bar> = hnorm a" | 
| 102 | by transfer (rule abs_norm_cancel) | |
| 27468 | 103 | |
| 64435 | 104 | lemma hnorm_of_hypreal [simp]: "\<And>r. hnorm (of_hypreal r::'a::real_normed_algebra_1 star) = \<bar>r\<bar>" | 
| 105 | by transfer (rule norm_of_real) | |
| 27468 | 106 | |
| 107 | lemma nonzero_hnorm_inverse: | |
| 64435 | 108 | "\<And>a::'a::real_normed_div_algebra star. a \<noteq> 0 \<Longrightarrow> hnorm (inverse a) = inverse (hnorm a)" | 
| 109 | by transfer (rule nonzero_norm_inverse) | |
| 27468 | 110 | |
| 111 | lemma hnorm_inverse: | |
| 64435 | 112 |   "\<And>a::'a::{real_normed_div_algebra, division_ring} star. hnorm (inverse a) = inverse (hnorm a)"
 | 
| 113 | by transfer (rule norm_inverse) | |
| 27468 | 114 | |
| 64435 | 115 | lemma hnorm_divide: "\<And>a b::'a::{real_normed_field, field} star. hnorm (a / b) = hnorm a / hnorm b"
 | 
| 116 | by transfer (rule norm_divide) | |
| 27468 | 117 | |
| 64435 | 118 | lemma hypreal_hnorm_def [simp]: "\<And>r::hypreal. hnorm r = \<bar>r\<bar>" | 
| 119 | by transfer (rule real_norm_def) | |
| 27468 | 120 | |
| 121 | lemma hnorm_add_less: | |
| 64435 | 122 | "\<And>(x::'a::real_normed_vector star) y r s. hnorm x < r \<Longrightarrow> hnorm y < s \<Longrightarrow> hnorm (x + y) < r + s" | 
| 123 | by transfer (rule norm_add_less) | |
| 27468 | 124 | |
| 125 | lemma hnorm_mult_less: | |
| 64435 | 126 | "\<And>(x::'a::real_normed_algebra star) y r s. hnorm x < r \<Longrightarrow> hnorm y < s \<Longrightarrow> hnorm (x * y) < r * s" | 
| 127 | by transfer (rule norm_mult_less) | |
| 27468 | 128 | |
| 64435 | 129 | lemma hnorm_scaleHR_less: "\<bar>x\<bar> < r \<Longrightarrow> hnorm y < s \<Longrightarrow> hnorm (scaleHR x y) < r * s" | 
| 130 | by (simp only: hnorm_scaleHR) (simp add: mult_strict_mono') | |
| 131 | ||
| 132 | ||
| 133 | subsection \<open>Closure Laws for the Standard Reals\<close> | |
| 27468 | 134 | |
| 64435 | 135 | lemma Reals_add_cancel: "x + y \<in> \<real> \<Longrightarrow> y \<in> \<real> \<Longrightarrow> x \<in> \<real>" | 
| 136 | by (drule (1) Reals_diff) simp | |
| 27468 | 137 | |
| 64435 | 138 | lemma SReal_hrabs: "x \<in> \<real> \<Longrightarrow> \<bar>x\<bar> \<in> \<real>" | 
| 139 | for x :: hypreal | |
| 140 | by (simp add: Reals_eq_Standard) | |
| 27468 | 141 | |
| 61070 | 142 | lemma SReal_hypreal_of_real [simp]: "hypreal_of_real x \<in> \<real>" | 
| 64435 | 143 | by (simp add: Reals_eq_Standard) | 
| 27468 | 144 | |
| 64435 | 145 | lemma SReal_divide_numeral: "r \<in> \<real> \<Longrightarrow> r / (numeral w::hypreal) \<in> \<real>" | 
| 146 | by simp | |
| 27468 | 147 | |
| 61981 | 148 | text \<open>\<open>\<epsilon>\<close> is not in Reals because it is an infinitesimal\<close> | 
| 149 | lemma SReal_epsilon_not_mem: "\<epsilon> \<notin> \<real>" | |
| 64435 | 150 | by (auto simp: SReal_def hypreal_of_real_not_eq_epsilon [symmetric]) | 
| 27468 | 151 | |
| 61981 | 152 | lemma SReal_omega_not_mem: "\<omega> \<notin> \<real>" | 
| 64435 | 153 | by (auto simp: SReal_def hypreal_of_real_not_eq_omega [symmetric]) | 
| 27468 | 154 | |
| 61070 | 155 | lemma SReal_UNIV_real: "{x. hypreal_of_real x \<in> \<real>} = (UNIV::real set)"
 | 
| 64435 | 156 | by simp | 
| 27468 | 157 | |
| 64435 | 158 | lemma SReal_iff: "x \<in> \<real> \<longleftrightarrow> (\<exists>y. x = hypreal_of_real y)" | 
| 159 | by (simp add: SReal_def) | |
| 27468 | 160 | |
| 61070 | 161 | lemma hypreal_of_real_image: "hypreal_of_real `(UNIV::real set) = \<real>" | 
| 64435 | 162 | by (simp add: Reals_eq_Standard Standard_def) | 
| 27468 | 163 | |
| 61070 | 164 | lemma inv_hypreal_of_real_image: "inv hypreal_of_real ` \<real> = UNIV" | 
| 70221 | 165 | by (simp add: Reals_eq_Standard Standard_def inj_star_of) | 
| 27468 | 166 | |
| 64435 | 167 | lemma SReal_dense: "x \<in> \<real> \<Longrightarrow> y \<in> \<real> \<Longrightarrow> x < y \<Longrightarrow> \<exists>r \<in> Reals. x < r \<and> r < y" | 
| 168 | for x y :: hypreal | |
| 70221 | 169 | using dense by (fastforce simp add: SReal_def) | 
| 27468 | 170 | |
| 171 | ||
| 64435 | 172 | subsection \<open>Set of Finite Elements is a Subring of the Extended Reals\<close> | 
| 27468 | 173 | |
| 64435 | 174 | lemma HFinite_add: "x \<in> HFinite \<Longrightarrow> y \<in> HFinite \<Longrightarrow> x + y \<in> HFinite" | 
| 175 | unfolding HFinite_def by (blast intro!: Reals_add hnorm_add_less) | |
| 27468 | 176 | |
| 64435 | 177 | lemma HFinite_mult: "x \<in> HFinite \<Longrightarrow> y \<in> HFinite \<Longrightarrow> x * y \<in> HFinite" | 
| 178 | for x y :: "'a::real_normed_algebra star" | |
| 179 | unfolding HFinite_def by (blast intro!: Reals_mult hnorm_mult_less) | |
| 27468 | 180 | |
| 64435 | 181 | lemma HFinite_scaleHR: "x \<in> HFinite \<Longrightarrow> y \<in> HFinite \<Longrightarrow> scaleHR x y \<in> HFinite" | 
| 182 | by (auto simp: HFinite_def intro!: Reals_mult hnorm_scaleHR_less) | |
| 27468 | 183 | |
| 64435 | 184 | lemma HFinite_minus_iff: "- x \<in> HFinite \<longleftrightarrow> x \<in> HFinite" | 
| 185 | by (simp add: HFinite_def) | |
| 27468 | 186 | |
| 187 | lemma HFinite_star_of [simp]: "star_of x \<in> HFinite" | |
| 70221 | 188 | by (simp add: HFinite_def) (metis SReal_hypreal_of_real gt_ex star_of_less star_of_norm) | 
| 27468 | 189 | |
| 61070 | 190 | lemma SReal_subset_HFinite: "(\<real>::hypreal set) \<subseteq> HFinite" | 
| 64435 | 191 | by (auto simp add: SReal_def) | 
| 27468 | 192 | |
| 64435 | 193 | lemma HFiniteD: "x \<in> HFinite \<Longrightarrow> \<exists>t \<in> Reals. hnorm x < t" | 
| 194 | by (simp add: HFinite_def) | |
| 27468 | 195 | |
| 64435 | 196 | lemma HFinite_hrabs_iff [iff]: "\<bar>x\<bar> \<in> HFinite \<longleftrightarrow> x \<in> HFinite" | 
| 197 | for x :: hypreal | |
| 198 | by (simp add: HFinite_def) | |
| 27468 | 199 | |
| 64435 | 200 | lemma HFinite_hnorm_iff [iff]: "hnorm x \<in> HFinite \<longleftrightarrow> x \<in> HFinite" | 
| 201 | for x :: hypreal | |
| 202 | by (simp add: HFinite_def) | |
| 27468 | 203 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45541diff
changeset | 204 | lemma HFinite_numeral [simp]: "numeral w \<in> HFinite" | 
| 64435 | 205 | unfolding star_numeral_def by (rule HFinite_star_of) | 
| 27468 | 206 | |
| 64435 | 207 | text \<open>As always with numerals, \<open>0\<close> and \<open>1\<close> are special cases.\<close> | 
| 27468 | 208 | |
| 209 | lemma HFinite_0 [simp]: "0 \<in> HFinite" | |
| 64435 | 210 | unfolding star_zero_def by (rule HFinite_star_of) | 
| 27468 | 211 | |
| 212 | lemma HFinite_1 [simp]: "1 \<in> HFinite" | |
| 64435 | 213 | unfolding star_one_def by (rule HFinite_star_of) | 
| 27468 | 214 | |
| 64435 | 215 | lemma hrealpow_HFinite: "x \<in> HFinite \<Longrightarrow> x ^ n \<in> HFinite" | 
| 216 |   for x :: "'a::{real_normed_algebra,monoid_mult} star"
 | |
| 70221 | 217 | by (induct n) (auto intro: HFinite_mult) | 
| 27468 | 218 | |
| 70221 | 219 | lemma HFinite_bounded: | 
| 220 | fixes x y :: hypreal | |
| 221 | assumes "x \<in> HFinite" and y: "y \<le> x" "0 \<le> y" shows "y \<in> HFinite" | |
| 222 | proof (cases "x \<le> 0") | |
| 223 | case True | |
| 224 | then have "y = 0" | |
| 225 | using y by auto | |
| 226 | then show ?thesis | |
| 227 | by simp | |
| 228 | next | |
| 229 | case False | |
| 230 | then show ?thesis | |
| 231 | using assms le_less_trans by (auto simp: HFinite_def) | |
| 232 | qed | |
| 27468 | 233 | |
| 234 | ||
| 64435 | 235 | subsection \<open>Set of Infinitesimals is a Subring of the Hyperreals\<close> | 
| 27468 | 236 | |
| 64435 | 237 | lemma InfinitesimalI: "(\<And>r. r \<in> \<real> \<Longrightarrow> 0 < r \<Longrightarrow> hnorm x < r) \<Longrightarrow> x \<in> Infinitesimal" | 
| 238 | by (simp add: Infinitesimal_def) | |
| 27468 | 239 | |
| 64435 | 240 | lemma InfinitesimalD: "x \<in> Infinitesimal \<Longrightarrow> \<forall>r \<in> Reals. 0 < r \<longrightarrow> hnorm x < r" | 
| 241 | by (simp add: Infinitesimal_def) | |
| 27468 | 242 | |
| 64435 | 243 | lemma InfinitesimalI2: "(\<And>r. 0 < r \<Longrightarrow> hnorm x < star_of r) \<Longrightarrow> x \<in> Infinitesimal" | 
| 244 | by (auto simp add: Infinitesimal_def SReal_def) | |
| 27468 | 245 | |
| 64435 | 246 | lemma InfinitesimalD2: "x \<in> Infinitesimal \<Longrightarrow> 0 < r \<Longrightarrow> hnorm x < star_of r" | 
| 247 | by (auto simp add: Infinitesimal_def SReal_def) | |
| 27468 | 248 | |
| 249 | lemma Infinitesimal_zero [iff]: "0 \<in> Infinitesimal" | |
| 64435 | 250 | by (simp add: Infinitesimal_def) | 
| 27468 | 251 | |
| 70221 | 252 | lemma Infinitesimal_add: | 
| 253 | assumes "x \<in> Infinitesimal" "y \<in> Infinitesimal" | |
| 254 | shows "x + y \<in> Infinitesimal" | |
| 255 | proof (rule InfinitesimalI) | |
| 256 | show "hnorm (x + y) < r" | |
| 257 | if "r \<in> \<real>" and "0 < r" for r :: "real star" | |
| 258 | proof - | |
| 259 | have "hnorm x < r/2" "hnorm y < r/2" | |
| 260 | using InfinitesimalD SReal_divide_numeral assms half_gt_zero that by blast+ | |
| 261 | then show ?thesis | |
| 262 | using hnorm_add_less by fastforce | |
| 263 | qed | |
| 264 | qed | |
| 27468 | 265 | |
| 64435 | 266 | lemma Infinitesimal_minus_iff [simp]: "- x \<in> Infinitesimal \<longleftrightarrow> x \<in> Infinitesimal" | 
| 267 | by (simp add: Infinitesimal_def) | |
| 27468 | 268 | |
| 64435 | 269 | lemma Infinitesimal_hnorm_iff: "hnorm x \<in> Infinitesimal \<longleftrightarrow> x \<in> Infinitesimal" | 
| 270 | by (simp add: Infinitesimal_def) | |
| 27468 | 271 | |
| 64435 | 272 | lemma Infinitesimal_hrabs_iff [iff]: "\<bar>x\<bar> \<in> Infinitesimal \<longleftrightarrow> x \<in> Infinitesimal" | 
| 273 | for x :: hypreal | |
| 274 | by (simp add: abs_if) | |
| 27468 | 275 | |
| 276 | lemma Infinitesimal_of_hypreal_iff [simp]: | |
| 64435 | 277 | "(of_hypreal x::'a::real_normed_algebra_1 star) \<in> Infinitesimal \<longleftrightarrow> x \<in> Infinitesimal" | 
| 278 | by (subst Infinitesimal_hnorm_iff [symmetric]) simp | |
| 27468 | 279 | |
| 64435 | 280 | lemma Infinitesimal_diff: "x \<in> Infinitesimal \<Longrightarrow> y \<in> Infinitesimal \<Longrightarrow> x - y \<in> Infinitesimal" | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
51521diff
changeset | 281 | using Infinitesimal_add [of x "- y"] by simp | 
| 27468 | 282 | |
| 70221 | 283 | lemma Infinitesimal_mult: | 
| 284 | fixes x y :: "'a::real_normed_algebra star" | |
| 285 | assumes "x \<in> Infinitesimal" "y \<in> Infinitesimal" | |
| 286 | shows "x * y \<in> Infinitesimal" | |
| 287 | proof (rule InfinitesimalI) | |
| 288 | show "hnorm (x * y) < r" | |
| 289 | if "r \<in> \<real>" and "0 < r" for r :: "real star" | |
| 290 | proof - | |
| 291 | have "hnorm x < 1" "hnorm y < r" | |
| 292 | using assms that by (auto simp add: InfinitesimalD) | |
| 293 | then show ?thesis | |
| 294 | using hnorm_mult_less by fastforce | |
| 295 | qed | |
| 296 | qed | |
| 27468 | 297 | |
| 70221 | 298 | lemma Infinitesimal_HFinite_mult: | 
| 299 | fixes x y :: "'a::real_normed_algebra star" | |
| 300 | assumes "x \<in> Infinitesimal" "y \<in> HFinite" | |
| 301 | shows "x * y \<in> Infinitesimal" | |
| 302 | proof (rule InfinitesimalI) | |
| 303 | obtain t where "hnorm y < t" "t \<in> Reals" | |
| 304 | using HFiniteD \<open>y \<in> HFinite\<close> by blast | |
| 305 | then have "t > 0" | |
| 306 | using hnorm_ge_zero le_less_trans by blast | |
| 307 | show "hnorm (x * y) < r" | |
| 308 | if "r \<in> \<real>" and "0 < r" for r :: "real star" | |
| 309 | proof - | |
| 310 | have "hnorm x < r/t" | |
| 311 | by (meson InfinitesimalD Reals_divide \<open>hnorm y < t\<close> \<open>t \<in> \<real>\<close> assms(1) divide_pos_pos hnorm_ge_zero le_less_trans that) | |
| 312 | then have "hnorm (x * y) < (r / t) * t" | |
| 313 | using \<open>hnorm y < t\<close> hnorm_mult_less by blast | |
| 314 | then show ?thesis | |
| 315 | using \<open>0 < t\<close> by auto | |
| 316 | qed | |
| 317 | qed | |
| 27468 | 318 | |
| 319 | lemma Infinitesimal_HFinite_scaleHR: | |
| 70221 | 320 | assumes "x \<in> Infinitesimal" "y \<in> HFinite" | 
| 321 | shows "scaleHR x y \<in> Infinitesimal" | |
| 322 | proof (rule InfinitesimalI) | |
| 323 | obtain t where "hnorm y < t" "t \<in> Reals" | |
| 324 | using HFiniteD \<open>y \<in> HFinite\<close> by blast | |
| 325 | then have "t > 0" | |
| 326 | using hnorm_ge_zero le_less_trans by blast | |
