author | paulson <lp15@cam.ac.uk> |
Tue, 30 Apr 2019 21:04:08 +0100 | |
changeset 70221 | bca14283e1a8 |
parent 69597 | ff784d5a5bfb |
child 70224 | 3706106c2e0f |
permissions | -rw-r--r-- |
62479 | 1 |
(* Title: HOL/Nonstandard_Analysis/NSA.thy |
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32155
diff
changeset
|
2 |
Author: Jacques D. Fleuriot, University of Cambridge |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32155
diff
changeset
|
3 |
Author: Lawrence C Paulson, University of Cambridge |
27468 | 4 |
*) |
5 |
||
64435 | 6 |
section \<open>Infinite Numbers, Infinitesimals, Infinitely Close Relation\<close> |
27468 | 7 |
|
8 |
theory NSA |
|
70221 | 9 |
imports HyperDef "HOL-Library.Lub_Glb" |
27468 | 10 |
begin |
11 |
||
64435 | 12 |
definition hnorm :: "'a::real_normed_vector star \<Rightarrow> real star" |
13 |
where [transfer_unfold]: "hnorm = *f* norm" |
|
27468 | 14 |
|
64435 | 15 |
definition Infinitesimal :: "('a::real_normed_vector) star set" |
16 |
where "Infinitesimal = {x. \<forall>r \<in> Reals. 0 < r \<longrightarrow> hnorm x < r}" |
|
27468 | 17 |
|
64435 | 18 |
definition HFinite :: "('a::real_normed_vector) star set" |
19 |
where "HFinite = {x. \<exists>r \<in> Reals. hnorm x < r}" |
|
27468 | 20 |
|
64435 | 21 |
definition HInfinite :: "('a::real_normed_vector) star set" |
22 |
where "HInfinite = {x. \<forall>r \<in> Reals. r < hnorm x}" |
|
27468 | 23 |
|
64435 | 24 |
definition approx :: "'a::real_normed_vector star \<Rightarrow> 'a star \<Rightarrow> bool" (infixl "\<approx>" 50) |
25 |
where "x \<approx> y \<longleftrightarrow> x - y \<in> Infinitesimal" |
|
26 |
\<comment> \<open>the ``infinitely close'' relation\<close> |
|
27468 | 27 |
|
64435 | 28 |
definition st :: "hypreal \<Rightarrow> hypreal" |
29 |
where "st = (\<lambda>x. SOME r. x \<in> HFinite \<and> r \<in> \<real> \<and> r \<approx> x)" |
|
30 |
\<comment> \<open>the standard part of a hyperreal\<close> |
|
27468 | 31 |
|
64435 | 32 |
definition monad :: "'a::real_normed_vector star \<Rightarrow> 'a star set" |
33 |
where "monad x = {y. x \<approx> y}" |
|
27468 | 34 |
|
64435 | 35 |
definition galaxy :: "'a::real_normed_vector star \<Rightarrow> 'a star set" |
36 |
where "galaxy x = {y. (x + -y) \<in> HFinite}" |
|
27468 | 37 |
|
64435 | 38 |
lemma SReal_def: "\<real> \<equiv> {x. \<exists>r. x = hypreal_of_real r}" |
39 |
by (simp add: Reals_def image_def) |
|
40 |
||
27468 | 41 |
|
61975 | 42 |
subsection \<open>Nonstandard Extension of the Norm Function\<close> |
27468 | 43 |
|
64435 | 44 |
definition scaleHR :: "real star \<Rightarrow> 'a star \<Rightarrow> 'a::real_normed_vector star" |
45 |
where [transfer_unfold]: "scaleHR = starfun2 scaleR" |
|
27468 | 46 |
|
47 |
lemma Standard_hnorm [simp]: "x \<in> Standard \<Longrightarrow> hnorm x \<in> Standard" |
|
64435 | 48 |
by (simp add: hnorm_def) |
27468 | 49 |
|
50 |
lemma star_of_norm [simp]: "star_of (norm x) = hnorm (star_of x)" |
|
64435 | 51 |
by transfer (rule refl) |
27468 | 52 |
|
64435 | 53 |
lemma hnorm_ge_zero [simp]: "\<And>x::'a::real_normed_vector star. 0 \<le> hnorm x" |
54 |
by transfer (rule norm_ge_zero) |
|
27468 | 55 |
|
64435 | 56 |
lemma hnorm_eq_zero [simp]: "\<And>x::'a::real_normed_vector star. hnorm x = 0 \<longleftrightarrow> x = 0" |
57 |
by transfer (rule norm_eq_zero) |
|
27468 | 58 |
|
64435 | 59 |
lemma hnorm_triangle_ineq: "\<And>x y::'a::real_normed_vector star. hnorm (x + y) \<le> hnorm x + hnorm y" |
60 |
by transfer (rule norm_triangle_ineq) |
|
27468 | 61 |
|
64435 | 62 |
lemma hnorm_triangle_ineq3: "\<And>x y::'a::real_normed_vector star. \<bar>hnorm x - hnorm y\<bar> \<le> hnorm (x - y)" |
63 |
by transfer (rule norm_triangle_ineq3) |
|
64 |
||
65 |
lemma hnorm_scaleR: "\<And>x::'a::real_normed_vector star. hnorm (a *\<^sub>R x) = \<bar>star_of a\<bar> * hnorm x" |
|
66 |
by transfer (rule norm_scaleR) |
|
27468 | 67 |
|
64435 | 68 |
lemma hnorm_scaleHR: "\<And>a (x::'a::real_normed_vector star). hnorm (scaleHR a x) = \<bar>a\<bar> * hnorm x" |
69 |
by transfer (rule norm_scaleR) |
|
27468 | 70 |
|
64435 | 71 |
lemma hnorm_mult_ineq: "\<And>x y::'a::real_normed_algebra star. hnorm (x * y) \<le> hnorm x * hnorm y" |
72 |
by transfer (rule norm_mult_ineq) |
|
27468 | 73 |
|
64435 | 74 |
lemma hnorm_mult: "\<And>x y::'a::real_normed_div_algebra star. hnorm (x * y) = hnorm x * hnorm y" |
75 |
by transfer (rule norm_mult) |
|
27468 | 76 |
|
64435 | 77 |
lemma hnorm_hyperpow: "\<And>(x::'a::{real_normed_div_algebra} star) n. hnorm (x pow n) = hnorm x pow n" |
78 |
by transfer (rule norm_power) |
|
79 |
||
80 |
lemma hnorm_one [simp]: "hnorm (1::'a::real_normed_div_algebra star) = 1" |
|
81 |
by transfer (rule norm_one) |
|
27468 | 82 |
|
64435 | 83 |
lemma hnorm_zero [simp]: "hnorm (0::'a::real_normed_vector star) = 0" |
84 |
by transfer (rule norm_zero) |
|
27468 | 85 |
|
64435 | 86 |
lemma zero_less_hnorm_iff [simp]: "\<And>x::'a::real_normed_vector star. 0 < hnorm x \<longleftrightarrow> x \<noteq> 0" |
87 |
by transfer (rule zero_less_norm_iff) |
|
27468 | 88 |
|
64435 | 89 |
lemma hnorm_minus_cancel [simp]: "\<And>x::'a::real_normed_vector star. hnorm (- x) = hnorm x" |
90 |
by transfer (rule norm_minus_cancel) |
|
27468 | 91 |
|
64435 | 92 |
lemma hnorm_minus_commute: "\<And>a b::'a::real_normed_vector star. hnorm (a - b) = hnorm (b - a)" |
93 |
by transfer (rule norm_minus_commute) |
|
27468 | 94 |
|
64435 | 95 |
lemma hnorm_triangle_ineq2: "\<And>a b::'a::real_normed_vector star. hnorm a - hnorm b \<le> hnorm (a - b)" |
96 |
by transfer (rule norm_triangle_ineq2) |
|
27468 | 97 |
|
64435 | 98 |
lemma hnorm_triangle_ineq4: "\<And>a b::'a::real_normed_vector star. hnorm (a - b) \<le> hnorm a + hnorm b" |
99 |
by transfer (rule norm_triangle_ineq4) |
|
27468 | 100 |
|
64435 | 101 |
lemma abs_hnorm_cancel [simp]: "\<And>a::'a::real_normed_vector star. \<bar>hnorm a\<bar> = hnorm a" |
102 |
by transfer (rule abs_norm_cancel) |
|
27468 | 103 |
|
64435 | 104 |
lemma hnorm_of_hypreal [simp]: "\<And>r. hnorm (of_hypreal r::'a::real_normed_algebra_1 star) = \<bar>r\<bar>" |
105 |
by transfer (rule norm_of_real) |
|
27468 | 106 |
|
107 |
lemma nonzero_hnorm_inverse: |
|
64435 | 108 |
"\<And>a::'a::real_normed_div_algebra star. a \<noteq> 0 \<Longrightarrow> hnorm (inverse a) = inverse (hnorm a)" |
109 |
by transfer (rule nonzero_norm_inverse) |
|
27468 | 110 |
|
111 |
lemma hnorm_inverse: |
|
64435 | 112 |
"\<And>a::'a::{real_normed_div_algebra, division_ring} star. hnorm (inverse a) = inverse (hnorm a)" |
113 |
by transfer (rule norm_inverse) |
|
27468 | 114 |
|
64435 | 115 |
lemma hnorm_divide: "\<And>a b::'a::{real_normed_field, field} star. hnorm (a / b) = hnorm a / hnorm b" |
116 |
by transfer (rule norm_divide) |
|
27468 | 117 |
|
64435 | 118 |
lemma hypreal_hnorm_def [simp]: "\<And>r::hypreal. hnorm r = \<bar>r\<bar>" |
119 |
by transfer (rule real_norm_def) |
|
27468 | 120 |
|
121 |
lemma hnorm_add_less: |
|
64435 | 122 |
"\<And>(x::'a::real_normed_vector star) y r s. hnorm x < r \<Longrightarrow> hnorm y < s \<Longrightarrow> hnorm (x + y) < r + s" |
123 |
by transfer (rule norm_add_less) |
|
27468 | 124 |
|
125 |
lemma hnorm_mult_less: |
|
64435 | 126 |
"\<And>(x::'a::real_normed_algebra star) y r s. hnorm x < r \<Longrightarrow> hnorm y < s \<Longrightarrow> hnorm (x * y) < r * s" |
127 |
by transfer (rule norm_mult_less) |
|
27468 | 128 |
|
64435 | 129 |
lemma hnorm_scaleHR_less: "\<bar>x\<bar> < r \<Longrightarrow> hnorm y < s \<Longrightarrow> hnorm (scaleHR x y) < r * s" |
130 |
by (simp only: hnorm_scaleHR) (simp add: mult_strict_mono') |
|
131 |
||
132 |
||
133 |
subsection \<open>Closure Laws for the Standard Reals\<close> |
|
27468 | 134 |
|
64435 | 135 |
lemma Reals_add_cancel: "x + y \<in> \<real> \<Longrightarrow> y \<in> \<real> \<Longrightarrow> x \<in> \<real>" |
136 |
by (drule (1) Reals_diff) simp |
|
27468 | 137 |
|
64435 | 138 |
lemma SReal_hrabs: "x \<in> \<real> \<Longrightarrow> \<bar>x\<bar> \<in> \<real>" |
139 |
for x :: hypreal |
|
140 |
by (simp add: Reals_eq_Standard) |
|
27468 | 141 |
|
61070 | 142 |
lemma SReal_hypreal_of_real [simp]: "hypreal_of_real x \<in> \<real>" |
64435 | 143 |
by (simp add: Reals_eq_Standard) |
27468 | 144 |
|
64435 | 145 |
lemma SReal_divide_numeral: "r \<in> \<real> \<Longrightarrow> r / (numeral w::hypreal) \<in> \<real>" |
146 |
by simp |
|
27468 | 147 |
|
61981 | 148 |
text \<open>\<open>\<epsilon>\<close> is not in Reals because it is an infinitesimal\<close> |
149 |
lemma SReal_epsilon_not_mem: "\<epsilon> \<notin> \<real>" |
|
64435 | 150 |
by (auto simp: SReal_def hypreal_of_real_not_eq_epsilon [symmetric]) |
27468 | 151 |
|
61981 | 152 |
lemma SReal_omega_not_mem: "\<omega> \<notin> \<real>" |
64435 | 153 |
by (auto simp: SReal_def hypreal_of_real_not_eq_omega [symmetric]) |
27468 | 154 |
|
61070 | 155 |
lemma SReal_UNIV_real: "{x. hypreal_of_real x \<in> \<real>} = (UNIV::real set)" |
64435 | 156 |
by simp |
27468 | 157 |
|
64435 | 158 |
lemma SReal_iff: "x \<in> \<real> \<longleftrightarrow> (\<exists>y. x = hypreal_of_real y)" |
159 |
by (simp add: SReal_def) |
|
27468 | 160 |
|
61070 | 161 |
lemma hypreal_of_real_image: "hypreal_of_real `(UNIV::real set) = \<real>" |
64435 | 162 |
by (simp add: Reals_eq_Standard Standard_def) |
27468 | 163 |
|
61070 | 164 |
lemma inv_hypreal_of_real_image: "inv hypreal_of_real ` \<real> = UNIV" |
70221 | 165 |
by (simp add: Reals_eq_Standard Standard_def inj_star_of) |
27468 | 166 |
|
64435 | 167 |
lemma SReal_dense: "x \<in> \<real> \<Longrightarrow> y \<in> \<real> \<Longrightarrow> x < y \<Longrightarrow> \<exists>r \<in> Reals. x < r \<and> r < y" |
168 |
for x y :: hypreal |
|
70221 | 169 |
using dense by (fastforce simp add: SReal_def) |
27468 | 170 |
|
171 |
||
64435 | 172 |
subsection \<open>Set of Finite Elements is a Subring of the Extended Reals\<close> |
27468 | 173 |
|
64435 | 174 |
lemma HFinite_add: "x \<in> HFinite \<Longrightarrow> y \<in> HFinite \<Longrightarrow> x + y \<in> HFinite" |
175 |
unfolding HFinite_def by (blast intro!: Reals_add hnorm_add_less) |
|
27468 | 176 |
|
64435 | 177 |
lemma HFinite_mult: "x \<in> HFinite \<Longrightarrow> y \<in> HFinite \<Longrightarrow> x * y \<in> HFinite" |
178 |
for x y :: "'a::real_normed_algebra star" |
|
179 |
unfolding HFinite_def by (blast intro!: Reals_mult hnorm_mult_less) |
|
27468 | 180 |
|
64435 | 181 |
lemma HFinite_scaleHR: "x \<in> HFinite \<Longrightarrow> y \<in> HFinite \<Longrightarrow> scaleHR x y \<in> HFinite" |
182 |
by (auto simp: HFinite_def intro!: Reals_mult hnorm_scaleHR_less) |
|
27468 | 183 |
|
64435 | 184 |
lemma HFinite_minus_iff: "- x \<in> HFinite \<longleftrightarrow> x \<in> HFinite" |
185 |
by (simp add: HFinite_def) |
|
27468 | 186 |
|
187 |
lemma HFinite_star_of [simp]: "star_of x \<in> HFinite" |
|
70221 | 188 |
by (simp add: HFinite_def) (metis SReal_hypreal_of_real gt_ex star_of_less star_of_norm) |
27468 | 189 |
|
61070 | 190 |
lemma SReal_subset_HFinite: "(\<real>::hypreal set) \<subseteq> HFinite" |
64435 | 191 |
by (auto simp add: SReal_def) |
27468 | 192 |
|
64435 | 193 |
lemma HFiniteD: "x \<in> HFinite \<Longrightarrow> \<exists>t \<in> Reals. hnorm x < t" |
194 |
by (simp add: HFinite_def) |
|
27468 | 195 |
|
64435 | 196 |
lemma HFinite_hrabs_iff [iff]: "\<bar>x\<bar> \<in> HFinite \<longleftrightarrow> x \<in> HFinite" |
197 |
for x :: hypreal |
|
198 |
by (simp add: HFinite_def) |
|
27468 | 199 |
|
64435 | 200 |
lemma HFinite_hnorm_iff [iff]: "hnorm x \<in> HFinite \<longleftrightarrow> x \<in> HFinite" |
201 |
for x :: hypreal |
|
202 |
by (simp add: HFinite_def) |
|
27468 | 203 |
|
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
45541
diff
changeset
|
204 |
lemma HFinite_numeral [simp]: "numeral w \<in> HFinite" |
64435 | 205 |
unfolding star_numeral_def by (rule HFinite_star_of) |
27468 | 206 |
|
64435 | 207 |
text \<open>As always with numerals, \<open>0\<close> and \<open>1\<close> are special cases.\<close> |
27468 | 208 |
|
209 |
lemma HFinite_0 [simp]: "0 \<in> HFinite" |
|
64435 | 210 |
unfolding star_zero_def by (rule HFinite_star_of) |
27468 | 211 |
|
212 |
lemma HFinite_1 [simp]: "1 \<in> HFinite" |
|
64435 | 213 |
unfolding star_one_def by (rule HFinite_star_of) |
27468 | 214 |
|
64435 | 215 |
lemma hrealpow_HFinite: "x \<in> HFinite \<Longrightarrow> x ^ n \<in> HFinite" |
216 |
for x :: "'a::{real_normed_algebra,monoid_mult} star" |
|
70221 | 217 |
by (induct n) (auto intro: HFinite_mult) |
27468 | 218 |
|
70221 | 219 |
lemma HFinite_bounded: |
220 |
fixes x y :: hypreal |
|
221 |
assumes "x \<in> HFinite" and y: "y \<le> x" "0 \<le> y" shows "y \<in> HFinite" |
|
222 |
proof (cases "x \<le> 0") |
|
223 |
case True |
|
224 |
then have "y = 0" |
|
225 |
using y by auto |
|
226 |
then show ?thesis |
|
227 |
by simp |
|
228 |
next |
|
229 |
case False |
|
230 |
then show ?thesis |
|
231 |
using assms le_less_trans by (auto simp: HFinite_def) |
|
232 |
qed |
|
27468 | 233 |
|
234 |
||
64435 | 235 |
subsection \<open>Set of Infinitesimals is a Subring of the Hyperreals\<close> |
27468 | 236 |
|
64435 | 237 |
lemma InfinitesimalI: "(\<And>r. r \<in> \<real> \<Longrightarrow> 0 < r \<Longrightarrow> hnorm x < r) \<Longrightarrow> x \<in> Infinitesimal" |
238 |
by (simp add: Infinitesimal_def) |
|
27468 | 239 |
|
64435 | 240 |
lemma InfinitesimalD: "x \<in> Infinitesimal \<Longrightarrow> \<forall>r \<in> Reals. 0 < r \<longrightarrow> hnorm x < r" |
241 |
by (simp add: Infinitesimal_def) |
|
27468 | 242 |
|
64435 | 243 |
lemma InfinitesimalI2: "(\<And>r. 0 < r \<Longrightarrow> hnorm x < star_of r) \<Longrightarrow> x \<in> Infinitesimal" |