| 327 | show "hnorm (scaleHR x y) < r" | |
| 328 | if "r \<in> \<real>" and "0 < r" for r :: "real star" | |
| 329 | proof - | |
| 330 | have "\<bar>x\<bar> * hnorm y < (r / t) * t" | |
| 331 | by (metis InfinitesimalD Reals_divide \<open>0 < t\<close> \<open>hnorm y < t\<close> \<open>t \<in> \<real>\<close> assms(1) divide_pos_pos hnorm_ge_zero hypreal_hnorm_def mult_strict_mono' that) | |
| 332 | then show ?thesis | |
| 333 | by (simp add: \<open>0 < t\<close> hnorm_scaleHR less_imp_not_eq2) | |
| 334 | qed | |
| 335 | qed | |
| 27468 | 336 | |
| 337 | lemma Infinitesimal_HFinite_mult2: | |
| 70221 | 338 | fixes x y :: "'a::real_normed_algebra star" | 
| 339 | assumes "x \<in> Infinitesimal" "y \<in> HFinite" | |
| 340 | shows "y * x \<in> Infinitesimal" | |
| 341 | proof (rule InfinitesimalI) | |
| 342 | obtain t where "hnorm y < t" "t \<in> Reals" | |
| 343 | using HFiniteD \<open>y \<in> HFinite\<close> by blast | |
| 344 | then have "t > 0" | |
| 345 | using hnorm_ge_zero le_less_trans by blast | |
| 346 | show "hnorm (y * x) < r" | |
| 347 | if "r \<in> \<real>" and "0 < r" for r :: "real star" | |
| 348 | proof - | |
| 349 | have "hnorm x < r/t" | |
| 350 | by (meson InfinitesimalD Reals_divide \<open>hnorm y < t\<close> \<open>t \<in> \<real>\<close> assms(1) divide_pos_pos hnorm_ge_zero le_less_trans that) | |
| 351 | then have "hnorm (y * x) < t * (r / t)" | |
| 352 | using \<open>hnorm y < t\<close> hnorm_mult_less by blast | |
| 353 | then show ?thesis | |
| 354 | using \<open>0 < t\<close> by auto | |
| 355 | qed | |
| 356 | qed | |
| 27468 | 357 | |
| 70221 | 358 | lemma Infinitesimal_scaleR2: | 
| 359 | assumes "x \<in> Infinitesimal" shows "a *\<^sub>R x \<in> Infinitesimal" | |
| 360 | by (metis HFinite_star_of Infinitesimal_HFinite_mult2 Infinitesimal_hnorm_iff assms hnorm_scaleR hypreal_hnorm_def star_of_norm) | |
| 27468 | 361 | |
| 362 | lemma Compl_HFinite: "- HFinite = HInfinite" | |
| 70221 | 363 | proof - | 
| 364 | have "r < hnorm x" if *: "\<And>s. s \<in> \<real> \<Longrightarrow> s \<le> hnorm x" and "r \<in> \<real>" | |
| 365 | for x :: "'a star" and r :: hypreal | |
| 366 | using * [of "r+1"] \<open>r \<in> \<real>\<close> by auto | |
| 367 | then show ?thesis | |
| 368 | by (auto simp add: HInfinite_def HFinite_def linorder_not_less) | |
| 369 | qed | |
| 27468 | 370 | |
| 70221 | 371 | lemma HInfinite_inverse_Infinitesimal: | 
| 372 | "x \<in> HInfinite \<Longrightarrow> inverse x \<in> Infinitesimal" | |
| 64435 | 373 | for x :: "'a::real_normed_div_algebra star" | 
| 70221 | 374 | by (simp add: HInfinite_def InfinitesimalI hnorm_inverse inverse_less_imp_less) | 
| 375 | ||
| 376 | lemma inverse_Infinitesimal_iff_HInfinite: | |
| 377 | "x \<noteq> 0 \<Longrightarrow> inverse x \<in> Infinitesimal \<longleftrightarrow> x \<in> HInfinite" | |
| 378 | for x :: "'a::real_normed_div_algebra star" | |
| 379 | by (metis Compl_HFinite Compl_iff HInfinite_inverse_Infinitesimal InfinitesimalD Infinitesimal_HFinite_mult Reals_1 hnorm_one left_inverse less_irrefl zero_less_one) | |
| 27468 | 380 | |
| 381 | lemma HInfiniteI: "(\<And>r. r \<in> \<real> \<Longrightarrow> r < hnorm x) \<Longrightarrow> x \<in> HInfinite" | |
| 64435 | 382 | by (simp add: HInfinite_def) | 
| 27468 | 383 | |
| 64435 | 384 | lemma HInfiniteD: "x \<in> HInfinite \<Longrightarrow> r \<in> \<real> \<Longrightarrow> r < hnorm x" | 
| 385 | by (simp add: HInfinite_def) | |
| 27468 | 386 | |
| 70221 | 387 | lemma HInfinite_mult: | 
| 388 | fixes x y :: "'a::real_normed_div_algebra star" | |
| 389 | assumes "x \<in> HInfinite" "y \<in> HInfinite" shows "x * y \<in> HInfinite" | |
| 390 | proof (rule HInfiniteI, simp only: hnorm_mult) | |
| 391 | have "x \<noteq> 0" | |
| 392 | using Compl_HFinite HFinite_0 assms by blast | |
| 393 | show "r < hnorm x * hnorm y" | |
| 394 | if "r \<in> \<real>" for r :: "real star" | |
| 395 | proof - | |
| 396 | have "r = r * 1" | |
| 397 | by simp | |
| 398 | also have "\<dots> < hnorm x * hnorm y" | |
| 399 | by (meson HInfiniteD Reals_1 \<open>x \<noteq> 0\<close> assms le_numeral_extra(1) mult_strict_mono that zero_less_hnorm_iff) | |
| 400 | finally show ?thesis . | |
| 401 | qed | |
| 402 | qed | |
| 27468 | 403 | |
| 64435 | 404 | lemma hypreal_add_zero_less_le_mono: "r < x \<Longrightarrow> 0 \<le> y \<Longrightarrow> r < x + y" | 
| 405 | for r x y :: hypreal | |
| 70221 | 406 | by simp | 
| 27468 | 407 | |
| 64435 | 408 | lemma HInfinite_add_ge_zero: "x \<in> HInfinite \<Longrightarrow> 0 \<le> y \<Longrightarrow> 0 \<le> x \<Longrightarrow> x + y \<in> HInfinite" | 
| 409 | for x y :: hypreal | |
| 410 | by (auto simp: abs_if add.commute HInfinite_def) | |
| 27468 | 411 | |
| 64435 | 412 | lemma HInfinite_add_ge_zero2: "x \<in> HInfinite \<Longrightarrow> 0 \<le> y \<Longrightarrow> 0 \<le> x \<Longrightarrow> y + x \<in> HInfinite" | 
| 413 | for x y :: hypreal | |
| 414 | by (auto intro!: HInfinite_add_ge_zero simp add: add.commute) | |
| 27468 | 415 | |
| 64435 | 416 | lemma HInfinite_add_gt_zero: "x \<in> HInfinite \<Longrightarrow> 0 < y \<Longrightarrow> 0 < x \<Longrightarrow> x + y \<in> HInfinite" | 
| 417 | for x y :: hypreal | |
| 418 | by (blast intro: HInfinite_add_ge_zero order_less_imp_le) | |
| 27468 | 419 | |
| 64435 | 420 | lemma HInfinite_minus_iff: "- x \<in> HInfinite \<longleftrightarrow> x \<in> HInfinite" | 
| 421 | by (simp add: HInfinite_def) | |
| 27468 | 422 | |
| 64435 | 423 | lemma HInfinite_add_le_zero: "x \<in> HInfinite \<Longrightarrow> y \<le> 0 \<Longrightarrow> x \<le> 0 \<Longrightarrow> x + y \<in> HInfinite" | 
| 424 | for x y :: hypreal | |
| 70221 | 425 | by (metis (no_types, lifting) HInfinite_add_ge_zero2 HInfinite_minus_iff add.inverse_distrib_swap neg_0_le_iff_le) | 
| 27468 | 426 | |
| 64435 | 427 | lemma HInfinite_add_lt_zero: "x \<in> HInfinite \<Longrightarrow> y < 0 \<Longrightarrow> x < 0 \<Longrightarrow> x + y \<in> HInfinite" | 
| 428 | for x y :: hypreal | |
| 429 | by (blast intro: HInfinite_add_le_zero order_less_imp_le) | |
| 27468 | 430 | |
| 64435 | 431 | lemma not_Infinitesimal_not_zero: "x \<notin> Infinitesimal \<Longrightarrow> x \<noteq> 0" | 
| 432 | by auto | |
| 27468 | 433 | |
| 434 | lemma HFinite_diff_Infinitesimal_hrabs: | |
| 64435 | 435 | "x \<in> HFinite - Infinitesimal \<Longrightarrow> \<bar>x\<bar> \<in> HFinite - Infinitesimal" | 
| 436 | for x :: hypreal | |
| 437 | by blast | |
| 27468 | 438 | |
| 64435 | 439 | lemma hnorm_le_Infinitesimal: "e \<in> Infinitesimal \<Longrightarrow> hnorm x \<le> e \<Longrightarrow> x \<in> Infinitesimal" | 
| 440 | by (auto simp: Infinitesimal_def abs_less_iff) | |
| 27468 | 441 | |
| 64435 | 442 | lemma hnorm_less_Infinitesimal: "e \<in> Infinitesimal \<Longrightarrow> hnorm x < e \<Longrightarrow> x \<in> Infinitesimal" | 
| 443 | by (erule hnorm_le_Infinitesimal, erule order_less_imp_le) | |
| 27468 | 444 | |
| 64435 | 445 | lemma hrabs_le_Infinitesimal: "e \<in> Infinitesimal \<Longrightarrow> \<bar>x\<bar> \<le> e \<Longrightarrow> x \<in> Infinitesimal" | 
| 446 | for x :: hypreal | |
| 447 | by (erule hnorm_le_Infinitesimal) simp | |
| 27468 | 448 | |
| 64435 | 449 | lemma hrabs_less_Infinitesimal: "e \<in> Infinitesimal \<Longrightarrow> \<bar>x\<bar> < e \<Longrightarrow> x \<in> Infinitesimal" | 
| 450 | for x :: hypreal | |
| 451 | by (erule hnorm_less_Infinitesimal) simp | |
| 27468 | 452 | |
| 453 | lemma Infinitesimal_interval: | |
| 64435 | 454 | "e \<in> Infinitesimal \<Longrightarrow> e' \<in> Infinitesimal \<Longrightarrow> e' < x \<Longrightarrow> x < e \<Longrightarrow> x \<in> Infinitesimal" | 
| 455 | for x :: hypreal | |
| 456 | by (auto simp add: Infinitesimal_def abs_less_iff) | |
| 27468 | 457 | |
| 458 | lemma Infinitesimal_interval2: | |
| 64435 | 459 | "e \<in> Infinitesimal \<Longrightarrow> e' \<in> Infinitesimal \<Longrightarrow> e' \<le> x \<Longrightarrow> x \<le> e \<Longrightarrow> x \<in> Infinitesimal" | 
| 460 | for x :: hypreal | |
| 461 | by (auto intro: Infinitesimal_interval simp add: order_le_less) | |
| 27468 | 462 | |
| 64435 | 463 | lemma lemma_Infinitesimal_hyperpow: "x \<in> Infinitesimal \<Longrightarrow> 0 < N \<Longrightarrow> \<bar>x pow N\<bar> \<le> \<bar>x\<bar>" | 
| 464 | for x :: hypreal | |
| 70221 | 465 | apply (clarsimp simp: Infinitesimal_def) | 
| 466 | by (metis Reals_1 abs_ge_zero hyperpow_Suc_le_self2 hyperpow_hrabs hypnat_gt_zero_iff2 zero_less_one) | |
| 27468 | 467 | |
| 64435 | 468 | lemma Infinitesimal_hyperpow: "x \<in> Infinitesimal \<Longrightarrow> 0 < N \<Longrightarrow> x pow N \<in> Infinitesimal" | 
| 469 | for x :: hypreal | |
| 70221 | 470 | using hrabs_le_Infinitesimal lemma_Infinitesimal_hyperpow by blast | 
| 27468 | 471 | |
| 472 | lemma hrealpow_hyperpow_Infinitesimal_iff: | |
| 64435 | 473 | "(x ^ n \<in> Infinitesimal) \<longleftrightarrow> x pow (hypnat_of_nat n) \<in> Infinitesimal" | 
| 474 | by (simp only: hyperpow_hypnat_of_nat) | |
| 27468 | 475 | |
| 64435 | 476 | lemma Infinitesimal_hrealpow: "x \<in> Infinitesimal \<Longrightarrow> 0 < n \<Longrightarrow> x ^ n \<in> Infinitesimal" | 
| 477 | for x :: hypreal | |
| 478 | by (simp add: hrealpow_hyperpow_Infinitesimal_iff Infinitesimal_hyperpow) | |
| 27468 | 479 | |
| 480 | lemma not_Infinitesimal_mult: | |
| 64435 | 481 | "x \<notin> Infinitesimal \<Longrightarrow> y \<notin> Infinitesimal \<Longrightarrow> x * y \<notin> Infinitesimal" | 
| 482 | for x y :: "'a::real_normed_div_algebra star" | |
| 70221 | 483 | by (metis (no_types, lifting) inverse_Infinitesimal_iff_HInfinite ComplI Compl_HFinite Infinitesimal_HFinite_mult divide_inverse eq_divide_imp inverse_inverse_eq mult_zero_right) | 
| 27468 | 484 | |
| 64435 | 485 | lemma Infinitesimal_mult_disj: "x * y \<in> Infinitesimal \<Longrightarrow> x \<in> Infinitesimal \<or> y \<in> Infinitesimal" | 
| 486 | for x y :: "'a::real_normed_div_algebra star" | |
| 70221 | 487 | using not_Infinitesimal_mult by blast | 
| 27468 | 488 | |
| 64435 | 489 | lemma HFinite_Infinitesimal_not_zero: "x \<in> HFinite-Infinitesimal \<Longrightarrow> x \<noteq> 0" | 
| 490 | by blast | |
| 27468 | 491 | |
| 492 | lemma HFinite_Infinitesimal_diff_mult: | |
| 64435 | 493 | "x \<in> HFinite - Infinitesimal \<Longrightarrow> y \<in> HFinite - Infinitesimal \<Longrightarrow> x * y \<in> HFinite - Infinitesimal" | 
| 494 | for x y :: "'a::real_normed_div_algebra star" | |
| 70221 | 495 | by (simp add: HFinite_mult not_Infinitesimal_mult) | 
| 27468 | 496 | |
| 64435 | 497 | lemma Infinitesimal_subset_HFinite: "Infinitesimal \<subseteq> HFinite" | 
| 70221 | 498 | using HFinite_def InfinitesimalD Reals_1 zero_less_one by blast | 
| 27468 | 499 | |
| 64435 | 500 | lemma Infinitesimal_star_of_mult: "x \<in> Infinitesimal \<Longrightarrow> x * star_of r \<in> Infinitesimal" | 
| 501 | for x :: "'a::real_normed_algebra star" | |
| 502 | by (erule HFinite_star_of [THEN [2] Infinitesimal_HFinite_mult]) | |
| 27468 | 503 | |
| 64435 | 504 | lemma Infinitesimal_star_of_mult2: "x \<in> Infinitesimal \<Longrightarrow> star_of r * x \<in> Infinitesimal" | 
| 505 | for x :: "'a::real_normed_algebra star" | |
| 506 | by (erule HFinite_star_of [THEN [2] Infinitesimal_HFinite_mult2]) | |
| 27468 | 507 | |
| 508 | ||
| 64435 | 509 | subsection \<open>The Infinitely Close Relation\<close> | 
| 27468 | 510 | |
| 64435 | 511 | lemma mem_infmal_iff: "x \<in> Infinitesimal \<longleftrightarrow> x \<approx> 0" | 
| 512 | by (simp add: Infinitesimal_def approx_def) | |
| 27468 | 513 | |
| 64435 | 514 | lemma approx_minus_iff: "x \<approx> y \<longleftrightarrow> x - y \<approx> 0" | 
| 515 | by (simp add: approx_def) | |
| 27468 | 516 | |
| 64435 | 517 | lemma approx_minus_iff2: "x \<approx> y \<longleftrightarrow> - y + x \<approx> 0" | 
| 518 | by (simp add: approx_def add.commute) | |
| 27468 | 519 | |
| 61982 | 520 | lemma approx_refl [iff]: "x \<approx> x" | 
| 64435 | 521 | by (simp add: approx_def Infinitesimal_def) | 
| 27468 | 522 | |
| 70221 | 523 | lemma approx_sym: "x \<approx> y \<Longrightarrow> y \<approx> x" | 
| 524 | by (metis Infinitesimal_minus_iff approx_def minus_diff_eq) | |
| 27468 | 525 | |
| 70221 | 526 | lemma approx_trans: | 
| 527 | assumes "x \<approx> y" "y \<approx> z" shows "x \<approx> z" | |
| 528 | proof - | |
| 529 | have "x - y \<in> Infinitesimal" "z - y \<in> Infinitesimal" | |
| 530 | using assms approx_def approx_sym by auto | |
| 531 | then have "x - z \<in> Infinitesimal" | |
| 532 | using Infinitesimal_diff by force | |
| 533 | then show ?thesis | |
| 534 | by (simp add: approx_def) | |
| 535 | qed | |
| 27468 | 536 | |
| 64435 | 537 | lemma approx_trans2: "r \<approx> x \<Longrightarrow> s \<approx> x \<Longrightarrow> r \<approx> s" | 
| 538 | by (blast intro: approx_sym approx_trans) | |
| 27468 | 539 | |
| 64435 | 540 | lemma approx_trans3: "x \<approx> r \<Longrightarrow> x \<approx> s \<Longrightarrow> r \<approx> s" | 
| 541 | by (blast intro: approx_sym approx_trans) | |
| 27468 | 542 | |
| 64435 | 543 | lemma approx_reorient: "x \<approx> y \<longleftrightarrow> y \<approx> x" | 
| 544 | by (blast intro: approx_sym) | |
| 27468 | 545 | |
| 64435 | 546 | text \<open>Reorientation simplification procedure: reorients (polymorphic) | 
| 547 | \<open>0 = x\<close>, \<open>1 = x\<close>, \<open>nnn = x\<close> provided \<open>x\<close> isn't \<open>0\<close>, \<open>1\<close> or a numeral.\<close> | |
| 45541 
934866fc776c
simplify implementation of approx_reorient_simproc
 huffman parents: 
45540diff
changeset | 548 | simproc_setup approx_reorient_simproc | 
| 61982 | 549 |   ("0 \<approx> x" | "1 \<approx> y" | "numeral w \<approx> z" | "- 1 \<approx> y" | "- numeral w \<approx> r") =
 | 
| 61975 | 550 | \<open> | 
| 45541 
934866fc776c
simplify implementation of approx_reorient_simproc
 huffman parents: 
45540diff
changeset | 551 |   let val rule = @{thm approx_reorient} RS eq_reflection
 | 
| 78099 
4d9349989d94
more uniform simproc_setup: avoid vacuous abstraction over morphism, which sometimes captures context values in its functional closure;
 wenzelm parents: 
75866diff
changeset | 552 | fun proc ct = | 
| 59582 | 553 | case Thm.term_of ct of | 
| 45541 
934866fc776c
simplify implementation of approx_reorient_simproc
 huffman parents: 
45540diff
changeset | 554 | _ $ t $ u => if can HOLogic.dest_number u then NONE | 
| 
934866fc776c
simplify implementation of approx_reorient_simproc
 huffman parents: 
45540diff
changeset | 555 | else if can HOLogic.dest_number t then SOME rule else NONE | 
| 
934866fc776c
simplify implementation of approx_reorient_simproc
 huffman parents: 
45540diff
changeset | 556 | | _ => NONE | 
| 78099 
4d9349989d94
more uniform simproc_setup: avoid vacuous abstraction over morphism, which sometimes captures context values in its functional closure;
 wenzelm parents: 
75866diff
changeset | 557 | in K (K proc) end | 
| 61975 | 558 | \<close> | 
| 27468 | 559 | |
| 64435 | 560 | lemma Infinitesimal_approx_minus: "x - y \<in> Infinitesimal \<longleftrightarrow> x \<approx> y" | 
| 561 | by (simp add: approx_minus_iff [symmetric] mem_infmal_iff) | |
| 27468 | 562 | |
| 64435 | 563 | lemma approx_monad_iff: "x \<approx> y \<longleftrightarrow> monad x = monad y" | 
| 70221 | 564 | apply (simp add: monad_def set_eq_iff) | 
| 565 | using approx_reorient approx_trans by blast | |
| 27468 | 566 | |
| 64435 | 567 | lemma Infinitesimal_approx: "x \<in> Infinitesimal \<Longrightarrow> y \<in> Infinitesimal \<Longrightarrow> x \<approx> y" | 
| 70221 | 568 | by (simp add: Infinitesimal_diff approx_def) | 
| 27468 | 569 | |
| 64435 | 570 | lemma approx_add: "a \<approx> b \<Longrightarrow> c \<approx> d \<Longrightarrow> a + c \<approx> b + d" | 
| 27468 | 571 | proof (unfold approx_def) | 
| 572 | assume inf: "a - b \<in> Infinitesimal" "c - d \<in> Infinitesimal" | |
| 573 | have "a + c - (b + d) = (a - b) + (c - d)" by simp | |
| 64435 | 574 | also have "... \<in> Infinitesimal" | 
| 575 | using inf by (rule Infinitesimal_add) | |
| 27468 | 576 | finally show "a + c - (b + d) \<in> Infinitesimal" . | 
| 577 | qed | |
| 578 | ||
| 64435 | 579 | lemma approx_minus: "a \<approx> b \<Longrightarrow> - a \<approx> - b" | 
| 70221 | 580 | by (metis approx_def approx_sym minus_diff_eq minus_diff_minus) | 
| 27468 | 581 | |
| 64435 | 582 | lemma approx_minus2: "- a \<approx> - b \<Longrightarrow> a \<approx> b" | 
| 583 | by (auto dest: approx_minus) | |
| 27468 | 584 | |
| 64435 | 585 | lemma approx_minus_cancel [simp]: "- a \<approx> - b \<longleftrightarrow> a \<approx> b" | 
| 586 | by (blast intro: approx_minus approx_minus2) | |
| 27468 | 587 | |
| 64435 | 588 | lemma approx_add_minus: "a \<approx> b \<Longrightarrow> c \<approx> d \<Longrightarrow> a + - c \<approx> b + - d" | 
| 589 | by (blast intro!: approx_add approx_minus) | |
| 27468 | 590 | |
| 64435 | 591 | lemma approx_diff: "a \<approx> b \<Longrightarrow> c \<approx> d \<Longrightarrow> a - c \<approx> b - d" | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
51521diff
changeset | 592 | using approx_add [of a b "- c" "- d"] by simp | 
| 27468 | 593 | |
| 64435 | 594 | lemma approx_mult1: "a \<approx> b \<Longrightarrow> c \<in> HFinite \<Longrightarrow> a * c \<approx> b * c" | 
| 595 | for a b c :: "'a::real_normed_algebra star" | |
| 596 | by (simp add: approx_def Infinitesimal_HFinite_mult left_diff_distrib [symmetric]) | |
| 597 | ||
| 598 | lemma approx_mult2: "a \<approx> b \<Longrightarrow> c \<in> HFinite \<Longrightarrow> c * a \<approx> c * b" | |
| 599 | for a b c :: "'a::real_normed_algebra star" | |
| 600 | by (simp add: approx_def Infinitesimal_HFinite_mult2 right_diff_distrib [symmetric]) | |
| 27468 | 601 | |
| 64435 | 602 | lemma approx_mult_subst: "u \<approx> v * x \<Longrightarrow> x \<approx> y \<Longrightarrow> v \<in> HFinite \<Longrightarrow> u \<approx> v * y" | 
| 603 | for u v x y :: "'a::real_normed_algebra star" | |
| 604 | by (blast intro: approx_mult2 approx_trans) | |
| 27468 | 605 | |
| 64435 | 606 | lemma approx_mult_subst2: "u \<approx> x * v \<Longrightarrow> x \<approx> y \<Longrightarrow> v \<in> HFinite \<Longrightarrow> u \<approx> y * v" | 
| 607 | for u v x y :: "'a::real_normed_algebra star" | |
| 608 | by (blast intro: approx_mult1 approx_trans) | |
| 27468 | 609 | |
| 64435 | 610 | lemma approx_mult_subst_star_of: "u \<approx> x * star_of v \<Longrightarrow> x \<approx> y \<Longrightarrow> u \<approx> y * star_of v" | 
| 611 | for u x y :: "'a::real_normed_algebra star" | |
| 612 | by (auto intro: approx_mult_subst2) | |
| 27468 | 613 | |
| 64435 | 614 | lemma approx_eq_imp: "a = b \<Longrightarrow> a \<approx> b" | 
| 615 | by (simp add: approx_def) | |
| 27468 | 616 | |
| 64435 | 617 | lemma Infinitesimal_minus_approx: "x \<in> Infinitesimal \<Longrightarrow> - x \<approx> x" | 
| 618 | by (blast intro: Infinitesimal_minus_iff [THEN iffD2] mem_infmal_iff [THEN iffD1] approx_trans2) | |
| 27468 | 619 | |
| 64435 | 620 | lemma bex_Infinitesimal_iff: "(\<exists>y \<in> Infinitesimal. x - z = y) \<longleftrightarrow> x \<approx> z" | 
| 621 | by (simp add: approx_def) | |
| 27468 | 622 | |
| 64435 | 623 | lemma bex_Infinitesimal_iff2: "(\<exists>y \<in> Infinitesimal. x = z + y) \<longleftrightarrow> x \<approx> z" | 
| 624 | by (force simp add: bex_Infinitesimal_iff [symmetric]) | |
| 27468 | 625 | |
| 64435 | 626 | lemma Infinitesimal_add_approx: "y \<in> Infinitesimal \<Longrightarrow> x + y = z \<Longrightarrow> x \<approx> z" | 
| 70221 | 627 | using approx_sym bex_Infinitesimal_iff2 by blast | 
| 27468 | 628 | |
| 64435 | 629 | lemma Infinitesimal_add_approx_self: "y \<in> Infinitesimal \<Longrightarrow> x \<approx> x + y" | 
| 70221 | 630 | by (simp add: Infinitesimal_add_approx) | 
| 27468 | 631 | |
| 64435 | 632 | lemma Infinitesimal_add_approx_self2: "y \<in> Infinitesimal \<Longrightarrow> x \<approx> y + x" | 
| 633 | by (auto dest: Infinitesimal_add_approx_self simp add: add.commute) | |
| 27468 | 634 | |
| 64435 | 635 | lemma Infinitesimal_add_minus_approx_self: "y \<in> Infinitesimal \<Longrightarrow> x \<approx> x + - y" | 
| 636 | by (blast intro!: Infinitesimal_add_approx_self Infinitesimal_minus_iff [THEN iffD2]) | |
| 27468 | 637 | |
| 64435 | 638 | lemma Infinitesimal_add_cancel: "y \<in> Infinitesimal \<Longrightarrow> x + y \<approx> z \<Longrightarrow> x \<approx> z" | 
| 70221 | 639 | using Infinitesimal_add_approx approx_trans by blast | 
| 27468 | 640 | |
| 64435 | 641 | lemma Infinitesimal_add_right_cancel: "y \<in> Infinitesimal \<Longrightarrow> x \<approx> z + y \<Longrightarrow> x \<approx> z" | 
| 70221 | 642 | by (metis Infinitesimal_add_approx_self approx_monad_iff) | 
| 27468 | 643 | |
| 70221 | 644 | lemma approx_add_left_cancel: "d + b \<approx> d + c \<Longrightarrow> b \<approx> c" | 
| 645 | by (metis add_diff_cancel_left bex_Infinitesimal_iff) | |
| 27468 | 646 | |
| 64435 | 647 | lemma approx_add_right_cancel: "b + d \<approx> c + d \<Longrightarrow> b \<approx> c" | 
| 70221 | 648 | by (simp add: approx_def) | 
| 27468 | 649 | |
| 64435 | 650 | lemma approx_add_mono1: "b \<approx> c \<Longrightarrow> d + b \<approx> d + c" | 
| 70221 | 651 | by (simp add: approx_add) | 
| 27468 | 652 | |
| 64435 | 653 | lemma approx_add_mono2: "b \<approx> c \<Longrightarrow> b + a \<approx> c + a" | 
| 654 | by (simp add: add.commute approx_add_mono1) | |
| 27468 | 655 | |
| 64435 | 656 | lemma approx_add_left_iff [simp]: "a + b \<approx> a + c \<longleftrightarrow> b \<approx> c" | 
| 657 | by (fast elim: approx_add_left_cancel approx_add_mono1) | |
| 27468 | 658 | |
| 64435 | 659 | lemma approx_add_right_iff [simp]: "b + a \<approx> c + a \<longleftrightarrow> b \<approx> c" | 
| 660 | by (simp add: add.commute) | |
| 27468 | 661 | |
| 64435 | 662 | lemma approx_HFinite: "x \<in> HFinite \<Longrightarrow> x \<approx> y \<Longrightarrow> y \<in> HFinite" | 
| 70221 | 663 | by (metis HFinite_add Infinitesimal_subset_HFinite approx_sym subsetD bex_Infinitesimal_iff2) | 
| 27468 | 664 | |
| 64435 | 665 | lemma approx_star_of_HFinite: "x \<approx> star_of D \<Longrightarrow> x \<in> HFinite" | 
| 666 | by (rule approx_sym [THEN [2] approx_HFinite], auto) | |
| 27468 | 667 | |
| 64435 | 668 | lemma approx_mult_HFinite: "a \<approx> b \<Longrightarrow> c \<approx> d \<Longrightarrow> b \<in> HFinite \<Longrightarrow> d \<in> HFinite \<Longrightarrow> a * c \<approx> b * d" | 
| 669 | for a b c d :: "'a::real_normed_algebra star" | |
| 70221 | 670 | by (meson approx_HFinite approx_mult2 approx_mult_subst2 approx_sym) | 
| 27468 | 671 | |
| 64435 | 672 | lemma scaleHR_left_diff_distrib: "\<And>a b x. scaleHR (a - b) x = scaleHR a x - scaleHR b x" | 
| 673 | by transfer (rule scaleR_left_diff_distrib) | |
| 27468 | 674 | |
| 64435 | 675 | lemma approx_scaleR1: "a \<approx> star_of b \<Longrightarrow> c \<in> HFinite \<Longrightarrow> scaleHR a c \<approx> b *\<^sub>R c" | 
| 70221 | 676 | unfolding approx_def | 
| 677 | by (metis Infinitesimal_HFinite_scaleHR scaleHR_def scaleHR_left_diff_distrib star_scaleR_def starfun2_star_of) | |
| 27468 | 678 | |
| 64435 | 679 | lemma approx_scaleR2: "a \<approx> b \<Longrightarrow> c *\<^sub>R a \<approx> c *\<^sub>R b" | 
| 680 | by (simp add: approx_def Infinitesimal_scaleR2 scaleR_right_diff_distrib [symmetric]) | |
| 681 | ||
| 682 | lemma approx_scaleR_HFinite: "a \<approx> star_of b \<Longrightarrow> c \<approx> d \<Longrightarrow> d \<in> HFinite \<Longrightarrow> scaleHR a c \<approx> b *\<^sub>R d" | |
| 70221 | 683 | by (meson approx_HFinite approx_scaleR1 approx_scaleR2 approx_sym approx_trans) | 
| 27468 | 684 | |
| 64435 | 685 | lemma approx_mult_star_of: "a \<approx> star_of b \<Longrightarrow> c \<approx> star_of d \<Longrightarrow> a * c \<approx> star_of b * star_of d" | 
| 686 | for a c :: "'a::real_normed_algebra star" | |
| 687 | by (blast intro!: approx_mult_HFinite approx_star_of_HFinite HFinite_star_of) | |
| 688 | ||
| 70221 | 689 | lemma approx_SReal_mult_cancel_zero: | 
| 690 | fixes a x :: hypreal | |
| 691 | assumes "a \<in> \<real>" "a \<noteq> 0" "a * x \<approx> 0" shows "x \<approx> 0" | |
| 692 | proof - | |
| 693 | have "inverse a \<in> HFinite" | |
| 694 | using Reals_inverse SReal_subset_HFinite assms(1) by blast | |
| 695 | then show ?thesis | |
| 696 | using assms by (auto dest: approx_mult2 simp add: mult.assoc [symmetric]) | |
| 697 | qed | |
| 27468 | 698 | |
| 64435 | 699 | lemma approx_mult_SReal1: "a \<in> \<real> \<Longrightarrow> x \<approx> 0 \<Longrightarrow> x * a \<approx> 0" | 
| 700 | for a x :: hypreal | |
| 701 | by (auto dest: SReal_subset_HFinite [THEN subsetD] approx_mult1) | |