244 |
by (auto simp add: Infinitesimal_def SReal_def) |
|
27468 | 245 |
|
64435 | 246 |
lemma InfinitesimalD2: "x \<in> Infinitesimal \<Longrightarrow> 0 < r \<Longrightarrow> hnorm x < star_of r" |
247 |
by (auto simp add: Infinitesimal_def SReal_def) |
|
27468 | 248 |
|
249 |
lemma Infinitesimal_zero [iff]: "0 \<in> Infinitesimal" |
|
64435 | 250 |
by (simp add: Infinitesimal_def) |
27468 | 251 |
|
70221 | 252 |
lemma Infinitesimal_add: |
253 |
assumes "x \<in> Infinitesimal" "y \<in> Infinitesimal" |
|
254 |
shows "x + y \<in> Infinitesimal" |
|
255 |
proof (rule InfinitesimalI) |
|
256 |
show "hnorm (x + y) < r" |
|
257 |
if "r \<in> \<real>" and "0 < r" for r :: "real star" |
|
258 |
proof - |
|
259 |
have "hnorm x < r/2" "hnorm y < r/2" |
|
260 |
using InfinitesimalD SReal_divide_numeral assms half_gt_zero that by blast+ |
|
261 |
then show ?thesis |
|
262 |
using hnorm_add_less by fastforce |
|
263 |
qed |
|
264 |
qed |
|
27468 | 265 |
|
64435 | 266 |
lemma Infinitesimal_minus_iff [simp]: "- x \<in> Infinitesimal \<longleftrightarrow> x \<in> Infinitesimal" |
267 |
by (simp add: Infinitesimal_def) |
|
27468 | 268 |
|
64435 | 269 |
lemma Infinitesimal_hnorm_iff: "hnorm x \<in> Infinitesimal \<longleftrightarrow> x \<in> Infinitesimal" |
270 |
by (simp add: Infinitesimal_def) |
|
27468 | 271 |
|
64435 | 272 |
lemma Infinitesimal_hrabs_iff [iff]: "\<bar>x\<bar> \<in> Infinitesimal \<longleftrightarrow> x \<in> Infinitesimal" |
273 |
for x :: hypreal |
|
274 |
by (simp add: abs_if) |
|
27468 | 275 |
|
276 |
lemma Infinitesimal_of_hypreal_iff [simp]: |
|
64435 | 277 |
"(of_hypreal x::'a::real_normed_algebra_1 star) \<in> Infinitesimal \<longleftrightarrow> x \<in> Infinitesimal" |
278 |
by (subst Infinitesimal_hnorm_iff [symmetric]) simp |
|
27468 | 279 |
|
64435 | 280 |
lemma Infinitesimal_diff: "x \<in> Infinitesimal \<Longrightarrow> y \<in> Infinitesimal \<Longrightarrow> x - y \<in> Infinitesimal" |
54230
b1d955791529
more simplification rules on unary and binary minus
haftmann
parents:
51521
diff
changeset
|
281 |
using Infinitesimal_add [of x "- y"] by simp |
27468 | 282 |
|
70221 | 283 |
lemma Infinitesimal_mult: |
284 |
fixes x y :: "'a::real_normed_algebra star" |
|
285 |
assumes "x \<in> Infinitesimal" "y \<in> Infinitesimal" |
|
286 |
shows "x * y \<in> Infinitesimal" |
|
287 |
proof (rule InfinitesimalI) |
|
288 |
show "hnorm (x * y) < r" |
|
289 |
if "r \<in> \<real>" and "0 < r" for r :: "real star" |
|
290 |
proof - |
|
291 |
have "hnorm x < 1" "hnorm y < r" |
|
292 |
using assms that by (auto simp add: InfinitesimalD) |
|
293 |
then show ?thesis |
|
294 |
using hnorm_mult_less by fastforce |
|
295 |
qed |
|
296 |
qed |
|
27468 | 297 |
|
70221 | 298 |
lemma Infinitesimal_HFinite_mult: |
299 |
fixes x y :: "'a::real_normed_algebra star" |
|
300 |
assumes "x \<in> Infinitesimal" "y \<in> HFinite" |
|
301 |
shows "x * y \<in> Infinitesimal" |
|
302 |
proof (rule InfinitesimalI) |
|
303 |
obtain t where "hnorm y < t" "t \<in> Reals" |
|
304 |
using HFiniteD \<open>y \<in> HFinite\<close> by blast |
|
305 |
then have "t > 0" |
|
306 |
using hnorm_ge_zero le_less_trans by blast |
|
307 |
show "hnorm (x * y) < r" |
|
308 |
if "r \<in> \<real>" and "0 < r" for r :: "real star" |
|
309 |
proof - |
|
310 |
have "hnorm x < r/t" |
|
311 |
by (meson InfinitesimalD Reals_divide \<open>hnorm y < t\<close> \<open>t \<in> \<real>\<close> assms(1) divide_pos_pos hnorm_ge_zero le_less_trans that) |
|
312 |
then have "hnorm (x * y) < (r / t) * t" |
|
313 |
using \<open>hnorm y < t\<close> hnorm_mult_less by blast |
|
314 |
then show ?thesis |
|
315 |
using \<open>0 < t\<close> by auto |
|
316 |
qed |
|
317 |
qed |
|
27468 | 318 |
|
319 |
lemma Infinitesimal_HFinite_scaleHR: |
|
70221 | 320 |
assumes "x \<in> Infinitesimal" "y \<in> HFinite" |
321 |
shows "scaleHR x y \<in> Infinitesimal" |
|
322 |
proof (rule InfinitesimalI) |
|
323 |
obtain t where "hnorm y < t" "t \<in> Reals" |
|
324 |
using HFiniteD \<open>y \<in> HFinite\<close> by blast |
|
325 |
then have "t > 0" |
|
326 |
using hnorm_ge_zero le_less_trans by blast |
|
327 |
show "hnorm (scaleHR x y) < r" |
|
328 |
if "r \<in> \<real>" and "0 < r" for r :: "real star" |
|
329 |
proof - |
|
330 |
have "\<bar>x\<bar> * hnorm y < (r / t) * t" |
|
331 |
by (metis InfinitesimalD Reals_divide \<open>0 < t\<close> \<open>hnorm y < t\<close> \<open>t \<in> \<real>\<close> assms(1) divide_pos_pos hnorm_ge_zero hypreal_hnorm_def mult_strict_mono' that) |
|
332 |
then show ?thesis |
|
333 |
by (simp add: \<open>0 < t\<close> hnorm_scaleHR less_imp_not_eq2) |
|
334 |
qed |
|
335 |
qed |
|
27468 | 336 |
|
337 |
lemma Infinitesimal_HFinite_mult2: |
|
70221 | 338 |
fixes x y :: "'a::real_normed_algebra star" |
339 |
assumes "x \<in> Infinitesimal" "y \<in> HFinite" |
|
340 |
shows "y * x \<in> Infinitesimal" |
|
341 |
proof (rule InfinitesimalI) |
|
342 |
obtain t where "hnorm y < t" "t \<in> Reals" |
|
343 |
using HFiniteD \<open>y \<in> HFinite\<close> by blast |
|
344 |
then have "t > 0" |
|
345 |
using hnorm_ge_zero le_less_trans by blast |
|
346 |
show "hnorm (y * x) < r" |
|
347 |
if "r \<in> \<real>" and "0 < r" for r :: "real star" |
|
348 |
proof - |
|
349 |
have "hnorm x < r/t" |
|
350 |
by (meson InfinitesimalD Reals_divide \<open>hnorm y < t\<close> \<open>t \<in> \<real>\<close> assms(1) divide_pos_pos hnorm_ge_zero le_less_trans that) |
|
351 |
then have "hnorm (y * x) < t * (r / t)" |
|
352 |
using \<open>hnorm y < t\<close> hnorm_mult_less by blast |
|
353 |
then show ?thesis |
|
354 |
using \<open>0 < t\<close> by auto |
|
355 |
qed |
|
356 |
qed |
|
27468 | 357 |
|
70221 | 358 |
lemma Infinitesimal_scaleR2: |
359 |
assumes "x \<in> Infinitesimal" shows "a *\<^sub>R x \<in> Infinitesimal" |
|
360 |
by (metis HFinite_star_of Infinitesimal_HFinite_mult2 Infinitesimal_hnorm_iff assms hnorm_scaleR hypreal_hnorm_def star_of_norm) |
|
27468 | 361 |
|
362 |
lemma Compl_HFinite: "- HFinite = HInfinite" |
|
70221 | 363 |
proof - |
364 |
have "r < hnorm x" if *: "\<And>s. s \<in> \<real> \<Longrightarrow> s \<le> hnorm x" and "r \<in> \<real>" |
|
365 |
for x :: "'a star" and r :: hypreal |
|
366 |
using * [of "r+1"] \<open>r \<in> \<real>\<close> by auto |
|
367 |
then show ?thesis |
|
368 |
by (auto simp add: HInfinite_def HFinite_def linorder_not_less) |
|
369 |
qed |
|
27468 | 370 |
|
70221 | 371 |
lemma HInfinite_inverse_Infinitesimal: |
372 |
"x \<in> HInfinite \<Longrightarrow> inverse x \<in> Infinitesimal" |
|
64435 | 373 |
for x :: "'a::real_normed_div_algebra star" |
70221 | 374 |
by (simp add: HInfinite_def InfinitesimalI hnorm_inverse inverse_less_imp_less) |
375 |
||
376 |
lemma inverse_Infinitesimal_iff_HInfinite: |
|
377 |
"x \<noteq> 0 \<Longrightarrow> inverse x \<in> Infinitesimal \<longleftrightarrow> x \<in> HInfinite" |
|
378 |
for x :: "'a::real_normed_div_algebra star" |
|
379 |
by (metis Compl_HFinite Compl_iff HInfinite_inverse_Infinitesimal InfinitesimalD Infinitesimal_HFinite_mult Reals_1 hnorm_one left_inverse less_irrefl zero_less_one) |
|
27468 | 380 |
|
381 |
lemma HInfiniteI: "(\<And>r. r \<in> \<real> \<Longrightarrow> r < hnorm x) \<Longrightarrow> x \<in> HInfinite" |
|
64435 | 382 |
by (simp add: HInfinite_def) |
27468 | 383 |
|
64435 | 384 |
lemma HInfiniteD: "x \<in> HInfinite \<Longrightarrow> r \<in> \<real> \<Longrightarrow> r < hnorm x" |
385 |
by (simp add: HInfinite_def) |
|
27468 | 386 |
|
70221 | 387 |
lemma HInfinite_mult: |
388 |
fixes x y :: "'a::real_normed_div_algebra star" |
|
389 |
assumes "x \<in> HInfinite" "y \<in> HInfinite" shows "x * y \<in> HInfinite" |
|
390 |
proof (rule HInfiniteI, simp only: hnorm_mult) |
|
391 |
have "x \<noteq> 0" |
|
392 |
using Compl_HFinite HFinite_0 assms by blast |
|
393 |
show "r < hnorm x * hnorm y" |
|
394 |
if "r \<in> \<real>" for r :: "real star" |
|
395 |
proof - |
|
396 |
have "r = r * 1" |
|
397 |
by simp |
|
398 |
also have "\<dots> < hnorm x * hnorm y" |
|
399 |
by (meson HInfiniteD Reals_1 \<open>x \<noteq> 0\<close> assms le_numeral_extra(1) mult_strict_mono that zero_less_hnorm_iff) |
|
400 |
finally show ?thesis . |
|
401 |
qed |
|
402 |
qed |
|
27468 | 403 |
|
64435 | 404 |
lemma hypreal_add_zero_less_le_mono: "r < x \<Longrightarrow> 0 \<le> y \<Longrightarrow> r < x + y" |
405 |
for r x y :: hypreal |
|
70221 | 406 |
by simp |
27468 | 407 |
|
64435 | 408 |
lemma HInfinite_add_ge_zero: "x \<in> HInfinite \<Longrightarrow> 0 \<le> y \<Longrightarrow> 0 \<le> x \<Longrightarrow> x + y \<in> HInfinite" |
409 |
for x y :: hypreal |
|
410 |
by (auto simp: abs_if add.commute HInfinite_def) |
|
27468 | 411 |
|
64435 | 412 |
lemma HInfinite_add_ge_zero2: "x \<in> HInfinite \<Longrightarrow> 0 \<le> y \<Longrightarrow> 0 \<le> x \<Longrightarrow> y + x \<in> HInfinite" |
413 |
for x y :: hypreal |
|
414 |
by (auto intro!: HInfinite_add_ge_zero simp add: add.commute) |
|
27468 | 415 |
|
64435 | 416 |
lemma HInfinite_add_gt_zero: "x \<in> HInfinite \<Longrightarrow> 0 < y \<Longrightarrow> 0 < x \<Longrightarrow> x + y \<in> HInfinite" |
417 |
for x y :: hypreal |
|
418 |
by (blast intro: HInfinite_add_ge_zero order_less_imp_le) |
|
27468 | 419 |
|
64435 | 420 |
lemma HInfinite_minus_iff: "- x \<in> HInfinite \<longleftrightarrow> x \<in> HInfinite" |
421 |
by (simp add: HInfinite_def) |
|
27468 | 422 |
|
64435 | 423 |
lemma HInfinite_add_le_zero: "x \<in> HInfinite \<Longrightarrow> y \<le> 0 \<Longrightarrow> x \<le> 0 \<Longrightarrow> x + y \<in> HInfinite" |
424 |
for x y :: hypreal |
|
70221 | 425 |
by (metis (no_types, lifting) HInfinite_add_ge_zero2 HInfinite_minus_iff add.inverse_distrib_swap neg_0_le_iff_le) |
27468 | 426 |
|
64435 | 427 |
lemma HInfinite_add_lt_zero: "x \<in> HInfinite \<Longrightarrow> y < 0 \<Longrightarrow> x < 0 \<Longrightarrow> x + y \<in> HInfinite" |
428 |
for x y :: hypreal |
|
429 |
by (blast intro: HInfinite_add_le_zero order_less_imp_le) |
|
27468 | 430 |
|
431 |
lemma HFinite_sum_squares: |
|
64435 | 432 |
"a \<in> HFinite \<Longrightarrow> b \<in> HFinite \<Longrightarrow> c \<in> HFinite \<Longrightarrow> a * a + b * b + c * c \<in> HFinite" |
433 |
for a b c :: "'a::real_normed_algebra star" |
|
434 |
by (auto intro: HFinite_mult HFinite_add) |
|
27468 | 435 |
|
64435 | 436 |
lemma not_Infinitesimal_not_zero: "x \<notin> Infinitesimal \<Longrightarrow> x \<noteq> 0" |
437 |
by auto |
|
27468 | 438 |
|
64435 | 439 |
lemma not_Infinitesimal_not_zero2: "x \<in> HFinite - Infinitesimal \<Longrightarrow> x \<noteq> 0" |
440 |
by auto |
|
27468 | 441 |
|
442 |
lemma HFinite_diff_Infinitesimal_hrabs: |
|
64435 | 443 |
"x \<in> HFinite - Infinitesimal \<Longrightarrow> \<bar>x\<bar> \<in> HFinite - Infinitesimal" |
444 |
for x :: hypreal |
|
445 |
by blast |
|
27468 | 446 |
|
64435 | 447 |
lemma hnorm_le_Infinitesimal: "e \<in> Infinitesimal \<Longrightarrow> hnorm x \<le> e \<Longrightarrow> x \<in> Infinitesimal" |
448 |
by (auto simp: Infinitesimal_def abs_less_iff) |
|
27468 | 449 |
|
64435 | 450 |
lemma hnorm_less_Infinitesimal: "e \<in> Infinitesimal \<Longrightarrow> hnorm x < e \<Longrightarrow> x \<in> Infinitesimal" |
451 |
by (erule hnorm_le_Infinitesimal, erule order_less_imp_le) |
|
27468 | 452 |
|
64435 | 453 |
lemma hrabs_le_Infinitesimal: "e \<in> Infinitesimal \<Longrightarrow> \<bar>x\<bar> \<le> e \<Longrightarrow> x \<in> Infinitesimal" |
454 |
for x :: hypreal |
|
455 |
by (erule hnorm_le_Infinitesimal) simp |
|
27468 | 456 |
|
64435 | 457 |
lemma hrabs_less_Infinitesimal: "e \<in> Infinitesimal \<Longrightarrow> \<bar>x\<bar> < e \<Longrightarrow> x \<in> Infinitesimal" |
458 |
for x :: hypreal |
|
459 |
by (erule hnorm_less_Infinitesimal) simp |
|
27468 | 460 |
|
461 |
lemma Infinitesimal_interval: |
|
64435 | 462 |
"e \<in> Infinitesimal \<Longrightarrow> e' \<in> Infinitesimal \<Longrightarrow> e' < x \<Longrightarrow> x < e \<Longrightarrow> x \<in> Infinitesimal" |
463 |
for x :: hypreal |
|
464 |
by (auto simp add: Infinitesimal_def abs_less_iff) |
|
27468 | 465 |
|
466 |
lemma Infinitesimal_interval2: |
|
64435 | 467 |
"e \<in> Infinitesimal \<Longrightarrow> e' \<in> Infinitesimal \<Longrightarrow> e' \<le> x \<Longrightarrow> x \<le> e \<Longrightarrow> x \<in> Infinitesimal" |
468 |
for x :: hypreal |
|
469 |
by (auto intro: Infinitesimal_interval simp add: order_le_less) |
|
27468 | 470 |
|
471 |
||
64435 | 472 |
lemma lemma_Infinitesimal_hyperpow: "x \<in> Infinitesimal \<Longrightarrow> 0 < N \<Longrightarrow> \<bar>x pow N\<bar> \<le> \<bar>x\<bar>" |
473 |
for x :: hypreal |
|
70221 | 474 |
apply (clarsimp simp: Infinitesimal_def) |
475 |
by (metis Reals_1 abs_ge_zero hyperpow_Suc_le_self2 hyperpow_hrabs hypnat_gt_zero_iff2 zero_less_one) |
|
27468 | 476 |
|
64435 | 477 |
lemma Infinitesimal_hyperpow: "x \<in> Infinitesimal \<Longrightarrow> 0 < N \<Longrightarrow> x pow N \<in> Infinitesimal" |
478 |
for x :: hypreal |
|
70221 | 479 |
using hrabs_le_Infinitesimal lemma_Infinitesimal_hyperpow by blast |
27468 | 480 |
|
481 |
lemma hrealpow_hyperpow_Infinitesimal_iff: |
|
64435 | 482 |
"(x ^ n \<in> Infinitesimal) \<longleftrightarrow> x pow (hypnat_of_nat n) \<in> Infinitesimal" |
483 |
by (simp only: hyperpow_hypnat_of_nat) |
|
27468 | 484 |
|
64435 | 485 |
lemma Infinitesimal_hrealpow: "x \<in> Infinitesimal \<Longrightarrow> 0 < n \<Longrightarrow> x ^ n \<in> Infinitesimal" |
486 |
for x :: hypreal |
|
487 |
by (simp add: hrealpow_hyperpow_Infinitesimal_iff Infinitesimal_hyperpow) |
|
27468 | 488 |
|
489 |
lemma not_Infinitesimal_mult: |