| 27468 | 702 | |
| 64435 | 703 | lemma approx_mult_SReal2: "a \<in> \<real> \<Longrightarrow> x \<approx> 0 \<Longrightarrow> a * x \<approx> 0" | 
| 704 | for a x :: hypreal | |
| 705 | by (auto dest: SReal_subset_HFinite [THEN subsetD] approx_mult2) | |
| 27468 | 706 | |
| 64435 | 707 | lemma approx_mult_SReal_zero_cancel_iff [simp]: "a \<in> \<real> \<Longrightarrow> a \<noteq> 0 \<Longrightarrow> a * x \<approx> 0 \<longleftrightarrow> x \<approx> 0" | 
| 708 | for a x :: hypreal | |
| 709 | by (blast intro: approx_SReal_mult_cancel_zero approx_mult_SReal2) | |
| 27468 | 710 | |
| 70221 | 711 | lemma approx_SReal_mult_cancel: | 
| 712 | fixes a w z :: hypreal | |
| 713 | assumes "a \<in> \<real>" "a \<noteq> 0" "a * w \<approx> a * z" shows "w \<approx> z" | |
| 714 | proof - | |
| 715 | have "inverse a \<in> HFinite" | |
| 716 | using Reals_inverse SReal_subset_HFinite assms(1) by blast | |
| 717 | then show ?thesis | |
| 718 | using assms by (auto dest: approx_mult2 simp add: mult.assoc [symmetric]) | |
| 719 | qed | |
| 27468 | 720 | |
| 64435 | 721 | lemma approx_SReal_mult_cancel_iff1 [simp]: "a \<in> \<real> \<Longrightarrow> a \<noteq> 0 \<Longrightarrow> a * w \<approx> a * z \<longleftrightarrow> w \<approx> z" | 
| 722 | for a w z :: hypreal | |
| 70221 | 723 | by (meson SReal_subset_HFinite approx_SReal_mult_cancel approx_mult2 subsetD) | 
| 27468 | 724 | |
| 70221 | 725 | lemma approx_le_bound: | 
| 726 | fixes z :: hypreal | |
| 727 | assumes "z \<le> f" " f \<approx> g" "g \<le> z" shows "f \<approx> z" | |
| 728 | proof - | |
| 729 | obtain y where "z \<le> g + y" and "y \<in> Infinitesimal" "f = g + y" | |
| 730 | using assms bex_Infinitesimal_iff2 by auto | |
| 731 | then have "z - g \<in> Infinitesimal" | |
| 732 | using assms(3) hrabs_le_Infinitesimal by auto | |
| 733 | then show ?thesis | |
| 734 | by (metis approx_def approx_trans2 assms(2)) | |
| 735 | qed | |
| 27468 | 736 | |
| 64435 | 737 | lemma approx_hnorm: "x \<approx> y \<Longrightarrow> hnorm x \<approx> hnorm y" | 
| 738 | for x y :: "'a::real_normed_vector star" | |
| 27468 | 739 | proof (unfold approx_def) | 
| 740 | assume "x - y \<in> Infinitesimal" | |
| 64435 | 741 | then have "hnorm (x - y) \<in> Infinitesimal" | 
| 27468 | 742 | by (simp only: Infinitesimal_hnorm_iff) | 
| 64435 | 743 | moreover have "(0::real star) \<in> Infinitesimal" | 
| 27468 | 744 | by (rule Infinitesimal_zero) | 
| 64435 | 745 | moreover have "0 \<le> \<bar>hnorm x - hnorm y\<bar>" | 
| 27468 | 746 | by (rule abs_ge_zero) | 
| 64435 | 747 | moreover have "\<bar>hnorm x - hnorm y\<bar> \<le> hnorm (x - y)" | 
| 27468 | 748 | by (rule hnorm_triangle_ineq3) | 
| 749 | ultimately have "\<bar>hnorm x - hnorm y\<bar> \<in> Infinitesimal" | |
| 750 | by (rule Infinitesimal_interval2) | |
| 64435 | 751 | then show "hnorm x - hnorm y \<in> Infinitesimal" | 
| 27468 | 752 | by (simp only: Infinitesimal_hrabs_iff) | 
| 753 | qed | |
| 754 | ||
| 755 | ||
| 64435 | 756 | subsection \<open>Zero is the Only Infinitesimal that is also a Real\<close> | 
| 27468 | 757 | |
| 64435 | 758 | lemma Infinitesimal_less_SReal: "x \<in> \<real> \<Longrightarrow> y \<in> Infinitesimal \<Longrightarrow> 0 < x \<Longrightarrow> y < x" | 
| 759 | for x y :: hypreal | |
| 70221 | 760 | using InfinitesimalD by fastforce | 
| 27468 | 761 | |
| 64435 | 762 | lemma Infinitesimal_less_SReal2: "y \<in> Infinitesimal \<Longrightarrow> \<forall>r \<in> Reals. 0 < r \<longrightarrow> y < r" | 
| 763 | for y :: hypreal | |
| 764 | by (blast intro: Infinitesimal_less_SReal) | |
| 27468 | 765 | |
| 64435 | 766 | lemma SReal_not_Infinitesimal: "0 < y \<Longrightarrow> y \<in> \<real> ==> y \<notin> Infinitesimal" | 
| 767 | for y :: hypreal | |
| 70221 | 768 | by (auto simp add: Infinitesimal_def abs_if) | 
| 27468 | 769 | |
| 64435 | 770 | lemma SReal_minus_not_Infinitesimal: "y < 0 \<Longrightarrow> y \<in> \<real> \<Longrightarrow> y \<notin> Infinitesimal" | 
| 771 | for y :: hypreal | |
| 70221 | 772 | using Infinitesimal_minus_iff Reals_minus SReal_not_Infinitesimal neg_0_less_iff_less by blast | 
| 27468 | 773 | |
| 61070 | 774 | lemma SReal_Int_Infinitesimal_zero: "\<real> Int Infinitesimal = {0::hypreal}"
 | 
| 70221 | 775 | proof - | 
| 776 | have "x = 0" if "x \<in> \<real>" "x \<in> Infinitesimal" for x :: "real star" | |
| 777 | using that SReal_minus_not_Infinitesimal SReal_not_Infinitesimal not_less_iff_gr_or_eq by blast | |
| 778 | then show ?thesis | |
| 779 | by auto | |
| 780 | qed | |
| 27468 | 781 | |
| 64435 | 782 | lemma SReal_Infinitesimal_zero: "x \<in> \<real> \<Longrightarrow> x \<in> Infinitesimal \<Longrightarrow> x = 0" | 
| 783 | for x :: hypreal | |
| 784 | using SReal_Int_Infinitesimal_zero by blast | |
| 27468 | 785 | |
| 64435 | 786 | lemma SReal_HFinite_diff_Infinitesimal: "x \<in> \<real> \<Longrightarrow> x \<noteq> 0 \<Longrightarrow> x \<in> HFinite - Infinitesimal" | 
| 787 | for x :: hypreal | |
| 788 | by (auto dest: SReal_Infinitesimal_zero SReal_subset_HFinite [THEN subsetD]) | |
| 27468 | 789 | |
| 790 | lemma hypreal_of_real_HFinite_diff_Infinitesimal: | |
| 64435 | 791 | "hypreal_of_real x \<noteq> 0 \<Longrightarrow> hypreal_of_real x \<in> HFinite - Infinitesimal" | 
| 792 | by (rule SReal_HFinite_diff_Infinitesimal) auto | |
| 27468 | 793 | |
| 64435 | 794 | lemma star_of_Infinitesimal_iff_0 [iff]: "star_of x \<in> Infinitesimal \<longleftrightarrow> x = 0" | 
| 70221 | 795 | proof | 
| 796 | show "x = 0" if "star_of x \<in> Infinitesimal" | |
| 797 | proof - | |
| 798 | have "hnorm (star_n (\<lambda>n. x)) \<in> Standard" | |
| 799 | by (metis Reals_eq_Standard SReal_iff star_of_def star_of_norm) | |
| 800 | then show ?thesis | |
| 801 | by (metis InfinitesimalD2 less_irrefl star_of_norm that zero_less_norm_iff) | |
| 802 | qed | |
| 803 | qed auto | |
| 27468 | 804 | |
| 64435 | 805 | lemma star_of_HFinite_diff_Infinitesimal: "x \<noteq> 0 \<Longrightarrow> star_of x \<in> HFinite - Infinitesimal" | 
| 806 | by simp | |
| 27468 | 807 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45541diff
changeset | 808 | lemma numeral_not_Infinitesimal [simp]: | 
| 64435 | 809 | "numeral w \<noteq> (0::hypreal) \<Longrightarrow> (numeral w :: hypreal) \<notin> Infinitesimal" | 
| 810 | by (fast dest: Reals_numeral [THEN SReal_Infinitesimal_zero]) | |
| 27468 | 811 | |
| 64435 | 812 | text \<open>Again: \<open>1\<close> is a special case, but not \<open>0\<close> this time.\<close> | 
| 27468 | 813 | lemma one_not_Infinitesimal [simp]: | 
| 814 |   "(1::'a::{real_normed_vector,zero_neq_one} star) \<notin> Infinitesimal"
 | |
| 70221 | 815 | by (metis star_of_Infinitesimal_iff_0 star_one_def zero_neq_one) | 
| 27468 | 816 | |
| 64435 | 817 | lemma approx_SReal_not_zero: "y \<in> \<real> \<Longrightarrow> x \<approx> y \<Longrightarrow> y \<noteq> 0 \<Longrightarrow> x \<noteq> 0" | 
| 818 | for x y :: hypreal | |
| 70221 | 819 | using SReal_Infinitesimal_zero approx_sym mem_infmal_iff by auto | 
| 27468 | 820 | |
| 821 | lemma HFinite_diff_Infinitesimal_approx: | |
| 64435 | 822 | "x \<approx> y \<Longrightarrow> y \<in> HFinite - Infinitesimal \<Longrightarrow> x \<in> HFinite - Infinitesimal" | 
| 70221 | 823 | by (meson Diff_iff approx_HFinite approx_sym approx_trans3 mem_infmal_iff) | 
| 27468 | 824 | |
| 64435 | 825 | text \<open>The premise \<open>y \<noteq> 0\<close> is essential; otherwise \<open>x / y = 0\<close> and we lose the | 
| 826 | \<open>HFinite\<close> premise.\<close> | |
| 27468 | 827 | lemma Infinitesimal_ratio: | 
| 64435 | 828 | "y \<noteq> 0 \<Longrightarrow> y \<in> Infinitesimal \<Longrightarrow> x / y \<in> HFinite \<Longrightarrow> x \<in> Infinitesimal" | 
| 829 |   for x y :: "'a::{real_normed_div_algebra,field} star"
 | |
| 70221 | 830 | using Infinitesimal_HFinite_mult by fastforce | 
| 64435 | 831 | |
| 832 | lemma Infinitesimal_SReal_divide: "x \<in> Infinitesimal \<Longrightarrow> y \<in> \<real> \<Longrightarrow> x / y \<in> Infinitesimal" | |
| 833 | for x y :: hypreal | |
| 70221 | 834 | by (metis HFinite_star_of Infinitesimal_HFinite_mult Reals_inverse SReal_iff divide_inverse) | 
| 64435 | 835 | |
| 836 | ||
| 837 | section \<open>Standard Part Theorem\<close> | |
| 27468 | 838 | |
| 64435 | 839 | text \<open> | 
| 840 | Every finite \<open>x \<in> R*\<close> is infinitely close to a unique real number | |
| 841 | (i.e. a member of \<open>Reals\<close>). | |
| 842 | \<close> | |
| 27468 | 843 | |
| 844 | ||
| 64435 | 845 | subsection \<open>Uniqueness: Two Infinitely Close Reals are Equal\<close> | 
| 27468 | 846 | |
| 64435 | 847 | lemma star_of_approx_iff [simp]: "star_of x \<approx> star_of y \<longleftrightarrow> x = y" | 
| 70221 | 848 | by (metis approx_def right_minus_eq star_of_Infinitesimal_iff_0 star_of_simps(2)) | 
| 27468 | 849 | |
| 64435 | 850 | lemma SReal_approx_iff: "x \<in> \<real> \<Longrightarrow> y \<in> \<real> \<Longrightarrow> x \<approx> y \<longleftrightarrow> x = y" | 
| 851 | for x y :: hypreal | |
| 70221 | 852 | by (meson Reals_diff SReal_Infinitesimal_zero approx_def approx_refl right_minus_eq) | 
| 27468 | 853 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45541diff
changeset | 854 | lemma numeral_approx_iff [simp]: | 
| 70221 | 855 |   "(numeral v \<approx> (numeral w :: 'a::{numeral,real_normed_vector} star)) = (numeral v = (numeral w :: 'a))"
 | 
| 856 | by (metis star_of_approx_iff star_of_numeral) | |
| 27468 | 857 | |
| 64435 | 858 | text \<open>And also for \<open>0 \<approx> #nn\<close> and \<open>1 \<approx> #nn\<close>, \<open>#nn \<approx> 0\<close> and \<open>#nn \<approx> 1\<close>.\<close> | 
| 27468 | 859 | lemma [simp]: | 
| 64435 | 860 |   "(numeral w \<approx> (0::'a::{numeral,real_normed_vector} star)) = (numeral w = (0::'a))"
 | 
| 861 |   "((0::'a::{numeral,real_normed_vector} star) \<approx> numeral w) = (numeral w = (0::'a))"
 | |
| 862 |   "(numeral w \<approx> (1::'b::{numeral,one,real_normed_vector} star)) = (numeral w = (1::'b))"
 | |
| 863 |   "((1::'b::{numeral,one,real_normed_vector} star) \<approx> numeral w) = (numeral w = (1::'b))"
 | |
| 864 |   "\<not> (0 \<approx> (1::'c::{zero_neq_one,real_normed_vector} star))"
 | |
| 865 |   "\<not> (1 \<approx> (0::'c::{zero_neq_one,real_normed_vector} star))"
 | |
| 70221 | 866 | unfolding star_numeral_def star_zero_def star_one_def star_of_approx_iff | 
| 867 | by (auto intro: sym) | |
| 27468 | 868 | |
| 64435 | 869 | lemma star_of_approx_numeral_iff [simp]: "star_of k \<approx> numeral w \<longleftrightarrow> k = numeral w" | 
| 870 | by (subst star_of_approx_iff [symmetric]) auto | |
| 27468 | 871 | |
| 64435 | 872 | lemma star_of_approx_zero_iff [simp]: "star_of k \<approx> 0 \<longleftrightarrow> k = 0" | 
| 873 | by (simp_all add: star_of_approx_iff [symmetric]) | |
| 27468 | 874 | |
| 64435 | 875 | lemma star_of_approx_one_iff [simp]: "star_of k \<approx> 1 \<longleftrightarrow> k = 1" | 
| 876 | by (simp_all add: star_of_approx_iff [symmetric]) | |
| 27468 | 877 | |
| 64435 | 878 | lemma approx_unique_real: "r \<in> \<real> \<Longrightarrow> s \<in> \<real> \<Longrightarrow> r \<approx> x \<Longrightarrow> s \<approx> x \<Longrightarrow> r = s" | 
| 879 | for r s :: hypreal | |
| 880 | by (blast intro: SReal_approx_iff [THEN iffD1] approx_trans2) | |
| 27468 | 881 | |
| 882 | ||
| 64435 | 883 | subsection \<open>Existence of Unique Real Infinitely Close\<close> | 
| 27468 | 884 | |
| 64435 | 885 | subsubsection \<open>Lifting of the Ub and Lub Properties\<close> | 
| 27468 | 886 | |
| 64435 | 887 | lemma hypreal_of_real_isUb_iff: "isUb \<real> (hypreal_of_real ` Q) (hypreal_of_real Y) = isUb UNIV Q Y" | 
| 888 | for Q :: "real set" and Y :: real | |
| 889 | by (simp add: isUb_def setle_def) | |
| 27468 | 890 | |
| 70221 | 891 | lemma hypreal_of_real_isLub_iff: | 
| 70224 | 892 | "isLub \<real> (hypreal_of_real ` Q) (hypreal_of_real Y) = isLub (UNIV :: real set) Q Y" (is "?lhs = ?rhs") | 
| 64435 | 893 | for Q :: "real set" and Y :: real | 
| 70221 | 894 | proof | 
| 895 | assume ?lhs | |
| 896 | then show ?rhs | |
| 897 | by (simp add: isLub_def leastP_def) (metis hypreal_of_real_isUb_iff mem_Collect_eq setge_def star_of_le) | |
| 898 | next | |
| 899 | assume ?rhs | |
| 900 | then show ?lhs | |
| 901 | apply (simp add: isLub_def leastP_def hypreal_of_real_isUb_iff setge_def) | |
| 902 | by (metis SReal_iff hypreal_of_real_isUb_iff isUb_def star_of_le) | |
| 903 | qed | |
| 27468 | 904 | |
| 64435 | 905 | lemma lemma_isUb_hypreal_of_real: "isUb \<real> P Y \<Longrightarrow> \<exists>Yo. isUb \<real> P (hypreal_of_real Yo)" | 
| 906 | by (auto simp add: SReal_iff isUb_def) | |
| 907 | ||
| 908 | lemma lemma_isLub_hypreal_of_real: "isLub \<real> P Y \<Longrightarrow> \<exists>Yo. isLub \<real> P (hypreal_of_real Yo)" | |
| 909 | by (auto simp add: isLub_def leastP_def isUb_def SReal_iff) | |
| 27468 | 910 | |
| 70221 | 911 | lemma SReal_complete: | 
| 912 | fixes P :: "hypreal set" | |
| 913 |   assumes "isUb \<real> P Y" "P \<subseteq> \<real>" "P \<noteq> {}"
 | |
| 914 | shows "\<exists>t. isLub \<real> P t" | |
| 915 | proof - | |
| 916 | obtain Q where "P = hypreal_of_real ` Q" | |
| 917 | by (metis \<open>P \<subseteq> \<real>\<close> hypreal_of_real_image subset_imageE) | |
| 918 | then show ?thesis | |
| 919 |     by (metis assms(1) \<open>P \<noteq> {}\<close> equals0I hypreal_of_real_isLub_iff hypreal_of_real_isUb_iff image_empty lemma_isUb_hypreal_of_real reals_complete)
 | |
| 920 | qed | |
| 64435 | 921 | |
| 27468 | 922 | |
| 64435 | 923 | text \<open>Lemmas about lubs.\<close> | 
| 27468 | 924 | |
| 70221 | 925 | lemma lemma_st_part_lub: | 
| 926 | fixes x :: hypreal | |
| 927 | assumes "x \<in> HFinite" | |
| 928 |   shows "\<exists>t. isLub \<real> {s. s \<in> \<real> \<and> s < x} t"
 | |
| 929 | proof - | |
| 930 | obtain t where t: "t \<in> \<real>" "hnorm x < t" | |
| 931 | using HFiniteD assms by blast | |
| 932 |   then have "isUb \<real> {s. s \<in> \<real> \<and> s < x} t"
 | |
| 933 | by (simp add: abs_less_iff isUbI le_less_linear less_imp_not_less setleI) | |
| 934 | moreover have "\<exists>y. y \<in> \<real> \<and> y < x" | |
| 935 | using t by (rule_tac x = "-t" in exI) (auto simp add: abs_less_iff) | |
| 936 | ultimately show ?thesis | |
| 937 | using SReal_complete by fastforce | |
| 938 | qed | |
| 27468 | 939 | |
| 64435 | 940 | lemma hypreal_setle_less_trans: "S *<= x \<Longrightarrow> x < y \<Longrightarrow> S *<= y" | 
| 941 | for x y :: hypreal | |
| 70221 | 942 | by (meson le_less_trans less_imp_le setle_def) | 
| 27468 | 943 | |
| 64435 | 944 | lemma hypreal_gt_isUb: "isUb R S x \<Longrightarrow> x < y \<Longrightarrow> y \<in> R \<Longrightarrow> isUb R S y" | 
| 945 | for x y :: hypreal | |
| 70221 | 946 | using hypreal_setle_less_trans isUb_def by blast | 
| 27468 | 947 | |
| 64435 | 948 | lemma lemma_SReal_ub: "x \<in> \<real> \<Longrightarrow> isUb \<real> {s. s \<in> \<real> \<and> s < x} x"
 | 
| 949 | for x :: hypreal | |
| 950 | by (auto intro: isUbI setleI order_less_imp_le) | |
| 27468 | 951 | |
| 70224 | 952 | lemma lemma_SReal_lub: | 
| 953 | fixes x :: hypreal | |
| 954 |   assumes "x \<in> \<real>" shows "isLub \<real> {s. s \<in> \<real> \<and> s < x} x"
 | |
| 955 | proof - | |
| 956 |   have "x \<le> y" if "isUb \<real> {s \<in> \<real>. s < x} y" for y
 | |
| 957 | proof - | |
| 958 | have "y \<in> \<real>" | |
| 959 | using isUbD2a that by blast | |
| 960 | show ?thesis | |
| 961 | proof (cases x y rule: linorder_cases) | |
| 962 | case greater | |
| 963 | then obtain r where "y < r" "r < x" | |
| 964 | using dense by blast | |
| 965 | then show ?thesis | |
| 70232 | 966 | using isUbD [OF that] | 
| 967 | by simp (meson SReal_dense \<open>y \<in> \<real>\<close> assms greater not_le) | |
| 70224 | 968 | qed auto | 
| 969 | qed | |
| 970 | with assms show ?thesis | |
| 971 | by (simp add: isLubI2 isUbI setgeI setleI) | |
| 972 | qed | |
| 27468 | 973 | |
| 974 | lemma lemma_st_part_major: | |
| 70224 | 975 | fixes x r t :: hypreal | 
| 976 |   assumes x: "x \<in> HFinite" and r: "r \<in> \<real>" "0 < r" and t: "isLub \<real> {s. s \<in> \<real> \<and> s < x} t"
 | |
| 977 | shows "\<bar>x - t\<bar> < r" | |
| 978 | proof - | |
| 979 | have "t \<in> \<real>" | |
| 980 | using isLubD1a t by blast | |
| 981 |   have lemma_st_part_gt_ub: "x < r \<Longrightarrow> r \<in> \<real> \<Longrightarrow> isUb \<real> {s. s \<in> \<real> \<and> s < x} r"
 | |
| 982 | for r :: hypreal | |
| 983 | by (auto dest: order_less_trans intro: order_less_imp_le intro!: isUbI setleI) | |
| 984 | ||
| 985 |   have "isUb \<real> {s \<in> \<real>. s < x} t"
 | |
| 986 | by (simp add: t isLub_isUb) | |
| 987 | then have "\<not> r + t < x" | |
| 988 | by (metis (mono_tags, lifting) Reals_add \<open>t \<in> \<real>\<close> add_le_same_cancel2 isUbD leD mem_Collect_eq r) | |
| 989 | then have "x - t \<le> r" | |
| 990 | by simp | |
| 991 | moreover have "\<not> x < t - r" | |
| 992 | using lemma_st_part_gt_ub isLub_le_isUb \<open>t \<in> \<real>\<close> r t x by fastforce | |
| 993 | then have "- (x - t) \<le> r" | |
| 994 | by linarith | |
| 995 | moreover have False if "x - t = r \<or> - (x - t) = r" | |
| 996 | proof - | |
| 997 | have "x \<in> \<real>" | |
| 998 | by (metis \<open>t \<in> \<real>\<close> \<open>r \<in> \<real>\<close> that Reals_add_cancel Reals_minus_iff add_uminus_conv_diff) | |
| 999 |     then have "isLub \<real> {s \<in> \<real>. s < x} x"
 | |
| 1000 | by (rule lemma_SReal_lub) | |
| 1001 | then show False | |
| 1002 | using r t that x isLub_unique by force | |
| 1003 | qed | |
| 1004 | ultimately show ?thesis | |
| 1005 | using abs_less_iff dual_order.order_iff_strict by blast | |
| 1006 | qed | |
| 27468 | 1007 | |
| 1008 | lemma lemma_st_part_major2: | |
| 64435 | 1009 |   "x \<in> HFinite \<Longrightarrow> isLub \<real> {s. s \<in> \<real> \<and> s < x} t \<Longrightarrow> \<forall>r \<in> Reals. 0 < r \<longrightarrow> \<bar>x - t\<bar> < r"
 | 
| 1010 | for x t :: hypreal | |
| 1011 | by (blast dest!: lemma_st_part_major) | |
| 27468 | 1012 | |
| 61649 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61609diff
changeset | 1013 | |
| 64435 | 1014 | text\<open>Existence of real and Standard Part Theorem.\<close> | 
| 1015 | ||
| 1016 | lemma lemma_st_part_Ex: "x \<in> HFinite \<Longrightarrow> \<exists>t\<in>Reals. \<forall>r \<in> Reals. 0 < r \<longrightarrow> \<bar>x - t\<bar> < r" | |
| 1017 | for x :: hypreal | |
| 70221 | 1018 | by (meson isLubD1a lemma_st_part_lub lemma_st_part_major2) | 
| 27468 | 1019 | |
| 64435 | 1020 | lemma st_part_Ex: "x \<in> HFinite \<Longrightarrow> \<exists>t\<in>Reals. x \<approx> t" | 
| 1021 | for x :: hypreal | |
| 70221 | 1022 | by (metis InfinitesimalI approx_def hypreal_hnorm_def lemma_st_part_Ex) | 
| 27468 | 1023 | |
| 64435 | 1024 | text \<open>There is a unique real infinitely close.\<close> | 
| 1025 | lemma st_part_Ex1: "x \<in> HFinite \<Longrightarrow> \<exists>!t::hypreal. t \<in> \<real> \<and> x \<approx> t" | |
| 70221 | 1026 | by (meson SReal_approx_iff approx_trans2 st_part_Ex) | 
| 27468 | 1027 | |
| 64435 | 1028 | |
| 1029 | subsection \<open>Finite, Infinite and Infinitesimal\<close> | |
| 27468 | 1030 | |
| 1031 | lemma HFinite_Int_HInfinite_empty [simp]: "HFinite Int HInfinite = {}"
 | |
| 70221 | 1032 | using Compl_HFinite by blast | 
| 27468 | 1033 | |
| 56217 
dc429a5b13c4
Some rationalisation of basic lemmas
 paulson <lp15@cam.ac.uk> parents: 
54489diff
changeset | 1034 | lemma HFinite_not_HInfinite: | 
| 70221 | 1035 | assumes x: "x \<in> HFinite" shows "x \<notin> HInfinite" | 
| 1036 | using Compl_HFinite x by blast | |
| 27468 | 1037 | |
| 64435 | 1038 | lemma not_HFinite_HInfinite: "x \<notin> HFinite \<Longrightarrow> x \<in> HInfinite" | 
| 70221 | 1039 | using Compl_HFinite by blast | 
| 27468 | 1040 | |
| 64435 | 1041 | lemma HInfinite_HFinite_disj: "x \<in> HInfinite \<or> x \<in> HFinite" | 
| 1042 | by (blast intro: not_HFinite_HInfinite) | |
| 27468 | 1043 | |
| 64435 | 1044 | lemma HInfinite_HFinite_iff: "x \<in> HInfinite \<longleftrightarrow> x \<notin> HFinite" | 
| 1045 | by (blast dest: HFinite_not_HInfinite not_HFinite_HInfinite) | |
| 27468 | 1046 | |
| 64435 | 1047 | lemma HFinite_HInfinite_iff: "x \<in> HFinite \<longleftrightarrow> x \<notin> HInfinite" | 
| 1048 | by (simp add: HInfinite_HFinite_iff) | |
| 27468 | 1049 | |
| 1050 | lemma HInfinite_diff_HFinite_Infinitesimal_disj: | |
| 64435 | 1051 | "x \<notin> Infinitesimal \<Longrightarrow> x \<in> HInfinite \<or> x \<in> HFinite - Infinitesimal" | 
| 1052 | by (fast intro: not_HFinite_HInfinite) | |
| 27468 | 1053 | |
| 64435 | 1054 | lemma HFinite_inverse: "x \<in> HFinite \<Longrightarrow> x \<notin> Infinitesimal \<Longrightarrow> inverse x \<in> HFinite" | 
| 1055 | for x :: "'a::real_normed_div_algebra star" | |
| 70221 | 1056 | using HInfinite_inverse_Infinitesimal not_HFinite_HInfinite by force | 
| 27468 | 1057 | |
| 64435 | 1058 | lemma HFinite_inverse2: "x \<in> HFinite - Infinitesimal \<Longrightarrow> inverse x \<in> HFinite" | 
| 1059 | for x :: "'a::real_normed_div_algebra star" | |
| 1060 | by (blast intro: HFinite_inverse) | |
| 27468 | 1061 | |
| 64435 | 1062 | text \<open>Stronger statement possible in fact.\<close> | 
| 1063 | lemma Infinitesimal_inverse_HFinite: "x \<notin> Infinitesimal \<Longrightarrow> inverse x \<in> HFinite" | |
| 1064 | for x :: "'a::real_normed_div_algebra star" | |
| 70221 | 1065 | using HFinite_HInfinite_iff HInfinite_inverse_Infinitesimal by fastforce | 
| 27468 | 1066 | |
| 1067 | lemma HFinite_not_Infinitesimal_inverse: | |
| 64435 | 1068 | "x \<in> HFinite - Infinitesimal \<Longrightarrow> inverse x \<in> HFinite - Infinitesimal" | 
| 1069 | for x :: "'a::real_normed_div_algebra star" | |
| 70221 | 1070 | using HFinite_Infinitesimal_not_zero HFinite_inverse2 Infinitesimal_HFinite_mult2 by fastforce | 
| 27468 | 1071 | |
| 70224 | 1072 | lemma approx_inverse: | 
| 1073 | fixes x y :: "'a::real_normed_div_algebra star" | |
| 1074 | assumes "x \<approx> y" and y: "y \<in> HFinite - Infinitesimal" shows "inverse x \<approx> inverse y" | |
| 1075 | proof - | |
| 1076 | have x: "x \<in> HFinite - Infinitesimal" | |
| 1077 | using HFinite_diff_Infinitesimal_approx assms(1) y by blast | |
| 1078 | with y HFinite_inverse2 have "inverse x \<in> HFinite" "inverse y \<in> HFinite" | |
| 1079 | by blast+ | |
| 1080 | then have "inverse y * x \<approx> 1" | |
| 1081 | by (metis Diff_iff approx_mult2 assms(1) left_inverse not_Infinitesimal_not_zero y) | |
| 1082 | then show ?thesis | |
| 1083 | by (metis (no_types, lifting) DiffD2 HFinite_Infinitesimal_not_zero Infinitesimal_mult_disj x approx_def approx_sym left_diff_distrib left_inverse) | |
| 1084 | qed | |
| 27468 | 1085 | |
| 1086 | (*Used for NSLIM_inverse, NSLIMSEQ_inverse*) | |
| 1087 | lemmas star_of_approx_inverse = star_of_HFinite_diff_Infinitesimal [THEN [2] approx_inverse] | |
| 1088 | lemmas hypreal_of_real_approx_inverse = hypreal_of_real_HFinite_diff_Infinitesimal [THEN [2] approx_inverse] | |
| 1089 | ||
| 1090 | lemma inverse_add_Infinitesimal_approx: | |
| 64435 | 1091 | "x \<in> HFinite - Infinitesimal \<Longrightarrow> h \<in> Infinitesimal \<Longrightarrow> inverse (x + h) \<approx> inverse x" | 
| 1092 | for x h :: "'a::real_normed_div_algebra star" | |
| 1093 | by (auto intro: approx_inverse approx_sym Infinitesimal_add_approx_self) | |
| 27468 | 1094 | |
| 1095 | lemma inverse_add_Infinitesimal_approx2: | |
| 64435 | 1096 | "x \<in> HFinite - Infinitesimal \<Longrightarrow> h \<in> Infinitesimal \<Longrightarrow> inverse (h + x) \<approx> inverse x" | 
| 1097 | for x h :: "'a::real_normed_div_algebra star" | |
| 70221 | 1098 | by (metis add.commute inverse_add_Infinitesimal_approx) | 
| 27468 | 1099 | |
| 1100 | lemma inverse_add_Infinitesimal_approx_Infinitesimal: | |
| 64435 | 1101 | "x \<in> HFinite - Infinitesimal \<Longrightarrow> h \<in> Infinitesimal \<Longrightarrow> inverse (x + h) - inverse x \<approx> h" | 
| 1102 | for x h :: "'a::real_normed_div_algebra star" | |
| 70221 | 1103 | by (meson Infinitesimal_approx bex_Infinitesimal_iff inverse_add_Infinitesimal_approx) | 
| 27468 | 1104 | |
| 64435 | 1105 | lemma Infinitesimal_square_iff: "x \<in> Infinitesimal \<longleftrightarrow> x * x \<in> Infinitesimal" | 
| 1106 | for x :: "'a::real_normed_div_algebra star" | |
| 70221 | 1107 | using Infinitesimal_mult Infinitesimal_mult_disj by auto | 
| 27468 | 1108 | declare Infinitesimal_square_iff [symmetric, simp] | 
| 1109 | ||
| 64435 | 1110 | lemma HFinite_square_iff [simp]: "x * x \<in> HFinite \<longleftrightarrow> x \<in> HFinite" | 