|
64435 | 490 |
"x \<notin> Infinitesimal \<Longrightarrow> y \<notin> Infinitesimal \<Longrightarrow> x * y \<notin> Infinitesimal" |
491 |
for x y :: "'a::real_normed_div_algebra star" |
|
70221 | 492 |
by (metis (no_types, lifting) inverse_Infinitesimal_iff_HInfinite ComplI Compl_HFinite Infinitesimal_HFinite_mult divide_inverse eq_divide_imp inverse_inverse_eq mult_zero_right) |
27468 | 493 |
|
64435 | 494 |
lemma Infinitesimal_mult_disj: "x * y \<in> Infinitesimal \<Longrightarrow> x \<in> Infinitesimal \<or> y \<in> Infinitesimal" |
495 |
for x y :: "'a::real_normed_div_algebra star" |
|
70221 | 496 |
using not_Infinitesimal_mult by blast |
27468 | 497 |
|
64435 | 498 |
lemma HFinite_Infinitesimal_not_zero: "x \<in> HFinite-Infinitesimal \<Longrightarrow> x \<noteq> 0" |
499 |
by blast |
|
27468 | 500 |
|
501 |
lemma HFinite_Infinitesimal_diff_mult: |
|
64435 | 502 |
"x \<in> HFinite - Infinitesimal \<Longrightarrow> y \<in> HFinite - Infinitesimal \<Longrightarrow> x * y \<in> HFinite - Infinitesimal" |
503 |
for x y :: "'a::real_normed_div_algebra star" |
|
70221 | 504 |
by (simp add: HFinite_mult not_Infinitesimal_mult) |
27468 | 505 |
|
64435 | 506 |
lemma Infinitesimal_subset_HFinite: "Infinitesimal \<subseteq> HFinite" |
70221 | 507 |
using HFinite_def InfinitesimalD Reals_1 zero_less_one by blast |
27468 | 508 |
|
64435 | 509 |
lemma Infinitesimal_star_of_mult: "x \<in> Infinitesimal \<Longrightarrow> x * star_of r \<in> Infinitesimal" |
510 |
for x :: "'a::real_normed_algebra star" |
|
511 |
by (erule HFinite_star_of [THEN [2] Infinitesimal_HFinite_mult]) |
|
27468 | 512 |
|
64435 | 513 |
lemma Infinitesimal_star_of_mult2: "x \<in> Infinitesimal \<Longrightarrow> star_of r * x \<in> Infinitesimal" |
514 |
for x :: "'a::real_normed_algebra star" |
|
515 |
by (erule HFinite_star_of [THEN [2] Infinitesimal_HFinite_mult2]) |
|
27468 | 516 |
|
517 |
||
64435 | 518 |
subsection \<open>The Infinitely Close Relation\<close> |
27468 | 519 |
|
64435 | 520 |
lemma mem_infmal_iff: "x \<in> Infinitesimal \<longleftrightarrow> x \<approx> 0" |
521 |
by (simp add: Infinitesimal_def approx_def) |
|
27468 | 522 |
|
64435 | 523 |
lemma approx_minus_iff: "x \<approx> y \<longleftrightarrow> x - y \<approx> 0" |
524 |
by (simp add: approx_def) |
|
27468 | 525 |
|
64435 | 526 |
lemma approx_minus_iff2: "x \<approx> y \<longleftrightarrow> - y + x \<approx> 0" |
527 |
by (simp add: approx_def add.commute) |
|
27468 | 528 |
|
61982 | 529 |
lemma approx_refl [iff]: "x \<approx> x" |
64435 | 530 |
by (simp add: approx_def Infinitesimal_def) |
27468 | 531 |
|
70221 | 532 |
lemma approx_sym: "x \<approx> y \<Longrightarrow> y \<approx> x" |
533 |
by (metis Infinitesimal_minus_iff approx_def minus_diff_eq) |
|
27468 | 534 |
|
70221 | 535 |
lemma approx_trans: |
536 |
assumes "x \<approx> y" "y \<approx> z" shows "x \<approx> z" |
|
537 |
proof - |
|
538 |
have "x - y \<in> Infinitesimal" "z - y \<in> Infinitesimal" |
|
539 |
using assms approx_def approx_sym by auto |
|
540 |
then have "x - z \<in> Infinitesimal" |
|
541 |
using Infinitesimal_diff by force |
|
542 |
then show ?thesis |
|
543 |
by (simp add: approx_def) |
|
544 |
qed |
|
27468 | 545 |
|
64435 | 546 |
lemma approx_trans2: "r \<approx> x \<Longrightarrow> s \<approx> x \<Longrightarrow> r \<approx> s" |
547 |
by (blast intro: approx_sym approx_trans) |
|
27468 | 548 |
|
64435 | 549 |
lemma approx_trans3: "x \<approx> r \<Longrightarrow> x \<approx> s \<Longrightarrow> r \<approx> s" |
550 |
by (blast intro: approx_sym approx_trans) |
|
27468 | 551 |
|
64435 | 552 |
lemma approx_reorient: "x \<approx> y \<longleftrightarrow> y \<approx> x" |
553 |
by (blast intro: approx_sym) |
|
27468 | 554 |
|
64435 | 555 |
text \<open>Reorientation simplification procedure: reorients (polymorphic) |
556 |
\<open>0 = x\<close>, \<open>1 = x\<close>, \<open>nnn = x\<close> provided \<open>x\<close> isn't \<open>0\<close>, \<open>1\<close> or a numeral.\<close> |
|
45541
934866fc776c
simplify implementation of approx_reorient_simproc
huffman
parents:
45540
diff
changeset
|
557 |
simproc_setup approx_reorient_simproc |
61982 | 558 |
("0 \<approx> x" | "1 \<approx> y" | "numeral w \<approx> z" | "- 1 \<approx> y" | "- numeral w \<approx> r") = |
61975 | 559 |
\<open> |
45541
934866fc776c
simplify implementation of approx_reorient_simproc
huffman
parents:
45540
diff
changeset
|
560 |
let val rule = @{thm approx_reorient} RS eq_reflection |
59582 | 561 |
fun proc phi ss ct = |
562 |
case Thm.term_of ct of |
|
45541
934866fc776c
simplify implementation of approx_reorient_simproc
huffman
parents:
45540
diff
changeset
|
563 |
_ $ t $ u => if can HOLogic.dest_number u then NONE |
934866fc776c
simplify implementation of approx_reorient_simproc
huffman
parents:
45540
diff
changeset
|
564 |
else if can HOLogic.dest_number t then SOME rule else NONE |
934866fc776c
simplify implementation of approx_reorient_simproc
huffman
parents:
45540
diff
changeset
|
565 |
| _ => NONE |
934866fc776c
simplify implementation of approx_reorient_simproc
huffman
parents:
45540
diff
changeset
|
566 |
in proc end |
61975 | 567 |
\<close> |
27468 | 568 |
|
64435 | 569 |
lemma Infinitesimal_approx_minus: "x - y \<in> Infinitesimal \<longleftrightarrow> x \<approx> y" |
570 |
by (simp add: approx_minus_iff [symmetric] mem_infmal_iff) |
|
27468 | 571 |
|
64435 | 572 |
lemma approx_monad_iff: "x \<approx> y \<longleftrightarrow> monad x = monad y" |
70221 | 573 |
apply (simp add: monad_def set_eq_iff) |
574 |
using approx_reorient approx_trans by blast |
|
27468 | 575 |
|
64435 | 576 |
lemma Infinitesimal_approx: "x \<in> Infinitesimal \<Longrightarrow> y \<in> Infinitesimal \<Longrightarrow> x \<approx> y" |
70221 | 577 |
by (simp add: Infinitesimal_diff approx_def) |
27468 | 578 |
|
64435 | 579 |
lemma approx_add: "a \<approx> b \<Longrightarrow> c \<approx> d \<Longrightarrow> a + c \<approx> b + d" |
27468 | 580 |
proof (unfold approx_def) |
581 |
assume inf: "a - b \<in> Infinitesimal" "c - d \<in> Infinitesimal" |
|
582 |
have "a + c - (b + d) = (a - b) + (c - d)" by simp |
|
64435 | 583 |
also have "... \<in> Infinitesimal" |
584 |
using inf by (rule Infinitesimal_add) |
|
27468 | 585 |
finally show "a + c - (b + d) \<in> Infinitesimal" . |
586 |
qed |
|
587 |
||
64435 | 588 |
lemma approx_minus: "a \<approx> b \<Longrightarrow> - a \<approx> - b" |
70221 | 589 |
by (metis approx_def approx_sym minus_diff_eq minus_diff_minus) |
27468 | 590 |
|
64435 | 591 |
lemma approx_minus2: "- a \<approx> - b \<Longrightarrow> a \<approx> b" |
592 |
by (auto dest: approx_minus) |
|
27468 | 593 |
|
64435 | 594 |
lemma approx_minus_cancel [simp]: "- a \<approx> - b \<longleftrightarrow> a \<approx> b" |
595 |
by (blast intro: approx_minus approx_minus2) |
|
27468 | 596 |
|
64435 | 597 |
lemma approx_add_minus: "a \<approx> b \<Longrightarrow> c \<approx> d \<Longrightarrow> a + - c \<approx> b + - d" |
598 |
by (blast intro!: approx_add approx_minus) |
|
27468 | 599 |
|
64435 | 600 |
lemma approx_diff: "a \<approx> b \<Longrightarrow> c \<approx> d \<Longrightarrow> a - c \<approx> b - d" |
54230
b1d955791529
more simplification rules on unary and binary minus
haftmann
parents:
51521
diff
changeset
|
601 |
using approx_add [of a b "- c" "- d"] by simp |
27468 | 602 |
|
64435 | 603 |
lemma approx_mult1: "a \<approx> b \<Longrightarrow> c \<in> HFinite \<Longrightarrow> a * c \<approx> b * c" |
604 |
for a b c :: "'a::real_normed_algebra star" |
|
605 |
by (simp add: approx_def Infinitesimal_HFinite_mult left_diff_distrib [symmetric]) |
|
606 |
||
607 |
lemma approx_mult2: "a \<approx> b \<Longrightarrow> c \<in> HFinite \<Longrightarrow> c * a \<approx> c * b" |
|
608 |
for a b c :: "'a::real_normed_algebra star" |
|
609 |
by (simp add: approx_def Infinitesimal_HFinite_mult2 right_diff_distrib [symmetric]) |
|
27468 | 610 |
|
64435 | 611 |
lemma approx_mult_subst: "u \<approx> v * x \<Longrightarrow> x \<approx> y \<Longrightarrow> v \<in> HFinite \<Longrightarrow> u \<approx> v * y" |
612 |
for u v x y :: "'a::real_normed_algebra star" |
|
613 |
by (blast intro: approx_mult2 approx_trans) |
|
27468 | 614 |
|
64435 | 615 |
lemma approx_mult_subst2: "u \<approx> x * v \<Longrightarrow> x \<approx> y \<Longrightarrow> v \<in> HFinite \<Longrightarrow> u \<approx> y * v" |
616 |
for u v x y :: "'a::real_normed_algebra star" |
|
617 |
by (blast intro: approx_mult1 approx_trans) |
|
27468 | 618 |
|
64435 | 619 |
lemma approx_mult_subst_star_of: "u \<approx> x * star_of v \<Longrightarrow> x \<approx> y \<Longrightarrow> u \<approx> y * star_of v" |
620 |
for u x y :: "'a::real_normed_algebra star" |
|
621 |
by (auto intro: approx_mult_subst2) |
|
27468 | 622 |
|
64435 | 623 |
lemma approx_eq_imp: "a = b \<Longrightarrow> a \<approx> b" |
624 |
by (simp add: approx_def) |
|
27468 | 625 |
|
64435 | 626 |
lemma Infinitesimal_minus_approx: "x \<in> Infinitesimal \<Longrightarrow> - x \<approx> x" |
627 |
by (blast intro: Infinitesimal_minus_iff [THEN iffD2] mem_infmal_iff [THEN iffD1] approx_trans2) |
|
27468 | 628 |
|
64435 | 629 |
lemma bex_Infinitesimal_iff: "(\<exists>y \<in> Infinitesimal. x - z = y) \<longleftrightarrow> x \<approx> z" |
630 |
by (simp add: approx_def) |
|
27468 | 631 |
|
64435 | 632 |
lemma bex_Infinitesimal_iff2: "(\<exists>y \<in> Infinitesimal. x = z + y) \<longleftrightarrow> x \<approx> z" |
633 |
by (force simp add: bex_Infinitesimal_iff [symmetric]) |
|
27468 | 634 |
|
64435 | 635 |
lemma Infinitesimal_add_approx: "y \<in> Infinitesimal \<Longrightarrow> x + y = z \<Longrightarrow> x \<approx> z" |
70221 | 636 |
using approx_sym bex_Infinitesimal_iff2 by blast |
27468 | 637 |
|
64435 | 638 |
lemma Infinitesimal_add_approx_self: "y \<in> Infinitesimal \<Longrightarrow> x \<approx> x + y" |
70221 | 639 |
by (simp add: Infinitesimal_add_approx) |
27468 | 640 |
|
64435 | 641 |
lemma Infinitesimal_add_approx_self2: "y \<in> Infinitesimal \<Longrightarrow> x \<approx> y + x" |
642 |
by (auto dest: Infinitesimal_add_approx_self simp add: add.commute) |
|
27468 | 643 |
|
64435 | 644 |
lemma Infinitesimal_add_minus_approx_self: "y \<in> Infinitesimal \<Longrightarrow> x \<approx> x + - y" |
645 |
by (blast intro!: Infinitesimal_add_approx_self Infinitesimal_minus_iff [THEN iffD2]) |
|
27468 | 646 |
|
64435 | 647 |
lemma Infinitesimal_add_cancel: "y \<in> Infinitesimal \<Longrightarrow> x + y \<approx> z \<Longrightarrow> x \<approx> z" |
70221 | 648 |
using Infinitesimal_add_approx approx_trans by blast |
27468 | 649 |
|
64435 | 650 |
lemma Infinitesimal_add_right_cancel: "y \<in> Infinitesimal \<Longrightarrow> x \<approx> z + y \<Longrightarrow> x \<approx> z" |
70221 | 651 |
by (metis Infinitesimal_add_approx_self approx_monad_iff) |
27468 | 652 |
|
70221 | 653 |
lemma approx_add_left_cancel: "d + b \<approx> d + c \<Longrightarrow> b \<approx> c" |
654 |
by (metis add_diff_cancel_left bex_Infinitesimal_iff) |
|
27468 | 655 |
|
64435 | 656 |
lemma approx_add_right_cancel: "b + d \<approx> c + d \<Longrightarrow> b \<approx> c" |
70221 | 657 |
by (simp add: approx_def) |
27468 | 658 |
|
64435 | 659 |
lemma approx_add_mono1: "b \<approx> c \<Longrightarrow> d + b \<approx> d + c" |
70221 | 660 |
by (simp add: approx_add) |
27468 | 661 |
|
64435 | 662 |
lemma approx_add_mono2: "b \<approx> c \<Longrightarrow> b + a \<approx> c + a" |
663 |
by (simp add: add.commute approx_add_mono1) |
|
27468 | 664 |
|
64435 | 665 |
lemma approx_add_left_iff [simp]: "a + b \<approx> a + c \<longleftrightarrow> b \<approx> c" |
666 |
by (fast elim: approx_add_left_cancel approx_add_mono1) |
|
27468 | 667 |
|
64435 | 668 |
lemma approx_add_right_iff [simp]: "b + a \<approx> c + a \<longleftrightarrow> b \<approx> c" |
669 |
by (simp add: add.commute) |
|
27468 | 670 |
|
64435 | 671 |
lemma approx_HFinite: "x \<in> HFinite \<Longrightarrow> x \<approx> y \<Longrightarrow> y \<in> HFinite" |
70221 | 672 |
by (metis HFinite_add Infinitesimal_subset_HFinite approx_sym subsetD bex_Infinitesimal_iff2) |
27468 | 673 |
|
64435 | 674 |
lemma approx_star_of_HFinite: "x \<approx> star_of D \<Longrightarrow> x \<in> HFinite" |
675 |
by (rule approx_sym [THEN [2] approx_HFinite], auto) |
|
27468 | 676 |
|
64435 | 677 |
lemma approx_mult_HFinite: "a \<approx> b \<Longrightarrow> c \<approx> d \<Longrightarrow> b \<in> HFinite \<Longrightarrow> d \<in> HFinite \<Longrightarrow> a * c \<approx> b * d" |
678 |
for a b c d :: "'a::real_normed_algebra star" |
|
70221 | 679 |
by (meson approx_HFinite approx_mult2 approx_mult_subst2 approx_sym) |
27468 | 680 |
|
64435 | 681 |
lemma scaleHR_left_diff_distrib: "\<And>a b x. scaleHR (a - b) x = scaleHR a x - scaleHR b x" |
682 |
by transfer (rule scaleR_left_diff_distrib) |
|
27468 | 683 |
|
64435 | 684 |
lemma approx_scaleR1: "a \<approx> star_of b \<Longrightarrow> c \<in> HFinite \<Longrightarrow> scaleHR a c \<approx> b *\<^sub>R c" |
70221 | 685 |
unfolding approx_def |
686 |
by (metis Infinitesimal_HFinite_scaleHR scaleHR_def scaleHR_left_diff_distrib star_scaleR_def starfun2_star_of) |
|
27468 | 687 |
|
64435 | 688 |
lemma approx_scaleR2: "a \<approx> b \<Longrightarrow> c *\<^sub>R a \<approx> c *\<^sub>R b" |
689 |
by (simp add: approx_def Infinitesimal_scaleR2 scaleR_right_diff_distrib [symmetric]) |
|
690 |
||
691 |
lemma approx_scaleR_HFinite: "a \<approx> star_of b \<Longrightarrow> c \<approx> d \<Longrightarrow> d \<in> HFinite \<Longrightarrow> scaleHR a c \<approx> b *\<^sub>R d" |
|
70221 | 692 |
by (meson approx_HFinite approx_scaleR1 approx_scaleR2 approx_sym approx_trans) |