| 1111 | for x :: "'a::real_normed_div_algebra star" | |
| 70221 | 1112 | using HFinite_HInfinite_iff HFinite_mult HInfinite_mult by blast | 
| 27468 | 1113 | |
| 64435 | 1114 | lemma HInfinite_square_iff [simp]: "x * x \<in> HInfinite \<longleftrightarrow> x \<in> HInfinite" | 
| 1115 | for x :: "'a::real_normed_div_algebra star" | |
| 1116 | by (auto simp add: HInfinite_HFinite_iff) | |
| 27468 | 1117 | |
| 64435 | 1118 | lemma approx_HFinite_mult_cancel: "a \<in> HFinite - Infinitesimal \<Longrightarrow> a * w \<approx> a * z \<Longrightarrow> w \<approx> z" | 
| 1119 | for a w z :: "'a::real_normed_div_algebra star" | |
| 70221 | 1120 | by (metis DiffD2 Infinitesimal_mult_disj bex_Infinitesimal_iff right_diff_distrib) | 
| 27468 | 1121 | |
| 64435 | 1122 | lemma approx_HFinite_mult_cancel_iff1: "a \<in> HFinite - Infinitesimal \<Longrightarrow> a * w \<approx> a * z \<longleftrightarrow> w \<approx> z" | 
| 1123 | for a w z :: "'a::real_normed_div_algebra star" | |
| 1124 | by (auto intro: approx_mult2 approx_HFinite_mult_cancel) | |
| 27468 | 1125 | |
| 64435 | 1126 | lemma HInfinite_HFinite_add_cancel: "x + y \<in> HInfinite \<Longrightarrow> y \<in> HFinite \<Longrightarrow> x \<in> HInfinite" | 
| 70221 | 1127 | using HFinite_add HInfinite_HFinite_iff by blast | 
| 27468 | 1128 | |
| 64435 | 1129 | lemma HInfinite_HFinite_add: "x \<in> HInfinite \<Longrightarrow> y \<in> HFinite \<Longrightarrow> x + y \<in> HInfinite" | 
| 73932 
fd21b4a93043
added opaque_combs and renamed hide_lams to opaque_lifting
 desharna parents: 
70723diff
changeset | 1130 | by (metis (no_types, opaque_lifting) HFinite_HInfinite_iff HFinite_add HFinite_minus_iff add.commute add_minus_cancel) | 
| 27468 | 1131 | |
| 64435 | 1132 | lemma HInfinite_ge_HInfinite: "x \<in> HInfinite \<Longrightarrow> x \<le> y \<Longrightarrow> 0 \<le> x \<Longrightarrow> y \<in> HInfinite" | 
| 1133 | for x y :: hypreal | |
| 1134 | by (auto intro: HFinite_bounded simp add: HInfinite_HFinite_iff) | |
| 27468 | 1135 | |
| 64435 | 1136 | lemma Infinitesimal_inverse_HInfinite: "x \<in> Infinitesimal \<Longrightarrow> x \<noteq> 0 \<Longrightarrow> inverse x \<in> HInfinite" | 
| 1137 | for x :: "'a::real_normed_div_algebra star" | |
| 70221 | 1138 | by (metis Infinitesimal_HFinite_mult not_HFinite_HInfinite one_not_Infinitesimal right_inverse) | 
| 27468 | 1139 | |
| 1140 | lemma HInfinite_HFinite_not_Infinitesimal_mult: | |
| 64435 | 1141 | "x \<in> HInfinite \<Longrightarrow> y \<in> HFinite - Infinitesimal \<Longrightarrow> x * y \<in> HInfinite" | 
| 1142 | for x y :: "'a::real_normed_div_algebra star" | |
| 73932 
fd21b4a93043
added opaque_combs and renamed hide_lams to opaque_lifting
 desharna parents: 
70723diff
changeset | 1143 | by (metis (no_types, opaque_lifting) HFinite_HInfinite_iff HFinite_Infinitesimal_not_zero HFinite_inverse2 HFinite_mult mult.assoc mult.right_neutral right_inverse) | 
| 27468 | 1144 | |
| 1145 | lemma HInfinite_HFinite_not_Infinitesimal_mult2: | |
| 64435 | 1146 | "x \<in> HInfinite \<Longrightarrow> y \<in> HFinite - Infinitesimal \<Longrightarrow> y * x \<in> HInfinite" | 
| 1147 | for x y :: "'a::real_normed_div_algebra star" | |
| 70221 | 1148 | by (metis Diff_iff HInfinite_HFinite_iff HInfinite_inverse_Infinitesimal Infinitesimal_HFinite_mult2 divide_inverse mult_zero_right nonzero_eq_divide_eq) | 
| 27468 | 1149 | |
| 64435 | 1150 | lemma HInfinite_gt_SReal: "x \<in> HInfinite \<Longrightarrow> 0 < x \<Longrightarrow> y \<in> \<real> \<Longrightarrow> y < x" | 
| 1151 | for x y :: hypreal | |
| 1152 | by (auto dest!: bspec simp add: HInfinite_def abs_if order_less_imp_le) | |
| 27468 | 1153 | |
| 64435 | 1154 | lemma HInfinite_gt_zero_gt_one: "x \<in> HInfinite \<Longrightarrow> 0 < x \<Longrightarrow> 1 < x" | 
| 1155 | for x :: hypreal | |
| 1156 | by (auto intro: HInfinite_gt_SReal) | |
| 27468 | 1157 | |
| 1158 | lemma not_HInfinite_one [simp]: "1 \<notin> HInfinite" | |
| 64435 | 1159 | by (simp add: HInfinite_HFinite_iff) | 
| 27468 | 1160 | |
| 64435 | 1161 | lemma approx_hrabs_disj: "\<bar>x\<bar> \<approx> x \<or> \<bar>x\<bar> \<approx> -x" | 
| 1162 | for x :: hypreal | |
| 70232 | 1163 | by (simp add: abs_if) | 
| 27468 | 1164 | |
| 1165 | ||
| 64435 | 1166 | subsection \<open>Theorems about Monads\<close> | 
| 27468 | 1167 | |
| 64435 | 1168 | lemma monad_hrabs_Un_subset: "monad \<bar>x\<bar> \<le> monad x \<union> monad (- x)" | 
| 1169 | for x :: hypreal | |
| 70232 | 1170 | by (simp add: abs_if) | 
| 27468 | 1171 | |
| 64435 | 1172 | lemma Infinitesimal_monad_eq: "e \<in> Infinitesimal \<Longrightarrow> monad (x + e) = monad x" | 
| 1173 | by (fast intro!: Infinitesimal_add_approx_self [THEN approx_sym] approx_monad_iff [THEN iffD1]) | |
| 27468 | 1174 | |
| 64435 | 1175 | lemma mem_monad_iff: "u \<in> monad x \<longleftrightarrow> - u \<in> monad (- x)" | 
| 1176 | by (simp add: monad_def) | |
| 1177 | ||
| 1178 | lemma Infinitesimal_monad_zero_iff: "x \<in> Infinitesimal \<longleftrightarrow> x \<in> monad 0" | |
| 1179 | by (auto intro: approx_sym simp add: monad_def mem_infmal_iff) | |
| 27468 | 1180 | |
| 64435 | 1181 | lemma monad_zero_minus_iff: "x \<in> monad 0 \<longleftrightarrow> - x \<in> monad 0" | 
| 1182 | by (simp add: Infinitesimal_monad_zero_iff [symmetric]) | |
| 27468 | 1183 | |
| 64435 | 1184 | lemma monad_zero_hrabs_iff: "x \<in> monad 0 \<longleftrightarrow> \<bar>x\<bar> \<in> monad 0" | 
| 1185 | for x :: hypreal | |
| 70232 | 1186 | using Infinitesimal_monad_zero_iff by blast | 
| 27468 | 1187 | |
| 1188 | lemma mem_monad_self [simp]: "x \<in> monad x" | |
| 64435 | 1189 | by (simp add: monad_def) | 
| 27468 | 1190 | |
| 1191 | ||
| 69597 | 1192 | subsection \<open>Proof that \<^term>\<open>x \<approx> y\<close> implies \<^term>\<open>\<bar>x\<bar> \<approx> \<bar>y\<bar>\<close>\<close> | 
| 27468 | 1193 | |
| 64435 | 1194 | lemma approx_subset_monad: "x \<approx> y \<Longrightarrow> {x, y} \<le> monad x"
 | 
| 1195 | by (simp (no_asm)) (simp add: approx_monad_iff) | |
| 27468 | 1196 | |
| 64435 | 1197 | lemma approx_subset_monad2: "x \<approx> y \<Longrightarrow> {x, y} \<le> monad y"
 | 
| 70221 | 1198 | using approx_subset_monad approx_sym by auto | 
| 27468 | 1199 | |
| 64435 | 1200 | lemma mem_monad_approx: "u \<in> monad x \<Longrightarrow> x \<approx> u" | 
| 1201 | by (simp add: monad_def) | |
| 1202 | ||
| 1203 | lemma approx_mem_monad: "x \<approx> u \<Longrightarrow> u \<in> monad x" | |
| 1204 | by (simp add: monad_def) | |
| 27468 | 1205 | |
| 64435 | 1206 | lemma approx_mem_monad2: "x \<approx> u \<Longrightarrow> x \<in> monad u" | 
| 70221 | 1207 | using approx_mem_monad approx_sym by blast | 
| 27468 | 1208 | |
| 64435 | 1209 | lemma approx_mem_monad_zero: "x \<approx> y \<Longrightarrow> x \<in> monad 0 \<Longrightarrow> y \<in> monad 0" | 
| 70221 | 1210 | using approx_trans monad_def by blast | 
| 27468 | 1211 | |
| 64435 | 1212 | lemma Infinitesimal_approx_hrabs: "x \<approx> y \<Longrightarrow> x \<in> Infinitesimal \<Longrightarrow> \<bar>x\<bar> \<approx> \<bar>y\<bar>" | 
| 1213 | for x y :: hypreal | |
| 70221 | 1214 | using approx_hnorm by fastforce | 
| 27468 | 1215 | |
| 64435 | 1216 | lemma less_Infinitesimal_less: "0 < x \<Longrightarrow> x \<notin> Infinitesimal \<Longrightarrow> e \<in> Infinitesimal \<Longrightarrow> e < x" | 
| 1217 | for x :: hypreal | |
| 70221 | 1218 | using Infinitesimal_interval less_linear by blast | 
| 27468 | 1219 | |
| 64435 | 1220 | lemma Ball_mem_monad_gt_zero: "0 < x \<Longrightarrow> x \<notin> Infinitesimal \<Longrightarrow> u \<in> monad x \<Longrightarrow> 0 < u" | 
| 1221 | for u x :: hypreal | |
| 70224 | 1222 | by (metis bex_Infinitesimal_iff2 less_Infinitesimal_less less_add_same_cancel2 mem_monad_approx) | 
| 27468 | 1223 | |
| 64435 | 1224 | lemma Ball_mem_monad_less_zero: "x < 0 \<Longrightarrow> x \<notin> Infinitesimal \<Longrightarrow> u \<in> monad x \<Longrightarrow> u < 0" | 
| 1225 | for u x :: hypreal | |
| 70224 | 1226 | by (metis Ball_mem_monad_gt_zero approx_monad_iff less_asym linorder_neqE_linordered_idom mem_infmal_iff mem_monad_approx mem_monad_self) | 
| 27468 | 1227 | |
| 64435 | 1228 | lemma lemma_approx_gt_zero: "0 < x \<Longrightarrow> x \<notin> Infinitesimal \<Longrightarrow> x \<approx> y \<Longrightarrow> 0 < y" | 
| 1229 | for x y :: hypreal | |
| 1230 | by (blast dest: Ball_mem_monad_gt_zero approx_subset_monad) | |
| 27468 | 1231 | |
| 64435 | 1232 | lemma lemma_approx_less_zero: "x < 0 \<Longrightarrow> x \<notin> Infinitesimal \<Longrightarrow> x \<approx> y \<Longrightarrow> y < 0" | 
| 1233 | for x y :: hypreal | |
| 1234 | by (blast dest: Ball_mem_monad_less_zero approx_subset_monad) | |
| 27468 | 1235 | |
| 64435 | 1236 | lemma approx_hrabs: "x \<approx> y \<Longrightarrow> \<bar>x\<bar> \<approx> \<bar>y\<bar>" | 
| 1237 | for x y :: hypreal | |
| 1238 | by (drule approx_hnorm) simp | |
| 27468 | 1239 | |
| 64435 | 1240 | lemma approx_hrabs_zero_cancel: "\<bar>x\<bar> \<approx> 0 \<Longrightarrow> x \<approx> 0" | 
| 1241 | for x :: hypreal | |
| 70232 | 1242 | using mem_infmal_iff by blast | 
| 27468 | 1243 | |
| 64435 | 1244 | lemma approx_hrabs_add_Infinitesimal: "e \<in> Infinitesimal \<Longrightarrow> \<bar>x\<bar> \<approx> \<bar>x + e\<bar>" | 
| 1245 | for e x :: hypreal | |
| 1246 | by (fast intro: approx_hrabs Infinitesimal_add_approx_self) | |
| 27468 | 1247 | |
| 64435 | 1248 | lemma approx_hrabs_add_minus_Infinitesimal: "e \<in> Infinitesimal ==> \<bar>x\<bar> \<approx> \<bar>x + -e\<bar>" | 
| 1249 | for e x :: hypreal | |
| 1250 | by (fast intro: approx_hrabs Infinitesimal_add_minus_approx_self) | |
| 27468 | 1251 | |
| 1252 | lemma hrabs_add_Infinitesimal_cancel: | |
| 64435 | 1253 | "e \<in> Infinitesimal \<Longrightarrow> e' \<in> Infinitesimal \<Longrightarrow> \<bar>x + e\<bar> = \<bar>y + e'\<bar> \<Longrightarrow> \<bar>x\<bar> \<approx> \<bar>y\<bar>" | 
| 1254 | for e e' x y :: hypreal | |
| 70221 | 1255 | by (metis approx_hrabs_add_Infinitesimal approx_trans2) | 
| 27468 | 1256 | |
| 1257 | lemma hrabs_add_minus_Infinitesimal_cancel: | |
| 64435 | 1258 | "e \<in> Infinitesimal \<Longrightarrow> e' \<in> Infinitesimal \<Longrightarrow> \<bar>x + -e\<bar> = \<bar>y + -e'\<bar> \<Longrightarrow> \<bar>x\<bar> \<approx> \<bar>y\<bar>" | 
| 1259 | for e e' x y :: hypreal | |
| 70221 | 1260 | by (meson Infinitesimal_minus_iff hrabs_add_Infinitesimal_cancel) | 
| 64435 | 1261 | |
| 27468 | 1262 | |
| 69597 | 1263 | subsection \<open>More \<^term>\<open>HFinite\<close> and \<^term>\<open>Infinitesimal\<close> Theorems\<close> | 
| 27468 | 1264 | |
| 64435 | 1265 | text \<open> | 
| 1266 | Interesting slightly counterintuitive theorem: necessary | |
| 1267 | for proving that an open interval is an NS open set. | |
| 1268 | \<close> | |
| 27468 | 1269 | lemma Infinitesimal_add_hypreal_of_real_less: | 
| 70224 | 1270 | assumes "x < y" and u: "u \<in> Infinitesimal" | 
| 1271 | shows "hypreal_of_real x + u < hypreal_of_real y" | |
| 1272 | proof - | |
| 1273 | have "\<bar>u\<bar> < hypreal_of_real y - hypreal_of_real x" | |
| 1274 | using InfinitesimalD \<open>x < y\<close> u by fastforce | |
| 1275 | then show ?thesis | |
| 1276 | by (simp add: abs_less_iff) | |
| 1277 | qed | |
| 27468 | 1278 | |
| 1279 | lemma Infinitesimal_add_hrabs_hypreal_of_real_less: | |
| 64435 | 1280 | "x \<in> Infinitesimal \<Longrightarrow> \<bar>hypreal_of_real r\<bar> < hypreal_of_real y \<Longrightarrow> | 
| 1281 | \<bar>hypreal_of_real r + x\<bar> < hypreal_of_real y" | |
| 70224 | 1282 | by (metis Infinitesimal_add_hypreal_of_real_less approx_hrabs_add_Infinitesimal approx_sym bex_Infinitesimal_iff2 star_of_abs star_of_less) | 
| 27468 | 1283 | |
| 1284 | lemma Infinitesimal_add_hrabs_hypreal_of_real_less2: | |
| 64435 | 1285 | "x \<in> Infinitesimal \<Longrightarrow> \<bar>hypreal_of_real r\<bar> < hypreal_of_real y \<Longrightarrow> | 
| 1286 | \<bar>x + hypreal_of_real r\<bar> < hypreal_of_real y" | |
| 70221 | 1287 | using Infinitesimal_add_hrabs_hypreal_of_real_less by fastforce | 
| 27468 | 1288 | |
| 1289 | lemma hypreal_of_real_le_add_Infininitesimal_cancel: | |
| 70224 | 1290 | assumes le: "hypreal_of_real x + u \<le> hypreal_of_real y + v" | 
| 1291 | and u: "u \<in> Infinitesimal" and v: "v \<in> Infinitesimal" | |