27468 | 693 |
|
64435 | 694 |
lemma approx_mult_star_of: "a \<approx> star_of b \<Longrightarrow> c \<approx> star_of d \<Longrightarrow> a * c \<approx> star_of b * star_of d" |
695 |
for a c :: "'a::real_normed_algebra star" |
|
696 |
by (blast intro!: approx_mult_HFinite approx_star_of_HFinite HFinite_star_of) |
|
697 |
||
70221 | 698 |
lemma approx_SReal_mult_cancel_zero: |
699 |
fixes a x :: hypreal |
|
700 |
assumes "a \<in> \<real>" "a \<noteq> 0" "a * x \<approx> 0" shows "x \<approx> 0" |
|
701 |
proof - |
|
702 |
have "inverse a \<in> HFinite" |
|
703 |
using Reals_inverse SReal_subset_HFinite assms(1) by blast |
|
704 |
then show ?thesis |
|
705 |
using assms by (auto dest: approx_mult2 simp add: mult.assoc [symmetric]) |
|
706 |
qed |
|
27468 | 707 |
|
64435 | 708 |
lemma approx_mult_SReal1: "a \<in> \<real> \<Longrightarrow> x \<approx> 0 \<Longrightarrow> x * a \<approx> 0" |
709 |
for a x :: hypreal |
|
710 |
by (auto dest: SReal_subset_HFinite [THEN subsetD] approx_mult1) |
|
27468 | 711 |
|
64435 | 712 |
lemma approx_mult_SReal2: "a \<in> \<real> \<Longrightarrow> x \<approx> 0 \<Longrightarrow> a * x \<approx> 0" |
713 |
for a x :: hypreal |
|
714 |
by (auto dest: SReal_subset_HFinite [THEN subsetD] approx_mult2) |
|
27468 | 715 |
|
64435 | 716 |
lemma approx_mult_SReal_zero_cancel_iff [simp]: "a \<in> \<real> \<Longrightarrow> a \<noteq> 0 \<Longrightarrow> a * x \<approx> 0 \<longleftrightarrow> x \<approx> 0" |
717 |
for a x :: hypreal |
|
718 |
by (blast intro: approx_SReal_mult_cancel_zero approx_mult_SReal2) |
|
27468 | 719 |
|
70221 | 720 |
lemma approx_SReal_mult_cancel: |
721 |
fixes a w z :: hypreal |
|
722 |
assumes "a \<in> \<real>" "a \<noteq> 0" "a * w \<approx> a * z" shows "w \<approx> z" |
|
723 |
proof - |
|
724 |
have "inverse a \<in> HFinite" |
|
725 |
using Reals_inverse SReal_subset_HFinite assms(1) by blast |
|
726 |
then show ?thesis |
|
727 |
using assms by (auto dest: approx_mult2 simp add: mult.assoc [symmetric]) |
|
728 |
qed |
|
27468 | 729 |
|
64435 | 730 |
lemma approx_SReal_mult_cancel_iff1 [simp]: "a \<in> \<real> \<Longrightarrow> a \<noteq> 0 \<Longrightarrow> a * w \<approx> a * z \<longleftrightarrow> w \<approx> z" |
731 |
for a w z :: hypreal |
|
70221 | 732 |
by (meson SReal_subset_HFinite approx_SReal_mult_cancel approx_mult2 subsetD) |
27468 | 733 |
|
70221 | 734 |
lemma approx_le_bound: |
735 |
fixes z :: hypreal |
|
736 |
assumes "z \<le> f" " f \<approx> g" "g \<le> z" shows "f \<approx> z" |
|
737 |
proof - |
|
738 |
obtain y where "z \<le> g + y" and "y \<in> Infinitesimal" "f = g + y" |
|
739 |
using assms bex_Infinitesimal_iff2 by auto |
|
740 |
then have "z - g \<in> Infinitesimal" |
|
741 |
using assms(3) hrabs_le_Infinitesimal by auto |
|
742 |
then show ?thesis |
|
743 |
by (metis approx_def approx_trans2 assms(2)) |
|
744 |
qed |
|
27468 | 745 |
|
64435 | 746 |
lemma approx_hnorm: "x \<approx> y \<Longrightarrow> hnorm x \<approx> hnorm y" |
747 |
for x y :: "'a::real_normed_vector star" |
|
27468 | 748 |
proof (unfold approx_def) |
749 |
assume "x - y \<in> Infinitesimal" |
|
64435 | 750 |
then have "hnorm (x - y) \<in> Infinitesimal" |
27468 | 751 |
by (simp only: Infinitesimal_hnorm_iff) |
64435 | 752 |
moreover have "(0::real star) \<in> Infinitesimal" |
27468 | 753 |
by (rule Infinitesimal_zero) |
64435 | 754 |
moreover have "0 \<le> \<bar>hnorm x - hnorm y\<bar>" |
27468 | 755 |
by (rule abs_ge_zero) |
64435 | 756 |
moreover have "\<bar>hnorm x - hnorm y\<bar> \<le> hnorm (x - y)" |
27468 | 757 |
by (rule hnorm_triangle_ineq3) |
758 |
ultimately have "\<bar>hnorm x - hnorm y\<bar> \<in> Infinitesimal" |
|
759 |
by (rule Infinitesimal_interval2) |
|
64435 | 760 |
then show "hnorm x - hnorm y \<in> Infinitesimal" |
27468 | 761 |
by (simp only: Infinitesimal_hrabs_iff) |
762 |
qed |
|
763 |
||
764 |
||
64435 | 765 |
subsection \<open>Zero is the Only Infinitesimal that is also a Real\<close> |
27468 | 766 |
|
64435 | 767 |
lemma Infinitesimal_less_SReal: "x \<in> \<real> \<Longrightarrow> y \<in> Infinitesimal \<Longrightarrow> 0 < x \<Longrightarrow> y < x" |
768 |
for x y :: hypreal |
|
70221 | 769 |
using InfinitesimalD by fastforce |
27468 | 770 |
|
64435 | 771 |
lemma Infinitesimal_less_SReal2: "y \<in> Infinitesimal \<Longrightarrow> \<forall>r \<in> Reals. 0 < r \<longrightarrow> y < r" |
772 |
for y :: hypreal |
|
773 |
by (blast intro: Infinitesimal_less_SReal) |
|
27468 | 774 |
|
64435 | 775 |
lemma SReal_not_Infinitesimal: "0 < y \<Longrightarrow> y \<in> \<real> ==> y \<notin> Infinitesimal" |
776 |
for y :: hypreal |
|
70221 | 777 |
by (auto simp add: Infinitesimal_def abs_if) |
27468 | 778 |
|
64435 | 779 |
lemma SReal_minus_not_Infinitesimal: "y < 0 \<Longrightarrow> y \<in> \<real> \<Longrightarrow> y \<notin> Infinitesimal" |
780 |
for y :: hypreal |
|
70221 | 781 |
using Infinitesimal_minus_iff Reals_minus SReal_not_Infinitesimal neg_0_less_iff_less by blast |
27468 | 782 |
|
61070 | 783 |
lemma SReal_Int_Infinitesimal_zero: "\<real> Int Infinitesimal = {0::hypreal}" |
70221 | 784 |
proof - |
785 |
have "x = 0" if "x \<in> \<real>" "x \<in> Infinitesimal" for x :: "real star" |
|
786 |
using that SReal_minus_not_Infinitesimal SReal_not_Infinitesimal not_less_iff_gr_or_eq by blast |
|
787 |
then show ?thesis |
|
788 |
by auto |
|
789 |
qed |
|
27468 | 790 |
|
64435 | 791 |
lemma SReal_Infinitesimal_zero: "x \<in> \<real> \<Longrightarrow> x \<in> Infinitesimal \<Longrightarrow> x = 0" |
792 |
for x :: hypreal |
|
793 |
using SReal_Int_Infinitesimal_zero by blast |
|
27468 | 794 |
|
64435 | 795 |
lemma SReal_HFinite_diff_Infinitesimal: "x \<in> \<real> \<Longrightarrow> x \<noteq> 0 \<Longrightarrow> x \<in> HFinite - Infinitesimal" |
796 |
for x :: hypreal |
|
797 |
by (auto dest: SReal_Infinitesimal_zero SReal_subset_HFinite [THEN subsetD]) |
|
27468 | 798 |
|
799 |
lemma hypreal_of_real_HFinite_diff_Infinitesimal: |
|
64435 | 800 |
"hypreal_of_real x \<noteq> 0 \<Longrightarrow> hypreal_of_real x \<in> HFinite - Infinitesimal" |
801 |
by (rule SReal_HFinite_diff_Infinitesimal) auto |
|
27468 | 802 |
|
64435 | 803 |
lemma star_of_Infinitesimal_iff_0 [iff]: "star_of x \<in> Infinitesimal \<longleftrightarrow> x = 0" |
70221 | 804 |
proof |
805 |
show "x = 0" if "star_of x \<in> Infinitesimal" |
|
806 |
proof - |
|
807 |
have "hnorm (star_n (\<lambda>n. x)) \<in> Standard" |
|
808 |
by (metis Reals_eq_Standard SReal_iff star_of_def star_of_norm) |
|
809 |
then show ?thesis |
|
810 |
by (metis InfinitesimalD2 less_irrefl star_of_norm that zero_less_norm_iff) |
|
811 |
qed |
|
812 |
qed auto |
|
27468 | 813 |
|
64435 | 814 |
lemma star_of_HFinite_diff_Infinitesimal: "x \<noteq> 0 \<Longrightarrow> star_of x \<in> HFinite - Infinitesimal" |
815 |
by simp |
|
27468 | 816 |
|
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
45541
diff
changeset
|
817 |
lemma numeral_not_Infinitesimal [simp]: |
64435 | 818 |
"numeral w \<noteq> (0::hypreal) \<Longrightarrow> (numeral w :: hypreal) \<notin> Infinitesimal" |
819 |
by (fast dest: Reals_numeral [THEN SReal_Infinitesimal_zero]) |
|
27468 | 820 |
|
64435 | 821 |
text \<open>Again: \<open>1\<close> is a special case, but not \<open>0\<close> this time.\<close> |
27468 | 822 |
lemma one_not_Infinitesimal [simp]: |
823 |
"(1::'a::{real_normed_vector,zero_neq_one} star) \<notin> Infinitesimal" |
|
70221 | 824 |
by (metis star_of_Infinitesimal_iff_0 star_one_def zero_neq_one) |
27468 | 825 |
|
64435 | 826 |
lemma approx_SReal_not_zero: "y \<in> \<real> \<Longrightarrow> x \<approx> y \<Longrightarrow> y \<noteq> 0 \<Longrightarrow> x \<noteq> 0" |
827 |
for x y :: hypreal |
|
70221 | 828 |
using SReal_Infinitesimal_zero approx_sym mem_infmal_iff by auto |
27468 | 829 |
|
830 |
lemma HFinite_diff_Infinitesimal_approx: |
|
64435 | 831 |
"x \<approx> y \<Longrightarrow> y \<in> HFinite - Infinitesimal \<Longrightarrow> x \<in> HFinite - Infinitesimal" |
70221 | 832 |
by (meson Diff_iff approx_HFinite approx_sym approx_trans3 mem_infmal_iff) |
27468 | 833 |
|
64435 | 834 |
text \<open>The premise \<open>y \<noteq> 0\<close> is essential; otherwise \<open>x / y = 0\<close> and we lose the |
835 |
\<open>HFinite\<close> premise.\<close> |
|
27468 | 836 |
lemma Infinitesimal_ratio: |
64435 | 837 |
"y \<noteq> 0 \<Longrightarrow> y \<in> Infinitesimal \<Longrightarrow> x / y \<in> HFinite \<Longrightarrow> x \<in> Infinitesimal" |
838 |
for x y :: "'a::{real_normed_div_algebra,field} star" |
|
70221 | 839 |
using Infinitesimal_HFinite_mult by fastforce |
64435 | 840 |
|
841 |
lemma Infinitesimal_SReal_divide: "x \<in> Infinitesimal \<Longrightarrow> y \<in> \<real> \<Longrightarrow> x / y \<in> Infinitesimal" |
|
842 |
for x y :: hypreal |
|
70221 | 843 |
by (metis HFinite_star_of Infinitesimal_HFinite_mult Reals_inverse SReal_iff divide_inverse) |
64435 | 844 |
|
845 |
||
846 |
section \<open>Standard Part Theorem\<close> |
|
27468 | 847 |
|
64435 | 848 |
text \<open> |
849 |
Every finite \<open>x \<in> R*\<close> is infinitely close to a unique real number |
|
850 |
(i.e. a member of \<open>Reals\<close>). |
|
851 |
\<close> |
|
27468 | 852 |
|
853 |
||
64435 | 854 |
subsection \<open>Uniqueness: Two Infinitely Close Reals are Equal\<close> |
27468 | 855 |
|
64435 | 856 |
lemma star_of_approx_iff [simp]: "star_of x \<approx> star_of y \<longleftrightarrow> x = y" |
70221 | 857 |
by (metis approx_def right_minus_eq star_of_Infinitesimal_iff_0 star_of_simps(2)) |
27468 | 858 |
|
64435 | 859 |
lemma SReal_approx_iff: "x \<in> \<real> \<Longrightarrow> y \<in> \<real> \<Longrightarrow> x \<approx> y \<longleftrightarrow> x = y" |
860 |
for x y :: hypreal |
|
70221 | 861 |
by (meson Reals_diff SReal_Infinitesimal_zero approx_def approx_refl right_minus_eq) |
27468 | 862 |
|
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
45541
diff
changeset
|
863 |
lemma numeral_approx_iff [simp]: |
70221 | 864 |
"(numeral v \<approx> (numeral w :: 'a::{numeral,real_normed_vector} star)) = (numeral v = (numeral w :: 'a))" |
865 |
by (metis star_of_approx_iff star_of_numeral) |
|
27468 | 866 |
|
64435 | 867 |
text \<open>And also for \<open>0 \<approx> #nn\<close> and \<open>1 \<approx> #nn\<close>, \<open>#nn \<approx> 0\<close> and \<open>#nn \<approx> 1\<close>.\<close> |
27468 | 868 |
lemma [simp]: |
64435 | 869 |
"(numeral w \<approx> (0::'a::{numeral,real_normed_vector} star)) = (numeral w = (0::'a))" |
870 |
"((0::'a::{numeral,real_normed_vector} star) \<approx> numeral w) = (numeral w = (0::'a))" |
|
871 |
"(numeral w \<approx> (1::'b::{numeral,one,real_normed_vector} star)) = (numeral w = (1::'b))" |
|
872 |
"((1::'b::{numeral,one,real_normed_vector} star) \<approx> numeral w) = (numeral w = (1::'b))" |
|
873 |
"\<not> (0 \<approx> (1::'c::{zero_neq_one,real_normed_vector} star))" |
|
874 |
"\<not> (1 \<approx> (0::'c::{zero_neq_one,real_normed_vector} star))" |
|
70221 | 875 |
unfolding star_numeral_def star_zero_def star_one_def star_of_approx_iff |
876 |
by (auto intro: sym) |
|
27468 | 877 |
|
64435 | 878 |
lemma star_of_approx_numeral_iff [simp]: "star_of k \<approx> numeral w \<longleftrightarrow> k = numeral w" |
879 |
by (subst star_of_approx_iff [symmetric]) auto |
|
27468 | 880 |
|
64435 | 881 |
lemma star_of_approx_zero_iff [simp]: "star_of k \<approx> 0 \<longleftrightarrow> k = 0" |
882 |
by (simp_all add: star_of_approx_iff [symmetric]) |
|
27468 | 883 |
|
64435 | 884 |
lemma star_of_approx_one_iff [simp]: "star_of k \<approx> 1 \<longleftrightarrow> k = 1" |
885 |
by (simp_all add: star_of_approx_iff [symmetric]) |
|
27468 | 886 |
|
64435 | 887 |
lemma approx_unique_real: "r \<in> \<real> \<Longrightarrow> s \<in> \<real> \<Longrightarrow> r \<approx> x \<Longrightarrow> s \<approx> x \<Longrightarrow> r = s" |
888 |
for r s :: hypreal |
|
889 |
by (blast intro: SReal_approx_iff [THEN iffD1] approx_trans2) |
|
27468 | 890 |
|
891 |
||
64435 | 892 |
subsection \<open>Existence of Unique Real Infinitely Close\<close> |
27468 | 893 |
|
64435 | 894 |
subsubsection \<open>Lifting of the Ub and Lub Properties\<close> |
27468 | 895 |
|
64435 | 896 |
lemma hypreal_of_real_isUb_iff: "isUb \<real> (hypreal_of_real ` Q) (hypreal_of_real Y) = isUb UNIV Q Y" |
897 |
for Q :: "real set" and Y :: real |
|
898 |
by (simp add: isUb_def setle_def) |
|
27468 | 899 |
|
70221 | 900 |
lemma hypreal_of_real_isLub_iff: |
901 |
"isLub \<real> (hypreal_of_real ` Q) (hypreal_of_real Y) = isLub (UNIV :: real set) Q Y" (is "?lhs = ?rhs") |
|
64435 | 902 |
for Q :: "real set" and Y :: real |
70221 | 903 |
proof |
904 |
assume ?lhs |
|
905 |
then show ?rhs |
|
906 |
by (simp add: isLub_def leastP_def) (metis hypreal_of_real_isUb_iff mem_Collect_eq setge_def star_of_le) |
|
907 |
next |
|
908 |
assume ?rhs |
|
909 |
then show ?lhs |
|
910 |
apply (simp add: isLub_def leastP_def hypreal_of_real_isUb_iff setge_def) |
|
911 |
by (metis SReal_iff hypreal_of_real_isUb_iff isUb_def star_of_le) |
|
912 |
qed |
|
27468 | 913 |
|
64435 | 914 |
lemma lemma_isUb_hypreal_of_real: "isUb \<real> P Y \<Longrightarrow> \<exists>Yo. isUb \<real> P (hypreal_of_real Yo)" |
915 |
by (auto simp add: SReal_iff isUb_def) |
|
916 |
||
917 |
lemma lemma_isLub_hypreal_of_real: "isLub \<real> P Y \<Longrightarrow> \<exists>Yo. isLub \<real> P (hypreal_of_real Yo)" |
|
918 |
by (auto simp add: isLub_def leastP_def isUb_def SReal_iff) |
|
27468 | 919 |
|
70221 | 920 |
lemma SReal_complete: |
921 |
fixes P :: "hypreal set" |
|
922 |
assumes "isUb \<real> P Y" "P \<subseteq> \<real>" "P \<noteq> {}" |
|
923 |
shows "\<exists>t. isLub \<real> P t" |
|
924 |
proof - |
|
925 |
obtain Q where "P = hypreal_of_real ` Q" |
|
926 |
by (metis \<open>P \<subseteq> \<real>\<close> hypreal_of_real_image subset_imageE) |
|
927 |
then show ?thesis |
|
928 |
by (metis assms(1) \<open>P \<noteq> {}\<close> equals0I hypreal_of_real_isLub_iff hypreal_of_real_isUb_iff image_empty lemma_isUb_hypreal_of_real reals_complete) |
|
929 |
qed |
|
64435 | 930 |
|
27468 | 931 |
|
64435 | 932 |
text \<open>Lemmas about lubs.\<close> |
27468 | 933 |
|
70221 | 934 |
lemma lemma_st_part_lub: |
935 |
fixes x :: hypreal |
|
936 |
assumes "x \<in> HFinite" |
|
937 |
shows "\<exists>t. isLub \<real> {s. s \<in> \<real> \<and> s < x} t" |
|
938 |
proof - |
|
939 |
obtain t where t: "t \<in> \<real>" "hnorm x < t" |
|
940 |
using HFiniteD assms by blast |
|
941 |
then have "isUb \<real> {s. s \<in> \<real> \<and> s < x} t" |
|
942 |
by (simp add: abs_less_iff isUbI le_less_linear less_imp_not_less setleI) |
|
943 |
moreover have "\<exists>y. y \<in> \<real> \<and> y < x" |
|
944 |
using t by (rule_tac x = "-t" in exI) (auto simp add: abs_less_iff) |
|
945 |
ultimately show ?thesis |
|
946 |
using SReal_complete by fastforce |
|
947 |
qed |
|
27468 | 948 |
|
949 |
lemma lemma_st_part_le1: |
|
64435 | 950 |
"x \<in> HFinite \<Longrightarrow> isLub \<real> {s. s \<in> \<real> \<and> s < x} t \<Longrightarrow> r \<in> \<real> \<Longrightarrow> 0 < r \<Longrightarrow> x \<le> t + r" |
951 |
for x r t :: hypreal |
|
70221 | 952 |
by (metis (no_types, lifting) Reals_add add.commute isLubD1a isLubD2 less_add_same_cancel2 mem_Collect_eq not_le) |
27468 | 953 |
|
64435 | 954 |
lemma hypreal_setle_less_trans: "S *<= x \<Longrightarrow> x < y \<Longrightarrow> S *<= y" |
955 |
for x y :: hypreal |
|
70221 | 956 |
by (meson le_less_trans less_imp_le setle_def) |
27468 | 957 |
|
64435 | 958 |
lemma hypreal_gt_isUb: "isUb R S x \<Longrightarrow> x < y \<Longrightarrow> y \<in> R \<Longrightarrow> isUb R S y" |
959 |
for x y :: hypreal |
|
70221 | 960 |
using hypreal_setle_less_trans isUb_def by blast |
27468 | 961 |
|
64435 | 962 |
lemma lemma_st_part_gt_ub: "x \<in> HFinite \<Longrightarrow> x < y \<Longrightarrow> y \<in> \<real> \<Longrightarrow> isUb \<real> {s. s \<in> \<real> \<and> s < x} y" |
963 |
for x y :: hypreal |
|
964 |
by (auto dest: order_less_trans intro: order_less_imp_le intro!: isUbI setleI) |
|
27468 | 965 |
|
64435 | 966 |
lemma lemma_minus_le_zero: "t \<le> t + -r \<Longrightarrow> r \<le> 0" |
967 |
for r t :: hypreal |
|
70221 | 968 |
by simp |
27468 | 969 |
|
970 |
lemma lemma_st_part_le2: |
|
64435 | 971 |
"x \<in> HFinite \<Longrightarrow> isLub \<real> {s. s \<in> \<real> \<and> s < x} t \<Longrightarrow> r \<in> \<real> \<Longrightarrow> 0 < r \<Longrightarrow> t + -r \<le> x" |
972 |
for x r t :: hypreal |
|
973 |
apply (frule isLubD1a) |
|
974 |
apply (rule ccontr, drule linorder_not_le [THEN iffD1]) |
|
975 |
apply (drule Reals_minus, drule_tac a = t in Reals_add, assumption) |
|
976 |
apply (drule lemma_st_part_gt_ub, assumption+) |
|
977 |
apply (drule isLub_le_isUb, assumption) |
|
978 |
apply (drule lemma_minus_le_zero) |
|
979 |
apply (auto dest: order_less_le_trans) |
|
980 |
done |
|
27468 | 981 |
|
982 |
lemma lemma_st_part1a: |
|
64435 | 983 |
"x \<in> HFinite \<Longrightarrow> isLub \<real> {s. s \<in> \<real> \<and> s < x} t \<Longrightarrow> r \<in> \<real> \<Longrightarrow> 0 < r \<Longrightarrow> x + -t \<le> r" |
984 |
for x r t :: hypreal |
|
70221 | 985 |
using lemma_st_part_le1 by fastforce |
27468 | 986 |
|
987 |
lemma lemma_st_part2a: |
|
64435 | 988 |
"x \<in> HFinite \<Longrightarrow> isLub \<real> {s. s \<in> \<real> \<and> s < x} t \<Longrightarrow> r \<in> \<real> \<Longrightarrow> 0 < r \<Longrightarrow> - (x + -t) \<le> r" |
989 |
for x r t :: hypreal |
|
990 |
apply (subgoal_tac "(t + -r \<le> x)") |
|
991 |
apply simp |
|
992 |
apply (rule lemma_st_part_le2) |
|
993 |
apply auto |
|
994 |
done |
|
27468 | 995 |
|
64435 | 996 |
lemma lemma_SReal_ub: "x \<in> \<real> \<Longrightarrow> isUb \<real> {s. s \<in> \<real> \<and> s < x} x" |
997 |
for x :: hypreal |
|
998 |
by (auto intro: isUbI setleI order_less_imp_le) |
|
27468 | 999 |
|
64435 | 1000 |
lemma lemma_SReal_lub: "x \<in> \<real> \<Longrightarrow> isLub \<real> {s. s \<in> \<real> \<and> s < x} x" |
1001 |
for x :: hypreal |
|
1002 |
apply (auto intro!: isLubI2 lemma_SReal_ub setgeI) |
|
1003 |
apply (frule isUbD2a) |
|
1004 |
apply (rule_tac x = x and y = y in linorder_cases) |
|
1005 |
apply (auto intro!: order_less_imp_le) |
|
1006 |
apply (drule SReal_dense, assumption, assumption, safe) |
|
1007 |
apply (drule_tac y = r in isUbD) |
|
1008 |
apply (auto dest: order_less_le_trans) |
|
1009 |
done |
|
27468 | 1010 |
|
1011 |
lemma lemma_st_part_not_eq1: |
|
64435 | 1012 |
"x \<in> HFinite \<Longrightarrow> isLub \<real> {s. s \<in> \<real> \<and> s < x} t \<Longrightarrow> r \<in> \<real> \<Longrightarrow> 0 < r \<Longrightarrow> x + - t \<noteq> r" |
1013 |
for x r t :: hypreal |
|
1014 |
apply auto |
|
1015 |
apply (frule isLubD1a [THEN Reals_minus]) |
|
1016 |
using Reals_add_cancel [of x "- t"] apply simp |
|
1017 |
apply (drule_tac x = x in lemma_SReal_lub) |
|
1018 |
apply (drule isLub_unique, assumption, auto) |
|
1019 |
done |
|
27468 | 1020 |
|
1021 |
lemma lemma_st_part_not_eq2: |
|
64435 | 1022 |
"x \<in> HFinite \<Longrightarrow> isLub \<real> {s. s \<in> \<real> \<and> s < x} t \<Longrightarrow> r \<in> \<real> \<Longrightarrow> 0 < r \<Longrightarrow> - (x + -t) \<noteq> r" |
1023 |
for x r t :: hypreal |
|
1024 |
apply (auto) |
|
1025 |
apply (frule isLubD1a) |
|
1026 |
using Reals_add_cancel [of "- x" t] apply simp |
|
1027 |
apply (drule_tac x = x in lemma_SReal_lub) |
|
1028 |
apply (drule isLub_unique, assumption, auto) |
|
1029 |
done |
|
27468 | 1030 |
|
1031 |
lemma lemma_st_part_major: |
|
64435 | 1032 |
"x \<in> HFinite \<Longrightarrow> isLub \<real> {s. s \<in> \<real> \<and> s < x} t \<Longrightarrow> r \<in> \<real> \<Longrightarrow> 0 < r \<Longrightarrow> \<bar>x - t\<bar> < r" |
1033 |
for x r t :: hypreal |
|
1034 |
apply (frule lemma_st_part1a) |
|
1035 |
apply (frule_tac [4] lemma_st_part2a, auto) |
|
1036 |
apply (drule order_le_imp_less_or_eq)+ |
|
1037 |
apply auto |
|
1038 |
using lemma_st_part_not_eq2 apply fastforce |
|
1039 |
using lemma_st_part_not_eq1 apply fastforce |
|
1040 |
done |
|
27468 | 1041 |
|
1042 |
lemma lemma_st_part_major2: |
|
64435 | 1043 |
"x \<in> HFinite \<Longrightarrow> isLub \<real> {s. s \<in> \<real> \<and> s < x} t \<Longrightarrow> \<forall>r \<in> Reals. 0 < r \<longrightarrow> \<bar>x - t\<bar> < r" |
1044 |
for x t :: hypreal |
|
1045 |
by (blast dest!: lemma_st_part_major) |
|
27468 | 1046 |
|
61649
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents:
61609
diff
changeset
|
1047 |
|
64435 | 1048 |
text\<open>Existence of real and Standard Part Theorem.\<close> |
1049 |
||
1050 |
lemma lemma_st_part_Ex: "x \<in> HFinite \<Longrightarrow> \<exists>t\<in>Reals. \<forall>r \<in> Reals. 0 < r \<longrightarrow> \<bar>x - t\<bar> < r" |
|
1051 |
for x :: hypreal |
|
70221 | 1052 |
by (meson isLubD1a lemma_st_part_lub lemma_st_part_major2) |
27468 | 1053 |
|
64435 | 1054 |
lemma st_part_Ex: "x \<in> HFinite \<Longrightarrow> \<exists>t\<in>Reals. x \<approx> t" |
1055 |
for x :: hypreal |
|
70221 | 1056 |
by (metis InfinitesimalI approx_def hypreal_hnorm_def lemma_st_part_Ex) |
27468 | 1057 |
|
64435 | 1058 |
text \<open>There is a unique real infinitely close.\<close> |
1059 |
lemma st_part_Ex1: "x \<in> HFinite \<Longrightarrow> \<exists>!t::hypreal. t \<in> \<real> \<and> x \<approx> t" |
|
70221 | 1060 |
by (meson SReal_approx_iff approx_trans2 st_part_Ex) |
27468 | 1061 |
|
64435 | 1062 |
|
1063 |
subsection \<open>Finite, Infinite and Infinitesimal\<close> |
|
27468 | 1064 |
|
1065 |
lemma HFinite_Int_HInfinite_empty [simp]: "HFinite Int HInfinite = {}" |
|
70221 | 1066 |
using Compl_HFinite by blast |
27468 | 1067 |
|
56217
dc429a5b13c4
Some rationalisation of basic lemmas
paulson <lp15@cam.ac.uk>
parents:
54489
diff
changeset
|
1068 |
lemma HFinite_not_HInfinite: |
70221 | 1069 |
assumes x: "x \<in> HFinite" shows "x \<notin> HInfinite" |
1070 |
using Compl_HFinite x by blast |
|
27468 | 1071 |
|
64435 | 1072 |
lemma not_HFinite_HInfinite: "x \<notin> HFinite \<Longrightarrow> x \<in> HInfinite" |
70221 | 1073 |
using Compl_HFinite by blast |
27468 | 1074 |
|
64435 | 1075 |
lemma HInfinite_HFinite_disj: "x \<in> HInfinite \<or> x \<in> HFinite" |
1076 |
by (blast intro: not_HFinite_HInfinite) |
|
27468 | 1077 |
|
64435 | 1078 |
lemma HInfinite_HFinite_iff: "x \<in> HInfinite \<longleftrightarrow> x \<notin> HFinite" |
1079 |
by (blast dest: HFinite_not_HInfinite not_HFinite_HInfinite) |
|
27468 | 1080 |
|
64435 | 1081 |
lemma HFinite_HInfinite_iff: "x \<in> HFinite \<longleftrightarrow> x \<notin> HInfinite" |
1082 |
by (simp add: HInfinite_HFinite_iff) |
|
27468 | 1083 |
|
1084 |
lemma HInfinite_diff_HFinite_Infinitesimal_disj: |
|
64435 | 1085 |
"x \<notin> Infinitesimal \<Longrightarrow> x \<in> HInfinite \<or> x \<in> HFinite - Infinitesimal" |
1086 |
by (fast intro: not_HFinite_HInfinite) |
|
27468 | 1087 |
|
64435 | 1088 |
lemma HFinite_inverse: "x \<in> HFinite \<Longrightarrow> x \<notin> Infinitesimal \<Longrightarrow> inverse x \<in> HFinite" |
1089 |
for x :: "'a::real_normed_div_algebra star" |
|
70221 | 1090 |
using HInfinite_inverse_Infinitesimal not_HFinite_HInfinite by force |
27468 | 1091 |
|
64435 | 1092 |
lemma HFinite_inverse2: "x \<in> HFinite - Infinitesimal \<Longrightarrow> inverse x \<in> HFinite" |
1093 |
for x :: "'a::real_normed_div_algebra star" |
|
1094 |
by (blast intro: HFinite_inverse) |
|
27468 | 1095 |
|
64435 | 1096 |
text \<open>Stronger statement possible in fact.\<close> |
1097 |
lemma Infinitesimal_inverse_HFinite: "x \<notin> Infinitesimal \<Longrightarrow> inverse x \<in> HFinite" |
|
1098 |
for x :: "'a::real_normed_div_algebra star" |
|
70221 | 1099 |
using HFinite_HInfinite_iff HInfinite_inverse_Infinitesimal by fastforce |
27468 | 1100 |
|
1101 |
lemma HFinite_not_Infinitesimal_inverse: |
|
64435 | 1102 |
"x \<in> HFinite - Infinitesimal \<Longrightarrow> inverse x \<in> HFinite - Infinitesimal" |
1103 |
for x :: "'a::real_normed_div_algebra star" |
|
70221 | 1104 |
using HFinite_Infinitesimal_not_zero HFinite_inverse2 Infinitesimal_HFinite_mult2 by fastforce |
27468 | 1105 |
|
64435 | 1106 |
lemma approx_inverse: "x \<approx> y \<Longrightarrow> y \<in> HFinite - Infinitesimal \<Longrightarrow> inverse x \<approx> inverse y" |
1107 |
for x y :: "'a::real_normed_div_algebra star" |
|
1108 |
apply (frule HFinite_diff_Infinitesimal_approx, assumption) |
|
1109 |
apply (frule not_Infinitesimal_not_zero2) |
|
1110 |
apply (frule_tac x = x in not_Infinitesimal_not_zero2) |
|
1111 |
apply (drule HFinite_inverse2)+ |
|
1112 |
apply (drule approx_mult2, assumption, auto) |
|
1113 |
apply (drule_tac c = "inverse x" in approx_mult1, assumption) |
|
1114 |
apply (auto intro: approx_sym simp add: mult.assoc) |
|
1115 |
done |
|
27468 | 1116 |
|
1117 |
(*Used for NSLIM_inverse, NSLIMSEQ_inverse*) |
|
1118 |
lemmas star_of_approx_inverse = star_of_HFinite_diff_Infinitesimal [THEN [2] approx_inverse] |
|
1119 |
lemmas hypreal_of_real_approx_inverse = hypreal_of_real_HFinite_diff_Infinitesimal [THEN [2] approx_inverse] |
|
1120 |
||
1121 |
lemma inverse_add_Infinitesimal_approx: |
|
64435 | 1122 |
"x \<in> HFinite - Infinitesimal \<Longrightarrow> h \<in> Infinitesimal \<Longrightarrow> inverse (x + h) \<approx> inverse x" |
1123 |
for x h :: "'a::real_normed_div_algebra star" |
|
1124 |
by (auto intro: approx_inverse approx_sym Infinitesimal_add_approx_self) |
|
27468 | 1125 |
|
1126 |
lemma inverse_add_Infinitesimal_approx2: |
|
64435 | 1127 |
"x \<in> HFinite - Infinitesimal \<Longrightarrow> h \<in> Infinitesimal \<Longrightarrow> inverse (h + x) \<approx> inverse x" |
1128 |
for x h :: "'a::real_normed_div_algebra star" |
|
70221 | 1129 |
by (metis add.commute inverse_add_Infinitesimal_approx) |
27468 | 1130 |
|
1131 |
lemma inverse_add_Infinitesimal_approx_Infinitesimal: |
|
64435 | 1132 |
"x \<in> HFinite - Infinitesimal \<Longrightarrow> h \<in> Infinitesimal \<Longrightarrow> inverse (x + h) - inverse x \<approx> h" |
1133 |
for x h :: "'a::real_normed_div_algebra star" |
|
70221 | 1134 |
by (meson Infinitesimal_approx bex_Infinitesimal_iff inverse_add_Infinitesimal_approx) |
27468 | 1135 |
|
64435 | 1136 |
lemma Infinitesimal_square_iff: "x \<in> Infinitesimal \<longleftrightarrow> x * x \<in> Infinitesimal" |
1137 |
for x :: "'a::real_normed_div_algebra star" |
|
70221 | 1138 |
using Infinitesimal_mult Infinitesimal_mult_disj by auto |
27468 | 1139 |
declare Infinitesimal_square_iff [symmetric, simp] |
1140 |
||
64435 | 1141 |
lemma HFinite_square_iff [simp]: "x * x \<in> HFinite \<longleftrightarrow> x \<in> HFinite" |
1142 |
for x :: "'a::real_normed_div_algebra star" |
|
70221 | 1143 |
using HFinite_HInfinite_iff HFinite_mult HInfinite_mult by blast |
27468 | 1144 |
|
64435 | 1145 |
lemma HInfinite_square_iff [simp]: "x * x \<in> HInfinite \<longleftrightarrow> x \<in> HInfinite" |
1146 |
for x :: "'a::real_normed_div_algebra star" |
|
1147 |
by (auto simp add: HInfinite_HFinite_iff) |
|
27468 | 1148 |
|
64435 | 1149 |
lemma approx_HFinite_mult_cancel: "a \<in> HFinite - Infinitesimal \<Longrightarrow> a * w \<approx> a * z \<Longrightarrow> w \<approx> z" |
1150 |
for a w z :: "'a::real_normed_div_algebra star" |
|
70221 | 1151 |