| 1292 | shows "hypreal_of_real x \<le> hypreal_of_real y" | |
| 1293 | proof (rule ccontr) | |
| 1294 | assume "\<not> hypreal_of_real x \<le> hypreal_of_real y" | |
| 1295 | then have "hypreal_of_real y + (v - u) < hypreal_of_real x" | |
| 1296 | by (simp add: Infinitesimal_add_hypreal_of_real_less Infinitesimal_diff u v) | |
| 1297 | then show False | |
| 1298 | by (simp add: add_diff_eq add_le_imp_le_diff le leD) | |
| 1299 | qed | |
| 27468 | 1300 | |
| 1301 | lemma hypreal_of_real_le_add_Infininitesimal_cancel2: | |
| 64435 | 1302 | "u \<in> Infinitesimal \<Longrightarrow> v \<in> Infinitesimal \<Longrightarrow> | 
| 1303 | hypreal_of_real x + u \<le> hypreal_of_real y + v \<Longrightarrow> x \<le> y" | |
| 1304 | by (blast intro: star_of_le [THEN iffD1] intro!: hypreal_of_real_le_add_Infininitesimal_cancel) | |
| 27468 | 1305 | |
| 1306 | lemma hypreal_of_real_less_Infinitesimal_le_zero: | |
| 64435 | 1307 | "hypreal_of_real x < e \<Longrightarrow> e \<in> Infinitesimal \<Longrightarrow> hypreal_of_real x \<le> 0" | 
| 70221 | 1308 | by (metis Infinitesimal_interval eq_iff le_less_linear star_of_Infinitesimal_iff_0 star_of_eq_0) | 
| 27468 | 1309 | |
| 64435 | 1310 | lemma Infinitesimal_add_not_zero: "h \<in> Infinitesimal \<Longrightarrow> x \<noteq> 0 \<Longrightarrow> star_of x + h \<noteq> 0" | 
| 70224 | 1311 | by (metis Infinitesimal_add_approx_self star_of_approx_zero_iff) | 
| 27468 | 1312 | |
| 64435 | 1313 | lemma monad_hrabs_less: "y \<in> monad x \<Longrightarrow> 0 < hypreal_of_real e \<Longrightarrow> \<bar>y - x\<bar> < hypreal_of_real e" | 
| 70221 | 1314 | by (simp add: Infinitesimal_approx_minus approx_sym less_Infinitesimal_less mem_monad_approx) | 
| 27468 | 1315 | |
| 64435 | 1316 | lemma mem_monad_SReal_HFinite: "x \<in> monad (hypreal_of_real a) \<Longrightarrow> x \<in> HFinite" | 
| 70221 | 1317 | using HFinite_star_of approx_HFinite mem_monad_approx by blast | 
| 27468 | 1318 | |
| 1319 | ||
| 64435 | 1320 | subsection \<open>Theorems about Standard Part\<close> | 
| 27468 | 1321 | |
| 64435 | 1322 | lemma st_approx_self: "x \<in> HFinite \<Longrightarrow> st x \<approx> x" | 
| 70221 | 1323 | by (metis (no_types, lifting) approx_refl approx_trans3 someI_ex st_def st_part_Ex st_part_Ex1) | 
| 27468 | 1324 | |
| 64435 | 1325 | lemma st_SReal: "x \<in> HFinite \<Longrightarrow> st x \<in> \<real>" | 
| 70224 | 1326 | by (metis (mono_tags, lifting) approx_sym someI_ex st_def st_part_Ex) | 
| 27468 | 1327 | |
| 64435 | 1328 | lemma st_HFinite: "x \<in> HFinite \<Longrightarrow> st x \<in> HFinite" | 
| 1329 | by (erule st_SReal [THEN SReal_subset_HFinite [THEN subsetD]]) | |
| 27468 | 1330 | |
| 64435 | 1331 | lemma st_unique: "r \<in> \<real> \<Longrightarrow> r \<approx> x \<Longrightarrow> st x = r" | 
| 70224 | 1332 | by (meson SReal_subset_HFinite approx_HFinite approx_unique_real st_SReal st_approx_self subsetD) | 
| 27468 | 1333 | |
| 64435 | 1334 | lemma st_SReal_eq: "x \<in> \<real> \<Longrightarrow> st x = x" | 
| 61649 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61609diff
changeset | 1335 | by (metis approx_refl st_unique) | 
| 27468 | 1336 | |
| 1337 | lemma st_hypreal_of_real [simp]: "st (hypreal_of_real x) = hypreal_of_real x" | |
| 64435 | 1338 | by (rule SReal_hypreal_of_real [THEN st_SReal_eq]) | 
| 27468 | 1339 | |
| 64435 | 1340 | lemma st_eq_approx: "x \<in> HFinite \<Longrightarrow> y \<in> HFinite \<Longrightarrow> st x = st y \<Longrightarrow> x \<approx> y" | 
| 1341 | by (auto dest!: st_approx_self elim!: approx_trans3) | |
| 27468 | 1342 | |
| 56217 
dc429a5b13c4
Some rationalisation of basic lemmas
 paulson <lp15@cam.ac.uk> parents: 
54489diff
changeset | 1343 | lemma approx_st_eq: | 
| 61982 | 1344 | assumes x: "x \<in> HFinite" and y: "y \<in> HFinite" and xy: "x \<approx> y" | 
| 27468 | 1345 | shows "st x = st y" | 
| 1346 | proof - | |
| 61982 | 1347 | have "st x \<approx> x" "st y \<approx> y" "st x \<in> \<real>" "st y \<in> \<real>" | 
| 41541 | 1348 | by (simp_all add: st_approx_self st_SReal x y) | 
| 1349 | with xy show ?thesis | |
| 27468 | 1350 | by (fast elim: approx_trans approx_trans2 SReal_approx_iff [THEN iffD1]) | 
| 1351 | qed | |
| 1352 | ||
| 64435 | 1353 | lemma st_eq_approx_iff: "x \<in> HFinite \<Longrightarrow> y \<in> HFinite \<Longrightarrow> x \<approx> y \<longleftrightarrow> st x = st y" | 
| 1354 | by (blast intro: approx_st_eq st_eq_approx) | |
| 27468 | 1355 | |
| 64435 | 1356 | lemma st_Infinitesimal_add_SReal: "x \<in> \<real> \<Longrightarrow> e \<in> Infinitesimal \<Longrightarrow> st (x + e) = x" | 
| 70224 | 1357 | by (simp add: Infinitesimal_add_approx_self st_unique) | 
| 27468 | 1358 | |
| 64435 | 1359 | lemma st_Infinitesimal_add_SReal2: "x \<in> \<real> \<Longrightarrow> e \<in> Infinitesimal \<Longrightarrow> st (e + x) = x" | 
| 70224 | 1360 | by (metis add.commute st_Infinitesimal_add_SReal) | 
| 27468 | 1361 | |
| 64435 | 1362 | lemma HFinite_st_Infinitesimal_add: "x \<in> HFinite \<Longrightarrow> \<exists>e \<in> Infinitesimal. x = st(x) + e" | 
| 1363 | by (blast dest!: st_approx_self [THEN approx_sym] bex_Infinitesimal_iff2 [THEN iffD2]) | |
| 27468 | 1364 | |
| 64435 | 1365 | lemma st_add: "x \<in> HFinite \<Longrightarrow> y \<in> HFinite \<Longrightarrow> st (x + y) = st x + st y" | 
| 1366 | by (simp add: st_unique st_SReal st_approx_self approx_add) | |
| 27468 | 1367 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45541diff
changeset | 1368 | lemma st_numeral [simp]: "st (numeral w) = numeral w" | 
| 64435 | 1369 | by (rule Reals_numeral [THEN st_SReal_eq]) | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45541diff
changeset | 1370 | |
| 54489 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54263diff
changeset | 1371 | lemma st_neg_numeral [simp]: "st (- numeral w) = - numeral w" | 
| 70224 | 1372 | using st_unique by auto | 
| 27468 | 1373 | |
| 45540 | 1374 | lemma st_0 [simp]: "st 0 = 0" | 
| 64435 | 1375 | by (simp add: st_SReal_eq) | 
| 45540 | 1376 | |
| 1377 | lemma st_1 [simp]: "st 1 = 1" | |
| 64435 | 1378 | by (simp add: st_SReal_eq) | 
| 27468 | 1379 | |
| 54489 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54263diff
changeset | 1380 | lemma st_neg_1 [simp]: "st (- 1) = - 1" | 
| 64435 | 1381 | by (simp add: st_SReal_eq) | 
| 54489 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54263diff
changeset | 1382 | |
| 27468 | 1383 | lemma st_minus: "x \<in> HFinite \<Longrightarrow> st (- x) = - st x" | 
| 64435 | 1384 | by (simp add: st_unique st_SReal st_approx_self approx_minus) | 
| 27468 | 1385 | |
| 1386 | lemma st_diff: "\<lbrakk>x \<in> HFinite; y \<in> HFinite\<rbrakk> \<Longrightarrow> st (x - y) = st x - st y" | |
| 64435 | 1387 | by (simp add: st_unique st_SReal st_approx_self approx_diff) | 
| 27468 | 1388 | |
| 1389 | lemma st_mult: "\<lbrakk>x \<in> HFinite; y \<in> HFinite\<rbrakk> \<Longrightarrow> st (x * y) = st x * st y" | |
| 64435 | 1390 | by (simp add: st_unique st_SReal st_approx_self approx_mult_HFinite) | 
| 27468 | 1391 | |
| 64435 | 1392 | lemma st_Infinitesimal: "x \<in> Infinitesimal \<Longrightarrow> st x = 0" | 
| 1393 | by (simp add: st_unique mem_infmal_iff) | |
| 27468 | 1394 | |
| 64435 | 1395 | lemma st_not_Infinitesimal: "st(x) \<noteq> 0 \<Longrightarrow> x \<notin> Infinitesimal" | 
| 27468 | 1396 | by (fast intro: st_Infinitesimal) | 
| 1397 | ||
| 64435 | 1398 | lemma st_inverse: "x \<in> HFinite \<Longrightarrow> st x \<noteq> 0 \<Longrightarrow> st (inverse x) = inverse (st x)" | 
| 70224 | 1399 | by (simp add: approx_inverse st_SReal st_approx_self st_not_Infinitesimal st_unique) | 
| 27468 | 1400 | |
| 64435 | 1401 | lemma st_divide [simp]: "x \<in> HFinite \<Longrightarrow> y \<in> HFinite \<Longrightarrow> st y \<noteq> 0 \<Longrightarrow> st (x / y) = st x / st y" | 
| 1402 | by (simp add: divide_inverse st_mult st_not_Infinitesimal HFinite_inverse st_inverse) | |
| 27468 | 1403 | |
| 64435 | 1404 | lemma st_idempotent [simp]: "x \<in> HFinite \<Longrightarrow> st (st x) = st x" | 
| 1405 | by (blast intro: st_HFinite st_approx_self approx_st_eq) | |
| 27468 | 1406 | |
| 1407 | lemma Infinitesimal_add_st_less: | |
| 64435 | 1408 | "x \<in> HFinite \<Longrightarrow> y \<in> HFinite \<Longrightarrow> u \<in> Infinitesimal \<Longrightarrow> st x < st y \<Longrightarrow> st x + u < st y" | 
| 70224 | 1409 | by (metis Infinitesimal_add_hypreal_of_real_less SReal_iff st_SReal star_of_less) | 
| 27468 | 1410 | |
| 1411 | lemma Infinitesimal_add_st_le_cancel: | |
| 64435 | 1412 | "x \<in> HFinite \<Longrightarrow> y \<in> HFinite \<Longrightarrow> u \<in> Infinitesimal \<Longrightarrow> | 
| 1413 | st x \<le> st y + u \<Longrightarrow> st x \<le> st y" | |
| 70224 | 1414 | by (meson Infinitesimal_add_st_less leD le_less_linear) | 
| 27468 | 1415 | |
| 64435 | 1416 | lemma st_le: "x \<in> HFinite \<Longrightarrow> y \<in> HFinite \<Longrightarrow> x \<le> y \<Longrightarrow> st x \<le> st y" | 
| 1417 | by (metis approx_le_bound approx_sym linear st_SReal st_approx_self st_part_Ex1) | |
| 27468 | 1418 | |
| 64435 | 1419 | lemma st_zero_le: "0 \<le> x \<Longrightarrow> x \<in> HFinite \<Longrightarrow> 0 \<le> st x" | 
| 70224 | 1420 | by (metis HFinite_0 st_0 st_le) | 
| 27468 | 1421 | |
| 64435 | 1422 | lemma st_zero_ge: "x \<le> 0 \<Longrightarrow> x \<in> HFinite \<Longrightarrow> st x \<le> 0" | 
| 70224 | 1423 | by (metis HFinite_0 st_0 st_le) | 
| 27468 | 1424 | |
| 64435 | 1425 | lemma st_hrabs: "x \<in> HFinite \<Longrightarrow> \<bar>st x\<bar> = st \<bar>x\<bar>" | 
| 70224 | 1426 | by (simp add: order_class.order.antisym st_zero_ge linorder_not_le st_zero_le abs_if st_minus linorder_not_less) | 
| 27468 | 1427 | |
| 1428 | ||
| 61975 | 1429 | subsection \<open>Alternative Definitions using Free Ultrafilter\<close> | 
| 27468 | 1430 | |
| 69597 | 1431 | subsubsection \<open>\<^term>\<open>HFinite\<close>\<close> | 
| 27468 | 1432 | |
| 1433 | lemma HFinite_FreeUltrafilterNat: | |
| 70224 | 1434 | assumes "star_n X \<in> HFinite" | 
| 1435 | shows "\<exists>u. eventually (\<lambda>n. norm (X n) < u) \<U>" | |
| 1436 | proof - | |
| 1437 | obtain r where "hnorm (star_n X) < hypreal_of_real r" | |
| 1438 | using HFiniteD SReal_iff assms by fastforce | |
| 1439 | then have "\<forall>\<^sub>F n in \<U>. norm (X n) < r" | |
| 1440 | by (simp add: hnorm_def star_n_less star_of_def starfun_star_n) | |
| 1441 | then show ?thesis .. | |
| 1442 | qed | |
| 27468 | 1443 | |
| 1444 | lemma FreeUltrafilterNat_HFinite: | |
| 70224 | 1445 | assumes "eventually (\<lambda>n. norm (X n) < u) \<U>" | 
| 1446 | shows "star_n X \<in> HFinite" | |
| 1447 | proof - | |
| 1448 | have "hnorm (star_n X) < hypreal_of_real u" | |
| 1449 | by (simp add: assms hnorm_def star_n_less star_of_def starfun_star_n) | |
| 1450 | then show ?thesis | |
| 1451 | by (meson HInfiniteD SReal_hypreal_of_real less_asym not_HFinite_HInfinite) | |
| 1452 | qed | |
| 27468 | 1453 | |
| 1454 | lemma HFinite_FreeUltrafilterNat_iff: | |
| 64438 | 1455 | "star_n X \<in> HFinite \<longleftrightarrow> (\<exists>u. eventually (\<lambda>n. norm (X n) < u) \<U>)" | 
| 70224 | 1456 | using FreeUltrafilterNat_HFinite HFinite_FreeUltrafilterNat by blast | 
| 64435 | 1457 | |
| 27468 | 1458 | |
| 69597 | 1459 | subsubsection \<open>\<^term>\<open>HInfinite\<close>\<close> | 
| 27468 | 1460 | |
| 64435 | 1461 | text \<open>Exclude this type of sets from free ultrafilter for Infinite numbers!\<close> | 
| 27468 | 1462 | lemma FreeUltrafilterNat_const_Finite: | 
| 64438 | 1463 | "eventually (\<lambda>n. norm (X n) = u) \<U> \<Longrightarrow> star_n X \<in> HFinite" | 
| 70224 | 1464 | by (simp add: FreeUltrafilterNat_HFinite [where u = "u+1"] eventually_mono) | 
| 27468 | 1465 | |
| 1466 | lemma HInfinite_FreeUltrafilterNat: | |
| 75866 | 1467 | assumes "star_n X \<in> HInfinite" shows "\<forall>\<^sub>F n in \<U>. u < norm (X n)" | 
| 1468 | proof - | |
| 1469 | have "\<not> (\<forall>\<^sub>F n in \<U>. norm (X n) < u + 1)" | |
| 1470 | using FreeUltrafilterNat_HFinite HFinite_HInfinite_iff assms by auto | |
| 1471 | then show ?thesis | |
| 1472 | by (auto simp flip: FreeUltrafilterNat.eventually_not_iff elim: eventually_mono) | |
| 1473 | qed | |
| 27468 | 1474 | |
| 1475 | lemma FreeUltrafilterNat_HInfinite: | |