by (metis DiffD2 Infinitesimal_mult_disj bex_Infinitesimal_iff right_diff_distrib) |
27468 | 1152 |
|
64435 | 1153 |
lemma approx_HFinite_mult_cancel_iff1: "a \<in> HFinite - Infinitesimal \<Longrightarrow> a * w \<approx> a * z \<longleftrightarrow> w \<approx> z" |
1154 |
for a w z :: "'a::real_normed_div_algebra star" |
|
1155 |
by (auto intro: approx_mult2 approx_HFinite_mult_cancel) |
|
27468 | 1156 |
|
64435 | 1157 |
lemma HInfinite_HFinite_add_cancel: "x + y \<in> HInfinite \<Longrightarrow> y \<in> HFinite \<Longrightarrow> x \<in> HInfinite" |
70221 | 1158 |
using HFinite_add HInfinite_HFinite_iff by blast |
27468 | 1159 |
|
64435 | 1160 |
lemma HInfinite_HFinite_add: "x \<in> HInfinite \<Longrightarrow> y \<in> HFinite \<Longrightarrow> x + y \<in> HInfinite" |
70221 | 1161 |
by (metis (no_types, hide_lams) HFinite_HInfinite_iff HFinite_add HFinite_minus_iff add.commute add_minus_cancel) |
27468 | 1162 |
|
64435 | 1163 |
lemma HInfinite_ge_HInfinite: "x \<in> HInfinite \<Longrightarrow> x \<le> y \<Longrightarrow> 0 \<le> x \<Longrightarrow> y \<in> HInfinite" |
1164 |
for x y :: hypreal |
|
1165 |
by (auto intro: HFinite_bounded simp add: HInfinite_HFinite_iff) |
|
27468 | 1166 |
|
64435 | 1167 |
lemma Infinitesimal_inverse_HInfinite: "x \<in> Infinitesimal \<Longrightarrow> x \<noteq> 0 \<Longrightarrow> inverse x \<in> HInfinite" |
1168 |
for x :: "'a::real_normed_div_algebra star" |
|
70221 | 1169 |
by (metis Infinitesimal_HFinite_mult not_HFinite_HInfinite one_not_Infinitesimal right_inverse) |
27468 | 1170 |
|
1171 |
lemma HInfinite_HFinite_not_Infinitesimal_mult: |
|
64435 | 1172 |
"x \<in> HInfinite \<Longrightarrow> y \<in> HFinite - Infinitesimal \<Longrightarrow> x * y \<in> HInfinite" |
1173 |
for x y :: "'a::real_normed_div_algebra star" |
|
70221 | 1174 |
by (metis (no_types, hide_lams) HFinite_HInfinite_iff HFinite_Infinitesimal_not_zero HFinite_inverse2 HFinite_mult mult.assoc mult.right_neutral right_inverse) |
27468 | 1175 |
|
1176 |
lemma HInfinite_HFinite_not_Infinitesimal_mult2: |
|
64435 | 1177 |
"x \<in> HInfinite \<Longrightarrow> y \<in> HFinite - Infinitesimal \<Longrightarrow> y * x \<in> HInfinite" |
1178 |
for x y :: "'a::real_normed_div_algebra star" |
|
70221 | 1179 |
by (metis Diff_iff HInfinite_HFinite_iff HInfinite_inverse_Infinitesimal Infinitesimal_HFinite_mult2 divide_inverse mult_zero_right nonzero_eq_divide_eq) |
27468 | 1180 |
|
64435 | 1181 |
lemma HInfinite_gt_SReal: "x \<in> HInfinite \<Longrightarrow> 0 < x \<Longrightarrow> y \<in> \<real> \<Longrightarrow> y < x" |
1182 |
for x y :: hypreal |
|
1183 |
by (auto dest!: bspec simp add: HInfinite_def abs_if order_less_imp_le) |
|
27468 | 1184 |
|
64435 | 1185 |
lemma HInfinite_gt_zero_gt_one: "x \<in> HInfinite \<Longrightarrow> 0 < x \<Longrightarrow> 1 < x" |
1186 |
for x :: hypreal |
|
1187 |
by (auto intro: HInfinite_gt_SReal) |
|
27468 | 1188 |
|
1189 |
lemma not_HInfinite_one [simp]: "1 \<notin> HInfinite" |
|
64435 | 1190 |
by (simp add: HInfinite_HFinite_iff) |
27468 | 1191 |
|
64435 | 1192 |
lemma approx_hrabs_disj: "\<bar>x\<bar> \<approx> x \<or> \<bar>x\<bar> \<approx> -x" |
1193 |
for x :: hypreal |
|
1194 |
using hrabs_disj [of x] by auto |
|
27468 | 1195 |
|
1196 |
||
64435 | 1197 |
subsection \<open>Theorems about Monads\<close> |
27468 | 1198 |
|
64435 | 1199 |
lemma monad_hrabs_Un_subset: "monad \<bar>x\<bar> \<le> monad x \<union> monad (- x)" |
1200 |
for x :: hypreal |
|
1201 |
by (rule hrabs_disj [of x, THEN disjE]) auto |
|
27468 | 1202 |
|
64435 | 1203 |
lemma Infinitesimal_monad_eq: "e \<in> Infinitesimal \<Longrightarrow> monad (x + e) = monad x" |
1204 |
by (fast intro!: Infinitesimal_add_approx_self [THEN approx_sym] approx_monad_iff [THEN iffD1]) |
|
27468 | 1205 |
|
64435 | 1206 |
lemma mem_monad_iff: "u \<in> monad x \<longleftrightarrow> - u \<in> monad (- x)" |
1207 |
by (simp add: monad_def) |
|
1208 |
||
1209 |
lemma Infinitesimal_monad_zero_iff: "x \<in> Infinitesimal \<longleftrightarrow> x \<in> monad 0" |
|
1210 |
by (auto intro: approx_sym simp add: monad_def mem_infmal_iff) |
|
27468 | 1211 |
|
64435 | 1212 |
lemma monad_zero_minus_iff: "x \<in> monad 0 \<longleftrightarrow> - x \<in> monad 0" |
1213 |
by (simp add: Infinitesimal_monad_zero_iff [symmetric]) |
|
27468 | 1214 |
|
64435 | 1215 |
lemma monad_zero_hrabs_iff: "x \<in> monad 0 \<longleftrightarrow> \<bar>x\<bar> \<in> monad 0" |
1216 |
for x :: hypreal |
|
1217 |
by (rule hrabs_disj [of x, THEN disjE]) (auto simp: monad_zero_minus_iff [symmetric]) |
|
27468 | 1218 |
|
1219 |
lemma mem_monad_self [simp]: "x \<in> monad x" |
|
64435 | 1220 |
by (simp add: monad_def) |
27468 | 1221 |
|
1222 |
||
69597 | 1223 |
subsection \<open>Proof that \<^term>\<open>x \<approx> y\<close> implies \<^term>\<open>\<bar>x\<bar> \<approx> \<bar>y\<bar>\<close>\<close> |
27468 | 1224 |
|
64435 | 1225 |
lemma approx_subset_monad: "x \<approx> y \<Longrightarrow> {x, y} \<le> monad x" |
1226 |
by (simp (no_asm)) (simp add: approx_monad_iff) |
|
27468 | 1227 |
|
64435 | 1228 |
lemma approx_subset_monad2: "x \<approx> y \<Longrightarrow> {x, y} \<le> monad y" |
70221 | 1229 |
using approx_subset_monad approx_sym by auto |
27468 | 1230 |
|
64435 | 1231 |
lemma mem_monad_approx: "u \<in> monad x \<Longrightarrow> x \<approx> u" |
1232 |
by (simp add: monad_def) |
|
1233 |
||
1234 |
lemma approx_mem_monad: "x \<approx> u \<Longrightarrow> u \<in> monad x" |
|
1235 |
by (simp add: monad_def) |
|
27468 | 1236 |
|
64435 | 1237 |
lemma approx_mem_monad2: "x \<approx> u \<Longrightarrow> x \<in> monad u" |
70221 | 1238 |
using approx_mem_monad approx_sym by blast |
27468 | 1239 |
|
64435 | 1240 |
lemma approx_mem_monad_zero: "x \<approx> y \<Longrightarrow> x \<in> monad 0 \<Longrightarrow> y \<in> monad 0" |
70221 | 1241 |
using approx_trans monad_def by blast |
27468 | 1242 |
|
64435 | 1243 |
lemma Infinitesimal_approx_hrabs: "x \<approx> y \<Longrightarrow> x \<in> Infinitesimal \<Longrightarrow> \<bar>x\<bar> \<approx> \<bar>y\<bar>" |
1244 |
for x y :: hypreal |
|
70221 | 1245 |
using approx_hnorm by fastforce |
27468 | 1246 |
|
64435 | 1247 |
lemma less_Infinitesimal_less: "0 < x \<Longrightarrow> x \<notin> Infinitesimal \<Longrightarrow> e \<in> Infinitesimal \<Longrightarrow> e < x" |
1248 |
for x :: hypreal |
|
70221 | 1249 |
using Infinitesimal_interval less_linear by blast |
27468 | 1250 |
|
64435 | 1251 |
lemma Ball_mem_monad_gt_zero: "0 < x \<Longrightarrow> x \<notin> Infinitesimal \<Longrightarrow> u \<in> monad x \<Longrightarrow> 0 < u" |
1252 |
for u x :: hypreal |
|
1253 |
apply (drule mem_monad_approx [THEN approx_sym]) |
|
1254 |
apply (erule bex_Infinitesimal_iff2 [THEN iffD2, THEN bexE]) |
|
1255 |
apply (drule_tac e = "-xa" in less_Infinitesimal_less, auto) |
|
1256 |
done |
|
27468 | 1257 |
|
64435 | 1258 |
lemma Ball_mem_monad_less_zero: "x < 0 \<Longrightarrow> x \<notin> Infinitesimal \<Longrightarrow> u \<in> monad x \<Longrightarrow> u < 0" |
1259 |
for u x :: hypreal |
|
1260 |
apply (drule mem_monad_approx [THEN approx_sym]) |
|
1261 |
apply (erule bex_Infinitesimal_iff [THEN iffD2, THEN bexE]) |
|
1262 |
apply (cut_tac x = "-x" and e = xa in less_Infinitesimal_less, auto) |
|
1263 |
done |
|
27468 | 1264 |
|
64435 | 1265 |
lemma lemma_approx_gt_zero: "0 < x \<Longrightarrow> x \<notin> Infinitesimal \<Longrightarrow> x \<approx> y \<Longrightarrow> 0 < y" |
1266 |
for x y :: hypreal |
|
1267 |
by (blast dest: Ball_mem_monad_gt_zero approx_subset_monad) |
|
27468 | 1268 |
|
64435 | 1269 |
lemma lemma_approx_less_zero: "x < 0 \<Longrightarrow> x \<notin> Infinitesimal \<Longrightarrow> x \<approx> y \<Longrightarrow> y < 0" |
1270 |
for x y :: hypreal |
|
1271 |
by (blast dest: Ball_mem_monad_less_zero approx_subset_monad) |
|
27468 | 1272 |
|
64435 | 1273 |
lemma approx_hrabs: "x \<approx> y \<Longrightarrow> \<bar>x\<bar> \<approx> \<bar>y\<bar>" |
1274 |
for x y :: hypreal |
|
1275 |
by (drule approx_hnorm) simp |
|
27468 | 1276 |
|
64435 | 1277 |
lemma approx_hrabs_zero_cancel: "\<bar>x\<bar> \<approx> 0 \<Longrightarrow> x \<approx> 0" |
1278 |
for x :: hypreal |
|
1279 |
using hrabs_disj [of x] by (auto dest: approx_minus) |
|
27468 | 1280 |
|
64435 | 1281 |
lemma approx_hrabs_add_Infinitesimal: "e \<in> Infinitesimal \<Longrightarrow> \<bar>x\<bar> \<approx> \<bar>x + e\<bar>" |
1282 |
for e x :: hypreal |
|
1283 |
by (fast intro: approx_hrabs Infinitesimal_add_approx_self) |
|
27468 | 1284 |
|
64435 | 1285 |
lemma approx_hrabs_add_minus_Infinitesimal: "e \<in> Infinitesimal ==> \<bar>x\<bar> \<approx> \<bar>x + -e\<bar>" |
1286 |
for e x :: hypreal |
|
1287 |
by (fast intro: approx_hrabs Infinitesimal_add_minus_approx_self) |
|
27468 | 1288 |
|
1289 |
lemma hrabs_add_Infinitesimal_cancel: |
|
64435 | 1290 |
"e \<in> Infinitesimal \<Longrightarrow> e' \<in> Infinitesimal \<Longrightarrow> \<bar>x + e\<bar> = \<bar>y + e'\<bar> \<Longrightarrow> \<bar>x\<bar> \<approx> \<bar>y\<bar>" |
1291 |
for e e' x y :: hypreal |
|
70221 | 1292 |
by (metis approx_hrabs_add_Infinitesimal approx_trans2) |
27468 | 1293 |
|
1294 |
lemma hrabs_add_minus_Infinitesimal_cancel: |
|
64435 | 1295 |
"e \<in> Infinitesimal \<Longrightarrow> e' \<in> Infinitesimal \<Longrightarrow> \<bar>x + -e\<bar> = \<bar>y + -e'\<bar> \<Longrightarrow> \<bar>x\<bar> \<approx> \<bar>y\<bar>" |
1296 |
for e e' x y :: hypreal |
|
70221 | 1297 |
by (meson Infinitesimal_minus_iff hrabs_add_Infinitesimal_cancel) |
64435 | 1298 |
|
27468 | 1299 |
|
69597 | 1300 |
subsection \<open>More \<^term>\<open>HFinite\<close> and \<^term>\<open>Infinitesimal\<close> Theorems\<close> |
27468 | 1301 |
|
64435 | 1302 |
text \<open> |
1303 |
Interesting slightly counterintuitive theorem: necessary |
|
1304 |
for proving that an open interval is an NS open set. |
|
1305 |
\<close> |
|
27468 | 1306 |
lemma Infinitesimal_add_hypreal_of_real_less: |
64435 | 1307 |
"x < y \<Longrightarrow> u \<in> Infinitesimal \<Longrightarrow> hypreal_of_real x + u < hypreal_of_real y" |
1308 |
apply (simp add: Infinitesimal_def) |
|
1309 |
apply (drule_tac x = "hypreal_of_real y + -hypreal_of_real x" in bspec, simp) |
|
1310 |
apply (simp add: abs_less_iff) |
|
1311 |
done |
|
27468 | 1312 |
|
1313 |
lemma Infinitesimal_add_hrabs_hypreal_of_real_less: |
|
64435 | 1314 |
"x \<in> Infinitesimal \<Longrightarrow> \<bar>hypreal_of_real r\<bar> < hypreal_of_real y \<Longrightarrow> |
1315 |
\<bar>hypreal_of_real r + x\<bar> < hypreal_of_real y" |
|
1316 |
apply (drule_tac x = "hypreal_of_real r" in approx_hrabs_add_Infinitesimal) |
|
1317 |
apply (drule approx_sym [THEN bex_Infinitesimal_iff2 [THEN iffD2]]) |
|
1318 |
apply (auto intro!: Infinitesimal_add_hypreal_of_real_less |
|
1319 |
simp del: star_of_abs simp add: star_of_abs [symmetric]) |
|
1320 |
done |
|
27468 | 1321 |
|
1322 |
lemma Infinitesimal_add_hrabs_hypreal_of_real_less2: |
|
64435 | 1323 |
"x \<in> Infinitesimal \<Longrightarrow> \<bar>hypreal_of_real r\<bar> < hypreal_of_real y \<Longrightarrow> |
1324 |
\<bar>x + hypreal_of_real r\<bar> < hypreal_of_real y" |
|
70221 | 1325 |
using Infinitesimal_add_hrabs_hypreal_of_real_less by fastforce |
27468 | 1326 |
|
1327 |
lemma hypreal_of_real_le_add_Infininitesimal_cancel: |
|
64435 | 1328 |
"u \<in> Infinitesimal \<Longrightarrow> v \<in> Infinitesimal \<Longrightarrow> |
1329 |
hypreal_of_real x + u \<le> hypreal_of_real y + v \<Longrightarrow> |
|
1330 |
hypreal_of_real x \<le> hypreal_of_real y" |
|
1331 |
apply (simp add: linorder_not_less [symmetric], auto) |
|
1332 |
apply (drule_tac u = "v-u" in Infinitesimal_add_hypreal_of_real_less) |
|
1333 |
apply (auto simp add: Infinitesimal_diff) |
|
1334 |
done |
|
27468 | 1335 |
|
1336 |
lemma hypreal_of_real_le_add_Infininitesimal_cancel2: |
|
64435 | 1337 |
"u \<in> Infinitesimal \<Longrightarrow> v \<in> Infinitesimal \<Longrightarrow> |
1338 |
hypreal_of_real x + u \<le> hypreal_of_real y + v \<Longrightarrow> x \<le> y" |
|
1339 |
by (blast intro: star_of_le [THEN iffD1] intro!: hypreal_of_real_le_add_Infininitesimal_cancel) |
|
27468 | 1340 |
|
1341 |
lemma hypreal_of_real_less_Infinitesimal_le_zero: |
|
64435 | 1342 |
"hypreal_of_real x < e \<Longrightarrow> e \<in> Infinitesimal \<Longrightarrow> hypreal_of_real x \<le> 0" |
70221 | 1343 |
by (metis Infinitesimal_interval eq_iff le_less_linear star_of_Infinitesimal_iff_0 star_of_eq_0) |
27468 | 1344 |
|
1345 |
(*used once, in Lim/NSDERIV_inverse*) |
|
64435 | 1346 |
lemma Infinitesimal_add_not_zero: "h \<in> Infinitesimal \<Longrightarrow> x \<noteq> 0 \<Longrightarrow> star_of x + h \<noteq> 0" |
1347 |
apply auto |
|
1348 |
apply (subgoal_tac "h = - star_of x") |
|
1349 |
apply (auto intro: minus_unique [symmetric]) |
|
1350 |
done |
|
27468 | 1351 |
|
64435 | 1352 |
lemma Infinitesimal_square_cancel [simp]: "x * x + y * y \<in> Infinitesimal \<Longrightarrow> x * x \<in> Infinitesimal" |
1353 |
for x y :: hypreal |
|
70221 | 1354 |
by (meson Infinitesimal_interval2 le_add_same_cancel1 not_Infinitesimal_not_zero zero_le_square) |
27468 | 1355 |
|
64435 | 1356 |
lemma HFinite_square_cancel [simp]: "x * x + y * y \<in> HFinite \<Longrightarrow> x * x \<in> HFinite" |
1357 |
for x y :: hypreal |
|
70221 | 1358 |
using HFinite_bounded le_add_same_cancel1 zero_le_square by blast |
27468 | 1359 |
|
64435 | 1360 |
lemma Infinitesimal_square_cancel2 [simp]: "x * x + y * y \<in> Infinitesimal \<Longrightarrow> y * y \<in> Infinitesimal" |
1361 |
for x y :: hypreal |
|
1362 |
apply (rule Infinitesimal_square_cancel) |
|
1363 |
apply (rule add.commute [THEN subst]) |
|
1364 |
apply simp |
|
1365 |
done |