| 70224 | 1476 | assumes "\<And>u. eventually (\<lambda>n. u < norm (X n)) \<U>" | 
| 1477 | shows "star_n X \<in> HInfinite" | |
| 60041 | 1478 | proof - | 
| 70224 | 1479 |   { fix u
 | 
| 1480 | assume "\<forall>\<^sub>Fn in \<U>. norm (X n) < u" "\<forall>\<^sub>Fn in \<U>. u < norm (X n)" | |
| 1481 | then have "\<forall>\<^sub>F x in \<U>. False" | |
| 1482 | by eventually_elim auto | |
| 1483 | then have False | |
| 1484 | by (simp add: eventually_False FreeUltrafilterNat.proper) } | |
| 1485 | then show ?thesis | |
| 1486 | using HFinite_FreeUltrafilterNat HInfinite_HFinite_iff assms by blast | |
| 60041 | 1487 | qed | 
| 27468 | 1488 | |
| 1489 | lemma HInfinite_FreeUltrafilterNat_iff: | |
| 64438 | 1490 | "star_n X \<in> HInfinite \<longleftrightarrow> (\<forall>u. eventually (\<lambda>n. u < norm (X n)) \<U>)" | 
| 70224 | 1491 | using HInfinite_FreeUltrafilterNat FreeUltrafilterNat_HInfinite by blast | 
| 64435 | 1492 | |
| 27468 | 1493 | |
| 69597 | 1494 | subsubsection \<open>\<^term>\<open>Infinitesimal\<close>\<close> | 
| 27468 | 1495 | |
| 64435 | 1496 | lemma ball_SReal_eq: "(\<forall>x::hypreal \<in> Reals. P x) \<longleftrightarrow> (\<forall>x::real. P (star_of x))" | 
| 1497 | by (auto simp: SReal_def) | |
| 27468 | 1498 | |
| 1499 | ||
| 1500 | lemma Infinitesimal_FreeUltrafilterNat_iff: | |
| 70224 | 1501 | "(star_n X \<in> Infinitesimal) = (\<forall>u>0. eventually (\<lambda>n. norm (X n) < u) \<U>)" (is "?lhs = ?rhs") | 
| 75866 | 1502 | proof - | 
| 1503 | have "?lhs \<longleftrightarrow> (\<forall>r>0. hnorm (star_n X) < hypreal_of_real r)" | |
| 1504 | by (simp add: Infinitesimal_def ball_SReal_eq) | |
| 1505 | also have "... \<longleftrightarrow> ?rhs" | |
| 1506 | by (simp add: hnorm_def starfun_star_n star_of_def star_less_def starP2_star_n) | |
| 1507 | finally show ?thesis . | |
| 70224 | 1508 | qed | 
| 64435 | 1509 | |
| 27468 | 1510 | |
| 64435 | 1511 | text \<open>Infinitesimals as smaller than \<open>1/n\<close> for all \<open>n::nat (> 0)\<close>.\<close> | 
| 27468 | 1512 | |
| 64435 | 1513 | lemma lemma_Infinitesimal: "(\<forall>r. 0 < r \<longrightarrow> x < r) \<longleftrightarrow> (\<forall>n. x < inverse (real (Suc n)))" | 
| 70221 | 1514 | by (meson inverse_positive_iff_positive less_trans of_nat_0_less_iff reals_Archimedean zero_less_Suc) | 
| 27468 | 1515 | |
| 1516 | lemma lemma_Infinitesimal2: | |
| 75866 | 1517 | "(\<forall>r \<in> Reals. 0 < r \<longrightarrow> x < r) \<longleftrightarrow> (\<forall>n. x < inverse(hypreal_of_nat (Suc n)))" (is "_ = ?rhs") | 
| 1518 | proof (intro iffI strip) | |
| 1519 | assume R: ?rhs | |
| 1520 | fix r::hypreal | |
| 1521 | assume "r \<in> \<real>" "0 < r" | |
| 1522 | then obtain n y where "inverse (real (Suc n)) < y" and r: "r = hypreal_of_real y" | |
| 1523 | by (metis SReal_iff reals_Archimedean star_of_0_less) | |
| 1524 | then have "inverse (1 + hypreal_of_nat n) < hypreal_of_real y" | |
| 1525 | by (metis of_nat_Suc star_of_inverse star_of_less star_of_nat_def) | |
| 1526 | then show "x < r" | |
| 1527 | by (metis R r le_less_trans less_imp_le of_nat_Suc) | |
| 1528 | qed (meson Reals_inverse Reals_of_nat of_nat_0_less_iff positive_imp_inverse_positive zero_less_Suc) | |
| 27468 | 1529 | |
| 1530 | ||
| 1531 | lemma Infinitesimal_hypreal_of_nat_iff: | |
| 64435 | 1532 |   "Infinitesimal = {x. \<forall>n. hnorm x < inverse (hypreal_of_nat (Suc n))}"
 | 
| 70221 | 1533 | using Infinitesimal_def lemma_Infinitesimal2 by auto | 
| 27468 | 1534 | |
| 1535 | ||
| 64435 | 1536 | subsection \<open>Proof that \<open>\<omega>\<close> is an infinite number\<close> | 
| 27468 | 1537 | |
| 64435 | 1538 | text \<open>It will follow that \<open>\<epsilon>\<close> is an infinitesimal number.\<close> | 
| 27468 | 1539 | |
| 1540 | lemma Suc_Un_eq: "{n. n < Suc m} = {n. n < m} Un {n. n = m}"
 | |
| 64435 | 1541 | by (auto simp add: less_Suc_eq) | 
| 27468 | 1542 | |
| 64435 | 1543 | |
| 64438 | 1544 | text \<open>Prove that any segment is finite and hence cannot belong to \<open>\<U>\<close>.\<close> | 
| 27468 | 1545 | |
| 1546 | lemma finite_real_of_nat_segment: "finite {n::nat. real n < real (m::nat)}"
 | |
| 64435 | 1547 | by auto | 
| 27468 | 1548 | |
| 1549 | lemma finite_real_of_nat_less_real: "finite {n::nat. real n < u}"
 | |
| 75866 | 1550 | proof - | 
| 1551 | obtain m where "u < real m" | |
| 1552 | using reals_Archimedean2 by blast | |
| 1553 |   then have "{n. real n < u} \<subseteq> {..<m}"
 | |
| 1554 | by force | |
| 1555 | then show ?thesis | |
| 1556 | using finite_nat_iff_bounded by force | |
| 1557 | qed | |
| 27468 | 1558 | |
| 1559 | lemma finite_real_of_nat_le_real: "finite {n::nat. real n \<le> u}"
 | |
| 70221 | 1560 | by (metis infinite_nat_iff_unbounded leD le_nat_floor mem_Collect_eq) | 
| 27468 | 1561 | |
| 61945 | 1562 | lemma finite_rabs_real_of_nat_le_real: "finite {n::nat. \<bar>real n\<bar> \<le> u}"
 | 
| 64435 | 1563 | by (simp add: finite_real_of_nat_le_real) | 
| 27468 | 1564 | |
| 1565 | lemma rabs_real_of_nat_le_real_FreeUltrafilterNat: | |
| 64438 | 1566 | "\<not> eventually (\<lambda>n. \<bar>real n\<bar> \<le> u) \<U>" | 
| 64435 | 1567 | by (blast intro!: FreeUltrafilterNat.finite finite_rabs_real_of_nat_le_real) | 
| 27468 | 1568 | |
| 64438 | 1569 | lemma FreeUltrafilterNat_nat_gt_real: "eventually (\<lambda>n. u < real n) \<U>" | 
| 70224 | 1570 | proof - | 
| 1571 |   have "{n::nat. \<not> u < real n} = {n. real n \<le> u}"
 | |
| 1572 | by auto | |
| 1573 | then show ?thesis | |
| 1574 | by (auto simp add: FreeUltrafilterNat.finite' finite_real_of_nat_le_real) | |
| 1575 | qed | |
| 27468 | 1576 | |
| 64435 | 1577 | text \<open>The complement of \<open>{n. \<bar>real n\<bar> \<le> u} = {n. u < \<bar>real n\<bar>}\<close> is in
 | 
| 64438 | 1578 | \<open>\<U>\<close> by property of (free) ultrafilters.\<close> | 
| 27468 | 1579 | |
| 69597 | 1580 | text \<open>\<^term>\<open>\<omega>\<close> is a member of \<^term>\<open>HInfinite\<close>.\<close> | 
| 61981 | 1581 | theorem HInfinite_omega [simp]: "\<omega> \<in> HInfinite" | 
| 70224 | 1582 | proof - | 
| 1583 | have "\<forall>\<^sub>F n in \<U>. u < norm (1 + real n)" for u | |
| 1584 | using FreeUltrafilterNat_nat_gt_real [of "u-1"] eventually_mono by fastforce | |
| 1585 | then show ?thesis | |
| 1586 | by (simp add: omega_def FreeUltrafilterNat_HInfinite) | |
| 1587 | qed | |
| 27468 | 1588 | |
| 64435 | 1589 | |
| 1590 | text \<open>Epsilon is a member of Infinitesimal.\<close> | |
| 27468 | 1591 | |
| 61981 | 1592 | lemma Infinitesimal_epsilon [simp]: "\<epsilon> \<in> Infinitesimal" | 
| 64435 | 1593 | by (auto intro!: HInfinite_inverse_Infinitesimal HInfinite_omega | 
| 70723 
4e39d87c9737
imported new material mostly due to Sébastien Gouëzel
 paulson <lp15@cam.ac.uk> parents: 
70232diff
changeset | 1594 | simp add: epsilon_inverse_omega) | 
| 27468 | 1595 | |
| 61981 | 1596 | lemma HFinite_epsilon [simp]: "\<epsilon> \<in> HFinite" | 
| 64435 | 1597 | by (auto intro: Infinitesimal_subset_HFinite [THEN subsetD]) | 
| 27468 | 1598 | |
| 61982 | 1599 | lemma epsilon_approx_zero [simp]: "\<epsilon> \<approx> 0" | 
| 64435 | 1600 | by (simp add: mem_infmal_iff [symmetric]) | 
| 27468 | 1601 | |
| 64435 | 1602 | text \<open>Needed for proof that we define a hyperreal \<open>[<X(n)] \<approx> hypreal_of_real a\<close> given | 
| 1603 | that \<open>\<forall>n. |X n - a| < 1/n\<close>. Used in proof of \<open>NSLIM \<Rightarrow> LIM\<close>.\<close> | |
| 1604 | lemma real_of_nat_less_inverse_iff: "0 < u \<Longrightarrow> u < inverse (real(Suc n)) \<longleftrightarrow> real(Suc n) < inverse u" | |
| 70221 | 1605 | using less_imp_inverse_less by force | 
| 27468 | 1606 | |
| 64435 | 1607 | lemma finite_inverse_real_of_posnat_gt_real: "0 < u \<Longrightarrow> finite {n. u < inverse (real (Suc n))}"
 | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61378diff
changeset | 1608 | proof (simp only: real_of_nat_less_inverse_iff) | 
| 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61378diff
changeset | 1609 |   have "{n. 1 + real n < inverse u} = {n. real n < inverse u - 1}"
 | 
| 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61378diff
changeset | 1610 | by fastforce | 
| 64435 | 1611 |   then show "finite {n. real (Suc n) < inverse u}"
 | 
| 1612 | using finite_real_of_nat_less_real [of "inverse u - 1"] | |
| 1613 | by auto | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61378diff
changeset | 1614 | qed | 
| 27468 | 1615 | |
| 70232 | 1616 | lemma finite_inverse_real_of_posnat_ge_real: | 
| 1617 | assumes "0 < u" | |
| 1618 |   shows "finite {n. u \<le> inverse (real (Suc n))}"
 | |
| 1619 | proof - | |
| 1620 | have "\<forall>na. u \<le> inverse (1 + real na) \<longrightarrow> na \<le> ceiling (inverse u)" | |
| 75866 | 1621 | by (smt (verit, best) assms ceiling_less_cancel ceiling_of_nat inverse_inverse_eq inverse_le_iff_le) | 
| 70232 | 1622 | then show ?thesis | 
| 1623 | apply (auto simp add: finite_nat_set_iff_bounded_le) | |
| 1624 | by (meson assms inverse_positive_iff_positive le_nat_iff less_imp_le zero_less_ceiling) | |
| 1625 | qed | |
| 27468 | 1626 | |
| 1627 | lemma inverse_real_of_posnat_ge_real_FreeUltrafilterNat: | |
| 64438 | 1628 | "0 < u \<Longrightarrow> \<not> eventually (\<lambda>n. u \<le> inverse(real(Suc n))) \<U>" | 
| 64435 | 1629 | by (blast intro!: FreeUltrafilterNat.finite finite_inverse_real_of_posnat_ge_real) | 
| 27468 | 1630 | |
| 1631 | lemma FreeUltrafilterNat_inverse_real_of_posnat: | |
| 64438 | 1632 | "0 < u \<Longrightarrow> eventually (\<lambda>n. inverse(real(Suc n)) < u) \<U>" | 
| 64435 | 1633 | by (drule inverse_real_of_posnat_ge_real_FreeUltrafilterNat) | 
| 1634 | (simp add: FreeUltrafilterNat.eventually_not_iff not_le[symmetric]) | |
| 27468 | 1635 | |
| 64435 | 1636 | text \<open>Example of an hypersequence (i.e. an extended standard sequence) | 
| 1637 | whose term with an hypernatural suffix is an infinitesimal i.e. | |
| 1638 | the whn'nth term of the hypersequence is a member of Infinitesimal\<close> | |
| 27468 | 1639 | |
| 64435 | 1640 | lemma SEQ_Infinitesimal: "( *f* (\<lambda>n::nat. inverse(real(Suc n)))) whn \<in> Infinitesimal" | 
| 1641 | by (simp add: hypnat_omega_def starfun_star_n star_n_inverse Infinitesimal_FreeUltrafilterNat_iff | |
| 1642 | FreeUltrafilterNat_inverse_real_of_posnat del: of_nat_Suc) | |
| 27468 | 1643 | |
| 64435 | 1644 | text \<open>Example where we get a hyperreal from a real sequence | 
| 1645 | for which a particular property holds. The theorem is | |
| 1646 | used in proofs about equivalence of nonstandard and | |
| 1647 | standard neighbourhoods. Also used for equivalence of | |
| 1648 | nonstandard ans standard definitions of pointwise | |
| 1649 | limit.\<close> | |
| 27468 | 1650 | |
| 64435 | 1651 | text \<open>\<open>|X(n) - x| < 1/n \<Longrightarrow> [<X n>] - hypreal_of_real x| \<in> Infinitesimal\<close>\<close> | 
| 27468 | 1652 | lemma real_seq_to_hypreal_Infinitesimal: | 
| 64435 | 1653 | "\<forall>n. norm (X n - x) < inverse (real (Suc n)) \<Longrightarrow> star_n X - star_of x \<in> Infinitesimal" | 
| 1654 | unfolding star_n_diff star_of_def Infinitesimal_FreeUltrafilterNat_iff star_n_inverse | |
| 1655 | by (auto dest!: FreeUltrafilterNat_inverse_real_of_posnat | |
| 1656 | intro: order_less_trans elim!: eventually_mono) | |
| 27468 | 1657 | |
| 1658 | lemma real_seq_to_hypreal_approx: | |
| 64435 | 1659 | "\<forall>n. norm (X n - x) < inverse (real (Suc n)) \<Longrightarrow> star_n X \<approx> star_of x" | 
| 1660 | by (metis bex_Infinitesimal_iff real_seq_to_hypreal_Infinitesimal) | |
| 27468 | 1661 | |
| 1662 | lemma real_seq_to_hypreal_approx2: | |
| 64435 | 1663 | "\<forall>n. norm (x - X n) < inverse(real(Suc n)) \<Longrightarrow> star_n X \<approx> star_of x" | 
| 1664 | by (metis norm_minus_commute real_seq_to_hypreal_approx) | |
| 27468 | 1665 | |
| 1666 | lemma real_seq_to_hypreal_Infinitesimal2: | |
| 64435 | 1667 | "\<forall>n. norm(X n - Y n) < inverse(real(Suc n)) \<Longrightarrow> star_n X - star_n Y \<in> Infinitesimal" | 
| 1668 | unfolding Infinitesimal_FreeUltrafilterNat_iff star_n_diff | |
| 1669 | by (auto dest!: FreeUltrafilterNat_inverse_real_of_posnat | |
| 1670 | intro: order_less_trans elim!: eventually_mono) | |
| 27468 | 1671 | |
| 1672 | end |