|
27468 | 1366 |
|
64435 | 1367 |
lemma HFinite_square_cancel2 [simp]: "x * x + y * y \<in> HFinite \<Longrightarrow> y * y \<in> HFinite" |
1368 |
for x y :: hypreal |
|
1369 |
apply (rule HFinite_square_cancel) |
|
1370 |
apply (rule add.commute [THEN subst]) |
|
1371 |
apply simp |
|
1372 |
done |
|
27468 | 1373 |
|
1374 |
lemma Infinitesimal_sum_square_cancel [simp]: |
|
64435 | 1375 |
"x * x + y * y + z * z \<in> Infinitesimal \<Longrightarrow> x * x \<in> Infinitesimal" |
1376 |
for x y z :: hypreal |
|
1377 |
apply (rule Infinitesimal_interval2, assumption) |
|
1378 |
apply (rule_tac [2] zero_le_square, simp) |
|
1379 |
apply (insert zero_le_square [of y]) |
|
1380 |
apply (insert zero_le_square [of z], simp del:zero_le_square) |
|
1381 |
done |
|
27468 | 1382 |
|
64435 | 1383 |
lemma HFinite_sum_square_cancel [simp]: "x * x + y * y + z * z \<in> HFinite \<Longrightarrow> x * x \<in> HFinite" |
1384 |
for x y z :: hypreal |
|
1385 |
apply (rule HFinite_bounded, assumption) |
|
1386 |
apply (rule_tac [2] zero_le_square) |
|
1387 |
apply (insert zero_le_square [of y]) |
|
1388 |
apply (insert zero_le_square [of z], simp del:zero_le_square) |
|
1389 |
done |
|
27468 | 1390 |
|
1391 |
lemma Infinitesimal_sum_square_cancel2 [simp]: |
|
64435 | 1392 |
"y * y + x * x + z * z \<in> Infinitesimal \<Longrightarrow> x * x \<in> Infinitesimal" |
1393 |
for x y z :: hypreal |
|
1394 |
apply (rule Infinitesimal_sum_square_cancel) |
|
1395 |
apply (simp add: ac_simps) |
|
1396 |
done |
|
27468 | 1397 |
|
64435 | 1398 |
lemma HFinite_sum_square_cancel2 [simp]: "y * y + x * x + z * z \<in> HFinite \<Longrightarrow> x * x \<in> HFinite" |
1399 |
for x y z :: hypreal |
|
1400 |
apply (rule HFinite_sum_square_cancel) |
|
1401 |
apply (simp add: ac_simps) |
|
1402 |
done |
|
27468 | 1403 |
|
1404 |
lemma Infinitesimal_sum_square_cancel3 [simp]: |
|
64435 | 1405 |
"z * z + y * y + x * x \<in> Infinitesimal \<Longrightarrow> x * x \<in> Infinitesimal" |
1406 |
for x y z :: hypreal |
|
1407 |
apply (rule Infinitesimal_sum_square_cancel) |
|
1408 |
apply (simp add: ac_simps) |
|
1409 |
done |
|
27468 | 1410 |
|
64435 | 1411 |
lemma HFinite_sum_square_cancel3 [simp]: "z * z + y * y + x * x \<in> HFinite \<Longrightarrow> x * x \<in> HFinite" |
1412 |
for x y z :: hypreal |
|
1413 |
apply (rule HFinite_sum_square_cancel) |
|
1414 |
apply (simp add: ac_simps) |
|
1415 |
done |
|
27468 | 1416 |
|
64435 | 1417 |
lemma monad_hrabs_less: "y \<in> monad x \<Longrightarrow> 0 < hypreal_of_real e \<Longrightarrow> \<bar>y - x\<bar> < hypreal_of_real e" |
70221 | 1418 |
by (simp add: Infinitesimal_approx_minus approx_sym less_Infinitesimal_less mem_monad_approx) |
27468 | 1419 |
|
64435 | 1420 |
lemma mem_monad_SReal_HFinite: "x \<in> monad (hypreal_of_real a) \<Longrightarrow> x \<in> HFinite" |
70221 | 1421 |
using HFinite_star_of approx_HFinite mem_monad_approx by blast |
27468 | 1422 |
|
1423 |
||
64435 | 1424 |
subsection \<open>Theorems about Standard Part\<close> |
27468 | 1425 |
|
64435 | 1426 |
lemma st_approx_self: "x \<in> HFinite \<Longrightarrow> st x \<approx> x" |
70221 | 1427 |
by (metis (no_types, lifting) approx_refl approx_trans3 someI_ex st_def st_part_Ex st_part_Ex1) |
27468 | 1428 |
|
64435 | 1429 |
lemma st_SReal: "x \<in> HFinite \<Longrightarrow> st x \<in> \<real>" |
1430 |
apply (simp add: st_def) |
|
1431 |
apply (frule st_part_Ex, safe) |
|
1432 |
apply (rule someI2) |
|
1433 |
apply (auto intro: approx_sym) |
|
1434 |
done |
|
27468 | 1435 |
|
64435 | 1436 |
lemma st_HFinite: "x \<in> HFinite \<Longrightarrow> st x \<in> HFinite" |
1437 |
by (erule st_SReal [THEN SReal_subset_HFinite [THEN subsetD]]) |
|
27468 | 1438 |
|
64435 | 1439 |
lemma st_unique: "r \<in> \<real> \<Longrightarrow> r \<approx> x \<Longrightarrow> st x = r" |
1440 |
apply (frule SReal_subset_HFinite [THEN subsetD]) |
|
1441 |
apply (drule (1) approx_HFinite) |
|
1442 |
apply (unfold st_def) |
|
1443 |
apply (rule some_equality) |
|
1444 |
apply (auto intro: approx_unique_real) |
|
1445 |
done |
|
27468 | 1446 |
|
64435 | 1447 |
lemma st_SReal_eq: "x \<in> \<real> \<Longrightarrow> st x = x" |
61649
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents:
61609
diff
changeset
|
1448 |
by (metis approx_refl st_unique) |
27468 | 1449 |
|
1450 |
lemma st_hypreal_of_real [simp]: "st (hypreal_of_real x) = hypreal_of_real x" |
|
64435 | 1451 |
by (rule SReal_hypreal_of_real [THEN st_SReal_eq]) |
27468 | 1452 |
|
64435 | 1453 |
lemma st_eq_approx: "x \<in> HFinite \<Longrightarrow> y \<in> HFinite \<Longrightarrow> st x = st y \<Longrightarrow> x \<approx> y" |
1454 |
by (auto dest!: st_approx_self elim!: approx_trans3) |
|
27468 | 1455 |
|
56217
dc429a5b13c4
Some rationalisation of basic lemmas
paulson <lp15@cam.ac.uk>
parents:
54489
diff
changeset
|
1456 |
lemma approx_st_eq: |
61982 | 1457 |
assumes x: "x \<in> HFinite" and y: "y \<in> HFinite" and xy: "x \<approx> y" |
27468 | 1458 |
shows "st x = st y" |
1459 |
proof - |
|
61982 | 1460 |
have "st x \<approx> x" "st y \<approx> y" "st x \<in> \<real>" "st y \<in> \<real>" |
41541 | 1461 |
by (simp_all add: st_approx_self st_SReal x y) |
1462 |
with xy show ?thesis |
|
27468 | 1463 |
by (fast elim: approx_trans approx_trans2 SReal_approx_iff [THEN iffD1]) |
1464 |
qed |
|
1465 |
||
64435 | 1466 |
lemma st_eq_approx_iff: "x \<in> HFinite \<Longrightarrow> y \<in> HFinite \<Longrightarrow> x \<approx> y \<longleftrightarrow> st x = st y" |
1467 |
by (blast intro: approx_st_eq st_eq_approx) |
|
27468 | 1468 |
|
64435 | 1469 |
lemma st_Infinitesimal_add_SReal: "x \<in> \<real> \<Longrightarrow> e \<in> Infinitesimal \<Longrightarrow> st (x + e) = x" |
1470 |
apply (erule st_unique) |
|
1471 |
apply (erule Infinitesimal_add_approx_self) |
|
1472 |
done |
|
27468 | 1473 |
|
64435 | 1474 |
lemma st_Infinitesimal_add_SReal2: "x \<in> \<real> \<Longrightarrow> e \<in> Infinitesimal \<Longrightarrow> st (e + x) = x" |
1475 |
apply (erule st_unique) |
|
1476 |
apply (erule Infinitesimal_add_approx_self2) |
|
1477 |
done |
|
27468 | 1478 |
|
64435 | 1479 |
lemma HFinite_st_Infinitesimal_add: "x \<in> HFinite \<Longrightarrow> \<exists>e \<in> Infinitesimal. x = st(x) + e" |
1480 |
by (blast dest!: st_approx_self [THEN approx_sym] bex_Infinitesimal_iff2 [THEN iffD2]) |
|
27468 | 1481 |
|
64435 | 1482 |
lemma st_add: "x \<in> HFinite \<Longrightarrow> y \<in> HFinite \<Longrightarrow> st (x + y) = st x + st y" |
1483 |
by (simp add: st_unique st_SReal st_approx_self approx_add) |
|
27468 | 1484 |
|
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
45541
diff
changeset
|
1485 |
lemma st_numeral [simp]: "st (numeral w) = numeral w" |
64435 | 1486 |
by (rule Reals_numeral [THEN st_SReal_eq]) |
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
45541
diff
changeset
|
1487 |
|
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54263
diff
changeset
|
1488 |
lemma st_neg_numeral [simp]: "st (- numeral w) = - numeral w" |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54263
diff
changeset
|
1489 |
proof - |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54263
diff
changeset
|
1490 |
from Reals_numeral have "numeral w \<in> \<real>" . |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54263
diff
changeset
|
1491 |
then have "- numeral w \<in> \<real>" by simp |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54263
diff
changeset
|
1492 |
with st_SReal_eq show ?thesis . |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54263
diff
changeset
|
1493 |
qed |
27468 | 1494 |
|
45540 | 1495 |
lemma st_0 [simp]: "st 0 = 0" |
64435 | 1496 |
by (simp add: st_SReal_eq) |
45540 | 1497 |
|
1498 |
lemma st_1 [simp]: "st 1 = 1" |
|
64435 | 1499 |
by (simp add: st_SReal_eq) |
27468 | 1500 |
|
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54263
diff
changeset
|
1501 |
lemma st_neg_1 [simp]: "st (- 1) = - 1" |
64435 | 1502 |
by (simp add: st_SReal_eq) |
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54263
diff
changeset
|
1503 |
|
27468 | 1504 |
lemma st_minus: "x \<in> HFinite \<Longrightarrow> st (- x) = - st x" |
64435 | 1505 |
by (simp add: st_unique st_SReal st_approx_self approx_minus) |
27468 | 1506 |
|
1507 |
lemma st_diff: "\<lbrakk>x \<in> HFinite; y \<in> HFinite\<rbrakk> \<Longrightarrow> st (x - y) = st x - st y" |
|
64435 | 1508 |
by (simp add: st_unique st_SReal st_approx_self approx_diff) |
27468 | 1509 |
|
1510 |
lemma st_mult: "\<lbrakk>x \<in> HFinite; y \<in> HFinite\<rbrakk> \<Longrightarrow> st (x * y) = st x * st y" |
|
64435 | 1511 |
by (simp add: st_unique st_SReal st_approx_self approx_mult_HFinite) |
27468 | 1512 |
|
64435 | 1513 |
lemma st_Infinitesimal: "x \<in> Infinitesimal \<Longrightarrow> st x = 0" |
1514 |
by (simp add: st_unique mem_infmal_iff) |
|
27468 | 1515 |
|
64435 | 1516 |
lemma st_not_Infinitesimal: "st(x) \<noteq> 0 \<Longrightarrow> x \<notin> Infinitesimal" |
27468 | 1517 |
by (fast intro: st_Infinitesimal) |
1518 |
||
64435 | 1519 |
lemma st_inverse: "x \<in> HFinite \<Longrightarrow> st x \<noteq> 0 \<Longrightarrow> st (inverse x) = inverse (st x)" |
1520 |
apply (rule_tac c1 = "st x" in mult_left_cancel [THEN iffD1]) |
|
1521 |
apply (auto simp add: st_mult [symmetric] st_not_Infinitesimal HFinite_inverse) |
|
1522 |
apply (subst right_inverse, auto) |
|
1523 |
done |
|
27468 | 1524 |
|
64435 | 1525 |
lemma st_divide [simp]: "x \<in> HFinite \<Longrightarrow> y \<in> HFinite \<Longrightarrow> st y \<noteq> 0 \<Longrightarrow> st (x / y) = st x / st y" |
1526 |
by (simp add: divide_inverse st_mult st_not_Infinitesimal HFinite_inverse st_inverse) |
|
27468 | 1527 |
|
64435 | 1528 |
lemma st_idempotent [simp]: "x \<in> HFinite \<Longrightarrow> st (st x) = st x" |
1529 |
by (blast intro: st_HFinite st_approx_self approx_st_eq) |
|
27468 | 1530 |
|
1531 |
lemma Infinitesimal_add_st_less: |
|
64435 | 1532 |
"x \<in> HFinite \<Longrightarrow> y \<in> HFinite \<Longrightarrow> u \<in> Infinitesimal \<Longrightarrow> st x < st y \<Longrightarrow> st x + u < st y" |
1533 |
apply (drule st_SReal)+ |
|
1534 |
apply (auto intro!: Infinitesimal_add_hypreal_of_real_less simp add: SReal_iff) |
|
1535 |
done |
|
27468 | 1536 |
|
1537 |
lemma Infinitesimal_add_st_le_cancel: |
|
64435 | 1538 |
"x \<in> HFinite \<Longrightarrow> y \<in> HFinite \<Longrightarrow> u \<in> Infinitesimal \<Longrightarrow> |
1539 |
st x \<le> st y + u \<Longrightarrow> st x \<le> st y" |
|
1540 |
apply (simp add: linorder_not_less [symmetric]) |
|
1541 |
apply (auto dest: Infinitesimal_add_st_less) |
|
1542 |
done |
|
27468 | 1543 |
|
64435 | 1544 |
lemma st_le: "x \<in> HFinite \<Longrightarrow> y \<in> HFinite \<Longrightarrow> x \<le> y \<Longrightarrow> st x \<le> st y" |
1545 |
by (metis approx_le_bound approx_sym linear st_SReal st_approx_self st_part_Ex1) |
|
27468 | 1546 |
|
64435 | 1547 |
lemma st_zero_le: "0 \<le> x \<Longrightarrow> x \<in> HFinite \<Longrightarrow> 0 \<le> st x" |
1548 |
apply (subst st_0 [symmetric]) |
|
1549 |
apply (rule st_le, auto) |
|
1550 |
done |
|
27468 | 1551 |
|
64435 | 1552 |
lemma st_zero_ge: "x \<le> 0 \<Longrightarrow> x \<in> HFinite \<Longrightarrow> st x \<le> 0" |
1553 |
apply (subst st_0 [symmetric]) |
|
1554 |
apply (rule st_le, auto) |
|
1555 |
done |
|
27468 | 1556 |
|
64435 | 1557 |
lemma st_hrabs: "x \<in> HFinite \<Longrightarrow> \<bar>st x\<bar> = st \<bar>x\<bar>" |
1558 |
apply (simp add: linorder_not_le st_zero_le abs_if st_minus linorder_not_less) |
|
1559 |
apply (auto dest!: st_zero_ge [OF order_less_imp_le]) |
|
1560 |
done |
|
27468 | 1561 |
|
1562 |
||
61975 | 1563 |
subsection \<open>Alternative Definitions using Free Ultrafilter\<close> |
27468 | 1564 |
|
69597 | 1565 |
subsubsection \<open>\<^term>\<open>HFinite\<close>\<close> |
27468 | 1566 |
|
1567 |
lemma HFinite_FreeUltrafilterNat: |
|
64438 | 1568 |
"star_n X \<in> HFinite \<Longrightarrow> \<exists>u. eventually (\<lambda>n. norm (X n) < u) \<U>" |
64435 | 1569 |
apply (auto simp add: HFinite_def SReal_def) |
1570 |
apply (rule_tac x=r in exI) |
|
1571 |
apply (simp add: hnorm_def star_of_def starfun_star_n) |
|
1572 |
apply (simp add: star_less_def starP2_star_n) |
|
1573 |
done |
|
27468 | 1574 |
|
1575 |
lemma FreeUltrafilterNat_HFinite: |
|
64438 | 1576 |
"\<exists>u. eventually (\<lambda>n. norm (X n) < u) \<U> \<Longrightarrow> star_n X \<in> HFinite" |
64435 | 1577 |
apply (auto simp add: HFinite_def mem_Rep_star_iff) |
1578 |
apply (rule_tac x="star_of u" in bexI) |
|
1579 |
apply (simp add: hnorm_def starfun_star_n star_of_def) |
|
1580 |
apply (simp add: star_less_def starP2_star_n) |
|
1581 |
apply (simp add: SReal_def) |
|
1582 |
done |
|
27468 | 1583 |
|
1584 |
lemma HFinite_FreeUltrafilterNat_iff: |
|
64438 | 1585 |
"star_n X \<in> HFinite \<longleftrightarrow> (\<exists>u. eventually (\<lambda>n. norm (X n) < u) \<U>)" |
64435 | 1586 |
by (blast intro!: HFinite_FreeUltrafilterNat FreeUltrafilterNat_HFinite) |
1587 |
||
27468 | 1588 |
|
69597 | 1589 |
subsubsection \<open>\<^term>\<open>HInfinite\<close>\<close> |
27468 | 1590 |
|
56225 | 1591 |
lemma lemma_Compl_eq: "- {n. u < norm (f n)} = {n. norm (f n) \<le> u}" |
64435 | 1592 |
by auto |
27468 | 1593 |
|
56225 | 1594 |
lemma lemma_Compl_eq2: "- {n. norm (f n) < u} = {n. u \<le> norm (f n)}" |
64435 | 1595 |
by auto |
27468 | 1596 |
|
64435 | 1597 |
lemma lemma_Int_eq1: "{n. norm (f n) \<le> u} Int {n. u \<le> norm (f n)} = {n. norm(f n) = u}" |
1598 |
by auto |
|
27468 | 1599 |
|
64435 | 1600 |
lemma lemma_FreeUltrafilterNat_one: "{n. norm (f n) = u} \<le> {n. norm (f n) < u + (1::real)}" |
1601 |
by auto |
|
27468 | 1602 |
|
64435 | 1603 |
text \<open>Exclude this type of sets from free ultrafilter for Infinite numbers!\<close> |
27468 | 1604 |
lemma FreeUltrafilterNat_const_Finite: |
64438 | 1605 |
"eventually (\<lambda>n. norm (X n) = u) \<U> \<Longrightarrow> star_n X \<in> HFinite" |
64435 | 1606 |
apply (rule FreeUltrafilterNat_HFinite) |
1607 |
apply (rule_tac x = "u + 1" in exI) |
|
1608 |
apply (auto elim: eventually_mono) |
|
1609 |
done |
|
27468 | 1610 |
|
1611 |
lemma HInfinite_FreeUltrafilterNat: |
|
64438 | 1612 |
"star_n X \<in> HInfinite \<Longrightarrow> \<forall>u. eventually (\<lambda>n. u < norm (X n)) \<U>" |
64435 | 1613 |
apply (drule HInfinite_HFinite_iff [THEN iffD1]) |
1614 |
apply (simp add: HFinite_FreeUltrafilterNat_iff) |
|
1615 |
apply (rule allI, drule_tac x="u + 1" in spec) |
|
1616 |
apply (simp add: FreeUltrafilterNat.eventually_not_iff[symmetric]) |
|
1617 |
apply (auto elim: eventually_mono) |
|
1618 |
done |
|
27468 | 1619 |
|
64435 | 1620 |
lemma lemma_Int_HI: "{n. norm (Xa n) < u} \<inter> {n. X n = Xa n} \<subseteq> {n. norm (X n) < u}" |
1621 |
for u :: real |
|
1622 |
by auto |
|
27468 | 1623 |
|
1624 |
lemma FreeUltrafilterNat_HInfinite: |
|
64438 | 1625 |
"\<forall>u. eventually (\<lambda>n. u < norm (X n)) \<U> \<Longrightarrow> star_n X \<in> HInfinite" |
64435 | 1626 |
apply (rule HInfinite_HFinite_iff [THEN iffD2]) |
1627 |
apply (safe, drule HFinite_FreeUltrafilterNat, safe) |
|
1628 |
apply (drule_tac x = u in spec) |
|
60041 | 1629 |
proof - |
64435 | 1630 |
fix u |
1631 |
assume "\<forall>\<^sub>Fn in \<U>. norm (X n) < u" "\<forall>\<^sub>Fn in \<U>. u < norm (X n)" |
|
60041 | 1632 |
then have "\<forall>\<^sub>F x in \<U>. False" |
1633 |
by eventually_elim auto |
|
1634 |
then show False |
|
1635 |
by (simp add: eventually_False FreeUltrafilterNat.proper) |
|
1636 |
qed |
|
27468 | 1637 |
|
1638 |
lemma HInfinite_FreeUltrafilterNat_iff: |
|
64438 | 1639 |
"star_n X \<in> HInfinite \<longleftrightarrow> (\<forall>u. eventually (\<lambda>n. u < norm (X n)) \<U>)" |
64435 | 1640 |
by (blast intro!: HInfinite_FreeUltrafilterNat FreeUltrafilterNat_HInfinite) |
1641 |
||
27468 | 1642 |
|
69597 | 1643 |
subsubsection \<open>\<^term>\<open>Infinitesimal\<close>\<close> |
27468 | 1644 |
|
64435 | 1645 |
lemma ball_SReal_eq: "(\<forall>x::hypreal \<in> Reals. P x) \<longleftrightarrow> (\<forall>x::real. P (star_of x))" |
1646 |
by (auto simp: SReal_def) |
|
27468 | 1647 |
|
1648 |
lemma Infinitesimal_FreeUltrafilterNat: |
|
64435 | 1649 |
"star_n X \<in> Infinitesimal \<Longrightarrow> \<forall>u>0. eventually (\<lambda>n. norm (X n) < u) \<U>" |
1650 |
apply (simp add: Infinitesimal_def ball_SReal_eq) |
|
1651 |
apply (simp add: hnorm_def starfun_star_n star_of_def) |
|
1652 |
apply (simp add: star_less_def starP2_star_n) |
|
1653 |
done |
|
27468 | 1654 |
|
1655 |
lemma FreeUltrafilterNat_Infinitesimal: |
|
64435 | 1656 |
"\<forall>u>0. eventually (\<lambda>n. norm (X n) < u) \<U> \<Longrightarrow> star_n X \<in> Infinitesimal" |
1657 |
apply (simp add: Infinitesimal_def ball_SReal_eq) |
|
1658 |
apply (simp add: hnorm_def starfun_star_n star_of_def) |
|
1659 |
apply (simp add: star_less_def starP2_star_n) |
|
1660 |
done |
|
27468 | 1661 |
|
1662 |
lemma Infinitesimal_FreeUltrafilterNat_iff: |
|
64435 | 1663 |
"(star_n X \<in> Infinitesimal) = (\<forall>u>0. eventually (\<lambda>n. norm (X n) < u) \<U>)" |
1664 |
by (blast intro!: Infinitesimal_FreeUltrafilterNat FreeUltrafilterNat_Infinitesimal) |
|
1665 |
||
27468 | 1666 |
|
64435 | 1667 |
text \<open>Infinitesimals as smaller than \<open>1/n\<close> for all \<open>n::nat (> 0)\<close>.\<close> |
27468 | 1668 |
|
64435 | 1669 |
lemma lemma_Infinitesimal: "(\<forall>r. 0 < r \<longrightarrow> x < r) \<longleftrightarrow> (\<forall>n. x < inverse (real (Suc n)))" |
70221 | 1670 |
by (meson inverse_positive_iff_positive less_trans of_nat_0_less_iff reals_Archimedean zero_less_Suc) |
27468 | 1671 |
|
1672 |
lemma lemma_Infinitesimal2: |
|
64435 | 1673 |
"(\<forall>r \<in> Reals. 0 < r \<longrightarrow> x < r) \<longleftrightarrow> (\<forall>n. x < inverse(hypreal_of_nat (Suc n)))" |
1674 |
apply safe |
|
1675 |
apply (drule_tac x = "inverse (hypreal_of_real (real (Suc n))) " in bspec) |
|
1676 |
apply simp_all |
|
61649
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents:
61609
diff
changeset
|
1677 |
using less_imp_of_nat_less apply fastforce |
64435 | 1678 |
apply (auto dest!: reals_Archimedean simp add: SReal_iff simp del: of_nat_Suc) |
1679 |
apply (drule star_of_less [THEN iffD2]) |
|
1680 |
apply simp |
|
1681 |
apply (blast intro: order_less_trans) |
|
1682 |
done |
|
27468 | 1683 |
|
1684 |
||
1685 |
lemma Infinitesimal_hypreal_of_nat_iff: |
|
64435 | 1686 |
"Infinitesimal = {x. \<forall>n. hnorm x < inverse (hypreal_of_nat (Suc n))}" |
70221 | 1687 |
using Infinitesimal_def lemma_Infinitesimal2 by auto |
27468 | 1688 |
|
1689 |
||
64435 | 1690 |
subsection \<open>Proof that \<open>\<omega>\<close> is an infinite number\<close> |
27468 | 1691 |
|
64435 | 1692 |
text \<open>It will follow that \<open>\<epsilon>\<close> is an infinitesimal number.\<close> |
27468 | 1693 |
|
1694 |
lemma Suc_Un_eq: "{n. n < Suc m} = {n. n < m} Un {n. n = m}" |
|
64435 | 1695 |
by (auto simp add: less_Suc_eq) |
27468 | 1696 |
|
64435 | 1697 |
|
64438 | 1698 |
text \<open>Prove that any segment is finite and hence cannot belong to \<open>\<U>\<close>.\<close> |
27468 | 1699 |
|
1700 |
lemma finite_real_of_nat_segment: "finite {n::nat. real n < real (m::nat)}" |
|
64435 | 1701 |
by auto |
27468 | 1702 |
|
1703 |
lemma finite_real_of_nat_less_real: "finite {n::nat. real n < u}" |
|
64435 | 1704 |
apply (cut_tac x = u in reals_Archimedean2, safe) |
1705 |
apply (rule finite_real_of_nat_segment [THEN [2] finite_subset]) |
|
1706 |
apply (auto dest: order_less_trans) |
|
1707 |
done |
|
27468 | 1708 |
|
1709 |
lemma finite_real_of_nat_le_real: "finite {n::nat. real n \<le> u}" |
|
70221 | 1710 |
by (metis infinite_nat_iff_unbounded leD le_nat_floor mem_Collect_eq) |
27468 | 1711 |
|
61945 | 1712 |
lemma finite_rabs_real_of_nat_le_real: "finite {n::nat. \<bar>real n\<bar> \<le> u}" |
64435 | 1713 |
by (simp add: finite_real_of_nat_le_real) |
27468 | 1714 |
|
1715 |
lemma rabs_real_of_nat_le_real_FreeUltrafilterNat: |
|
64438 | 1716 |
"\<not> eventually (\<lambda>n. \<bar>real n\<bar> \<le> u) \<U>" |
64435 | 1717 |
by (blast intro!: FreeUltrafilterNat.finite finite_rabs_real_of_nat_le_real) |
27468 | 1718 |
|
64438 | 1719 |
lemma FreeUltrafilterNat_nat_gt_real: "eventually (\<lambda>n. u < real n) \<U>" |
64435 | 1720 |
apply (rule FreeUltrafilterNat.finite') |
1721 |
apply (subgoal_tac "{n::nat. \<not> u < real n} = {n. real n \<le> u}") |
|
1722 |
apply (auto simp add: finite_real_of_nat_le_real) |
|
1723 |
done |
|
27468 | 1724 |
|
64435 | 1725 |
text \<open>The complement of \<open>{n. \<bar>real n\<bar> \<le> u} = {n. u < \<bar>real n\<bar>}\<close> is in |
64438 | 1726 |
\<open>\<U>\<close> by property of (free) ultrafilters.\<close> |
27468 | 1727 |
|
69597 | 1728 |
text \<open>\<^term>\<open>\<omega>\<close> is a member of \<^term>\<open>HInfinite\<close>.\<close> |
61981 | 1729 |
theorem HInfinite_omega [simp]: "\<omega> \<in> HInfinite" |
64435 | 1730 |
apply (simp add: omega_def) |
1731 |
apply (rule FreeUltrafilterNat_HInfinite) |
|
1732 |
apply clarify |
|
1733 |
apply (rule_tac u1 = "u-1" in eventually_mono [OF FreeUltrafilterNat_nat_gt_real]) |
|
1734 |
apply auto |
|
1735 |
done |
|
27468 | 1736 |
|
64435 | 1737 |
|
1738 |
text \<open>Epsilon is a member of Infinitesimal.\<close> |
|
27468 | 1739 |
|
61981 | 1740 |
lemma Infinitesimal_epsilon [simp]: "\<epsilon> \<in> Infinitesimal" |
64435 | 1741 |
by (auto intro!: HInfinite_inverse_Infinitesimal HInfinite_omega |
1742 |
simp add: hypreal_epsilon_inverse_omega) |
|
27468 | 1743 |
|
61981 | 1744 |
lemma HFinite_epsilon [simp]: "\<epsilon> \<in> HFinite" |
64435 | 1745 |
by (auto intro: Infinitesimal_subset_HFinite [THEN subsetD]) |
27468 | 1746 |
|
61982 | 1747 |
lemma epsilon_approx_zero [simp]: "\<epsilon> \<approx> 0" |
64435 | 1748 |
by (simp add: mem_infmal_iff [symmetric]) |
27468 | 1749 |
|
64435 | 1750 |
text \<open>Needed for proof that we define a hyperreal \<open>[<X(n)] \<approx> hypreal_of_real a\<close> given |
1751 |
that \<open>\<forall>n. |X n - a| < 1/n\<close>. Used in proof of \<open>NSLIM \<Rightarrow> LIM\<close>.\<close> |
|
1752 |
lemma real_of_nat_less_inverse_iff: "0 < u \<Longrightarrow> u < inverse (real(Suc n)) \<longleftrightarrow> real(Suc n) < inverse u" |
|
70221 | 1753 |
using less_imp_inverse_less by force |
27468 | 1754 |
|
64435 | 1755 |
lemma finite_inverse_real_of_posnat_gt_real: "0 < u \<Longrightarrow> finite {n. u < inverse (real (Suc n))}" |
61609
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents:
61378
diff
changeset
|
1756 |
proof (simp only: real_of_nat_less_inverse_iff) |
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents:
61378
diff
changeset
|
1757 |
have "{n. 1 + real n < inverse u} = {n. real n < inverse u - 1}" |
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents:
61378
diff
changeset
|
1758 |
by fastforce |
64435 | 1759 |
then show "finite {n. real (Suc n) < inverse u}" |
1760 |
using finite_real_of_nat_less_real [of "inverse u - 1"] |
|
1761 |
by auto |
|
61609
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents:
61378
diff
changeset
|
1762 |
qed |
27468 | 1763 |
|
1764 |
lemma lemma_real_le_Un_eq2: |
|
64435 | 1765 |
"{n. u \<le> inverse(real(Suc n))} = |
1766 |
{n. u < inverse(real(Suc n))} \<union> {n. u = inverse(real(Suc n))}" |
|
1767 |
by (auto dest: order_le_imp_less_or_eq simp add: order_less_imp_le) |
|
27468 | 1768 |
|
64435 | 1769 |
lemma finite_inverse_real_of_posnat_ge_real: "0 < u \<Longrightarrow> finite {n. u \<le> inverse (real (Suc n))}" |
1770 |
by (auto simp add: lemma_real_le_Un_eq2 lemma_finite_epsilon_set finite_inverse_real_of_posnat_gt_real |
|
1771 |
simp del: of_nat_Suc) |
|
27468 | 1772 |
|
1773 |
lemma inverse_real_of_posnat_ge_real_FreeUltrafilterNat: |
|
64438 | 1774 |
"0 < u \<Longrightarrow> \<not> eventually (\<lambda>n. u \<le> inverse(real(Suc n))) \<U>" |
64435 | 1775 |
by (blast intro!: FreeUltrafilterNat.finite finite_inverse_real_of_posnat_ge_real) |
27468 | 1776 |
|
64435 | 1777 |
text \<open>The complement of \<open>{n. u \<le> inverse(real(Suc n))} = {n. inverse (real (Suc n)) < u}\<close> |
64438 | 1778 |
is in \<open>\<U>\<close> by property of (free) ultrafilters.\<close> |
64435 | 1779 |
lemma Compl_le_inverse_eq: "- {n. u \<le> inverse(real(Suc n))} = {n. inverse(real(Suc n)) < u}" |
1780 |
by (auto dest!: order_le_less_trans simp add: linorder_not_le) |
|
56225 | 1781 |
|
27468 | 1782 |
|
1783 |
lemma FreeUltrafilterNat_inverse_real_of_posnat: |
|
64438 | 1784 |
"0 < u \<Longrightarrow> eventually (\<lambda>n. inverse(real(Suc n)) < u) \<U>" |
64435 | 1785 |
by (drule inverse_real_of_posnat_ge_real_FreeUltrafilterNat) |
1786 |
(simp add: FreeUltrafilterNat.eventually_not_iff not_le[symmetric]) |
|
27468 | 1787 |
|
64435 | 1788 |
text \<open>Example of an hypersequence (i.e. an extended standard sequence) |
1789 |
whose term with an hypernatural suffix is an infinitesimal i.e. |
|
1790 |
the whn'nth term of the hypersequence is a member of Infinitesimal\<close> |
|
27468 | 1791 |
|
64435 | 1792 |
lemma SEQ_Infinitesimal: "( *f* (\<lambda>n::nat. inverse(real(Suc n)))) whn \<in> Infinitesimal" |
1793 |
by (simp add: hypnat_omega_def starfun_star_n star_n_inverse Infinitesimal_FreeUltrafilterNat_iff |
|
1794 |
FreeUltrafilterNat_inverse_real_of_posnat del: of_nat_Suc) |
|
27468 | 1795 |
|
64435 | 1796 |
text \<open>Example where we get a hyperreal from a real sequence |
1797 |
for which a particular property holds. The theorem is |
|
1798 |
used in proofs about equivalence of nonstandard and |
|
1799 |
standard neighbourhoods. Also used for equivalence of |
|
1800 |
nonstandard ans standard definitions of pointwise |
|
1801 |
limit.\<close> |
|
27468 | 1802 |
|
64435 | 1803 |
text \<open>\<open>|X(n) - x| < 1/n \<Longrightarrow> [<X n>] - hypreal_of_real x| \<in> Infinitesimal\<close>\<close> |
27468 | 1804 |
lemma real_seq_to_hypreal_Infinitesimal: |
64435 | 1805 |
"\<forall>n. norm (X n - x) < inverse (real (Suc n)) \<Longrightarrow> star_n X - star_of x \<in> Infinitesimal" |
1806 |
unfolding star_n_diff star_of_def Infinitesimal_FreeUltrafilterNat_iff star_n_inverse |
|
1807 |
by (auto dest!: FreeUltrafilterNat_inverse_real_of_posnat |
|
1808 |
intro: order_less_trans elim!: eventually_mono) |
|
27468 | 1809 |
|
1810 |
lemma real_seq_to_hypreal_approx: |
|
64435 | 1811 |
"\<forall>n. norm (X n - x) < inverse (real (Suc n)) \<Longrightarrow> star_n X \<approx> star_of x" |
1812 |
by (metis bex_Infinitesimal_iff real_seq_to_hypreal_Infinitesimal) |
|
27468 | 1813 |
|
1814 |
lemma real_seq_to_hypreal_approx2: |
|
64435 | 1815 |
"\<forall>n. norm (x - X n) < inverse(real(Suc n)) \<Longrightarrow> star_n X \<approx> star_of x" |
1816 |
by (metis norm_minus_commute real_seq_to_hypreal_approx) |
|
27468 | 1817 |
|
1818 |
lemma real_seq_to_hypreal_Infinitesimal2: |
|
64435 | 1819 |
"\<forall>n. norm(X n - Y n) < inverse(real(Suc n)) \<Longrightarrow> star_n X - star_n Y \<in> Infinitesimal" |
1820 |
unfolding Infinitesimal_FreeUltrafilterNat_iff star_n_diff |
|
1821 |
by (auto dest!: FreeUltrafilterNat_inverse_real_of_posnat |
|
1822 |
intro: order_less_trans elim!: eventually_mono) |
|
27468 | 1823 |
|
1824 |
end |